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Kurzfassung

Diese Arbeit untersucht das Potenzial von Künstliche Intelligenz (KI)-gestützten Metho-
den die Regelgenerierung in regelbasierten Fehlererkennungssystemen zu automatisieren,
welche ein wichtiger Teil von Building Automation and Control Systems (BACS) sind.
Durch die Integration von Techniken aus dem Bereich der Large Language Models
(LLMs) versucht die Arbeit, Beschreibungen in natürlicher Sprache in strukturierte, ma-
schinenlesbare Regeln umzuwandeln, die den Fehlererkennungsprozess steuern. Die Arbeit
nutzt die Design Science Research (DSR)-Methodologie in Form eines Relevancezyklus,
Rigorzyklus und Designzyklus, um die zentralen Forschungsfragen zu adressieren. Zu
diesen Herausforderungen gehört die Gewährleistung der syntaktischen und semantischen
Genauigkeit der generierten Regeln. Zu den Schlüsselkomponenten der Systemarchitektur
gehören Semantic-Chunking, die Generierung von Embeddings und die Nutzung von
Vektordatenbanken, um effizientes Informationsretrieval zu ermöglichen. Eine quantitati-
ve Evaluierung zeigt, dass das System eine hohe syntaktische Genauigkeit erreicht und
in 32 von 33 Fällen korrekte JSON-Regeln generiert. Die qualitative Evaluierung zeigt
jedoch Einschränkungen bei der semantischen Genauigkeit. Zusätzlich, analysiert diese
Arbeit mögliche Verbesserungen durch verfeinerte menschliche Eingaben und zeigt, dass
detailliertes Nutzerfeedback die Leistung des Systems steigern kann. Trotz der Probleme,
die in der qualitativen Evaluierung aufgedeckt wurden, legt die Arbeit eine Grundlage für
die zukünftige Entwicklung eines praktischen KI-gestütztes Regelgenerierungssystems.
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Abstract

This thesis investigates the potential of Artificial Intelligence (AI)-powered methods to
automate rule generation within rule-based fault detection systems, a critical component
of Building Automation and Control Systems (BACS). By integrating techniques in
the field of Large Language Models (LLMs), the study seeks to transform natural
language descriptions into structured, machine-readable rules that drive fault detection
processes. The research employs the Design Science Research (DSR) methodology,
systematically progressing through the relevance, rigor, and design cycle to address the
core research challenges. These challenges include ensuring the syntactic and semantic
accuracy of generated rules. Key components of the system architecture include semantic
chunking, embedding generation, and the use of vector databases to facilitate efficient
information retrieval. A quantitative evaluation demonstrates that the system achieves
high syntactic accuracy, generating well-formed JSON rules in 32 out of 33 cases. However,
the qualitative evaluation reveals limitations in semantic accuracy. Additionally, this
thesis explores potential improvements through refined human input, showing that
detailed user feedback can significantly increase the system’s performance. Despite the
problems revealed in the qualitative evaluation, the work lays a foundation for the future
development of a practical AI-enhanced rule generation system.
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CHAPTER 1
Introduction

In recent years, we have witnessed significant progress in various industries due to
the integration of digitalization and technology. This integration has paved the way
for developing highly efficient automation solutions in diverse domains [HKJ19]. An
excellent example in this context is the field of Building Automation and Control Systems
(BACS). BACS enable building operators to have comprehensive control and monitoring
capabilities over all the systems within a building, ensuring optimal performance and the
early detection of faults or issues. These systems play a crucial role in maintaining the
efficiency and comfort of buildings by collecting and analyzing data from a broad collection
of sensors and building systems [Sri22]. However, the sheer volume of data generated
by BACS often overwhelms building operators, leading to challenges in conducting
comprehensive data analysis. Automated Fault Detection and Diagnostics (AFDD)
addresses this issue by seamlessly identifying and diagnosing faults within the building
systems, thereby enabling efficient monitoring even with a limited workforce [LS21] [Pac18].
A particularly effective variant of AFDD is rule-based fault detection, in which specific
rules are developed to uncover system components’ flaws. However, this method requires
expert knowledge to devise generic rules applicable to various BACS. This can be time-
and resource-intensive [LS21].

One potential solution to this problem could be integrating Artificial Intelligence (AI)
into BACS. AI is believed to improve BACS by making them more efficient and effective
in their energy usage, as well as enhancing their understanding of energy usage within
the building [Vav24]. In the context of AFDD, the integration of AI could streamline the
rule-generation process. Especially Large Language Models (LLMs) are a promising new
approach to achieve remarkable progress in this task. Various companies such as OpenAI 1,
Google2 or Anthropic3 offer powerful AI systems based on LLMs, that could potentially be

1https://openai.com/chatgpt
2https://deepmind.google/technologies/gemini
3https://www.anthropic.com/claude
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1. Introduction

leveraged for this purpose. However, these systems are not directly usable for generating
applicable rules due to a lack of necessary context. Furthermore, concerns about data
privacy and vendor lock-in arise from these systems’ closed-source, cloud-based nature,
all of which are owned by major tech companies. To mitigate these concerns, there is a
growing need for an open-source solution that can be used locally. In addition to the
increasing popularity of LLMs in the commercial sector, the open-source community has
also achieved excellent results in building high-quality models. Models such as those from
MistralAI 4 or Llama5 can be used by anyone and are easily accessible through websites
like Huggingface [WDS+20]. Furthermore, platforms like Ollama6 and Langchain7 allow
developers to integrate models in their code easily [TA23]. Hence, creating LLM-based
solutions independent of major corporations has proven quite effective.

1.1 Motivation and Problem Statement

The efficiency of building operations can be enhanced by AFDD, especially through
rule-based fault detection and diagnostics. An integrated AFDD system within BACS
ensures efficient and comfortable building operations. The system helps save energy and
detect faults effectively [Pac18]. For example, a rule in such a system could be: „Room
brightness sensor measurement reacts on light command/modulation change“ [GMMH22].
This rule ensures that the light can be controlled correctly and that there are no sensor
faults. Applying such rules throughout the building helps to avoid issues in building
operation.

However, initially, creating generic rules is complex and requires expert knowledge.
Experts need to deeply understand how BACS functions and comprehend the logic
connections within the system. They must know which sensors exist and their locations.
For example, the rule mentioned earlier only works if there is access to at least one
sensor inside one room and only if the light command or modulation change can be
detected. For other rules like „Room temperature measurement reacts on radiator valve
position change when heat is provided by associated heat group“, it is crucial to have
knowledge about which heat group is responsible for which rooms and which sensors in
this room are capable of measuring the temperature [GMMH22]. Additionally, BACS
can vary from one building to another. While most buildings have a Heating, Ventilation
and Air Conditioning (HVAC) system, the system can differ significantly from those in
other buildings due to differing building needs. Furthermore, having the right sensors in
place is essential for applying rules. Even if the same sensors are placed throughout the
building, they may be named differently. Once again, experts are needed to recreate the
applied rules.

4https://mistral.ai/
5https://llama.meta.com/
6https://ollama.com/
7https://www.langchain.com/
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1.1. Motivation and Problem Statement

Consequently, the development of intuitive and adaptable tools that facilitate rule creation
becomes imperative to manage such complexity efficiently. To ensure that users can
effectively handle these tools, it is necessary to identify the requirements needed. This
leads to the first research question:

RQ1: What are the requirements for using AI within variable building
environments?

The complexity and variability of building environments necessitate advanced methods for
rule generation in AFDD systems. Traditional rule creation requires expert knowledge and
is time-consuming. To address this, it is essential to explore the latest advancements in AI
that can automate and enhance this process. Understanding the current state-of-the-art
AI methods in scientific research provides insights into the most effective techniques for
rule generation. The second research question is therefore defined as follows:

RQ2: What are the current state-of-the-art AI methods in scientific research
that can be used for rule generation in AFDD?

The integration of state-of-the-art AI methods for rule generation in AFDD systems
presents an opportunity to enhance the efficiency and comfort of building operations.
While individual AI techniques may be useful in automating tasks, combining multiple
methods could lead to even more powerful solutions. By leveraging the strengths of
various AI methods, it may be possible to create a comprehensive system that can handle
the complex rule generation process. This leads to the third research question:

RQ3: How can these state-of-the-art AI methods be combined to generate
rules for AFDD?

To tackle the defined research questions, it is necessary to note that AI heavily relies
on relevant data to function. Having sufficient data available is crucial to achieve a
reasonable outcome for rule generation [Nag24]. All data accessible to or known by
experts is required to power the AI. This means determining which data can be used to
generate rules and how to deal with unstructured, non-machine-readable data is necessary.
Documentation in the form of Portable Document Formats (PDFs) written in natural
language can be a crucial source of information.

Significant advancements have been made in the field of Natural Language Processing
(NLP) since the introduction of the Transformer architecture by Google in 2017 [VSP+17]
[RWC+19]. Recent developments have shown that LLMs, primarily designed for language
generation, can also handle complex tasks that require complex reasoning and planning
capabilities [YZY+23] [WXJ+23]. These advancements in NLP and LLMs can be utilized
to address the challenge of rule generation for fault detection and diagnostics. Instead of
experts having to spend time reading documentation and learning about buildings to

3



1. Introduction

Figure 1.1: Localization of the AI-Powered Rule Generation System in
BACS [Pac18]

create rules for fault detection, AI can be leveraged. The main goal of this work is to
explore AI, especially NLP-based techniques that can help generate rule sets without
requiring specialized skills. The proposed techniques should be compatible with arbitrary
BACS. Simplifying the generation of rules for fault detection is a benefit for all the
stakeholders. Stakeholders are building owners, operators, and facility managers. System
operators and facility managers are able to quickly detect issues in the system, enabling
them to react proactively rather than only after receiving a complaint. Additionally,
residents and visitors benefit from smooth building operations and optimal conditions.

Figure 1.1 illustrates the placement of an AI-powered rule generation system within
BACS. Such a system with a rule-based AFDD system normally has three parts: the
building system itself, a fault detection system, and a fault diagnostics part [Pac18]. The
fault detection system is equipped with rules to detect faults in data from the building
system. If a fault is detected, the fault diagnostics try to analyze where the fault came
from, and an auto-correction may be applied to the building system. An AI-powered
rule generation system would be added to this setup right before the fault detection
system. The AI-powered rule generation system would be able to add new rules to the
fault detection system by leveraging data from the building system. On top of that, it
can build on existing rules from the fault detection system.

1.2 Methodology
In this research, the Design Science Research (DSR) methodology is used to address
the challenge of automated rule generation for AFDD. DSR is a paradigm whose goal
is to solve a specific research problem. It creates an artifact, which, in most cases, is
a technical solution to the problem. In this work, the artifact is a technical solution,
more specifically, a software program. The DSR’s findings consist of the newly designed
artifact and gained know-how to understand better how the artifact performs within the

4



1.2. Methodology

Figure 1.2: The Three-Cycle-View of DSR [Hev07]

relevant environment [BHM20]. The DSR framework by Hevner is divided into three
cycles [Hev07]. The three cycles are illustrated in Figure 1.2. The role of each cycle in
the context of this work is briefly discussed in the following. Each cycle aims to answer
one of the three research questions.

1.2.1 Relevance Cycle
The goal of the relevance cycle is to explore the relevance of the problem and its solution.
In this case, the relevance cycle focuses on identifying the specific requirements and
constraints for the rule generation process in the context of BACS. First of all, the
environment of the problem is defined. This includes defining the actors involved and the
organizational and technological structures. From the problem and its opportunities, the
requirements for the artifact are derived. As a last step, the success criteria are defined.
If the artifact does not work as intended after the last cycle, the relevance cycle will be
revisited to check and adjust the requirements and constraints [Hev07]. The work of the
first cycle aligns with the first research question, which aims to identify the requirements
for using AI within variable building environments.

1.2.2 Rigor Cycle
The main goal of the rigor cycle is to build a knowledge base. It is ensured that the
research is grounded in existing knowledge and contributes to the knowledge base. This
involves a continuous process of referring to the knowledge base and including relevant
theories, methods, and techniques from the fields of AFDD and NLP. On top of that,
existing artifacts from the field are taken into account. These can be other approaches
to generating or deriving rules for a specific domain. The knowledge base is created
through an in-depth literature review by systematically surveying scholarly articles,
books, and other relevant sources to identify the state-of-the-art techniques in AFDD
and NLP. Especially the research around LLMs is taken into account. The knowledge
base is provided as a written summary of information relevant to this work. From the
requirements and the collected knowledge, a software architecture containing tools and
methods from the field of AI is derived. The defined architecture functions as a base
for the artifact. After completing the three cycles, the gained insight is used to refine

5



1. Introduction

the knowledge base and contribute new knowledge in the form of design principles and
guidelines for AI-based rule generation in AFDD to the knowledge base [Hev07]. With
the help of the knowledge base, the second research question is addressed, which was
defined to identify the current state-of-the-art AI methods in scientific research that can
be used for rule generation in AFDD.

1.2.3 Design Cycle
In the design cycle, the development of the artifact takes place. The knowledge is used,
and a concrete solution is proposed. In this work, an AI-based system for generating rules
for AFDD is the artifact. Next to the rule generation, a major topic is data processing,
especially the challenge of dealing with unstructured data. This cycle heavily depends
on the other two cycles. The methods, tools, and the created software architecture are
converted to a technical solution. The design cycle is the core of the DSR methodology,
as it is where the artifact is constructed and evaluated [Hev07]. After the development,
an evaluation is conducted to assess the effectiveness of the artifact in addressing the
problem. Therefore, the usefulness of the individual methods and tools and whether
their combination leads to meaningful results is discussed. In order to compare the
results, rules created by experts are included in the evaluation. As the last cycle involves
the combination of different methods, this cycle gives answers to the third research
question concerning how state-of-the-art AI methods can be combined to generate rules
for AFDD.

1.3 Structure of the Thesis
In this research, the DSR methodology is used to tackle the research question. This
approach follows a specific structure to ensure a systematic process for finding a solution.
This structure is reflected in this work. The remaining chapters are structured as follows.

Embracing the DSR methodology, the first cycle, known as the Relevance Cycle, defines
the specification of the problem’s environment. The Relevance Cycle is presented in
Chapter 2. To specify the problem’s environment, AFDD is analyzed in different building
life cycle phases. The problem’s environment also includes defining the use cases for
the problem and analyzing the stakeholders involved. To conclude the Relevance Cycle,
prerequisites and requirements for an AI-powered rule generation system are defined.

The Rigor Cycle, outlined in Chapter 3, follows the Relevance Cycle. The Rigor Cycle
seeks to build a profound knowledge base by conducting a comprehensive literature
review. On top of this, other research and approaches to similar problems in the field
are presented. Additionally, this cycle involves developing a software architecture for the
artifact, supported by diagrams to represent the architecture visually.

Continuing with the DSR framework, the Design Cycle is executed in Chapter 4 to bring
the planned artifact to realization and test the methods developed. To evaluate the
quality of the work, Chapter 5 is dedicated to assessing the results and determining

6



1.3. Structure of the Thesis

if they are comparable to those that experts in the field would have produced. The
Section 5.6 delves into a detailed discussion of the results, and finally, the thesis is
concluded comprehensively in Chapter 6, summarizing all the findings and insights
gathered throughout the research process.

7





CHAPTER 2
Relevance Cycle

Nowadays, it is common for commercial buildings to have a monitoring system to observe
the building’s operation. However, this does not necessarily mean that the data received
through the monitoring system leads to insights on how the building performs. The
amount of data is often too overwhelming and cannot be processed and interpreted
effectively by the responsible people [KLC+20]. AI-powered rule generation can improve
the monitoring system by generating rules that ease the evaluation of the data. However,
the question arises of how and when to apply the rule generation process.

2.1 Rule Generation in Different Building Life Cycle
Phases

It is possible to apply AI-powered rule generation at different stages of a building’s
life cycle, including design, construction, and operation. Each stage may have different
requirements, which are described below.

During the building’s design phase, rule generation can be considered. As the building’s
construction is planned, sensors and monitoring devices are factored in. With a detailed
plan for monitoring the building and constructing the HVAC, rule generation can already
considered as a part of the system. The data needed for rule generation can be collected,
and rules can be prepared. Having rules prepared before the start of building construction
helps to monitor the building from the beginning efficiently. However, AI-powered rule
generation must adapt to changes and new information. Additionally, the rules can not
be tested immediately, and a need for more or other rules may arise later on anyhow.

Furthermore, AI-powered rule generation can be used during the building’s construction
phase. Once the documentation is finalized and all necessary information is available,
comprehensive rules can be generated and applied to the AFDD during the initial
commissioning phase of a new building. The rules ensure that HVAC systems and other

9



2. Relevance Cycle

building components perform optimally from the start and help identify and resolve
any faults or inefficiencies before the building’s occupancy. This scenario is the optimal
case because rules are generated just once after all information is available, and ongoing
monitoring during the building’s construction helps identify and fix faults before the
building is used.

Moreover, rule generation can also be utilized while the building is in operation. Existing
buildings that are equipped with an AFDD system can be directly improved by applying
AI-powered rule generation. The newly generated rules do not affect the already existing
AFDD. Available documentation and information from the building can be leveraged to
be used as data sources for AI. There is no need to collect data first, as the input data
consists primarily of documentation in natural language that has already been created.
The rules can be generated, and the AFDD will be improved. Ongoing monitoring can
detect and diagnose faults and inefficiencies as they occur, enabling early maintenance
and preventing energy performance degradation. For this thesis, the last scenario is
exemplary and is the only one considered, as it is the most accessible life cycle phase.

2.2 Use Case Narrative
Fault Detection and Diagnostics (FDD) systems are used to process the data and detect
suboptimal performance in the building [KLC+20]. An essential technical component
monitored by FDD systems are HVAC systems. They include in particular Air Handling
Units (AHUs) and Variable Air Volume (VAV) terminal boxes [KLC+20]. HVAC systems
therefore play an important role when using FDD systems. Estimations from the literature
say that 5% - 30% of the energy that is used in commercial buildings is wasted because
errors in the control system arise [GSM+17] [LKG20]. Possible reasons for errors include
sensor faults, improper sensor installation, a stuck valve, or issues with pumps connected
to the valve [GMMH22]. Using FDD systems saves energy and money by preventing such
errors [GSM+17]. Two different studies measured the median energy saving in buildings
by using FDD to 8% - 9% [LKG20] [KLC+20]. The implementation of FDD not only
reduces costs and saves energy but also improves the comfort of the building [KLC+20].
AFDD systems take FDD a step further by automating the process of detecting and
diagnosing faults and minimizing human intervention [LS21]. Furthermore, integrating
AI-powered rule generation into this process could help to simplify the initial phase of
rule-based fault detection, where the rules are created. The time-consuming task of
creating initial rules by experts can be streamlined with the help of AI.

A typical use case scenario for AI-powered rule generation for AFDD in a commercial
building starts with the building owner deciding to adopt the technology to reduce energy
waste and improve operational efficiency for an existing building. The AI-powered rule
generation is now leveraged to generate new rules. Following, information is provided on
what behavior should be tested. For example, this can be done by a facility manager or
system integrator familiar with common test cases in the building. The facility manager
formulates in natural language which components and which behavior should be tested.

10



2.3. Prerequisites

The AI, more explicitly the LLM-powered system, is then executed and provides the
rules matching the input of the facility manager. These rules can be directly integrated
into the AFDD-system. The AFDD-system now continuously monitors the building with
an additional set of rules, automatically detecting faults and suboptimal performance.
When a fault is detected, the facility manager team is alerted. The facility manager team
then uses the AFDD insights to prioritize maintenance tasks and address the identified
issues promptly. Over time, the AFDD-system and the generated rules help the building
achieve a lower energy consumption and a smoother operation.

2.3 Prerequisites
To be able to use AI-powered rule generation for AFDD, a number of prerequisites must
be met. Those prerequisites must be met to ensure that the system can function correctly
and provide the desired benefits. The prerequisites are described below.

1. Building with AFDD System

First, the building must be equipped with an AFDD-system. This implies that a system
integrator has implemented an AFDD from a service provider into the building.

2. AFDD with Rule-Based Fault Detection

Second, the system must support rule-based fault detection. Without this capability,
there would be no foundation for generating new rules, and the underlying technical
system for applying these rules would not exist.

3. User able to provide Input

Third, one or more individuals must be available to provide input on which components
and behaviors should be tested. Without this input, an LLM would not be able to
generate new rules, as it is not explicitly trained for the purpose of generating rules.
Instead, the LLM must be provided with clear prompts that outline the goals to be
achieved. People that contain knowledge about the building, like system integrators and
facility managers, provide the input for those prompts.

2.4 Stakeholder Analysis
The implementation and usage of AFDD and the necessity of AI-powered rule generation
involves various stakeholders, each with their own interests and requirements. Next to
the users of the building, like residents or workers, mainly three other stakeholders play
an important role in an AI-powered rule generation system.

As vendors of the AFDD-system, service providers have an interest in incorporating
AI-powered rule generation. This technology enhances their product offering, making

11



2. Relevance Cycle

it more effective and attractive to potential customers. By using LLMs, they can
develop a more sophisticated AFDD-system that can detect a broader range of faults
with greater accuracy. This improvement in their product can lead to increased sales,
market share, and customer satisfaction, ultimately strengthening their position in the
market [KLC+20].

System integrators set up and run the AFDD-system. With AI-powered rule generation,
they can benefit from a more robust and efficient system. The LLM’s capabilities can
help detect faults earlier and more accurately, leading to smoother building operations.
The rule generation further reduces the need for manual intervention. However, system
integrators may need to adapt to new technologies and processes, which could require
additional skill development [KLC+20].

Facility managers play a vital role in maintaining smooth building operations. By closely
monitoring the building through the AFDD-system, they can quickly identify and respond
to any detected issues. Leveraging AI-powered rule generation can significantly enhance
the capabilities of facility managers in this regard. AI-powered rule generation enables
facility managers to detect problems more rapidly and accurately before they escalate
and lead to tenant complaints or service disruptions. While facility managers may need
to adapt to new technologies and processes, requiring training to use the AFDD-system
effectively, AI can simplify their work processes [KLC+20].

2.5 Requirements

From the described use case, several requirements arise that are fundamental to the rule
generation process. Those requirements were derived and are described below.

1. Input in Natural Language

First, the AI-powered rule generation system must be able to receive input in
natural language. A natural language input is crucial for the facility manager to
be able to provide input. The facility manager must be able to communicate their
requirements in natural language. The AI-powered system must understand and process
this information.

2. Directly Applicable Rules

Second, the AI-powered rule generation system must generate rules that can be
directly used by the existing AFDD system. To achieve directly applicable rules,
the rules must be in a format that the AFDD system can understand and apply. The
rules must be structured in a way that the AFDD system can process them and use them
for fault detection. This requirement is crucial to have a fully automated process from
rule generation to rule application without interference from humans.
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3. External Knowledge Usage

Third, the AI-powered rule generation system must be able to use knowledge from
other sources apart from the internal knowledge encoded in the LLM. The system must
be capable of using documents written in natural language as input. It should extract
relevant information from these documents to generate rules. This capability is essential
because the language model may not possess specific knowledge about the building in
question.

4. Consistency with existing AFDD System

Fourth, the AI-powered rule generation system must be able to stay consistent with
the existing AFDD system. It must be able to understand the structure and content
of existing rules from the AFDD system and generate new rules that are consistent with
those rules. Taking existing rules into account is important to ensure that the new rules
are seamlessly integrated into the existing process.
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CHAPTER 3
Rigor Cycle

3.1 Knowledge Base

As a foundation for the artifact creation, an in-depth review of the technical background
relevant to AI-powered rule generation for AFDD was conducted. The review explores
AI-techniques relevant to the topic. As mentioned in Section 1.1, especially NLP and
LLMs are promising in addressing the problem. However, the foundational approach lies
in AFDD-systems, which detect faults by applying rules to BACS. The following section
provides background information on the technologies used and the field in which this
work is situated. However, a fundamental understanding of NLP and LLMs is necessary
to comprehend the content of this work.

3.1.1 Rule-Based Fault Detection

Rule-based fault detection is a systematic approach to identify and diagnose faults in
various systems, such as HVAC systems or AHUs. This method relies on predefined
rules to monitor system performance and detect anomalies. The principles of rule-based
AFDD involve several vital steps. First, rules are established based on expert knowledge,
historical data, and system specifications, defining normal operating conditions and
thresholds for various parameters. Sensors and monitoring tools continuously collect
data from the system, including temperature, pressure, flow rates, and other relevant
metrics. This collected data is then analyzed against the predefined rules, and if the data
deviates from the expected range, an alert is triggered. When an anomaly is detected,
the system identifies the specific fault based on the violated rule, helping to pinpoint the
exact issue. The system also provides diagnostic information, suggesting possible causes
and corrective actions, which aids technicians in quickly resolving the problem [SBCH06]
[SB06].
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3.1.2 Natural Language Processing and Large Language Models

A foundational concept for AI-powered rule generation is the Deep Learning (DL)
architecture called transformers, which Google first developed in 2017 [VSP+17]. Since
then, the field of NLP has made remarkable advancements. The rise of LLMs changed
how the public sees AI and brought the potential for many new industry applications
derived from NLP techniques [EMMR23].

At the heart of many NLP applications are LLMs. LLMs are trained on extensive amounts
of text data and use DL techniques to understand and generate human-like text [DSS+23].
LLMs are designed to predict the next word in a sentence, which allows them to create
text that is coherent and contextually relevant based on the input provided. The training
process for LLMs involves feeding the model with diverse text data, allowing it to learn
patterns, grammar, and context. As a result, the model is able to perform a variety of
language-related tasks with high accuracy [Dou23].

In the context of AFDD, NLP plays a crucial role in processing and understanding
natural language data, including explanations of the AFDD-system as well as building
and sensor descriptions. With the aid of NLP techniques, extracting valuable information
from unstructured text data and utilizing it to enhance the rule generation process in
AFDD systems becomes feasible. LLMs allow users to use natural language as input and
enable unstructured data to serve as a data basis [ZZL+23].

3.1.3 Prompting

Using LLMs requires accurate prompting, as it directly affects the quality and relevance
of the generated responses. A well-constructed prompt offers clear context and specific
guidance to produce accurate and valuable outputs. Various prompting strategies can
significantly improve the use of LLMs [Sar22].

Few Shot Prompting

When creating a prompt for an LLM, it is possible to only use a simple question or in-
struction, a method known as zero-shot prompting. This approach provides no additional
context or examples, and the model’s response is solely based on the question [Sar22].

In contrast, one-shot and few-shot prompting involve providing one or multiple examples
before the actual question. These methods facilitate in-context learning, allowing the
model to learn tasks by being presented with examples. Few-shot prompting is an effective
way to improve the performance of LLMs across various tasks [Sar22] [BMR+20].

However, LLMs often encounter difficulties with complex reasoning. Chain-of-Tought
(CoT) prompting can help enhance reasoning performance [BMR+20].
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Chain-of-Tought Prompting

The reasoning capabilities of LLMs are improved through CoT prompting by providing
the model with reasoning steps. When combined with few-shot prompting, the examples
consist of a question and an answer and include a description of how the answer can be
derived using logical steps. This approach improves the performance of LLMs on more
complex tasks. Additionally, it is possible to integrate CoT into zero-shot prompts by
simply instructing the LLM to think step by step [Sar22] [BMR+20] [WWS+22].

This method is even integrated into some LLMs directly. An example is the o1 model from
OpenAI, which uses CoT when being prompted to solve complex problems. By breaking
down difficult tasks into smaller, more manageable steps and learning to recognize and
correct its mistakes, o1 can effectively reason through challenges and provide more
accurate and informative responses [Ope24].

Decomposed Prompting

Another technique for solving more complex tasks is to use iterative methods and
decompose tasks into simpler subtasks. These simpler subtasks can then be handled
by different LLM models or solved using various prompts. Additionally, decomposed
prompting can help reduce the length of inputs and outputs, preventing the token limits
of LLMs from being exceeded. LLMs have a maximum number of tokens they can
process at once, restricting the amount of information they can consider during a single
interaction [KTF+22].

3.1.4 Dealing with Unstructured Data
When using LLMs, the assumption is made that the information needed was included
during the model’s training. However, this assumption is not valid for specific use cases.
In such cases, the LLM tends to provide false information [AM23]. This phenomenon
is known as „hallucination“, where the model generates information that is plausible-
sounding but incorrect. To use LLMs effectively, data is needed to help the model
understand its task. The challenge is that the available data is often not machine-
readable and, therefore, cannot be used by LLMs as context. While the data does not
need to be in a specific format, it must at least be in text form to be passed to the
LLM [YJT+23].

A widely used format for storing data are PDFs. They often contain structured information
that can significantly improve the capabilities of LLMs. By extracting and using content
from PDFs, LLMs can be given valuable data, enhancing their ability to understand
and generate human-like responses. However, using PDFs for this purpose poses several
challenges. First, PDFs can be created from scanned documents, which may contain
images of text rather than actual text, making it difficult for LLMs to process information
accurately. Second, the layout and structure of PDFs can vary widely, with some
documents having complex formatting, multiple columns, or embedded multimedia
elements, which complicates data extraction [dLBBdFC+24]. Lastly, it is crucial to
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ensure that the extracted content is valuable and accurate, as irrelevant or erroneous data
can negatively impact the performance of LLMs. Despite these challenges, effectively
utilizing PDF documentation can provide LLMs with meaningful data, enhancing their
overall performance and capabilities [CD15].

3.1.5 Retrieval Augmented Generation
As previously mentioned, LLMs require extensive and precise knowledge to handle complex
tasks. Without this, „hallucinations“ can occur. Older LLMs, such as ChatGPT 3.5
with an information cutoff in January 2022 (as of March 26, 2024), are limited by their
training data. While some systems strive to stay updated, they may still need more
specific information crucial for generating relevant responses. Even when the necessary
data is available, it cannot be directly forwarded to the LLM due to token limits. For
tasks requiring vast amounts of knowledge, including everything within the token limit is
impractical [GXG+23].

To deal with this issue, Retrieval-Augmented Generation (RAG) comes into play. RAG
is an innovative approach designed to enhance LLM performance by integrating external
knowledge retrieval mechanisms. Instead of relying only on the pre-trained knowledge
within the model, RAG dynamically retrieves relevant information from external sources
during the generation process. This method significantly improves the reliability and
accuracy of the responses generated by the model [LPP+20].

The RAG framework operates in two main stages: retrieval and generation. First, it
retrieves relevant documents from a large corpus using a retriever model. Then, it uses
a generator model to produce coherent responses based on the retrieved information.
Through this technique, „hallucinations“ can be reduced. A retrieval model can be any
available LLM, such as ChatGPT, Mistral, or Llama models [SPC+21].

The whole process involves multiple steps, starting with dividing the data into chunks.
Then, embeddings are used to represent the data chunks as vectors, which are stored in
a vector database. Lastly, a query is used to fetch relevant data.

Chunking

Chunking is the process of splitting text into shorter sub-texts, which are later fetched
as context for the LLM. The most straightforward way to create chunks from a text is
to create fixed-sized segments by using a sliding window. Fixed-sized chunking is quick,
easy, and effective for text that does not have a strong semantic structure. However, the
fixed-size window can result in cutting off paragraphs or sentences and splitting up text
that belongs together [Mic24].

As an alternative, semantic chunking can be done by including information like header
structure, tables, chapters, and paragraphs in the chunking strategy. One way to achieve
this is to convert data into a Markdown format and then split the text based on Markdown
elements like headers. Using Markdown text format for RAG ensures more accurate and
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relevant results because it supplies richer data structures and more relevant data chunk
loads to your LLM [Lan24b] [Mic24].

Embeddings

Once the available data is chunked, it can be converted into embeddings. Embeddings
are numerical representations of text that capture the semantic meaning of the text.
Each text chunk is transformed into an embedding using a pre-trained language model,
such as BERT, GPT, or others. These models convert the text into high-dimensional
vectors, which encapsulate the semantic meaning of the text. As a result, similar texts
will have similar embeddings [Ip24] [GXG+23].

Vector Databases

A vector database is designed to store and manage these high-dimensional vectors
efficiently. Each embedding is indexed with a unique identifier. The ID helps retrieve
the embedding quickly when needed. Inside a vector database, a vector search can
be performed. Typically, a similarity search based on the distance between vectors is
performed, such as cosine similarity or the Euclidean distance [Rac17]. By calculating
these distances, the database can identify which vectors are most similar to a given
query vector. This capability is beneficial for LLMs, where finding a similar context to a
query improves the outcome. The efficiency and speed of vector databases make them
indispensable in handling large-scale data and complex queries [JSH+24].

3.1.6 Agents

Multi-agent tools are a promising technique that can further enhance the capabilities
of LLM applications. One example is the open-source framework AutoGen, developed
by Microsoft [WBZ+23]. AutoGen provides a high-level abstraction for using LLMs,
enabling the creation of multiple agents powered by an LLM that can interact in a chat.
These agents can solve tasks autonomously, improving their capabilities by iterating
through multiple steps, including action plans and reasoning. This approach, described by
Yao et al. in the ReAct schema, demonstrates increased task-solving efficiency compared
to using a single prompt [YZY+23]. Another technique described by Shinn et al. is
Reflexion. This method involves agents verbally reflecting on their results and producing
better outputs by maintaining their reflections in memory [SLG23]. Other available
frameworks that provide agents are CrewAI [cre24] and Agents from Langchain [Lan24a].

Another reason why agents can enhance the capabilities of LLMs is that they can be
equipped with tools. These tools enable them to perform web searches or execute code,
thereby extending the knowledge of LLMs beyond their training data. Cognition-AI
exemplifies this capability with their framework Devin [Wu24].

19



3. Rigor Cycle

3.2 Related Work
This section reviews scientific literature to identify and discuss related work in the field. By
examining various research papers, a comprehensive overview of existing methodologies,
advancements, and applications relevant to this work is created. This analysis helps
to contextualize the work within the broader academic landscape and highlight the
contributions of previous studies.

3.2.1 Rule-Based Fault Detection
Rule-based fault detection is a well-researched field. In many domains, like the building
sector, rule-based systems exist to detect faults. A significant amount of research has been
conducted to develop rules applicable to AHUs and HVAC-systems. Schein et al. devel-
oped a rule-based fault detection method for AHUs and HVAC-systems [SBCH06] [SB06].
It consists of a set of expert rules capable of detecting faults.

Another example is the work of Guo et al., who developed a rule-based fault diagnosis
strategy for air conditioning systems. Through expert knowledge and characteristics of
the system, they were able to derive 22 expert rules [GWC+19]. Similar to this, Wang et
al. created a fault detection and diagnosis strategy for AHUs [WC16].

Bruton et al. also explored an expert rule-based AFDD tool for AHUs [BCO+13]. Also,
the AHU InFO tool developed by Bruton et al., a rule-based expert system for fault
detection and diagnostics for AHUs, shows that rule-based approaches lead to good
results [BCR+15].

Furthermore, Ahmed et al. developed a rule-based fault detection tool for AHUs
[AAED+15]. This approach utilizes different sensor data and analyzes the time series
data of the sensors using expert rules, thresholds, or statistical features to detect faults.

Additionally, Gwerder et al. developed a system for running integrity checks on data
from BACS [GMMH22], which contains several rules applicable to AFDD.

3.2.2 AI for rule and test generation
Dragoni et al. [DVRG16] show that NLP can enable the generation of rules by combining
NLP-based semantic analysis with Machine Learning (ML) techniques. This approach
uses the strengths of both NLP and ML, enabling the extraction of meaningful patterns
and dependencies from complex legal texts, ultimately contributing to the development of
machine-readable rules that can enhance the automation and accuracy of legal document
processing [DVRG16].

Similarly, Koziolek et al. [KABC24] developed an approach for automated test generation
for control logic. They use LLMs to generate test cases, achieving high statement coverage
for low-to-medium complexity programs, though manual adjustments are often needed
due to erroneous assertions [KABC24].
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3.2.3 AI in BACS
Furthermore, the latest developments show that the field is moving towards AI-based
fault detection systems. Recent studies have demonstrated that AI, including ML and
DL models, can be effectively adopted for FDD in BACS. These AI-based methods offer
several advantages over traditional approaches, particularly in HVAC systems.

Bi et al. illustrate how AI is utilized in HVAC fault detection. Their work is a comprehen-
sive and systematic literature review covering the period from 2013 to 2023. This review
aims to synthesize existing research on FDD methods for HVAC systems, categorizing
them into four main types: traditional ML-based methods, DL based methods, hybrid
AI model-based methods, and physical model-based methods [BWY+24].

Furthermore, research in the field indicates that LLMs are capable of generating rules. Zhu
et al. state that LLMs can learn rules by being prompted with examples and intermediate
steps, which allows them to perform various reasoning tasks more effectively [ZXC+23].
This capability is crucial for applications that require logical reasoning and decision-
making. Luo et al. introduce a technique to extract rules from Knowledge Graphs (KGs),
utilizing the semantic and structural information within KGs to prompt LLMs to generate
logical rules [LJX+23]. This method, known as ChatRule, involves an LLM-based rule
generator, a rule ranking module, and a rule validator to ensure the logical correctness of
the generated rules.

These advancements illustrate the potential of LLMs and NLP in automating complex rea-
soning processes and generating interpretable rules from large datasets. However, research
needs to be done that combines rule-based fault detection methods with LLMs to generate
rules for AFDD. Using LLMs for the rule generation is a novel approach [BWY+24].

3.2.4 RAG Pipelines
Multiple papers provide insight into how to best incorporate RAG into an LLM system.
While Lewis et al. establish the foundation for RAG [LPP+20], subsequent research
explores advanced techniques.

Gao et al. explore various approaches to implementing RAG. They begin with a naive
RAG pipeline and progress to advanced RAG and modular RAG pipelines. However,
the fundamental steps of embedding, retrieval, and generation remain central to all the
pipelines presented [GXG+23].

Joshi et al. introduce a method for handling text, tables, and images within a RAG
pipeline. They address the challenge of maintaining information from images throughout
the pipeline [JGKS24].

3.2.5 AI Agents
The use of LLM agents is a promising approach to enhance the capabilities of LLMs.
Several researchers showed that using multiple agents together helps solve complex tasks.
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Talebirad et al. [TN23] show that by leveraging a collaborative environment where
multiple intelligent agent components, each with distinctive attributes and roles, work
together, complex tasks can be handled more efficiently and effectively. By modeling
various domains such as courtroom simulations and software development scenarios, they
showcase the potential applications and benefits of their proposed multi-agent system
[TN23].

Xi et al. [XCG+23] demonstrate that LLM-based agents can be effectively utilized in
various applications by leveraging a general framework comprising three main components:
brain, perception, and action. They explore the extensive applications of these agents in
single-agent scenarios, multi-agent scenarios, and human-agent cooperation [XCG+23].

Also, specific complex problems like challenging math problems can be solved better
by using agents. Wu et al. [WJZ+23] demonstrate that employing a conversational
problem-solving framework called MathChat, which consists of an LLM agent and a user
proxy agent, can effectively address mathematical problems. The collaboration initiates a
problem-solving process, allowing agents to communicate effectively to address the issues
at hand. [WJZ+23].

3.3 Architecture of the AI-Powered Rule Generation
System

Using the use case and the knowledge base, an architecture is created for the AI-powered
rule generation system. Figure 3.1 visualizes the created architecture. It shows the
existing rule-based AFDD system as well as all necessary components for the rule
generation. The architecture shows all necessary input data. Further, it includes a
RAG pipeline similar to what was done by Lewis et al. in their paper about RAG for
knowledge-intensive NLP tasks [LPP+20]. On top, the architecture contains an AI-agent
system. This system is based on systems like AutoGen, which was presented by Wu et al.
in a paper about LLM applications via Multi-Agent Conversation [WBZ+23].

Existing Rule-Based AFDD-System

At the top of Figure 3.1, the existing rule-based AFDD system is shown, which was
introduced earlier. It consists of a building system on the left, a rule-based fault detection
part in the middle, and a fault diagnostics part on the right. The AFDD system may
also incorporate auto-correction to enhance the building system after identifying and
diagnosing errors. However, this work focuses on the rule-detection part. New rules are
generated for this existing system and added to the rule-detection step.

Input Data

Below the AFDD system, Figure 3.1 shows a set of necessary inputs for the AI-powered
rule generation system. The inputs include a semantic description of the AFDD system,
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Figure 3.1: The Architecture of the AI-Powered Rule Generation System
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example rules, and the schema for building the rules. The example rules and the rule
schema, as well as the description of the AFDD system, can be obtained from the existing
building system with the assistance of a service provider.

The first input is the semantic description of the AFDD system. This description contains
one or more documents explaining in natural language how the AFDD system operates.
These documents should explain how rules are applied to detect and diagnose faults
automatically. The description is essential to aid the LLM in understanding how the
system functions and what the rules look like. This is essential because, as mentioned in
Section 3.1, AI only works with the help of data. This is in line with the third requirement,
which specified that the use of external knowledge is fundamental to the system.

The next input data consists of example rules. These rules can be derived from the
documentation or directly from the system itself. The rules must be provided because the
capabilities of the AI are enhanced when using a few-shot prompt, where examples are
explicitly shown to the LLM. Therefore, a set of existing rules is created and presented
to the LLM as examples. The example rules shown to the LLM should be similar to
the rule that is tried to be generated. To achieve this, examples are chosen based on
semantic similarity. Using examples is the first step towards ensuring consistency with
the existing AFDD system, as it was defined in the fourth requirement.

The rule schema is the final part of the input data. The service provider or facility
manager provides the schema, which then serves as a description of how the rule is
constructed. This description helps to define the scope in which the rule can be created.
It shows the structure of the rule and includes specifying which values can exist in the
rule and the possible data types for specific fields. Also, this aims to ensure consistency
with the existing AFDD system, but it also is important to fulfill the second requirement,
which specifies that rules should be directly applicable to the existing AFDD system.

AI-Powered Rule Generation System

The mentioned inputs are then utilized in the AI-powered rule generation system, which
consists of two major parts: the RAG pipeline and the AI-agent system. Both parts are
powered by an LLM. The AI-powered rule generation system is shown at the bottom of
Figure 3.1.

As input for the AI-powered rule generation system, input from a facility manager or
system operator is used. These people know the building and can provide input for new
rules that are meaningful for the building at hand. This input triggers the system to
create a new fault detection rule for the original AFDD system.

RAG Pipeline

The RAG pipeline is used to retrieve relevant information from the semantic description
of the AFDD system. It ensures that the LLM has access to the necessary knowledge
to generate new rules for the AFDD system. The pipeline consists of three main
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components: data extraction, chunking, and embedding. It can be found on the left side
of the AI-powered rule generation system in Figure 3.1.

To be able to use the provided data, the information must be extracted in a machine-
readable format. Most of the provided documents from above are typically in PDF format.
The unstructured and non-machine-readable nature presents a significant challenge for AI
tools attempting to extract and utilize the information within. Therefore, it is necessary
to convert the PDF into text and also to consider images and tables included in the
PDF [CD15].

As soon as the data is available in text format, it can be chunked into smaller subsets
of text. The chunking component splits the input data into smaller parts based on the
semantic structure of the provided text. This indicates that if a headline exists in the
original file, the content below this headline and up to the next headline is utilized as a
chunk, allowing for the creation of paragraphs. Those paragraphs include information
that belongs together, and the information will stay together when used later. This step
is shown in the figure as semantic chunking.

Now, the paragraphs, also called chunks, can be converted from text to embeddings.
These embeddings are stored in a vector database, which allows for efficient retrieval of
relevant information. By also embedding a query and providing it to the vector database,
similar information to the query can be retrieved and used as context for the LLM.

AI Agent System

The AI agent system is responsible for generating new rules based on the input of the
facility manager. On top of that, the system uses the retrieved information from the
RAG pipeline, as well as the example rules and the rule schema, to generate new rules.
The system consists of two agents, each with a specific role and attributes. These agents
work together to generate new rules for the AFDD system. The agents are powered by
an LLM. They send prompts to the LLM internally and automatically until the agent
system decides that a suitable answer to the initial input can be given.

The definition of the agents is shown in Table 3.1. It consists of a role, a goal, and a
backstory, which is defined in natural language. Those agents are combined and work on
two tasks. The Rule Creator (Agent 1) does Task 1 and the Rule Validator (Agent 2)
does Task 2. The tasks are shown in Table 3.2.

LLM

Next to the AI agents, the LLM is shown in Figure 3.1. The LLM is the core component
of the system, powering the AI agent system by processing the prompts generated by
the agents. It is responsible for understanding these prompts, generating responses, and
providing the agents with the information needed to create and validate rules. The LLM
is crucial for the rule generation process, as it comprehends the context of the input data
and produces meaningful responses based on the examples and schema provided. It can
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Role Goal Backstory
Agent 1 Rule Creator Your goal is to create an

integrity check rule. This
rule ensures that a spe-
cific function of the build-
ing operates correctly. You
will be given a standardized
template of the rule along-
side which what specific
function should be tested.

You are an expert in
building automation, with
knowledge of Heating, Ven-
tilation, and Air Condi-
tioning (HVAC) systems as
well as Air Handling Units
(AHUs). You have exten-
sive experience in creating
rules for integrity checks in
buildings. Over the years,
you have gained substan-
tial experience in formulat-
ing effective rules for con-
ducting integrity checks in
buildings.

Agent 2 Rule Validator Your goal is to check if a
rule fulfills the syntactic
and semantic requirements
of the query. You will be
provided with a rule and
a query. Your objective is
to analyze the rule and de-
termine if it satisfies the
query.

You are an expert in
building automation, with
knowledge of Heating, Ven-
tilation, and Air Condi-
tioning (HVAC) systems
as well as Air Handling
Units (AHUs). You have
extensive experience in val-
idating rules for integrity
checks in buildings. Over
the years, you have gained
substantial experience in
finding flaws in integrity
check rules.

Table 3.1: Definition of the AI-Agents
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Description Expected Output
Task 1 You are provided with the rule tem-

plate: <ruletemplate>. Your spe-
cific task is to identify an appropriate
rule that satisfy the query: <query>.
Your objective is to analyze the given
information, apply your understand-
ing, and determine a rule that aligns
with the requirements specified in
<query>. Context: <context>. Ex-
amples: <examples>

The final result should be a rule fol-
lowing the rule template and satisfy-
ing the query with explanation why
this rule is fitting the query.

Task 2 You are provided with a rule and an
explanation. Your task is to output
only the json in correct format.

The final result should be a rule
in correct json format. The output
should be a raw json object.

Table 3.2: Definition of the Tasks for the AI-Agents

handle multiple requests from the agents as long as they remain unsatisfied with the
generated rules.

Output: Rules for Fault Detection

Finally, the output of the AI-powered rule generation system is shown in between the AI-
powered rule generation system and the existing rule-based AFDD system in Figure 3.1.
The output contains a new rule for the AFDD system. This new rule should follow the
schema of existing rules, allowing it to be directly integrated into the AFDD system. By
providing a schema to the AI agent and specifying that the output should conform to
this schema, the generated rules should be syntactically correct. Those requirements are
internally passed to the LLM by the agents.
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CHAPTER 4
Design Cycle

This chapter describes the implementation of the AI-powered rule generation system. The
outlined architecture serves as the foundation for creating an artifact capable of generating
rules for the AFDD system. The chapter describes all methods and technologies involved,
starting with an overall description of the open-source libraries that are used. Further,
the realization of each part of Figure 3.1 is described. The description includes data
extraction, a RAG pipeline, the usage of examples and schemas, and the implementation
of an AI agent system. The whole design is based on the knowledge base and the
architecture that was created earlier.

Various methods and approaches were evaluated to implement the AI-powered rule
generation system. The focus of this work is on the resulting architecture and its overall
functionality. While different methods for automatically generating rules were considered,
this work does not present a systematic examination of all possibilities. Instead, the
emphasis is on the integration and interaction of the individual components within the
architecture. It is acknowledged that each component can be further optimized, and
future work may explore these optimizations in more detail.

4.1 Open Source Libraries
The implementation was done entirely in Python and can be run from the command line.
The program requires several open-source libraries, which are described below.

Langchain

Langchain1 serves as a foundation for building the artifact. It is a framework that offers
libraries and tools to create applications that interact with LLMs.

1https://www.langchain.com/
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Huggingface

Huggingface2 is an open-source platform that provides access to a wide range of LLMs
and other AI models. It offers a variety of models that can be used for different tasks,
such as text generation, text classification, text summarization, and text embedding.
Huggingface also provides tools for fine-tuning models on custom datasets. The platform
is a valuable resource for developing open-source projects.

Ollama

Ollama3 is a library that provides access to LLMs and their capabilities. It allows users
to interact with LLMs and generate text based on input data. Additionally, Ollama
facilitates the use of embedding models, enabling the creation of embeddings for vector
databases.

CrewAI

CrewAI 4 is used to build workflows based on AI-agents. It allows the creation of multiple
agents that can work together as a crew and interact with LLMs.

4.2 Data Extraction
To use the input data effectively, it is essential to extract information from the PDF
files that describe the AFDD system. Python provides tools such as pdfplumber and
PyMuPDF for extracting raw text from PDF documents. However, this extraction
process often results in the loss of the document’s structure. It is important to consider
structural elements, such as headings and paragraphs, to understand how different text
elements relate to one another. The context of headings, paragraphs, and line breaks must
be maintained to retain semantic information. The library pymupdf4llm is particularly
suitable for this purpose, as it can convert PDF documents into Markdown format while
preserving the original document’s structure. In this conversion, headings from the PDF
are represented as headers in Markdown, paragraphs are converted into text blocks, and
line breaks are retained. This method allows the structural integrity of the semantic
description of the AFDD system to be maintained, enabling the extracted data to be
used for further processing in the RAG pipeline.

Another essential part of the data extraction process is the extraction of tables. Tables
are a common way to present structured data in documents. Extracting tables from
PDF files can be challenging because the PDF’s format is optimized for rendering rather
than data parsing. It only contains lines and character glyphs, which humans tend to
interpret as tables. Still, pymupdf4llm is able to extract tables from PDF files based

2https://huggingface.co/
3https://ollama.com/
4https://crewai.com/
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on the structure of the PDF and patterns that occur in the document. The extracted
tables are then converted into Markdown table format. Another approach for extracting
tables from PDFs is to use DL-models as a base for the extraction. The model can be
trained on a dataset of PDF files and their corresponding tables. The model can then be
used to extract tables from new PDF files. An example of this approach is the Marker
library for python [Par24]. For this project, the decision was made to use pymupdf4llm
for table extraction. This choice was based on its efficiency and the comparable quality
of results to the Marker library, making it a less resource-intensive approach. DL-based
approaches, on the other hand, require a lot of computational resources for inference.
However, the tables were not always extracted correctly. To improve the extraction of
the tables, the tables were fed into an LLM. For this, the mistral-7b-instruct model was
used. It is an open-source model with a context length of 8192 tokens. It is a relatively
lightweight model with solid capabilities. The mistral-7b-instruct model was a good fit
for this task. The tables were corrected with the prompt „The following information was
taken from a Markdown table. Please use the information and put it in a Markdown
table format. Information:“. The model was able to correct the extracted tables to some
extent, and the corrected tables were then used for further processing.

Furthermore, images in PDF files may hold valuable information that needs to be
preserved. In such cases, LLMs can be utilized to generate textual descriptions of the
images, which can then be stored alongside the document’s text. Llava, a well-known
model, excels at this task. On top of that, it is essential to ensure that the context in
which the images appear is maintained.

However, when using images in documents from BACS, the image description was not very
helpful because the model was unable to interpret figures as a human would. Specifically,
for flow charts or graphs, the LLM struggled to understand and convey the information
depicted. While the LLM could occasionally recognize the general content of an image,
it frequently failed to provide accurate descriptions and, in some cases, hallucinated and
generated unrelated information. For instance, when examining the flow chart „Data
Check Workflow“ from the publication by Gwerder et al. [GMMH22], the LLM was
unable to provide a correct description of the image. In fact, it introduced additional
information that was not present in the figure. As a result, the images were excluded
from further use, and only the text and tables were considered.

4.3 Implementation of the RAG Pipeline

After turning the description of the AFDD system into a structured Markdown file, the
RAG pipeline was implemented. The Markdown document serves as the input for the
pipeline. The pipeline consists of several stages, which are described in the following
sections. Figure 4.1 illustrates how the different stages interact with one another.
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Figure 4.1: Detailed Representation of the RAG Pipeline [GXG+23]

markdown_splitter = MarkdownHeaderTextSplitter(
headers_to_split_on=[("#", "h1"), ("##", "h2")],
strip_headers=False,
return_each_line=False,

)
chunks = markdown_splitter.split_text(full_text)

Listing 4.1: Definition of the Markdown Text Splitter

4.3.1 Semantic Chunking

The first step in the RAG pipeline is to split the input into chunks. Because the initial
structure of the PDF document is preserved, the splitting can be done based on this
structure. This is done by identifying the headings in the Markdown document and
splitting the document into sections based on these headings. The headings are used as
delimiters to separate the document into chunks. Each chunk represents a section of the
document that contains a specific topic or information. The chunks are then processed
individually in the following stages of the pipeline.

In Python, the text-splitters library from Langchain helps with this. The class Mark-
downHeaderTextSplitter is beneficial for dividing the Markdown document into chunks
based on the headings. By defining the headings that should be used as delimiters and
giving the Markdown document as input, the library returns a list of chunks. Listing 4.1
shows this process.

For the chunking of the semantic description of the AFDD system, the headers h1 „#“ and
h2 „##“ were used as delimiters. Having more detailed headers could overly fragment
text that contains similar content.
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from langchain_community.embeddings import (
HuggingFaceBgeEmbeddings

)
model_name = "BAAI/bge-small-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
embeddings = HuggingFaceBgeEmbeddings(

model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs

)

Listing 4.2: Definition of the BGE Embedding

4.3.2 Embeddings
The next step in the pipeline is to generate embeddings for the chunks. Embeddings
are vector representations of text that capture the semantic meaning of the text. These
embeddings are used to compare the similarity between different chunks and to identify
related chunks. The embeddings are generated using a pre-trained model. The model is
used to encode the text into a vector representation that captures the semantic meaning of
the text. The embeddings are then stored in a vector database for later use. For creating
the embeddings of the semantic description of the AFDD system, the open source model
bge-small-en-v1.5 5 from the Beijing Academy of Artificial Intelligence (BAAI) was used.
Other models like bge-m36, e5-small7 or gte-base8 could be used as well. However, the
bge-small-en-v1.5 model was chosen because it is well-suited for generating embeddings
for English texts in a reasonably short time without needing a lot of computational
resources. As this field is moving fast, many other capable models are available, which
would be similar to the described embedding task. The Huggingface-MTEB-Leaderboard9

provides information about the latest models and their performance.

The embeddings were generated with the help of the Langchain Community Library
HuggingFaceBgeEmbeddings on the CPU. Listing 4.2 shows how the embedding model
was initialized.

4.3.3 Vector Store
After the embedding model is set up, the embeddings can be created and stored in a
vector store. The vector store is a database that stores the embeddings of the chunks.
The vector store is implemented using the Faiss10 library, which is a library for efficient

5https://huggingface.co/BAAI/bge-small-en-v1.5
6https://huggingface.co/BAAI/bge-m3
7https://huggingface.co/intfloat/e5-small
8https://huggingface.co/thenlper/gte-base
9https://huggingface.co/spaces/mteb/leaderboard

10https://ai.meta.com/tools/faiss/
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from langchain_community.vectorstores import FAISS
vectorstore = FAISS.from_documents(chunks, embeddings)

Listing 4.3: Definition of the FAISS Vectorstore

query_chunk = "Check if the room temperature decreases when the cooling
coil valve is opened"

similar_chunks =
vectorstore.similarity_search(query_chunk, k=5)

Listing 4.4: Exemplary Similarity Search

similarity search and clustering of dense vectors. The Faiss library provides a fast
and memory-efficient way to store and retrieve embeddings. The Faiss vector store is
implemented with the help of the Langchain Community Library Faiss11. Listing 4.3
shows how the embeddings are created and stored in the vector store. The chunks
passed to the vector store are the chunks created earlier, and the embedding is the
bge-small-en-v1.5 model.

4.3.4 Similarity Search
With the creation of the vector store and the integration of embeddings, the vector store
is ready to be used for similarity search. The similarity search is used to find chunks that
are similar to a given query chunk. The similarity search is performed by comparing
the embeddings of the query chunk with the embeddings of the chunks in the vector
store. The similarity search is also implemented using the Faiss library. An example
of how to perform a similarity search is shown in Listing 4.5. The variable k specifies
the number of similar chunks that should be returned. In this example, the similarity
search is performed with a query chunk, and the five most similar chunks are returned.
Later on, the vector store is used for similarity search to improve the rule generation
process. With all those steps, the RAG pipeline is implemented and ready to be used for
generating rules for the AFDD system.

4.4 Integration of the Example Rules
In addition to the semantic description of the AFDD framework, it is essential to integrate
example rules into the AI-powered rule generation system. For this purpose, examples
are extracted from the original AFDD system. These rules are then provided to the
AI-powered rule generation system in a machine-readable format, e.g., JSON or XML.

However, since it is not feasible to provide all rules as context to the LLM due to the
token limit, a subset of the rules was used. This subset was chosen based on the rules that

11https://python.langchain.com/docs/integrations/vectorstores/faiss/
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from langchain_core.example_selectors import (
SemanticSimilarityExampleSelector

)
selector = SemanticSimilarityExampleSelector.from_examples(

examples,
embeddings=bge_small_en_v15_embeddings(),
vectorstore_cls=FAISS,
k=4,

)

Listing 4.5: Definition of the SemanticSimilarityExampleSelector

from pydantic import BaseModel

class Rule(BaseModel):
model_config = ConfigDict(extra="ignore")
test_method: Optional[str]
test_preconditions: Optional[dict] = None
time_start_utc: Optional[str]
time_end_utc: Optional[str]
violation_plausibility_code: Optional[str] = ""

Listing 4.6: Definition of a Pydantic Model

are most relevant to the provided input of the AI-powered rule generation system. The
semantic similarity was achieved with the help of the SemanticSimilarityExampleSelector
class from the Langchain Core library. The class uses embeddings of the rules and an
embedding of the input to select the most similar rules. Listing 4.5 shows how the
SemanticSimilarityExampleSelector class is used. For the embeddings, the bge-small-en-
v1.5 model was used, and as a vector store, Faiss was chosen. The variable k specifies
the number of similar rules to be returned. In this example, the four most similar rules
are returned.

4.5 Usage of the Rule Schema

To ensure that the LLM generates rules in the correct format, it is essential to incorporate
a rule schema into the AI-powered rule generation system. The rule schema outlines the
structure of the rules that the LLM should create. This schema is implemented as a
Pydantic model. A Pydantic model is developed by defining a Python class that inherits
from the Pydantic BaseModel class. This class contains fields that specify the structure
of the rule. Listing 4.6 shows how an implementation of a rule schema could look like.
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rulecreator = Agent(
role="Rule Creator",
goal="Your goal is to ...",
verbose=True,
allow_delegation=False,
llm=mistral_llm,

)

Listing 4.7: Agent Structure

task = Task(
description=f"You are provided...",
agent=agent1,
output_pydantic=rule_type,

)

Listing 4.8: Task Structure

crew = Crew(
agents=[rulecreator, validator],
tasks=[task1, task2],
verbose=2,

)

Listing 4.9: Definition of a Crew

4.6 Implementation of the AI Agent System

As the core component of the AI-powered rule generation system, the AI agent system is
responsible for generating rules. It is implemented using the CrewAI library. CrewAI
provides tools for creating AI agents that can interact with LLMs. The AI agent system
consists of multiple agents that work together to generate rules for the AFDD system.
The agents perform different tasks in the rule-generation process and communicate with
each other to exchange information and coordinate their tasks. The definition of those
agents and their tasks was described in Section 3.3. Again, the mistral-7b-instruct model
was used.

In Python, various classes from the CrewAI library were used to create the agents. An
agent is defined via the Agent class, as shown in Listing 4.7. A task is defined similarly
to an agent and is shown in Listing 4.8.

At this point, the rule schema is integrated into the agent system. The output_pydantic
variable specifies that the output of this task must strictly adhere to the rule schema. In
total, two agents and two tasks exist. The agents and tasks are combined into a crew as
shown in Listing 4.9.
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Question: The test checks ...
Answer: {...}
Question: The test checks ...
Answer: {...}
Question: Generate a rule to check if ...
Answer:

Listing 4.10: Few Shot Prompt Structure

4.7 Few-Shot Prompting and AI Agents Execution
To integrate all components and generate rules for the AFDD system, the AI agent
system is combined with an LLM, a RAG pipeline, example rules, and a few-shot prompt.
The rule generation process is initiated by providing an input formulated in natural
language that describes the rule to be created.

First, this input is processed through the RAG pipeline. Within the semantic description
of the AFDD system, the three most similar chunks of information are selected. These
chunks serve as a context for the next steps.

Next, the SemanticSimilarityExampleSelector is utilized to create a few-shot prompt.
This prompt includes example questions and their corresponding answers, where the
question describes a rule and the answer is the rule itself. Four rules that are most similar
to the input are selected using the SemanticSimilarityExampleSelector. The few-shot
prompt is then constructed, concluding with another question that restates the input.
The answer is left blank and is intended to be filled in by the LLM. The structure of the
few-shot prompt follows the format shown in Listing 4.10.

After that, both the few-shot prompt and the derived context are passed to the AI agent
system. As seen in Section 3.3, the descriptions of the agents and tasks consist of some
placeholder variables. With the few-shot prompt, the context, and an empty instance of
the rule schema, those placeholders are filled with concrete information. Now, the crew
of agents is ready to be executed. The agents now work together to generate a rule based
on the input, the context, and the few-shot prompt. The goal is to generate the answer
to the last question of the few-shot prompt using the provided information. The first
agent tries to do this, and the second agent validates the generated rule and puts it into
the correct format. With this process, a new rule following the input can be generated
and returned to the original rule-based fault detection system.

Listing 4.11 exemplifies how the output of an execution of the created AI-powered rule
generation system looks. Some inputs and outputs are replaced by variables enclosed
in sharp brackets to simplify reading. The listing outlines the various steps involved in
creating a rule.

First, a relevant context that matches the provided input is retrieved. Next, examples
that are similar to the input are selected from a list of all available examples. Finally,
the AI agent system is initiated. The first component, called the „Rule Creator“, is
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Retrieving context
Picking best examples
[2024-12-04 10:24:50][DEBUG]: == Working Agent: Rule Creator
[2024-12-04 10:24:50][INFO]: == Starting Task: <task>

Context: <context>
Examples: <examples>
Question: Generate a rule that ...
Answer:

> Entering new CrewAgentExecutor chain...
I now can give a great answer.
Final Answer:
The rule that can be used in automatic fault detection
systems to check ... is as follows: <generated-rule>
Explanation:
This rule is designed to test ...

> Finished chain.
[2024-12-04 10:25:07][DEBUG]: == Working Agent: Rule Validator
[2024-12-04 10:25:07][INFO]: == Starting Task:
You are provided with a rule and an explanation.
Your task is to output only the json in correct format.
> Entering new CrewAgentExecutor chain...
I now can give a great answer.
Final Answer:
‘‘‘json
{ <corrected-rule> }
‘‘‘
> Finished chain.
[2024-12-04 10:25:22][DEBUG]: == [Rule Validator]
Task output: { ... }

Listing 4.11: Execution of the AI-Powered Rule Generation System

activated. The agent receives its task, along with the retrieved context and the selected
examples. After completing one or more steps (in this case, just one step), the agent
produces an answer. In addition to the answer, the agent also provides an explanation,
which the second agent later utilizes. Once the first agent has completed its task, the
second agent, known as the „Rule Validator“, is activated. This agent is also given a task
and additionally utilizes the input from the „Rule Creator“. Using this information, the
„Rule Validator“ is able to generate a correct JSON output, which is included in the task
output. The whole process is shown in Figure 4.2.
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Figure 4.2: Detailed Representation of the AI-Agent System
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CHAPTER 5
Evaluation

The initial goal of this research is to explore how different AI approaches can be combined
to generate rules for AFDD systems. By defining an architecture and implementing an
artifact that should generate rules for AFDD systems, the research questions are addressed.
The use of an LLM within an AI agent system, combined with a RAG pipeline, results
in a functioning system. Moreover, incorporating examples and effectively using LLMs
through few-shot prompting plays a crucial role in the development of the AI-powered
rule generation system. Additionally, defining a rule schema is vital for producing rules
in the correct format.

An evaluation was conducted to determine whether the created architecture and the
implemented artifact can help detect faults in AFDD systems. A real system is used to
measure how effectively the AI-powered rule generation framework works. The chosen
system is the framework for data integrity checks for BACS developed by Gwerder et
al. [GMMH22]. For the evaluation purpose, the framework itself, a description of the
framework, a schema describing the structure of the rules, and existing rules are used.

5.1 Evaluation Setup
The first step of the evaluation setup is to use the PDF document of the integrity checking
paper by Gwerder et al. [GMMH22] as a semantic description of the AFDD system.
The framework described in this paper includes a set of integrity checks that ensure
data integrity in BACS. These integrity checks, referred to as rules, were leveraged
for the evaluation process. There are three different types of rules: „ReactionRule“,
„SimilarityRule“, and „SingleSignalRule“. Those rules use time-series data to detect faults.
The „ReactionRule“ uses two signals to determine if one signal influences another. For
example, it checks whether the temperature in a room rises when the heating in the
HVAC system is activated. The „SimilarityRule“ also uses two signals but compares
them for similarity. An example of this would be when the temperature of the concrete
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within the wall is similar to the room temperature. The „SingleSignalRule“ evaluates a
single signal to determine its validity. For instance, it ensures that the room temperature
never exceeds a specified threshold. The framework uses JSON files as input, which
describe the rules for detecting faults.

The data extraction process converted the PDF document of the paper into chunks.
Those chunks were integrated into the RAG pipeline with the help of embeddings and a
vector database. Next, the integrity-checking framework itself was used to derive rules in
the form of JSON files.

The original AFDD framework used three different types of rules. For each of the rule
types, a general rule schema was derived and stored as Pydantic1 models. The AI-powered
rule generation system uses those schemas in the subsequent process. Once these steps
are completed, the evaluation can be started. The JSONs are used for the evaluation,
rule by rule. The current rule is used for evaluation, while all other rules are used as
examples. The evaluation was conducted for each existing rule in the integrity-checking
framework. The evaluations are independent of each other and use different inputs and
example rules. In total, 33 rules were evaluated. The rule descriptions are typically
formulated like the following rule descriptions:

• "The test checks whether the minimal room air quality measurement over longer
time periods is close to outside air concentration" [GMMH22]

• "The test checks whether the room temperature measurement reacts on radiator
valve position change when heat is provided by associated heat group" [GMMH22]

• "The test checks whether the supply air temperature measurement reacts on heating
coil valve position change when heat is provided by the associated" [GMMH22]

The evaluation consists of two parts: a quantitative evaluation and a qualitative evaluation.
The quantitative evaluation uses the AI-powered rule generation framework to re-generate
existing rules for the data integrity checking framework and compare the generated rules
with the expected rules. The qualitative evaluation takes the generated rules and applies
them to the data integrity checking framework. It is then evaluated whether the generated
rules are functional and lead to the expected results.

All rules that were used for the quantitative and qualitative evaluation can be found in
Section 6 in the appendix. There, the provided input, the expected output, and the actual
output, which was generated by the AI-powered rule generation system, are presented.

5.2 Quantitative Evaluation
For the quantitative evaluation, all existing rules from the current rule-based AFDD
system are used. In this case, the existing system refers to the integrity-checking

1https://docs.pydantic.dev/latest/
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input = rule["test_description"]
del rule["test_description"]
expected_output = rule["test_description"]

Listing 5.1: Creation of the Input and Expected Output

{
"test_method": "reaction_single_window_threshold_test",
"test_preconditions": {...},
"test_specs": {...},
"time_start_utc": "start"
"time_end_utc": "end"

}

Listing 5.2: Structure of the Expected Output

framework. The rules from this framework are divided into two parts: an example split
and an evaluation split. The example set is provided to the AI-powered rule generation
framework as examples, while the evaluation part serves as the expected output for
assessing the generated rule. Only one rule is evaluated at a time. Therefore, the
evaluation part always consists of exactly one rule. Each rule includes a description,
which acts as the input for the AI-powered rule generation framework, simulating the
input typically provided by a facility manager. The remaining fields in the rule are
considered the expected output. Listing 5.1 shows how one rule is divided into input and
expected output.

After the AI-powered rule generation framework generates a rule, its output is compared
to the expected output by checking each field within the JSON structure individually.
First, the generated output is verified to have the expected fields. If this is the case,
the values are also compared. This comparison is thorough, extending to the deepest
levels of the JSON structure. Consequently, string values and numerical values must
be equivalent. For example, the JSON values for the statistical feature in the rule are
compared: „larger“ vs. „lower“. A percentage is then calculated based on the number
of correctly generated JSON fields, indicating the accuracy of the generated rule. The
percentage is calculated by dividing the correct values through all values at the lowest
level of the JSON. The described process is shown in Figure 5.1. The expected output
for the rules mentioned above is in JSON format. Its structure is shown in Listing 5.2.

A quantitative evaluation was conducted for each of the 33 rules. Figure 5.2 presents
a stacked bar for each rule. The lower part of the bar indicates the number of correct
values in the generated JSON, while the upper part represents the incorrect values. The
percentage of correct values for each rule is calculated by dividing the number of correct
values by the total number of correct and incorrect values combined. The resulting
percentages are displayed in Table 5.1. The percentages range from 0% to 95.45%, with
the lowest non-zero value being 25.93%.
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Figure 5.1: The Evaluation of the AI-Powered Rule Generation System

Rule Correct Values Percentage
1. Room Temp 1 21 out of 22 95.45%
2. Concrete Temp 1 7 out of 27 25.93%
3. Window Contact 1 5 out of 14 35.71%
4. Room Temp 2 21 out of 23 91.30%
5. Valve Flow 1 6 out of 18 33.33%
6. Room Temp 3 12 out of 21 57.14%
7. Concrete Temp 2 13 out of 25 52.00%
8. Room Temp 4 17 out of 22 77.27%
9. Room Temp 5 11 out of 24 45.83%
10. Room Temp 6 5 out of 19 26.32%
11. Room Temp 7 21 out of 22 95.45%
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12. Room Air Quality 1 5 out of 16 31.25%
13. Concrete Temp 3 17 out of 25 68.00%
14. Concrete Temp 4 7 out of 27 25.93%
15. Room Air Quality 2 6 out of 17 35.29%
16. Room Temp 8 0 out of 22 0.00%
17. Air Flow 1 5 out of 18 27.78%
18. Air Flow 2 13 out of 17 76.47%
19. Room Presence 1 8 out of 11 72.73%
20. Air Flow 3 11 out of 15 73.33%
21. Room Air Quality 3 8 out of 13 61.54%
22. Air Flow 4 11 out of 19 57.89%
23. Air Flow 5 13 out of 16 81.25%
24. Air Flow 6 10 out of 18 55.56%
25. Air Flow 7 15 out of 19 78.95%
26. Room Air Quality 4 8 out of 15 53.33%
27. Air Flow 8 15 out of 17 88.24%
28. Room Presence 2 7 out of 11 63.64%
29. Room Air Quality 5 5 out of 15 33.33%
30. Air Flow 9 12 out of 16 75.00%
31. Temp Deviation 1 4 out of 14 28.57%
32. Temp Cooling 1 12 out of 16 75.00%
33. Temp Heating 1 5 out of 16 31.25%

Table 5.1: Quantitative Evaluation Results: Correctly generated JSON Values
compared to all JSON Values in a Rule and the Percentage of correct Values

5.3 Qualitative Evaluation
The quantitative evaluation showed how many correct fields were generated by the
AI-powered rule generation framework. However, it does not provide information on
the quality of the generated rules. Therefore, a qualitative evaluation was conducted to
assess whether the generated rules are functional and produce the expected results. This
evaluation involved applying the rules to the integrity-checking framework and observing
the outcomes. The results were categorized based on the performance of each rule within
the original framework. Additionally, for any rules that did not succeed, the evaluation
included reasoning for their failure. The following categories were used to evaluate the
quality of the generated rules.
Score 0 is given when the generated rule cannot be applied to the integrity-checking
framework at all. This indicates that the rule does not meet the minimum requirements
to be recognized as a valid input, and as a result, the framework was not executed. The
rule might have been in the correct JSON format, but it lacked the necessary fields to
satisfy the preconditions for initiating a test run.
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Figure 5.2: Overview over the Quantitative Evaluation showing Correct and
Incorrect Values for each Rule

Score 1 indicates that the generated rule met the criteria for execution within the
integrity-checking framework. However, when attempting to run the rule, those with
a score of 1 failed during the test run. This failure may occur due to missing values
or incorrect field parameters that are necessary for executing functions in the checking
process. Therefore, the rules with this score did not lead to any results.

Score 2 is assigned when a generated rule meets all the execution criteria and produces a
result. However, rules that receive a score of 2 yield an incorrect result, failing to identify
the fault for which the rule was designed.

Finally, Score 3 is achieved when the generated rule can be executed successfully and
produces the correct result. This can be true even if the quantitative evaluation shows
that the generated rule does not match the expected output 100%. As long as the
generated rule semantically represents the same meaning as in the expected outcome, it
can still receive a score of 3.

Table 5.2 presents the results of the qualitative evaluation. The first column lists the
same tests used in the quantitative evaluation. The second column displays the score
achieved, while the last column explains the reason for that score.

Rule Score Reason
1. Room Temp 1 1 Test run not successful: Missing values de-

tected and Other error than ’missing values’
2. Concrete Temp 1 1 Test run not successful: Other error than

’missing values’
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3. Window Contact 1 1 Test run not successful: Other error than
’missing values’

4. Room Temp 2 2 EVENT Warning: no post window match.
No events detected!

5. Valve Flow 1 1 Test run not successful: Other error than
’missing values’

6. Room Temp 3 1 Test run not successful: Other error than
’missing values’

7. Concrete Temp 2 1 Test run not successful: Other error than
’missing values’

8. Room Temp 4 1 No measurements found for the projects
9. Room Temp 5 1 Test run not successful: Other error than

’missing values’
10. Room Temp 6 1 Test run not successful: Other error than

’missing values’
11. Room Temp 7 1 Test run not successful: Other error than

’missing values’
12. Room Air Quality 1 1 Test run not successful: Other error than

’missing values’
13. Concrete Temp 3 1 Test run not successful: Other error than

’missing values’
14. Concrete Temp 4 1 Test run not successful: Missing values de-

tected.
15. Room Air Quality 2 1 Test run not successful: Missing values de-

tected.
16. Room Temp 8 0 Could not execute test run: Error in pre-

checks: ’tests’ not found
17. Air Flow 1 1 Test run not successful: Other error than

’missing values’
18. Air Flow 2 1 Test run not successful: Missing values de-

tected and Other error than ’missing values’
19. Room Presence 1 1 Test run not successful: Other error than

’missing values’
20. Air Flow 3 1 Test run not successful: Other error than

’missing values’
21. Room Air Quality 3 1 Test run not successful: Other error than

’missing values’
22. Air Flow 4 1 Test run not successful: Missing values de-

tected and Other error than ’missing values’
23. Air Flow 5 1 Test run not successful: Missing values de-

tected and Other error than ’missing values’
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24. Air Flow 6 1 Test run not successful: Missing values de-
tected and Other error than ’missing values’

25. Air Flow 7 1 Test run not successful: Missing values de-
tected and Other error than ’missing values’

26. Room Air Quality 4 1 Test run not successful: Missing values de-
tected and Other error than ’missing values’

27. Air Flow 8 1 Test run not successful: Missing values de-
tected and Other error than ’missing values’

28. Room Presence 2 1 Test run not successful: Missing values de-
tected and Other error than ’missing values’

29. Room Air Quality 5 1 Test run not successful: Other error than
’missing values’

30. Air Flow 9 1 Test run not successful: Other error than
’missing values’

31. Temp Deviation 1 1 Test run not successful: Error in fetch time-
series

32. Temp Cooling 1 1 Test run not successful: Other error than
’missing values’

33. Temp Heating 1 1 Test run not successful: Missing values de-
tected.

Table 5.2: Qualitative Evaluation Results: Applying the generated Rules to the
Integrity Checking Framework and adding a Score depending on the Outcome

The qualitative evaluation indicates that in nearly all cases, the prechecks of the integrity
checking framework were successful, allowing the test execution to be started. Passing
these prechecks means that the rule was a valid JSON and met the preconditions of the
integrity-checking framework. As a result, 32 out of 33 tests were successfully started.
The only exception was test case 16, which could not be executed because the AI-powered
rule generation system produced an invalid JSON.

From the 32 tests that were executed in the integrity-checking framework, only one test
was successful. All other 31 tests failed during the execution and therefore only reached
a score of 1. The reasons for the failure of the tests were often not specified by the
framework. However, some reasons were outputted. In 12 cases, missing values were
detected. In those cases, the AI-powered rule generation framework was not able to
fill up the rule with the necessary fields to execute the test correctly. Errors occurred,
especially in fields of datatype dict, which allow for arbitrary information, such as the
test_specs or the test_preconditions. When other errors than missing values occurred,
the framework was not able to execute all the required steps to detect rules, such as
applying statistical features to the data. When running test case 31, the AI-powered
rule generation framework was not able to fetch the corresponding time series data
necessary for the test execution. This issue occurred due to an incorrect specification of
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the time_start_utc and time_end_utc fields by the AI-powered rule generation system.
Further, one test (Rule 16.) could not be executed due to missing measurements. Test
case 4 was the only one that ran successfully. However, it did not detect any events
during this test run, which does not correspond with the expected outcome.

5.4 Potential Improvement Through Refined Human Input
To enhance the AI-powered rule generation system, it might be beneficial to incorporate
a human correction process into the system. Currently, the system runs only once for
each rule generation. However, providing feedback to users after a rule is generated could
be more effective. This approach would encourage users to modify or expand their input
if the generated rule does not seem appropriate. To validate this approach, a selection of
previously evaluated rules are tested again with extended input.

16. Room Temp 8

Rule number 16 did not lead to any output. It reached the lowest score in the quantitative
evaluation. The AI-powered rule generation system failed to meet the task and returned
an empty JSON. The initial input for rule 16 was: The test checks whether the room
temperature reacts on a radiator heating valve opening.

To improve the rule generation process, the input for rule 16 was then extended to be:
The test checks whether the room temperature reacts on a radiator heating valve opening.
A precondition for the test is that the associated heat group provides heat.

By utilizing the extended output, the AI-powered rule generation system produced a rule
that had a 40.91% overlap with the expected output, which is an improvement compared
to the 0% overlap of the previous run. This demonstrates that a change in the input can
lead to better results.

26. Room Air Quality 4

Rule number 26 had 53.33% conformity with the expected output. Therefore, the
generated rule had only around half of the variables in the generated JSON matching the
expected output. The initial input for rule 26 was: The test checks whether the estimated
room air quality offset is high.

To improve the generated rule, the following input was given to the AI-powered rule
generation system: The test checks whether the estimated room air quality offset is
high. In the precondition include a weekday selection from Monday to Sunday and a
cond_nan_or_larger_than where RAQual is set to 0. Make sure to use a threshold of
200 and a second threshold of 500.

The improved input has increased the conformity of the generated rule with the expected
output to 86.67% percent.
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1. Room Temp 1

Rule number one reached one of the highest scores in the quantitative evaluation. The
high score was achieved because very similar examples exist in the dataset. When looking
closer at the rule, one additional value is found in the preconditions, and one value is
missing in the test specs. The initial input for rule 1 was: The test checks whether the
room temperature reacts on a radiant ceiling cooling valve opening

This input was modified to include a description of the requirements for the preconditions:
The test checks whether the room temperature reacts on a radiant ceiling cooling valve
opening. A precondition for the test is that the associated cold group provides cold.

This extension to the input did not change the result of the AI-powered rule gen-
eration system. The rule still reached an overlap of 95.45% compared to the ex-
pected output. Even more specific input is required to improve the rule to match
the expected output 100%. The following input was used to generate a rule that
has 100% matching with the expected output: The test checks whether the room
temperature reacts on a radiant ceiling cooling valve opening. In the precondition a
trimmed_consecutive_larger_than only on the values RTemp 0 - 6 and MxCrt_Pu_Cmd
0.9 - 0 should be used and a trimmed_consecutive_smaller_than only on the value
MxCrt_TFl. The accepted_ratio_invalid field in the test specs dict must necessarily be
included with a value of 0.2.

Reaching 100% matching with the expected output means that this rule can directly be
used in the original AFDD framework. Following this, it also reached a qualitative score
of 3.

Those results indicate that it is still essential that the users have extensive domain
knowledge and the ability to provide detailed, context-rich input. The case study on the
selected rules demonstrates how adjusting the input can lead to significant improvements
in the generated rules, underscoring the need for close collaboration between users with
domain knowledge and the AI-powered rule generation system.

5.5 Requirements Evaluation
During the research, several requirements were identified that are essential for making
the AI-powered rule generation system practical. In the following it is checked if those
requirements are met.

As described in Chapter 4, the AI-powered rule generation system is based on an LLM,
which is designed to handle natural language input. The system is triggered by inputs
given in natural language, fulfilling the first requirement (1. Input in Natural Language)
that was defined. Users would likely find it challenging to provide input in technical form.
This capability simplifies the process for users significantly.

Chapter 5 demonstrated that the AI-powered rule generation system successfully gener-
ated the correct JSON format in 32 out of 33 cases. While LLMs are trained in processing
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natural language, they also understand and generate machine-readable formats accurately.
This feature is advantageous, as LLM-based systems can be applied in a broader range of
contexts, such as industrial applications, rather than being limited to chat applications.
This achievement satisfies the second requirement (2. Directly Applicable Rules), which
defines that the AI-powered rule generation system must produce rules compatible with
the existing AFDD system. Nevertheless, the compatibility is constrained to a syntactic
understanding of the existing AFDD system. Syntactic understanding means that the
AI-powered rule generation system can create rules that are in valid JSON format and
meet the preconditions of the integrity-checking framework. The qualitative evaluation
showed that there are limitations in semantic compatibility. This semantic limitation
means that the AI-powered rule generation system is unable to produce rules that corre-
spond to the input provided in natural language, and it cannot accurately test what the
user intended.

To enhance the performance of the AI-powered rule generation system, a RAG pipeline
was integrated into its design. This addition aimed to improve the system’s knowledge
by incorporating specific information about the building in question. The integration
fulfilled the third requirement (3. External Knowledge Usage) by using data extraction,
chunking, embedding, and a vector store for RAG.

Another critical aspect of the AI-powered rule generation system was the inclusion of
example rules. Examples are necessary to ensure that the system’s output is consistent
with existing rules. By deriving various examples from the original AFDD system and
integrating them into the AI-powered rule generation system using few-shot prompts and
the AI agent framework, the fourth requirement (4. Consistency with existing AFDD
System) was successfully met. An important aspect during this integration was the use of
the SemanticSimilarityExampleSelector, which ensured that relevant rules were selected
while keeping the token length of the LLM within limits.

5.6 Discussion of the Results
In this work, the design and implementation of an AI-powered rule generation system
for AFDD systems was presented. The significance of the problem was established,
emphasizing that the traditional process of rule creation for rule-based fault detection
requires the involvement of experts with specialized domain knowledge. This highlighted
the necessity for a solution that could streamline and enhance the rule-generation process.
A literature review was conducted, allowing for the creation of a knowledge base that
outlined all the essential background information needed for the development of a rule
generation system. Subsequently, an architecture for the AI-powered rule generation
system was designed. Various components, such as a RAG pipeline and a AI agent
system, were incorporated into this architecture. During the implementation phase of
the project, open-source libraries and open LLM models and tools were used. Finally, an
evaluation was conducted to assess the effectiveness of both the proposed architecture and
its implementation. This evaluation aimed to determine whether the developed system
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could detect faults in AFDD systems, thereby validating the approach and demonstrating
the potential of AI to enhance the efficiency and effectiveness of fault detection processes.

The evaluation showed that the designed system met all the requirements that were
defined earlier. Moreover, the evaluation showed that the created artifact is able to
generate syntactically correct rules in almost all cases. The artifact was able to generate
valid JSON files in 32 out of 33 cases in the quantitative evaluation. The same number
of tests also passed the prechecks of the initial rule-based AFDD system. This means
that the created system is able to understand the syntactic requirements of the rules and
reproduce them.

Furthermore, this work contributes to the existing research by addressing the defined
research questions. The relevance cycle in Chapter 2 illustrated the requirements for
effectively utilizing AI, particularly LLMs, in the context of BACS and AFDD. It
highlighted the significant role of NLP in facilitating interactions with those in need of
supportive tools. This cycle provided answers to the first research question regarding
the requirements for employing AI in a variable building environment. Additionally, the
rigor cycle in Chapter 3 reviewed existing scientific research and emphasized various
state-of-the-art tools and methods that are beneficial for creating an AI-powered rule
generation system. This overview reflects the current advancements in the field of LLMs
and AI and answers the second research question about which current AI methods in
scientific research can be used for rule generation. The third research question, which
focused on how state-of-the-art AI methods can be integrated for effective rule generation
in AFDD, was addressed in the design cycle, as outlined in Chapter 4. By developing
and implementing an architecture for an AI-powered rule generation system, it was
demonstrated how LLMs can serve as the foundation for generating rules for AFDD.

However, while meeting the requirements and addressing the research questions, the
quantitative evaluation showed that the system is not able to generate rules that match
the expected output fully. At best, the generated rule achieved 95.45% of the anticipated
results. In other instances, the overlap was significantly lower, dropping to as little as
25.93% or even 0% in one case. Nevertheless, it could be assumed that even when the
overlap is not 100%, the generated rules could still be used in the AFDD system and
detect faults. A qualitative evaluation was conducted to explore this possibility.

The qualitative evaluation revealed that the results of the AI-powered rule generation
system cannot be directly used in a productive environment. The system lacks a
semantic understanding of the rules, which is essential for the practical deployment of
the system. The system is not able to generate semantically correct rules. This is a
significant limitation of the system and hinders its practical deployment in detecting
faults effectively within the original AFDD framework.

Due to practical limitations, refinements were made to the input of the AI-powered
rule generation system to determine if human feedback or improved human input could
yield better results. These refinements were applied to rules 1, 16, and 26. Additional
information concerning the requirements and objectives for each rule was included in the
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input. As a result, there was an improvement in the percentage of correct values for the
quantitative evaluation. Specifically, the performance of Rule 1 increased from 95.45

Overall, this work contributes to the research on the integration of AI technologies,
particularly LLMs, in the domain of building automation and control systems. The work
establishes a foundation for identifying methods that simplify work in an AFDD context.
However, further efforts are needed to achieve a fully automated and reliable system.

53





CHAPTER 6
Conclusion and Future Work

In conclusion, this research successfully laid the groundwork for utilizing AI approaches
to generate rules for AFDD systems, addressing numerous foundational requirements for
practical applications. The exploration and implementation of an AI-powered rule gener-
ation system, mainly through the integration of LLMs and a RAG pipeline, demonstrated
the potential of AI in translating natural language input into machine-readable output.
This capability broadens the applicability of AI-powered systems beyond traditional
chat applications and into industrial contexts. The system met key requirements, such
as generating compatible rules and facilitating user interaction by simplifying input
processes. Moreover, the incorporation of examples and adaptive few-shot prompting
ensured consistency with existing rules, enhancing the reliability of the rule-generation
mechanism.

However, the research also highlighted significant limitations. The system depends on
manual preparatory tasks, like extracting examples and defining rule schema, which
restricts its efficiency. More critically, while the syntactical accuracy of generated rules was
notable, their semantic accuracy was lacking, hindering the system’s practical deployment
in detecting faults effectively within the original AFDD framework. Therefore, while
the AI-powered rule generation system offers a promising approach for augmenting
AFDD systems, it currently necessitates human oversight and correction, primarily due
to semantic inaccuracies.

One way of improving the AI-powered rule generation system is to evaluate the per-
formance of different and potentially more advanced LLM models. In this work, the
mistral-7b model was used in all LLM related tasks. However, more recent models could
improve the overall results of the system.

Another way to enhance the AI-powered rule generation system is that the output of the
original AFDD framework could be leveraged. Instead of simply running the AI-powered
rule generation system once, a feedback mechanism should incorporated that utilizes the

55



6. Conclusion and Future Work

results of the generated rules when they are applied to the original framework. By then
going through the rule generation process once more and refining the approach based
on the feedback collected, the overall effectiveness of the rule generation process might
improve. Future researchers could explore this technique.

Additionally, future research must focus on enhancing the semantic understanding and
autonomous preparation capabilities of the system to move toward a more refined and
deployable solution. A more general way of generating rules would increase the benefit
of the developed system. A system that is more independent from a specific AFDD
system is necessary. Additionally, it is important to explore the system’s adaptability to
different building types and contexts to ensure its scalability and applicability in diverse
environments. By addressing these challenges, the AI-powered rule generation system
can evolve into a valuable tool for automating rule generation in AFDD systems, thereby
improving the efficiency and effectiveness of fault detection in buildings.

Next to a context-based LLM approach, with the help of RAG, fine-tuning techniques
could be used to improve the system. By additional training of an LLM with domain-
specific knowledge, the intrinsic knowledge about rule generation could be improved, and
more accurate rules may be generated.

Based on the obtained knowledge and the suggested enhancements, the implementation
of rule-based fault detection within AFDD systems can become more user-friendly and
straightforward. The improvements aim to simplify the integration process for users,
ensuring that they can effectively apply the necessary rules without extensive technical
expertise. Therefore, the overall effectiveness of AFDD systems improves.
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Overview of Generative AI Tools
Used

Grammarly: Grammarly contributed to this text by responding to these AI prompts:

• „Improve it“

• „Improve my english grammar“

• „Make it inspirational“

• „Simplify it“

• „Make it more detailed“

GPT-4o: GPT-4o contributed to this text by responding to these AI prompts:

• „Improve this latex section“

• „Improve my english grammar“

DeepL: DeepL contributed to this text by translating between German and English,
converting phrases and sentences from one language to the other.
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Appendix

Used Test Cases for the Evaluation
In the following, all test cases used for the evaluation are listed. Each test case, referred
to as a rule, includes the given input, the expected output, and the actual output
generated by the AI-powered rule generation system. The source code used for the
AI-powered rule generation system, along with the evaluation code, can be found at
https://github.com/Yleisnero/ai-powered-rule-generation.

1. Room Temp 1

Input

The test checks whether the room temperature reacts on a radiant ceiling cooling valve
opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] } , "
trimmed_consecutive_smaller_than " : {"MxCrt_TFl " : [ 1 9 , 2 ] } } , " event_dict " : {"
conditional_poschange_event_end_monotonous " : {" RcgVlvPos " : {" lower_threshold " : 1 , "
upper_threshold " : 20 , " pre_window " : 12 , " change_window " : 5 , " post_window " : 16 , "
end_threshold " : 20 , " max_length_after_condition " : 60}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " :

3 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold
" : 0 . 0 , " a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " : "now ( ) − 31 days " , "
time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "Cho2PipeModCmd " : [ 0 . 9 9 , −6] , "
MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] } , " trimmed_consecutive_smaller_than " : {"MxCrt_TFl " : [ 1 9 ,
2 ] } } , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " : 3 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold " : 0 . 0 } , "
event_dict " : {" conditional_poschange_event_end_monotonous " : {" RcgVlvPos " : {"
lower_threshold " : 1 , " upper_threshold " : 20 , " pre_window " : 12 , " change_window " : 5 , "
post_window " : 16 , " end_threshold " : 20 , " max_length_after_condition " : 60}}}}
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2. Concrete Temp 1
Input

The test checks whether the concrete temperature reacts on a TABS heating valve opening

Expected Output
{" test_method " : " a l t e r n a t i v e _ t e s t " , " test_method_sub " : "

react ion_single_window_threshold_test " , " t e s t _ v i r t u a l _ t i m e s e r i e s " : {"DTFlTCon " : "
TFlH − ConTemp" } , " t e s t _ p r e c o n d i t i o n s " : {" r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"DTFlTCon " :
{" f e a t u r e " : " mean " , " window_size " : 12 , " kind " : " l a r g e r " , " t h r e s h o l d " : 3}} , "
trimmed_consecutive_larger_than " : {"PrOpModH " : [ 0 . 0 1 , 0 ] } , "
trimmed_consecutive_smaller_than " : {"CCmd" : [ 0 . 0 1 , 1 2 ] } } , " event_dict " : {"
conditional_poschange_event_end " : {"HCmd" : {" lower_threshold " : 0 . 1 , "
upper_threshold " : 0 . 9 , " pre_window " : 6 , " change_window " : 2 , " post_window " : 12 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 36}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "ConTemp" , " window_shift_event_start " : 2 , " window_shift_event_end
" : 0 , " f e a t u r e " : " diffEndMin " , " kind " : " lower " , " t h r e s h o l d " : 0 . 0 5 , "
second_threshold " : 0 . 0 , " a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " :
"2022−01−01 0 0 : 0 0 : 0 0 " , " time_end_utc " : "2022−02−01 0 0 : 0 0 : 0 0 " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"DTFlHCon " : {" f e a t u r e " : " mean " , " window_size " : 12 , "
kind " : " l a r g e r " , " t h r e s h o l d " : 3}} , " trimmed_consecutive_smaller_than " : {"HCmd" :
[ 0 . 0 1 , 1 2 ] } } , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
ConTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " : 0 , " f e a t u r e " : "
diffEndMin " , " kind " : " lower " , " t h r e s h o l d " : 0 . 0 5 , " second_threshold " : 0 . 0 } , "
event_dict " : {" conditional_poschange_event_end " : {"CCmd" : {" lower_threshold " : 0 . 1 ,
" upper_threshold " : 0 . 9 , " pre_window " : 12 , " change_window " : 2 , " post_window " : 5 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 60}}}}

3. Window Contact 1
Input

The test checks whether there is presence detected when the window contact state changes

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {} , "

event_dict " : {" var iab le_condi t iona l_poschange " : {"RWndSta " : {" change " : 0 . 1 , "
time_period " : 1 , " pre_window " : 0 , " post_window " : 0}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : " RPscDet " , " window_shift_event_start " : −1, "
window_shift_event_end " : 1 , " f e a t u r e " : " sum " , " kind " : " lower " , " t h r e s h o l d " : 0 . 0 1 } ,
" time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e "}

Output
{" test_method " : " react ion_single_window_presence_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {" WindowContactState " : [ 0 , 3 ] } } , " t ime_start_utc
" : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : "
i m p l a u s i b l e " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : " PresenceDetected " , "
window_shift_event_start " : −12, " window_shift_event_end " : 0 , " f e a t u r e " : " sum " , "
kind " : " lower " , " t h r e s h o l d " : 0 . 1 , " second_threshold " : 0 . 0 } , " event_dict " : {"
var iab le_condi t iona l_poschange " : {" PresenceDetected " : {" change " : 1 , " time_period " :
12 , " pre_window " : 3 , " post_window " : 3}}}}
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4. Room Temp 2
Input

The test checks whether the room temperature reacts on a radiant ceiling cooling valve
opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "Cho2PipeModCmd " : [ 0 . 9 9 , −6] , "
MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] } , " trimmed_consecutive_smaller_than " : {"MxCrt_TFl " : [ 1 9 ,
2 ] } } , " event_dict " : {" conditional_poschange_event_end_monotonous " : {" RcgVlvPos " : {"
lower_threshold " : 1 , " upper_threshold " : 20 , " pre_window " : 12 , " change_window " : 5 , "
post_window " : 16 , " end_threshold " : 20 , " max_length_after_condition " : 60}}} , "
t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "RTemp" , " window_shift_event_start " : 0 , "
window_shift_event_end " : 3 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " :

−0.1 , " second_threshold " : 0 . 0 , " a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " : "
now ( ) − 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : "
s u s p i c i o u s "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] } , "
trimmed_consecutive_smaller_than " : {"MxCrt_TFl " : [ 1 9 , 2 ] } } , " t ime_start_utc " : "now
( ) − 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s
" , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "RTemp" , " window_shift_event_start " : 0 , "
window_shift_event_end " : 3 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " :

−0.1 , " second_threshold " : 0 . 0 } , " event_dict " : {"
conditional_poschange_event_end_monotonous " : {" RcgVlvPos " : {" lower_threshold " : 1 , "
upper_threshold " : 20 , " pre_window " : 12 , " change_window " : 5 , " post_window " : 16 , "
end_threshold " : 20 , " max_length_after_condition " : 60}}}}

5. Valve Flow 1
Input

The test checks whether the increase in valve opening causes an increase in flow

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ v i r t u a l _ v a r i a b l e s " : {"

t shFl " : "max ( 0 . 1 , 0 . 0 5 ∗ FlMtr . q u a n t i l e ( 0 . 9 5 ) ) " } , " t e s t _ p r e c o n d i t i o n s " : {"
weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } } , " event_dict " : {"
condit iona l_poschange " : {" Vlv " : {" lower_threshold " : 1 , " upper_threshold " : 10 , "
pre_window " : 3 , " change_window " : 8 , " post_window " : 7}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : " FlMtr " , " window_shift_event_start " : −2, " window_shift_event_end
" : 5 , " f e a t u r e " : " d i f f " , " kind " : " lower " , " t h r e s h o l d " : " t shFl " , " second_threshold " :

" t shFl " } , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

de layed_consecut ive_larger_than " : {" ValvePos " : [ 0 . 9 , −6]}} , " t ime_start_utc " : "now
( ) − 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e
" , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : " FlowRate " , " window_shift_event_start " : −2, "
window_shift_event_end " : 6 , " f e a t u r e " : " d i f f " , " kind " : " l a r g e r " , " t h r e s h o l d " : "
tshFlow " , " second_threshold " : 0} , " event_dict " : {" condit ional_poschange " : {"
ValvePos " : {" lower_threshold " : 10 , " upper_threshold " : 30 , " pre_window " : 3 , "
change_window " : 5 , " post_window " : 7}}}}
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6. Room Temp 3
Input

The test checks whether the room temperature reacts on a cooling coil valve opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] } , " cond_equal_value " : {" Pl t Ct l " :
2} , " trimmed_consecutive_smaller_than " : {"MxCrt_TFl " : [ 1 9 , 2 ] } } , " event_dict " : {"

conditional_poschange_event_end " : {" CclVlvPos " : {" lower_threshold " : 5 , "
upper_threshold " : 30 , " pre_window " : 12 , " change_window " : 5 , " post_window " : 12 , "
end_threshold " : 30 , " max_length_after_condition " : 60}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " :

0 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold
" : 0 . 0 } , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "Cho2PipeModCmd " : [ 0 . 9 9 , −6] , "
MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] } , " trimmed_consecutive_smaller_than " : {"MxCrt_TFl " : [ 1 9 ,
2 ] } } , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " : 3 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold " : 0 . 0 } , "
event_dict " : {" conditional_poschange_event_end_monotonous " : {" CoolCoilVlvPos " : {"
lower_threshold " : 1 , " upper_threshold " : 20 , " pre_window " : 12 , " change_window " : 5 , "
post_window " : 16 , " end_threshold " : 20 , " max_length_after_condition " : 60}}}}

7. Concrete Temp 2
Input

The test checks whether the concrete temperature reacts on a TABS heating valve opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ v i r t u a l _ t i m e s e r i e s " : {"

DTFlTCon " : "TFlH − ConTemp" } , " t e s t _ p r e c o n d i t i o n s " : {" r o l l i n g _ f e a t u r e _ t h r e s h o l d " :
{"DTFlTCon " : {" f e a t u r e " : " mean " , " window_size " : 12 , " kind " : " l a r g e r " , " t h r e s h o l d " :
3}} , " trimmed_consecutive_smaller_than " : {"CCmd" : [ 0 . 0 1 , 1 2 ] } } , " event_dict " : {"
conditional_poschange_event_end " : {"HCmd" : {" lower_threshold " : 0 . 1 , "
upper_threshold " : 0 . 9 , " pre_window " : 12 , " change_window " : 2 , " post_window " : 5 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 60}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "ConTemp" , " window_shift_event_start " : 0 , " window_shift_event_end
" : 0 , " f e a t u r e " : " diffEndMin " , " kind " : " lower " , " t h r e s h o l d " : 0 . 0 5 , "
second_threshold " : 0 . 0 , " a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " : "now ( ) −
31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"DTFlHCon " : {" f e a t u r e " : " mean " , " window_size " : 12 , "
kind " : " l a r g e r " , " t h r e s h o l d " : 3}} , " trimmed_consecutive_larger_than " : {"PrOpModH " :
[ 0 . 0 1 , 0 ] } , " trimmed_consecutive_smaller_than " : {"CCmd" : [ 0 . 0 1 , 1 2 ] } } , "
t ime_start_utc " : "2022−01−01 0 0 : 0 0 : 0 0 " , " time_end_utc " : "2022−02−01 0 0 : 0 0 : 0 0 " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
ConTemp" , " window_shift_event_start " : 2 , " window_shift_event_end " : 0 , " f e a t u r e " : "
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diffEndMin " , " kind " : " lower " , " t h r e s h o l d " : 0 . 0 5 , " second_threshold " : 0 . 0 } , "
event_dict " : {" conditional_poschange_event_end " : {"HCmd" : {" lower_threshold " : 0 . 1 ,
" upper_threshold " : 0 . 9 , " pre_window " : 6 , " change_window " : 2 , " post_window " : 12 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 36}}}}

8. Room Temp 4
Input

The test checks whether the room temperature reacts on a radiant ceiling heating valve
opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] , "
MxCrt_TFl " : [ 3 0 , 2 ] } } , " event_dict " : {" conditional_poschange_event_end_monotonous " :

{" RcgVlvPos " : {" lower_threshold " : 1 , " upper_threshold " : 20 , " pre_window " : 12 , "
change_window " : 5 , " post_window " : 16 , " end_threshold " : 20 , "
max_length_after_condition " : 60}}} , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "RTemp" , "
window_shift_event_start " : 0 , " window_shift_event_end " : 3 , " f e a t u r e " : " diffEndMin " ,

" kind " : " lower " , " t h r e s h o l d " : 0 . 1 , " second_threshold " : 0 . 0 , "
a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " :

"now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] , "
MxCrt_TFl " : [ 1 9 , 2 ] } } , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( )
" , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " : 3 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold " : 0 . 0 } , "
event_dict " : {" conditional_poschange_event_end_monotonous " : {" RcgVlvPos " : {"
lower_threshold " : 1 , " upper_threshold " : 20 , " pre_window " : 12 , " change_window " : 5 , "
post_window " : 16 , " end_threshold " : 20 , " max_length_after_condition " : 60}}}}

9. Room Temp 5
Input

The test checks whether the room temperature reacts on a window opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ v i r t u a l _ t i m e s e r i e s " : {"

DTOaTR" : "RTemp − TOa" } , " t e s t _ p r e c o n d i t i o n s " : {" r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"
DTOaTR" : {" f e a t u r e " : " mean " , " window_size " : 12 , " kind " : " l a r g e r " , " t h r e s h o l d " : 3}} ,

" trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] } } , " event_dict " : {"
conditional_poschange_event_end " : {"RWndSta " : {" lower_threshold " : 0 . 1 , "
upper_threshold " : 0 . 9 , " pre_window " : 6 , " change_window " : 3 , " post_window " : 6 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 30}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " :

0 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold
" : 0 . 0 } , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}
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Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"DTOaTR" : {" county " : true , " f r i e n d s h i p " : true , " l o v e " :
t r u e }}} , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "

v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " : 0 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold " : 0 . 0 } , "
event_dict " : {" condit ional_poschange " : {" OpenWindowIndicaitor " : {" change " : 1}}}}

10. Room Temp 6
Input

The test checks whether the room temperature reacts on a VAV supply air flow increase

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "FanSu_OpMod " : [ 0 . 9 , 1 ] } , "
trimmed_consecutive_smaller_than " : {"TSu " : [ 1 9 , 1 ] } } , " event_dict " : {"
condit ional_poschange " : {" VavSuAirFl " : {" lower_threshold " : 5 , " upper_threshold " :
30 , " pre_window " : 12 , " change_window " : 5 , " post_window " : 24}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "RTemp" , " window_shift_event_start " : 6 , " window_shift_event_end " :

24 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , "
second_threshold " : 0} , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( )
" , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

de layed_consecut ive_larger_than " : {"FanSu_OpMod " : [ 0 . 9 , −6]}} , " t ime_start_utc " : "
now ( ) − 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : "
i m p l a u s i b l e " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "RTemp" , " window_shift_event_start
" : −2, " window_shift_event_end " : 6 , " f e a t u r e " : " d i f f " , " kind " : " lower " , " t h r e s h o l d
" : " tshAirFlSu " , " second_threshold " : 0} , " event_dict " : {" condit ional_poschange " : {"
VavSuPos " : {" lower_threshold " : 10 , " upper_threshold " : 30 , " pre_window " : 3 , "
change_window " : 5 , " post_window " : 7}}}}

11. Room Temp 7
Input

The test checks whether the room temperature reacts on a radiant ceiling cooling valve
opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] } , "
trimmed_consecutive_smaller_than " : {"MxCrt_TFl " : [ 1 9 , 2 ] } } , " event_dict " : {"
conditional_poschange_event_end_monotonous " : {" RcgVlvPos " : {" lower_threshold " : 1 , "
upper_threshold " : 20 , " pre_window " : 12 , " change_window " : 5 , " post_window " : 16 , "
end_threshold " : 20 , " max_length_after_condition " : 60}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " :

3 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold
" : 0 . 0 , " a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " : "now ( ) − 31 days " , "
time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}
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Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 0 , 6 ] , "Cho2PipeModCmd " : [ 0 . 9 9 , −6] , "
MxCrt_Pu_Cmd " : [ 0 . 9 , 0 ] } , " trimmed_consecutive_smaller_than " : {"MxCrt_TFl " : [ 1 9 ,
2 ] } } , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
RTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " : 3 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.1 , " second_threshold " : 0 . 0 } , "
event_dict " : {" conditional_poschange_event_end_monotonous " : {" RcgVlvPos " : {"
lower_threshold " : 1 , " upper_threshold " : 20 , " pre_window " : 12 , " change_window " : 5 , "
post_window " : 16 , " end_threshold " : 20 , " max_length_after_condition " : 60}}}}

12. Room Air Quality 1
Input

The test checks whether the room air quality measurement does increase without presence
detected

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RAQual " : [ 0 , 3 ] } } , " event_dict " : {"
var iab le_condi t iona l_poschange " : {"RAQual " : {" change " : 150 , " time_period " : 12 , "
pre_window " : 3 , " post_window " : 3}}} , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : " RPscDet " , "
window_shift_event_start " : −12, " window_shift_event_end " : 0 , " f e a t u r e " : " sum " , "
kind " : " lower " , " t h r e s h o l d " : 0 . 1 , " second_threshold " : 0 . 0 } , " t ime_start_utc " : "now
( ) − 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e
"}

Output
{" test_method " : " r e a c t i o n _ s i n g l e _ s i g n a l _ t h r e s h o l d _ t e s t " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RAQual " : [ 0 , 3 ] } , " presence_not_detected " : {}} ,
" t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "

v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
RAQual " , " window_shift_event_start " : 0 , " window_shift_event_end " : 6 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : 0 , " second_threshold " : 0} , " event_dict
" : {}}

13. Concrete Temp 3
Input

The test checks whether the concrete temperature reacts on a TABS cooling valve opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ v i r t u a l _ t i m e s e r i e s " : {"

DTConTFl " : "ConTemp − TFlC " } , " t e s t _ p r e c o n d i t i o n s " : {" r o l l i n g _ f e a t u r e _ t h r e s h o l d " :
{"DTConTFl " : {" f e a t u r e " : " mean " , " window_size " : 12 , " kind " : " l a r g e r " , " t h r e s h o l d " :
3}} , " trimmed_consecutive_smaller_than " : {"HCmd" : [ 0 . 0 1 , 1 2 ] } } , " event_dict " : {"
conditional_poschange_event_end " : {"CCmd" : {" lower_threshold " : 0 . 1 , "
upper_threshold " : 0 . 9 , " pre_window " : 12 , " change_window " : 2 , " post_window " : 5 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 60}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "ConTemp" , " window_shift_event_start " : 0 , " window_shift_event_end
" : 0 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.05 , "
second_threshold " : 0 . 0 , " a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " : "now ( ) −
31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}
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Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"DTConTFl " : {" f e a t u r e " : " mean " , " window_size " : 12 , "
kind " : " l a r g e r " , " t h r e s h o l d " : 3}} , " trimmed_consecutive_larger_than " : {"PrOpModC " :
[ 0 . 0 1 , 0 ] } , " trimmed_consecutive_smaller_than " : {"HCmd" : [ 0 . 0 1 , 1 2 ] } } , "
t ime_start_utc " : "2022−06−01 0 0 : 0 0 : 0 0 " , " time_end_utc " : "2022−07−01 0 0 : 0 0 : 0 0 " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
ConTemp" , " window_shift_event_start " : 2 , " window_shift_event_end " : 0 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.05 , " second_threshold " : 0 . 0 } , "
event_dict " : {" conditional_poschange_event_end " : {"CCmd" : {" lower_threshold " : 0 . 1 ,
" upper_threshold " : 0 . 9 , " pre_window " : 6 , " change_window " : 2 , " post_window " : 12 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 36}}}}

14. Concrete Temp 4
Input

The test checks whether the concrete temperature reacts on a TABS cooling valve opening

Expected Output
{" test_method " : " a l t e r n a t i v e _ t e s t " , " test_method_sub " : "

react ion_single_window_threshold_test " , " t e s t _ v i r t u a l _ t i m e s e r i e s " : {"DTConTFl " : "
ConTemp − TFlC " } , " t e s t _ p r e c o n d i t i o n s " : {" r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"DTConTFl " :
{" f e a t u r e " : " mean " , " window_size " : 12 , " kind " : " l a r g e r " , " t h r e s h o l d " : 3}} , "
trimmed_consecutive_larger_than " : {"PrOpModC " : [ 0 . 0 1 , 0 ] } , "
trimmed_consecutive_smaller_than " : {"HCmd" : [ 0 . 0 1 , 1 2 ] } } , " event_dict " : {"
conditional_poschange_event_end " : {"CCmd" : {" lower_threshold " : 0 . 1 , "
upper_threshold " : 0 . 9 , " pre_window " : 6 , " change_window " : 2 , " post_window " : 12 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 36}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : "ConTemp" , " window_shift_event_start " : 2 , " window_shift_event_end
" : 0 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.05 , "
second_threshold " : 0 . 0 , " a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " :
"2022−06−01 0 0 : 0 0 : 0 0 " , " time_end_utc " : "2022−07−01 0 0 : 0 0 : 0 0 " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"DTConTC" : {" f e a t u r e " : " mean " , " window_size " : 12 , "
kind " : " l a r g e r " , " t h r e s h o l d " : 3}} , " trimmed_consecutive_smaller_than " : {"CCmd" :
[ 0 . 0 1 , 1 2 ] } } , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s " , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "
ConTemp" , " window_shift_event_start " : 0 , " window_shift_event_end " : 0 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −0.05 , " second_threshold " : 0 . 0 } , "
event_dict " : {" conditional_poschange_event_end " : {" TCool " : {" lower_threshold " : 0 . 1 ,

" upper_threshold " : 0 . 9 , " pre_window " : 12 , " change_window " : 2 , " post_window " : 5 , "
end_threshold " : 0 . 9 , " max_length_after_condition " : 60}}}}

15. Room Air Quality 2
Input

The test checks whether the room air quality measurement does decrease after window
opening

Expected Output
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{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ v i r t u a l _ t i m e s e r i e s " : {"
RAQual_corr " : "RAQual − RAQual . q u a n t i l e ( 0 . 0 5 ) + 400"} , " t e s t _ p r e c o n d i t i o n s " : {"
trimmed_consecutive_larger_than " : {"RAQual " : [ 0 , 3 ] } } , " event_dict " : {"
var iab le_condi t iona l_poschange " : {"RWndSta " : {" change " : 0 . 9 , " time_period " : 2 , "
pre_window " : 6 , " post_window " : 6}}} , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : " RAQual_corr
" , " window_shift_event_start " : 0 , " window_shift_event_end " : 6 , " f e a t u r e " : "
diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d " : −100, " react ion_start_min " : 800} , "
t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RAQual " : [ 0 , 3 ] } } , " time_start_utc " : "now ( ) −
31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "RAQual " , " window_shift_event_start " : −3, "
window_shift_event_end " : 0 , " f e a t u r e " : " diffEndMax " , " kind " : " lower " , " t h r e s h o l d " :
0 . 1 , " second_threshold " : 0 . 0 } , " event_dict " : {" conditional_poschange_event_end " : {"
RWndSta " : {" lower_threshold " : 0 . 1 , " upper_threshold " : 0 . 9 , " pre_window " : 3 , "
change_window " : 3 , " post_window " : 3 , " end_threshold " : 0 . 1 , "
max_length_after_condition " : 30}}}}

16. Room Temp 8
Input

The test checks whether the room temperature reacts on a radiator heating valve opening

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {"RTemp " : [ 5 , 1 2 ] , "MxCrt_Pu_Cmd " : [ 0 . 9 , 1 2 ] , "
MxCrt_TFl " : [ 3 0 , 1 2 ] } } , " event_dict " : {" conditional_poschange_event_end_monotonous
" : {" RadVlvPos " : {" lower_threshold " : 10 , " upper_threshold " : 30 , " pre_window " : 12 , "
change_window " : 5 , " post_window " : 12 , " end_threshold " : 30 , "
max_length_after_condition " : 60}}} , " t e s t _ s p e c s " : {" r e a c t i o n _ s i g n a l " : "RTemp" , "
window_shift_event_start " : 0 , " window_shift_event_end " : 6 , " f e a t u r e " : " diffEndMin " ,

" kind " : " lower " , " t h r e s h o l d " : 0 . 1 , " second_threshold " : 0 . 0 , "
a c c e p t e d _ r a t i o _ i n v a l i d " : 0 . 2 } , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " :

"now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " s u s p i c i o u s "}

Output
{}

17. Air Flow 1
Input

The test checks whether the opening of a VAV supply air damper causes an air flow rise

Expected Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ v i r t u a l _ v a r i a b l e s " : {"

tshAirFlSu " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 0 5 , 2) " } , " t e s t _ p r e c o n d i t i o n s " : {"
de layed_consecut ive_larger_than " : {"FanSu_OpMod " : [ 0 . 9 , −6]}} , " event_dict " : {"
condit ional_poschange " : {" VavSuPos " : {" lower_threshold " : 10 , " upper_threshold " : 30 ,

" pre_window " : 3 , " change_window " : 5 , " post_window " : 7}}} , " t e s t _ s p e c s " : {"
r e a c t i o n _ s i g n a l " : " VavSuAirFl " , " window_shift_event_start " : −2, "
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window_shift_event_end " : 6 , " f e a t u r e " : " d i f f " , " kind " : " lower " , " t h r e s h o l d " : "
tshAirFlSu " , " second_threshold " : 0} , " t ime_start_utc " : "now ( ) − 31 days " , "
time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e "}

Output
{" test_method " : " react ion_single_window_threshold_test " , " t e s t _ p r e c o n d i t i o n s " : {"

trimmed_consecutive_larger_than " : {" FlMtr " : [ 0 , 6 ] } , " condit ional_poschange " : {"
VavSuAirFl " : {" lower_threshold " : 5 , " upper_threshold " : 30 , " pre_window " : 12 , "
change_window " : 5 , " post_window " : 24}}} , " time_start_utc " : "now ( ) − 31 days " , "
time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " t e s t _ s p e c s " :

{" r e a c t i o n _ s i g n a l " : " FlMtr " , " window_shift_event_start " : 6 , "
window_shift_event_end " : 24 , " f e a t u r e " : " diffEndMax " , " kind " : " l a r g e r " , " t h r e s h o l d
" : 0 , " second_threshold " : 0} , " event_dict " : {}}

18. Air Flow 2

Input

The test checks whether a air flow is measured, when the damper is open but ther should
no airflow

Expected Output
{" test_method " : " a l t e r n a t i v e _ t e s t " , " test_method_sub " : "

single_signal_threshold_test_moving_window " , " t e s t _ v i r t u a l _ v a r i a b l e s " : {"
tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " :

{" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_larger_than " : {"
VavSuPos " : [ 5 , 6 ] } , " trimmed_consecutive_smaller_than " : {"FanSu_OpMod " : [ 0 . 9 , 6 ] } } ,

" t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : " tshAirFlSuLo " , " second_threshold " :
" tshAirFlSuHi " , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , "
t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " violation_agg_func_runs " : "
mean_time_weighted "}

Output
{" test_method " : " a l t e r n a t i v e _ i n v _ t e s t " , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {"

week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_larger_than " : {"
VavSuPos " : [ 5 , 6 ] } } , " t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( ) " ,
" v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : "
single_signal_threshold_test_moving_window " , " t e s t _ v i r t u a l _ v a r i a b l e s " : {"
tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " event_dict " : nu l l , " t e s t _ s p e c s " : {" kind " :
" l a r g e r " , " t h r e s h o l d " : " tshAirFlSuHi " , " second_threshold " : " tshAirFlSuLo " , "
s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , "
violat ion_agg_func_runs " : " mean_time_weighted "}

19. Room Presence 1

Input

The test checks whether there is very high room presence over a long period of time
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Expected Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } } , " t e s t _ s p e c s " : {" kind
" : " l a r g e r " , " t h r e s h o l d " : 0 . 9 , " s t a t _ f e a t u r e " : " mean " , " window_length " : 4032 , "
min_periods " : 3024} , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " ,
" v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " violat ion_agg_func_runs " : "
mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " cond_larger_than " :
{" RoomOccupancy " : 0 . 8 } } , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now
( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : nu l l , "
t e s t _ v i r t u a l _ v a r i a b l e s " : nu l l , " event_dict " : nu l l , " t e s t _ s p e c s " : {" kind " : " l a r g e r " ,

" t h r e s h o l d " : 0 . 8 , " second_threshold " : nu l l , " s t a t _ f e a t u r e " : " mean " , " window_length
" : 17520 , " min_periods " : 12960} , " violation_agg_func_runs " : " mean_time_weighted "}

20. Air Flow 3
Input

The test checks whether a significant supply VAV flow is measured although the damper
is commanded closed

Expected Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ v i r t u a l _ v a r i a b l e s " :

{" tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " :

{" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_smaller_than " : {"
VavSuPos " : [ 0 . 1 , 6 ] } } , " t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : " tshAirFlSuLo
" , " second_threshold " : " tshAirFlSuHi " , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 ,

" min_periods " : 10} , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " ,
" v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " violat ion_agg_func_runs " : "
mean_time_weighted "}

Output
{" test_method " : " a l t e r n a t i v e _ i n v _ t e s t " , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {"

week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_smaller_than " : {"
VavSuPos " : [ 0 . 1 , 6 ] } } , " t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( )
" , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : "
single_signal_threshold_test_moving_window " , " t e s t _ v i r t u a l _ v a r i a b l e s " : {"
tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " } , " event_dict " : nu l l , "
t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : " tshAirFlSuLo " , " second_threshold " :
nu l l , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , "
violat ion_agg_func_runs " : " mean_time_weighted "}

21. Room Air Quality 3
Input

The test checks whether the estimated room air quality measurement is high when
unoccupied
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Expected Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , "
consecut ive_smal ler_than " : {" RPscDet " : [ 0 . 1 , 28 8 ] }} , " t e s t _ s p e c s " : {" kind " : " l a r g e r
" , " t h r e s h o l d " : 600 , " second_threshold " : 900 , " s t a t _ f e a t u r e " : " p e r c e n t i l e " , "
feature_params " : {" p e r c e n t i l e " : 5} , " window_length " : 288} , " time_start_utc " : "now ( )
− 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " ,
" violation_agg_func_runs " : " mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , "
cond_nan_or_larger_than " : {" occupancy_status " : 0}} , " time_start_utc " : "now ( ) − 31
days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
test_method_sub " : nu l l , " t e s t _ v i r t u a l _ v a r i a b l e s " : nu l l , " event_dict " : nu l l , "
t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : 200 , " second_threshold " : nu l l , "
s t a t _ f e a t u r e " : " p e r c e n t i l e " , " window_length " : 4032 , " min_periods " : 2016} , "
violat ion_agg_func_runs " : " mean_time_weighted "}

22. Air Flow 4
Input

The test checks whether a air flow is measured, when the damper is open but ther should
no airflow

Expected Output
{" test_method " : " a l t e r n a t i v e _ i n v _ t e s t " , " test_method_sub " : "

single_signal_threshold_test_moving_window " , " property_inv " : {" Datapoint " : "
VavSuPos " , " ValueMax " : 100} , " t e s t _ v i r t u a l _ v a r i a b l e s " : {" tshAirFlSuLo " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max( VavSuAirFl . q u a n t i l e
( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {" week_day_list " :
[ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_larger_than " : {" VavSuPos " : [ 5 , 6 ] } , "
trimmed_consecutive_smaller_than " : {"FanSu_OpMod " : [ 0 . 9 , 6 ] } } , " t e s t _ s p e c s " : {" kind
" : " l a r g e r " , " t h r e s h o l d " : " tshAirFlSuLo " , " second_threshold " : " tshAirFlSuHi " , "
s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , " time_start_utc " : "
now ( ) − 30 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : "
i m p l a u s i b l e " , " violat ion_agg_func_runs " : " mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , "
trimmed_consecutive_larger_than " : {" VavSuPos " : [ 5 , 6 ] , "FanSu_OpMod " : [ 0 . 9 , 6 ] } } , "
t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : nu l l , "
t e s t _ v i r t u a l _ v a r i a b l e s " : {" tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10)
" , " tshAirFlSuHi " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " event_dict " : nu l l ,

" t e s t _ s p e c s " : {" kind " : " lower " , " t h r e s h o l d " : " tshAirFlSuHi " , " second_threshold " : "
tshAirFlSuLo " , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , "
violat ion_agg_func_runs " : " mean_time_weighted "}

23. Air Flow 5
Input

The test checks whether a significant supply VAV flow is measured whenever the damper
is commanded open
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Expected Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ v i r t u a l _ v a r i a b l e s " :

{" tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " :

{" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_larger_than " : {"
VavSuPos " : [ 5 , 6 ] , "FanSu_OpMod " : [ 0 . 9 , 6 ] } } , " t e s t _ s p e c s " : {" kind " : " lower " , "
t h r e s h o l d " : " tshAirFlSuHi " , " second_threshold " : " tshAirFlSuLo " , " s t a t _ f e a t u r e " : "
mean " , " window_length " : 12 , " min_periods " : 10} , " time_start_utc " : "now ( ) − 31 days
" , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
violat ion_agg_func_runs " : " mean_time_weighted "}

Output
{" test_method " : " a l t e r n a t i v e _ t e s t " , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {"

week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_larger_than " : {"
VavSuPos " : [ 5 , 6 ] , "FanSu_OpMod " : [ 0 . 9 , 6 ] } } , " t ime_start_utc " : "now ( ) − 30 days " ,
" time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
test_method_sub " : " single_signal_threshold_test_moving_window " , "
t e s t _ v i r t u a l _ v a r i a b l e s " : {" tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10)
" , " tshAirFlSuHi " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " event_dict " : nu l l ,

" t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : " tshAirFlSuHi " , " second_threshold " :
" tshAirFlSuLo " , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , "
violat ion_agg_func_runs " : " mean_time_weighted "}

24. Air Flow 6

Input

The test checks whether a significant supply VAV flow is measured although the damper
is commanded closed

Expected Output
{" test_method " : " a l t e r n a t i v e _ i n v _ t e s t " , " test_method_sub " : "

single_signal_threshold_test_moving_window " , " property_inv " : {" Datapoint " : "
VavSuPos " , " ValueMax " : 100} , " t e s t _ v i r t u a l _ v a r i a b l e s " : {" tshAirFlSuLo " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max( VavSuAirFl . q u a n t i l e
( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {" week_day_list " :
[ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_smaller_than " : {" VavSuPos " : [ 0 . 1 ,
6 ] } } , " t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : " tshAirFlSuLo " , "
second_threshold " : " tshAirFlSuHi " , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , "
min_periods " : 10} , " t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " violation_agg_func_runs " : "
mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

VavSuPos " : {" equal_to " : 0}} , " t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "
now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : nu l l , "
t e s t _ v i r t u a l _ v a r i a b l e s " : {" tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10)
" } , " event_dict " : nu l l , " t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : " tshAirFlSuLo
" , " second_threshold " : nu l l , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , "
min_periods " : 10} , " violat ion_agg_func_runs " : " mean_time_weighted "}
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25. Air Flow 7
Input

The test checks whether a significant supply VAV flow is measured whenever the damper
is commanded open

Expected Output
{" test_method " : " a l t e r n a t i v e _ i n v _ t e s t " , " test_method_sub " : "

single_signal_threshold_test_moving_window " , " property_inv " : {" Datapoint " : "
VavSuPos " , " ValueMax " : 100} , " t e s t _ v i r t u a l _ v a r i a b l e s " : {" tshAirFlSuLo " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max( VavSuAirFl . q u a n t i l e
( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {" week_day_list " :
[ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_larger_than " : {" VavSuPos " : [ 5 , 6 ] , "
FanSu_OpMod " : [ 0 . 9 , 6 ] } } , " t e s t _ s p e c s " : {" kind " : " lower " , " t h r e s h o l d " : "
tshAirFlSuHi " , " second_threshold " : " tshAirFlSuLo " , " s t a t _ f e a t u r e " : " mean " , "
window_length " : 12 , " min_periods " : 10} , " time_start_utc " : "now ( ) − 30 days " , "
time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
violat ion_agg_func_runs " : " mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , "
trimmed_consecutive_larger_than " : {" VavSuPos " : [ 5 , 6 ] , "FanSu_OpMod " : [ 0 . 9 , 6 ] } } , "
t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : nu l l , "
t e s t _ v i r t u a l _ v a r i a b l e s " : {" tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10)
" , " tshAirFlSuHi " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " event_dict " : nu l l ,

" t e s t _ s p e c s " : {" kind " : " lower " , " t h r e s h o l d " : " tshAirFlSuHi " , " second_threshold " : "
tshAirFlSuLo " , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , "
violat ion_agg_func_runs " : " mean_time_weighted "}

26. Room Air Quality 4
Input

The test checks whether the estimated room air quality offset is high

Expected Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , "
cond_nan_or_larger_than " : {"RAQual " : 0}} , " t e s t _ s p e c s " : {" kind " : " l a r g e r " , "
t h r e s h o l d " : 200 , " second_threshold " : 500 , " s t a t _ f e a t u r e " : " p e r c e n t i l e " , "
feature_params " : {" p e r c e n t i l e " : 5} , " window_length " : 4032 , " min_periods " : 2016 , "
compar i son_of f set " : 400} , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now
( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " violation_agg_func_runs " : "
mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } } , " time_start_utc " : "
now ( ) − 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : "
i m p l a u s i b l e " , " test_method_sub " : nu l l , " t e s t _ v i r t u a l _ v a r i a b l e s " : nu l l , " event_dict
" : nu l l , " t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : 500 , " second_threshold " :
nu l l , " s t a t _ f e a t u r e " : " p e r c e n t i l e " , " window_length " : 1440 , " min_periods " : n u l l } , "
violat ion_agg_func_runs " : " mean_time_weighted "}
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27. Air Flow 8
Input

The test checks whether a significant supply VAV flow is measured whenever the damper
is commanded open

Expected Output
{" test_method " : " a l t e r n a t i v e _ t e s t " , " test_method_sub " : "

single_signal_threshold_test_moving_window " , " t e s t _ v i r t u a l _ v a r i a b l e s " : {"
tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " :

{" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_larger_than " : {"
VavSuPos " : [ 5 , 6 ] , "FanSu_OpMod " : [ 0 . 9 , 6 ] } } , " t e s t _ s p e c s " : {" kind " : " lower " , "
t h r e s h o l d " : " tshAirFlSuHi " , " second_threshold " : " tshAirFlSuLo " , " s t a t _ f e a t u r e " : "
mean " , " window_length " : 12 , " min_periods " : 10} , " time_start_utc " : "now ( ) − 30 days
" , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
violat ion_agg_func_runs " : " mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , "
trimmed_consecutive_larger_than " : {" VavSuPos " : [ 5 , 6 ] , "FanSu_OpMod " : [ 0 . 9 , 6 ] } } , "
t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : nu l l , "
t e s t _ v i r t u a l _ v a r i a b l e s " : {" tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10)
" , " tshAirFlSuHi " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " event_dict " : nu l l ,

" t e s t _ s p e c s " : {" kind " : " lower " , " t h r e s h o l d " : " tshAirFlSuHi " , " second_threshold " : "
tshAirFlSuLo " , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , "
violat ion_agg_func_runs " : " mean_time_weighted "}

28. Room Presence 2
Input

The test checks whether there is no room presence over a long period of time

Expected Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } } , " t e s t _ s p e c s " : {" kind
" : " lower " , " t h r e s h o l d " : 1e −06, " s t a t _ f e a t u r e " : " mean " , " window_length " : 4032 , "
min_periods " : 3024} , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( ) " ,
" v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " violat ion_agg_func_runs " : "
mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " cond_smaller_than " :
{" room_presence " : 0}} , " t ime_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( )
" , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : nu l l , "
t e s t _ v i r t u a l _ v a r i a b l e s " : nu l l , " event_dict " : nu l l , " t e s t _ s p e c s " : {" kind " : " s m a l l e r
" , " t h r e s h o l d " : 0 , " second_threshold " : nu l l , " s t a t _ f e a t u r e " : " mean " , " window_length
" : 14400 , " min_periods " : 10080} , " violation_agg_func_runs " : " mean_time_weighted "}
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29. Room Air Quality 5
Input

The test checks whether the estimated room air quality offset is low

Expected Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , "
cond_nan_or_larger_than " : {"RAQual " : 0}} , " t e s t _ s p e c s " : {" kind " : " lower " , "
t h r e s h o l d " : −200, " second_threshold " : −500, " s t a t _ f e a t u r e " : " p e r c e n t i l e " , "
feature_params " : {" p e r c e n t i l e " : 5} , " window_length " : 4032 , " min_periods " : 2016 , "
compar i son_of f set " : 400} , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now
( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " violation_agg_func_runs " : "
mean_time_weighted "}

Output
{" test_method " : " s ingle_signal_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " cond_smaller_than " :
{" RAQualOffset " : 50}} , " time_start_utc " : "now ( ) − 31 days " , " time_end_utc " : "now ( )
" , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " p l a u s i b l e " , " test_method_sub " : nu l l , "
t e s t _ v i r t u a l _ v a r i a b l e s " : nu l l , " event_dict " : nu l l , " t e s t _ s p e c s " : {" kind " : " s m a l l e r
" , " t h r e s h o l d " : 50 , " second_threshold " : 25 , " s t a t _ f e a t u r e " : " mean " , " window_length
" : 1440 , " min_periods " : 7} , " violation_agg_func_runs " : " mean_time_weighted "}

30. Air Flow 9
Input

The test checks whether a significant supply VAV flow is measured although the damper
is commanded closed

Expected Output
{" test_method " : " a l t e r n a t i v e _ t e s t " , " test_method_sub " : "

single_signal_threshold_test_moving_window " , " t e s t _ v i r t u a l _ v a r i a b l e s " : {"
tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 9 5 ) ∗ 0 . 2 , 20) " } , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " :

{" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_smaller_than " : {"
VavSuPos " : [ 0 . 1 , 6 ] } } , " t e s t _ s p e c s " : {" kind " : " l a r g e r " , " t h r e s h o l d " : " tshAirFlSuLo
" , " second_threshold " : " tshAirFlSuHi " , " s t a t _ f e a t u r e " : " mean " , " window_length " : 12 ,

" min_periods " : 10} , " time_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( ) " ,
" v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " violation_agg_func_runs " : "
mean_time_weighted "}

Output
{" test_method " : " a l t e r n a t i v e _ i n v _ t e s t " , " t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {"

week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] } , " trimmed_consecutive_smaller_than " : {"
VavSuPos " : [ 0 . 1 , 6 ] } } , " t ime_start_utc " : "now ( ) − 30 days " , " time_end_utc " : "now ( )
" , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " test_method_sub " : "
single_signal_threshold_test_moving_window " , " t e s t _ v i r t u a l _ v a r i a b l e s " : {"
tshAirFlSuLo " : "max( VavSuAirFl . q u a n t i l e ( 0 . 0 5 ) ∗ 0 . 1 , 10) " , " tshAirFlSuHi " : "max(
VavSuAirFl . q u a n t i l e ( 0 . 0 5 ) ∗ 0 . 2 , 20) " } , " event_dict " : nu l l , " t e s t _ s p e c s " : {" kind " :
" s m a l l e r " , " t h r e s h o l d " : " tshAirFlSuLo " , " second_threshold " : " tshAirFlSuHi " , "
s t a t _ f e a t u r e " : " mean " , " window_length " : 12 , " min_periods " : 10} , "
violat ion_agg_func_runs " : " mean_time_weighted "}
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31. Temp Deviation 1
Input

The test checks whether the average concrete and room temperatures over long durations
(>= 1 day) deviate

Expected Output
{" test_method " : " s imi lar i ty_di f ference_threshold_test_moving_window " , "

t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 ,
6 ] } , " delayed_consecutive_smal ler_than " : {"HCmd" : [ 0 . 1 , 2 8 8 ] , "CCmd" : [ 0 . 1 , 28 8 ] }} ,

" t e s t _ s p e c s " : {" kind " : " larger_abs " , " t h r e s h o l d " : 2 . 0 , " second_threshold " : 4 . 0 , "
s t a t _ f e a t u r e " : " mean " , " window_length " : 576 , " min_periods " : 576} , " time_start_utc " :

"now ( ) − 31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : "
i m p l a u s i b l e " , " violat ion_agg_func_runs " : " mean_time_weighted "}

Output
{" test_method " : " deviation_threshold_test_moving_window " , " t e s t _ p r e c o n d i t i o n s " : {"

r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {" Concrete_Temperature " : {" f e a t u r e " : " mean " , "
window_size " : 1440 , " kind " : " d e v i a t i o n " } , " Room_Temperature " : {" f e a t u r e " : " mean " , "
window_size " : 1440 , " kind " : " d e v i a t i o n "}}} , " t ime_start_utc " : "now ( ) − 1 day " , "
time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " t e s t _ s p e c s " :

{" kind " : " a b s o l u t e " , " t h r e s h o l d " : 1 . 0 , " second_threshold " : nu l l , " s t a t _ f e a t u r e " : "
mean " , " window_length " : 1440 , " min_periods " : 24} , " violation_agg_func_runs " : "
mean_time_weighted "}

32. Temp Cooling 1
Input

The test checks whether the average concrete temperature is lower than the room
temperatures over long durations (>= 1 day) when cooling

Expected Output
{" test_method " : " s imi lar i ty_di f ference_threshold_test_moving_window " , "

t e s t _ p r e c o n d i t i o n s " : {" r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"CCmd" : {" f e a t u r e " : " mean " , "
window_size " : 288 , " kind " : " l a r g e r " , " t h r e s h o l d " : 0 . 2 } } , "
delayed_consecutive_smal ler_than " : {"HCmd" : [ 0 . 1 , 2 8 8 ] } } , " t e s t _ s p e c s " : {" kind " : "
l a r g e r " , " t h r e s h o l d " : −1.0 , " second_threshold " : −0.5 , " s t a t _ f e a t u r e " : " mean " , "
window_length " : 288 , " min_periods " : 264} , " t ime_start_utc " : "now ( ) − 31 days " , "
time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
violat ion_agg_func_runs " : " mean_time_weighted "}

Output
{" test_method " : " s imi lar i ty_di f ference_threshold_test_moving_window " , "

t e s t _ p r e c o n d i t i o n s " : {" r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"CCmd" : {" f e a t u r e " : " mean " , "
window_size " : 288 , " kind " : " l a r g e r " , " t h r e s h o l d " : 0 . 2 } } , "
de layed_consecut ive_larger_than " : {"HCmd" : [ 0 . 1 , 2 8 8 ] } } , " t ime_start_utc " : "now ( ) −

31 days " , " time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
t e s t _ s p e c s " : {" kind " : " lower " , " t h r e s h o l d " : 1 . 0 , " second_threshold " : 0 . 5 , "
s t a t _ f e a t u r e " : " mean " , " window_length " : 288 , " min_periods " : 264} , "
violat ion_agg_func_runs " : " mean_time_weighted "}
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33. Temp Heating 1
Input

The test checks whether the average concrete temperature is greater than the room
temperatures over long durations (>= 1 day) when heating

Expected Output
{" test_method " : " s imi lar i ty_di f ference_threshold_test_moving_window " , "

t e s t _ p r e c o n d i t i o n s " : {" r o l l i n g _ f e a t u r e _ t h r e s h o l d " : {"HCmd" : {" f e a t u r e " : " mean " , "
window_size " : 288 , " kind " : " l a r g e r " , " t h r e s h o l d " : 0 . 2 } } , "
delayed_consecutive_smal ler_than " : {"CCmd" : [ 0 . 1 , 2 88 ] } } , " t e s t _ s p e c s " : {" kind " : "
lower " , " t h r e s h o l d " : 1 . 0 , " second_threshold " : 0 . 5 , " s t a t _ f e a t u r e " : " mean " , "
window_length " : 288 , " min_periods " : 264} , " time_start_utc " : "now ( ) − 31 days " , "
time_end_utc " : "now ( ) " , " v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , "
violat ion_agg_func_runs " : " mean_time_weighted "}

Output
{" test_method " : " s imi lar i ty_di f ference_threshold_test_moving_window " , "

t e s t _ p r e c o n d i t i o n s " : {" weekday_select ion " : {" week_day_list " : [ 0 , 1 , 2 , 3 , 4 , 5 ,
6 ] } , " de layed_consecut ive_larger_than " : {"HCmd" : [ 0 . 1 , 2 8 8 ] , "CCmd" : [ 0 . 1 , 2 88 ] } } ,
" time_start_utc " : "now ( ) − 7 days " , " time_end_utc " : "now ( ) " , "
v i o l a t i o n _ p l a u s i b i l i t y _ c o d e " : " i m p l a u s i b l e " , " t e s t _ s p e c s " : {" kind " : " smal ler_abs " ,
" t h r e s h o l d " : 0 . 0 , " second_threshold " : −0.5 , " s t a t _ f e a t u r e " : " mean " , " window_length
" : 1728 , " min_periods " : 1728} , " violation_agg_func_runs " : " mean_time_weighted "}
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