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Abstract

The shift from conventional manufacturing and monitoring techniques to systems with decentralised,

interconnected, and increasingly self-aware components has created a demand for edge-devices that

are capable of operating under harsh environmental conditions, such as high temperatures or high radi-

ation doses. Due to constrained resources and limited supply, these edge-devices also require efficient

circuitry with low leakage current. Traditional complementary metal-oxide-semiconductor (CMOS)

technology is not suitable for meeting these requirements.

The i-EDGE project aims to establish nanoelectromechanical (NEM) relays as substitutes for CMOS

transistors to address the aforementioned challenges. However, at the current Technology Readiness

Level (TRL) of the project, the yield of manufactured NEM circuits, as well as the reliability under

operation, is significantly lower than in CMOS technology. To tackle this issue, it is necessary to explore

fault-tolerant design techniques that can be applied to NEM circuits.

This thesis first derives fault models from the physical defects that can occur in NEM devices. Con-

ventional fault-tolerant design techniques are then reviewed and assessed for their applicability to NEM

circuits. The unique characteristics of NEM devices are leveraged to simplify or enhance established

fault-tolerant circuit designs, as well as to propose new NEM circuit designs. A simulation environment

is developed to simulate test circuits with fault-tolerant design techniques applied. The resulting data

is used to explore the design space and to evaluate the achievable fault tolerance.
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Kurzfassung

Der Wandel von konventionellen Produktions- und Überwachungssystemen hin zu Systemen mit

dezentralisierten, vernetzten und zunehmend intelligenten Geräten sowie Edge-Computing hat eine

Nachfrage nach Komponenten geschaffen, die in der Lage sind, unter extremen Umweltbedingungen

wie hohen Temperaturen oder hohen Strahlungsdosen zu arbeiten. Aufgrund begrenzter Hardware-

Ressourcen und eingeschränkter Energieversorgung erfordern diese Edge-Geräte zudem häufig effizi-

ente Schaltungen mit minimalem Leckstrom. Traditionelle Schaltungen auf Basis von CMOS sind daher

oft nicht geeignet, diese Anforderungen zu erfüllen.

Das i-EDGE-Projekt hat zum Ziel, NEM-Relais als Ersatz für CMOS-Transistoren zu etablieren, um

die oben genannten Herausforderungen zu bewältigen. Zum aktuellen Stand des TRLs dieses Projekts

liegen sowohl der Ertrag der fabrizierten NEM-Schaltungen als auch die Zuverlässigkeit im Betrieb

deutlich unter dem Niveau der CMOS-Technologie. Um dieses Problem zu lösen, ist es erforderlich,

fehlertolerante Designtechniken auf ihre Eignung für NEM-Schaltungen zu prüfen.

Diese Masterarbeit leitet zunächst Fehlermodelle aus physischen Defekten ab, die in NEM-Relais

auftreten können. Konventionelle fehlertolerante Designtechniken werden anschließend hinsichtlich

ihrer Anwendbarkeit auf NEM-Schaltungen bewertet. Die einzigartige Funktionsweise von NEM-Relais

wird genutzt, um etablierte fehlertolerante Schaltungsdesigns zu vereinfachen oder zu verbessern so-

wie um neue NEM-Schaltungsdesigns vorzuschlagen. Eine Simulationsumgebung wird entwickelt, um

die fehlertoleranten Designtechniken mithilfe von Testschaltungen zu simulieren. Anhand der resul-

tierenden Daten werden verschiedene Designs bewertet und die erreichbare Fehlertoleranz evaluiert.
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Chapter 1

Introduction

The continuous advancements in integrated circuit (IC) technology and artificial intelligence have lead

to a paradigm shift in the development and application of technological devices, especially within the

industrial sector. Conventional manufacturing practices are gradually being replaced by automated

processes that rely on smart, self-monitoring devices with high interconnectivity. To describe this

evolution, the term Internet of Things (IoT) was coined, which refers to a system that integrates sensors,

actuators, controllers, cloud applications, and data storage within a communication network. In this

network, components that monitor or directly interact with physical processes often have to deal with

harsh environmental conditions, such as high temperatures or high radiation doses. Additionally, real-

time requirements often need to be considered, which makes it reasonable to design these components

as edge devices. These edge devices have limited resources and power supply, so there is a need for

light-weight algorithms and technology with low leakage current.

The use of complementary metal-oxide-semiconductor (CMOS) technology in extreme environ-

ment is usually not practicable, as CMOS suffers from inherent limitations. High temperatures reduce

carrier mobility, leading to reduced transistor switching speed and overall degraded circuit perfor-

mance. Additionally, increased leakage currents cause power consumption to rise and a shift of the

threshold voltage in MOSFETS may affect the switching characteristics of the transistor. Moreover, ra-

diation effects can cause transient or permanent errors in the circuit, such as bit flips, latch-ups etc. Due

to these circumstances, several other technological alternatives have been proposed. However, alter-

native technologies often require complex manufacturing processes in specialist foundries and cannot

be integrated into mainstream semiconductor factoring.

The i-EDGE project introduces nanoelectromechanical (NEM) relays as a promising solution. NEM

relays can act as a substitute for complementary CMOS transistors when designing components for

edge applications. It stays operational at temperatures up to 300 ◦C [14], has high radiation hard-

1



2 Chapter 1. Introduction

Gate
Source Drain

(a)
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0 0 Z
0 1 1
1 0 0
1 1 Z

(b)

Figure 1.1: 3-T relay: (a) schematic, (b) truth table.

ness [15] and operates with zero standby power [16–18]. The NEM technology consists of different

device primitives used for modelling logic circuits and non-volatile memory. The following section

elaborates on the design and the functional behaviour of these NEM devices.

1.1 NEM Devices in i-EDGE

The i-EDGE project introduces NEM switching technology to substitute or complement conventional

CMOS technology. The basic set of NEM devices for modelling logic circuits and non-volatile memory

consists of three different device types. These NEM relays are fabricated on a wafer using a standard

silicon-on-insulator (SOI) CMOS foundry process. This wafer is then placed on top of a prefabricated

metal interconnect stack, which can be shared with CMOS circuitry located on the bottom side. Thus,

the fabrication of NEM circuits can be integrated into established mainstream foundries while main-

taining compatibility with CMOS technology [19–21]. The modelling and fabrication of these devices

are done by project partners and are not part of this thesis.

1.1.1 3-Terminal Relay

The 3-terminal (3-T) device is a simple relay with a gate, source, and drain terminal (Fig. 1.1a). Its

geometry features two parallel beams that are connected via a mechanical coupler and act as a cantilever

[22, 23]. The relay can be actuated by applying a potential difference between the source and the gate.

The voltage required to pull the beams in is called pull-in voltage. When the beams are actuated, an

electrical contact between the source and the drain is established. The beams pull out and return to their

original position when the voltage is removed. The functionality of the relay is depicted in the truth

table shown in Fig. 1.1b. Digital logic gates in complementary CMOS technology are modelled using

PMOS and NMOS transistors, which constitute the pull-up and pull-down networks. Since the pull-in

voltage can be applied to either the gate or the source terminal to actuate the 3-T device, the switching

characteristics of NMOS and PMOS transistors can be emulated. This allows for the modelling of logic

gates using only 3-T devices.
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Figure 1.2: 4-T relay: (a) schematic, (b) truth table.

1.1.2 4-Terminal Relay

The 4-terminal (4-T) device is geometrically equivalent to the 3-T device [23]. However, in the

4-T device, the coupler connecting the two beams is electrically insulating (Fig. 1.2a). Thus, the data

signal, applied at the source, is separated from the actuation voltage (Fig. 1.2b). To actuate the relay, a

potential difference exceeding the pull-in voltage has to be established between the gate and the body.

Therefore, this device extends the functionality of the 3-T device and its utilization allows for designs

with lower device count. Applications include multiplexer and demultiplexer designs, as well as writing

and reading circuitry for non-volatile memory, when used in conjunction with the other NEM relays.

1.1.3 7-Terminal Relay

The 7-terminal (7-T) device is a non-volatile relay that can perform rotational movements and exerts

non-volatile behaviour [24,25]. It has two gate terminals, two drain terminals, and one source terminal,

which is connected to a semicircular beam (Fig. 1.3a). In its neutral position, the relay is actuated

by applying a voltage to one of the gate terminals. When the applied voltage exceeds the actuation

threshold, the potential difference between the driven gate and the beam is large enough to overcome

the stiffness of the hinge to which the beam is anchored. The beam then rotates either clockwise or

anti-clockwise, depending on which gate is driven, and establishes electrical contact with one of the

drains. When the actuation voltage is removed or both gates have the same potential difference to the

beam, it remains in its position, due to adhesive forces. To move the beam to the opposite direction,

the other gate has to be driven, to overcome the adhesion force between the beam and the drain. The

functionality of the relay is depicted in the truth table shown in Fig. 1.3b. The non-volatile behaviour

of this relay allows it to store information, making it suitable for modelling non-volatile memory [26].

1.2 Research Questions and Expected Results

Due to the novelty of this technology, the manufacturing of NEM devices is not mature enough to

fabricate circuits with sufficient yield. Moreover, physical defects in NEM devices may occur during
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Figure 1.3: 7-T relay: (a) schematic, (b) truth table.

operation and affect their functionality, worsening the circuit’s reliability. Therefore, it is necessary

to make the circuit fault tolerant during the design phase by applying and evaluating various design

techniques. Consequently, this thesis addresses the following research questions:

• What are suitable fault models for NEM circuits?

• Which established fault-tolerant circuit techniques can be utilized on NEM-based circuits?

• Can NEM devices be utilized to enhance existing fault-tolerant design techniques or to propose

new designs?

• What fault tolerance can be obtained?

In the first step, a fault model is formulated. The physical defects that potentially occur in NEM

devices are discussed. Based on this analysis, fault models are defined at different abstraction levels. The

purpose of a fault model is to provide an abstract representation of how physical defects in NEM relays

impact the circuit at the specified abstraction levels. Thus, it is expected that the fault models depict

the real physical behaviour of defective components with sufficient accuracy and provide the necessary

information on how to inject the corresponding faults into the modelled circuits during simulation.

In the next step, conventional fault-tolerant design techniques are reviewed and assessed for their

applicability to NEM circuits. Fault-tolerant design techniques usually exploit some form of redundancy

in the domains of hardware, time or information. Different concepts of design techniques are reviewed

and elaborated upon. The chosen design techniques are expected to be suitable for NEM technology

and will be applied to experimental circuits later on. Further, it is examined whether specific design

techniques can be simplified or enhanced through the use of NEM devices. Additionally, new designs

leveraging the unique functionalities of NEM devices are proposed.

To simulate the designs, a simulation framework has been developed. The framework can be ex-

pected to simulate NEM circuit models and inject faults according to the defined fault models during
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simulation. The simulation setup can be modified via various parameters. Furthermore, the simulation

process, as well as the evaluation process, was automated as much as possible.

Lastly, the outputs of the simulations are analysed. The results are expected to show that the im-

plemented design techniques are effective against the identified faults. The design space is explored

concerning fault tolerance and device count. The achievable fault tolerance for the specified fault types

is determined, and trade-offs are discussed using different metrics.
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Chapter 2

Physical Defects and Fault Models

This chapter elaborates on potential defects in NEM relays and further defines appropriate fault models.

In the domain of hardware, a fault refers to the abnormal behaviour of a component or device and can

further be classified into three types: transient, intermittent, and permanent faults. Transient faults

usually persist temporarily and disappear without any intervention. In CMOS technology, transient

faults are generally divided into Single Event Transients (SETs) and Single Event Upsets (SEUs). A SET

refers to a sudden spike in a voltage signal within a circuit, which can be caused by the strike of a

high-energy particle striking. A SEU, on the other hand, describes a change to an erroneous state in

a memory cell. Intermittent faults occur and disappear sporadically. Permanent faults are consistent

and require actions such as masking or repair to be removed. A fault can manifest as an error, which

describes a deviation in a value or state within a system. If an error is not corrected, it may lead to

system failure, meaning that the system is no longer capable of providing its intended service.

The purpose of a fault model is to provide an abstract view of the functional behaviour of a faulty

device or component, making it possible to model and analyse a circuit’s behaviour in the presence of

defects. A fault model ideally covers numerous defects that would be impractical to model individually.

Furthermore, a fault model can be defined at various levels of abstraction. Hardware faults are usu-

ally caused by physical defects that depend on the technology used. Therefore, a technology-specific

investigation of the relevant components and devices is necessary.

2.1 Physical Defects in NEM Relays

Since NEM relays are essentially physical switches, most defects that occur are mechanical in nature.

These physical defects can appear either during manufacture, lowering the yield, or during operation,

decreasing the circuit’s reliability. During manufacture, any terminal of a NEM relay can be expected

to short to any other or collapse down to the substrate. This collapse usually cannot be recovered

7
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from. Steady improvements in the fabrication process are expected to eventually lead to more mature

manufacturing, narrowing this problem down to a satisfactory degree.

Under normal operation, regular use of the devices will wear down the conductive contact material

at the tip of the beam, leading to increased resistance up to a point where sufficient electrical conduc-

tivity is no longer ensured. Additionally, oxidation might accelerate the increase of resistance. On the

other hand, stiction might prevent the beam from returning to its neutral position, causing the relay

to remain permanently closed. It is anticipated that further improvements in the fabrication process

will mitigate this problems, making the relays more durable. Coating the contact surface with nano-

crystalline graphite (NCG) has been tested as a solution and yielded promising results [22]. However,

it must still be assumed that these defects may occur after a certain amount of switching cycles , so

fault models need to take them into consideration. Lastly, overdriving the device causes the beam to

make contact with the gate, shorting it to both the source and the drain. The beam is flexible enough

to avoid breaking, but it cannot recover due to the surface adhesion being too large.

All the described defects can be classified as permanent faults. Transient faults, on the other hand,

might occur when a device gets stuck and eventually resolves itself after some time without any inter-

vention. Since only a small number of individual devices have been manufactured so far, there is no

statistical data available to cover a device’s fault probability over time or fault distribution across the

chip area. Still, it is expected that devices will start to fail due to the on-resistance becoming too high

after a certain number of switching cycles. At this point, a small number of devices might begin to fail,

followed by an increasingly larger portion, meaning that the fault probability over time likely follows

an exponential function. However, in this thesis, the focus is set on static permanent faults, as this

approach is sufficient to investigate faults regardless of their temporal and spatial distribution. Aside

from that, most fault-tolerant design techniques that address permanent faults are also applicable to

correcting transient faults.

2.2 Gate Level

First, the faulty behaviour is examined from a gate level perspective. At this level of abstraction, the

experimental circuits are modelled in Verilog using a structural description of primitive gates, such as

NAND, NOR, AND, OR, etc. In the case of a fault, it is assumed that the functional behaviour of the

corresponding gate is affected, potentially manifesting as a stuck input or output node, or as a flipped

output value. This means that the affected node is either permanently set to zero, set to one, or its value

is flipped. The advantage of this fault model is its low complexity and its ability to cover a variety of

defects. The terms used to describe this fault model are:
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Figure 2.1: Fault Injection Logic [2].

• stuck-at-0: The affected node is permanently set to zero.

• stuck-at-1: The affected node is permanently set to one.

• flipping error: The value of the affected node is flipped.

To assess the circuit’s fault tolerance, these faults need to be injected during the simulation according

to the fault model. This is done using a Fault Injection Logic (FIL) [2]. The FIL is a Verilog module that

is designed to inject faults of the desired type into the circuit. Each gate has a FIL module placed at its

output, whereas the index i denotes the FIL module associated with the i-th gate (Figure 2.1). The input

roi of the FIL module is connected to the output of the i-th gate, while its output noi is connected to

the node where the gate’s output was previously connected. To determine the output of the FIL, the

Boolean equation

noi = roic0i + c1i(roi + c0i) (2.1)

is used. The result of this equation is primarily dependent on the control inputs c0i and c1i. Thus, the

fault type can be selected by setting c0i and c1i accordingly. For example, a stuck-at-0 fault corresponds

to c0i set to 1 and c1i set to 0, whereas a stuck-at-1 fault corresponds to c0i set to 0 and c1i set to 1.

When both c0i and c1i are set to 1, the gate output is flipped, while setting c0i and c1i to 0 leaves the

gate output unchanged (Table 2.1). The control inputs of the FIL are set in the simulation environment

later to inject the different fault types.

Although the defined gate level fault models are widely used in fault simulations, they have their

limitations due to their reduced complexity. Defects in NEM relays can impact the behaviour of the

gates in various ways. That means that the occurrence of a defect does not always result in a flipped or

stuck gate output. To obtain a more accurate understanding of a gate’s behaviour under the influence

of defects in one or more of its NEM relays, it is necessary to investigate the device level, which lies

one abstraction layer deeper.
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Table 2.1: Truth table of Equation (2.1).

c1i c0i noi

0 0 roi

0 1 0
1 0 1
1 1 roi

2.3 Device Level

At this abstraction level, the faulty behaviour of the NEM devices is examined to define a fault model.

With this approach, a more accurate view on the behaviour of the faulty circuit can be obtained. Based

on the discussion of potential physical defects above, it can be concluded that many faults during man-

ufacture or operation lead to terminals being shorted, causing the NEM relay to behave like a closed

switch. On the other hand, wear during operation will cause a NEM relay to behave as if it were per-

manently open. Thus, a simple fault model with the following cases is assumed:

• stuck-on: The relay is permanently closed.

• stuck-off: The relay is permanently open.

At device level, the NEM relays are modelled as Verilog modules in behavioural description. The fault

mechanism, which implements the defined fault model, is integrated into the modules and can be ac-

tivated via a port. The logic gates are then modelled using these modules of the NEM relays, whereas

the experimental circuits are modelled using a structural description of the different logic gates. When

designing the logic gates, special care must be taken to ensure the correct computation of the gate’s

output when one of the aforementioned faults occurs in one of its NEM relays.

To better understand how the function of a gate can be affected by the presence of different faults,

a simple NAND gate implemented with 3-T devices will serve as an example (Figure 2.2a). In this gate,

the PMOS transistors, which constitute the pull-up network in a traditional CMOS implementation,

are replaced by the 3-T devices D1 and D2. The source terminals of D1 and D2 are connected to Vdd,

while their drain terminals are connected to the output node. Conversely, the NMOS transistors, which

constitute the pull-down network in a CMOS implementation, are substituted with the 3-T devices D3

and D4. The drain terminal of D3 is connected to the output node, and its source terminal is connected

to the drain terminal of D4, with the source terminal of D4 connected to ground. In a fault free case

where the inputs A and B are both set to one, D1 and D2 are open, while D3 and D4 are closed, pulling

the output node to ground (Figure 2.2b). The following analysis shows how the gate’s output is affected

when faults occur in this switching state:

• A single stuck-on fault occurs: If a stuck-on fault occurs in D3 or D4, the output of the gate
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remains unchanged (but may be incorrect for other inputs). However, if the fault occurs in D2

(or D1), the gate shorts from Vdd to ground (Figure 2.2c). This situation can also happen when

a stuck-at-0 fault appears at the gate of D2 (or D1). Typically, this leads to a significant increase

in power consumption due to continuous current flow, as well as increased heat dissipation,

which may damage the devices. The output voltage is then indeterminate and can fluctuate

between Vdd and ground. If the on-resistance of D1 and D2 is lower than that of D3 and D4, the

output may be closer to Vdd. On the other hand, if D3 and D4 have a lower on-resistance, the

output may be closer to ground. In a Verilog simulation, the value x is assigned to the output

node, representing an unknown logic value. Experimental circuits are assessed later using digital

behavioural simulations, which means that this x value could be either 1 or 0.

• A single stuck-off fault occurs: If a stuck-off fault occurs in D1 or D2, the output of the gate remains

unchanged (but may be incorrect for other inputs). However, if the fault occurs in D3 or D4, the

output node will be left in a floating state (Figure 2.2d). This can also be caused by a stuck-at-0

fault at the gate of D3 or D4. In a real implementation, this results in the output node being at

high impedance, meaning that the node cannot discharge and thus retains the voltage level it had

before. The device can hold its voltage level for several hours before discharging. In Verilog, the

high-impedance state is denoted by the value z. To accurately depict this behaviour, the logic

gates were modelled to retain the logic level of the previous clock cycle when a z value occurs at

the output node.
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Figure 2.2: NAND gate: (a) implementation with 3-T devices, (b) fault free case (c) single stuck-on fault,
(d) single stuck-off fault.



Chapter 3

Fault-tolerant Design Techniques in

CMOS

This chapter aims to review various established fault-tolerant design techniques frequently used in

CMOS circuits. These techniques usually introduce redundancy in the form of hardware, time, or

information to provide additional resources when a fault occurs. The benefits and drawbacks of these

design techniques are discussed in detail. Furthermore, their suitability for NEM circuits is assessed to

determine which design techniques are appropriate for simulation in the subsequent steps.

3.1 Hardware Redundancy

Fault tolerance in the domain of hardware is one of the simplest and most widely used design techniques

to increase the reliability of a circuit. The basic concept is to replicate hardware to provide backup

resources when a component or device fails. Hardware redundancy can be implemented at different

levels, including the entire system, individual components and modules, and even CMOS transistors or

NEM relays at the nanometer scale. Moreover, it can be further divided into active, passive, and hybrid

hardware redundancy.

Active hardware redundancy involves fault detection, fault location, and fault recovery to maintain

the circuit’s correct functionality. Fault detection determines whether a fault has occurred, while fault

location identifies the specific location of the fault. In the fault recovery process, the system is recon-

figured to remove the faulty component. During this procedure, the fault may propagate, putting the

system into an erroneous state until the faulty component is removed. In passive hardware redundancy,

fault propagation is prevented by masking the fault, meaning that the concept of fault masking does

not require any further interaction to tolerate the fault. In hybrid hardware redundancy, characteris-

13
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Figure 3.1: Duplication with comparison [3].

tics of both active and passive hardware redundancy are combined. Fault masking is used to prevent

faults from manifesting in errors, while fault detection, location, and recovery is used to remove and

replace the faulty components. The following sections elaborate on the different forms of hardware

redundancy [3, 11].

3.1.1 Active Hardware Redundancy

Active hardware redundancy techniques employ a fault detection mechanism to determine if a fault

has occurred. When a fault is detected, the faulty component or device is located. Finally, the required

actions are performed by an operator or the system itself to remove or replace the faulty component.

Active hardware redundancy techniques do not apply fault masking, meaning the system must be able

to tolerate erroneous results for a certain amount of time. Thus, this design technique is not suitable for

highly reliable systems that rely on permanently correct outputs. The following examples demonstrate

the core principles of active hardware redundancy.

3.1.1.1 Duplication with Comparison

The simplest method of active hardware redundancy is duplication with comparison. In this technique,

a module is duplicated, so the computation is performed by two identical modules (Figure 3.1). The out-

puts of these modules are then compared by a comparator. If the outputs do not match, the comparator

generates an error signal, indicating that one of the modules has failed. After an error signal has been

observed, the system has to be reconfigured, as this technique cannot mask or correct faults [3].

3.1.1.2 Standby Sparing

Another approach in active hardware redundancy is called standby sparing. In this design technique,

the module is replicated into n identical modules (Figure 3.2). Out of these modules, only one is active,

while the others serve as spares. A spare module can be seen as a backup module that is activated when

the active module fails. The outputs of the modules are fed into a Fault Detection (FD) logic as well

as into a n to 1 switch. The switch is responsible for directing the output of the active module to the
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Figure 3.2: Standby sparing [3].

Figure 3.3: Pair-and-a-spare [3].

system’s output. When the active module fails, the FD signals the switch to select the output from one

of the spare modules. The spares can be held in either hot or cold standby. In hot standby sparing,

the spare modules are on and work in parallel with the active module. When the active module fails,

the spare modules can take over with minimal reconfiguration time. In cold standby all spare modules

are powered off to reduce power consumption. Therefore, they need to be turned on when selected as

active module, leading to higher reconfiguration time [3].

3.1.1.3 Pair-and-a-spare

The pair-and-a-spare technique is a combination of duplication with comparison and standby sparing

(Figure 3.3). However, in this technique two modules are active at the same time. The outputs of all

modules are fed into a n to 2 switch that directs the outputs of the two active modules into a comparator,

with one of these outputs also being directed to the system’s output. If a mismatch in the comparison

occurs, the comparator generates an error signal. The switch then uses information from the FD logic

to determine which module has failed and selects a spare module to replace the failed one. Thus, it is

ensured that there are always two fault-free modules working [3].
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3.1.1.4 Applicability to NEM Circuits

Since duplication with comparison is only capable of detecting faults but not correcting or masking

them in the affected modules, it is not considered as an appropriate choice to address yield and relia-

bility issues in NEM technology. The technique can be used to detect faulty modules, but there is no

mechanism to determine which module has failed. Furthermore, the circuit must be reconfigured when

a faulty module has been detected, which is impractical when faults occur during manufacture or while

the device is in operation. Additionally, the high fault probability in NEM technology may cause both

modules or even the comparator to fail.

In both standby sparing and pair-and-a-spare configurations, the system can reconfigure itself with-

out requiring any intervention. Both systems are capable of tolerating n− 1 faults, assuming they are

comprised of n modules. Therefore, there must be enough replicated modules to achieve the desired

fault tolerance. This can lead to a significant increase in hardware cost. Moreover, the additional hard-

ware required for FD and switching logic has to be considered. It is also important to note that the

circuitry implementing the FD and switching logic is susceptible to faults as well, so it is crucial to

ensure that this part of the circuit functions correctly, otherwise, the active redundancy system may

fail.

In general, active hardware redundancy techniques are applied at an abstraction level where mod-

ules and functional units serve as the basic building blocks of a circuit. However, at the current stage of

the i-EDGE project, it is not yet possible to reliably manufacture complex modules in NEM technology.

Due to this limitation and the reasons mentioned above, the active hardware redundancy approach

is not pursued further in this thesis. Nevertheless, active redundancy techniques may become more

attractive in a later stage of the project when manufacturing processes have matured sufficiently to

fabricate NEM modules with higher reliability.

3.1.2 Passive Hardware Redundancy

Passive hardware redundancy aims to mask faults, ensuring that the affected component continues to

function correctly when a fault occurs. Thus, neither fault detection nor intervention by the system

or the operator is needed to tolerate faults. Because of its low design complexity and versatility, it is

a widely used approach to increase a system’s fault tolerance. There are a multitude of passive hard-

ware redundancy techniques, with the most prominent one being Triple Modular Redundancy (TMR).

Therefore, the first part of the following section is dedicated to TMR, followed by a discussion of other

design techniques.
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Figure 3.4: TMR system.

3.1.2.1 Triple Modular Redundancy

In TMR, a module is replicated three times to have three identical modules working in parallel. The

output of each module is fed into a voting circuit, which performs majority voting on the inputs and

provides the result as the output. It is evident that the voting system can tolerate one faulty module, as

the voting process will mask the fault. In this structure, the voter constitutes a single point of failure, as

it is critical that the voting circuit operates fault-free to provide the correct result. Selective hardening

is not possible with NEM technology, so the critical parts of the circuit cannot be made more reliable

by modifying the manufacturing process. Several design techniques have been proposed to improve

the reliability of the voting process, with R-fold modular redundancy and cascaded TMR being two of

them [27]. In R-fold modular redundancy, the module is replicated not just three times, but R times,

allowing correct voting even when more than one module fails. Often, the term N-Modular Redundancy

(NMR) is used in literature to refer to this technique. In cascaded TMR, the TMR concept is repeated,

meaning that the entire TMR structure is replicated, and an additional voter is introduced that performs

the voting process for the triplicated structures. However, these design techniques significantly raise

hardware costs and do not address the issue of the voter being a single point of failure. Thus, several

voter designs have been proposed to improve the reliability of the voter itself. A selection of different

designs is presented below.

StandardVoter The standard majority voter can be implemented using four NAND gates (Figure 3.5).

From a gate level perspective, this voter may fail if the output of the NAND gate in the second stage

becomes stuck or flips. Additionally, the voting process fails if a fault in one of the NAND gates in the

first stage causes one or more of the nodes N1, N2, or N3 to become stuck at 0, while the remaining

nodes are set to 1 (which is assumed to be the correct value). On the other hand, the NAND gate in the

last stage will still produce the correct output if one or more of the nodes N1, N2, or N3 are stuck at

1, while the other nodes are correctly set to 0. At the device level, a stuck-off fault can cause a gate’s

output to be stuck at either 0 or 1, leading to similar cases as those at the gate level. A stuck-on fault

may cause a gate’s output to remain at an undefined logic level. When an undefined logic level is fed
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Figure 3.5: Standard TMR voter [4].

into a NAND gate, the output can only be determined when one of its other inputs is 0, as in this case,

the output of the gate will always be 1. If an undefined logic level occurs at the output of the voter, it

is considered a failure. In the simulations, this voter is labelled as standard_voter.

Voter with XORs, Multiplexer & Priority Encoder This voter design features two XOR gates,

a priority encoder, and a multiplexer (Figure 3.6). The inputs A and C are compared to input B for

inequality using XOR gates. The outputs of the XOR gates are fed into a priority encoder, which is

designed to give priority to the input with the logic level 0 by implementing the Boolean equation

O = I1 ∧ I2. The multiplexer then selects either A or C as the output, depending on which input is

determined to be fault-free based on the comparison. If all inputs are equal, or if both A and C are not

equal to B, then A is selected as the output. This voter can handle a single external fault at the inputs,

as well as a single internal fault at node S1, S2 or O. This means that the voter remains operational

when S1, S2 or O becomes stuck at 1 or stuck at 0, assuming all inputs are correct. If both internal and

external faults occur, the voter may still function in specific cases. For example, when the inputs A

and C are equal, and input B is faulty, the voter will still perform correctly, even in the presence of an

internal fault. In this case, it will also provide the correct output when an undefined logic level appears

at node O due to stuck-on faults [5]. In the simulations, this voter is labelled as priority_enc_voter.

Voter with Multiplexer & XOR This voter is designed using an XOR gate and a multiplexer (Fig-

ure 3.7). The inputs A and B are compared for inequality by the XOR gate, and its output is used as

select line for the multiplexer. This means that if inputs A and B are equal, the multiplexer selects input

B; otherwise, input C is selected as the output. Similar to the previous design, this voter can handle a

single external, as well as a single internal fault. If both internal and external faults occur, the voter

remains functional only in specific cases. When inputs B and C are correct, and input A is faulty, the
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Figure 3.6: Voter with XORs, priority encoder, and a multiplexer [5].

Figure 3.7: Voter with multiplexer and XOR [6].

voter can also handle an internal fault at node S, including undefined logic levels [6]. In the simulations,

this voter is labelled as mux_xor_voter.

Voter with OR&ComplexGate This voter design consists of an OR gate and a complex gate, which

implements the Boolean function V = (M ∧Z)∨ (X ∧Y )∨ (Y ∧Z) with M = X ∨Y (Figure 3.8). In

addition to handling a single internal fault or a single external fault, this design is capable of tolerating

more scenarios where both occur simultaneously, compared to the previous designs. The downside of

this voter is that its behaviour largely relies on the correct functioning of the complex gate, which can

be compromised by stuck-on and stuck-off faults [7]. Because the logic function of this voter uses only

AND and OR operations, it is labelled as and_or_voter in the simulations.

Voter with Triple Transistor Redundancy In this design, gate level redundancy and device level

redundancy are combined to improve the fault tolerance of the standard voter. The modification in-

volves replicating each NAND gate in the first level three times. The 3-input NAND gate in the second

level is then redesigned using tripled transistor design (Figure 3.9), where each transistor is replaced

by a structure consisting of three transistors (Section 3.1.2.2). The outputs of the triplicated gates in

the first level provide the inputs to the tripled transistor structures. The redundant transistor structure
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Figure 3.8: Voter with OR gate and complex gate [7].

of the NAND gate in the second level allows to tolerate faulty outputs coming from the gates in the

first level . Moreover, it makes the gate more resilient against stuck-on and stuck-off faults [4]. In the

simulations, this voter is labelled as tripled_voter.

Figure 3.9: Voter with triple transistor redundancy [4].

3.1.2.2 Tripled Design

In this design technique, fault tolerance is achieved by introducing redundant transistors, which serve

as backup devices [8, 28]. Each transistor is replaced by a structure of three transistors, which can

be arranged in two different configurations. In the first version, a transistor is placed in series with
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(a) (b)

Figure 3.10: Tripled design: (a) version 1, (b) version 2 [8].

two parallel transistors (Figure 3.10a). In the second version, a transistor is placed in parallel with two

transistors that are connected in series (Figure 3.10b). In a fault-free case, the gate inputs A1, A2, and

A3 are equal, causing the entire structure to behave like a single transistor. In the case of one or more

faults, the following scenarios can occur:

• Version 1: This configuration can tolerate a single stuck-on fault in T1, T2, or T3 (or a stuck-at-1

fault at either A1, A2, or A3). However, it can only tolerate a stuck-off fault in T2 or T3. If a

stuck-off fault occurs in T1 (or A1 gets stuck-at-0), the path remains open, resulting in incorrect

behaviour of the circuit. Dual stuck-on faults can also be tolerated when they occur in T2 and

T3, whereas the circuit always fails for dual stuck-off faults.

• Version 2: This configuration can tolerate a single stuck-off fault in T1, T2, or T3 (or a stuck-at-0

fault at either A1, A2, or A3). A single stuck-on fault can only be tolerated when it occurs in T2

or T3. A stuck-on fault in T1 (or a stuck-at-1 fault at A1) will cause a short circuit. Dual stuck-

off faults are tolerated only when they occur in T2 and T3, whereas dual stuck-on faults always

result in a short circuit.

From this analysis, it can be concluded that the first version is more resilient to stuck-on (or stuck-at-1)

faults, whereas the second version is more resilient to stuck-off (or stuck-at-0) faults. Thus, the most

suitable version depends on which type of fault is more likely to occur. This design technique can also

be applied to NEM circuits by substituting the transistors in the structures with their NEM counterparts.

In CMOS, this technique is usually referred to as triple-transistor redundancy, while in this work the

term Tripled Design (TD) is used. In the simulations, the two design structures are labelled as TD_v1

and TD_v2.
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3.1.2.3 Quadded Design

This design technique makes use of the concept of replacing each transistor with a redundant structure

to improve fault tolerance, similar to TD [29–32]. In this structure, four transistors are arranged in one

of two possible configurations. In the first configuration, two pairs of transistors connected in series

are arranged in parallel (Figure 3.11a). In the second configuration, two pairs of parallel transistors are

connected in series (Figure 3.11b). In a fault-free case, the gate inputs A1, A2, A3, and A4 are equal, so

the behaviour of the entire structure is the same as that of a single transistor. In the presence of faults,

the following scenarios can occur:

• Version 1: This configuration can tolerate both single stuck-on and stuck-off faults in T1, T2, T3,

or T4 (or stuck-at-1 and stuck-at-0 faults at either A1, A2, A3, or A4). Dual stuck-off faults are

tolerated as long as they don’t occur in T1 & T3, T1 & T4, T3 & T2, or T2 & T4. Dual stuck-on

faults are tolerated as long as they don’t occur in T1 & T2 or T3 & T4.

• Version 2: This configuration can tolerate both single stuck-on and stuck-off faults in T1, T2, T3,

or T4 (or stuck-at-1 and stuck-at-0 faults at either A1, A2, A3, or A4). Dual stuck-off faults are

tolerated as long as they don’t occur in T1 & T3 or T2 & T4. Dual stuck-on faults are tolerated as

long as they don’t occur in T1 & T4, T1 & T2, T3 & T2, or T3 & T4.

This analysis shows that the first version is more resilient against stuck-on faults (or stuck-at-1 faults),

whereas the second version is more resilient against stuck-off faults (or stuck-at-0 faults). The term

Quadded Design (QD) is used to refer to this design technique, and similar to TD, the transistors are

replaced with their NEM counterparts. Furthermore, the concept of redundant transistor structures

can also be generalized by introducing N2 transistor structures, where N ≥ 2 [33]. Each N2 structure

consists of N serially connected blocks, where one block is comprised of N parallel transistors. It is

evident that the number of tolerated faults can be increased by the use of redundant structures with

a larger N. However, since QD already provides a significant improvement in fault tolerance, and N2

structures with N > 2 come at the expense of a high hardware overhead, only QD was utilized. In the

simulations, the two versions of QD are labelled as QD_v1 and QD_v2.

3.1.2.4 Quadded Logic + Quadded Design

This design technique combines both Quadded Logic (QL) and QD to leverage the strengths of both

approaches. The circuit is implemented in QL, with only the last level being realized in QD (Figure 3.12).

In QL, each gate in the circuit is replicated four times. Additionally, the replicated gates have twice as

many inputs as the original gates. The four outputs of the replicated gates are grouped into two pairs,
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Figure 3.11: Quadded design: (a) version 1, (b) version 2 [8].

with each pair providing inputs to two gates at the next level. The outputs can be paired in three possible

ways: (1,2) and (3,4); (1,3) and (2,4); and (1,4) and (2,3). These patterns determine which outputs provide

the inputs to each gate at the next level. If the outputs are grouped into the pairs (1,2) and (3,4), the

output pair (1,2) will be connected to gate 1 and 2 at the next level, while the output pair (3,4) will be

connected to gate 3 and 4 at the next level. It is important that the interconnect pattern at the inputs

of a group of gates at one level must be different from the interconnect pattern at the outputs of that

group. To understand how faults are corrected in this design, the terms critical error and sub-critical

error must be defined. A critical error at one of the gate’s inputs always results in an incorrect output,

regardless of the other inputs. An example of a critical error is an input of a NAND gate wrongly set

to 0, which leads to the output always being 1. A sub-critical error at one of the gate’s inputs does

not always result in an incorrect output, as it depends on the other inputs. For example, if an input

of a NAND gate is wrongly set to 1, the gate’s output still depends on the the other inputs. A single

sub-critical error is absorbed after passing one stage of gates, while a critical error is corrected after

passing two stages. However, critical errors occurring in the last two stages, as well as sub-critical

errors occurring in the last stage cannot be corrected. Combining the QL approach with QD addresses

this issue by implementing the last stage in QD, which enables it to tolerate both faults coming from

the previous stage, as well as faults occurring at the last stage [9, 34]. In the simulations, this design

technique is labelled as QL+QD.

3.1.2.5 Triple Modular Redundancy + Tripled Design

This approach combines TMR at the gate level with TD at the device level. Similar to TMR, redundancy

is achieved by replicating the gates three times. However, in this design, the gates at the last level of the

circuit are not replicated but instead implemented in TD (Figure 3.13). The outputs of the triplicated
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Figure 3.12: C17 circuit (Section 6.1.1) implemented in QL + QD [9].
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Figure 3.13: C17 circuit (Section 6.1.1) implemented in TMR + TD [10].

gates serve as inputs to the TD structure at the last level. The application of TD to the gates at the last

level not only improves the fault tolerance of these gates but also implements a voting mechanism for

the triplicated gates in the preceding stages, as TD structures can also tolerate faulty inputs. Therefore,

voting circuits, which are susceptible to faults, are no longer required [10]. In the simulations, this

design technique is labelled as TMR+TD.

3.1.2.6 Applicability to NEM Circuits

Passive hardware redundancy offers a wide range of design techniques for enhancing the fault toler-

ance of circuits. These techniques are capable of effectively masking faults that originate from defective
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Figure 3.14: Self-purging redundancy [3].

NEM devices, whether they occur during manufacture or operation. This low level approach enables

fault-tolerant circuits without requiring sophisticated additional circuitry or external intervention by an

operator. Additionally, their versatility allows for various design choices, such as choosing the module

size in TMR, selecting a specific design variation in TD or QD depending on the fault type, or determin-

ing a general trade-off between device overhead and device fault probabilities. Lastly, passive hardware

redundancy techniques can not only easily be adapted to NEM circuits by replacing the conventional

CMOS transistors with their NEM counterparts, but also enable designs that are only possible in NEM

technology, such as NEM voting circuits in TMR (Chapter 4). Therefore, passive hardware redundancy

is considered a viable option for increasing the yield and the reliability of NEM circuits.

3.1.3 Hybrid Hardware Redundancy

Hybrid hardware redundancy is the most complex form of hardware redundancy, as it combines el-

ements of both passive and active hardware redundancy. Passive hardware redundancy provides the

ability to mask faults, preventing them from propagating through the system, while active hardware

redundancy employs fault detection, fault location, and fault recovery to reconfigure the circuit. The

following sections provide two examples to elaborate on the concept.

3.1.3.1 Self-Purging Redundancy

The concept of self-purging redundancy is based on NMR, meaning that a module is replicated n times,

and a voter determines the correct output through majority voting. However, the output of a replicated

module is not fed directly into the voter, but into a switch that compares the output of the voter to the

output of the connected module (Figure 3.14). If the comparison fails, the switch opens, removing the

connected module from the voting process. The voter is designed to be capable of adapting the number

of its inputs. A system with n replicated modules can tolerate n− 2 faulty modules [3].
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Figure 3.15: N-modular redundancy with spares [3].

3.1.3.2 N-Modular Redundancy with Spares

N-modular redundancy with spares is similar to self-purging redundancy in the sense that it utilizes NMR

as its base technique. However, in addition to the n replicated modules, k spare modules are introduced

(Figure 3.15). The outputs of the n+ k modules are connected to a switch. A comparator compares the

output of the n active modules to the output of the voter and feeds the results of the comparisons into

the switch. If a module’s output fails the comparison, the module is considered faulty, and the switch

replaces it with a spare module. When there are no spare modules left, the system can operate in one of

two possible ways. In the first option, the comparator is turned off, and the system continues working

like a NMR system. In this case, the system can tolerate ⌊n/2⌋+k faulty modules. In the second option,

the comparator continues working and the system operates like one with self-purging redundancy. In

this case, the system can handle k + n− 2 faults [3].

3.1.3.3 Other Hybrid Architectures

More sophisticated hybrid architectures combine not only different hardware redundancy techniques

but also incorporate redundancy in the domains of information or time. Designs that use both hardware

duplication and information redundancy, in the form of parity check codes, to perform fault diagno-

sis and correction have been proposed [35]. Other architectures aim to modify or extend N-modular

redundancy with spares by utilizing information redundancy for error detection, time redundancy for

correcting transient errors, and hardware redundancy for correcting permanent errors [36, 37]. To

achieve this, finite state machines are implemented and integrated into the design to recompute the
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result or change the hardware configuration in the case of a fault.

3.1.3.4 Applicability to NEM Circuits

Hybrid hardware redundancy is the most sophisticated and complex form of redundancy, as it com-

bines different approaches. Thus, it is often applied when there is a need for highly reliable systems.

Regarding NEM circuits, a conclusion similar to that of active hardware redundancy techniques can

be drawn. Hybrid hardware redundancy is normally applied at system level, using modules of high

or moderate complexity as redundant units. This means that this type of redundancy may become a

viable choice for NEM systems that operate in harsh environments with strict reliability constraints in

the future. However, due to its complexity and hardware costs, it is currently not regarded as a viable

approach.

3.2 Time Redundancy

Fault-tolerant designs that utilize time redundancy aim to achieve fault tolerance by using additional

time instead of additional hardware, minimizing hardware costs. Therefore, this approach is best suited

for applications without strict timing constraints. The basic idea is to detect faults by repeating the same

computation two or three times and comparing them. If the comparison fails, it is assumed that a fault

has occurred.

In its simplest form, time redundancy can be used to detect transient faults, by recomputing the

results with unmodified operands. However, it is obvious that permanent faults cannot be detected by

repeating the computation with the same operands, as the results will remain unchanged. Thus, time

redundancy can also be utilized to determine whether a fault is transient or permanent. To do this,

it is necessary to first employ another detection technique to detect the presence of errors (such as

error-detecting codes etc.). Once an error is identified, the system can then employ recomputation and

compare the results to determine whether the fault that caused the error is permanent or transient. If

the results differ from each other and the error has disappeared, the fault is considered transient; if the

results are the same and the error persists, the fault is considered permanent [11].

In order to detect permanent faults, it is necessary to modify the operands before performing the

additional computations. The basic process of this concept is shown in Figure 3.16. In the first computa-

tion, the unmodified data is processed to determine the result, which is then stored in a register. Before

the second computation, the data is encoded by an encoding function. After processing the encoded

data, the result is decoded and stored in another register. The two results are then compared to deter-

mine if a fault has occurred. To encode the data, various encoding schemes with different advantages
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Figure 3.16: Concept to detect permanent faults using time redundancy [11].

and disadvantages exist. In the following, some of them are briefly discussed [11].

3.2.1 Alternating Logic

The alternating logic approach can be applied to both digital communication systems and digital circuits.

Its principle is to first compute the result for the unmodified data and then perform the same computa-

tion for the inverted data. The results of both computations are then compared. If the result of the sec-

ond computation is not the complement of the first computation, then a fault has occurred. To make this

concept applicable to digital circuits, the circuit’s function must meet the requirement of being self-dual.

A function is regarded as self-dual when the output for the input vector x is the complemented output

for the input vector x. Therefore, a circuit’s function is self-dual if f(x1, x2, .., xn) = f(x1, x2, ..., xn).

If the function f(x1, x2, .., xn) implemented by the circuit is not self-dual, it can be transformed into

a self-dual function by using fsd = xn+1f + xn+1fd with fd = f(x1, x2, ..., xn). The variable xn+1

is a control variable that determines whether f or fd is used as the output, ensuring that fsd produces

complemented outputs for complemented inputs [3].

3.2.2 Recomputing with Shifted Operands

The method recomputing with shifted operands was initially designed to detect errors in arithmetic

logic units (ALUs), which are assumed to be organized in bit slices. The left shift operation is used

as the encoding function, while the right shift operation is used as the decoding function. In the first

computation with unmodified operands, bit slice i, which is assumed to be faulty, causes the output to

be incorrect at bit i. In the second computation, the operands are shifted, so the bit slice i now performs

its computation on the (i− 1)th bit. The result is then shifted back and compared to the previous one.

A fault has occurred when the results differ in either the ith bit, the i− 1th bit, or both [3].
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3.2.3 Recomputing with Swapped Operands

Recomputing with swapped operands is similar to the previous technique; however, in this method,

the operands are divided into upper and lower halves. After computing the result for the unmodified

operands, both halves of the operands are swapped, and the computation is repeated. By comparing

both results, it is possible to determine which bit slice is faulty [3].

3.2.4 Applicability to NEM Circuits

Redundancy in the domain of time is typically employed in systems that are not time-critical. For this

reason, time redundancy may be impractical for NEM circuits that operate in edge devices, which often

have timing constraints. This is particularly critical given that circuits in NEM technology are slower

than circuits in CMOS. Furthermore, this approach is better suited for identifying and eliminating tran-

sient faults. Although the detection of permanent faults is also possible, the methods to achieve this

are often complicated or tailored to specific types of circuits. Extra circuitry is required to implement

the necessary functions, which diminishes the main advantage of hardware-efficiency. Lastly, to not

only detect but also correct faults, the computations must be repeated two times or more so that the

correct output can be determined through voting, which is inefficient. Thus, time redundancy is not

considered a viable option for making NEM circuits fault-tolerant.

3.3 Information Redundancy

To achieve fault detection or correction using information redundancy, additional information is added

to the data. This is usually done through the use of codes. Each code has its own set of rules that define

how the codewords are formed. A binary codeword consists of the digits 0 and 1 and is mapped to a

specific data word. The process of converting a specific data word into a code word according to the

rules of the code is called encoding. The decoding process, on the other hand, retrieves the original

data from the codeword. This process also enables the detection or correction of errors that have oc-

curred. Thus, codes can be classified into error detecting codes and error correcting codes. Information

redundancy encompasses a wide variety of techniques, and the selection of a code largely depends on

the application. The following examples have been selected to provide a basic understanding of the

concept.

3.3.1 Parity Codes

A simple and well-established error detecting code in the field of information redundancy is the parity

code. In this code, a codeword is formed by appending a single bit to the data word so that the resulting
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codeword has an even (or odd) number of ones. Thus, the appended bit can be used to determine

whether the number of ones in the codeword is even or odd. If a bit in the codeword gets flipped due

to an error, the number of ones changes from even to odd (or from odd to even), allowing the error to

be detected. However, multiple bit errors remain undetected when the number of ones stays even (or

odd). Furthermore, it is not possible to locate the position of the faulty bit and, therefore, correct it.

This type of code is often used in memory. A parity generator creates the parity bit for a data word

before writing the codeword to memory, while a parity checker calculates the parity of the codeword

and compares it to the stored parity bit when reading from memory [11].

3.3.2 Linear Codes

A large number of error-correcting codes can be classified as linear codes. The methods of linear algebra

can be applied to these types of codes, making computations on them more efficient. A data word is

usually encoded into a codeword by multiplying it with a generator matrix. The decoding is performed

by multiplying a parity check matrix with the codeword. The resulting vector is referred to as the

syndrome. The syndrome is then used to determine whether an error has occurred. When the syndrome

equals zero, no error has occurred. If the syndrome is non-zero, the position of the error corresponds

to the position of the column in the parity check matrix that matches the syndrome. If the syndrome

does not match any of the columns in the parity check matrix, more than one bit error has occurred. A

prominent example of linear code is the Hamming Code, which can correct single errors and detect up

to two errors [3].

3.3.3 Cyclic Codes

The cyclic code is an error correcting code that belongs to the class of linear codes. A cyclic code has

the property that a circular shift of a codeword results in another valid codeword. Data words and

codewords are typically represented as polynomials. Therefore, encoding and decoding algorithms

are based on polynomial arithmetic operations, such as polynomial multiplication and division. A

codeword is obtained by multiplying the data word’s polynomial with the generator polynomial. In the

decoding process, the polynomial representing the codeword is divided by the generator polynomial.

The remainder from this division is called the syndrome polynomial. If the syndrome polynomial is

not equal to zero, an error has occurred. Well known examples of cyclic codes that are frequently used

in storage devices and communication systems include Cyclic Redundancy Check (CRC) codes and the

Reed-Solomon code [3].
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3.3.4 Arithmetic Codes

Circuits that perform arithmetic operations can be checked using arithmetic codes. The operands are

encoded before any computations are performed on them. The result is then decoded to determine

whether an error has occurred. Various techniques can be used for encoding. In AN codes, encoding

is done by multiplying the data word N by a constant A. Conversely, decoding is accomplished by

dividing the encoded result by the constant A. When the remainder is zero, no error has occurred. In

residue codes, a residue is calculated by dividing the data by an integer and appending the remainder

to the data word. The decoding is done by simply removing the residue [3].

3.3.5 Applicability to NEM Circuits

The brief overview of information redundancy methods shows that this type of redundancy is applied

when entire functional units or systems need to be protected against errors, either by detecting or cor-

recting them. This is achieved by encoding and decoding the data before manipulating it. The choice of

the code largely depends on the application at hand. Often, information redundancy techniques are im-

plemented in communication systems and storage devices. The fact that these methods are tailored to

complex functional blocks or systems with specific functionalities renders this approach insignificant

for improving the yield and reliability of smaller NEM circuits or even single NEM devices. Moreover,

many codes only offer error detection without providing correction, which makes additional steps nec-

essary to tolerate the error. Lastly, implementing encoding and decoding circuitry increases hardware

overhead. Therefore, information redundancy is disregarded as a viable means of addressing the yield

and reliability problems at the current stage of the project.

3.4 Summary

To conclude this chapter, an overview of all the conventional design techniques discussed is presented

in Table 3.1. As elaborated above, only the design techniques of passive hardware redundancy were

deemed appropriate and, therefore, implemented. An overview of all implemented design techniques

is provided in Table 3.2. This table also includes the proposed designs in NEM technology, which are

presented in the next chapter.



Table 3.1: Overview of the conventional fault-tolerant design techniques discussed.

Hardware Redundancy Time Redundancy Information RedundancyActive Hardware Redundancy Passive Hardware Redundancy Hybrid Hardware Redundancy
Duplication w. Comparison

TM
R

Standard Voter Self-Purging-Redundancy Alternating Logic Parity Codes
Standby Sparing Voter w. XORs, MUX & Priority Encoder N-Modular Redundancy w. Spares Recomp. w. Shifted Operands Linear Codes
Pair-and-a-Spare Voter w. MUX & XOR Recomp. w. Swapped Operands Cyclic Codes

Voter w. OR & Complex Gate Arithmetic Codes
Voter w. Triple Transistor Redundancy

Tripled Design
Quadded Design

Quadded Logic + Quadded Design
TMR + Tripled Design

Table 3.2: Overview of the implemented design techniques.

Design Technique Abbreviation Section

TM
R

Standard Voter standard_voter 3.1.2.1
Voter w. XORs, MUX & Priority Encoder priority_enc_voter 3.1.2.1

Voter w. MUX & XOR mux_xor_voter 3.1.2.1
Voter w. OR & Complex Gate and_or_voter 3.1.2.1

Voter w. Triple Transistor Redundancy tripled_voter 3.1.2.1
NEM Voter Version 1 nem_voter_v1 4.2.1

NEM Voter Version 1 in Tripled Design v1 nem_voter_TD_v1 4.2.2
NEM Voter Version 1 in Tripled Design v2 nem_voter_TD_v2 4.2.2

NEM Voter Version 2 nem_voter_v2 4.2.3
Tripled Design v1/v2 TD_v1/TD_v2 3.1.2.2

Quadded Design v1/v2 QD_v1/QD_v2 3.1.2.3
Quadded Logic + Quadded Design QL+QD 3.1.2.4

TMR + Tripled Design TMR+TD 3.1.2.5
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Chapter 4

Fault-tolerant Design Techniques in

NEM Technology

4.1 Conventional TMR Voters with NEM Relays

The NEM devices are designed to replace CMOS transistors, allowing the voter circuits presented in

Section 3.1.2.1 to be implemented using conventional gates consisting of 3-T devices. However, by

utilizing the special functionality of the 4-T device, various gates can be implemented more efficiently,

requiring fewer devices. A simple 2-to-1 multiplexer can serve as an example. This device can be

implemented using two 4-T devices (Figure 4.1a), while the conventional design consists of three NAND

gates and an inverter, requiring fourteen 3-T devices in total. Furthermore, the multiplexer can be used

to design other gates with less devices, such as AND, OR, and XOR (Figures 4.1b to 4.1d). Therefore,

the conventional voters were implemented using gates with 4-T devices whenever possible.

4.2 Proposed NEM Voters

The special functionality of the NEM devices allows not only for the design of gates with fewer devices

but also for the creation of new voter designs. In the following, various NEM voter circuits that have

been designed are presented.

4.2.1 NEM Voter Version 1

The first version of the designed NEM voters consists of a 3-T device, a 4-T device, and an inverter

comprised of 3-T device (Figure 4.2). This minimalistic design features a total of four NEM devices,

making it the voter with the lowest device count among all introduced voters. Its operating principle

is based on the fact that either the 4-T device or the 3-T device is closed while the other device remains
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Figure 4.1: (a) 2-to-1 multiplexer, (b) AND gate with multiplexer (c) OR gate with multiplexer, (d) XOR
gate with multiplexer.

open. If input b and input c are equal, the 3-T device is closed, and input b is passed to the output, while

the 4-T device remains open. If input b and input c are not equal, the 4-T device is closed and input a is

passed to the output, while the 3-T device remains open. This voter will fail in the following scenarios:

• stuck-off faults: If either the 3-T device or the 4-T device becomes stuck-off while the other device

is also open, the output of the voter will be at high impedance, retaining the previous voltage level.

This means the voter may provide an incorrect output value. Furthermore, a stuck-off fault in

one of the inverter’s devices may cause its output to be wrong, potentially leading to incorrect

actuation of the 3-T device. This could result in both the 4-T and 3-T devices being either closed

or open simultaneously.

• stuck-on-faults: If either the 3-T device or the 4-T device becomes stuck-on while the other device

is also closed, the circuit may short when input a and input b are at different logic levels. A stuck-

on fault in one of the inverter’s devices may cause a short circuit in the inverter and its output

to be at an undefined logic level. In this case, it cannot be determined whether the 3-T device is

actuated or not, resulting in an undefined voter output, which is considered a failure.

The analysis shows that the correct functioning of this voter design is highly dependent on the fault-free

behaviour of all its devices. Its low device count comes with the cost of a low intrinsic fault tolerance.

In the simulations, this voter is labelled as NEM_voter_v1.
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Figure 4.2: NEM voter version 1.

4.2.2 NEM Voter Version 1 in Tripled Design

To improve the fault tolerance of the NEM voter, the design was modified using the tripled design tech-

nique. This design technique improves resilience against stuck-off and stuck-on faults by introducing

devices that serve as backups when one device fails. In this approach, the 3-T device, the 4-T device,

and the devices comprising the inverter are replaced by a tripled structure, consisting of three devices

of the same type (Section 3.1.2.2). These tripled device structures exist in two different versions. Both

versions have been used to improve the voter design. The first version is more resilient against stuck-on

faults (Figure 4.3), while the second version is more resilient against stuck-off faults (Figure 4.4). The

application of this design technique increases the total device count of the voter to twelve, which is

acceptable. However, this voter still has the limitation of being unable to handle undefined logic levels

at the input. If either input b or input c is not known to be 0 or 1, it cannot be determined whether the

devices in the tripled structure will switch, leaving the output of the voter undefined. In the simula-

tions, the voter in tripled design version 1 is labelled as NEM_voter_TD_v1, while the voter in tripled

design version 2 is labelled as NEM_voter_TD_v2.
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Figure 4.3: NEM voter in tripled design v1.
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Figure 4.4: NEM voter in tripled design v2.

4.2.3 NEM Voter Version 2

To overcome the limitations of the NEM voter in tripled design, another version has been designed.

This voter design is comprised of three XOR gates and three 4-T devices, which makes fifteen NEM

devices in total. The XOR gates have been implemented using NEM devices, as shown in Figure 4.1.

This voter operates on the principle that the 4-T devices at the output of the XOR gates conduct only

when the inputs of the XOR gates are equal. When one of these 4-T devices is actuated, it passes one

of the XOR gate’s inputs to the output. Due to this behaviour, the voter is not only able to tolerate one

faulty input but also to tolerate one input at an undefined logic level. Assuming that input a and input

b are both 1, while input c is at an undefined logic level, the first XOR gate will have an output of 0,

causing the 4-T relay at its output to close, thereby passing input a to the output node. The second XOR

gate will only actuate the second 4-T relay and pass input b to the output when input c equals input

b (which is 1). Similarly, the third XOR gate and the 4-T device will pass input c to the output only

when input c is equal to input a (which is 1). Therefore, an unknown input that is at a different logic

level than the other two inputs is isolated from the output. In the simulations, this voter is labelled as

NEM_voter_v2.
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Figure 4.5: NEM voter version 2.
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Chapter 5

Simulation Framework

To investigate the benefits and drawbacks of the selected fault-tolerant design techniques, various cir-

cuits were modelled, simulated, and evaluated using different metrics. A simulation framework was

developed in Verilog and C++ for performing the simulations and evaluations. The structure and the

operating principle of the framework is shown in Figure 5.1.

The testbench constitutes the core of the framework and is entirely implemented in Verilog. To

simulate a circuit, an instance of the test circuit module is created first. The testbench then drives the

test circuit with different inputs, which are read from an input file that contains all the input vectors

to be applied. Additionally, faults can be injected during simulation by reading fault files that contain

fault vectors. These fault vectors specify which devices or gates in the circuit are faulty. The resulting

outputs of the test circuit are finally written to an output file. These output files are then further

processed by programs that evaluate the simulation results.

The Verilog testbench was compiled and simulated using the XCELIUM package of Cadence, as well

as Icarus Verilog [38]. The waveforms resulting from the simulations were analysed using GTKWave [39].

The input file and the fault files were automatically generated by programs implemented in C++. These

programs accept various parameters, allowing the input file and the fault files to be created based on the

specific requirements of the test circuit and the simulation. The programs that perform the evaluations

were also implemented in C++ and aim to automate the evaluation process as much as possible.

5.1 Simulation Methods

The simulation framework was designed to support digital simulations for static permanent faults.

Two different simulation methods have been implemented. Both methods follow different concepts,

and different metrics are used to evaluate the results of each method. The following sections describe

how these methods are implemented within the framework.
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Figure 5.1: Structure of the simulation framework.

5.1.1 Simulation of N Fault Patterns

The first method is referred to as simulation of N fault patterns. In this method, the input file contains

all possible input vectors for the test circuit. If the test circuit has n inputs, the input file will contain

m = 2n lines, where each line represents a vector with n binary digits. Each of the n digits corresponds

to one input of the circuit. The fault files contain N fault vectors, which are used to determine the faulty

gates (or devices) in the circuit. A 1 in a fault vector indicates a faulty gate (or device), while a 0 indicates

a non-faulty gate (or device). Consequently, a fault file for a circuit with k gates (or devices) will contain

vectors consisting of k binary digits, where each digit corresponds to one gate (or device) in the circuit.

Each fault file contains only fault vectors with a specified number of faulty gates (or devices), meaning

that each fault vector in a fault file contains the same number of 1s. The positions of the 1s in each vector

are determined by random permutations. However, the program that generates the fault file ensures

that each fault vector is unique. If the number of possible permutations is less than N , the program

stops generating new vectors once all possible permutations have been created and written to the fault

file. The number of fault vectors N , as well as the number of faulty gates (or devices), can be specified

during file creation by passing them as parameters to the program. In the simulations conducted, N

was increased until the results no longer changed significantly, which occurred at N = 50, 000.

When the simulation starts, the simulator reads the fault vectors from the fault file line by line and

activates them one after the other by inserting the faults into the gates (or devices) accordingly. For

each fault vector, the circuit is simulated by applying the input vectors from the input file sequentially.

The output of the circuit is written to the output file for every input vector applied. Once the circuit has

been simulated for all input vectors in the input file, the next fault vector is activated, and the process

is repeated.
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• Example: Given a test circuit that has n = 3 inputs and k = 180 devices. The circuit shall be

simulated for 2 and 3 faulty devices, using N = 10, 000 fault vectors for each case. In this sce-

nario, the input file will contain m = 23 lines of input vectors, with each input vector consisting

of n = 3 binary digits. There will be two fault files: one contains fault vectors with 2 faults, the

other contains fault vectors with 3 faults. Each fault file will contain N = 10, 000 fault vectors,

with each fault vector consisting of k = 180 binary digits. The number of times the circuit is

simulated can be calculated by multiplying the number of input vectors by the number of fault

vectors and the number of fault files: ntotal_sim = 23 · 10, 000 · 2 = 160, 000.

The benefit of this simulation method is that it allows for a detailed analysis of the test circuit

in the presence of faults. The behaviour of the circuit when specific gates or devices fail can easily

be investigated using the corresponding fault vectors. Furthermore, it can be analysed which input

vectors cause the circuit to fail and whether there are cases in which the circuit still works for all

inputs. The drawback of this method is that the simulation time can become very high for large or even

moderately sized circuits. Moreover, the number of possible permutations for a certain number of faults

can become extremely high for larger circuits, potentially making the simulation results inaccurate

when the number of fault vectors N is chosen too low. To address these issues, another simulation

method was explored.

5.1.2 Simulation of Stochastic Computation Models

This simulation method utilizes Stochastic Computation Models (SCMs) to compute the reliability of a

circuit. Since computations on SCMs are based on signal probabilities, this method supports simulations

in which gates and devices exhibit probabilistic fault characteristics. The mathematical foundations of

SCMs are based on Probabilistic Gate Models (PGMs) and stochastic computation.

A PGM represents the behaviour of a logic gate using signal probabilities. The probability of an

input or output signal of a gate is the probability that the signal is at logic level 1. To determine how

the input probability of a gate transforms into its output probability, the logical function of the gate

must be considered. Assuming the inputs are independent, the Boolean operation of a logic gate can be

mapped to an arithmetic operation of signal probabilities, as shown in Table 5.1, where a = P (A = 1),

b = P (B = 1) and c = P (C = 1). The output probability of an unreliable gate with an output named

Z (where Z does not refer to high impedance) can generally be represented by the equation

Z =P (output "1" | gate faulty) · P (gate faulty)+

P (output "1" | gate not faulty) · P (gate not faulty).
(5.1)
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Table 5.1: Mapping of Boolean operations to arithmetic operations of signal probabilities [1].

Boolean Operation Arithmetic Operation
NOT B = A b = 1− a

AND C = AB c = a · b
OR C = A+B c = a+ b− a · b

XOR C = AB +AB c = a · (1− b) + (1− a) · b

Figure 5.2: Inverter with stochastic encoding [1].

The idea of stochastic computing is to encode signal probabilities into binary bit streams serially in

the time domain. This means that a specific probability is indicated by the mean number of 1s in a bit

stream. An example of an inverter is shown in Figure 5.2. Here, the probability P (X = 1) = 4/10 is

encoded into the input bit stream of the inverter. Since Boolean operations can be mapped to arithmetic

operations, the inverter performs a probabilistic computation according to Table 5.1. The result of this

computation is then encoded into the output bit stream of the inverter. The same concept of mapping

Boolean operations to arithmetic operations while using stochastic logic can be applied to other gates

(Figures 5.3a and 5.3b) [1, 40].

An SCM can now be designed by combining the concepts of PGMs and stochastic computing. Given

that the output probability of any logic gate can be calculated using Equation (5.1), a gate affected by a

fault that flips its output can be implemented using the stochastic logic of an XOR gate (see Table 5.1):

Zflip = XORsto(p, ϵ) = p(1− ϵ) + (1− p)ϵ, (5.2)

where p is the fault-free output probability and ϵ is the error probability. Thus, an SCM for flipping

errors can be modelled for any gate by connecting one input of the stochastic XOR to the gate’s output,

while the other input represents the gate’s error rate (Figure 5.3c). Additionally, a stuck-at-1 fault can

be implemented by replacing the XOR gate with an OR gate (Figure 5.3d):

ZSA1 = ORsto(p, ϵ) = p+ ϵ− p · ϵ = ϵ+ p · (1− ϵ). (5.3)

A stuck-at-0 fault can be implemented by using a NOT and an AND gate (Figure 5.3e):

ZSA0 = ANDsto(p, ϵ) = p · (1− ϵ). (5.4)
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(a) (b)

(c)

(d)
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Figure 5.3: AND gate: (a) unreliable gate, (b) stochastic logic implementation, (c) SCM for flipping error,
(d) SCM for stuck-at-1 fault, (e) SCM for stuck-at-0 fault [1].

However, to avoid designing a circuit for each fault type separately, the FIL module (Section 2.2) was

used to model the SCMs. The FIL module replaces the XOR, OR, NOT and AND gates in Figures 5.3c

to 5.3e, as it can emulate the behaviour of these gates by setting the control inputs accordingly [1, 40].

SCMs can also be constructed at the device level. Since the switching state of a transistor depends

on the applied gate voltage, flipping errors as well as stuck-on and stuck-off faults, can be modelled

by modifying the gate input of the device. In case of a flipping error, a stochastic XOR is used to

flip the transistor’s gate input when an error occurs, thereby changing the transistor’s switching state

Figure 5.4: Stochastic transistor model for flipping error [12].
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(Figure 5.4). In the case of a stuck-on or stuck-off fault, the XOR is replaced by an OR gate or an AND

gate combined with a NOT gate, respectively. In the Verilog designs of the NEM relays, the gate inputs

were mapped to the operations of the relays. The switching states of the relays were then mapped to

the pull-up and pull-down networks of the logic gates, which, in turn, were be mapped to the gate’s

output [12].

The reliability of a circuit can be assessed by designing and simulating a specific stochastic archi-

tecture that utilizes SCMs. An example of this architecture for the C17 circuit (Section 6.1.1) is shown

in Figure 5.5. Generally, the following steps are performed to construct the design and evaluate the

circuit’s reliability:

1. The circuit is constructed using the SCMs of the gates. In Figure 5.5, sub-circuit 1 represents the

stochastic circuit for flipping errors, while sub-circuit 2 serves the reliable circuit.

2. The input bit streams and the error bit streams are generated. The input bit streams encode the

input probability, while the error bit streams encode the error probabilities of the gates.

3. The bit streams are propagated from the inputs to the outputs in both sub-circuit 1 and sub-

circuit 2.

4. The reliability of each output is determined from the output bit streams using XOR gates with

one inverted input. The joint reliability can be obtained by feeding the output of the XOR gates

into an AND gate. Conversely, the failure rate of the circuit can be obtained by using XOR gates

with no inverted inputs and an OR gate instead of and AND gate [1, 40].

When using this method, the input file in the simulation framework contains the input bit streams,

while the fault files contain the error bit streams. The bit streams are stored line by line in the files.

If the test circuit has n inputs, each line of the input file will contain n binary digits, where each digit

corresponds to one input of the circuit. The fault files will contain k binary digits per line for a circuit

with k gates (or devices), with each digit corresponding to one gate (or device). When a sequence length

of L is used for the bit streams, both the input file and the fault files will contain L lines. Similar to the

first simulation method, a 1 in the error bit stream indicates a faulty gate (or device), while a 0 indicates

a non-faulty gate (or device). Furthermore, each fault file contains error bit streams that encode a

specific gate (or device) error probability. The positions of the 1s in the input bit stream and the error

bit streams are determined through random permutations. The input probability, error probability, and

sequence length L can be specified during file creation by passing them as parameters to the program.

The selected sequence length L determines both the resolution error of the results and the quantization

error of the encoded signal probabilities. For a sequence length of L, the resolution is given by 1/L.

For instance, if the sequence length is L = 10, the resolution is 0.1, meaning that probabilities lower
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Figure 5.5: Architecture utilizing SCMs to assess the reliability of the C17 circuit [1].

than 0.1 cannot be represented. In the simulations conducted, L = 10, 000 was selected, resulting in a

resolution of 0.0001.

• Example: Given a test circuit that has n = 3 inputs and k = 180 devices. The circuit shall have

an input probability of 50% and shall be simulated for device fault probabilities of 0.01% and 1%,

using a sequence length of L = 10, 000. In this scenario, the input file will contain L = 10, 000

lines of binary patterns with n = 3 digits. Since the input probability is 50%, the input bit streams

will contain 5, 000 digits of 1. There will be two fault files: one contains error bit streams that

encode a signal probability of 0.01%, the other contains error bit streams that encode a signal

probability of 1%. This means that the first fault file contains bit streams with a total of one 1,

while the second fault file contains bit streams with a total of 100 digits of 1. Each fault file will

contain L = 10, 000 lines of binary patterns, each consisting of k = 180 digits. The number of

times the circuit is simulated is given by the sequence length, which is 10, 000.

The benefit of this simulation method is that it requires fewer simulation runs to evaluate a circuit’s

reliability. Additionally, fault probabilities can be assigned to gates and devices rather than assuming

a fixed number of faulty components. However, due to the stochastic nature of this approach, specific

scenarios with certain input vectors and fault patterns cannot be investigated. Therefore, this approach

can only yield the reliability (or failure rate) of a circuit.
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5.2 Evaluation Metrics

The output files generated by the simulation are automatically evaluated. For the evaluation, different

metrics are used. The choice of the metric depends on the specific simulation method employed.

5.2.1 Circuit Failure Rate

The first metric used for evaluation is the Circuit Failure Rate (CFRA) [31]. This metric serves as a

general measure of the circuit’s robustness against potential faults in gates or devices. It quantifies the

probability of a circuit failing when a certain number of gates or devices have failed or when faults

occur in them with a specific probability, indicating that a lower CFRA is preferable. In general, the

CFRA can be calculated by

CFRA =
k

2n+m − 2n
(5.5)

where k is the number of faulty combinations of gates (or devices) for which the circuit’s output is

incorrect, n is the number of circuit inputs, and m is the number of gates (or devices) in the circuit.

In the denominator of this equation, 2n is the number of non-faulty combinations, which is subtracted

from the total number of faulty and non-faulty combinations, calculated by 2n+m.

When simulations are performed using the first simulation method, an output file is created for each

fault file. As described in Section 5.1.1, each fault file contains fault vectors with a specified number

of faulty gates (or devices). The number of fault vectors per file is either equal to the given parameter

N or the total number of possible faulty combinations, whichever is smaller. The CFRA is therefore

calculated for each fault file, and Equation (5.5) becomes

CFRA =
k

nsim
(5.6)

where nsim is the total number of simulations, calculated as nsim = 2n ·min(N,ncomb(x)). Here, N

represents the desired number of fault vectors in a fault file, and ncomb(x) represents the total number

of possible faulty combinations for x faults.

To calculate the CFRA based on a given fault probability per gate (or device) instead of using a fixed

number of faulty gates (or devices), the evaluation must be conducted as follows when utilizing the first

simulation method: For a circuit with N gates (or devices), the probability of exactly x faulty gates (or

devices) is given by the binomial distribution

P (x faults) =
�
N

x

�
· px · (1− p)N−x (5.7)
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where p is the fault probability of a single gate (or device). The failure probability of a circuit, given

that exactly x faults occur, is given by

Pfail = P (x faults) · Pfail|x (5.8)

where Pfail|x denotes the failure probability of the circuit when exactly x gates (or devices) have failed.

To calculate the total failure probability of the circuit (and thus the CFRA), the sum over all possible

fault cases is calculated:

Pfail_total =
N�
k=1

�
N

k

�
· pk · (1− p)N−k · Pfail|k. (5.9)

It is evident that this approach requires significant computational effort, as the failure probabilities of

the circuit for all possible fault cases Pfail|k must be determined through simulation. For circuits with a

large or even moderate number of gates (or devices), this becomes infeasible. Furthermore, the binomial

coefficient
�
N
k

�
can become extremely large, making the calculation of Equation (5.7) impractical and

also necessitating a limit on the number of simulated fault vectors. Therefore, the second simulation

method (Section 5.1.2) is more suitable for calculating the CFRA, as the circuit’s reliability (or failure

rate) can be decoded from the output bit stream. If the circuit’s reliability R is given, the CFRA can be

calculated as

CFRA = 1−R. (5.10)

5.2.2 Circuit Fault Resilience

The second metric used for evaluation is the Circuit Fault Resilience (CFRE). This metric is introduced

because the CFRA does not provide any information about the number of failed input vectors for a

combination of faulty gates (or devices). Therefore, the term Vulnerable Input Vector (VIV) is intro-

duced [41]. An input vector is defined as a VIV for a specific combination of faulty gates (or devices) if

it causes the fault to propagate to the circuit’s output. The CFRE is defined as

CFRE =
kc

nsim
(5.11)

where kc is the number of faulty combinations of gates (or devices) for which the circuit produces

correct outputs across all input vectors, and nsim is the total number of simulations. Thus, the CFRE

quantifies the probability that a circuit will maintain correct functionality across all input vectors when

a certain number of gates (or devices) have failed. Therefore, a higher CFRE is desirable.
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5.2.3 Gate/Device Count

Another important factor to consider when evaluating the performance of fault-tolerant design tech-

niques is the increase in the total number of gates or devices required when these techniques are applied.

Therefore, the gate and device count is defined as third metric.



Chapter 6

Simulation Results

This chapter begins by detailing the test circuits used in simulations to evaluate the selected fault-

tolerant design techniques. It then presents an analysis of the simulation results at both the gate and

device levels, exploring the design space and discussing the associated trade-offs. Due to the large

amount of data generated by the simulations, only the results for the full adder are evaluated in the

following sections. The results for the C17 and 74283 fast adder can be found in [42].

The procedure used to obtain the results is shown in Figure 6.1. It can be divided into two parts: the

design space, and the simulation framework. The workflow begins in the design space by selecting a test

circuit and a fault-tolerant design technique. Next, the test circuit is implemented with the chosen fault-

tolerant design technique applied in Verilog. The resulting fault-tolerant test circuit is then simulated

within the simulation framework. Before running the simulation, the abstraction level, fault type, and

the simulation method must be selected. The Verilog testbench is configured based on the chosen

options. When the simulations are finished, the results are automatically evaluated by the evaluation

programs.

Test
Circuit

FT Design
Technique

Design FT
Test
Circuit

DESIGN SPACE SIMULATION FRAMEWORK

Simulation MethodAbstraction Level &
Fault Type

EvaluationFT Test
Circuit Simulation

Results

Figure 6.1: Workflow from design to evaluation.
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Figure 6.3: Full adder circuit.

6.1 Test Circuits

To evaluate the performance of the selected fault-tolerant design techniques, three circuit designs of

different complexity were chosen as test candidates. Additionally, programs have been implemented to

automatically create the fault-tolerant design for a test circuit by modifying its Verilog netlist. More-

over, the programs implement the necessary mechanisms for selecting the fault type and activating

faults within the circuit, as described in Section 2.2 and Section 2.3.

6.1.1 C17

The first test circuit chosen is the ISCAS 85 circuit C17, which is commonly used in benchmarks for

fault-tolerant design techniques [43]. This circuit has five inputs and two outputs and consists of six

NAND gates (Figure 6.2).

6.1.2 Full Adder

The second test circuit chosen is a full adder, comprised of NAND gates and inverters (Figure 6.3). This

design was selected because full adders are frequently used in various applications. It consists of a total

of 17 gates.
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Figure 6.4: 74283 fast adder circuit [13].

6.1.3 74283 Fast Adder Circuit

The third test circuit chosen is the 74283 fast adder circuit of the 74X-Series (Figure 6.4) [13]. It has a

total of 40 gates, making it the most complex test circuit used.

6.2 Gate Level Simulations

The first simulations were conducted at the gate level. Since design techniques that utilize redundancy

at the device level cannot be tested from a gate level perspective - because this would require injecting

faults into devices instead of gates - this section focuses on investigating TMR with different voter

designs. In the following simulation results, TMR was applied to the test circuits at the gate level. This

means that each gate in the circuit was triplicated, and their outputs were fed into a voter circuit. In

addition to the TMR designs with the voter circuits presented above, a design with a reliable voter

has also been implemented. The reliable voter is not affected by faults and is labelled as reliable_voter.
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However, this voter cannot be implemented because voter circuits are always prone to faults. Therefore,

this design serves solely as a benchmark for evaluating other voter designs.

The CFRAs for the full adder circuit with different TMR voter designs, plotted against the number

of faulty gates for flipping errors, stuck-at-0 faults, and stuck-at-1 faults, are shown in Figure 6.5. When

examining the lines representing the non-redundant test circuit, it can be observed that they end at 17

faulty gates. This is because the non-redundant circuit contains 17 gates in total, meaning that all gates

have failed at this point. Further, it can be observed that the application of TMR significantly reduces

the CFRA compared to the non-redundant circuit. The extent of the decrease depends on the number

of faulty gates as well as the design of the voter used. The reliable_voter can tolerate one faulty gate of

any fault type while maintaining a CFRA of 0%. It can also be observed that, as the number of faulty

gates increases, the CFRA of the reliable_voter becomes worse than that of the other voters. The reason

for this is that faults cannot occur in the reliable_voter, meaning they will instead occur in the gates

of the circuit itself, while in the other designs, faults can also occur in the voting circuit (and may be

tolerated). Thus, for a specific number of faulty gates in the circuit, the design with the reliable voter

may produce more faulty gate outputs, making it worse than the other designs at some point. The best

performing voter, next to the reliable_voter, is the priority_enc_voter. Assuming the same number of

faulty gate occurs, using TMR with this voter design to address flipping errors can improve the CFRA

from 75% − 79% in the non-redundant circuit to 11% − 74%. For stuck-at-0 faults, the CFRA can be

improved from 43% − 88% to 6% − 67%. For stuck-at-1 faults, the standard_voter performs slightly

better, as expected in Section 3.1.2.1, and the CFRA can be improved from 35%−88% to 5%−60%. For

a larger number of faulty gates, all voter designs will approach a CFRA of approximately 70% − 80%

across all fault types.

The CFREs for the full adder circuit are shown in Figure 6.6, using the same simulation setup as

before. It can be observed that the CFRE is 0% for the non-redundant circuit in almost all scenarios,

meaning it cannot tolerate any faults while maintaining correct functionality across all input vectors.

The only voter design that can tolerate a single faulty gate and achieve a CFRE of 100% across all fault

types and circuits is the reliable_voter. The next best-performing voter design is the priority_enc_voter.

This is the only voter design that can maintain a CFRE of more than 80% when one fault of any type

occurs. Among all the other voter designs, only the standard_voter performs similarly for stuck-at-

1 faults. The performance of the mux_xor_voter and the and_or_voter is nearly identical, with the

mux_xor_voter performing slightly better at higher fault counts.
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Figure 6.5: CFRA for the full adder with TMR and different voter designs: (a) flipping error, (b) stuck-
at-0, (c) stuck-at-1.
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Figure 6.6: CFRE for the full adder with TMR and different voter designs: (a) flipping error, (b) stuck-
at-0, (c) stuck-at-1.



6.2. Gate Level Simulations 57

no
n-
re
du
nd
an
t

re
lia
bl
e_
vo
te
r

st
an
da
rd
_v
ot
er

an
d_
or
_v
ot
er

m
ux
_x
or
_v
ot
er

pr
io
rit
y_
en
c_
vo
te
r

0

20

40

60

80

100

120
G
a
te

C
o
u
n
t

Figure 6.7: Gate count of the full adder with TMR and different voter designs.

The gate counts of the full adder with TMR are shown in Figure 6.7 for different voter designs. It is

evident that the voter designs with higher fault tolerance also have higher gate counts. Since a certain

number of faulty gates can have a greater impact on a circuit with fewer gates than on one with more

gates, it is useful to relate the CFRE to the number of additional gates introduced by the redundant

circuit. Thus, the increase in CFRE per additional gate is calculated as

CFREinc,k =
ΔCFREk

n
(6.1)

where ΔCFREk = CFREred,k − CFREnon_red,k represents the difference in CFRE between the

redundant and non-redundant circuit for k faulty gates, and n is the number of additional gates intro-

duced by the redundant circuit. Figure 6.8 shows the results for one and for five faulty gates. It can

be seen that, for one faulty gate, the priority_enc_voter is less efficient than the mux_xor_voter and the

and_or_voter across all test circuits, even though it has a higher overall CFRE. With five faulty gates,

the efficiency of the priority_enc_voter is slightly higher. This is expected, as the CFRE of the other

voters decreases more rapidly with an increasing number of faulty gates. Consequently, the efficiency

of the priority_enc_voter improves as the number of faulty gates increases.

From a gate level perspective, the choice of the voter design therefore depends on the number of

expected faults and the required CFRE or CFRA. When the required CFRE or CFRA can be met, the

mux_xor_voter and the and_or_voter provide more efficient designs at low numbers of faulty gates,

as illustrated in Figure 6.8. The reason for their higher efficiency is that their performance difference

compared to the priority_enc_voter at lower numbers of faulty gates is marginal, while requiring fewer

gates. However, assuming a fixed number of faulty gates, the priority_enc_voter can tolerate a higher

number of faults than the other voter designs, meaning its performance degrades less rapidly as the
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Figure 6.8: Increase in CFRE per additional gate for the full adder with TMR averaged over all fault
types.

number of faulty gates increases, making it more efficient at higher fault counts. Considering all fault

types, the standard_voter is the least efficient design, performing worse than other designs while having

the same gate count as the priority_enc_voter. However, it performs slightly better on stuck-at-1 faults,

so it may be a viable choice when this fault type is most likely to occur.
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6.3 Device Level Simulations

This section elaborates on the simulations conducted at the device level. Device level simulations allow

for a more detailed analysis of the test circuits and the fault-tolerant design techniques applied. Fur-

thermore, a more realistic view of the hardware cost is provided, as the gate count does not account for

the number of NEM devices used. First, conventional TMR voter designs are evaluated and compared

with the novel NEM voter designs. The second section examines the design techniques that utilize

device level redundancy and compares them to the TMR designs.

6.3.1 TMR

The TMR approach, along with the conventional voter designs used for gate level simulations in the

previous section, is now analysed at the device level for defects. Additionally, the novel NEM voter

designs can now be modelled, simulated, and compared to conventional voter designs in terms of their

performance. As previously mentioned, TMR can be applied to modules of varying sizes and complex-

ities. To explore how module size impacts the fault tolerance of the TMR design, two extreme cases

were considered. In the first case, TMR was implemented at the lowest possible level of abstraction, the

gate level. In the second case, TMR was applied at the highest possible level of abstraction, the circuit

level.

6.3.1.1 Application at Gate Level

At this level of abstraction, each gate in the test circuit is replicated three times, and the outputs of

the replicated gates are fed into a voter. The CFRAs for the full adder circuit with TMR applied at gate

level and different voter designs are illustrated in Figure 6.9 for different numbers of faulty devices. The

graphs cover three fault scenarios: stuck-off faults, stuck-on faults, and mixed faults, consisting of a

distribution of 50% stuck-off and 50% stuck-on faults. It can be observed that all TMR voter designs can

reduce the CFRA compared to the non-redundant circuit, given a specific number of device failures.

The tripled_voter shows the best performance across all fault types. For stuck-off faults, applying TMR

with this voter design can improve the CFRA from 29%−73% in the non-redundant circuit to 0%−3%.

For stuck-on faults the CFRA can be improved from 32%−100% to 0%−4%, and for mixed fault types

the CFRA can be improved from 51% − 98% to 0% − 6%. The next best voter is the NEM_voter_v2,

which performs similarly to the tripled voter at low numbers of faults but performs increasingly worse

as the number of faults increases.
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Figure 6.9: CFRA for the full adder with TMR applied at gate level and different voter designs: (a) stuck-
off, (b) stuck-on, (c) mixed faults (50%/50%).
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The CFREs for the full adder circuit with TMR and conventional voter designs are shown in Fig-

ure 6.10. The non-redundant circuit can maintain correct functionality across all input vectors with

only a 10% probability in the presence of a single stuck-off fault. If more faults or other types of faults

occur, its CFRE approximates or drops to 0%. The tripled_voter exhibits the best CFRE due to its highly

redundant design, meaning that it can maintain a CFRE of more than 80% even with higher num-

bers of faults, regardless of the fault type. Especially in a mixed fault scenario, where stuck-off and

stuck-on faults can occur simultaneously, the tripled_voter is the only viable choice at high numbers

of faulty devices. The results for the novel NEM voter designs are shown in Figure 6.11. It is evident

that the NEM_voter_v2 achieves the highest CFRE across all fault types and also outperforms most con-

ventional voters. As expected, the NEM_voter_TD_v1 performs better for stuck-on faults, whereas the

NEM_voter_TD_v2 performs better for stuck-off faults when compared to each other.

To evaluate the efficiency of the voters, their device counts need to be considered. Figure 6.12

illustrates the device counts of full adder using TMR and different voter designs. While achieving

the best performance in terms of fault tolerance, the tripled_voter also clearly has the highest device

count. To quantify the efficiency of the different designs, the increase in CFRE per additional device is

calculated, similar to the approach in the previous chapter. Figure 6.13 shows the results for two and

six faulty devices. It can be concluded that the tripled_voter, despite having the best performance, is

less efficient than the other voter designs due to its high device overhead. The mux_xor_voter performs

relatively poorly in terms of CFRE; however, its low device count makes it slightly more efficient than

the other voters when dealing with a small number of faulty devices. Similar observations can be made

about the NEM_voter_v1, which does not outperform the other voters in terms of performance but offers

the lowest device count. Therefore, its design is more suitable for optimizing device count or area, at

the cost of lower fault tolerance. In general, the NEM_voter_v2 can be considered the most efficient

design (aside the reliable_voter), particularly when dealing with a higher number of faulty devices.
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Figure 6.10: CFRE for the full adder with TMR applied at gate level and conventional voter designs:
(a) stuck-off, (b) stuck-on, (c) mixed faults (50%/50%).
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Figure 6.11: CFRE for the full adder with TMR applied at gate level and NEM voter designs: (a) stuck-off,
(b) stuck-on, (c) mixed faults (50%/50%).
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Figure 6.12: Device counts of the full adder with TMR applied at gate level and different voter designs.
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Figure 6.13: Increase in CFRE per additional device for the full adder with TMR applied at gate level
averaged over all fault types.
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When examining the graphs in Figure 6.9 and Figure 6.10, it becomes evident that the reliable_voter

performs worse than some other voters. The reason for this peculiarity is that these simulations as-

sume a constant number of faulty devices, as specified in the first simulation method (Section 5.1.1).

A specific number of faulty devices may impact a design with fewer devices more significantly than a

design with a greater number of devices. As shown in Figure 6.12, the design with the reliable_voter

has the lowest device count among all TMR designs. To account for the fact that a circuit with a greater

number of devices may experience more faults than one with a smaller device count, the device fault

probability is considered instead of a fixed number of faults, using the second simulation method (Sec-

tion 5.1.2). Figure 6.14 illustrates the CFRAs for the full adder circuit, considering scenarios with low

device fault probabilities (0.01% − 0.1%) and high device fault probabilities (1% − 2%). As expected,

the reliable_voter now performs best in this simulation setup. Moreover, not all voter designs succeed

in decreasing the CFRA compared to the non-redundant circuit. In the scenarios with low device fault

probabilities, the designs with the tripled_voter and the NEM_voter_v2 manage to decrease the CFRA

to almost 0% for all fault types. In the scenarios with high fault probabilities, the CFRA can be reduced

from 8%− 15% to 1%− 4% for stuck-off faults, from 18%− 27% to 2%− 6% for stuck-on faults, and

from 21% − 38% to 6% − 21% for mixed faults with these two voter designs. Further, the difference

in performance of all voter designs is smaller at low fault rates and becomes larger as the device fault

probability increases. It can be observed that the lines for the tripled_voter and NEM_voter_v2 have a

smaller slope than the others at low device fault probabilities, meaning that their CFRAs increase more

slowly than those of the other voters.
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Figure 6.14: CFRA for the full adder with TMR applied at gate level for different device fault probabili-
ties: (a) stuck-off, (b) stuck-on, (c) mixed faults (50%/50%).
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6.3.1.2 Application at Circuit Level

At this abstraction level, the entire circuit is replicated three times, and their outputs are fed into a

voter. The CFRAs for the full adder circuit with TMR applied at circuit level are shown in Figure 6.15

for different numbers of faulty devices. The first observation that can be made is that the performance

differences between the voter circuits are smaller compared to the approach in which TMR was ap-

plied at the gate level. This is because it is much less likely for a voter to be affected by a fault, as this

approach only requires only 3n voters, where n is the number of outputs of the test circuit. Conse-

quently, the choice of the voter design becomes less critical compared to the previous approach. The

performance difference between the voters is comparable to that of TMR applied at gate level, meaning

that the tripled_voter also performs best here. In general, it can be concluded that in this simulation

setup, the application of TMR at circuit level performs worse than its application at gate level. A lower

or approximately equivalent CFRA can only be achieved by some voter designs at one or two faulty

devices. The results also indicate that the CFRA for TMR applied at the circuit level becomes worse

compared to its application at gate level as the number of faults increases. This is because a higher fault

count is more likely to affect all three circuit duplicates, resulting in incorrect outputs being fed into the

voter. An exception is the NEM_voter_v1, which performs better for stuck-off faults and approximately

the same for stuck-on faults and mixed faults, even at higher numbers of faulty devices. However, its

performance remains worse than that of the other voters.

The CFREs for the full adder circuit with TMR and conventional voter designs are shown in Fig-

ure 6.16. Again, a higher CFRE is achieved only with some voters when one or two devices are faulty.

The CFREs for the novel NEM voters are illustrated in Figure 6.17. The NEM_voter_v1 performs better

than its TMR implementation at gate level but cannot outperform the other voters. Furthermore, the

results for stuck-on faults confirm that the NEM_voter_v2 is significantly more resilient to unknown

logic levels at its inputs caused by these faults.
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Figure 6.15: CFRA for the full adder with TMR applied at circuit level and conventional voter designs:
(a) stuck-off, (b) stuck-on, (c) mixed faults.
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Figure 6.16: CFRE for the full adder with TMR applied at circuit level and conventional voter designs:
(a) stuck-off, (b) stuck-on, (c) mixed faults.
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Figure 6.17: CFRE for the full adder with TMR applied at circuit level and NEM voter designs: (a) stuck-
off, (b) stuck-on, (c) mixed faults.
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The device counts of the test circuits with TMR and different voter designs are shown in Figure 6.18.

Naturally, the device counts are significantly lower than in the TMR implementations applied at gate

level. A review of the increase in CFRE per device in Figure 6.19 reveals that, among all test circuits,

only the NEM_voter_v1 can be considered more efficient than its TMR implementation at the gate level

when the number of faulty devices is low. When comparing the performance of the voters relative to

each other, the NEM_voter_v2 again shows high efficiency for both low and high numbers of faults. For

low numbers of faults, the mux_xor_voter is more efficient, as it has a lower device count and only a

slightly lower CFRE. However, as Figure 6.16 shows, this is mostly confined to stuck-off faults, while the

NEM_voter_v2 offers good performance across all fault types. Furthermore, all voter designs become

less efficient as the number of faulty devices increases.

As discussed in the previous subsection, it is reasonable to consider the device fault probability

in simulations to account for the increased likelihood of faults in circuits with higher device counts.

Figure 6.20 shows the CFRAs for the full adder circuit with TMR applied at circuit level, under scenarios

with low and high device fault probabilities. For stuck-off faults, all voter designs significantly reduce

the CFRA compared to the non-redundant circuit. Furthermore, for this fault type, the results for most

voter designs are better or approximately equal to those of the TMR implementation at gate level.

Considering the voter that performs best in most fault scenarios, which is the tripled_voter, the CFRA

can be reduced to 0% at low device fault probabilities, and from 8%−15% in the non-redundant circuit

to 2% − 8% at high device fault probabilities. For stuck-on faults, not all voter designs are capable of

reducing the CFRA. The tripled_voter can reduce it to approximately 0% at low device fault probabilities,

and from 15%− 27% to 6%− 18% at high device fault probabilities. For mixed fault types, the CFRA

can again be reduced to approximately 0% at low device fault probabilities, and from 21% − 38% to

13%− 37% at high device fault probabilities. The NEM_voter_v2 achieves similar performance with a

lower device count, as shown in Figure 6.18. For most voter designs, it can be concluded that in this

simulation setup, the CFRA decreases when TMR is applied at circuit level. The reason for this is that a

TMR implementation with a smaller module size requires a larger number of voters, resulting in a higher

total device count. Consequently, the circuit will experience a greater number of faults when a constant

device fault probability is assumed, and the reliability of the circuit with TMR applied at the gate level

becomes largely dependent on the design of the voter. Therefore, only voters with high intrinsic fault

tolerance, such as the tripled_voter, the NEM_voter_v2, and, particularly, the reliable_voter, perform

better when TMR is applied at gate level. However, the high device overhead associated with TMR

applied at gate level may still make the approach at the circuit level more practical, regardless of the

voting circuit.
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Figure 6.18: Device counts of the full adder with TMR applied at circuit level and different voter designs.
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Figure 6.19: Increase in CFRE per additional device for the full adder with TMR applied at circuit level
averaged over all fault types.
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Figure 6.20: CFRA for the full adder with TMR applied at circuit level for different device fault proba-
bilities: (a) stuck-off, (b) stuck-on, (c) mixed faults (50%/50%).
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6.3.2 Device Level Design Techniques

In the final subsection, the remaining device level techniques are evaluated and compared to the TMR

approach. Figure 6.21 shows the CFRAs for the full adder circuit for different numbers of faulty de-

vices. It is evident that all design techniques can significantly reduce the CFRA compared to the non-

redundant circuit. The results also confirm that QD_v2 and TD_v2 are more resilient to stuck-off faults,

while QD_v1 and TD_v1 are more resilient to stuck-on faults. However, due to the higher degree of

redundancy in QD, the performance difference between the two versions is smaller than in TD. Gen-

erally, QD exhibits the best performance across all fault types. For stuck-off faults, the CFRA can be

reduced from 29% − 73% to 0% − 14%, for stuck-on faults from 32% − 100% to 0% − 17%, and for

mixed faults from 51%− 98% to 0%− 16%.

The CFREs for the full adder circuit are depicted in Figure 6.22. In the scenarios with stuck-off faults

and stuck-on faults, both versions of QD can maintain a CFRE close to 100% at lower numbers of faulty

devices and more than 60%, or even higher, at larger numbers of faulty devices, depending on the fault

type and the version used. It also can be observed that for TD, the version suited to the corresponding

fault type performs similar as QD, while the other version performs rather poorly. This indicates that

in TD, the performance of the selected version is much more affected by the type of fault that occurs

than that of QD, which can also be seen in the mixed fault type scenario, where both versions of TD

perform poorly.
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Figure 6.21: CFRA for the full adder with device level design techniques: (a) stuck-off, (b) stuck-on,
(c) mixed faults.
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Figure 6.22: CFRE for the full adder with device level design techniques: (a) stuck-off, (b) stuck-on,
(c) mixed faults.
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Figure 6.23: Device counts of the full adder with device level design techniques.

The device counts of the circuit designs are shown in Figure 6.23. It can be observed that the

investigated designs generally have a lower device count compared to most TMR approaches. The

increase in CFRE per additional device can be seen in Figure 6.24. The device level design techniques

are generally more efficient than TMR techniques. At low numbers of faulty devices, TD is the most

efficient technique, whereas QD becomes more efficient as the number of faulty devices increases.

When considering device fault probabilities in the simulations, the results indicate that, for certain

design techniques, the additional redundancy introduced does not always lead to a lower CFRA (Fig-

ure 6.25). At low device fault probabilities, both versions of QD can reduce the CFRA to 0% for both

stuck-off faults and stuck-on faults. Out of the two versions of TD, the one that is more resilient to the

respective fault type can achieve a comparable CFRA, while the other version performs similarly to the

non-redundant circuit. At higher device fault probabilities, QD and the respective version of TD can

reduce the CFRA from 4%−15% to 0%−0.7% for stuck-off faults and from 18%−27% to 0.3%−1.2%

for stuck-on faults. In the mixed fault type scenario, QD can reduce the CFRA to 0% at lower device

fault probabilities and from 21% − 38% to 0.7% − 2.7% at higher device fault probabilities. Further,

both versions of TD perform better than the non-redundant circuit for mixed fault types, but worse

than QD. The performance of the other techniques largely depends on the fault type. Both QL+QD and

TMR+TD outperform the non-redundant circuit for stuck-off faults at any device fault probability, but

perform slightly or significantly worse for stuck-on or mixed faults.
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Figure 6.24: Increase in CFRE per additional device for the full adder with device level design techniques
averaged over all fault types.
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Figure 6.25: CFRA for the full adder with device level design techniques for different device fault prob-
abilities: (a) stuck-off, (b) stuck-on, (c) mixed faults (50%/50%).
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Finally, to explore the trade-offs between fault tolerance at a specific device fault probability and

the device count in the discussed design techniques, their CFRA is plotted against device count. To keep

the graphs clear, only the best-performing TMR designs have been selected for plotting and compari-

son (the suffix ’CL’ indicates that TMR is applied at circuit level). Figure 6.26 shows the results for the

full adder with 0.1% device fault probability. This specific representation now allows for identifying

Pareto optimal points. In the case of stuck-off faults, there is only one Pareto optimal point (excluding

the non-redundant circuit), which is TD_v2. This design technique has the lowest device count and, at

the same time, can already reduce the CFRA to 0%. The same holds for stuck-on faults, where TD_v1

is the only Pareto optimal point. In the mixed fault scenario, four different Pareto points can be identi-

fied. The first point is TD_v1, which has the lowest device count but the highest CFRA among the four

points. The second and third points are QD_v1 and QD_v2, both of which have a CFRA of 0% but the

highest device count. The fourth point is the NEM_voter_v2_CL, which has a CFRA and device count

that fall between those of the other three Pareto points. This means that the choice of design technique

depends on the parameter that needs to be optimized. If the primary goal is to minimize the CFRA,

regardless of the device count, then QD_v1 or QD_v2 are the appropriate choices. If minimizing device

count or area optimization is most important, and a higher CFRA is acceptable, then TD_v1 would be

optimal. If a balance between CFRA and device count is preferred, TMR applied at circuit level with the

NEM_voter_v2 would be the most suitable choice. If the most likely fault type is known beforehand,

choosing the appropriate version of TD might also reduce the CFRA sufficiently, while keeping the de-

vice count low. For a higher device fault probability, the results show similar characteristics. Figure 6.27

illustrates the results for the full adder with 2% device fault probability. For stuck-off faults, there is

again only one Pareto optimal point that can be identified (excluding the non-redundant circuit), which

is TD_v2. For stuck-on faults, there are now two Pareto points, which are TD_v1 and QD_v1. The same

holds for the mixed fault scenario, with the two Pareto points TD_v1 and QD_v1. Unlike in the earlier

scenario with low device fault probability, the NEM_voter_v2_CL is no longer a Pareto point. This is

because the higher device fault probability significantly increases its CFRA, making it no longer a viable

option compared to the other two design techniques.
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Figure 6.26: CFRA and device count for the full adder with various fault-tolerant design techniques and
0.1% device fault probability: (a) stuck-off, (b) stuck-on, (c) mixed faults (50%/50%).
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Figure 6.27: CFRA and device count for the full adder with various fault-tolerant design techniques and
2% device fault probability: (a) stuck-off, (b) stuck-on, (c) mixed faults (50%/50%).
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Conclusion

In this thesis, physical defects that could potentially occur in NEM devices were discussed. Their impact

on the circuit was analysed at different abstraction levels, and fault models were derived to describe

the behaviour of the affected components. At the gate level, stuck-at-0, stuck-at-1, and flipping errors

have been identified as suitable fault models. At the device level, stuck-on and stuck-off models have

been defined to represent faulty behaviour of the NEM devices.

Established fault-tolerant design techniques in the domains of hardware, time, and information

were reviewed and evaluated for their applicability to NEM circuits. Among the design techniques

discussed, passive hardware redundancy techniques were identified as suitable for improving the yield

and reliability of NEM circuits. It has been shown that conventional TMR voting circuits can be im-

plemented with fewer devices by using NEM technology. Further, new NEM voter designs have been

proposed.

A simulation framework was developed to enable the simulation of NEM test circuits, with the

capability to inject faults based on the defined fault models. The simulations have shown that conven-

tional fault-tolerant design techniques are effective in improving the reliability of NEM circuits with

high failure rates. The achievable fault tolerance depends on the type of fault, the number of faults (or

the device fault probability), and the design technique used.

From a gate level perspective, test circuits with TMR applied to the circuit’s gates have been sim-

ulated. Various conventional voter designs have been investigated for specific numbers of faulty gates

in the circuit. The voter using the priority encoder has been identified as the best-performing design

among all voters, as well as the most efficient in terms of hardware overhead for larger numbers of

faulty gates.

From a device level perspective, test circuits with TMR applied to both the circuit’s gates and the

entire circuit were simulated, as well as the other device level design techniques. It has been shown
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that applying TMR to gates introduces significant hardware overhead, leading to a higher occurrence

of faults in the circuit when a constant device fault probability is assumed. This makes the application

of TMR to the entire circuit a more viable choice for most voter designs. The voter in tripled transistor

design has proven to be the best-performing voter in terms of fault tolerance, but its high device count

makes it less efficient than other voters in terms of hardware overhead. The NEM Voter Version 2 has

proven to be the most efficient voter, as it offers only slightly lower performance but significantly

reduces the device count compared to the voter in tripled transistor design.

When considering all the design techniques investigated, Quadded Design has proven to be the most

fault-tolerant, as both versions reduce the circuit’s failure rate to nearly zero across all fault types when

constant device fault probabilities are assumed. When one fault type is more likely to occur, Tripled

Design can achieve comparable performance with a lower device count by selecting the version best

suited to the fault type. This means that the device count or area can be further optimized when it

is known in advance which fault type is most likely to occur. Furthermore, the choice of the most

appropriate design technique also depends on whether fault tolerance or device count needs to be

optimized. In this respect, it has been shown that TMR, when implemented with the proposed NEM

Voter Version 2, can be a viable option in scenarios with low device fault probability, offering a balance

between fault tolerance and device count.

Lastly, it is important to note that this thesis did not investigate the delay or power consumption

of the proposed design techniques. However, these factors may need to be considered when evaluating

trade-offs, offering opportunities for future research on this topic.
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