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Abstract

The majority of research in deep learning focuses on processing a single modality, such as image, au-

dio, text, or proprioception data. However, humans benefit from leveraging information from diverse

senses on a daily basis for richer information acquisition. In intelligent systems, no single sensor can

fully capture all aspects of the surroundings, making it necessary to integrate different types. Fusing

sensor modalities allows for achieving a deeper understanding of the environment. Inspired by this, we

design a transformer-based multimodal model for human action recognition and thoroughly evaluate

its performance and robustness. In particular, this thesis focuses on examining the benefit of using

multimodal data for human action recognition in a kitchen scenario. We conduct an ablation study of

the model’s understanding through a systematic quantitative evaluation and investigate the influence

of uniting modalities on performance. Furthermore, we analyse the role of each modality by comparing

the attention scores of our transformer architecture and explore different fusion methods to assess how

various modalities are best combined. Our study shows that multimodal transformers perform better

than their modality-specific equivalents. The highest boost of accuracy compared to our vision-only

baseline is+10.1%, achieved by late fusion trained with stochastical masking. The implemented multi-

modal approach of internal sensors outperforms a previous state-of-the-art model in action recognition

by 32.8%. The implemented deep learning model benefits from combining vision, force, muscle activ-

ity, body pose, and sound. Lastly, we further explore the dependency between sensors by training a

decoder to infer (generate) a missingmodality. This decoder reconstructs tactile force with amean error

of ±9.9%. In conclusion, our findings suggest leveraging various modalities to improve performance

and robustness significantly, which can be further increased by stochastical masking.
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Kurzfassung

Der Großteil der Forschung im Bereich Deep Learning konzentriert sich auf die Verarbeitung einer

einzelnen Modalität, wie z.B. Bild, Ton, Text oder Bewegung. Im Gegensatz dazu nutzen Menschen

tagtäglich verschiedene Sinne, um reichhaltige Informationen über die Umgebung aufzunehmen. In

intelligenten Systemen kann kein einzelner Sensor alle Aspekte der Umgebung vollständig erfassen,

weshalb die Integration verschiedener Sensortypen notwendig ist. Die Fusion von Sensormodalitäten

ermöglicht ein tieferes Verständnis der Umgebung. Davon inspiriert, haben wir ein multimodales Mo-

dell auf Basis von Transformern zur Erkennung menschlicher Aktionen entwickelt und dessen Leistung

und Robustheit umfassend evaluiert. Insbesondere konzentriert sich diese Arbeit auf die Untersuchung

der Vorteile multimodaler Daten für Handlungserkennung in einer Küchenszene. Wir untersuchen das

Verständnis des Modells und den Einfluss der Zusammenführung von Modalitäten durch eine systema-

tische quantitative Analyse. Darüber hinaus ermitteln wir den Einfluss einzelnen Modalitäten anhand

des Aufmerksamkeitsmechanismus unserer Transformer-Architektur und untersuchen verschiedene

Fusionsmethoden, um herauszufinden, wie verschiedene Modalitäten am besten kombiniert werden

können. Unsere Studie zeigt, dass multimodale Transformer besser abschneiden als ihre modalitäts-

spezifischen Äquivalenten. Der höchste Genauigkeitssteigerung im Vergleich zu der reinen Video-

Baseline beträgt +10, 1 %, was durch späte Fusion und stochastisch maskierte Training ermöglicht

wird. Der implementierte multimodale Ansatz für interne Sensoren übertrifft ein vorheriges Modell,

das dem Stand der Technik in Handlungserkennung entspricht, um 32, 8 %. Unser Deep-Learning-

Modell profitiert von der Kombination von Video, Kraft, Muskelaktivität, Pose und Ton. Abschließend

untersuchen wir den Zusammenhang zwischen den Sensoren, indem wir einen Decoder trainieren,

eine fehlende Modalität zu generieren. Dieser Decoder rekonstruiert Griffkräfte mit einem mittleren

Fehler von ±9, 9 %. Zusammenfassend legen unsere Ergebnisse nahe, dass die Nutzung verschiedener

Modalitäten die Leistung und Robustheit signifikant verbessert, was durch die Verwendung von sto-

chastischen Masken weiter gesteigert werden kann.



v

Kivonat

A mély gépi tanulásban végzett kutatás döntő többsége egyetlen modalitás (érzékelő) feldolgozásá-

val foglalkozik, mint például a kép, hang, szöveg vagy mozgás. Az emberek ezzel szemben egyszerre

több érzékre támaszkodnak mindennapjaikban az alapos információszerzés végett. Az intelligens rend-

szerekben nincs olyan szenzor, amely egymagában képes lenne a külvilág minden részletét érzékelni,

így azok összekapcsolására van szükség. A különböző érzékelők fúziója elősegíti a környezet rész-

letgazdag megértését. Ebből ötletet merítve, egy transzformer alapú multimodális modellt tervezünk

emberi tevékenységek felismerésére, aminek részleteiben elemezzük a teljesítményét és hibatűrését.

Ezen szakdolgozat a multimodális adatok felhasználásának előnyeit vizsgálja ember által végzett kony-

hai feladatok terén. A módszer képességeit és a modalitások összefűzésének eredményességét rend-

szerezett kvantitatív kutatásnak vetjük alá. Ezenfelül megfigyeljük a különböző szenzorok szerepét a

transzformer hálózaton belüli figyelem mértékének összehasonlításával, illetve különböző fúziós mo-

delleket tárunk fel a modalitások hatékony összefűzésének felderítéséért. Tanulmányunk megmutatja,

hogy a többérzékelős transzformerek felülmúlják az egyetlen érzékelővel ellátottakat. A legnagyobb

pontosságban tett előrelépés a videóalapú felismeréshez képest +10.1%, amit a véletlenszerűsített

maszkolással betanított kései fúziós technika ér el. A belső szenzorokon alapuló modell 32.8%-kal

túlteljesít egy, a közelmúltban korszerű tevékenység-felismerő neurális hálózatot. A megvalósított

mély gépi tanulási módszer előnyt kovácsol a videó, az erőmérés, az izomműkődés, a póz és a hang

összefűzéséből. Végezetül egy hiányzó modalitás kikövetkeztetésére tanítjuk be dekóderünket, tovább

kutatva a szenzorok összefüggését. Ezen dekóder ±9.9%-os átlagos hibával számolja ki a hiányzó

erőméréseket. Összefoglalva, a modalitások összekapcsolása a teljesítmény és hibakezelés jelentős

előrehaladásához vezet, mely véletlenszerűsített maszkolással tovább növelhető.
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Chapter 1

Introduction

As humans, we use multiple senses to interact with our environment. For instance, relying solely on

our vision during a cooking task might become difficult. We must merge information from movement,

sound, sense of touch, and vision to better understand and accomplish the task at hand. Despite the

rapid growth of deep learning in the research of task understanding, most works focus on analyzing the

environment and actions purely based on visual perception [3, 4]. They operate without considering

different sensors available for humans, such as the forces involved when executing a task. Therefore,

these works are limited to visible knowledge, which fails to translate some of the embodied intelligence

into robots. For this thesis, we propose a Transformer model [2] to merge multiple modalities such as

pose, muscle activity, tactile information, audio, and visual data to classify various human actions in

a kitchen scenario. Transformer-based architectures have shown great performance for multimodal

learning tasks due to the attention mechanism they are equipped with.

Approaching the topic from a biological point of view, humans have a total of five senses: sight,

hearing, touch, taste, and smell. Some of them get prioritized depending on the situation and the

objectives people use them for, while others get occasionally ignored. For various tasks in our daily

lives, it is crucial to combine a handful of them and know which to focus on. The equivalent of senses

in robotics is modalities, which are provided by various sensors. Although the available sensors for

robotic systems often differ from the senses of humans, they fulfil the same role in understanding the

environment and interacting with it.

1.1 Arising need for combining modalities

Most work in deep learning focuses on vision or text only. Visual data can be interpreted quickly and

efficiently by humans, and it is also easy to acquire as cameras have become affordable and easy to use

for the public. It can condense a vast quantity of information in a universal way; hence, a diverse range

1



2 Chapter 1. Introduction

of methodologies can work with it. Although it may be the most comprehending modality, vision alone

is insufficient for many robotic applications and other autonomous systems. Since robots interact with

their environment dynamically, it is necessary to obtain visually non-observable information besides

that, for example, force and audio. With a force or tactile sensor, it can be easier to learn and precisely

control the interaction forces with the environment. The incorporation of multimodal approaches may

pave the way for novel research opportunities.

Training deep learning models requires a high amount of data. The internet provides an immense

amount of audiovisual records, making large-scale training achievable without data collection. On the

contrary, only a handful of multimodal datasets that contain modalities other than audio, vision, or text

are available to the public. The majority of robotic applications employ sensors apart from these three

modalities, raising the need to record new data and design models for this cause.

For instance, through vision only, models often fail to distinguish between tasks such as grasping

and squeezing, as the main difference lies in the applied pressure. Certain actions cannot be recognized

without proprioception, the sense of force, and body position. Proprioception plays a vital role in

the correct execution of everyday tasks as well. Opening a jar or popping a bottle requires adequate

force, which cannot be determined only through visual means. To this end, we consider that leveraging

multimodal data that extends from vision and text data would improve the grounding of models such

as Large Language Models (LLMs) with the real world.

1.2 Problem definition

We consider the problem of classifying the action a human is performing in a kitchen scenario based on

multiple sensory data. In our work, we propose to study the feasibility and performance of recognizing

human actions based on one or more modalities and observe if there is a benefit in using multiple data

streams to better capture and translate the embodied information for robots.

In the next step, the model gets extended with a decoder that transforms the encoded data into

another modality (e.g., video data into force) that can regress a modality from other ones. This could be

used for humanoid robots, allowing them to learn from demonstrations and mimic human movements.



1.2. Problem definition 3

Research question

Does combining modalities improve the transformer model’s understanding of human actions?

1. Does the classification improve compared to that of single modalities?

2. Can a multimodal transformer model distinguish classes that a unimodal one cannot?

3. Is it possible to extend the model with a decoder to infer a modality that is not part of the

input data?
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Chapter 2

Related Work

In this chapter, we review related studies in the field of machine learning. First, we show examples of

human action recognition tasks and discuss which modalities were utilized. Then, the attention mech-

anism of transformers and the encoder-decoder structure are discussed in detail. Finally, we examine

some relevant multimodal transformer models and compare them to our approach.

2.1 Human action recognition

Recognizing human actions is a crucial part of human-robot interactions. From a robotic point of

view, it can be used in autonomous navigation systems [5], surveillance systems [6], and many other

applications. Most works focus on RGB or grayscale videos, as humans mainly rely on perception when

observing the actions of others. Visual modalities, especially RGB videos, have been shown to be very

effective for this purpose in deep learning [3]. Besides vision, many other modalities can be utilized for

action recognition, such as skeleton pose [7] and audio [8].

To understand human actions, it may be insufficient to observe the momentary state of the human

in the environment. One needs to comprehend the evolution of the actions in time as well, which allows

one to gain knowledge on temporally progressive tasks. For instance, by observing a human grabbing

the fridge handle, one can not determine if the action is to close or to open the fridge. Understanding

this sequence of motion primitives allows for excelling in the corresponding action recognition. Human

motion and interactions with the environment must be leveraged to understand the action at hand.

Previous works for understanding actions proposed to model the sequential dimension of the data

by updating a representation that encapsulates the prior information. A Recursive Neural Network

(RvNN) [9] applies the same set of weights recursively on variable-sized inputs, to sum up the infor-

mation more compactly. This calculation is repeated until a single representation is achieved. A widely

known issue with RvNNs is the phenomenon of forgetting. At the end of a more extended sequence,

5



6 Chapter 2. Related Work

the information processed initially has little effect on the final result. To this end, Recurrent Neural

Networks (RNNs) were developed to gain more control over forgetting. The default choice for a RNN,

the Long Short-Term Memory (LSTM) [10], leverages the importance of the information stored in its

memory state in each recurrence. This results in a more successful way of merging sequence entries

into a common representation. Although an RvNN or an LSTM can recognize temporal progress [1],

they often perform poorly for complex patterns.

2.2 Action recognition with transformers

There are numerous other methods capable of action recognition based on sequential data. The reason

behind choosing the transformer [2] for this specific problem is that it has shown outstanding perfor-

mance for sequence modelling in different modalities like natural language [11], video prediction [12],

and image classification [13,14]. Although Vision Transformers (ViTs) [14] are bound to a single modal-

ity and are therefore unimodal, the way they process visual data and utilise spatio-temporal relations

can also be directly applied in a multimodal approach. Transformer-based models aim to solve the lim-

itations of prior approaches by using the attention mechanism to propagate information over time and

learn the relationship between the short and long data sequences.

2.3 The standard transformer

The transformer is a sequence transduction model first described in [2]. Sequence transduction is a

machine-learning problem where an input sequence is transformed into an output sequence that may

or may not have the same length as the input. Early transformers were implemented for language

modelling and machine translation with an autoregressive encoder-decoder structure. Later, they were

extended for classification [13] and segmentation [14] as well, suggesting that the model can solve

problems other than sequence transduction.

The core idea behind the transformer lies in the attention mechanism. The dot-product attention,

described in [2], is defined according to Equation (2.2) whereQ ∈ Rt×dk is the querymatrix,K ∈ Rt×dk

the key matrix and V ∈ Rt×dv the value matrix. The softmax function is applied row-wise, normalising

the attention values to [0, 1]. The sizes dk and dv are independent hyper-parameters, and t is the

number of tokens in the sequence. The keys, queries, and values are obtained by projecting input

tokens T ∈ Rt×d via dense layer (Equation (2.1)).
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Q = TWQ

K = TWK

V = TWV

(2.1)

attention(Q,K) = softmax
�
QK⊤
√
dk

�
head(Q,K, V ) = attention(Q,K)V

(2.2)

Instead of calculating Equation (2.2) once for each sequence, repeating it h times using different

weights is beneficial. This technique splits the attention calculation, allowing the model to focus on

more details. The sub-calculations are referred to as heads. Using multi-head attention, each head

i ∈ 1 . . . h has a unique linear projection layer with learnable weights for the inputs Qi, Ki, and Vi.

The resulting attention scores get concatenated and fed through an additional linear layer L : Rdl →
Rd. The concatenation requires the dimensions to be consistent, meaning dl = hdv . For a fixed dl,

increasing the number of heads does not cause additional computational burden.

The standard transformer [2] has encoder-decoder architecture (Figure 2.1) and performs sequence-

to-sequence modelling. On the other hand, only the encoder is needed for action recognition. The

encoder has l sequential layers, each consisting of two blocks: amulti-head attention and a feed-forward

block. Both of them have a subsequent residual connection and normalisation layers. The attention

block of the encoder takes the same input for calculating the queries, keys, and values, making it a

self-attention block. It focuses on the relations between tokens of the same input source.

The attention mechanism on its own does not take the order of tokens into consideration. One can

easily see that by applying a permutation matrix π to the sequence of projected tokensQ′ = πQ, K ′ =

πK , and V ′ = πV , the same permutation appears in the output sequence. Considering Theorems 2.1

and 2.2, the corresponding output of the permuted tokens is derived in Equation (2.3).

Theorem 2.1. The softmax function is permutation invariant. softmax (πX) = πsoftmax (X) as well

as softmax (Xπ) = softmax (X)π.

Theorem 2.2. Permutation matrices are orthogonal. π−1 = π⊤

head(Q′,K ′, V ′) = softmax
�
πQK⊤π⊤

√
dk

�
πV = πsoftmax

�
QK⊤
√
dk

�
π⊤πV = πhead(Q,K, V )

(2.3)

Although the permutation invariance of attention can be exploited for alternative models, e.g. the Set

Transformer [15], it raises the need for adding spatial or temporal awareness when solving problems
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in sequence transduction. Vaswani et al. [2] altered the encoder and decoder inputs using positional

encoding to address this issue. The positional encoding is added to the input tokens, changing each of

them differently. There are diverse methods to this end, some being learnable and others fixed. Many

implementations use sinusoidal functions of different frequencies, resulting in unique encodings at each

position.

Figure 2.1: The standard transformer from [2].

2.4 Image and video transformers

ViT [12,14] is a transformermodel specially developed forworkingwith visual data. The process begins

with splitting video frames into non-overlapping subsets called patches. This procedure reduces the size

of a single item, simplifying the encoder and enabling it to learn feature recognition more efficiently.

After that, the patches are flattened and prepended by a class token with the same dimension as the

embedding of a patch. Spatial information is added to the sequence using positional embedding, the

same way as it was introduced in the original Transformer [2]. This creates a spatial sequence of tokens

that the transformer can directly work with. The class token of the last layer is trained to represent the

entire image in one token.

In Video Vision Transformers (ViViTs), the data has temporal information, which in turn requires

more complex modelling. Numerous methods mentioned in [12] utilise the embedded spatiotemporal
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relations in videos. Each method aims to convert a given snippet of video data into a single token that

compresses relevant information. This requires the attention mechanism to match information along

the time axis with elements from the spatial axis. Due to the computationally expensive calculations

of this interaction, reducing the number of paired tokens by separating (factorising) the temporal and

spatial dimensions from each other is beneficial. This factorisation can happen at one of three encoding

stages: at the encoder level, in the self-attention blocks, or when computing attention scores. Arnab et

al. [12] have tested the computationally expensive spatiotemporal attention and three factorised models

on the Kinetics-400 [16] dataset and found the factorised encoder to achieve the highest accuracy in

classification while also being the quickest in the calculation.

To further reduce the high number of tokens, a so-called tubelet embedding can be implemented.

This embedding uses a 3D convolution to extract information from sequential patches in time. It sums

up several patches of fixed position and variable time into one patch. A more straightforward method

for reducing the number of tokens is sampling the frames at a fixed interval. In our implementation,

we choose the latter one.

2.5 Masked Autoencoder

Transformer encoders can be extended into an autoencoder by adding a decoder and training the model

to reconstruct missing parts of the original input. Such autoencoders yield high-level feature extrac-

tion, which makes them excel in downstream classification tasks [17] as well. A vision-based Masked

Autoencoder [17] has been found to require fewer epochs for training while outperforming similar

methods. Its computational efficiency lies in using only a small subset of inputs at once during pre-

training and having a relatively small decoder.

The Masked Autoencoder [17] is trained in two phases. During pre-training, a random subset con-

taining patches of the original image is masked (i.e. removed). The remaining patches with added

positional embeddings are encoded via a set of transformer blocks. Then, the encoded tokens are ap-

pended by mask tokens to represent missing data. Each mask token is a shared, learnable parameter

vector that receives the same positional embedding as actual data. The decoder then reconstructs the

missing tokens using tokens from the encoder. Finally, the last layer is a linear projection layer con-

necting the token space with the image space. After pre-training, the decoder is removed. The encoder

is slightly modified to perform a classification task in the second training phase, called fine-tuning. Ex-

periments show that the encoder can be frozen or trainable, the latter having improved recognition but

requiring more time for training [17]. Its output (the class token or the average of all tokens) is probed

with a new linear layer, fulfilling the recognition task.
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Our approach for a masked autoencoder differs from that of [17] since reconstructing the original

input would not be possible for some modalities.

2.6 Multimodal transformers

Recent studies have found different means of abstraction for multimodal problems. For instance, Im-

ageBind [18] provides a shared embedding space across six different modalities, and as a result, it

can perform cross-modal retrieval and zero-shot classification. It considers images, videos, text, audio

records, Inertial Measurement Unit (IMU) data, temperature, and depth maps. The ImageBind model

was trained on modality pairs consisting of a visual modality – image or video – and a second arbitrary

modality. The resulting network can recognize the connection between emerging pairs by binding them

through visual modality. For example, training the model on image-text and image-audio pairs enables

it to perform zero-shot audio classification using text prompts, even though it was never explicitly

trained on text and audio pairs. This ability is called emergent zero-shot classification.

Zhang et al. [19] improved upon existing works by proposing a Meta-Transformer that can han-

dle a wide range of tasks across 12 modalities. They highlighted a promising trend toward developing

unified multimodal intelligence with a transformer backbone. They emphasized the importance of sim-

ple networks such as Convolutional Neural Networks (CNNs) and Multilayer Perceptrons (MLPs) in

data tokenization. Contrary to our approach, they froze the parameters of the multimodal module and

trained the tokenizers only. The primary limitation of their model was the lack of temporal awareness.

This means that the model cannot process a temporal sequence of tokens (e.g., a video) in its entirety,

only individual frames. This makes the model ineligible for recognizing specific actions where tempo-

ral progress is crucial. Besides, embedding tokens for 12 modalities in parallel has caused a significant

computational burden, making it difficult to scale the model. Our approach factorizes the encoder,

which reduces computation and introduces an efficient form of spatio-temporal attention.

Multimodal neural networks differ in architecture regarding the exact way features of different

modalities interact with each other. There is no consensus regarding the correct way of modality fu-

sion, as a whole scale of various approaches is applicable [20, 21]. Xu et al. [20] indicated that existing

multimodal transformer models are superior only for specific Multimodal Learning (MML) tasks, as they

are designed specifically for only a subset of specific tasks, highlighting that the most significant chal-

lenge in universal modality learning is to find a level of generalisation that works for various inputs

while retaining modality-specific modules.
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2.7 Cross-modal inference

Observing the same action from different modalities carries a redundancy of information. This can

be useful for inferring missing data using other modalities, i.e., sensors that do not directly measure

the data of interest. In most prior works, IMU data is inferred from vision. This can be achieved by

projecting the shared information of distinct modalities onto a shared manifold [22]. The manifold al-

lows the model in [22] to understand the connection between modalities such as tactile force and video,

achieving bidirectional interference. Similarly, humanoid pose and force can be inferred as well [23].

Our work differs from these models as it has multiple input modalities inferring a single output.

Cross-modal inference can appear in various robotic applications, including teleoperation [24], and

it has been shown to improve object recognition as well [25]. Since gathering information frommultiple

input modalities enhances the capability of object recognition [25], we pursue the same technique for

an action recognition task. Some prior works use zero-shot classification [18, 25] to show the benefit

of multimodal models. As the dataset our model is trained on is relatively small, we do not aim for

this. Instead, the accuracies are compared to that of a vision-based model to quantitatively measure the

capabilities of multimodal models.
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Chapter 3

Methodology

This section provides insight into the architecture of the models and the utilized dataset. First, we

explain the data structure and visualize the different modalities. A precise data structure description is

necessary to define the desired input shape and the conducted preprocessing. Then, we introduce the

action recognition objective and discuss the identified tasks. We proceed with outlining the different

architectures and give a detailed, reproducible description of the modules. This involves a comparison

of fusion methods for classification, as well as an explanation of modality inference with a decoder.

Finally, we discuss the training procedure and provide details about implementing our ablation study.

3.1 Dataset

We consider the ActionSense dataset [1] as it contains various sensory data like body and finger track-

ing, muscle activity, tactile, audio, and video data from different perspectives in a kitchen scenario

where a person performs simple tasks. The reason behind choosing this particular dataset is that food

preparation and corresponding household chores are some of the most desired topics in the field of

automation and robotics. The modalities of [1] enable the transformer to capture the same tasks via di-

verse sensors and recording devices. We expect this to help the model find relations between modalities

and thus improve its understanding of human actions.

DelPreto et al. [1] used carefully selected preprocessing mechanisms to create feature vectors from

internal sensor data. This involves filtering out noise and resampling the data with a uniform sam-

pling frequency fs for all modalities except audio (See Section 3.1.4 to understand why audio data is

treated differently). We follow the same procedure during the experiments to ensure a feasible baseline

comparison.

At the time of writing, ActionSense contains a total of 5 subjects, most of which perform 20 different

actions. Without calibration, the unsegmented recording for a single subject lasts around one hour. The

13
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dataset is imbalanced regarding the length of segments in each class. While extracting feature vectors

from raw data, over- and undersampling are applied to balance classes. The sampler imports a fixed

number of segments nseg of length Tseg for each class. The resulting dataset has an equal number of

instances for each class and each subject. This way, the classification accuracy is more reliable as a

metric for recognizing actions since all actions are prioritized equally.

The five modalities can be split into two categories. The human pose sensor, the muscle activity

sensor, and the tactile force sensor are internal sensors collecting data about the subject’s state. The

other group collects information about external observations: audio and video data characterize actions

in the environment and the state of surrounding objects.

In the publication [1] about the previously mentioned dataset, the authors have trained an LSTM on

some of the acquired data (force, Electromyography sensor (EMG), and body skeleton). Their approach

serves as a baseline for our metrics. Since there was a significant error in their validation, the baseline

results of the LSTM are recalculated here and do not match the results reported in [1].

3.1.1 Tactile force sensor data

The ActionSense dataset [1] introduces a custom tactile sensor. This sensor measures the force applied

to the hands of the subject. The features resulting from a single measurement are stored in a 32 × 32

matrix for both hands. Following [1], the matrices are aggregated to reduce their high dimensionality.

The matrix gets split into 8×8 sub-matrices for the aggregation. Each sub-matrix is represented by the

mean of its elements, resulting in a scalar. By stacking the aggregated scalars and concatenating left

and right sides, we create feature vectors of length 32, formalized in Definition 3.1. They are normalized

to [−1, 1] to enhance interpretability for our network.

F (t) ⊂ �
t → x ∈ R32 | x = (xi), xi ∈ [−1, 1]

�
(3.1)

3.1.2 EMG data

The dataset uses [1] Myo armbands to record muscle activity. Each armband consists of eight EMG

sensors and is placed on each arm of the subject. EMG sensors characterize muscle activity as voltage.

Similarly to other modalities, we follow the practices described in [1] to create feature vectors from the

voltage. First, the absolute value is taken to represent muscle activity. Then, noise is filtered out with a

cutoff frequency of fc = fs/2 using a 5th order Butterworth filter. The filtered data is resampled with

fs to stay consistent with the sampling theorem [26]. Similarly, as with the force sensor, the feature

vectors (Definition 3.2) are normalized and concatenated. Some examples of muscle activity along with

the force sensor are visualized in Figure 3.1. Note that Figure 3.1 shows the overall activation since
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plotting all vector elements separately would be unintelligible to humans. The overall activation is

calculated by taking the vector norm of the features and normalizing it to [0, 1] along the time axis.

E(t) ⊂ {t → x ∈ R16 | x = (xi), xi ∈ [−1, 1]} (3.2)
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Figure 3.1: Sample snippets of Slicing cucumbers as viewed from the muscle activity sensor and tactile
force gloves. Source: [1]

.

3.1.3 Body tracking sensor data

The Xsens body tracking sensor records the orientation of 22 body joints. Each orientation is repre-

sented by a rotation angle around the x, y, and z axes in degrees from −180◦ to 180◦. The measure-

ments are resampled with fs and normalized to lay between −1 and 1. The joints are visualized in

Figure 3.2 to gain a better understanding. Considering that the exact anatomy (relative location of the

segments and their length) has to be defined to create a skeleton image from joint angles, the data used

for visualization is not equivalent to the actual features. The anatomy is only added to the figure.

In addition to the body joint orientations B(t) (Definition 3.3a), the dataset also contains records

of finger joints (Definition 3.3b). This part of the data has the same angle format as the body tracking

sensor but was recorded with a different device. The orientation of 19 joints per hand was recorded

with a Manus finger tracking tool.
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B(t) ⊂ {t → x ∈ R66 | x = (xi), xi ∈ [−1, 1]} (3.3a)

BF (t) ⊂ {t → x ∈ R180 | x = (xi), xi ∈ [−1, 1]} (3.3b)

Figure 3.2: Example of a body pose skeleton for Spreading almond butter on a bread slice

3.1.4 Audio data

The dataset has two mounted environmental microphones, shown in Figure 3.4; one is located at the

sink (M2) and the other over the table (M1). We include both of them in our ablation study.

As raw audio data has a significantly higher sampling rate (fs,Audio = 16 kHz), we first transform it

to the frequency domain using mel-scaled filter banks [27]. The resulting time-frequency distribution

represents the information more compactly by converting the waveform from the time domain to a

two-dimensional feature space. To this end, nf bandpass filters are applied to the waveform indepen-

dently, resulting in nf sub-banded signals. These signals get divided up using Hamming windows [28]

at fixed time interval tH . A Fast Fourier Transform (FFT) is applied to the segments, resulting in a

spectrum for each frequency bin. Finally, the spectra are converted to intensities by summing over

their absolute values. The resulting spectrograms have two dimensions, one representing the time and

one the frequency axis. Hyper-parameters of the data loader are set following ImageBind [18]. Hence,

the imported segments are divided into sub-segments of length TIB, resulting in fewer data points per

segment than other modalities. The spectrograms are normalised to zero mean x = 0 and unit variance

σx = 1 (see Definition 3.4). Some examples of a spectrogram are displayed in Figure 3.3.

A{Sink, Tab}(τ) ⊂ {τ → x ∈ R128 | x = 0, σx = 1}, where τ = ⌊t/10ms⌋ (3.4)
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Figure 3.3: Three spectrogram snippets of performing the task of Slicing potatoes. These examples were
recorded with the sink microphone. Light colours represent high intensity in frequency.

Figure 3.4: Placement of the environmental cameras in the recording space. M1-2 denote the micro-
phones, and C1-5 the cameras. Records of the depth camera were not published. Source: [1]

.
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3.1.5 Video data

The dataset contains the recordings of one egocentric camera placed on the subject’s head and five

environmental cameras around the kitchen (see C1-C5 in Figure 3.4). We only consider the cameras

C2, C4, C5, and the egocentric camera for our experiments. Cameras C1 and C3 are discarded as they

have similar viewing angles as C2 and C4 and would not provide new information. Camera number 5

is referenced as the Table camera (Tab), as it records the kitchen table from above. Example images are

shown in Figure 3.5. Some videos of the egocentric view have a green dot representing the human’s

gaze overlaid on the video footage, while some lack this information. We choose the one without gaze

overlay in cases where both versions are available.

All videos are sampled down to 5 frames per second to reduce computation time and storage space.

The actions considered do not have any highly dynamic movements, and we do not oversee any loss of

information caused by this transformation. The feature tensors VEgo(t), VC2(t), VC4(t) and VTab(t) are

described by Definition 3.5.

V{Ego, C2, C4, Tab}(t) ⊂ {t → x ∈ R224×224×3} (3.5)

Figure 3.5: Sample video frames of Setting table. Top: egocentric camera. Bottom, left to right: envi-
ronmental camera No. 2 and 4.
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3.2 Human action recognition

The performed activities of [1] were carefully selected to contain simple and complex tasks with various

objects. For example, Spreading jelly or ∼ almond butter on bread are simple actions for which the

movement is similar but can be performed with two different objects. On the other hand, Setting the

table and Stacking plates on the table are more complex tasks involving the same items, where the only

difference lies in the placement of the dishes.

The dataset makes it possible to distinguish labels on two levels, resulting in 20 or 10 labels. We call

them detailed and general actions, respectively. Recognising the detailed actions requires understand-

ing the time evolution and the objects involved. In this case, Loading the dishwasher and Unloading ∼
are separate classes. By looking at a single frame of the record, it is impossible to distinguish these two.

One needs to consider at least a few seconds of the recording to observe how the action advances and

see whether the dishes go in the dishwasher or are being taken out. A complete set of the classification

labels is listed in Table 3.1. The abbreviated code for each is noted in parentheses.

Among detailed actions, there are four cleaning-related tasks, as the labelling distinguishes two

tools – sponge and towel – and two objects – plate and pan. Both have to be recognised accordingly

for a correct classification, which can be difficult for some modalities. For instance, using a skeleton

pose only makes it challenging to see whether the object being held is a plate or a pan. To simplify

classification, a more generalised listing of human actions is defined. These labels no longer distinguish

the objects; the focus shifts to the movement itself. Using general classification reduces the number of

distinct labels to half. The corresponding general label can be easily found by removing the digit from

the code of the detailed label.

Using the segmentation described in Section 3.1, the training split consists of 1580–1600 and the

validation split of 380–400 items1. Cross-validation enables all 1990 segments to contribute to the

final metrics, yet it is still only a fraction of the dataset size other transformer models were trained on.

Therefore, we expect modalities enhanced with a backbone to overfit less and perform significantly

better than those where all parameters were trainable.

3.3 Model architecture

Multimodal models have to be designed to be compatible with different modalities. The first step is

to bring feature vectors of various shapes closer together by creating a uniform token format. These

tokens then get fused together using a transformer encoder that considers both the time evolution and

modality-specific information embedded in the tokens. The fusion can be carried out at different levels,
1The varying size is due to subject S00 not performing the task of Clearing the cutting board.
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№ Detailed action № General action

1. Peeling cucumber (P1) 1. Peeling (P)
2. Peeling potato (P2)
3. Slicing cucumber (S1) 2. Slicing (S)
4. Slicing potato (S2)
5. Slicing bread (S3)
6. Clearing cutting board (CB) 3. Clearing cutting board (CB)
7. Spreading almond butter on a bread slice

(B1)
4. Spreading on bread (B)

8. Spreading jelly on a bread slice (B2)
9. Opening and closing a screw-top jar (JA) 5. Open/close jar (JA)

10. Pouring water from a pitcher into a glass
(WA)

6. Pouring water (WA)

11. Cleaning plate with sponge (C1) 7. Cleaning (C)
12. Cleaning plate with towel (C2)
13. Cleaning pan with sponge (C3)
14. Cleaning pan with towel (C4)
15. Getting items from refrigerator, cabinets or

drawers (G1)
8. Fetching items (G)

16. Getting items from cabinets: 3 each
large/small plates, bowls, mugs, glasses,
sets of utensils (G2)

17. Setting table: 3 each large/small plates,
bowls, mugs, glasses, sets of utensils (T1)

9. Table tasks (T)

18. Stacking on the table: 3 each large/small
plates, bowls (T2)

19. Loading dishwasher: 3 each large/small
plates, bowls, mugs, glasses, sets of uten-
sils (D1)

10. Dishwasher tasks (D)

20. Unloading dishwasher: 3 each large/small
plates, bowls, mugs, glasses, sets of utensils
(D2)

Table 3.1: Comprehensive list of human actions in ActionSense [1].
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of which two are considered in this case: early and late fusion. The exact way of modality fusion is

discussed in Section 3.3.4. Finally, the encoder’s output is fed through a linear layer responsible for the

classification objective.

While the main objective remains to assess the use of multimodal data, the model can also work

with unimodal inputs. In this case, modality fusion is dropped while other modules remain unchanged,

including all hyperparameters and embedding sizes. The ablation study of the unimodal model is dis-

cussed in Chapter 4, while Chapter 5 evaluates the use of multimodal data.

3.3.1 From feature vectors to tokens

The original Transformer described in [2] is implemented mainly for textual inputs. Further steps

are necessary to extend it to the various modalities of [1]. Since the input tokens of the multimodal

encoder must have the same embedding size, the uniformly sampled feature vectors of the sensor data

get projected into a new vector that has an equal shape among all recording devices.

Internal sensor features – namely body skeleton pose, tactile force, and EMG data – are projected

into an embedding of size d using a linear layer. This embedding size is chosen to be compatible with

the visual modality, as the transformer encoder requires all inputs to have the same dimension.

Unlike internal sensors, audio data needs special preparation. Each segment of the audio spectro-

gram (see Figure 3.3) gets split into patches of a given shape PIB. The resulting patches get encoded

using the ImageBind [18] multimodal transformer model as the backbone. Out of the seven modalities,

only the audio processing module is taken. ImageBind [18] was trained on Audio Set [29], a large-scale

dataset of manually annotated audio events. They utilised one of its subsets containing 4, 971 hours

of audio records. They segmented data into snippets of length TIB, and we follow the same practice to

stay consistent with that. The encoded tokens have a different dimension than those of other modali-

ties. Therefore, a linear projection layer dIB → d is applied to the data before encoding it again in the

multimodal module.

Besides the audio encoder, ImageBind [18] also has a module for visual data, but it has 632 mil-

lion parameters, which would increase model overfitting more than smaller models. Instead, we use

the DINOv2 [30] for the backbone of the visual modality. It is a robust feature extractor trained on

the ImageNet dataset of 14, 197, 086 images. Internally, the model functions as a ViT. Therefore, its

structure is highly similar to the rest of our model. The backbone implementation already includes an

algorithm that splits each video frame into patches, which we do not modify. The only preprocessing

is cropping and resizing the frames to satisfy the default DINOv2 [30] configuration and normalising

them to ImageNet’s mean and standard deviation. This modality does not need a projection layer, as
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the token size d of the multimodal encoder was set to have the same embedding size as the ViT. A

visualisation of how patches are extracted out of video footage is shown in Figure 3.6.

𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4

𝑥1,5

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4

𝑥2,5

𝑡

Figure 3.6: Cropping and splitting a uniformly under-sampled video into patches where xi,j denotes
the jth patch of the segment’s ith frame. The displayed action is Cleaning plate with a sponge.

We do not optimise the weights of ImageBind and DINOv2. This reduces the number of learnable

parameters and makes the model less prone to overfitting. Using pre-trained backbones speeds up the

training and reduces computational burden during optimisation.

3.3.2 Transformer encoder

After creating tokens from raw data, they get passed to the encoder. As mentioned in Section 2.3, the

encoder requires token embedding to preserve positional information due to the permutation-invariant

calculations in the attention module. Therefore, a fixed, sinusoidal embedding is applied before pro-

cessing a temporal sequence of tokens. Learnable embeddings are additionally used if the sequence

contains tokens of different modalities. Embedding tokens is achieved by tensor addition, which is a

commutative operation. Different types can combined by applying them sequentially, regardless of ex-

ecution order. Combining embeddings this way alters each token uniquely, depending on the modality

and the timestamp it represents.

Before the actual encoding, the token sequence gets prepended with a class token. The class token’s

purpose is to summarise the information from the sequence of tokens. For the encoder, we use l layers

of attention blocks equipped with h self-attention heads [2] to capture and understand the relationships

between the input features. The output of each encoder is the class token; other tokens are discarded.
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3.3.3 Masking the encoder

The attention scores described in Section 2.3 correspond to the relevance of a token in the sequence at

hand. The attention score can be forced to 0% by setting the key-query pair to negative infinity before

applying the softmax function. This process, named masking, can be helpful in various cases. It makes

the model focus more on the remaining tokens and acts as a powerful form of regularisation if applied

stochastically. Our implementation generates masks separately for each element of the batched input.

This mask then gets passed to the attention blocks of each head and each layer in the encoder. The

masks are added to the query-key product before applying the softmax function.

3.3.4 Modality fusion in the encoder

The art of combining different modalities is a long-standing challenge in deep learning communities.

Here, we consider two different procedures for fusing tokens of separate modalities in the same atten-

tion block. On one hand, in early fusion, the temporal sequence of each modality gets stacked together

before encoding. This happens immediately after creating tokens from features and equipping them

with modality and time embedding. This fusion method has only one class token, summarising infor-

mation along the time axis and among modalities. After adding the class token, the sequence consists

of m · fs · Tseg + 1 tokens where m denotes the number of modalities. A block diagram of this fusion

method can be seen in Figure 3.7.

On the other hand, in late fusion, each modality has a separate encoder. The first block of encoders

processes information along the time axis, focusing on one modality at a time. Each of the m encoders

works with fs · Tseg tokens and an additional class token that is not shared among modalities. After

the first block of encoders, only the class tokens are passed to the final block. They are stacked into a

sequence where modality embeddings and a new class token are added. The second block consists of

a single encoder. An overview of the multimodal transformer model in this configuration is displayed

in Figure 3.8.

3.3.5 Classification layer

The encoder alone does not provide classification labels. To this end, the encoded class token gets fed

through a final linear layer followed by a softmax activation function that provides a confidence score

for each class. Each prediction sums up to 1, and the score with the highest value is the predicted class.

One item results in a tensor of size NC , where NC denotes the number of classes.
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3.3.6 Decoder

Different modalities view the same action from different feature spaces and, therefore, correlate with

each other. This particularly applies to internal modalities: muscle activity always results in force, and

physical force requires muscle movement. The redundancy can be used to infer (reconstruct) a selected

modality from other modalities.

Modality inference is a self-supervised sequence modelling task. Most implementations for this

problem use an encoder-decoder structure. The encoder extracts relevant information from the input

features, creating a new representation in a latent space. The decoder then takes tokens from this latent

space and outputs features of the desired modality (in this case, tactile force). Both the encoder and

the decoder consist of attention blocks [2], although the decoder is usually shallower [17] (has fewer

layers).

Our early fusion encoder receives tokens from different modalities. Therefore, both modality and

positional embedding are applied. These tokens are forwarded to the decoder after l layers of encod-

ing. Additionally to the encoder outputs, the decoder receives another set of tokens, namely the mask

tokens. After decoding, these tokens represent the inferred modality. The decoder aims to match these

tokens to the corresponding timesteps determined by the positional embedding. The embedding of

the decoder is identical to that of the encoder. A linear layer ensures the output has the exact dimen-

sions and value range as the original input features. The detailed structure of the model is displayed in

Figure 3.9.

3.4 Training the model

The model is trained using the AdamW optimiser [31] in PyTorch. We use a cosine learning rate sched-

uler starting at η0 with ne,w warm-up epochs and descending to ηend following a sinusoidal curve. The

default configuration is set up without applying regularisation techniques. Data gets loaded in batches

of size B. We choose the cross entropy formula as the loss function. Since the dataset is balanced

regarding the number of instances in each class, we do not enforce an additional balancing strategy in

our loss terms. The training is performed with ne epochs. Details about the training implementation

are given in Table 3.2.

Classification metrics are obtained using cross-validation. Out of the five complete subjects in the

dataset, four are used for training, and the remaining one is held out for the validation set. This training

process is repeated for all subjects, with a different validation subject each time. The resulting metrics

are averaged to avoid bias caused by the subjects. The model with the lowest loss is selected to be the

final model of the training session.
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At first, unimodal (single-modality) models are trained, allowing us to study action recognition

independently. These models are only for the sake of evaluation. Similarly to unimodal models, multi-

modal ones are trained from scratch, allowing them to learn a different feature extraction strategy from

the unimodal ones.

Our early fusion model has 7.45 million of learnable parameters, and the late fusion model has

42.9 million. The DINOv2 and the ImageBind modules have 22.1 and 85.4 million parameters, respec-

tively, which remain frozen.
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Data loader hyper-parameters

Number of segments nseg 20
Segment length Tseg 10 s
ImageBind snippet length TIB 2 s
ImageBind patches PIB 16× 16 with

an overlap of 6
Filter bank frequency bins nf 128
Hamming window spacing tH 10 ms

Model hyper-parameters

Uniform token size d 384
ImageBind token size dIB 768
Number of attention layers l 4
Number of attention heads h 4

Training hyper-parameters

Moving average parameters β (0.9, 0.999)
Constant for numerical stability ϵ 10−8

Number of epochs ne 20 for classification,
10 for inference

Warm-up epochs ne,w 5 for classification,
1 for inference

Initial learning rate η0 10−5 for classification
10−4 for inference

Final learning rate ηend η0/100
Batch size B 16

Table 3.2: Implementation details
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Chapter 4

Unimodal Action Recognition

Instead of training the multimodal transformer model with all data at once, it is practical to first look

into the results for single modalities and check for feasibility. This serves as a comparison base and

provides information about the data itself. If one of the validation metrics does not get significantly

better than random guessing, it indicates that the model cannot find learnable patterns in it.

Unimodal classification also gives an insight into the capabilities of transformer models, indicating

the complexity of the different action granularities and modalities. We compare our results to the

baseline, which uses an LSTM model for temporally aggregating the features, to showcase the benefit

of a transformer model.

4.1 Internal sensors

The baseline and our model are trained and evaluated using the same data loader for a fair compari-

son. The transformer model outperforms the ActionSense baseline in all of its modalities. It shows an

accuracy higher by 8.7% in the detailed and 10.8% in the general classification for the internal sensor

modalities displayed in Figure 4.1. The most significant difference between the two models appears in

the force modality in both classification objectives.

By examining confusion matrices, one can find the strengths and weaknesses of each modality. For

example, the force modality transformer is better at recognising objects in Peeling and Slicing tasks;

meanwhile, the body pose is suited better for actions where the subject is Fetching items or Setting

table. This reinforces our motivation that a combination of multiple modalities is needed to exploit

data to its full potential. Some subsets of the confusion matrices are displayed in Figure 4.2.

29
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4.1.1 Common sampling frequency

The baseline [1] implementation uses a sampling frequency of fs = 10 Hz for the internal modalities.

Before introducing the external modalities to the model, a simple test is conducted to see whether the

sampling frequency can be decreased without causing data loss.

Training transformer models is a computationally expensive procedure. Decreasing sampling fre-

quency reduces input data size proportionally and spares computation time. Since the involved kitchen

tasks do not contain high-speed movement, the sampling frequency was reduced from 10 Hz to 5 Hz.

The classification objective was tested for all internal sensors to show that it does not filter out signif-

icant information from sensor data.

For the force and body pose models, reducing sampling frequency has improved detailed action

recognition by 1–5% and general by 3–7% (See Table 4.1 for exact values). This phenomenon is likely

attributable to dimensionality reduction achieved by downsampling. Consequently, the model overfits

less, causing validation accuracy to increase.

Table 4.1: Validation accuracies for subject S00 using different sampling frequencies for internal sensor
data. In the last row, Δ denotes the difference between the two options.

fs Detailed accuracy in % General accuracy in %
Force EMG Body Force EMG Body

10 Hz 32.11 34.47 44.08 50.79 59.08 77.50

5 Hz 36.97 32.50 45.66 57.89 55.79 80.66

Δ +4.86 −1.97 +1.58 +7.10 −3.29 +3.16

4.1.2 Body and finger skeleton pose

As mentioned in Section 3.1.3, the dataset [1] also contains records of finger joint orientations. These

were excluded in the baseline calculation and added only for this section. The results of this test are

displayed in Table 4.2. Since adding them made validation accuracy drop by 2–5% and only caused

overfitting, finger joint orientation data was removed from later tests. Further experiments are carried

out using information about body joints only.

4.2 External sensors

External sensors of the dataset [1] involve microphones for recording audio signals, cameras mounted

at fixed positions in the environment, and an egocentric camera placed on the subject’s head. Unlike

wearable sensors from Section 4.1, there are no published results at the time of writing that could serve
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Table 4.2: Comparison of training the model on body joint orientation angles only or body and finger
joint orientation angles.

Skeleton type Detailed accuracy in % General accuracy in %
Training Validation Training Validation

Body only 83.49 32.88 93.77 56.16

Body and finger 89.59 30.82 94.64 51.00

Δ +6.10 −2.06 +0.87 −5.16

as a baseline. Since implementing an LSTM for these modalities is out of the scope of this thesis, the

only comparison basis is provided by the metrics of other modalities.

Of the four cameras our ablation study involves (Figure 3.4), the egocentric camera has the best view

for recognising actions. It was followed by the C4 and the table camera with roughly the same accuracy.

Although the egocentric camera has high potential, it is not eligible for multimodal experiments. Firstly,

it has been found to have a ±2 s delay compared to other modalities. This is due to an issue that the

authors of the dataset did not record timestamps for the egocentric camera. Secondly, as the egocentric

camera has high accuracy on its own (95% for recognising general actions), there is little room for

improvement. The cross-validation accuracy of external sensors is displayed in Figure 4.3.
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4.3 Discussion

Although the results present high variance depending on the modality used, we consider all of them

relevant to enhance the multimodal approach. Each test results in a cross-validation accuracy signifi-

cantly higher than random guessing.

The most accurate classification is achieved using the egocentric video, followed by the two cam-

eras mounted in the environment. The high potential in visual data is that perception carries all the

necessary information to distinguish the tasks of the dataset at hand. It records the movement of the

human as well as the objects in the environment. Recognising the objects used during execution by

their shape and colour gives plenty of information about the task itself.

Using audio only, the model can identify 46% fewer actions than its visual alternatives. Audio alone

seems less informative than vision but more informative than the internal sensors. An important detail

must be addressed when comparing the metrics of internal and external sensors: The latter is imple-

mented using pre-trained backbone networks. As described in Section 3.3.1, backbones can enhance

the model significantly, especially if trained on more extensive datasets. This may be a significant

contributing factor to the high classification accuracy of external modalities.

Internal modalities (muscle sensor, tactile force sensor, and body skeleton pose) are less suited for

unimodal recognition, although significantly better than random guessing. Besides that, they provide

insight into the capabilities of the attention mechanism in sequence modelling. It overperforms the

LSTM baseline in all tested modalities. The most considerable improvement (12.7% in the detailed

accuracy) is achieved using the force modality. Force sensor data is challenging to interpret, even for

humans, and the LSTM network seems to overlook some essential patterns that the attention mecha-

nism can recognise and take advantage of. The difficulty of action recognition based on this modality

lies in the fact that force sensors do not provide any information about the pose of the human or the

shape and colour of the objects the subject interacts with. Therefore, it is much harder to identify the

object categories that take part in the actions.

The aforementioned results encourage the need to train a multimodal model that leverages pose,

images, audio and EMG to improve the results.
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Chapter 5

Multimodal Action Recognition

The results collected in Chapter 4 support the claim that transformers excel in understanding the time

evolution of actions. The next step is to test whether this model can deal with multiple modalities

simultaneously. Testing multimodal models provides the central part of this thesis, testing the possibil-

ities of comprehending the embodied information in the connection between modalities. This chapter

comprises an ablation study of the multimodal transformer encoder defined in Section 3.3.

Testing all 26 possible combinations is out of the scope of the thesis since one training session can

take up to 9 hours. Instead, the experiment begins by testing modality pairs and evaluating them to see

if the combination has any advantage. Then, existing pairs are extended with further modalities, such

that after adding a new modality, the new metrics are always compared to those before. This way, we

create multiple checkpoints to examine the influence of each modality in a multimodal approach. Since

classification based on visual perception is a powerful tool on its own, it is interesting to exclude this

modality from some of the experiments.

5.1 Ablation study

The ablation study compares uni- and multimodal models based on their understanding of human

actions. We measure the action recognition ability of models by classification accuracy and confusion

matrices, both acquired via cross-validation. Similar to the unimodal tests of Chapter 4, the metrics are

calculated on two levels.

Multiple models are trained on each combination of modalities: the transformer using early- and

late fusion and the baseline (if available). Our baseline, the LSTM from [1], uses late fusion. On the

other hand, no baseline model for early fusion has been published for the studied dataset at the time of

writing. The LSTM cannot be changed to early fusion since it is unsuitable for two-dimensional (time

and modality) sequence modelling.

35
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Comparing uni- and multimodal models is an essential part of the thesis. We introduce a new metric

for this cause, called multimodal advantage. This metric is defined as the increase in cross-validation

accuracy of a multimodal model compared to the best-performing unimodal counterpart. It can be

calculated for both classification tasks, detailed and general.

adv(S) := acc(S)−max
M∈S

acc(M) (5.1)

S denotes an arbitrary set of modalities, acc(X) is the cross-validation accuracy of the model based on

X . The result, adv(S), is the multimodal advantage achieved using the modalities of S.

5.2 The combination of tactile force and body skeleton pose

The first modality pair consists of tactile force and body skeleton pose. It is considered a meaningful

combination since their unimodal counterparts had differing strengths. As the confusion matrix of

Figure 4.2 has shown, the force modality performs better at distinguishing objects in Peeling and Slicing

tasks; meanwhile, the body skeleton modality classifies Fetching items more accurately. Despite their

different scores for some classes, the overall accuracy of the two unimodal models mentioned shows

substantial similarity. The difference is only 0.58% in the detailed classification objective.
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Figure 5.1: Multimodal force and body skeleton models using different fusion methods compared to
their unimodal counterparts and the baseline.

The cross-validation accuracy of this modality pair is displayed in Figure 5.1. For the detailed

classification task, the model with early fusion achieves a multimodal advantage of 7.76% compared

to the best unimodal model and 10.9% with late fusion. Both options show a higher growth than the
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baseline with its 1.26%. Prediction of the general labels has similar results, 10.2% and 12.8% for early

and late fusion and 1.02% for the baseline.

A more elaborated way of evaluating predicted labels can be achieved via confusion matrices. Fig-

ure 5.2 compares the two multimodal models with the unimodal ones of this pair. These matrices show

the general classification objective, hence the unequal number of instances per class.

5.3 Multimodal model of internal sensors

An ablation study for two internal modalities is described in Section 5.2; the only difference in this

experiment is the model being extended to process EMG data as well. The results are compared to the

unimodal classification and the modality pair of the previous experiment to show that adding a third

modality improves its understanding of human actions. A diagram comparing fusion methods based

on detailed and general action recognition can be seen in Figure 5.3.

Force EMG Body Early
fusion

Late
fusion

0

10

20

30

40

50

60

70

80

Cr
os

s-
va

lid
at

io
n

ac
cu

ra
cy

in
%

20
.75

17
.07 24

.81

24
.4833

.46

22
.39 32

.88 41
.94 47
.63

Detailed

Force EMG Body Early
fusion

Late
fusion

0

10

20

30

40

50

60

70

80

34
.84 38
.17 46

.24

40
.98

51

44
.5 56

.16 68
.92 73
.76

General

LSTM
Transformer

Figure 5.3: Multimodal internal sensor models using different fusion methods compared to their uni-
modal counterparts and the baseline.

In this experiment, the transformer achieves a multimodal advantage of 14.2% (17.6% in general

classification) with late fusion being the superior method. Both the early and the late fusion models

surpass the accuracy of the model in Section 5.2 (by 0.72% and 3.28%, respectively), which shows that

adding a thirdmodality to the model enhances its classification ability. On the other hand, the baseline’s

accuracy decreases. Thismeans that themultimodalmodel performsworse than the best of its unimodal
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counterparts. Opposed to the transformer, the LSTM cannot take advantage of an additional modality

and improve its understanding of actions.

5.4 The combination of tactile force and vision

Internal and external sensors view the same tasks from a different perspective. Combining modalities

from both categories can be a valuable approach for a multimodal encoder. This new pair consists of

the tactile force and the table camera modalities. Regarding accuracy, there is a big gap between the

corresponding unimodal models. The video encoder recognises around twice as many actions as the

force encoder. Therefore, this combination introduces a new challenge for the multimodal transformer

model: combining modalities of different strengths.
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Figure 5.4: Multimodal models fusing tactile force and vision compared to the unimodal counterparts.

Although the ablation study shows a positive multimodal advantage of 6%, it does not achieve the

increase measured for combining internal sensors. The force modality provides only a little information

that is not contained in the videos. See Figure 5.4 for a visualisation.

It must be noted that the closer an accuracy is to 100%, the more difficult it is to achieve further

improvement. Since the vision-based unimodal models have the highest accuracy, the multimodal ad-

vantage of tasks involving vision may seem low. However, it does not mean that adding vision to

multimodal models has little advantage. Higher unimodal accuracy means less room for improvement,

causing the multimodal advantage to appear as a smaller value.
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5.5 Multimodal model using all five modalities

This section comprises an ablation study for the default multimodal encoder using all five modalities

of the ActionSense dataset [1]. Figure 5.5 shows the action recognition capabilities of the multimodal

model using simple early and late fusion. Although there is a clear multimodal advantage, there is still

room for improvement. The results suggest that both fusion methods have the same potential, as they

are highly similar in accuracy.

The model using force and vision only (Figure 5.4) performs better in validation than the one using

all five modalities (Figure 5.5). This demonstrates that adding modalities can result in stronger overfit-

ting. The reason for that is the increased redundancy of information: newly added modalities embed

the same information while simultaneously expanding the dimension of features. Overfitting raises the

need for regularisation techniques like masking.
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Figure 5.5: Fusion of all modalities.

Previous experiments show increased accuracy compared to the corresponding unimodal models

and a clear advantage of vision compared to other inputs. This experiment can only reinforce the

earlier findings, meaning that the capability of multimodal action recognition is highly dependent on

the visual inputs. Comparing attention scores can provide further insight into the relative importance

of modalities.
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5.5.1 Attention scores

A mathematical formulation for the attention mechanism of transformers [2] is thoroughly discussed

in Section 2.3. Attention score refers to the result of Equation 2.2. Besides being a necessary weighting

tool for sequence modelling, it can be used to compare the influence of each modality on the final class

token.

The multimodal model with late fusion separates the time evolution from the modality fusion,

allowing us to compare modalities without time dependency. As the tokens pass through the encoder

layers, the embedded information is gradually transformed into the class token. This process can be best

described by calculating the average over the heads and layers of all attention blocks and extracting the

row corresponding to the class token. Figure 5.6 shows the mean attention score grouped by ground-

truth labels. Results show that videomodality alone getsmore attention than all other tokens combined.

Other modalities scored around 1%, with the tactile force being higher. The learnable parameter that

serves as the initial class token is of little importance, as it does not accumulate any information about

the inputs.

Although attention scores do not deviate much from class to class, there are notable differences.

The model relies more on internal sensors for Peeling and Slicing tasks; meanwhile, muscle activity

helps more in recognising Pouring water. All three of them involve precise hand movement. The video

modality is high for all classes without exception but is the highest for Spreading something on bread.

That is because jelly and almond butter cannot be distinguished without vision. Colour is the only cue

in that case, as the dataset lacks a taste sensor.

The attention scores show a high dependency on the visual modality. Other modalities get only

a small fraction of attention, meaning that the model benefits only little from non-visual inputs in its

current form. This suggests that the model does not exploit multimodal data to the fullest. A possible

way to improve the understanding of multimodal inputs can be achieved by stochastically masking

tokens during training.

5.6 Masking the encoder

This section tests different masking strategies to test the multimodal model for performance and ro-

bustness. Partially removing tokens during training has been shown to help the model learn a rich

hidden representation within the encoder [17]. Masking can be applied to all types of encoders, but we

use it only in the encoders that fuse tokens of different modalities.

Definition 5.1 (Mask). LetMp
X denote amask for modalityX applied with a chance of p ∈ [0, 1] to the

encoder tokens. A mask M0 means leaving all tokens unmodified, whereas M1
X results in removing
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1.8 0.6 7.8 0.8 88.4 0.6
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3.3 1.0 8.1 1.1 85.7 0.8
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P1. Peeling cucumber
P2. Peeling potato
S1. Slicing cucumber
S2. Slicing potato
S3. Slicing bread
CB. Clearing cutting board
B1. Spreading almond butter

B2. Spreading jelly
JA. Opening and closing jar
WA. Pouring water
C1. Cleaning plate with sponge
C2. Cleaning plate with towel
C3. Cleaning pan with sponge
C4. Cleaning pan with towel

G1. Getting items from
refrigerator
G2. Getting items from cabinets
T1. Setting table
T2. Stacking on table
D1. Loading dishwasher
D2. Unloading dishwasher

Figure 5.6: Attention score of actions expressed as a percentage. The three highest values of each
column are marked in bold.
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modalityX in its entirety. Sincemasking is a type of regularisation, it is never applied during validation.
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Figure 5.7: Comparing the effect of different attention masks during training. R and V denote a Ran-
domly chosen modality and the Video modality, respectively.

Figure 5.7 shows the results of the ablation study on masking. We train a model using each fusion

method, two distinct masks (random and vision), and two different probabilities (50% and 75%), re-

sulting in 8 runs. The best results are achieved by masking randomly with 50% on late fusion. Early

fusion does not benefit from any of the tested strategies.

Masking influences the attention scores measured in the multimodal encoder. Figure 5.8 shows that

masking causes the attention to shift from vision to other modalities. Table 5.1 overviews the measured

multimodal advantages. Models using masks with 75% chance are excluded, as they all underperform

the 50% masks.
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Figure 5.8: Attention score of each modality and the class token in late fusion. A vision mask changes
the distribution of attention and forces the model to focus more on non-visual inputs.

Table 5.1: Multimodal advantage of models from Section 5.2 to 5.5. All values in %. The model that
achieves the highest accuracy is highlighted in bold, and the second highest is underlined.
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5.6.1 Removing vision during validation

The robustness of models can be tested by removing a selected modality from the validation set. This

imitates the failure of a sensor in real-life applications. This test shows whether the model can still

recognise actions after one of the sensors stops functioning. We aim to demonstrate that using multiple

modalities has advantages besides recognising more actions.

This experiment uses the egocentric camera as the visual modality. This camera can observe more

actions than the rest, leading to higher accuracy in action recognition. Adding further modalities to

the egocentric camera does not improve action recognition in this dataset but makes the model more

robust. This experiment shows that adding further modalities can be beneficial even if the multimodal

advantage is negligible.
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Figure 5.9: Performance and robustness achieved by different masks in the training phase. R denotes a
randomly selected modality.

Removing a sensor entirely undoubtedly causes a drop in accuracy, but at a lower extent for masked

models. As shown in Figure 5.9, they achieve around the same accuracy as the model that never had

access to vision. The unmasked model strongly depends on the visual input and completely fails when

excluded. To achieve a feasible comparison, we evaluate some models on the multimodal dataset with-

out vision (equivalent to masking with M1
V ). Then, we compare them to the experiment where vision

was still available and examine the extent of the drop in accuracy.
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5.7 Modality inference

The third research question of the thesis (Section 1.2) asks whether training a model to infer a missing

modality is possible. The force modality F (t) is removed from all data inputs to simulate the missing

modality. Then, the model is trained to reconstruct the missing data using body skeleton B(t), EMG

E(t), audio ATable(τ) and video VTable(t).
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Figure 5.10: Inferring tactile forceF (t) from othermodalities (body skeletonB(t), muscle activityE(t),
audio ATable(τ) and video VTable(t)).

Figure 5.10 plots the predicted force sensor readouts against the ground truth. The force sensors

with indices 1–16 are located on the left hand of the subject, and those with 17–32 on the right one. The

displayed values are resampled and aggregated as described in Section 3.1. The holdout training and

validation loss of this model are 0.0108 and 0.0391, respectively. They correspond to a mean absolute

error of 0.104 and 0.198 since the loss is defined as the mean squared error between prediction and

ground truth. The validation error is 9.9% of the sensor readout range.

5.8 Discussion

In this chapter, we can seen examples of the various advantages of multimodal action recognition,

highlighting its potential to enhance the performance of machine learning models significantly. This
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includes improving accuracy, robustness and inference of missing data.

The conducted test suggests that transformer models can process multiple modalities and utilise

the embedded information for classification. Almost all implemented multimodal models can predict

more labels correctly than any of the corresponding unimodal ones. The results indicate that trans-

formers understand the time evolution of actions better than LSTM networks, especially for sequences

containing multiple modalities.

Late fusion achieves higher accuracy than early fusion in all tests. For both classification objectives,

it is able to recognise actions the early fusion model cannot. This gap between the fusion models seems

to grow with an increasing number of modalities. The reason is that late fusion works with fewer

tokens at once, as it separates the temporal tokens of different modalities from each other. In contrast,

early fusion processes two-dimensional sequences (time and modality), making it difficult to transfer

all that information to the class token.

If a training mask is applied, early fusion models suffer a drop in accuracy. On the other hand, late

fusion models improve remarkably. The overall best metrics are achieved by random masking (50%),

where the multimodal advantage is almost double in the detailed classification compared to plain late

fusion.

The more modalities are added, the more complex the model gets. With the increasing number of

learnable parameters, overfitting gets more prominent. The main difficulty lies in the different overfit-

ting characteristics of modalities. The best practices we use against it are using pre-trained (and frozen)

backbones and masking tokens. Although late fusion has six times more parameters than early fusion,

it does not make it more prone to overfitting. Its last encoder block only gets a fraction of the input

tokens, creating a bottleneck and forcing the model to compress information more densely.

To sum up, extending models with modalities of new data sources leads to improved model ac-

curacy and robustness in most cases. Adding modalities can unlock potential but also increase the

dimensionality of data. For this reason, special care has to be taken against overfitting, such as modi-

fying attention via masks. As a result, late fusion is a more reliable method for integrating multimodal

information, mainly due to its ability to improve performance due to masking.
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Chapter 6

Conclusion

Most deep learning research for action recognition concentrates solely on vision, yet visual modalities

alone provide insufficient information for many robotic applications. Aiming for efficient interactions

with a physical environment raises the need for combining multiple modalities. To this end, we in-

troduce a multimodal transformer model capable of recognising kitchen tasks based on five different

modalities (force, muscle activity, skeleton pose, audio, and video). Our research focuses on the benefits

of multimodal action recognition.

6.1 Approach and results

The backbone of our model consists of transformer encoders, sometimes extended with a decoder. It

is completed with a linear classification layer and an additional projection layer for some modalities.

We test two different fusion methods, namely early and late fusion. They differ in the stage where

modalities are merged into a common representation format. We rely on quantitative classification

metrics such as accuracy, confusion matrices, F1-score, precision, and recall to compare our models.

The ablation study shows that combining modalities helps the model improve its understanding

of human actions. Without exception, all multimodal transformers surpass the abilities of the corre-

sponding unimodal ones. By analysing the predicted classes more deeply, no classes can be foundwhere

only the multimodal approach produces correct predictions. Although the overall accuracy is higher

in all cases, it is impossible to pinpoint some classes that only the multimodal model can distinguish.

Combining modalities improves the overall capability but cannot help comprehend actions where all

modalities fail independently. The greatest strength of multimodal models lies in recognising tasks that

are ambiguous for some modalities but labelled correctly with others.

We found masking to improve accuracy and make models more robust. They act as a regularisation,

reducing overfitting and making models less dependent on a single modality. Only late fusion can

49
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benefit from masking; it increases the multimodal advantage by 7.3%.

6.1.1 Reviewing early fusion, late fusion, and the baseline

Although our evaluation only includes two distinct types of neural networks, namely the transformer

and the LSTM baseline, it has shown that adding modalities does not improve classification in all sce-

narios. For example, the LSTM of the internal sensors performs worse than the unimodal model using

body skeleton data only. Approaches involving the transformer do not only achieve higher accuracy

than any unimodal models but also higher than the LSTM. This supports our initial claims of using mul-

timodal data, and the need to further investigate optimal techniques to optimize the modality fusion in

AI methods.

Regarding the fusion techniques, we find the late fusion model to be better suited for classification.

Late fusion benefits from separating the temporal progression of each modality. This separation helps

the model distribute its attention in a more organised manner and improves its action recognition

capability. It focuses on one modality at a time and combines them in a separate step. On the other

hand, the single encoder in early fusion overlooks some crucial details when summarising tokens, as

it has to consider both the time axis and the different modalities simultaneously. The advantage of the

best late fusion model is 10.1%; meanwhile, early fusion achieves only 6%.

In conclusion, the attention mechanism of transformers has opened a new door to multimodal

learning. Its understanding of the temporal progress of actions is not the only reason for its success.

This tool combines the information contained in differentmodalities more efficiently than othermodels.

6.2 Limitations

Lack of experiments with robots. Although multimodal transformer models have high relevance

in robotics, our tests do not include any trials with actual robots. Testing it on robots would require a

different dataset, recorded specifically for a use case in (human) action recognition. On the contrary,

our approach is meant to present a model that comprehends multiple modalities. In the future, using

the same architecture, a model can be trained to recognise different actions and exploit this information

for action planning or social robotics.

Scalability. All of our models are trained on the same 5.56 hours of data records. In many practical

applications, especially with transformer models, a bigger model involving more training is favourable.

Our model has fewer parameters than other transformers and can recognise only 20 distinct actions.

Thus, we rely on the scalability of neural networks to extrapolate our findings to multimodal models in
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general. Although a feasible comparison of uni- and multimodal deep learning architectures is possible

with small models, training the model to recognise more complex tasks would be scientifically valuable.

6.3 Further research

Masking in early fusion. Although our model significantly improves by adding training masks in

late fusion, early fusion cannot benefit from it. As masking has plenty of hyper-parameters and can

be applied differently, we cannot test all possibilities. A successful strategy for masking in early fusion

could pave the way for masked autoencoders, unlocking new potential for multimodal models.

Testing on other datasets. Evaluating the same model on other datasets would give insight into its

capabilities in a more generalised way. There is a lack of multimodal datasets with a diverse range of

modalities among publicly available datasets at the time of writing. Testing scalability and robustness

would become more manageable and generalisable if the same model could be tested on other datasets.
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✓ ✓ ✓ Tab Tab M0.75

R early 85.22 90.67 71.31 84.90 72.86 70.99 70.70
late 93.07 96.60 80.30 90.71 81.69 80.27 80.38

✓ ✓ ✓ Tab Tab M0.5
V early 80.10 90.29 70.96 89.55 72.35 70.74 70.58

late 92.61 97.02 77.17 90.45 80.32 77.15 76.93
✓ ✓ ✓ Tab Tab M0.75

V early 78.67 88.85 60.20 81.01 61.30 59.99 59.61
late 90.58 96.15 69.49 84.75 72.59 69.47 69.25

*including finger joints
†general classification

Table 1: Summary Tab for the classification metrics of Chapters 4 and 5. All values in %. The different
cameras and microphones are noted in accordance with Sections 3.1.4 and 3.1.5.



Appendix A

Masked Autoencoder

We take the Masked Autoencoder of He et al. [17] as a basis for our model and modify it to make it

suitable for multimodal tasks.

A.1 Model architecture

The original approach processed its inputs into tokens with a simple linear layer that could be reversed

just as easily. On the other hand, our multimodal approach uses backbones that do not have a cor-

responding decoder. This makes it necessary to modify the self-supervising goals of the pre-training

phase.

We define virtual inputs for reconstruction by the autoencoder. The virtual inputs are obtained after

applying the pre-trained backbones. For modalities without a pre-trained module, the virtual inputs are

identical to the actual data inputs. After projecting features into the token space, masking removes p

of the virtual inputs in each modality and forwards the remaining tokens to the encoder. The removed

features are saved for loss calculation, as displayed in Figure A.1.

After training the autoencoder for reconstruction, the model is modified for a downstream classi-

fication task and fine-tuned. For this task, the model labels the human action by projecting the class

token via a linear layer. Although in [17], no masking is applied in fine-tuning, we apply the same

masking strategy as during pre-training to regularise the model.

A.2 Experiments

We train our masked autoencoder on the multimodal dataset of Chapter 5. Hyper-parameters are set

according to Table 3.2. We test differentmasking probabilities p and omittedmasking during fine-tuning

in some cases. Results are displayed in Table A.1.
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58 Appendix A. Masked Autoencoder

p Fine-tuning mask Detailed accuracy General accuracy

75 ✓ 62.3 (−9.38) 84.0 (−0.11)
50 ✓ 72.1 (+0.43) 85.7 (+1.56)
50 72.0 (+0.27) 85.7 (+1.63)

Table A.1: Cross-validation accuracy and multimodal increase of masked autoencoders for a down-
stream classification task. All values in %.

A.3 Discussion

Although the multimodal masked autoencoder can classify human actions with higher accuracy than a

vision-only baseline in the downstream classification task, it does not reach the increase early and late

fusion models achieves in Chapter 5.

The reconstruction losses converge for all modalities, yet the classification task benefits only little

from using a pre-trainedmodel. We think a bigger dataset would be needed to achieve high-level feature

extraction with the autoencoder that can enhance classification significantly.
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