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Abstract

Layered materials are fundamental to technological advancements, offering distinct prop-

erties that differentiate them from bulk materials. In electronics, for instance, thin-film

transistors (TFTs) are used to enhance charge transport and flexibility, thereby improving

device performance. In the same way, thin-film photovoltaic devices used in renewable

energy use strategic layering to absorb light more efficiently and separate electron-hole pairs

more effectively, which leads to higher energy conversion efficiency. In recent decades, the

development of new alloys has highlighted the importance of layered materials in another

context. Compositionally complex alloys, for example, form multiple oxide layers on their

surfaces when they oxidize. Studying these corrosion layers is crucial for understanding

material-environment interactions.

Typical surface analysis techniques, including X-ray photoelectron spectroscopy (XPS),

secondary ion mass spectrometry (SIMS), and Meitner-Auger electron spectroscopy (M-

AES), provide valuable insights but are constrained by their requirements for high vacuum

conditions and their limited depth analysis. In contrast, X-ray absorption near-edge

structure (XANES) spectroscopy presents a versatile and advantageous alternative. It

operates effectively under ambient conditions and allows time-resolved measurements, en-

hancing the analysis of materials in real-time as they undergo structural and compositional

changes. This adaptability broadens the scope for material analysis, allowing for a more

comprehensive understanding of dynamic processes.

Grazing Emission X-ray Fluorescence (GEXRF) spectroscopy stands out as a non-

destructive, depth-resolved, element-specific characterization technique important for

collecting depth-resolved information at the nanometer scale. Its ability to collect in-depth

resolved information based on the grazing emission angle of the fluorescence radiation

makes it ideal for investigating thin films, corrosion layers, and interfaces within layered
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materials. The integration of XANES in emission mode with GEXRF enables detailed

exploration of the chemical states of the analyzed atom and provides depth-resolved

information. This study discusses grazing emission X-ray absorption near-edge structure

spectroscopy (GEXANES), a novel layer analysis technique that is created by integrating

these two methods.

This study also innovatively combines machine learning with GEXANES spectroscopy

to reduce experimental times. By using active learning, a subset of machine learning,

it refines the data acquisition process, enabling more efficient and streamlined methods.

The application of active learning in this context illustrates the potential of data-driven

approaches to transform experimental methodologies, particularly in resource-limited

environments such as synchrotron facilities, thereby accelerating scientific research and

discovery.



Kurzfassung

Schichtmaterialien sind grundlegend für technologische Fortschritte und bieten Eigenschaf-

ten, die sie von Massivmaterialien unterscheiden. In der Elektronik werden beispielsweise

Dünnfilmtransistoren (TFTs) verwendet, um den Ladungstransport und die Flexibilität

zu verbessern, wodurch die Geräteleistung gesteigert wird. Auf die gleiche Weise verwen-

den Dünnschicht-Photovoltaikgeräte, die in der erneuerbaren Energie eingesetzt werden,

strategische Schichtungen, um Licht effizienter zu absorbieren und Elektronen-Loch-Paare

effektiver zu trennen, was zu einer höheren Energieumwandlungseffizienz führt. In den

letzten Jahrzehnten hat die Entwicklung neuer Legierungen die Bedeutung von Schichtma-

terialien in einem anderen Kontext hervorgehoben. Zusammensetzungsbedingt komplexe

Legierungen bilden beispielsweise mehrere Oxidschichten auf ihren Oberflächen, wenn sie

oxidieren. Das Studium dieser Korrosionsschichten ist entscheidend für das Verständnis

der Wechselwirkungen zwischen Material und Umgebung.

Typische Oberflächenanalysetechniken, einschließlich der Röntgen-Photoelektronen-

spektroskopie (XPS), der sekundären Ionenmassenspektrometrie (SIMS) und der Meitner-

Auger-Elektronenspektroskopie (M-AES), liefern wertvolle Einblicke, sind jedoch durch

ihre Anforderungen an Hochvakuumbedingungen und ihre begrenzte Tiefenanalyse einge-

schränkt. Im Gegensatz dazu stellt die Röntgen-Nahkanten-Absorptions-Spektroskopie

(XANES) eine vielseitige und vorteilhafte Alternative dar. Es funktioniert effektiv unter

Umgebungsbedingungen und ermöglicht zeitaufgelöste Messungen, wodurch die Analyse

von Materialien in Echtzeit verbessert wird, während sie strukturelle und zusammen-

setzungsbedingte Veränderungen durchlaufen. Diese Anpassungsfähigkeit erweitert den

Rahmen für die Materialanalyse und ermöglicht ein umfassenderes Verständnis dynamischer

Prozesse.
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Die Grazing Emission Röntgenfluoreszenz (GEXRF) Spektroskopie zeichnet sich als

eine zerstörungsfrei, tiefenauflösende, element-spezifische Charakterisierungstechnik aus,

die wichtig ist, um tiefenauflösende Informationen auf Nanometerskala zu sammeln. Seine

Fähigkeit, detailliert aufgelöste Informationen basierend auf dem Streuwinkel der Fluo-

reszenzstrahlung zu sammeln, macht es ideal für die Untersuchung von Dünnschichten,

Korrosionsschichten und Grenzflächen innerhalb geschichteter Materialien. Die Integration

von XANES im Emissionsmodus mit GEXRF ermöglicht eine detaillierte Untersuchung der

chemischen Zustände des analysierten Atoms und liefert tiefenaufgelöste Informationen. Die-

se Studie behandelt die Grazing Emission Röntgen-nahkanten-absorptions-Spektroskopie

(GEXANES), eine neuartige Schichtanalysetechnik, die durch die Integration dieser beiden

Methoden entstanden ist.

Diese Studie kombiniert auch maschinelles Lernen mit GEXANES-Spektroskopie, um

die Experimentierzeiten zu verkürzen. Durch die Verwendung von aktivem Lernen, einem

Teilbereich des maschinellen Lernens, verfeinert es den Datenakquisitionsprozess und

ermöglicht effizientere und optimierte Methoden. Die Anwendung von aktivem Lernen in

diesem Kontext veranschaulicht das Potenzial datengestützter Ansätze, experimentelle

Methoden zu transformieren, insbesondere in ressourcenlimitierten Umgebungen wie

Synchrotronanlagen, wodurch die wissenschaftliche Forschung und Entdeckung beschleunigt

werden.
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Chapter 1

Introduction

The emergence of nanoscale engineering and the increasing complexity of modern materials

have created an urgent need for advanced analytical techniques that can study layered

materials with a depth resolution beyond the existing methods. Layered materials play

an important role in various technological advancements, offering unique properties that

distinguish them from their bulk. For instance, in electronics, thin-film transistors (TFTs)

leverage these layered configurations to enhance charge transportation and flexibility,

thus increasing device performance [1]. Renewable energy technologies, like thin-film

photovoltaic systems, also use strategic layering to maximize light absorption and ensure

efficient electron-hole pair separation, leading to higher energy conversion efficiencies [2].

The study of corrosion, in which the corrosion damage significantly impacts the global

economy—accounting for approximately 3.4% of the global GDP or US$2.5 trillion annually

[3], also underscores the importance of layered materials. Layered materials formed because

of oxidation are crucial for understanding how materials interact with their environments

[4]. However, effectively addressing corrosion damage requires a deep understanding

of the interactions that occur at material surfaces or interfaces. A better insight into

the relationship between the corrosion process and surface composition can drive the

development of new materials.

This is particularly relevant in the field of compositionally complex alloys (CCAs),

which diverge from conventional material development strategies where small proportions

of alloying elements are added to a base material and then heat-treated to meet the
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requirements of various applications [5]. CCAs offer an innovative approach by allowing

the mixing of multiple elements in equal or near-equal proportions, leading to materials

with superior structural properties suited for high-temperature applications and harsh

environments, such as those found in the aerospace and power generation industries [6–8].

The components used in these applications often face challenges related to oxidation

behaviors. Under extreme conditions, materials can degrade significantly due to corrosion.

The complexity and atomic interactions of CCAs under varying conditions are not yet fully

understood, with only a few studies addressing their surface degradation due to processing

or corrosion [4, 5]. Thus, advancing our understanding of CCAs can provide insights

into mitigating corrosion and enhancing material performance across multiple industries.

The CrCoNi system was chosen as a test case due to its extensive prior characterization

in the literature and its relevance as a CCA. By demonstrating the capabilities of the

grazing emission X-ray absorption near-edge structure spectroscopy (GEXANES) on this

well-studied material, the goal was to validate its effectiveness and highlight its potential

for providing insight into the depth-resolved chemical states of complex alloy systems.

Numerous examples, including those mentioned above and others, highlight the crucial

role of layered materials in a wide range of research and application areas [9–14]. This ne-

cessitates a deep understanding of the interactions at material surfaces or interfaces, paving

the way for the further development of materials. This requires the use of nondestructive

techniques that allow investigating these materials at ambient conditions.

Surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), secondary

ion mass spectrometry (SIMS), and Meitner-Auger electron spectroscopy (M-AES) are

traditionally employed to study these complex layered materials. Despite providing valuable

insights, these methods are limited by their need for ultra-high vacuum (UHV) conditions

and their low depth analysis capabilities [15–20]. The specifics of these techniques are

summarized in Table 1.1.

X-ray absorption near-edge structure spectroscopy (XANES) offers a versatile solution

to overcome the limitations of traditional film analysis techniques. XANES provides

information about the electronic structure and chemical state of the atom of interest. The

ability to operate effectively under ambient conditions supports in-situ analysis, allowing
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Methods XPS SIMS M-AES GEXANES
Probe Beam (In) X-rays Ions Electrons X-rays

Analysis Beam (Out) Electrons Ions Electrons X-rays
Sampling Depth (nm) <10 nm <2 nm <7 nm >10 nm
Sample environment UHV UHV UHV Ambient

Tab. 1.1: Comparison of Surface Analysis Techniques—XPS, SIMS, M-AES, and GEX-
ANES detailing the probe and analysis beams, sampling depth, and sample
environment required.

the tracking of changes in materials in different sample environments[21, 22]. Although

XANES spectroscopy is a phenomenon related to absorption, the XANES spectrum can

also be derived from emitted fluorescence radiation, providing versatility in data acquisition

that allows angle-resolved XANES analysis in the emission mode.

X-ray fluorescence spectroscopy (XRF) is a non-destructive technique for analyzing

material compositions. Angle-resolved XRF analysis, such as grazing emission XRF

(GEXRF), provides depth-resolved information. This method is capable of obtaining

information ranging from a few tens to several hundreds of nanometers [23, 24]. The

combination of emission-mode XANES spectroscopy and grazing exit geometry provides

detailed, depth-resolved insight into the electronic structure and chemical state of the

atom under study [25, 26].

To perform GEXRF, two primary approaches are used to capture emitted XRF intensity

as a function of the grazing emission angle. The first is the use of a one-dimensional (1D)

energy-sensitive detector, which detects different emission angles by moving the detector

position [27]. The application of a two-dimensional (2D) detector with spatial resolution

allows direct intensity capture without the need for scanning [23]. In this work, a pnCCD

was used as a detector, which allows scanning-free and energy-dispersive experiments

to be carried out. Balancing angular resolution and fluorescence intensity was crucial.

Specifically, the angular resolution is influenced by the distance between the detector

and the sample; increasing this distance enhances the resolution (solid angle of detection

per pixel). However, the intensity is inversely proportional to the square of the distance,

meaning that as the distance increases, the intensity decreases. Consequently, a reduction
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in intensity will extend the experiment time. This balance is achieved by calculating the

angular intensity profile that will be obtained from the GEXRF.

X-ray tubes can be used for GEXRF, but collecting multiple GEXRF datasets with

low-flux X-ray tubes is a time-consuming process. However, synchrotron radiation is an

excellent option for conducting GEXANES. The high flux of synchrotron radiation can

overcome this issue.

This work not only combines GEXRF and XANES into GEXANES but also innovatively

integrates machine learning with GEXANES to reduce experimental time. This approach

aims to overcome the limitations of conventional analytical methods by leveraging the in-

herent strengths of XANES, taking advantage of the grazing exit geometry’s depth-resolved

information acquisition capabilities, and increasing the efficiency of data acquisition.

Machine learning, with its proven effectiveness in data analysis, image processing,

and material synthesis, offers new ways to address challenges in the GEXANES data

acquisition process [28–41]. The application of machine learning in this context represents

an innovative direction whose potential to facilitate the data collection process has not yet

been fully realized.

Active learning can change traditional, static data collection methods used in XANES

spectroscopy and other research areas. Using mathematical models, active learning

guides the optimization of data collection strategies. Within this framework, Bayesian

optimization (BO) emerges as a particularly powerful tool for scenarios where function

evaluation is expensive or time-consuming. BO uses prior probability distribution over

the objective function and updates them as new data are acquired, thus aiding model

interpretation and decision-making through its ability to quantify uncertainty via gaussian

process regression (GPR) [42–46].

The incorporation of active learning exemplifies the broader impact of machine learning

on experimental methods, marking a shift toward more efficient, data-driven approaches.

This shift is particularly relevant in resource-constrained environments, such as synchrotron

facilities. Machine learning, especially its active learning subset, has already been used in

synchrotron radiation research with positive results, showing that it has the potential to

make scientific investigations faster and more effective [47–53].
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This work aims to address key questions crucial for enhancing material analysis capabil-

ities.

• It will explore the application of spectroscopic techniques like GEXANES to provide

depth-resolved insights into layered materials under non-destructive and ambient

conditions.

• The study will investigate the integration of machine learning, particularly active

learning techniques, to improve the efficiency of spectroscopic data acquisition.

This includes examining the role of these computational methods in reducing data

acquisition times and thereby increasing overall research productivity.

In order to answer a given key question, this work is divided into four chapters, as

follows:

• Chapter 2, entitled "Theoretical Background," introduces the key concepts of

X-ray-based spectroscopic methods. It begins with an overview of the historical

development of these methods, focusing on their interaction with matter. This

chapter then delves into the specifics of XRF spectroscopy and angle-resolved XRF

analysis, providing a thorough explanation of the principles involved. Following

this, it explores the theoretical background of GEXRF, which is central to this

study, covering its historical background, the calculation of intensities, excitation

sources, and the detection of emitted fluorescence radiation. The chapter concludes

by highlighting X-ray absorption fine structure (XAFS) spectroscopy and discusses

the application of machine learning in the data acquisition process to increase the

time efficiency of the experiment. To this end, the focus is on active learning, in

particular BO, as an innovative approach within this research area.

• Chapter 3, "Experimental Setup," details the experimental framework used in this

study. It outlines the X-ray source and the detector involved in the detection of

emitted fluorescence radiation. The chapter further examines the geometrical ar-

rangements of the experimental setup, discussing the achievable depth of information.

It proceeds to describe the data processing techniques employed, with a particular
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focus on how BO has been implemented to enhance the experimental process. The

chapter wraps up with a comprehensive description of the samples used throughout

the study, setting the stage for the experimental analysis presented in subsequent

chapters.

• Chapter 4, "Results and Discussion," integrates the presentation of results with

their analysis. It begins with a proof of concept, examining the results obtained

from a reference sample and discussing their significance. The chapter then presents

findings from the analysis of a real-life CrCoNi sample, which was subjected to

various temperatures for different durations. Additionally, it explores how layers

influence angular intensity profiles and discusses the potential applications of this

information in in-situ analysis. The final section of this chapter highlights the results

derived from optimized experimental procedures, demonstrating the advantage of

the study’s integrated approach.

• Chapter 5, "Conclusion and Outlook," provides a summary of the study’s main

findings and contributions to the fields of material science and offers perspectives on

future research directions, particularly emphasizing the promising role of machine

learning and active learning in further advancing the capabilities of spectroscopic

analysis and material characterization.

1.1 Theoretical Concepts Overview

This work’s design required to consider a wide range of theoretical information. The most

important ones were (1) the analytical method, which included the X-ray source, detection,

and setup geometry; (2) the choice of optimization tools, such as machine learning; and (3)

the samples that need the method developed here to answer a relevant analytical question,

such as reference samples. The roadmap is mind-mapped in Fig. 1.1.
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Fig. 1.1: The mind map illustrates the key components and their interconnections.
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The mind map illustrates the following key elements:

• Photoelectric Effect: When XANES is in emission mode, it is linked to the

photoelectric effect, which makes it possible to follow specific atomic fingerprints.

• X-Ray Attenuation: A fundamental understanding of X-ray attenuation is crucial

for calculating the information depth in GEXANES analysis.

• XRF Techniques: A detailed understanding of how XRF works, and which

geometries provide depth-resolved information is essential.

• GEXRF Intensity Calculations: It is crucial to calculate the solid angle of

detection to establish the proper experimental setup. Calculating the angular

intensity profiles beforehand ensures that the experimental parameters are optimized

for accurate data collection.

• X-ray sources: Choosing the correct source knowledge for X-ray sources is crucial

in this work. In GEXANES, selecting a high-flux, monochromatized X-ray source is

important due to the shallow detection angle, which typically results in low counts.

• Detectors: Choosing the right detector needs a solid understanding of available

detectors.

• Chemical State Analysis: Identifying the chemical states of atoms requires

knowledge of XAFS, particularly XANES.

• Active Learning: Fundamental knowledge of machine learning, especially active

learning, is essential to enhance the efficiency of data acquisition.
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Theoretical Background

The main ideas of X-ray-based spectroscopic techniques are introduced in this chapter. It

starts with a summary of how these techniques have evolved historically, emphasising how

X-rays interact with matter. This chapter then provides a thorough explanation of the

fundamental ideas and goes into great detail about XRF spectroscopy and angle-resolved

XRF analysis. The theoretical underpinnings of GEXRF, a crucial aspect of this study,

are then examined. The historical context, intensity calculations, excitation sources, and

detection of fluorescence radiation are all covered in this subsection. X-ray absorption fine

structure (XAFS) analysis and XANES are then introduced in this chapter. This chapter

concludes by providing the theoretical underpinnings of Bayesian optimisation (BO) and

active learning as cutting-edge methodologies in this field of study.

2.1 Overview of X-ray Spectroscopy

For decades, X-ray spectroscopy has played a crucial role in material research. X-ray

spectra reveal important insight into the atomic and electronic structure of materials by

means of analyzing the emitted and/or absorbed radiation. With X-ray spectroscopy, one

can obtain the elemental composition of the sample, resolving the chemical state and

collecting information about the electronic structure. With this non-destructive analysis

method, one can get deep insights into atomic and molecular information.

X-ray spectroscopy techniques such as X-ray fluorescence spectroscopy (XRF), which

measures the emitted radiation from the sample, and X-ray absorption spectroscopy (XAS),
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which directly measures the absorbed portion of the radiation, will be described more in

detail in the following sections.

2.1.1 Historical Development

In 1895, Wilhelm Conrad Röntgen accidentally discovered X-rays, and the history of

X-ray spectroscopy began. While experimenting with cathode rays, Röntgen observed a

mysterious glow emitted from a fluorescent screen placed near his instrument. This observed

glow, which remained even when the cathode ray tube was shielded, was soon identified as

a new type of penetrating radiation, which Röntgen named "X-rays"—the "X" denoting

their unknown nature. The discovery earned Röntgen his first Nobel Prize in Physics in

1901 and caused a sensation in the scientific world. Due to their unique properties, X-rays

have been an indispensable instrument in many fields since their discovery. In our daily

lives and in cutting-edge research, X-rays play an essential role.

This specific part of the electromagnetic spectrum between extreme ultraviolet and

gamma radiation is called X-rays. They exhibit wavelengths ranging from about 10

nanometers to 10 picometers, which correspond to frequencies ranging from about 30 PHz

to 30 EHz. Additionally, X-rays carry energies in the range of 124 eV to 124 keV.
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Fig. 2.1: Schematic representation of the electromagnetic spectrum. Adapted from [54].

Figure 2.1 is an electromagnetic spectrum chart, illustrating the relationship between

frequency (in hertz), wavelength (in meters), and photon energy (in electron volts) for

various types of electromagnetic radiation.

Early experiments with X-rays focused on understanding their behavior and properties.

The first breakthrough result was that X-rays are absorbed differently by different elements

when they pass through materials. As a result of this finding, X-rays began to be used for

elemental analysis.

X-ray spectroscopy was rapidly developed in the 20th century. Instrumentation improved,

techniques were refined, and the applications of X-ray spectroscopy expanded. One of

the greatest progresses on this journey was the development of advanced X-ray sources,

especially synchrotron radiation. Highly collimated and intense X-ray beams produced

by synchrotrons improve the capabilities of X-ray spectroscopy. Such properties of the

synchrotron’s radiation allow for more detailed and faster analysis.

Detectors have evolved in parallel with advances in X-ray sources. Modern detectors

have become more sensitive, faster, and capable of handling the intense beams from
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synchrotrons. Such improvements in the detectors provide the possibility to push the

limits of X-ray spectroscopy even further.

To improve our fundamental understanding of X-ray spectroscopy, it is necessary to

understand the interaction between X-rays and matter. Instead of passing through matter

unchanged, X-rays undergo a series of different interactions. These interactions provide

valuable information about the material. In the following sections, the interaction of

X-rays with matter will be discussed in detail.

2.1.2 Interactions of X-rays with matter

X-rays interact with matter in several ways, including the photoelectric effect and scattering

(both elastic, like Thomson or Rayleigh scattering, and inelastic, like Compton scattering).

These interactions cause the overall effect of attenuation. The photoelectric effect is notable

when the matter absorbs X-rays, and this process leads to the ejection of electrons from

the atom. The scattering process occurs when photons are deflected by interactions with

electrons or nuclei within atoms. These interactions can be elastic, where the photon is

deflected without changing the energy states of the electrons, or inelastic, where the photon

transfers energy to the electrons, possibly exciting them to higher energy states or removing

them from their atoms (ionization). These interactions are crucial in various applications,

from medical imaging to material analysis, and they are quantitatively described by the

cross-section concept. The cross-section representing the effective area that quantifies the

likelihood of an interaction is measured in barns (1 b = 10-24 cm2). The composition of

the material and the energy of the incident X-rays affect the cross-section [55].

2.1.2.1 Photoelectric effect

In 1905, Albert Einstein introduced a groundbreaking theory of the photoelectric effect.

The idea behind the theory is that the light is not just a continuous wave; it’s made of

individual packets of energy, called photons. Each photon carries an amount of energy

given by the equation:

E = hv (2.1)
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where E is the photon’s energy, v is its frequency, and h is Planck’s constant.

If a photon has enough energy (hv) to overcome the atomic work function W , such an

interaction causes the ejection of an electron with maximum kinetic energy Kmax [56].

Kmax = hv − W (2.2)

The work function (W ) is the minimum amount of energy needed to remove an electron

from the material. It’s connected to a specific threshold frequency (v0). Below v0, the

photoelectric effect doesn’t happen [56]. The following equation is used to describe this:

W = h(v − v0) (2.3)

Electrons within atoms, molecules, and solids are confined to specific states, each with

a distinct binding energy (EB ind.). When a photon delivers energy surpassing this binding

energy to an electron, the electron can be ejected. The excess energy, which is the difference

between the photon’s energy hv and the electron’s binding energy, is realized as the kinetic

energy (EK in.), following the equation [56]:

EK in. = hv − EB ind. (2.4)

This kinetic energy distribution serves as a fingerprint of the quantum system. It mirrors

the distribution of binding energies within the atomic, molecular, or crystalline structure.

The photoelectron effect is shown in Figure 2.2.



14 2 Theoretical Background

Fig. 2.2: Schematic representation of photoelectron generation.

An incoming photon can excite an atom if the energy of the photon is equal to or

greater than the binding energy of the core-shell electron in the atom. The excited atom

seeks to return to its equilibrium state. The process of returning to equilibrium involves

fluorescence and the Meitner-Auger procedure.

When the outer shell electron fills the gap in the lower energy state, it releases the

photon, called fluorescence radiation, with an energy equal to the energy difference between

these two states. Since we already know that energy levels are elemental, each fluorescence

ray therefore encapsulates elemental information. This relaxation process typically occurs

quickly, with the photon often emitting within nanoseconds of the initial excitation [57].

The other relaxation mechanism is called the Meitner-Auger process, which is a non-

radiative relaxation mechanism. After the inner shell electron is liberated, the electron

from higher energy levels fills this gap, and an energy transfer occurs from the electron

dropping into the lower energy state to another electron in an outer shell. This relaxation

process is called the Meitner-Auger effect. Unlike fluorescence, the Meitner-Auger process

results in the emission of an electron. The energy of the emitted Meitner-Auger electron

is characteristic of the element, as it reflects the specific energy differences between the

shells involved in the transition. This makes the Meitner-Auger process another valuable

tool for elemental analysis. This mechanism also typically occurs rapidly, on a timescale
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comparable to that of fluorescence [58, 59]. Figure 2.3 shows the schematical representation

of these two relaxation mechanisms.

Fig. 2.3: Schematic representation of fluorescence photon and Meitner-Auger electron
process.

2.1.2.2 Scattering

Another important interaction between X-rays and matter is scattering. In a scattering

interaction, the incoming photon is scattered by the electrons of the atomic shell. Scattering

can be classified into elastic (Rayleigh and Thomson) and inelastic (Compton) depending

on the energy exchange and the state of the electron (free or bound).

Both Rayleigh and Thomson scattering are coherent processes, meaning the scattered

radiation maintains the same frequency as the incoming light. This coherence is attributed

to the photon stimulating the charged particle, whether free or bound, to oscillate at the

incoming light’s frequency. The oscillating particle then acts as a dipole emitter, radiating

energy at the same frequency but in a different direction [60].

Rayleigh scattering occurs when photons interact with bound electrons. In Rayleigh

scattering, the electrons are considered weakly bound relative to the energy of the incoming

photon. The important characteristic of Rayleigh scattering is that while the direction of

the photon may change, the energy remains the same [60].
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Fig. 2.4: Elastic scattering of an incoming photon with wavelength λin from an electron.

Fig. 2.5: Inelastic scattering of an incoming photon with wavelength λin from an electron.

On the other hand, Thomson scattering occurs when photons scatter off free or quasi-free

electrons. These electrons are not bound to any atoms. They are free to interact with

incoming photons. In this process, the energy of the photon remains unchanged after

scattering. However, the direction of the photon can vary. Thomson scattering is often

thought of as the classical limit of Compton scattering. It works when the photon’s energy
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isn’t high enough to significantly change the electron’s kinetic energy [60]. Figure 2.4

shows the elastic scattering process.

Unlike elastic scattering, compton scattering, also known as incoherent scattering or

inelastic scattering, involves the transfer of energy from the X-ray photon to an electron.

As a result of this interaction, the electron from the atom is ejected. The scattered photon

after interaction has reduced energy compared to the incident photon [60]. Figure 2.5

represents the inelastic scattering process.

2.1.2.3 Attenuation

When X-rays interact with matter, photons also experience loss of intensity, and this

phenomenon is called attenuation. This process is described by Lambert-Beer law [61],

which is illustrated in Figure 2.6.

Fig. 2.6: Illustration of the Lambert-Beer’s law I0 = Ie(−µ(E)x).

Where:

• I0 represents the initial intensity of X-rays.

• I denotes the diminished intensity after the X-rays have passed through an absorber

with a specific thickness x.

• The term µ(E) represents the linear attenuation coefficient. This coefficient varies

based on the energy of the incoming photons and the properties of the material

being interacted with.
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The important role of the absorption cross section σ(E), which has already been briefly

explained, becomes apparent at the point of calculation of the linear attenuation coefficient

µ(E), and their relationship can be expressed as follows [61]:

µ(E) = ρσ(E) (2.5)

In this relationship, ρ represents the density of the absorbing material. The total

absorption cross section, σ, is the sum of the cross sections resulting from the various

interactions. This includes a range of phenomena from Thomson scattering and Compton

scattering to photoelectric absorption and pair production [61].

In cases where the X-ray beam interacts with a mixture of different materials, the

attenuation coefficient of the absorber is obtained by combining the coefficients of all its

components [62].

Given the principles outlined previously, it’s theoretically possible to calculate the

depth the primary beam can reach within the observed material. Furthermore, the

distance covered by the characteristic fluorescence originating from the sample can also

be determined. Typically, this distance is measured in terms of length, where either the

fluorescence or the primary beam experiences a reduction in intensity by approximately

37%, aligning with a 1/e ratio.

2.2 X-ray Fluorescence spectroscopy (XRF)

XRF takes advantage of the characteristic X-rays emitted by atoms, which are unique

to each element due to their specific electronic configuration. These emissions act as

a distinctive fingerprint that is essential for identifying and quantifying the elemental

components of a sample.

XRF spectroscopy is a versatile and widely used analytical method. In academic research,

it is employed to study diverse samples, while industries rely on it for quality assurance

and process control to ensure products meet required standards and specifications. XRF

is practical for analyzing major and trace elements in various materials due to its ease of

application, low cost of sample preparation, and stability [63, 64].
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Depending on the degree of sensitivity required, different detection methods and experi-

mental geometry can apply XRF spectroscopy [63, 64]. The most common applications

include the following:

By detection methods:

• Wavelength-Dispersive XRF spectroscopy (WDXRF)

• Energy-Dispersive XRF spectroscopy (EDXRF)

By experimental geometry:

• Total Reflection XRF (TXRF)

• Grazing Incidence XRF (GIXRF)

• Grazing Emission XRF (GEXRF)

WDXRF is a well-developed analytical technique used for the precise identification

and quantification of elemental compositions. This method uses high-energy resolution

analyzing crystals to disperse emitted fluorescence X-rays according to their wavelengths.

This dispersion is crucial for X-ray lines closely spaced. They would overlap and become

impossible to separate. WDXRF makes it possible to accurately find elements with closely

spaced X-ray lines [63, 64].

A WDXRF setup includes several key components designed to achieve high spectral

resolution:

• The Analyzing Crystal scatters the emitted X-rays based on their different

wavelengths, which is crucial for the separation of X-ray lines.

• The Goniometer facilitates the rotation of the analyzing crystal and the detector,

enabling the measurement of X-rays across a spectrum of wavelengths.

• The Detector captures and measures the intensity of the dispersed X-rays, providing

essential data for determining elemental presence and concentration.
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One way to find characteristic radiation in WDXRF is to use sequential scanning by

an analyzer crystal-detector assembly and follow the Bragg condition. This lets you

figure out the Bragg angle, crystal lattice parameters, and the wavelength or energy of

the characteristic radiation. Another way characteristic radiation can be detected is by

dispersing the XRF radiation simultaneously over a selected energy/wavelength range

using a 2D array detector (such as a CCD or CMOS) [63, 64].

The technique is based on Bragg’s Law (nλ = 2dsinθ), where n is the diffraction

order, λ the wavelength, d the lattice constant, and θ the Bragg angle, allows for precise

determination of elemental compositions [63, 64].

Fig. 2.7: Illustration of the WDXRF experimental setup. a) Johann Geometry, b) Jo-
hansson Geometry and c) Von Hamos Geometry

WDXRF spectroscopy has evolved with different geometries for enhanced performance,

including:
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• Johann Geometry: Introduced by H. H. Johann in 1931, utilizes a crystal where

both the crystal planes and the surface have a 2R radius, leading to aberrations in

the dispersed rays but offering ease of production.

• Johansson Geometry: Developed in 1933, features a crystal with lattice planes

curved to a 2R radius and an inner surface polished to match the Rowland circle

perfectly, ensuring X-rays deflected by the crystal converge on the same focal point

without aberration.

• Von Hamos Geometry: Proposed by Von Hamos in 1932, employs a cylindrically

bent crystal in the vertical direction to disperse radiation along a straight surface

horizontally, focusing X-rays along the axis of curvature onto a single line on the

detector chip.

Each geometry has its advantages, with the Johann and Johansson geometries using

the Rowland circle for dispersion. Von Hamos geometry provides focused dispersion for

increased sensitivity. Flat crystals are also used for their ease of production and instrument

integration, but they have a lower sensitivity compared to bent crystals due to a decreased

detected solid angle. Figure 2.7 illustrates the WDXRF setup with the Johann, Johansson,

and Von Hamos geometries [63, 64].

Fig. 2.8: Illustration of the EDXRF experimental setup.

WDXRF stands out for its high spectral resolution, enabling clear separation of closely

spaced X-ray lines and the accurate detection of elements that may be difficult to distinguish

using other techniques. This precision, coupled with the methodical design of the WDXRF
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apparatus and the strategic use of different crystal geometries, makes WDXRF a powerful

tool in the field of material analysis [63, 64].

Energy-sensitive Si(Li) solid-state semiconductors or silicon drift detectors (SDD) achieve

the detection of emitted X-rays based on their energy levels. EDXRF setup is more flexible

than WDXRF and enables rapid simultaneous multi-element analysis, but this flexibility

comes with some downsides, such as high spectral background and low energy resolution.

Figure 2.8 shows a schematic representation of the EDXRF setup.

2.2.1 Angle resolved XRF analysis

Standard XRF techniques encounter challenges in analyzing thin films or nanoscale

materials, primarily due to scattering from the substrate. The signal from the substrate

can easily mask signals from the surface or near-surface regions. To address these issues,

angle-resolved XRF techniques have been developed. These methods involve adjusting the

angles of incident and detecting photons relative to the sample surface. By minimizing

these angles, the information depth is reduced, thereby diminishing the influence of deeper

sample layers and enhancing surface sensitivity.

Angle-resolved XRF techniques, such as total reflection XRF (TXRF), grazing incidence

XRF (GIXRF), and grazing emission XRF (GEXRF), use this angular approach for

detecting the surface of the analyzed material. These methods are particularly effective for

analyzing surface-near elements, significantly improving thin-film analysis and applications

requiring nanoscale resolution. Subsequent sections will delve deeper into the principles,

methodologies, and applications of angle-resolved XRF analysis.

2.2.1.1 Total reflection XRF (TXRF)

The phenomenon of X-rays undergoing total reflection was first observed by Compton in

1923. He noted that the reflectivity of a flat target increases at angles below about 0.1°.

Despite this discovery, it was not until 1971 that Yoneda and Horiuchi [65] realized the

potential of this effect to increase the sensitivity of XRF analysis by placing the sample

on a flat reflector. This method was further developed and elaborated by Wobrauschek in
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his doctoral research, and subsequent work by various researchers gave it the name "total

reflection X-ray fluorescence analysis" or TXRF [66, 67].

TXRF is a powerful analytical technique with a wide range of advantages. It offers a

wide elemental detection range covering almost the entire periodic table, from boron to

uranium. With optimal excitation and detection conditions, TXRF can detect femtograms

(10-15 g). TXRF offers fast analysis times, often just a few seconds, and can simultaneously

detect multiple elements present in a sample [68].

TXRF works as an EDXRF method and uses the principle of total reflection of incident

photons. When X-rays hit the sample at an angle smaller than the critical angle, the

primary beam is almost completely reflected. Only a small fraction of this primary beam

penetrates the sample. This leads to a significant reduction in the spectral background,

typically caused by scattering on the substrate [67, 68].

Furthermore, once the incident beam is fully reflected from the sample, it ensures that

the sample is excited by both the direct incident and reflected beams. This dual excitation

effectively doubles the fluorescence intensity. TXRF’s unique grazing angle geometry

allows the detector to be positioned extremely close to the sample surface. This proximity

provides a significant solid angle for the emitted fluorescence radiation to be captured,

thus optimizing detection efficiency and minimizing background signals [67].

Interference occurs when two waves (in this case, the incident X-ray beam and its

reflection) overlap. This overlapping produces what we call a "standing wave field." A

standing wave field is characterized by stationary points where there seems to be no wave

activity—these are called "nodes"—and points where the wave amplitude appears to be

at its maximum, known as "antinodes". In the context of TXRF, this standing wave

field is formed very close to the surface of a thick, flat substrate, such as the sample

being analyzed. The pattern and spacing of these nodes and antinodes are influenced

significantly by the angle at which the X-ray beam strikes the substrate. Particularly, this

effect becomes pronounced at or near the "critical angle"—the angle where the reflection

maximizes interference effects. The nodes (where there is minimal wave activity) and

antinodes (where wave activity is maximal) are crucial because they influence how the

sample is excited by the X-ray beams. The antinodes, having higher energy intensities,
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are particularly effective in exciting the atoms in the sample. This excitation is critical for

enhancing the fluorescence emitted by the sample, which is what TXRF measures [67, 69].

TXRF has become a dominant tool in the semiconductor industry, primarily for the

non-destructive analysis of surface contaminants. It is also a valuable method for chemical

trace analysis, with impressive detection limits. With X-ray tube excitation, it can find

contaminants as small as a picogram. When synchrotron radiation is used, it can find

contaminants as small as a femtogram. The integration of synchrotron radiation into

TXRF and angle-dependent XRF techniques in general is particularly advantageous. The

inherent properties of synchrotron radiation, such as its high intensity, linear polarization,

minimum source size, and inherent collimation, perfectly match the demands of these

analytical methods, increasing their sensitivity and reliability [67].

2.2.1.2 Grazing incidence XRF (GIXRF)

Another angle-dependent XRF method, so-called grazing incidence X-ray fluorescence

(GIXRF), is also an important analysis method in thin film analysis. This non-destructive

analytical method offers insights into the composition and characteristics of thin lay-

ers. This method provides detailed information on the depth distribution and overall

concentration of elements, even at nanometer depths.

GIXRF operates on the principle of analyzing the fluorescence emitted by a material

when it is excited by X-rays at a grazing incidence. The primary X-rays penetrate deeper

into the material with increasing angles of incidence, thus enabling the analysis of both

the elemental composition within the layers and the underlying substrate.

The X-ray standing wave field is also a critical phenomenon in GIXRF, arising when the

incident X-ray beam, with low divergence and monochromatic properties, interferes with its

reflection from the flat surface of the sample. This interference generates a standing wave

pattern at the surface and near-surface regions. The intensity of the X-ray standing wave

field varies significantly with the depth and the angle of incidence, which in turn markedly

enhances the fluorescence intensity emitted by the sample. This enhancement is pivotal

for increasing the sensitivity of GIXRF, allowing for the detection and quantification

of elements present in the thin films with high accuracy. Despite its advantages, the
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sensitivity of GIXRF to deeper layers is somewhat limited. The enhancement effect of the

X-ray standing wave field predominantly benefits the first few nanometers of the sample

surface. Beyond this depth, the influence of the X-ray standing wave field on fluorescence

intensity diminishes, leading to a slight degradation in sensitivity for elements located

further within the material [70].

Parratt’s work of 1954 [71] is an important contribution to the historical development

of GIXRF. He pioneered a method that takes into account the angle of incidence to clarify

the modulation of the electromagnetic field, while also considering phenomena such as

reflection and refraction at interference near surfaces. Parratt’s calculations provide the

basis not only for X-ray reflectivity (XRR) but also for GIXRF analysis.

The core of his work suggests that understanding the field dynamics allows predictions

to be made about photoelectric absorption events and subsequent fluorescence photons.

This theoretical framework was practically demonstrated by Becker et al. in 1983 [27]

using a homogeneous sample, showing how a decaying field can activate atomic responses

in materials. Based on this, Iida et al. investigated an arsenic-implanted layer in silicon

using synchrotron radiation in 1986 [72]. By 1991, de Boer [73] further enriched the field by

introducing a rigorous derivation of fluorescence in layered samples. In particular, de Boer’s

work was the first demonstration of simultaneous measurement and analysis of GIXRF

and XRR in stratified media [74]. However, ongoing developments in nanofabrication and

material science have since addressed these challenges, enabling more precise control over

thin film production and, by extension, expanding the application of GIXRF [75].

2.3 Grazing emission XRF (GEXRF)

The theoretical framework for analyzing X-ray standing waves was established by Parratt

in 1954 [71], offering a rigorous mathematical model for their study. This groundwork

facilitated the accurate quantitative analysis that was crucial in grazing-angle fluorescence

studies. Further development of the Parratt findings was done by Becker et al. in 1983

[27]. This study explains the shared principles of GIXRF and GEXRF. They highlighted

the principle of microscopic reversibility, asserting that the characteristics of the electric

field between two points in emission and detection scenarios are invariant. This discovery
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confirmed the natural theoretical link between GIXRF and GEXRF, showing how they

can be used together to learn more about X-ray fluorescence phenomena.

While GIXRF and GEXRF work on a basic level, they are set up in a way that makes the

roles of excitation and detection in the X-ray fluorescence process reversed. In other words,

in GEXRF, the primary beam is perpendicular to the sample surface, and the detection

of the emitted radiation is made at a shallow detection angle. Due to perpendicular

penetration of the primary beam, the XSW pattern is not created in this experimental

setup. As shown in Figure 2.9, this change flips the technique from angle-dependent

excitation under grazing incidence conditions (GIXRF) to angle-dependent detection under

grazing emission conditions (GEXRF). Crucially, owing to the principles of microscopic

reversibility and reciprocity [76], these setups are physically equivalent. This means that

when both GIXRF and GEXRF experiments use the same wavelength (λ), they yield

identical atomic distributions in the fluorescence outcomes [71]. This equivalence shows

that X-ray fluorescence can be studied in a very consistent way, whether it is through

incidence or emission [70].

Fig. 2.9: Illustration of the basic concept for GIXRF and GEXRF experimental setups.

The principle of reciprocity, which comes from the way radiating dipoles behave, says

that switching the positions of the source and the detector does not change the outcome

of an interaction. Mathematically, for two dipoles at positions r1 and r2 with moments P1

and P2, the reciprocity theorem is expressed as follows [77]:

E⃗1(r⃗2) · P⃗2 = E⃗2(r⃗1) · P⃗1 (2.6)
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Where:

• The electric field E⃗k(r⃗l) represents the field generated at position r⃗l by a radiating

source situated at r⃗k.

Equation 2.6 demonstrates that swapping the positions of the source and detector does

not alter the outcome, illustrating the principle of reciprocity for sound and electromagnetic

waves. This concept has historical roots tracing back to the works of Rayleigh, Stokes,

Lorentz, and Helmholtz [77].

The unique aspect of GEXRF lies in its surface sensitivity, achieved through specific

emitted angles. At small angles relative to the sample surface, ranging between 0 mrad

and the material’s critical angle, only XRF emitted by atoms in the first tens to hundreds

of nanometers is detectable. When X-rays come from atoms deeper inside the sample,

they are reflected away from the surface as they pass through the interface. This is similar

to how they come in during GIXRF, but it goes the other way [70].

When the observation angle exceeds the critical angle, fluorescence signals from deeper

within the sample become observable. However, the effective probed depth remains within

the submicrometer scale due to shallow observation angles that extend the emission paths

within the sample, leading to significant absorption.

Based on these principles, GEXRF enables precise 2D mapping by using an X-ray

microbeam. This technique benefits from synchrotron radiation micro-beams [78, 79]

and polycapillary X-ray optics [80, 81]. Moreover, by integrating depth profiling with

surface-sensitive scans, GEXRF setups facilitate 3D scanning capabilities [80], which

increases the analytical range of the method.

GEXRF has also been enhanced by the adoption of position-sensitive detectors, allowing

for the acquisition of complete angular profiles in a single measurement without the need

to scan across different grazing emission angles [23, 82, 83]. This innovation streamlines

the data collection process, significantly reducing the time required for comprehensive

angular analyses [84].

GEXRF has been effectively applied in trace element analysis [79, 85] and the character-

ization of thin films [23, 86, 87], as well as in depth profiling studies [82, 88]. GEXRF and
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XAFS were used together to show depth-resolved absorption studies in emission mode in

Kayser et al. (2015) and Cakir et al. (2023) [26, 89].

Despite its advantages, GEXRF faces challenges related to its lower sensitivity, a

consequence of the reduced solid angle of detection. This results in higher detection limits

compared to GIXRF, where energy-dispersive detectors are positioned closer to the target

surface, capturing a larger solid angle [26, 80]. Also, grazing emission conditions made

absorption effects stronger because the path lengths through the sample were longer, which

changed the sensitivity and detection limits [84, 90].

This work depends on GEXRF since it enables the gathering of depth-resolved data,

which is essential to grasp the complex characteristics of layered materials. With a high

angular resolution setup, GEXRF enables the detection of XRF signals from varying

depth levels, providing detailed insights into the compositional changes across a sample.

Moreover, its capability to operate under ambient conditions facilitates in-situ analysis,

allowing for real-time observations of dynamic processes and interactions within materials.

2.3.1 Calculation of the intensities

GEXRF is essential to this study because it makes it possible to gather depth-resolved

data, which is necessary to comprehend the complex characteristics of layered materials.

With a high angular resolution setup, GEXRF enables the detection of XRF signals from

varying depth levels, providing detailed insights into the compositional changes across a

sample. Moreover, its capability to operate under ambient conditions facilitates in-situ

analysis, allowing for real-time observations of dynamic processes and interactions within

materials.

Figure 2.10 represents the interaction between emitted fluorescence radiation and the

interfaces of various layers. As the primary beam enters the sample, it excites atoms along

its path, leading to the emission of characteristic fluorescence radiation. Upon reaching

the interface between air and the medium j, the emitted radiation faces two potential

outcomes: a portion may pass through into the air, while the rest may be reflected at the

air and medium j interface. A similar phenomenon occurs when the reflected fluorescence

radiation meets the interface between medium j and medium l; it is either transmitted
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through medium l or reflected. This reflection from the medium l can cycle back to the

air and medium j interfaces, initiating a continuous loop of reflection and transmission.

The calculation’s main goal is to ascertain the proportion of fluorescence radiation that is

transmitted into the air through these interactions.

Fig. 2.10: Illustration of the transmission and reflection of the emitted fluorescence
radiation between different mediums.

To accurately model this process, it is essential to consider and calculate three critical

phenomena that occur:

• Change in Field Strength: This involves quantifying how the field strength of

the emitted fluorescence radiation changes as it transmits from the surface through

to the air.

• Intensity Loss: This accounts for the attenuation of fluorescence radiation’s

intensity as it propagates within the layer, a crucial factor in understanding the

overall transmission efficiency.

• Refraction and Reflection: This describes how the intensity and phase of the

emitted light is modified after multiple reflections within the layer before it exits.

These factors collectively enable a comprehensive analysis of the fluorescence radiation’s

behavior within layered samples, facilitating a deeper understanding of its transmission

dynamics [70, 76, 91].

Before starting the calculation, it’s crucial to highlight the significance of the complex

refractive index for X-rays. This index delineates the degree to which wave propagation is

influenced within a material, encapsulated by the formula:
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nj = 1 − δj + iβj (2.7)

Where:

• nj represents the complex refractive index for the atom j.

• δj and βj are the real and imaginary components, respectively. These components

elucidate the dispersive and absorptive dimensions of the wave-matter interaction,

essential for understanding how X-rays are altered by the material.

These components can be derived from the atomic scattering factors (f1 and f2) using

the relations:

δj = nareλ
2

2π
f1 (2.8)

βj = nareλ
2

2π
f2 (2.9)

Here, na denotes the Avogadro number, re is the classical electron radius, and λ is the

wavelength of the emitted fluorescence radiation. The scattering factors f1 and f2 quantify

the dispersive and absorptive properties of the medium j towards X-ray wavelengths,

respectively.

The initial phase in modeling the angular intensity profiles involves the calculation of

wavenumbers for the emitted fluorescence radiation, both in the air and within the sample

layer at each angle [70, 76, 91]. These wavenumbers are determined as follows:

• For air, the wave number kair is given by:

kair = 2π

λ
sin θ (2.10)

• For the medium j within the layer kj, the wave number is calculated using:

kj = 2π

λ

√︁
n2

j − cos2 θ (2.11)
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The transmission coefficient (t+
j ) is essential for understanding how the field strength of

emitted radiation changes as it transitions from the surface to the air [70, 76, 91]. It is

derived using the Fresnel equation:

t+
j = kair

kj

√︁
n2

j − cos2 θ

sin θ +
√︁

n2
j − cos2 θ

(2.12)

Where:

• For term kair

kj
indicates the ratio of the wave number in air to that in the subsequent

medium. This ratio significantly influences the amplitude of the transmitted wave.

• The second term adjusts the transmission coefficient based on the refractive index of

the next medium and the angle of incidence. This adjustment considers both the

geometric and optical properties at the interface.

This approach allows for the calculation of changes in the field strength of the emitted

radiation as it transmits from the surface to the air. Understanding the transmission

coefficient is crucial for accurately predicting how fluorescence radiation behaves as it

encounters different media interfaces [70, 76, 91].

To quantify the attenuation of the fluorescence radiation’s intensity within a layer,

one can use the imaginary part of the complex refractive index [70, 76, 91]. This part

involves figuring out how much electromagnetic radiation the medium is absorbing. The

attenuation calculation is performed as follows:

1 − exp [−2I m(kj)dj)]
2I m(kj)

(2.13)

Where:

• I m(kj) represents the imaginary part of the wave number (or wave vector component

along the z-axis) for the j medium. The imaginary part of the wave number is

related to the attenuation (or absorption) of the wave as it propagates through the

medium. A wave number, k, in complex form can be written as k = k′ + ik′′, where

k′′ = I m(k) signifies the rate of the exponential decay of the wave amplitude within

the medium j.
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• dj represents the thickness (or depth) of the layer or medium through which the

wave is propagating.

• exp [−2I m(kj)dj)] term represents the attenuation factor of the wave as it travels a

distance dj within the medium. The exponential decay is characterized by the product

of the imaginary part of the wave number and the distance traveled, multiplied

by 2 to account for both the forward and backward (or round-trip) paths in some

interpretations, such as in the analysis of reflection or transmission through a layer.

The function can be interpreted as calculating a quantity related to the attenuation of a

wave due to its propagation through a medium of thickness dj . The denominator, 2I m(kj),

normalizes this value, potentially to derive a quantity like an effective penetration depth

or a related measure of how the wave’s intensity is reduced within the medium.

For the final step in understanding how the intensity and phase of emitted fluorescence

radiation are modified after undergoing multiple reflections within a layer before its exit,

one can delve into the calculation of reflection coefficients at the interfaces between different

media. These calculations are critical for determining the behavior of emitted radiation as

it interacts with the boundaries of the layer and substrate [70, 76, 91].

The reflection coefficients at an interface between two media, considering the change in

refractive index from one medium j to the next medium l, and incorporating the angle of

incidence (θ). These coefficients are derived from the Fresnel equations for reflection at an

interface and are adapted to account for oblique incidence (non-normal incidence) based

on the refractive indices of the two media involved and the angle of incidence [70, 76, 91].

Let’s break down each term for clarity:

• Reflection coefficient for emitted radiation back into medium j:

r−
j =

√︁
n2

j − cos2 θ − sin θ√︁
n2

j − cos2 θ + sin θ
(2.14)

This coefficient is used when considering the reflection of emitted radiation that is

moving from medium j to air and then reflects into medium j.



2.3 Grazing emission XRF (GEXRF) 33

• Reflection coefficient for emitted radiation from medium l back into medium j:

r+
j =

√︁
n2

j − cos2 θ −
√︁

n2
l − cos2 θ√︁

n2
j − cos2 θ +

√︁
n2

l − cos2 θ
(2.15)

This coefficient is used when considering the reflection of emitted radiation that is

moving from medium j to medium l and then reflects into medium j.

With these reflection coefficients, the intensity and phase variations of the emitted light

after multiple reflections can be calculated using the following expression:

1 +
⃒⃒⃒
r−

j

⃒⃒⃒2
exp [−2I m(kj)dj]⃒⃒⃒

1 − r+
j r−

j exp [2i(kl)dj]
⃒⃒⃒2 (2.16)

The intensity of the emitted fluorescence radiation as a function of emission angle, I(θ),

can be approximated by combining the transmission coefficient, attenuation factor, and

the reflection:

I(θ) ≈
⃒⃒⃒
t+
j

⃒⃒⃒2 1 − exp [−2I m(kj)dj)]
2I m(kj)

1 +
⃒⃒⃒
r−

j

⃒⃒⃒2
exp [−2I m(kj)dj]⃒⃒⃒

1 − r+
j r−

j exp [2i(kl)dj]
⃒⃒⃒2 (2.17)

This formulation encapsulates the effect of multiple reflections on the emitted light’s

intensity and phase, integrating the impact of changes in medium, angle of incidence, and

the layered structure of the sample [70, 76, 91].

Calculating the intensity as a function of the emission angle is crucial for determining

the optimal experimental geometry. These calculations were employed to establish the

appropriate distance between the sample and the detector. Initially, the angular intensity

profile of metallic chromium (Cr) was calculated, followed by the profile of chromium

dioxide (Cr2O3). By comparing these profiles, the shift between the two in milliradians

could be determined. This information was then used to select the experimental geometry.

2.3.2 X-ray sources

GEXRF experiments can be conducted with various ionizing radiation sources, from

conventional X-ray tubes in laboratory setups to synchrotron radiation facilities. While
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synchrotron sources offer unique advantages, their limited accessibility remains a notable

limitation. In contrast, advancements in X-ray tube technology provide promising alterna-

tives for broader application. This section highlights the comparative roles of X-ray tubes

and synchrotron radiation within the GEXRF experimental setup.

2.3.2.1 X-ray tubes

X-ray tube technology’s widespread application underscores its significance in material

research in laboratories. The main components of X-ray tubes are the cathode and the

anode. These components are housed in evacuated glass. The cathode is designed to emit

thermal electrons when heated by a current supplied from an external power source. The

anode is made of high-purity metals such as molybdenum, copper, or tungsten. It serves

as a target for accelerated electrons and facilitates the generation of X-rays upon impact

[92].

The operation begins with the heating of the cathode, leading to the emission of thermal

electrons. These electrons are then accelerated toward the anode by a high voltage.

Upon striking the anode, two types of radiation are produced: Bremsstrahlung and the

characteristic radiation. These two types of radiation contribute to the X-ray spectrum

emitted by the tube [92]. The generation of X-rays by means of X-ray tubes is illustrated

in Figure 2.11.

The X-ray spectrum from a tube is characterized by a continuous component, known as

Bremsstrahlung, and discrete characteristic lines that are specific to the anode material.

Factors like the anode material and acceleration voltage play crucial roles in determining

the characteristics of the emitted X-ray spectrum [92].

Only 1% of the electrical power can be converted to X-rays; the remaining is converted

to heat. Given the substantial heat load on the anode, efficient cooling mechanisms are

essential [92]. These can be achieved by water or oil circulation systems around anodes or

the use of a rotating anode to spread the heat over a larger area. A novel solution is the

liquid-metal-jet anode, which uses a continuously regenerated liquid metal as the anode

material to mitigate thermal damage and enhance the efficiency and brightness of the

X-ray source [93].
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Fig. 2.11: A basic diagram of an X-ray tube, featuring both cathode and anode within a
vacuum-sealed tube. The cathode’s filament heats up, releasing electrons that
are then propelled towards the anode by a high-voltage electric field. Upon
colliding with the anode, X-rays are generated. To manage the resulting heat,
cooling systems are applied to the anode.

Most of the applications of GEXRF were using a high power (P>1 kW) Rh or Mo anode

X-ray tube, leading to long experiment times. The transition to more compact, low-power

X-ray tubes (P<1 kW) in subsequent years, sometimes coupled with polycapillary lenses,

highlighted the field’s progression towards more versatile and accessible analytical tools

[94].

2.3.2.2 Synchrotron sources

The historical background of synchrotron radiation began in 1940. When a charged particle

radially accelerated at nearly the speed of light emits electromagnetic radiation, which

is known as synchrotron radiation. It was first observed accidentally during experiments

with early particle accelerators, known as synchrotrons, used to accelerate electrons to

relativistic speeds. The phenomenon was initially seen as a problematic energy loss for

the accelerators, causing unwanted electron deflection. But better understanding of this

phenomenon led to the development of synchrotron light sources specifically designed to

produce and use this radiation for scientific research, highlighting its transition from an

undesired byproduct to a valuable research tool. Due to its unique properties, synchrotron

radiation became an essential tool for research in various scientific fields [95].
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In the 1960s and 1970s, the importance of synchrotron radiation for studying the

structure and properties of matter was realized. The first dedicated synchrotron light

sources were built to exploit this powerful and versatile form of electro-magnetic radiation.

These early facilities paved the way for the advanced synchrotron radiation facilities

available today, which offer highly collimated, intense, and tunable X-ray beams for a wide

range of scientific and industrial applications [95].

The continuous improvement of synchrotron radiation is achieved by advancing in the

design and construction of facilities, beamlines, and instrumentation.

Synchrotron radiation is generated through several steps. Initially, an electron source

emits electrons, which are then accelerated to nearly the speed of light using a linear

accelerator (LINAC). These electrons are further accelerated and synchronized in a booster

ring to achieve their target energy level. Subsequently, they are injected into a storage

ring, where they are maintained in a circular orbit by magnetic fields in an ultra-high

vacuum environment. As electrons traverse through different magnetic devices, including

bending magnets, undulators, and wigglers, they emit electromagnetic radiation, known

as synchrotron radiation, ranging from infrared to hard X-rays. This radiation is directed

to various experimental stations or beamlines for a wide range of research and analytical

applications [61, 96]. A schematic representation of the synchrotron facilities is shown in

Figure 2.12.

The journey of the ejected electrons starts in a linear accelerator. LINAC accelerates the

electron very close to the speed of light. A LINAC consists of a series of radio frequency

(RF) cavities, each providing an electric field that accelerates the electrons as they pass

through. This phase of acceleration is critical, as it provides the initial boost needed to

propel the electrons to high velocities. The efficiency of this process is important, as it

sets the foundation for the subsequent stages of acceleration and the overall brightness

and quality of the synchrotron radiation produced [61, 96].

After exiting the LINAC, the electrons are injected into a booster ring, a circular

accelerator that further increases their energy. The booster ring uses magnetic fields to

bend the electrons along a circular path. This stage is crucial for bringing the electrons

up to the desired energy level before they are transferred to the main storage ring. The
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Fig. 2.12: General diagram of synchrotron facilities, adapted from [97]

booster ring serves not only to increase the energy of the electrons but also to pack them

into tight bunches, optimizing the intensity and coherence of the radiation they will emit

in the storage ring [61, 96].

The storage ring’s primary function is to sustain the circular motion of electron bunches

at relativistic speeds. Magnetic fields within the storage ring play an important role in

controlling the path and dynamics of the electron beam. Bending magnets are responsible

for keeping the electrons on their circular path. Quadrupole and sextupole magnets are

responsible for the focusing of the beam. To ensure that the electrons remain tightly

bundled, this configuration corrects for any spread in momentum and position. It is

necessary to have precise control over the beam dynamics in order to get the best quality

and intensity of synchrotron radiation [61, 96].

The change in direction of the electrons produced by the magnetic field results in the

emission of synchrotron radiation. This radiation is characterized by its unique brightness

and wide spectrum range. Based on the energy of the electrons and the configuration of

the magnetic fields, the intensity and wavelength of the emitted radiation can be fine-tuned

[61, 96].
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Insertion devices are specialized magnets placed in straight sections of the storage ring

to modify the trajectory of the electron beam and enhance the properties of the emitted

synchrotron radiation. There are three main types of insertion devices: wavelength shifters,

wigglers, and undulators, each serving distinct purposes [61, 96].

A wavelength shifter is designed to increase the energy of the synchrotron radiation.

The direction of the electrons is changed by creating a strong magnetic field. As a result,

the energy of the emitted radiation increases. This allows the generation of higher-energy

photons, extending the synchrotron’s capabilities for experiments requiring hard X-rays.

The wavelength shifter comprises three magnetic poles: a powerful central pole generates

synchrotron radiation, while two outer poles with a field opposing that of the central pole

counteract the deflection of the electron beam path. By employing strong magnetic fields

typically ranging from 5 to 10 Tesla, this setup results in a reduced radius of the electron’s

trajectory [61, 96].

Wigglers and undulators operate on a similar principle to wavelength shifters. However,

instead of three poles, they use an N number of poles arranged in a periodic magnet

structure with alternating magnetic fields. This arrangement force electrons to follow

sinusoidal trajectories within the device. Similar to wavelength shifters, the outer poles

are employed to counteract deflections in the electron beam trajectory, while all poles in

between contribute to synchrotron radiation production [61, 96].

Wigglers are comprised of a sequence of magnets with alternating polarity, inducing

electrons to oscillate or "wiggle" as they traverse through the device. This wiggling motion

results in a broader spectrum of radiation with increased intensity, thereby generating a

brighter beam. This enhancement is particularly beneficial for beamlines requiring high

flux, significantly amplifying their capabilities [61, 96].

Undulators, similar to wigglers, have a series of alternating magnets, but the magnetic

field strength and the spacing between magnets are designed such that the emitted radiation

from consecutive oscillations interferes constructively. The result is highly coherent, very

intense, and concentrated radiation in narrow energy bands. Undulators are essential

for experiments requiring coherent beams [61, 96]. Principles of syncrotron radiation

generation by various insertion devices are shown in Figure 2.13.
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Fig. 2.13: The production of syncrotron radiation by bending magnets, wigglers, and
undulators and the resulting energy spectra.

Beamlines are the channels through which synchrotron radiation is delivered from the

storage ring to the experimental stations. Beamlines are designed to shape and refine

the beam to meet the needs of specific experiments. Such customizable setups allow

researchers to optimize the intensity, focus, and wavelength of the synchrotron radiation

for their particular needs. After beamline optics, experimental instruments and detectors

are positioned to measure the interaction between synchrotron radiation and matter.

The unique properties of synchrotron radiation provide researchers with opportunities to

probe the microcosmic realms of matter. It is worth highlighting a few important features

of synchrotron radiation that have had a major impact on the presented work.

• High Brightness

At the heart of synchrotron radiation’s appeal is its extraordinary brightness. This
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brilliance translates into an intense photon flux concentrated in a small, well-

collimated beam. The implications for research are profound, as this high brightness

ensures the availability of reduced experimental times and increases the sensitivity

and resolution of experimental techniques such as GEXRF and GEXANES.

• Broad Spectral Range

Synchrotron radiation covers a broad spectrum range that meets a great range of

experimental requirements in several scientific disciplines. Researchers can study

atomic structures, electronic states, and molecular dynamics using the same source,

adjusting the wavelength to suit their specific requirements.

• Tunable Energy

Another important characteristic feature of synchrotron radiation is its tunable

energy. By adjusting the energy of the synchrotron radiation, it can be tailored to

specific needs, such as the absorption edges of certain elements.

• Small Source Size and Natural Collimation

Synchrotron radiation is emitted from a remarkably small source and exhibits natural

collimation, resulting in a narrow, directed beam. This property is invaluable for

performing experiments that require high spatial resolution and precision. The small,

focused beam can be directed to specific areas of a sample, allowing localized analysis

without affecting the surrounding material and also reducing the topographical effect

on the experimental result.

2.3.3 Detection of fluorescence X-rays

In the field of X-ray fluorescence (XRF) analysis, the evolution of detector technologies is

rapidly improving experimental setups. This section discusses two major types of detection

strategies that have been used in GEXRF experimental setups. This includes energy

dispersive detection and scan-free energy-dispersive detection methods.
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2.3.3.1 Energy dispersive detection

In XRF analysis, silicon drift detectors (SDDs) have surpassed Si(Li) detection devices

because they can resolve higher energies and produce less electronic noise. This is because

they are better at picking up excited semiconductor current. Such an advancement is

essential for GEXRF applications, facilitating the detailed discrimination of XRF signals

from diverse elements. This capability allows researchers to capture the angular intensity

profiles from different atoms simultaneously [94].

The scanning GEXRF experiment involves recording angular intensity profiles through

detector movement. This movement can be either circular, centered on the sample to

maintain a constant detection angle, or linear, moving perpendicular to the sample surface.

Such methodologies allow for the sequential measurement of XRF radiation at varying

grazing emission angles. The accuracy of these scanning measurements heavily relies on

the precision and resolution of the positioning system for distinguishing features in the

angular intensity profiles [94].

Fig. 2.14: Illustration of the detection of emitted fluorescence X-rays with energy disper-
sive detectors.

The required angular resolution varies depending on the XRF line energy and the

characteristics of the sample, such as layer thickness in layered samples. However, the

relatively large surface of SDDs poses a challenge to achieving the necessary angular

resolution for GEXRF and requires the use of slits and a considerable distance between the

sample and detector. These modifications, while crucial for enhancing angular resolution,
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unfortunately reduce the detection efficiency by decreasing the solid angle of detection and

extending the experiment durations. This limitation has impacted the broader application

of GEXRF [94]. A schematic representation of the GEXRF setup with energy dispersive

detection is shown in Figure 2.14.

2.3.3.2 Scanning-free detection

In 1993 ([98]), Sasaki et al. did important work that made GEXRF possible by showing

that angular intensity profiles could be recorded without moving the detector. They show

that by using image plates, it is possible to measure the angular intensity profiles. This

experiment aimed at detecting Kα fluorescence line from a Zn monoatomic layer on an

Au substrate. Results show the clear visibility of interferences in the GEXRF signal.

For quantitative analysis, however, more scanning with an energy-dispersive Ge detector

was needed, which showed early problems with making measurements that didn’t require

scanning [94].

Fig. 2.15: Illustration of the detection of emitted fluorescent X-rays with a scan-free
approach using an area detector.

Recent advancements have greatly improved the functionality of GEXRF using area-

sensitive detectors, which outperform imaging plates in sensitivity and signal-to-noise ratio.

Notably, detectors like the pnCCD are particularly effective for scan-free GEXRF. The
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pnCCD offers an optimal combination of pixel size, energy resolution, and frame rate for

various X-ray applications [94].

The setup for scan-free GEXRF with an area-sensitive detector is illustrated in Figure

2.15.

2.4 X-ray absorption fine structure (XAFS) spectroscopy

X-ray absorption fine structure (XAFS) spectroscopy deals with changes in the absorption

from an incident X-ray beam, depending on the energy and composition of the material.

Specifically, XAFS refers to the modulation of an atom’s X-ray absorption probability

because of the atom’s atomic and electronic structure. XAFS can provide detailed

information about the chemical state, local symmetry, local atomic environment, and

interatomic distances of samples regardless of their physical state [99–101].

There are two main parts to an XAFS spectrum: XANES (X-ray Absorption Near Edge

Structure) and EXAFS (Extended X-ray Absorption Fine Structure) (see in Figure 2.16).

Each provides different insights into the material’s properties, enabling comprehensive

characterization.

Fig. 2.16: Regions of XAFS spectrum



44 2 Theoretical Background

XANES shows details about the sample’s electronic structure, such as its oxidation states

and the atom’s local coordination environment [99–101]. EXAFS extends the analysis by

examining the interference pattern created by the scattering of the ejected photoelectrons

off surrounding atoms. This technique can determine distances to nearest neighbors,

coordination numbers, and identify neighboring atomic species, offering a detailed picture

of the local atomic environment [99–101].

XAFS experiments can be conducted using two principal methods: transmission mode

and fluorescence mode. Each method has its own specific experimental setup, advantages,

and considerations, making them suited for different types of samples and research

questions.

Transmission mode is the traditional approach to conducting XAFS experiments. In

transmission mode, the intensity of the primary X-ray beam is measured before and after

it passes through the sample. This method fundamentally relies on precisely tracking how

much X-rays weaken as they move through a material. This reveals how the material

absorbs X-rays at different energy levels. The experimental apparatus typically involves

two ionization chambers placed before (I0) and after (I) the sample. These chambers

measure the intensity of the incoming and transmitted X-rays, respectively. This approach

provides a direct measurement of the absorption of primary beam by sample as a function of

X-ray energy and providing insights into the electronic structure and bonding environment

of the atoms within the sample. The quality of the data obtained in transmission mode

heavily depends on the sample’s preparation. The sample must be homogeneous and

thin enough to allow a significant portion of the X-rays to pass through without being

completely absorbed. The ideal sample thickness varies depending on the material’s

absorption properties [102].

Fluorescence mode is particularly useful for samples unsuitable for transmission mea-

surements. In this method, the experiment focuses on detecting the emitted fluorescence

radiation by the sample when it is excited by a primary X-ray beam [99–101]. By drawing

the variation of the interested emission line in the XRF spectrum as a function of the

incident energy, an absorption spectrum can be obtained. The setup for fluorescence

measurements often includes energy-dispersive detectors, such as silicon drift detectors
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(SDD) or charged coupled devices (CCD), positioned to capture the emitted fluorescence

radiation.

In fluorescence mode, self-absorption effects must be taken into account. Here, fluorescent

X-rays are reabsorbed within the sample and can significantly affect the accuracy of the

experiment, especially for high Z (atomic number) elements. To mitigate this, special

geometries can be used that minimize the path length of the fluorescent X-rays through

the sample, thereby reducing the self-absorption effect. Another solution is mathematical

correction. The data can be corrected to account for self-absorption, but this requires

accurate knowledge of the sample composition and geometry [99–101].

In the atomic model, electrons are arranged in shells around the nucleus, with each

shell corresponding to a principal quantum number (n). These shells are further divided

into subshells characterized by the azimuthal quantum number (l), which determines the

shape of the electron’s orbital. The interaction of X-rays with an atom primarily involves

inner-shell electrons, leading to specific absorption phenomena known as absorption edges

[100].

The absorption edge is a threshold at which an X-ray photon has sufficient energy to

eject an electron from an inner shell, creating an electron vacancy. This process is highly

dependent on the electron configuration of the atom, as different shells and sub-shells

have distinct binding energies. The ionization of an electron from the n = 1 shell which

corresponds to the K-edge. The L- and M-edges relate to the ionization of electrons from

the n = 2 and n = 3 shells, respectively. The energy of the absorption edge provides

valuable information about the electronic structure and chemical state of the atom [100].

The theoretical analysis of XAFS spectra involves understanding the transition probabil-

ity of electrons between different states or the above-mentioned shells, which is influenced

by the selection rules of quantum mechanics. The allowed electronic transitions between

the energy levels of the hydrogen atom are shown in Figure 2.17. This diagram, also known

as the Grotrian diagram, shows that only transitions between adjacent columns are allowed

according to the Δℓ = ±1 selection rule. XANES provides insights into the electronic

structure and chemical bonding of materials. XANES focuses on the energy region just

at and above the core-level absorption edge. This region is sensitive to the unoccupied
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electronic states and can reveal information about the valence state, coordination chemistry,

and the local symmetry of the absorbing atom [100].

Fig. 2.17: The transition probabilities of the electron in the hydrogen atom, shown in
the Grotrian diagram.

The XANES region is characterized by several key features:

• Pre-edge features, which may arise from transitions to bound states or hybridized

orbitals and can provide information about the local geometry and electronic struc-

ture.

• The absorption edge, indicating the energy required to excite a core electron to

the lowest unoccupied electronic state.

• The edge jump, reflecting the increase in absorption coefficient as the energy

crosses the threshold for core-level electron excitation to continuum states.

Analysis of XANES data involves several steps:

• Normalization: The raw absorption spectrum is normalized to isolate the XANES

features by removing the overall trend and scaling the edge jump to a standard value.

This facilitates comparison between different spectra.
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• Extraction of Chemical Information: By examining the energy position and

shape of the absorption edge and pre-edge features, researchers can deduce the

oxidation state and coordination environment of the absorbing atom. Shifts in the

edge position can indicate changes in valence state, while the intensity and splitting of

pre-edge peaks can provide insights into the local symmetry and electronic structure.

• Comparison with Standards: Often, the spectra of known compounds with

similar chemical environments are used as references to help interpret the XANES

features of a sample. This comparative approach can be particularly useful for

identifying oxidation states and coordination geometries.

Feature XANES EXAFS
Region of Spectrum Near the absorption edge Beyond the absorption edge

Energy Range
Within a few tens of eV
above and below the absorption
edge

From just above the edge to
several hundred eV beyond
the edge

Information Provided Chemical state, oxidation state,
local symmetry

Local atomic environment,
interatomic distances,
disorder

Sensitivity Sensitive to the electronic
structure

Sensitive to the atomic
structure

Tab. 2.1: Comparison of EXAFS and XANES detailing the region of spectrum, energy
range, information and sensitivity

2.5 Active learning

Active learning, also known as "query learning" in statistics, is a transformative approach

within the machine learning and artificial intelligence domains. This methodology diverges

from traditional supervised learning by introducing a dynamic, selective process for data

acquisition. Instead of passively learning from a predetermined set of labeled data,

active learning enables algorithms to actively choose their training data. This strategy is

predicated on the hypothesis that a model can perform better and learn more efficiently if
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it focuses on the most informative data points, effectively being "curious" about the data

from which it learns [103].

In machine learning, data is called a "label" when it serves as the target or output value

that a model aims to predict. Labels provide the correct answers for each input data

point, making them essential in guiding a model’s learning process. For example, in image

classification tasks, the label might describe what is depicted in the image, such as "dog"

or "cat."

In traditional supervised learning, large data sets with predefined labels are used to

train the model. The goal is to learn the correlations between inputs and outputs. This

method, while straightforward, often faces practical challenges, notably the availability

of labeled data. Labeling extensive datasets is not only time-consuming but also costly,

especially in fields requiring expert knowledge for accurate annotation [104].

Active learning presents a solution by introducing a model that is not a passive recipient

but an active participant in its learning process. This paradigm shift allows the model

to achieve greater accuracy with fewer training labels by selectively choosing the data

points from which to learn. The essence of active learning lies in its ability to operate

efficiently in scenarios where there is an abundance of unlabeled data but where labeled

data is either scarce or too expensive to acquire [104, 105].

In active learning, labels are requested more selectively. The model identifies specific,

informative data points and queries their labels or values, prioritizing the most uncertain

or difficult examples. This approach enables the model to learn effectively with fewer

labeled data points, reducing the overall cost and effort of labeling. The active learning

algorithm focuses on querying labels at data points that are likely to provide the most

value for the model’s learning process. The ultimate goal is to minimize the need for

labeled data while maximizing the model’s performance and reducing labeling efforts and

resources [103–105].

This dynamic approach to acquiring labels is a defining feature of active learning,

enabling a model to achieve high accuracy with minimal labeling effort.

Active learning’s versatility has led to its application across various domains, where

precision and labeling costs are critical concerns. In these fields, active learning facilitates
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the development of robust models fine-tuned to the data’s most informative aspects [103–

105].

The active learning process evolves in three important steps:

• Initialization

The active learning process begins with initial model training, which is performed

on a relatively small set of labeled data. This preliminary model serves as a starting

point to establish a basic understanding of the task. Despite its limited initial

knowledge, this model can make initial predictions and identify gaps in its learning.

• Query for Information

Once the initial model is created, the next step is for it to identify which data points

in the unlabeled data set would be most informative for further training. This stage

is critical and involves the model "querying" for information. The model evaluates

the unlabeled data and selects specific instances where it predicts its performance

could be significantly improved if those instances were labeled. The criteria for

selecting these data points vary depending on the active learning strategy employed.

Common strategies include uncertainty sampling, where the model queries the data

points about which it is most uncertain, and query by committee, where multiple

models (or a committee) are used and the data points with the most disagreement

are queried.

• Update the Model

Once the informative data points have been identified, the model is updated with

this new information. This step involves retraining or fine-tuning the model to

incorporate the newly acquired knowledge. The updated model now has a better

understanding of the data and makes more accurate predictions.

The cycle then begins again with the query phase, where the improved model searches for

new data points to label [105]. This iterative cycle continues, with each query and update

phase incrementally improving the model toward superior accuracy and functionality. The

process is designed to continue until a predetermined performance benchmark is reached

or a certain number of cycles are completed [106].
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What makes active learning unique is its dynamic nature, which allows the model

to progressively refine and adapt itself by focusing its learning on the most complex or

insightful segments of the data [106]. This methodology ensures efficient allocation of

scarce labeling resources, facilitating the creation of robust models in situations where

labeling the entire dataset is impractical or impossible [107].

The success of active learning depends heavily on the diversity and size of the unlabeled

data pool, which significantly affects the efficiency of the algorithm. A diverse data

pool ensures exposure to a large number of data points, which improves generalization

capabilities. Conversely, a larger data pool increases the model’s potential for improvement

over time [105].

In pool-based active learning, the algorithm strategically selects data samples from

a reservoir of unlabeled information based on specific labeling criteria. This approach

maximizes the efficient use of limited labeling resources by prioritizing data that, once

labeled, will significantly improve model performance. The diversity of this data pool is

critical to ensuring more productive learning [105].

Active learning strategies play an important role in enhancing the efficiency of the

learning process by identifying and selecting the most informative data points for labeling.

These strategies are crucial because they pinpoint the instances that will contribute most

significantly to the model’s learning. Below is an outline and a detailed description of

some of the key query strategies commonly used in active learning.

• Uncertainty Sampling

In uncertainty sampling, the model focuses on querying instances about which it is

least confident. The rationale behind this strategy is straightforward: by learning

from the most uncertain cases, the model can quickly gain new insights and reduce

its overall uncertainty. For example, in a classification task, the model might focus

on instances where it is unable to clearly distinguish between two or more classes

[108].

Advantages:

– Quick identification of informative examples.

– Simple to implement and understand.
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Limitations:

– May lead to the selection of outliers or noise.

– Can be biased towards densely populated regions of the feature space.

• Query by Committee

Query by committee (QBC) involves maintaining multiple models (the committee)

that are trained on the same dataset. The instances about which the committee

members disagree the most are considered the most informative and are selected for

labeling. This disagreement is a measure of uncertainty, and querying these instances

helps in refining the model by focusing on the most contentious points [109].

Advantages:

– Incorporates multiple perspectives, reducing the risk of selecting outliers.

– Effective in reducing model variance.

Limitations:

– More computationally intensive due to maintaining multiple models.

– May not be as effective in cases where models converge to similar hypotheses.

• Expected Model Change

This strategy focuses on selecting instances that, if labeled, are expected to induce

the most significant change in the current model. The idea is to choose instances

that will lead to the greatest improvement in the model. This strategy often involves

a more complex computation to predict the impact of adding each instance to the

training set, but it can be highly effective in rapidly improving the model [110].

Advantages:

– Focuses on the most impactful data points.

– Can lead to rapid improvements in model performance.

Limitations:

– Computationally expensive, as it requires estimating the impact of each instance

on the model.
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– May not always select diverse instances.

• Expected Error Reduction

In this approach, the instances are chosen based on their expected contribution to

reducing the overall error of the model. This strategy aims to select instances that

will not only improve the model but also enhance its generalization capabilities. By

focusing on reducing the error, this strategy can be particularly useful in applications

where precision is critical [111].

Advantages:

– Directly targets error reduction, improving model accuracy.

– Aligns closely with the ultimate goal of many learning tasks.

Limitations:

– Requires estimating the model’s future performance, which can be challenging

and resource-intensive.

– May not be suitable for all models or problem types due to the complexity of

error estimation.

Each strategy brings unique advantages, tailored to diverse problem sets and data

environments. The choice among these strategies is dictated by the learning task’s unique

goals, the data’s nature, and any existing constraints within the learning environment.

Active learning, characterized by its tactical data selection for labeling, presents a

paradigm shift from conventional supervised learning, offering numerous benefits while

also posing some challenges. Below are refined and polished insights into the advantages

and disadvantages of active learning.

Advantages:

• Efficient Use of Data: One of the most significant advantages of active learning is

its ability to achieve high model performance with fewer labeled instances. This is

particularly beneficial in scenarios where data labeling is costly or time-consuming.
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• Cost-Effectiveness: By reducing the number of samples that need labeling, ac-

tive learning can significantly cut down the costs associated with data annotation,

especially in fields requiring expert knowledge.

• Improved Model Performance: Active learning can lead to more accurate models

as it focuses on the most informative data. This targeted approach can enhance the

learning process, resulting in improved model performance.

• Usefulness in Sparse Data Contexts: In situations where unlabeled data is

plentiful but labeled data is scarce, active learning becomes an invaluable tool. It

allows for the efficient utilization of available labeled data.

Disadvantages:

• Dependency on Interactive Labeling: Active learning requires the ability to

interactively query for labels. This is not always feasible, especially in scenarios

where immediate feedback from an expert is not available.

• Strategy-Specific Effectiveness: The success of active learning heavily depends

on the chosen query strategy. Not all strategies work equally well across different

problems and datasets, which can affect the overall effectiveness of the approach.

• Potential for Bias: If the initial set of labeled data is not representative of the

overall dataset, there’s a risk of biasing the model. This can happen if the model

continuously queries for similar types of data, leading to a lack of diversity in the

training set.

• Complexity in Implementation: Implementing active learning algorithms, es-

pecially with more sophisticated querying strategies, can be more complex than

standard supervised learning algorithms. This complexity might pose challenges in

terms of development and computational resources.

While active learning offers a promising approach to dealing with the challenges of data

labeling, it requires careful consideration of the strategies used and the context in which it

is applied. Its advantages in reducing labeling costs and improving model performance
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must be weighed against the potential difficulties in implementation and the need for

interactive labeling processes.

2.5.1 Bayesian Optimization

In this study, Bayesian optimization (BO) is used as an active learning process, exemplifying

a pool-based active learning algorithm that adeptly employs various query strategies for

effective sampling. BO, which is a probabilistic framework, employs Gaussian process

(GP) models for the optimization of functions that are considered "black-box" and may be

linked to expensive objectives, with the integration of noise. These objectives typically

carry high evaluation costs, whether it is time, computational resources, or other types

of expense, such as long synchrotron radiation experiments [112]. The GP models form

an important part of BO, creating a framework to understand the relationship between a

system’s inputs and outputs based on a pool of training samples.

This relationship is depicted through a GP, which is a probability distribution over

functions. It is denoted as:

G P(µ(x), Σ(x)),

where:

• µ(x) is the mean function, which provides the expected value of the function at

input x,

• Σ(x) is the covariance function, specifying the covariance between the function

values.

.

Such a representation allows us to make informed predictions about system output in

the face of new inputs while also quantifying the associated uncertainty. A GP can be

conceptualized as an endless collection of Gaussian probability distributions, with each

distribution employed to represent the subtleties of functions [113].

Gaussian Process Regression (GPR) refers to the application of a GP for regression

tasks and involves setting up a prior distribution over possible functions, denoted as
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f(x) ∼ G P(µ(x), Σ). This reflects the researcher’s expectations about the functions

that most likely characterize the system or process of interest. Typically, this prior

distribution is Gaussian, with mean and covariance functions driven by assumptions about

the underlying function. Post-data collection, Bayes’ theorem is applied to revise beliefs

about the function f(x). To put it in specific terms, the posterior distribution p(f(x)|D)

over functions f(x) is calculated by combining the prior distribution p(f(x)) with the

likelihood p(D |f(x)) of the observed data D, given the function f(x). This combination is

done using Bayes’ theorem:

p(f(x)|D) ∝ p(f(x)) × p(D |f(x)) (2.18)

To construct a GP model, a prior distribution over function values f(x) at the input

points D needs to be determined. This usually involves the assumption that f(x) is

drawn from a zero-mean Gaussian distribution with a covariance matrix K. Similarly,

the likelihood of the observed data, given the function f(x), is generally assumed to be a

Gaussian distribution with mean f(x) and a noise parameter σ2. The posterior distribution

can then be estimated as follows:

p(f(x)|D) ∝ N (0, K) × N (D |f(x), σ2I) (2.19)

Here, N signifies the normal distribution of probability density function (PDF). The

multiplication of normal distribution of the PDFs of the prior and likelihood functions,

both normal distributions, yield another normal distribution—denoted as the posterior

distribution. The mean and variance of this posterior distribution can be computed using

the following equations:

µ(x) = K(X∗, X)(K(X, X) + σ2I)−1y (2.20)

Σ(x) = K(X∗, X∗) − K(X∗, X)(K(X, X) + σ2I)−1K(X∗, X)T (2.21)

Within this context, if there are n training points and n∗ testing points, K(X, X∗)

represents the n × n∗ matrix containing covariances evaluated for all combinations of
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training and testing points and similarly for the other entries K(X, X), K(X∗, X∗),

K(X∗, X). Furthermore, σ2 denotes the observation noise variance, I is the identity matrix,

and y is the vector of observed target values corresponding to the training points X.

The kernel function is a core component of the GP, which measures how similar two

points are in the data set. This helps build the covariance matrix K(X, X), a collection of

covariances between all training data pairs, and plays a part in creating covariance vectors

for training and testing data points.

The Matérn kernel is commonly used by GP to model a wide range of data relationships.

It is flexible, able to track both stable, smooth functions as well as sudden changes and gaps.

However, depending on the problem and data, other kernels may work better in different

scenarios. The Matérn kernel, which is an extension of the Radial Basis Function (RBF)

kernel, has an extra hyperparameter, ν, that manages the smoothness of the resulting

function. A smaller ν leads to a less smooth approximation, while a larger ν makes the

kernel behave like the RBF kernel.

Specifically, for XANES analysis, the Matérn kernel with ν = 1.5 is very effective in

describing the link between input and output variables. This kernel’s ability to accurately

predict optimal measurement points helps reduce the duration of the experiment. The

Matérn kernel is also capable of handling data noise and irregular patterns, common

in XANES analysis. The Matérn kernel includes another hyperparameter, the length

scale, which decides how much neighboring points influence each other. The Maximum

Likelihood Estimation (MLE) method is used to optimize these hyperparameters, striking

a balance between fitting the data well and avoiding overfitting and thereby improving

prediction accuracy. Accurate predictions, even with data noise, are crucial to minimizing

the time spent on XANES experiments and obtaining accurate results.

The first step in the BO process is to find a new measurement point by using the

mean (Eq. 2.20) and variance (Eq. 2.21) functions, which are important parts of making

acquisition functions. In this investigation, we employed the Upper Confidence Bound

(UCB) sampling function to iteratively determine the subsequent sample points and

optimize the objective function. The UCB, a popularly employed acquisition function in

BO, balances exploration and exploitation to efficiently probe unexplored regions within
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the input space. The forthcoming sample point is selected by maximizing the UCB function.

The following equation represents the UCB acquisition function:

UCB(x) = µ(x) + κ × Σ(x) (2.22)

In BO, the equilibrium between exploitation (µ(x)) and exploration (Σ(x)) is maintained

by factoring the variance function with a trade-off parameter (κ). The variance function’s

impact on the UCB function is directly proportional to the trade-off factor, which remains

consistent throughout the optimization process. Nevertheless, as the sample size increases,

the values derived from the variance function decrease due to the reduction in model

uncertainty. This leads to an increased emphasis on the exploitation of the learned model,

while the focus on exploration diminishes. The variance function could be used directly

as a utility function to guess the next calculation points in maximum exploration mode,

but this could mean that pre-peaks are missed, which happens a lot in XANES analyses.

To circumvent this issue, we use the UCB function to calculate the next point instead of

solely relying on the maximum of the variance function.

To summarize, GPR uses multiple Gaussian processes (GPs) to simulate a black-box

function. Based on observed data, it iteratively updates the mean and covariance functions

using Bayes’ theorem. Theoretically, Euclidean distance can be used to correlate the

sampling points in order to generate the covariance function. However, because of its

versatility in managing data with different degrees of noise and smoothness, the Matérn

kernel—a generalization of the Radial Basis Function (RBF) kernel—is employed in this

study. Acquisition functions, which balance exploration and exploitation by using the

mean and covariance predictions from the GP model, are used to predict new sampling

point.

For a more comprehensive understanding of BO and GP, the following seminal works are

recommended: ”Bayesian Optimization” by Garnett (2023) [114] and ”Gaussian Processes

for Machine Learning” by Rasmussen et al. (2006) [115]. These resources offer a deeper

exploration of the concepts, methodologies, and applications of these techniques, which

facilitates a more thorough grasp of the material discussed in this text.
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Experimental Setup

The experimental setup detailed in the following sections includes the introduction of

BESSY II and the µspot beamline, the specific geometrical arrangements employed, and

the advantages of using the pnCCD detector in GEXANES applications. Additionally, the

optimization of this setup through Bayesian optimization (BO) is discussed, showcasing

how this method fine-tuned the experimental conditions for better accuracy. The document

concludes with information on the samples selected for the case study, emphasizing the

practical applications of the setup.

3.1 BESSY II

In the field of synchrotron radiation research, BESSY II is an important facility for

X-ray-based analysis. BESSY II is located at the Helmholtz Center Berlin in Germany. It

produces X-rays in a wide range of energies, enabling ground-breaking experiments and

research in a variety of scientific disciplines.

BESSY II is a third-generation electron storage ring designed specifically to produce

synchrotron radiation. It has a 240-meter circumference and houses a magnetic structure

consisting of 32 bending magnets that hold the electrons in their orbits. These electrons

reach 1.7 GeV with a nominal beam current of 300 mA. Since its opening in 1999, BESSY

II has played a major role in synchrotron radiation research.

Since 2012, BESSY II has been operating in a "top-up" mode by injecting electrons

every 90 to 120 seconds, allowing a constant flux over 24 hours, a significant improvement
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compared to the previous eight-hour intervals (decay mode). In addition to this continuous

photon flux, the average photon flux has increased compared to the decay mode. The

standard fill pattern at BESSY II is a multi-bunch hybrid pattern. The electrons, moving

at a frequency of 1.25 MHz, complete the 240-meter circumference of the ring in 800

ns. This pattern consists of about 300 electron bunches, each with a length of 45 ps (or

0.0135 m) (FWHM), supplemented by a longer intense bunch and seven slicing bunches.

These configurations are adaptable to different experimental needs, including time-resolved

measurements. Special operating modes, such as single-bunch and low alpha modes,

have been introduced to meet specific experimental requirements. In single-bunch mode,

for example, only one bunch of electrons circulates in the ring. Although this mode

operates with a beam current of only 13 mA, it is particularly suitable for time-resolved

measurements and certain experiments where high photon flux is not essential. The low

alpha mode also lets electrons be spread out more evenly, which leads to shorter photon

pulse lengths and better coherence [116, 117].

BESSY II is equipped with 50 experimental stations to meet a wide range of research

needs [118]. While most of these stations are primarily focused on the soft X-ray range

(below 1 keV to around 15 keV), specific beamlines such as BAMline and µspot extend

the facility’s capabilities into the medium and hard X-ray ranges through the use of the

wavelength shifter (WLS) as an insertion device [119, 120].

The BAMline [21] and µspot [121, 122] beamlines are multi-purpose beamlines. There

are no dedicated terminal stations. Instead, several experiments can be realized using

either a single method or a combination of several methods (multimodal). The following

techniques and methods are available at the BAMline and µspot beamlines:

• BAMline: X-ray fluorescence spectroscopy (XRF), X-ray absorption spectroscopy

(XAS); X-ray computed tomography (CT), X-ray Refractometry (XRR)

• µspot: X-ray diffraction (XRD), small/wide-angle X-ray scattering (SAXS/WAXS),

XRF
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3.1.1 µSpot beamline

The GEXANES experiments were performed on the µSpot beamline. This beamline is

designed to provide a micro-focused X-ray beam with high spatial resolution (microme-

tres) together with high flux (1011-1012 p/s), making it an ideal tool for photon-hungry

experiments. µSpot beamline was established in 2004 as a collaboration between the Max

Planck Institute of Colloids and Interfaces (MPIKG) Golm, the Technical University of

Berlin (TUB), and the Federal Institute for Materials Research and Testing (BAM). The

beamline is designed to allow different X-ray analytical methods to be performed with

the small spot size. The beam focus varies between 1.5 and 100 µm, depending on the

method to be used [121]. Examples of these methods include fluorescence imaging, powder

diffraction, elastic scattering, reflectivity, small and wide-angle x-ray scattering (W-SAXS),

and reflectometry.

The beamline source is a 7 T wavelength shifter (WLS), equipped with a toroidal mirror,

and three monochromator elements: a double multilayer monochromator (DMM), a double

crystal monochromator (DCM) with Si [111] arrangement, and a DCM with Si [311]

arrangement. These components are all housed within the optical hutch. The toroidal

mirror plays a vital role in this configuration, significantly enhancing photon flux compared

to the BAMline. This increase in photon flux is a primary factor in the selection of this

specific beamline.

In collaboration with BESSY-II, the Budker Institute of Nuclear Physics has designed,

fabricated, and tested a superconducting 3-pole wavelength shifter (WLS) capable of

generating a maximum magnetic field of 7 T at its central pole. The superconducting

7 T magnet, positioned at the center of the "non-dispersive" straight section, serves as

the core component of the WLS. In addition to the superconducting magnet, two normal

conducting correction magnets are located at the ends of the straight section, creating a

compensated orbit deviation to ensure that the radiation point remains fixed at the center

of the WLS. The magnetic field distribution and the electron beam trajectory along the

WLS straight line are shown in Figure 3.1. The initial cryostat had a consumption of 3

liters of liquid helium per hour and had a single copper thermal screen cooled by liquid

nitrogen. For an electron energy of 1.9 GeV and a field strength of 7 T, the maximum
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angular deviation and orbital displacement inside the WLS are 65 mrad and 15.5 mm,

respectively [123, 124].

Fig. 3.1: Magnetic field distribution and electron beam orbit deviation throughout the 7
T BESSY-II WLS straight section. Adapted from Borovikov et al. [123]

The beamline configuration shown in Figure 3.2 illustrates the arrangement of the optical

elements. The source, focused on the sample by a toroidal mirror, shown as M1 (cylinder

with a bend), performs the task of vertically collimating the beam. M1 is located in the

front-end system, 13 meters from the source. A double crystal monochromator (DCM) or

double multilayer monochromator (DMM) is located 28.5 meters from the source. Using

ultra-high vacuum windowless technology, the beamline is isolated from the experiment by

two differently pumped Kapton windows [125].

The µSpot beamline monochromator uses two sets of crystal monochromators: Si (111)

with λ/Δλ around 5,000 and Si(311) with λ/Δλ around 10,000. There is also a double

multilayer mirror with a Mo/B4C coating where λ/Δλ is around 30. The period of the

multilayer is 2 nm. Compared to crystals, these multilayer mirrors provide about a 50-fold

increase in photon flux on the sample due to their lower energy resolution. This adaptable
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Fig. 3.2: Optical configuration of the µSpot beamline. Adapted from Zizak [122]

monochromator is designed for a range of experiments, allowing the photon flux and energy

bandwidth to be selected as required [122].

The GEXANES experiments used the DCM Si(111) configuration, which is favored for

its superior energy resolution. This high resolution is particularly critical for XANES

analysis, which requires precise detection of subtle shifts and features in the absorption

spectra.

3.2 pnCCD

The GEXANES experimental setup incorporates a pnCCD area and an energy-sensitive

detector. This type of detector is well known for its ability to distinguish between

different energies, and its 12.7 x 12.7 mm2 area is invaluable in providing a scanning-free

approach. Such an approach not only simplifies the experimental process but also leads to

a significant reduction in data acquisition time. The pnCCD is different from detectors

like the PILATUS because its pixels are smaller. This makes it possible to get better

angular resolution in grazing emission setups [23, 89]. In addition to the timesaving and

simplified experimental setup, the pnCCD detector is even more important for the present

study because it can analyze specific X-ray emission lines and increase the reliability and

precision of data interpretation. The design, development, and subsequent validation of
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this detector were a joint initiative of the Institute for Scientific Instruments GmbH (IfG),

the Federal Institute for Materials Research and Testing (BAM), PNSensor GmbH, and

the Institute for Applied Photonics e.V. (IAP).

Technical Overview of the pnCCD Detector:

• Composition: Housed within a robust frame, the detector is equipped with cooling,

data acquisition apparatus, and specialized software.

• Resolution attributes: Offering a matrix of 264 x 264 pixels, it boasts 69,696

pixels, with each pixel sized at 48 x 48 µm2. This results in an imaging area of 12.7

x 12.7mm2 [126, 127].

• Functional characteristics: Its effectiveness is noticeable in the X-ray spectrum

and is designed for quick parallel readout. It has an energy resolution of 152 eV

at the manganese Kα emission line (5898.75 eV), comparable to the Silicon Drift

Detector (SDD). Its frame rates can be selected between 400 Hz and 1000 Hz and has

a quantum efficiency of over 95% between 3 keV and 10 keV. Detailed specifications

are provided in Table 3.1 [127].

Parameter Value
pnCCD type column-parallel, split frame readout
Pixel size 48x48 µm2

Number of pixels 69696
Image area 12.7 x 12.7 mm2

Sensitive depth 450 µm
Frame rate 400 Hz-1000 Hz
Pixel readout speed 28 Mpixel/s
Quantum Efficiency >95% at 3keV -10keV; >30% at 20keV
Readout noise (rms) <3e- / pixel
Charge transfer eff. >0.99995

Tab. 3.1: Summary of the pnCCD parameters

• Detector architecture: The detector uses a 450 µm thick n-doped silicon substrate

surrounded on both sides by p+ structures. At the back there is a homogeneous p+
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doped layer for radiation penetration. In front, there are p+ sections structured in a

three-phase arrangement, three of which form a pixel for charge dynamics. When

voltage is applied, the n-doped silicon substrate is fully activated against radiation

[127].

Fig. 3.3: Diagram showing the working mechanism of the pnCCD. Photons entering from
the backside of the detector creates electron clouds that are trapped in electric
potential minima. Each pixel uses three registers (ϕ1, ϕ2, ϕ3) to transmit the
signal charges to transmit the signal charges to a JFET located at the end of
each row. This process happens simultaneously on all channels. Adapted from
Ordavo et al. [127]

• Principle of operation: A pnCCD works when an X-ray photon strikes the

substrate, creating electron-hole pairs. Under voltage, these pairs separate, and

electrons are collected at the potential minimum of each pixel. Fast recording

voltage shifts allow the transfer of electrons to neighbouring pixels, as shown in

detail in Figure 3.3. The pnCCD performs a channel-parallel readout, meaning that

all pixels in a row are processed simultaneously. Each CCD channel results in an

on-chip junction field-effect transistor (JFET) in a source-follower configuration,

whose gate is connected to the corresponding readout anode for initial amplification.
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Simultaneous readout, known as channel-parallel readout, uses a local amplifier for

the initial signal, which is then processed by four dedicated chips [127].

• Analysis software: By evaluating the electrons produced, the software distinguishes

the position and energy of the photon. Cases where electron clouds from an event

spread across several pixels, known as "split events", are handled by summing

electrons from nearby pixels. This remains accurate until event overlap potentially

affects the count rate [126].

3.2.1 Incorporation and benefits of the pnCCD detector on

GEXANES setup

A major advantage of the GEXANES setup is the integration of the energy-sensitive

pnCCD detector. This integration enhances the ability to differentiate the fluorescence

signal based on its energy. In conventional area-sensitive detectors, the angular intensity

profile represents the cumulative number of photons in all energies. With the pnCCD,

however, it is possible to discriminate between different emission lines, allowing only the

desired angular intensity profile of a specific emission line to be captured.

Figure 3.4 illustrates the need for an energy sensitive approach. It shows angular

intensity profiles for a reference sample consisting of a double layer structure on Si wafer

with a 500 nm chromium metal layer on top of the wafer and a 300 nm chromium oxide

layer on top of the chromium metal layer. The full spectrum counts are shown in red, the

Cr-Kα emission line in blue, and the Cr-Kβ emission line in orange. These variations in

the angular intensity profile are important in determining the number of layers present in

the sample being analyzed.

In particular, the Cr-Kβ emission line (5946.8 eV) appears at lower angles than the

Cr-Kα line (5411.6 eV). This variation in the angular intensity profiles is due to the high

emission energy of Cr-Kβ, which is characterized by a different complex refractive index

and wave numbers compared to the Cr-Kα emission line. Therefore, if the total number

of photons spanning different emission lines is analyzed, it could potentially mask the

true number of layers in the sample. In contrast, isolating and analyzing the Cr Kα and
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Fig. 3.4: Angular intensity profiles of reference sample, derived from the total photons
detected (in red), alongside the Cr-Kα emission line (in blue) and the Cr-Kβ

emission line (in orange) for the reference sample, illuminated at 6033 eV.

Cr-Kβ signals separately offer more accurate XANES results. The energy-sensitive pnCCD

detector also provides the unique advantage of being able to examine multiple atoms

simultaneously during a single measurement.

3.3 Geometrical arrangements

An important measure of this setup is the distance between the sample and the detector.

This distance must be carefully chosen so that XRF signals emitted from different layers

within the sample can be distinguished by the angular intensity profiles on the detector.

If the angular resolution is insufficient, there is a risk that fluorescence signals emitted by

different layers at different depths within the sample will overlap. To avoid such interference

and to accurately resolve the depth profile, it is important to provide a reduced solid angle

of detection per each pixel of the detector.

Figure 3.5 represents the experimental setup of the GEXANES. Ensuring this shallow

opening angle with detectors of fixed pixel size requires increasing the distance between the

sample and the detector (referred to as D in Figure 3.5). In the GEXANES, this increase
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Fig. 3.5: Schematical representation of experimental setup.

causes the solid detection angle to decrease and subsequently the detected intensity to

decrease by a factor equivalent to D2. It should be emphasized that although an increase

in D leads to an increase in air absorption, this effect is insignificant when compared with

the decrease in the solid detection angle. This air absorption can be effectively avoided by

creating a vacuum or applying a helium atmosphere.

The pnCCD’s maximum range of detectable emission angles (θpixel) can be calculated

using following formula:

θpixel = arctan(npixelΔh

D
) (3.1)

where npixel is the number of pixels on a specified axis and Δh the pixel height, given as

48 µm.

Furthermore, the solid angle between two specific pixels (j, k) can be determined by

the following equation:
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Δθpixel = arctan(jnpixelΔh

D
) − arctan(knpixelΔh

D
) (3.2)

Fig. 3.6: Calculated angular intensity profile of Cr metal and Cr2O3 with 300 nm thickness
on Si substrate.

The initial step in determining the optimal distance between the detector and the sample

involved using the formula outlined in the ’Calculation of intensity’ subsection. This

formula was employed to calculate theoretical angular intensity profiles for both Cr metal

layer and Cr2O3 layer on a Si substrate. The resulting angular intensity profiles from these

calculations are depicted in Figure 3.6. These profiles were calculated for Cr metal and

Cr2O3 layers, each with a thickness of 300 nm.

Figure 3.7 illustrates the first derivative of these results, employed to precisely determine

the shift between angular intensity profiles. As indicated in Figure 3.7, the difference

between the peaks is approximately 1.38 mrad, or equivalently, 0.08°. The choice of a

range of about 15 pixels was sufficient for a reasonable duration of the experiment.

Due to these considerations, a D value of 50 cm was opted for, aiming to optimize the

balance between angular resolution and data collection time. This distance provides a

comprehensive angular range of 1.455° and a horizontal solid angle of 0.0055° per pixel. It

should be noted that when an incident beam excites an area of material (400 µm x 200
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Fig. 3.7: Derivative of the calculated angular intensity profiles of Cr metal and Cr2O3.

µm), the fluorescence signal hits the detector at varying solid angles. However, at D=50

cm, the variability in the detected angles is negligible, only ± 4.44x10-6° per pixel.

3.4 Information depth

The depth range probed in a GEXANES measurement is primarily determined by the energy

of the fluorescent X-ray. The experimental procedure analyzes the emitted fluorescence

signal from the sample, which has a constant energy. The critical angle of total reflection

can be calculated using the following formula:

θcritic =
√

2δ (3.3)

where δ is the real part of the complex refractive index.

During energy scanning in the experimental procedure, the critical total reflection angle

is constant due to the constant emitted energy. The perpendicular entrance of the primary

beam minimizes the attenuation of the incident beam in this method. This is due to the

reduced path length of the incident beam through the sample compared to other methods

such as GIXRF or TXRF. However, GE geometry presents a challenge in terms of "sample
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self-absorption". This is because fluorescence emitted from deeper levels must travel a

longer path through the remaining sample material before reaching the detector. However,

previous studies indicate that the GE setup experiences less self-absorption effects than

the GI setup [89, 90].

Fig. 3.8: Schematical representation of the penetration and information depth until
intensity lost corresponding to 1/e number photons in Cr metal.

In the case presented, the energy of the incident beam is between 5975 and 6035 eV.

If the energy is below the absorption energy, the beam can penetrate deeply. However,

when the absorption energy is reached, the penetration depth decreases dramatically. As a

result, the attenuation length for both Cr2O3 and Cr metal ranges from 33 µm to 2.7 µm

within this energy range. Regardless, the total thickness of the sample layers is expected to

be less than 2.7 µm in all cases. Given these details, the primary beam will penetrate deep

enough for analysis. For constant-energy photons emitted by the sample under analysis,

the context changes slightly. Given our geometric configuration, only 1/e of the signal

emitted from a depth of 430 nm is detectable; the rest is absorbed by the sample before it

reaches the detector (see in Figure 3.8).

3.5 Data processing

The first step in data processing, performed by the pnCCD software, involves background

correction by subtracting a dark image and removing cosmic rays. The software then

formats the 3D data captured by the pnCCD detector, which consists of arrays of 264
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x264 pixels. Each pixel functions as a silicon drift detector, recording an XRF spectrum

across 1024 energy channels at a frame rate of 1024 Hz. This results in a comprehensive

3D dataset (264 x 264 x 1024), as shown in Figure 3.9.

Fig. 3.9: Schematical representation of 3D data cube obtained from pnCCD detector.

To refine this dataset, the channel corresponding to the center of the fluorescence line of

the analyzed atom is identified. The pnCCD software simplifies this step by allowing direct

selection of the element of interest. For example, the Cr-Kα emission line corresponds to

channel 205. A region of interest (ROI) is defined as ± 10 channels around this center,

reducing the dataset to a smaller 3D data cube of size 264 x 264 x 21. This step effectively

removes scattering peaks and other unwanted contributions, such as Kβ lines or fluorescence

from other atoms.

Next, the data is converted to a two-dimensional (2D) format by summing the intensities

across the selected ROI channels. In the resulting 2D data:

• The horizontal axis represents the emission angle, showing how intensity varies with

depth.

• The vertical axis represents signals collected from the illuminated area of the sample,

and summing it improves the statistical accuracy of the angular intensity profiles.

Figure 3.10 illustrates the selected ROI in the XRF spectrum and the corresponding

2D dataset derived from it. These angular intensity profiles are further analyzed as a
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function of excitation energy within the XANES region of the analyzed atom to generate

depth-resolved XANES spectra.

Fig. 3.10: Illustration of generation of angular intensity profile.

3.5.1 Decomposition of the multilayered sample data

In the present study, non-negative matrix factorization (NMF) enhanced by coordinate

descent (CD) was used to decompose the angular intensity profiles of different layers

within the samples. NMF is a dimensionality reduction technique designed to decompose

a non-negative matrix into two smaller non-negative matrices, W and H, making it easier

to interpret the data. This process simplifies the complex relationships in the data while

preserving the most relevant patterns and minimizing information loss [128].

Mathematically, the decomposition aims to approximate the original matrix V as follows

[128]:

V ≈ W × H (3.4)

where:

• V is the original non-negative matrix (m × n) representing the data to be analyzed.
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• W is a matrix (m × k) representing the basis patterns (in this context, related to

individual layers).

• V is a matrix (k × n) representing the contributuins of these patterns.

• k is the number of components, corresponding to the number of layers in the sample.

The optimization objective is to minimize the difference between V and the product

W × H, typically measured using the Frobenius norm [128]:

‖V − W H‖2
F =

∑︁
i,j

(V − W H)2
i,j (3.5)

Like PCA, NMF reduces the dimensionality of the data, allowing us to interpret complex

datasets more easily. In PCA, the data matrix is decomposed into principal components

(directions of maximum variance) and their weights. However, PCA allows for negative

values in its components, which can be less interpretable when dealing with count data

like intensities, where negative values have no real meaning. NMF, on the other hand,

ensures that all components and weights are non-negative, making it especially useful for

datasets like intensity profiles, where values are inherently non-negative.

In this study the dataset is three-dimentional. The variation of intensities occurs as

a function of emission angle and energy. This can be thought of as a large matrix V

containing the intensity values, indexed by energy and emission angle. By applying NMF,

V matrix decomposed into two matrices:

• W represents the intensity - emission angle relationship, isolating angular intensity

profiles for each layer.

• H represents the intensity - energy relationship, isolating the XANES spectrum of

each layer.

The optimization to find W and H is performed using coodinate descent (CD). The

idea behind CD is to optimize a multivariate objective function by breaking the problem

into simpler sub-problems, where one variable (or "coordinate") optimized at a time, while

holding all other variables constant. In the context of NMF, coordinate descent is used to
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minimize the Frobenius norm of the difference ‖V − WH‖2
F . The optimization alternates

betwen fix H and update W one element at a time and fix W and update H one element

at a time. This iterative process converges to a local minimum of the objective function,

effectively decomposing V into the two factor matrices W and H [128].

3.6 Implementation of bayesian optimization to data

acquisition

The integration of Bayesian optimization (BO) into our GEXANES data acquisition

workflow marks a significant methodological advancement. BO is a probabilistic model-

based optimization technique, particularly well-suited for scenarios where objective function

evaluations are resource-intensive. This capability makes it an invaluable tool for optimizing

experimental procedures. Figure 3.11 illustrates the integration of BO into the data

collection process at the BESSY II µSpot beamline.

Fig. 3.11: Overview of the BO-informed experimental process used in the GEXANES
technique. This illustration highlights the key steps of our approach.



3.6 Implementation of bayesian optimization to data acquisition 75

3.6.1 Data Flow and System Integration

The BO algorithm is implemented on the control computer of the pnCCD detector. Analog

data from the detector is first converted into digital form via an analog-to-digital converter

(ADC) and subsequently transferred to the control computer. This raw digital data is

processed by Racoon software and stored in a designated memory location on the same

computer. To efficiently access this data, QSharedMemory is used to retrieve it directly

from the memory region, avoiding the overhead and latency associated with network-based

data transfer. This setup ensures efficient communication between the BO algorithm and

the pnCCD detector, which is critical given the substantial data volume generated by the

detector.

3.6.2 Workflow and Iterative Process

With the data flow established, the experimental workflow begins by defining the energy

range for measurements (5975–6035 eV in this study). The process is initiated by placing

seven equidistant points within the defined energy range. Measurements are taken at these

initial points to create a baseline data set.

The iterative process then involves the following steps:

1. Energy Prediction: The BO algorithm uses the initial data set to predict the next

energy point based on the Gaussian process model.

2. Conversion and Execution: The predicted energy value is converted into the

corresponding angle for the monochromator. The calculated angle is then sent to

the monochromator motors.

3. Data Acquisition: Once the monochromator is set to the target angle, it signals

the BO algorithm, which triggers the pnCCD detector to collect data.

4. Integration and Update: The acquired data is processed, integrated into the

existing data set, and used to refine the Gaussian process model.

This cycle is repeated iteratively until a predefined stopping criterion, such as a maximum

number of iterations, is met.
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3.7 Analyzed materials for case study

The case study was conducted by creating and analyzing a benchmark sample and two

real-life samples. These samples were carefully designed, synthesized, and subjected to

a thorough analytical process. The effectiveness and accuracy of our methodological

approach were confirmed by a well-structured reference sample. This reference sample was

prepared with a known and precisely defined composition and layer thickness. This factor

is extremely important, especially given the nature of the oxidation process, which offers

no controls to achieve a specific layer thickness. Due to the unpredictable nature of this

process, it was important to have a solid reference sample to confirm the accuracy of the

results.

3.7.1 Cr-Oxide / Cr reference sample

The analysis of a sample containing multiple film layers is primarily focused on this

research, and the sample was produced by magnetron sputtering by the Chair for Materials

Discovery and Interfaces, Ruhr-University Bochum, Germany. The properties of the layers

had been controlled via process parameters. The magnetron sputtering technique allowed

us to create films from chromium (Cr) obtained from an elemental target. Careful planning

and execution of this procedure, using state-of-the-art equipment, allowed precise control

over the sample properties. The specifics of the method used are described here, including

the materials, gases, and parameters that were allowed to ensure its consistent quality.

Figure 3.12 illustrates the reference sample.

Fig. 3.12: Schematic representation of the reference sample
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The film was prepared by sequential magnetron sputtering of Cr from an elemental

target (pure metal disk, 4-inch diameter, 99.95% Cr purity, Sindlhauser Materials GmbH)

in a commercial sputtering system (AJA International, ATC 2200). The Cr target was

sputtered at a direct current (DC) power of 100 watts. During the synthesis phase, Ar and

O2 gases with a high purity of 6N (99.9999%) were used. The argon gas line is equipped

with a SAES Pure Gas Type MC1-903T purifier, which effectively removes elements such

as O2, H2O, CO, CO2, organic/NMHC compounds below 100 ppt, and a 0.003 µm particle

filter. The base pressure of the operating system was in the range of 10-6 Pa. All coatings

were applied at a measured pressure of 0.4 Pa, at room temperature, without heating. A

500 nm metallic Cr layer was sputtered with a steady flow of Ar at a rate of 80 sccm. On

top of this chromium layer, a secondary layer of chromium oxide was sputtered with a

thickness of 300 nm. For this process, an O2 / Ar flow ratio of 40 sccm / 80 sccm was

maintained. The thickness of both the metallic chromium and chromium oxide layers

was controlled during the deposition phase by using the predetermined deposition rates:

0.085 nm/s for chromium and 0.0144 nm/s for chromium oxide, according to the specific

sputtering parameters. Adherence to these measures ensured a high degree of precision

and consistency throughout the fabrication process.

3.7.2 Compositionally complex CrCoNi alloy

CrCoNi represents a unique class of alloys within the broader category of compositionally

complex alloys (CCAs). This equiatomic ternary alloy, comprising chromium, cobalt, and

nickel in approximately equal atomic ratios, falls under the classification of medium-entropy

alloys (MEAs) [129]. While MEAs contain fewer elements than traditional high-entropy

alloys (HEAs), they still exhibit many of the remarkable properties associated with CCAs

[130]. CrCoNi is characterized by its face-centered cubic (FCC) solid solution structure

and has garnered significant attention due to its outstanding mechanical properties. These

properties, including exceptional strength, ductility, and fracture toughness, often surpass

those of conventional alloys and even some more complex HEAs. The oxidation behavior of

CrCoNi, particularly under high-temperature conditions, is a subject of ongoing research

interest. This interest is partly due to the presence of chromium, known for its ability
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to form protective oxide layers [4]. Given its relatively simple composition compared

to more complex HEAs, CrCoNi serves as an ideal model system for investigating and

understanding the fundamental principles underlying the unique properties of CCAs.

The case study for the actual samples is a compositionally complex CrCoNi alloy made

from metals with an extremely high purity level of 99.9%. The alloy was melted in a

specialized vacuum induction melting furnace, specifically a Leybold Heraeus IS 1/III. The

objective was to detect Cr oxide layers formed after exposure to high temperatures and

cooling using GEXANES.

During the melting and casting phases, strict measures were taken to protect against

oxidation. The furnace chamber was first evacuated to a pressure of 3 mbar. After this

evacuation, the chamber was filled with Ar and the pressure increased to 500 mbar. After

successfully producing ingots weighing approximately 2.1 kilograms each, the diameter

reduction process was applied. The initial diameter of 45 mm was reduced to 40 mm by

turning the ingots on a lathe, giving them the desired dimensions for the next steps.

The ingots were then sealed in evacuated quartz tubes at a pressure of 3×10-5 mbar.

The ingots were then homogenized at 1200 °C for 48 hours. After homogenization, the

diameter of the ingots was further reduced to 17 mm using a rotary swaging operation.

Importantly, this operation was performed at room temperature to avoid any thermal

influence on the alloy properties. One sample was subjected to a temperature of 600°C

for 10 minutes and one to a higher temperature of 800°C for one hour. These procedures

were performed in a tube furnace with an atmospheric composition of 2% O2 and 98% Ar.

This controlled environment provided optimal conditions for the processes.

The heating and cooling processes were performed under an argon atmosphere at a

controlled rate of 10 K per minute. Argon of high purity (99.999%) was used for these

processes, containing minimal impurities such as 2 ppm O2, 3 ppm H2, and 5 ppm N2.

Once the target temperatures were reached, an oxidizing gas was introduced into the

tubular reactor chamber. The introduction of this gas was carefully controlled to maintain

the consistency of the gas mixture. It is worth noting that when Cr is oxidized, it forms

a protective layer. This layer acts as a barrier to further degradation of the material,

maintaining its quality and integrity throughout the process.
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In this study, CrCoNi was chosen as the real-life material due to its extensive research

in the field of compositionally complex alloys (CCAs). This alloy has been the subject of

numerous research studies, resulting in a rich repository of data covering a wide range of

experimental conditions and applications. This extensive body of research provides a solid

foundation for comparative studies, allowing us to compare new data with well-established

findings.



Chapter 4

Results & Discussion

This chapter discusses the results of the GEXANES spectroscopy, divided into two main

sections. The first section discusses the results obtained using the standard mode, which

involves scanning a total energy range of 60 eV in discrete steps of 1 eV. The next section

describes the use of an optimization mode, where the selection of energies is guided by the

Bayesian optimization algorithm. In this work, the terms ’first layer’ and ’second layer’

refer to the layers of the reference sample (Cr and Cr-oxide layers), whereas ’surface layer’

and ’bulk’ are used to describe the layers of real-life MEA sample. The details of each

mode are described in their respective sub-sections.

4.1 Proof of concepts

In order to validate the GEXANES technique with area- and energy-sensitive detectors,

a reference sample was used. This sample consisted of a double layer structure: a 300

nm layer of mixed Cr2O3 and CrO3 on top of a 500 nm layer of chromium metal, both

deposited on a silicon wafer. The method was then used to study real-life materials, in

particular compositionally complex CrCoNi alloys, exposed to corrosive environments

at high temperatures (≥ 600◦C). Such materials are promising for corrosion prevention.

At elevated temperatures, chromium is known to form an oxidized surface layer, which

acts as an oxidized surface layer that acts as a protective barrier against further material

corrosion.
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4.1.1 Cr-Oxide / Cr reference sample

In this study, the known composition of the reference sample provides a benchmark. This

is particularly crucial for the validation of a new analytical method. This allows the

sensitivity of the GEXANES method to be evaluated.

Measurements for GEXANES were performed in standard mode with the incident energy

scanned between 5975-6035 eV in 1 eV increments. Each increment was measured for 20

minutes. This duration was required to achieve a total count rate of 106 for the entire

XANES spectrum at the Cr-Kα peak.

Fig. 4.1: a) Angular intensity profile of the reference sample at 6030 eV. b) Collection
of angular intensity profiles of the reference sample as a function of excitation
energy.

The initial phase of the analysis focused on the angular intensity profile of the reference

sample, particularly at 6030 eV - an energy level beyond the chromium K absorption edge.

This investigation was critical to understanding the layered structure. Figure 4.1(a) shows

the presence of two distinct intensity jumps at emission angles of approximately 0.5° and

0.7°. These variations are key to identifying the layered composition of the sample, with
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the shallower angle corresponding to the surface chromium oxide layer and the wider angle

indicating the deeper metallic chromium layer.

The next stage of the investigation was to examine the behaviour of the intensity

variations of the reference sample over a range of excitation energies in order to establish a

full XANES profile. As shown in Figure 4.1(b),the intensity fluctuations at approximately

0.55° and at about 0.7° showed distinct patterns over different excitation energies. These

different patterns serve as indicators of the different electronic structures and absorption

properties of each of the two layers of the sample.

Fig. 4.2: (a) Intensity changes for different excitation energies at 0.52° emission angle.
(b) Intensity changes for different excitation energies at 0.72° emission angle.

Detailed analysis of the intensity fluctuations across excitation energies, particularly at

emission angles of 0.56° and 0.72°, as shown in Figures 4.2(a) and 4.2(b). The highest

intensity at both angles is at 6005 eV, but the subsequent order of decreasing intensity

shows some differences.

Specifically, at 0.72°, the descending order of intensities is 6020 eV, 6015 eV, 6025 eV,

and 6010 eV, followed by 6030 eV. At 0.56°, the order is 6015 eV, 6020 eV, 6010 eV, 6025
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eV, and then 6030 eV. These variations are due to different electronic environments of

chromium in each layer, which will give rise to the XANES profile.

Fig. 4.3: XANES spectra at 0.56° and 0.72° Emission Angles.

Figure 4.3 shows the full XANES spectra for the reference sample, derived from the two

specific emission angles of 0.56° and 0.72°. An s pre-peak visible in the spectrum from

0.56° is attributed to the 3d←1s dipole transition. Coordination with ligands induces

hybridization of the 3d and ligand p-states, which is shown by the prominent pre-peaks

seen in the XANES spectrum of the chromium oxide surface layer. Furthermore, the shift

in the edge position observed in the spectra from both emission angles is a consequence of

the increased oxidation state of the chromium cation. The increase in oxidation state in

chromium oxide, i.e. the increase in the binding energy of the 1s electrons, results in a

shift to a higher energy of the K-edge compared to chromium metal.

The derived XANES spectra are based on intensity measurements at specific emission

angles, which represent only a fraction of the comprehensive data set collected. When

XANES information is collected from only one emission angle, it can be difficult to interpret

the spectrum.

In order to improve the signal-noise ratio, an advanced data processing routine was

used. The implementation of this data processing started with the creation of a three-

dimensional (3D) data cube, as visually shown in Figure 4.4(a). The 3D data cube contains

a combination of the following data.
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Fig. 4.4: NMF Decomposition of Data Cube: (a) 3D data cube with axes of emission
angle, intensity, and excitation energy for reference sample. (b) ’W’ matrix
highlighting the distinct angular intensity profiles of the two layers for reference
sample. (c) ’H’ matrix showcasing the XANES spectra for both layers with
improved signal-to-noise ratio for reference sample.

• Emission Angle: This dimension covers the range of angles at which X-ray emissions

were measured and represents depth- or layer-specific information of the sample.

• Intensity: A measure of the strength of the emitted X-rays, this axis captures the

variation in observed signals between emission angles and energies.

• Excitation Energy: This axis represents the energies at which the sample is excited

and gives an insight into how different energies affect the emitted intensity and

therefore the properties of the sample.

The three-dimensional data set was analyzed using non-negative matrix factorization

(NMF) because the data contains only positive counts. Unlike principal component

analysis (PCA), which can produce both positive and negative values, NMF keeps all

values non-negative, making it more suitable for count data. This property of NMF aligns

naturally with the data, making it easier to identify meaningful features and patterns. As
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a result, NMF provides a clearer, more interpretable analysis that highlights important

characteristics in the data.

The pre-established knowledge of the bilayer structure of the sample guided the NMF

process, where the number of components was set to two. This approach resulted in

the decomposition of the data cube into ’W’ and ’H’ matrices representing different

components of the original 3D data set. Figure 4.4(b) illustrates the ’W’ matrix. It shows

the separate angular intensity profiles for each layer. Figure 4.4(c) presents the ’H’ matrix,

which contains the XANES spectra from two different layers. This figure also highlights

the improved signal-to-noise ratio in the XANES spectra obtained from the ’H’ matrix

compared to those taken from a single emission angle. This improvement demonstrates the

effectiveness of NMF. As a result, XANES spectra generated by NMF combine data from

multiple angles, offering a more reliable and noise-reduced representation of the sample’s

characteristics rather than depending solely on intensity variations from a single angle.

Fig. 4.5: Normalized XANES spectra for the first (chromium oxide) and second (metallic
chromium) layers, derived from the ’H’ matrix of NMF analysis.

It was crucial to ensure comparability of the XANES spectra through normalization after

subtraction from the ’H’ matrix. This process is performed using XASViewer software.

Normalization adjusts the spectra by setting the pre-edge baseline to zero and normalizing

the post-edge levels to one. This step is necessary to qualitatively compare different spectra

and easily identify differences. The normalized spectra, as shown in Figure 4.5, include the

spectra of the chromium oxide layer (first layer) and the metallic chromium layer (second

layer).
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Fig. 4.6: Comparison of the normalized XANES spectrum of Second Layer with the
reference spectrum from a Cr-Foil.

Figure 4.6 presents a comparison between the normalized XANES spectrum of the

second layer and the reference spectrum derived from a chromium foil. This comparison

reveals a notable consistency in the spectrum of the second layer with that of the reference

chromium foil.

The XANES spectrum of the first layer is characterized by an increase in the pre-peak

feature (at 5992 eV) and a shift towards a higher energy of the main absorption edge,

now at 6003 eV (see Fig. 4.5). The XANES spectrum obtained from the first layer shows

stronger similarities to CrO3, despite a slightly less intense pre-peak and edge shift (see in

Fig. 4.7).

Fig. 4.7: Comparison of the normalized XANES spectrum of First Layer with the reference
Cr-Oxides.
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According to a literature search on the deposition method, several chromium oxidation

products can be observed in similarly deposited samples [131]. Linear combination fitting

(LCF) was used to identify these possible oxidation products. The LCF results show a

contribution of Cr2O3 (35%) and CrO3 (65%). A comparison of the spectrum of this

distribution obtained after LCF analysis with the spectrum of the first layer is shown in

Figure 4.8(a). For a more detailed comparison, the first derivatives of these two spectra

are also shown in Figure 4.8(b). This composition was confirmed by X-ray photoelectron

spectroscopy (XPS), which gave Cr2p binding energies of 576.6 eV and 578.8 eV, in

agreement with the known binding energies of Cr2O3 and CrO3 respectively [132] (see

Figure 4.8(c)).

Fig. 4.8: (a) XANES spectrum of the reference sample first layer (red) and linear combi-
nation fitting (light red) in norm(E) (a); (b) the first derivative of the norm(E)
(b); linear combination fitting results shows that the composition of the first
layer is mixture of Cr2O3 (35%) and CrO3 (65%) (R-factor = 0.0012255, X2 =
0.00939, Reduced X2= 0.0002041); (c) XPS spectrum of surface of the reference
sample (Cr2p orbital) with peak positions. The peak at 576.0 eV corresponds
to the Cr2O3 and the peak at 578.8 eV correspond to the CrO3.
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4.2 Compositionally complex CrCoNi alloy

The reliability of the employed methodology was demonstrated through the analysis of a

reference sample. Subsequently, the focus shifted to the application of this approach to real-

life samples. The chosen material for this study was the compositionally complex CrCoNi

alloy. This alloy provided an opportunity to assess the effectiveness and adaptability of

the technique in real-life scenarios. The following sections detail the findings from the

comprehensive analysis of samples subjected to temperatures of 600°C and 800°C for

periods of 10 minutes and 1 hour, respectively.

4.2.1 600° C for 10 minutes exposed sample

In order to obtain a thin oxide layer, the sample was exposed to a temperature of 600

°C for 10 minutes. Recognizing that the intensity of the signal from a thin oxide layer

would be low, the exposure time for the 600 °C for 10 minutes sample was increased

from 20 minutes to 30 minutes, distinctively from the procedure used for the reference

sample. However, this extension in spot measurement time would consequently prolong

the overall duration of the experiment. To maintain the experiment within a feasible

timeframe, the energy range was restricted to 5975 eV to 6025 eV. Despite this narrower

energy range, it remains sufficient to gather data on the pre-peak region and the edge

shift, which are critical for analyzing the oxidation state. The first step was to analyze

the angular intensity profile of the Cr-Kα emission line at 6025 eV, just beyond the K

absorption edge. This analysis revealed the possible layers of the sample.

Figure 4.9(a) displays the angular intensity profile for this sample at 6025 eV. The

angular intensity profile reveals two distinct intensity jumps. Closer inspection of the

angular intensity profile shows a gradual increase in intensity with an angle up to about

0.8°, where a slight bend or ’shoulder’ can be observed. Beyond 0.8°, and particularly

after 0.9°, the intensity increases at a different rate, suggesting a change in behavior. This

pattern suggests the presence of two distinct regions or layers within the sample; the

shallower angles correspond to the surface, while the wider angles correspond to deeper

levels (bulk).
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To extend the analysis, angular intensity profiles were collected as a function of excitation

energy, as shown in Figure 4.9(b). For clarity, Figures 4.9(c) and (d) show intensity variation

at selected emission angles. 4.9(c) shows a sequence of intensities at a shallow angle of

approximately 0.6°. The highest intensity is at 6005 eV. This is followed by 6010 eV and

then 6015 eV. Conversely, a different order of intensities is observed in Figure 4.9(d), which

captures data at a wider angle around 1.2°. In this plot, 6010 eV has the highest intensity,

followed by 6005 eV. As mentioned earlier, such variations are caused by the different

electronic environment of the chromium, which is used to create the XANES spectrum.

Fig. 4.9: (a) Angular intensity profile of the 600 °C for 10 minutes sample at 6025 eV.
(b) Collection of angular intensity profiles of the 600 °C for 10 minutes sample
as a function of excitation energy. (c) Intensity variation for different excitation
energies at 0.6° and 1. d) at 1.2°

After data acquisition, the process was continued using NMF analysis. This technique,

previously used in the evaluation of reference samples, is used to separate overlapping

signals.

Figure 4.10(a) shows the 3D data cube for the 600 °C for 10 minutes sample used for

NMF analysis. Similar to the reference sample, this visualization provides an overall view

of the data set. Given the angular intensity profiles indicating two distinct layers in the
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600 °C for 10 minutes sample, it was decided to select two components for NMF analysis.

This process resulted in the extraction of ’W’ and ’H’ matrices representing the angular

intensity profiles and XANES spectra of the respective layers within the sample.

Figure 4.10(b) shows the angular intensity profiles of the two layers identified in the

600 °C for 10 minutes sample after NMF analysis. The shape of the angular intensity

profile corresponding to the surface layer is similar to the angular intensity profiles of

the thin layers. As explained in the Methods section, the thickness of the layer has a

significant influence on the shape of the angular intensity profile. This correlation between

the thickness of the layer and the shape of the angular intensity profile can be used to

determine the thickness of the layer from its angular intensity profile.The ’H’ matrix shown

in Figure 4.10(c), representing the XANES spectra of the two components.

Fig. 4.10: NMF Decomposition of Data Cube: (a) 3D data cube with axes of emission
angle, intensity, and excitation energy for 600 °C for 10 minutes sample. (b)
’W’ matrix highlighting the distinct angular intensity profiles of the two layers
for 600 °C for 10 minutes sample. (c) ’H’ matrix showcasing the XANES
spectra for both layers with improved signal-to-noise ratio for 600 °C for 10
minutes sample.

In Figure 4.11, the normalized spectra from both layers of the 600 °C for 10 minutes

sample are depicted. In particular, the spectrum originating from the surface signal

exhibits a positive edge shift, typically indicative of an oxidation state. In addition, the
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presence of two subtle peaks in the pre-peak region is consistent with the expected spectral

signature of an oxide layer, namely Cr2O3.

Fig. 4.11: Normalized XANES spectra for the surface layer (chromium oxide) and bulk
(metallic chromium) part of the 600 °C for 10 minutes sample, derived from
the ’H’ matrix of NMF analysis.

Further analysis of the surface properties of the 600 °C for 10 minutes sample involves de-

termining the oxidation state of the oxide layer present on the surface. This is accomplished

by comparing the XANES spectrum from the surface with the reference spectrum.

Fig. 4.12: Comparison of the normalized XANES spectrum of a surface layer of 600 °C
for 10 minutes sample with the reference spectrum of Cr2O3.

The XANES spectrum obtained from the surface layer of the 600 °C for 10 minutes

sample shows remarkable similarity to the reference Cr2O3 spectrum, as shown in Figure

4.12. It seems that half an hour of exposure per spot was not enough to capture these
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subtle features in detail due to the thin surface layer. Despite these differences, the overall

spectral characteristics are broadly consistent with those of the reference spectrum.

4.2.2 800 °C for 1 hour exposed sample

The next phase of the investigation focused on a compositionally complex CrCoNi exposed

to a temperature of 800 °C for 1 hour. To ensure consistency in the experimental approach,

this sample was analyzed using half an hour excited for each 1 eV increment within the

5975-6025 eV range. As expected, one hour exposed sample at 800 °C exhibits a similar

oxidation state to 600 °C sample. However, the layer thickness is to be more pronounced

as a result of both the longer exposure time and the higher temperature.

Fig. 4.13: a) Angular intensity profile of the 800 °C for 1 hour sample at 6025 eV. b)
Collection of angular intensity profiles of the 800 °C for 1 hour sample as a
function of excitation energy.

Figure 4.13(a) shows the angular intensity profile of the CrCoNi exposed to 800 °C for 1

hour. In this case, the angular intensity profile shows no variation at 6025 eV, in contrast

to the observations made in CrCoNi 600 °C for 10 minutes sample. The shape of the

angular intensity profiles shows that the thickness of the investigated layer was greater
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than that of the previous surface layer on the 600 °C for 10 minutes exposed sample. To

generate the XANES spectra, angular intensity profiles were collected as a function of

excitation energy. Some of the collected angular intensity profiles are shown in Figure

4.13(b).

Despite the lack of recognizable layers, further analysis of the sample was continued.

Rather than using NMF analysis, which is typically effective for multi-layer structures, a

more direct approach was used for this sample. Given the homogeneity of the layer, the

intensities at all emission angles in each angular intensity profile were summed to obtain

the XANES spectrum.

Fig. 4.14: (a) The derived spectrum from cumulative intensities at all emission angles.
(b) A comparison of the normalized XANES spectrum of the 800 °C for 1 hour
sample with the reference Cr2O3 spectrum

Figure 4.14(a) shows the XANES spectrum of the CrCoNi sample exposed at 800 °C for

1 hour. There are similarities between this spectrum and the oxide layer in the sample

exposed at 600 °C for 10 minutes. To validate these similarities, this spectrum was

compared with the Cr2O3 reference spectrum after normalization.
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Figure 4.14(b) shows the normalized spectrum of the 800 °C for 1 hour exposed sample

together with the Cr2O3 reference spectrum and shows remarkable similarities. The

spectrum obtained from the 800 °C for 1 hour sample is more similar to Cr2O3 than the

surface layer of the 600 °C for 10 minutes sample. This greater similarity can be attributed

to the thicker oxide layer formed on the CrCoNi sample after exposure at 800 °C for 1

hour. The increased layer thickness caused the substrate signal to be trapped within the

oxide layer, resulting in the oxide layer signal dominating at all emission angles. Thus

eliminated the inconsistencies observed in the signal regions of the 600 °C for 10 minutes

sample.

4.3 Angular intensity profile dynamics

The comprehensive study of the oxidation characteristics of compositionally complex

CrCoNi alloy samples at 600 °C and 800 °C raises the question: how different are the

angular intensity profiles of these exposed specimens compared to the unexposed alloy?

The aim is to clarify the influence of layer growth on the angular intensity profiles. This

demonstrates that GEXANES analysis can be used to study the initial stages and growth

of oxide layers in the environment in which they are formed.

Three different angular intensity profiles are shown in Figure 4.15. Figure 4.15(a)

corresponds to the unexposed alloy and shows a homogeneous profile indicative of the

substrate only, with no additional layers. Figure 4.15(b) shows the profile for the sample

exposed to 600 °C for 10 minutes, revealing the presence of both the oxide layer and the

substrate emissions, as previously discussed. The profile in Figure 4.15(c) represents the

sample exposed at 800 °C for 1 hour, which shows a uniform profile without any layer sign.

Taken together, these profiles demonstrate the ability to monitor the oxidation process

through changes in the angular intensity profiles, thus providing insight into the formation

of new layers.

This study highlights the potential of using angular intensity profiles for in-situ analysis.

By tracking the evolution of these profiles under varying conditions, the effectiveness of

this approach in monitoring real-time oxidation dynamics is highlighted.
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Fig. 4.15:
a) Angular intensity profile of the unexposed CrCoNi sample at 6025 eV, b) Angular
intensity profiles of the CrCoNi sample exposed at 600 °C for 10 minutes, c) Angular

intensity profiles of the CrCoNi sample exposed at 800 °C for 1 hour.

The analysis of selected samples by GEXANES allowed the evaluation of initial hypothe-

ses regarding the analytical capabilities of this method. The distinctive features observed

in the reference, 600 °C for 10 minutes and 800 °C for 1 hour samples and the dynamics of

the angular intensity profiles provide valuable insights into the evolution of the oxidation

states. These results confirm the effectiveness of GEXANES in analyzing such layered

structures and suggest its applicability for real-time in-situ studies. One challenge, however,

is the time-intensive nature of the process, especially at shallow angles of detection; the

acquisition of a XANES spectrum for a single sample can take approximately one day.

This long duration limits its suitability for synchrotron facilities, highlighting the need for

method optimization to improve its practicality.

4.4 Optimization of the method

During the proof-of-concept phase, GEXANES showed great promise for the analysis of

layered materials. However, the length of time required for spectrum acquisition in the
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current methodology was a notable challenge. This chapter focuses on optimizing the

methodology to improve time efficiency while maintaining data quality. To meet this

challenge, Bayesian optimization (BO) was applied to the GEXANES data collection

process.

Optimization experiments specifically targeted the reference sample. Spectra were

obtained from the 5975-6035 eV energy range. The following sections present the results

of the BO-informed experiments using exposure times of 5 minutes and 1 minute per spot

and compare these results to the reference sample data in the Proof of Concept section.

The decision to experiment with a 5-minute exposure represented a conservative approach

aimed at significantly reducing the traditional 20-minute standard while maintaining

comparable data quality.

This decision was based on quantitative analysis: the XANES spectrum from the surface

layer typically achieves a total total count of 2x106 during a 20-minute exposure. It

was anticipated that reducing the exposure to 5 minutes would give a total count of

approximately 5x105 for the surface layer. Although this total count is below the accepted

standard for XANES spectra (106), the integration of a kernel function is designed to

effectively compensate for the increased noise, and this is a good basis for testing the

kernel function.

In addition, the choice of a 1-minute exposure was a more exploratory method to test

the limits of efficiency and assess the impact on data integrity at drastically reduced

exposure times. In this context, the role of the kernel function becomes even more crucial,

as it is the key to mitigating the noise challenges associated with such short exposures.

The study aims to determine the minimum feasible exposure time that yields scientifically

valid results, thereby pushing the limits of current capabilities in XANES spectroscopy.

4.4.1 Bayesian Optimization with 5-minute exposure

The BO-informed method uses an intelligent selection of the energy points for measurement,

optimizing the energy scanning process down to 25 points. For obtaining the desired

energy values, the monochromator angle is aligned with the angle corresponding to the

energy value sent from the optimization algorithm. The measurement process is initiated
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upon aligning the monochromator. Data obtained from the BO-informed method are

compiled into a data set, with the process continuing until a specific stopping criterion,

set at 25 measurement points, is reached. The rationale behind setting this criterion

in the BO-informed experiments is discussed in the following paragraphs. During the

optimization process, cumulative intensities from all emission angles are incorporated into

the algorithm with the aim of improving count statistics. This technique, similar to the

analytical approach for the 800 °C sample, is designed to support statistical robustness

and enhance the algorithm’s prediction accuracy.

Subsequent sections will present an exploration of four cumulative figures, each containing

a pair of closely related graphics, resulting in eight different visual representations. Within

each pair:

• The first graph displays the Gaussian Process (GP) mean estimate alongside results

from the specific sampling points selected during the BO-informed experiment

and the standard scan. This graph also includes the 95% confidence interval,

offering an additional statistical perspective on the reliability of the estimates. The

representation provides a clear comparative overview, highlighting the efficiency and

accuracy of the BO-informed experiment over the traditional procedure.

• The second graph provides an in-depth look at the internal dynamics of the op-

timization method by visualizing the interaction between the mean and variance

predictions of the GP and the UCB function.

These paired visualizations aim to offer a comprehensive understanding of the method’s

evolution and precision.

A crucial initial step in the BO process is the construction of a ’prior function’, which

represents a statistical model of the initial understanding before iterative processing. To

establish this prior function, measurements are taken at seven equidistant energy points

covering the defined energy range. This methodology is graphically represented in Figure

4.16(a).

Figure 4.16(a) features the orange curve as the mean function derived from the GP

model, formulated based on the measurements from the initial seven energy points. This



98 4 Results & Discussion

curve acts as a probabilistic representation of the function, with the surrounding grey

area indicating the ± 95% confidence interval, quantifying the uncertainty in the model’s

predictions.

Fig. 4.16: Bayesian Optimization Iterations and Gaussian Process Model Development:
(a) Initial setup with seven evenly distributed energy points used to establish
the prior function, represented by the orange curve (mean function). The grey
area showcases the ± 95% confidence interval around the predicted mean. (b)
Displays the mean function at the top, the variance function in the middle,
and the UCB function at the bottom. The gold star on the UCB plot indicates
the next chosen sampling point. (c) Progression of the Gaussian Process
model two iterations post-initial setup. The orange curve now incorporates
the new measurements, with the grey area representing the adjusted ± 95%
confidence interval. (d) Updated mean, variance, and UCB functions after two
iterations. The gold star on the UCB plot signifies the upcoming sampling
point, exemplifying the algorithm’s intelligent point selection, with the next
measurement point indicated as 6010 eV. The reduction in the UCB values
and the confidence interval demonstrates the diminishing uncertainty between
measured points, highlighting improved prediction accuracy.

In Figure 4.16(b), the top section of the graph illustrates the mean function of the GP

model. Directly beneath it lies the variance function, and at the bottom of the graph, the

Upper Confidence Bound (UCB) function is displayed. The gold star, positioned on the
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UCB graph near 6030eV, indicates the next sampling point, suggesting that the upcoming

measurement will occur at this energy level, with the GP model being updated accordingly.

Figures 4.16(c) and 4.16(d) detail the GP model’s evolution through two subsequent

iterations. In Figure 4.16(c), the mean function now includes recent measurements,

highlighting the model’s capacity for adaptation. Concurrently, the grey area, denoting the

updated 95% confidence interval, has become narrower, reflecting a reduction in forecast

uncertainty and underscoring the iterative refinement characteristic of BO.

Figure 4.16(d) presents the revised mean, variance, and UCB functions. The gold star

on the UCB plot, indicating the next sampling point, is set at 6010 eV, exemplifying the

algorithm’s intelligent selection mechanism. The UCB function, after two iterations, shows

a notable decrease in values post-measurement, indicative of diminished uncertainty among

measured points. This decrease and the consequent narrowing of the confidence interval

underscore an enhanced prediction accuracy of the GP model following the inclusion of

new data.

Figure 4.17 delves deeper into the model’s progressive iterations. Figures 4.17(a) and

4.17(b) depict the third iteration following the first seven measurements, while Figures

4.17(c) and 4.17(d) represent the fourth iteration. In particular, Figure 4.17(a) shows

how things have changed since the second iteration and the measurement at 6010 eV,

where it is clear that the confidence interval has grown. This widening is due to more

uncertainty between the points, as shown in Figure 4.17(b). It narrowed at first after two

iterations but grew again after the 6010 eV measurement. This dynamic causes the model

to re-calibrate its predictions, leading to a broader confidence interval. Following the third

iteration, the peak of the UCB function, identified at 6020 eV, signifies the subsequent

measurement point.

In Figures 4.17(c) and 4.17(d), the impact of the 6020 eV measurement is evident. A

reduction in uncertainty between points is observed, emphasizing the algorithm’s adapt-

ability and enhanced predictive capability due to iterative tuning and data incorporation.

The UCB function’s peak in Figure 4.17(d), located at 6000 eV, identifies the next targeted

measurement point.
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Fig. 4.17: Refinement of the Gaussian Process Model during Iterations 3th and 4th:
(a) The results were obtained after measuring at 6010 eV during the second
iteration. (b) The details of the evolving mean, variance, and UCB functions
for this iteration are presented. The gold star on the UCB plot indicates the
next sampling point at 6020 eV. (c) The results were obtained after measuring
at 6020 eV for the third iteration. (d) Updated mean, variance, and UCB
functions. The gold star in the UCB plot indicates that the algorithm’s next
measurement target is at 6000 eV.

In the BO-informed experiment, subsequent choices are influenced by each measurement,

reflecting a progression from initial exploration to more informed decision-making. Data

points accumulate over time, and the GP model is continuously updated, providing a

clearer understanding of the dynamics of the black box function being explored.

The focus shifts from early iterations to the final stages of the scanning process, with

an emphasis on the results of the 15th and 16th iterations following the baseline seven

points. Figure 4.18 displays the outcomes of the final stages of the BO process. Results

from the 15th iteration, subsequent to the baseline seven-point measurement, are shown in

Figures 4.18(a) and 4.18(b). Figures 4.18(c) and 4.18(d) demonstrate the improvements

achieved in the 16th iteration. Two regions with widened confidence intervals are identified

in Figure 4.18(c). The UCB function in Figure 4.18(d) confirms that these regions are

likely to guide future measurements. A significant reduction in uncertainty is evidenced,
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Fig. 4.18: Refinement of the Gaussian Process Model during Iterations 15th and 16th:
(a) Results post the 15th iteration. (b) Details of the evolving mean, variance,
and UCB functions for this iteration. The gold star on the UCB plot indicates
the next sampling point at around 6018 eV. (c) The results were obtained
after the 16th iteration, which measured around 6018 eV. (d) Updated mean,
variance, and UCB functions. The gold star in the UCB plot suggests the next
measurement target by the algorithm is around 6003 eV.

with the uncertainty interval between peaks, initially at 0.06 during the 4th iteration,

decreasing by a factor of 4 to 0.015 by the end of the 16th iteration.

Figure 4.19 presents information from the last two steps, capturing the concluding

point of the iterative process. After the 16th iteration establishes the next measurement

point at approximately 6003 eV, the highest-confidence field range post-measurement

centers around 5992 eV, as shown in the figure. This observation prompts the optimization

algorithm to select this energy value for subsequent measurements.

Figures 4.19(a) and 4.19(b) further illustrate the evolution of the events. Figure 4.19(c)

shows the new mean function of the Gaussian process model after the measurement at

5992 eV. Figure 4.19(d), on the other hand, shows that the inter-point uncertainty has

gone down a lot, from about 0.09 after the first seven-point measurement to 0.005 after 18

iterative steps. This represents a reduction in uncertainty of approximately a factor of 18.
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Fig. 4.19: Refinement of the Gaussian Process Model during Iterations 17th and 18th:
(a) Results post the 17th iteration. (b) Details of the evolving mean, variance,
and UCB functions for this iteration. The gold star on the UCB plot indicates
the next sampling point at around 5992 eV. (c) The results were obtained after
the 18th iteration, which involved measuring around 5992 eV. (d) Updated
mean, variance, and UCB functions.

Additionally, the variance plot reveals a significant transformation in previously sharp

peaks, indicative of uncertainty between points. These peaks now exhibit a more consistent

appearance. This reduction in uncertainty, along with the newfound uniformity in the

variance function, indicates that the desired efficiency in optimization has been achieved.

As a result, the iterative process is terminated after the 18th iteration, and a comprehensive

measurement at 25 different points is obtained.

In BO-informed experiments, intensities from all emission angles are included to guide

the scanning process. However, this alone is not sufficient to detect two different layers

of the reference sample. To address this, NMF was applied to the data set obtained

from the BO-informed experiment. Figure 4.20 provides a detailed visualization: Figure

4.20(a) shows the 3D dataset that was used for the NMF analysis. Figures 4.20(b) and

4.20(c) show the angular intensity profile and XANES spectra of the different layers. The

observations from these 25 points closely match those from the standard scan, albeit at
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lower resolution. To get a better picture, the same Gaussian process model that is at the

heart of the BO process is used to combine the 25-point XANES spectra from the NMF

analysis of both layers into a 120-point spectrum.

Fig. 4.20: (a) A 3D visualization of the dataset applied to NMF analysis. (b-c) Depict the
angular intensity profile and corresponding XANES spectra of the extracted
layers.

Figure 4.21 delves into the enhanced resolution spectra derived from the Gaussian

Process model. In Figure 4.21(a), the 120-point XANES spectra for the two distinct layers

of the reference sample are presented. In Figure 4.21(b), normalized spectra are displayed,

facilitating a clearer comparative analysis between the layers. Initial observations suggest

that the data align closely with those obtained from the standard scan.

A direct comparison of the normalized XANES spectra from both layers was performed

to evaluate the sensitivity and efficiency of the BO-informed experiment compared to the

standard experiment. In Figure 4.22, the similarity of these spectra is visually confirmed

by comparing spectra from different layers, with a graph at the bottom quantifying the

percentage difference between the points.

These values emphasize the robustness of the BO-informed experiment in producing

results comparable to the standard experiment but with greater efficiency. This underlines
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Fig. 4.21: (a) shows the 120-point XANES spectra derived from two distinct layers. (b) the
normalized spectra permit clearer distinctions and comparative examinations
between layers.

the potential of the BO-informed experiment as a promising analytical tool capable of

reducing experimental time without compromising the accuracy of the results.

However, some discrepancies in the results for the first layer suggest that there is room

for further improvements in the Bayesian approach. In particular, the local maxima in the

pre-peak region were not optimally captured. To improve the performance of the algorithm,

a two-layer approach can be implemented. First, NMF analysis would be applied to the

angular intensity profile to identify the emission angles relevant to each layer. With this

information, the optimization process could be refined to focus specifically on the range

of angles associated with the target layer. This layer-specific optimization is expected to

reduce the discrepancies observed in the current results.
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Fig. 4.22: Comparative Analysis of XANES Spectra Between Standard and Bayesian
scans.

4.4.2 Bayesian Optimization with 1-minute exposure

The aim of implementing a faster Bayesian optimization approach was to determine

whether meaningful data could be obtained from significantly reduced measurement times.

Taking advantage of the efficiency of the Bayesian process, an optimization was carried

out using 1-minute measurements per point to test its effectiveness.

This experiment maintained a fast iteration cycle similar to the previous optimization

process of 5-minute per point. An initial set of 7 equally spaced data points was established,

which formed the basis for the subsequent 18 iterations. This shorter measurement time

challenges the efficiency and adaptability of BO-informed experiments.

Figure 4.23 provides key insights into the effectiveness of the faster Bayesian optimization.

Figure 4.23(a) shows the spectra obtained from a standard experiment, the 5-minutes

and the fast 1-minute BO-informed experiments, covering all emission angles before

normalization. The first comparison shows a remarkable similarity between these spectra,

highlighting the potential of the accelerated BO-informed experiment.



106 4 Results & Discussion

Fig. 4.23: (a) XANES spectra from all emission angles, derived from standard, Bayesian 5-
minute, and Bayesian 1-minute scans without normalization. (b) Corresponding
normalized XANES spectra.

Figure 4.23(b) shows the normalized data of the sum of all emission angles for standard,

1-minute, and 5-minute BO-informed experiments. The 1-minute Bayesian scan shows

slight deviations, especially around the two distinct shoulder regions. Nevertheless, the

overall agreement is remarkable.

A more detailed quantitative analysis is presented in Figure 4.24, using metrics such as

root mean square error (RMSE) and percentage difference analysis. The relative accuracy

and possible differences between the different methods are shown by these metrics. They

give a full picture of how well the BO-informed experiment worked with different time

constraints.

For the 5-minute Bayesian method, the RMSE was 0.011, showing commendable accu-

racy compared to the standard method. The maximum percentage difference was 3.1%,

indicating that the highest deviations were kept under control. Impressively, the average

percentage difference was a modest 0.85%, reinforcing the reliability of this 5-minute

Bayesian approach.
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Fig. 4.24: Difference analysis of XANES spectra from all emission angles, derived from
Standard, Bayesian 5-Minute scans after normalization.

On the other hand, the quick 1-minute Bayesian method showed some differences. The

RMSE was 0.016, indicating a noticeable but expected trade-off between time efficiency

and precision. Although the maximum percentage difference increased slightly to 3.84%,

this limited increase should be appreciated given the drastic reduction in measurement

time. The average percentage difference stabilized at 1.1%, demonstrating the ability of

the method to maintain remarkable accuracy despite its short duration.

Together, these metrics provide valuable insights into the efficiencies and trade-offs

inherent in both Bayesian methods and offer a clear perspective on their respective

strengths and challenges.

Adopting the methodology from the 5-minute Bayesian case, an analogous approach was

applied to the 1-minute Bayesian optimization. The XANES spectra were taken from the

sped-up 1-minute Bayesian scans and then decomposed in a planned way using NMF. The

goal of this approach was to identify and decompose the XANES profiles corresponding to

individual layers within the reference sample.

To enhance the spectral resolution, the Gaussian process model was reintegrated. This

involved inputting 25-point XANES spectra, derived from the NMF analysis of both layers,

into the model. The model was then tasked with interpolating for each distinct layer,

yielding a detailed 120-point spectrum. This procedure mirrored that employed in the

5-minute BO-informed experiment.

A comparison of the normalized spectra of the two different layers of the reference

sample obtained with 1-minute, 5-minute, and standard scans is shown in Figures 4.25(a)

and 4.25(b). Quantitative analysis was again applied to all results.
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Fig. 4.25: Difference analysis of XANES spectra from all emission angles, derived from
Standard, Bayesian 5-Minute, and Bayesian 1-Minute scans after normalization.

The comparison of normalized spectra from two distinct layers of the reference sample is

elucidated through quantitative metrics. These metrics significantly enhance comprehension

of results obtained from experiments informed by BO.

For the first layer:

• Using the 1-minute Bayesian optimization, the root mean square error (RMSE) was

0.016. The maximum percentage difference, indicating the peak deviation, was at

7.78%, while the mean percentage difference was 1%.

• In contrast, the 5-minute Bayesian method recorded a slightly lower RMSE of 0.0135.

The highest deviation was measured at 6.85%, and the mean percentage difference

with the 1-minute approach standing at 1%.

For the second layer:

• With the 1-minute Bayesian method, the RMSE was an impressive 0.011. The

maximum deviation was slightly less pronounced at 2.56%, and the mean percentage

difference was just 0.8%.



4.4 Optimization of the method 109

• The 5-minute Bayesian approach managed even tighter metrics for this layer with

an RMSE of 0.009. The peak deviation was a tad higher at 2.63%, but the mean

percentage difference was slightly lower at 0.6%.

The apparent minor trade-offs between speed and precision underscore the versatility of

the BO-informed experiment, which produces impressive data quality even under significant

time constraints.

An additional experiment was performed to determine whether the observed close

alignment was due to BO or GP. Figure 4.26(a) presents a comparison of normalized

XANES spectra from the first layer of the reference sample, based on the exposure duration

per point of the standard experiment, with data collected from 60 equidistant points as

previously mentioned. The standard experiment, with an exposure of 1 minute per point,

captured the initial part of the spectrum (pre-peak region at 5975–6005 eV) but exhibited

significant differences from the 20 minutes per point standard experiment in the region

following the absorption edge (post-edge at 6005-6035 eV). To quantify these differences,

the root mean square error (RMSE) was utilized. The RMSE between the 1-minute and

20-minute per point standard experiments was 0.0157 a.u. eV−1. Additionally, the RMSE

between the prediction obtained from the GP model, trained with 25 points from the 1

minute BO-informed experiment, and the 20 minutes per point standard experiment in

the post-edge region was 0.005 a.u. eV−1.

Figure 4.26(b) illustrates a comparison between two experimental procedures: a 1-

minute per point standard experiment and a 1-minute per point BO-informed experiment.

This comparison aimed to determine whether the close alignment of the BO-informed

experiment’s results with those of the established 20-minute per point standard experiment

was solely due to the application of a Gaussian Process (GP) or an inherent aspect of the

BO-informed methodology. As part of the 1-minute per point standard experiment, 60

points from the standard experiment were used to train a GP model and see how well

it dealt with noise and described the data. However, even after applying the GP to the

1-minute per point standard experiment data, the features of the curve did not match

those from the 20-minute per point standard experiment, while the 1-minute per point

BO-informed experiment did. The RMSE calculated between the 20-minute per point
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Fig. 4.26: (a) The comparison of normalized XANES spectra from the first layer of
the reference sample for standard experiments conducted over a duration of
1-minute and 20-minute per point, with data collected from 60 equidistant
points. (b) A comparative analysis between a 1-minute per point BO-informed
experiment, a 1-minute per point standard experiment, and the prediction
obtained from a GP model trained with 60 points from the 1-minute per point
standard experiment.

standard experiment and the prediction obtained from the GP model, trained with 60

points from the 1-minute per point standard experiment, was 0.0124 a.u. eV−1, indicating

that while the GP contributes to data interpretation, it does not fully account for the

features observed in the BO-informed experiment. The BO-informed approach is more

effective at managing noise and preserving the features of the data from the 20-minute per

point standard experiment.

Summarizing the results of this subsection, it is clear that BO-informed experiments

offer a transformative approach to XANES analysis, significantly improving the efficiency

of measurements without drastically reducing accuracy. Both the 5-minute and 1-minute

fast methods give commendable results and the differences in accuracy remain small given

the significant time savings. The effectiveness of integrating NMF with the Gaussian

process model will further highlight the versatility and robustness of the BO-informed

experiment.

Furthermore, while both time frames offer their own advantages and potential for

improvement, the overarching benefit is clear: reduced measurement times, cost savings,

and accelerated results. The future of XANES research is moving toward more agile yet

reliable methods, with Bayesian optimization leading the way.
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Conclusion & Outlook

This thesis has advanced the field of material science by addressing two crucial questions:

how to provide depth-resolved insights into layered materials under non-destructive and

ambient conditions, and how to enhance the efficiency of spectroscopic data acquisition

through machine learning techniques.

To address the first question, this work combines X-ray absorption near-edge structure

spectroscopy (XANES) and grazing emission X-ray fluorescence spectroscopy (GEXRF)

into grazing emission XANES (GEXANES) to develop a novel approach for analyzing

layered materials. Traditional methods such as X-ray photoelectron spectroscopy (XPS),

secondary ion mass spectrometry (SIMS), and Meitner-Auger electron spectroscopy (M-

AES) have played critical roles in surface analysis. However, their limitations—especially

the need for high vacuum conditions and restricted depth profiling—necessitated the

exploration of innovative alternatives. The combination of XANES and GEXRF emerged

as a significant alternative, operating under more versatile conditions and offering enhanced

capabilities for in-situ measurements.

The effectiveness of GEXANES was initially validated using a reference sample. This

technique allows for the extraction of information from multiple layers within a single

experiment. Theoretical calculations have assisted in establishing the optimal experimental

setup and have provided insights into the potential information depth that can be obtained.

The analyses of the chemical states of the layers under ambient conditions for both

reference samples and CrCoNi samples have been thoroughly conducted. Identifying
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angular intensity profiles as indicators of layer evolution has opened new avenues for in-situ

studies. By observing additional layers in the angular intensity profiles, early stages of the

oxidation process can be analyzed. The use of advanced pnCCD detectors can enhance

these studies by enabling the simultaneous monitoring of layer evolution from different

atoms. This represents a significant advancement in analytical chemistry, as the pnCCD

detector allows for the capture of distinct angular intensity profiles of various atoms in a

single measurement.

After GEXANES was successfully used to answer the second research question, this

study looked into how machine learning, especially active learning techniques, could be

used to make the process of collecting spectroscopic data more efficient. To optimize

the experimental process, a pipeline was first established that allows the active learning

algorithm to autonomously control the entire experiment. This pipeline evaluates data in

real time.

The integration of machine learning through active learning techniques, such as Bayesian

Optimization (BO), has significantly enhanced the efficiency of GEXANES data acquisition.

Given the extended measurement times typically required in the high-demand and resource-

intensive synchrotron facilities, the application of BO has proven to be crucial. This

approach enabled substantial reductions in data acquisition times, reducing what were

once lengthy sessions (20 hours) to quick 125 minutes and even 25 minutes sessions without

sacrificing significant data quality.

The benefits of this optimization go beyond just improving efficiency. The entire

research methodology has been revolutionized, with reduced measurement times indicating

significant cost savings and enabling real-time decision-making and thereby improving

overall operational effectiveness. These advancements demonstrate the transformative

potential of machine learning in optimizing scientific research processes, specifically by

tailoring data collection strategies to be both cost-effective and time efficient.

The integration of BO not only increases the applicability of GEXANES but also has

important implications for the development of more efficient laboratory-based XAFS

instruments. This transformative approach could revolutionize the way these instruments
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are used in a variety of scientific fields, particularly by enabling the rapid analysis of large

numbers of samples.

However, this research is just a preliminary step. The potential for further optimization

is seen, particularly through the integration of additional active learning layers with

machine learning models. This approach, based on the use of a well-defined database,

promises faster analyses by exploiting the knowledge gained from previous measurements.

In conclusion, this work has successfully addressed its key research questions, demon-

strating the continuing evolution of analytical methods in materials science. By combining

XANES and GEXRF, it has provided a powerful tool for depth-resolved analysis of layered

materials under ambient conditions. Furthermore, the integration of machine learning

techniques has significantly enhanced the efficiency of data acquisition, paving the way for

more productive and cost-effective research in materials science. The future is expected to

bring further innovations that will unravel the complexity of materials at the atomic and

molecular levels, building upon the foundations laid by this research.
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