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Abstract
This thesis focuses on the mathematical modeling and model-based control of the inner
boom of a forestry crane Palfinger Epsilon TZ17. Forestry cranes are essential for modern
logging operations, yet their manual operation poses challenges such as high operator
workload, reduced efficiency, and variability in performance. The automation of forestry
cranes offers the potential to address these issues by improving productivity, optimizing
energy consumption, and reducing operator stress.

A mathematical model is proposed to accurately represent the hydraulic system of the
crane’s inner boom, incorporating hydraulic components such as a pressure-compensated
directional control valve, a hose burst valve and hydraulic accumulators. The model is
derived from first principles, with unknown parameters estimated through parameter
identification techniques, ensuring accurate representation of the system’s dynamics across
a broad range of operating conditions. Finally, the mathematical model is validated using
experimental data in a simulation environment.

The validated model serves as the foundation for designing a model-based tracking
controller. This controller employs a cascade structure, combining feedforward and
feedback control strategies to regulate the motion of the inner boom for precise trajectory
tracking. Robustness tests are conducted to evaluate the controller’s performance under
varying system parameters, including the pre-charge pressure in the hydraulic accumulators,
oil bulk modulus, cylinder friction, and load mass. The results demonstrate the effectiveness
of the modeling approach in capturing the system dynamics and applicability of the
controller strategy for accurate and robust trajectory tracking.
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Kurzzusammenfassung
Die vorliegende Arbeit beschäftigt sich mit der mathematischen Modellierung und modell-
basierten Regelung des Hauptarms eines Forstkrans Palfinger Epsilon TZ17. Forstkräne
sind für den modernen Holzeinschlag unverzichtbar, doch ihr manueller Betrieb birgt
Probleme wie hohe Arbeitsbelastung des Fahrers, geringere Effizienz und Leistungsschwan-
kungen. Die Automatisierung von Forstkränen bietet das Potenzial, diese Probleme
zu lösen, indem sie die Produktivität steigert, den Energieverbrauch optimiert und die
Belastung der Bediener reduziert.

Im Rahmen dieser Arbeit wird das Hydrauliksystem des Hauptarms des Krans ma-
thematisch modelliert, wobei hydraulische Komponenten wie ein druckkompensiertes
Wegeventil, ein Schlauchbruchventil und hydraulische Speicher im Modell inkludiert wer-
den. Das mathematische Modell wird aus physikalischen Prinzipien hergeleitet und die
unbekannten Parameter werden mittels Identifikationsmethoden geschätzt, um eine genaue
Beschreibung der Systemdynamik über ein breites Spektrum von Betriebsbedingungen
sicherzustellen. Schließlich wird das mathematische Modell anhand von experimentellen
Daten in einer Simulationsumgebung validiert.

Des Weiteren wird das validierte Modell für den Entwurf eines modellbasierten Trajek-
torienfolgereglers verwendet. Dieser Regler hat eine Kaskadenstruktur, die Feedforward-
und Feedback-Regelungsstrategien kombiniert, um die Bewegung des Hauptarms entlang
gewünschter Solltrajektorien zu stabilisieren. Anschließend wird das Regelungskonzept auf
Robustheit und Stabilität in einer Simulationsumgebung untersucht, indem die Modellpa-
rameter wie der Vorfülldruck im Speicher, der Kompressionsmodul, die Zylinderreibung
und die Lastmasse variiert werden. Die Ergebnisse zeigen die Effektivität des Model-
lierungsansatzes bei der Erfassung der Systemdynamik sowie die Anwendbarkeit der
Regelungsstrategie für präzise und robuste Trajektorienfolgeregelung.
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1 Introduction
Forestry cranes play a critical role in modern logging and timber transport operations,
enabling efficient handling of heavy loads in challenging outdoor environments. Despite
their importance, the operation of these machines often relies heavily on manual control,
requiring skilled operators to perform complex tasks under varying conditions. During
daily operations, the driver is required to manage multiple tasks simultaneously, including
visualizing the work area, recognizing and selecting targets, controlling the crane, and
positioning the vehicle [1]. This high level of demand can be extremely stressful, as the
operator must process an overwhelming amount of information and make rapid decisions
under pressure. The reliance on human expertise introduces variability in efficiency,
productivity, and safety. There is increasing interest in automating these machines to
improve efficiency, optimize fuel consumption, and reduce operator stress. As the demand
for sustainable forestry practices grows, so does the need for advanced, automated control
systems [2].

Manual open-loop control of cranes is a well-established technology that has been in
use for over two decades [3]. These systems typically consist of a mechanical manipulator
actuated by hydraulic cylinders, which generate motion and are controlled via hydraulic
valves. The operator manually controls the crane from within the cabin using joysticks
and buttons. However, since neither the crane nor the vehicle is equipped with sensors,
managing all degrees of freedom becomes a complex and demanding task. This lack of
feedback leads to a system that is unintuitive and difficult to operate [3].

Research on alternative crane control modes has been ongoing for decades with most
efforts focused on simplifying control complexity by directly commanding the end-effector’s
motion rather than controlling each individual link [1, 2]. This shift is already evident
in the emergence of commercial solutions, including cranes equipped with Cartesian
end-effector control capabilities [4, 5].

These systems provide incremental improvements but still depend heavily on human
input. To address this issue, recent research efforts have focused on full automation of
forestry cranes. Such control systems aim to eliminate the need for continuous operator
intervention by employing sensors, actuators, and advanced control algorithms [6].

Model-free PID controllers, which resemble conventional decentralized joint control,
are a classical approach widely discussed in the literature for motion control of hydraulic
manipulators [6–10]. These controllers are often favored for their simplicity of implementa-
tion. However, experimental studies show that their efficiency is restricted to slow-velocity
trajectories [7]. As motion speeds increase to match human-level profiles, these controllers
struggle with accuracy and stability. Furthermore, model-free control lacks the robustness
to handle significant variations in system parameters and external disturbances, limiting
its applicability in real-world scenarios [3].

To enhance performance, there is growing interest in model-based motion control strate-
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1 Introduction 2

gies that leverage mathematical models of the manipulator’s hydraulic and mechanical
systems. For instance, in [7], the hydraulic torque was modeled as a fourth-order transfer
function relating input current to the force generated by the cylinders. While this approach
is computationally simple, it overlooks the inherent nonlinearities of hydraulic systems,
leading to poor performance under fast-varying trajectories or significant deviations from
operating point.

To address these shortcomings, [11] proposed a more detailed mathematical model
derived from first principles, incorporating cylinder pressure dynamics and nonlinear flow
equations. However, this model omitted certain dynamics, such as valve behavior and
nonlinear orifice areas, by assuming a direct mapping between electrical input and spool
position. Building on this, [12] improved the hydraulic system model by accounting for
valve nonlinearities, including dead zones and saturation.

Industrial hydraulic valves often feature additional service functions - such as pressure-
relief, anti-cavitation valves, load-sensing mechanisms, and pressure compensators. While
some components, such as safety valves, have minimal impact on system dynamics, others,
like pressure compensators, can significantly alter the system’s behavior. Additionally,
modern forestry cranes often include components like hydraulic accumulators and hose
burst valves, which further impact system performance [10, 13, 14].

This work presents a mathematical model of the hydraulic system for the inner boom of
a forestry crane Palfinger Epsilon TZ17. The goal is to accurately represent the system’s
behavior across a wide range of operating points and develop a tracking controller based
on this model. A key distinction from previous works is the inclusion of a two-stage
pressure-compensated directional control valve, hydraulic accumulators, and a hose burst
valve in the model. The mathematical model is validated against experimental data in a
simulation environment and subsequently used to design a model-based tracking controller
with the goal to control the position of the inner boom. The tracking controller utilizes a
cascade structure, where the inner loop regulates the hydraulic force in the cylinder, and
the outer loop controls the position of the inner boom. The controller is subsequently
validated in simulations under varying model parameters to test the robustness of the
control strategy and it’s applicability for real-world scenarios.

This thesis is organized as follows: Chapter 2 describes the setup under study and
gives a short overview of the hydraulic components of the system. Chapter 3 presents
the mathematical models of the mechanical and hydraulic systems of the inner boom.
Chapter 4 provides a detailed explanation of the measurements conducted in this work,
along with descriptions of their respective physical setups. Chapter 5 covers the parameter
estimation and system identification of the hydraulic components, as well as the validation
of the mathematical model in Matlab/Simulink. Chapter 6 presents the design of the
tracking controller and discusses the results of the robustness tests conducted to evaluate
its performance under varying model parameters. Conclusions are drawn in Chapter 7.



2 System Overview
The setup under study is the inner boom of a forestry crane Palfinger Epsilon TZ17 [15].
Figure 2.1 shows a schematic illustration of the hydraulic manipulator. Modeled as a rigid
body, the position and orientation of the crane can be fully described by eight degrees of
freedom. The manipulator is an underactuated system, where only six degrees of freedom
are directly actuated by means of the hydraulic linear and rotary actuators. The inner
boom, outer boom and telescope hydraulic linear actuators are depicted in the figure,
whereas the rotary actuators are not shown for simplicity.

Inner boom cylinder

Outer boom cylinder

Telescope cylinder

Joystick

q1

q2

q3

q4

q5 q6

q7

q8

Figure 2.1: Schematic illustration of the hydraulic manipulator.

The hydraulic manipulator is equipped with Paltronic - control electronics from Palfinger,
offering safety and assistance functionalities [16]. This system monitors and controls the
crane, allowing it to be operated using a handheld joystick. The manipulator’s electronic
control units, sensors, and actuators communicate via a Controller Area Network (CAN)
bus.
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2 System Overview 4

The original hydraulic circuit of the inner boom, provided by the manufacturer, contains
numerous components that are part of the hydraulic system. However, not all of them
are equally relevant for mathematical modeling of the hydraulic system. For example,
some components are required to ensure safe operation and are only active when the
system’s state reaches extreme, abnormal values. Therefore, the first step is to identify key
components that represent the system dynamics in the operating range. After analyzing
the original hydraulic circuit, a simplified version of the circuit is derived where only
relevant components are included. Figure 2.2 shows the simplified hydraulic circuit of
the inner boom. The hydraulic circuit consists of a pressure-compensated directional
control valve, a hydraulic cylinder with integrated hose burst valve and two hydraulic
accumulators.

The main valve is a two-stage pressure-compensated directional control valve Parker
K220LS [17]. The first or pilot stage consists of two small solenoid-operated proportional
pressure control valves. The pilot valves adjust the pilot control pressures proportionally
to the applied electrical signal. The second or main stage of the valve consists of a larger
valve that is controlled by the pilot valves. Pilot control pressure acts on the main valve
spool, causing it to move and control the flow rate proportionally to the pilot control
pressure. In this way, the pilot valves efficiently convert low-energy electrical signals into
high-power fluid flow through the valve. The main valve is connected to the system supply
pressure, whereas the pilot valves are connected to a separate pilot supply pressure, much
lower than the system supply pressure. The main valve features a pre-installed pressure
compensator, which ensures that the flow rate through the valve remains constant, even
if the load pressure changes. The pressure compensator senses the pressure difference
between the inlet and outlet ports of the valve and accordingly adjusts the orifice size of
the supply port to keep the flow rate through the valve constant.

At the time of conducting the work, the model of the pilot valves was not available. As
the valves are integrated within the main valve housing, they cannot be visually inspected.
This lack of access precludes the derivation of a mathematical model from first principles,
as neither geometrical parameters nor internal construction details are available. To
overcome this limitation, the mathematical model of the pilot valves is estimated based
on measured data using system identification techniques. The acquisition of this data and
the subsequent model identification process will be discussed in detail in Chapter 4 and
Chapter 5.

To lift, push and pull heavy loads, each link of the hydraulic manipulator contains a
hydraulic cylinder. The hydraulic cylinders are designed in a single-rod, double-acting
configuration so that the piston can be moved in both directions. When pressurized fluid
enters the head side of the cylinder, it pushes the piston towards the rod side, extending
the rod. Simultaneously, fluid from the rod side exits through the opposite port, allowing
the piston to move freely. To retract the piston, fluid pressure is applied to the rod side
while the head side serves as exhaust.

The hydraulic cylinder features a pre-installed hose burst valve HAWE SB39 that reside
in the piston side of the cylinder housing. The primary function of the hose burst valve
is to enhance safety by automatically blocking the hydraulic flow if a sudden drop in
pressure is detected, typically due to a hose or pipe burst. If a hose supplying hydraulic
fluid to the boom actuator bursts, the hose burst valve prevents the boom from collapsing
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Main valve

Pressure compensator

Pilot valve

Hydraulic
accumulators

Hydraulic cylinder

Hose burst valve

PaltronicPaltronic

qbqa
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qo,2qo,1

qh

sp, wp

pa pb

po,1 po,2
ph

p+ p−

u−, i−u+, i+

Figure 2.2: Hydraulic system of the inner boom.



2 System Overview 6

by locking the fluid in the actuator. The hose burst valve behaves differently depending
on the flow direction. During extension of the cylinder rod, hydraulic fluid flows through
the valve to the head side of the cylinder without restriction. However, during retraction
of the cylinder, the volumetric flow through the valve is limited and maintained constant
after reaching some predefined threshold value. The threshold value of the valve is set to
130 L/min.

The hydraulic system of the inner boom also includes two HYDAC hydraulic accu-
mulators connected to the head side of the cylinder. Both hydraulic accumulators are
diaphragm accumulators filled with nitrogen as storing compressible gas. Accumulators
store energy when the hydraulic system’s demand is low and release it when the demand
increases. They help to smooth out pulsations and fluctuations in pressure caused by
pump operation or varying load conditions. This leads to more stable and reliable system
performance. The hydraulic accumulators are pressurized to 55 bar and 75 bar. Addition-
ally, two flow restrictors with diameter of 1.5 mm and 2 mm are placed in the fluid ports
of the hydraulic accumulators.

In the following chapter, the hydraulic components of the inner boom’s hydraulic
system will be discussed, and mathematical models for these components will be derived.
Throughout this work, the crane will be modeled as a single-link system, with only the
inner boom cylinder actuated, while all other cylinders remain stationary.



3 Mathematical Modeling
This chapter introduces the mathematical models of the mechanical and hydraulic systems
of the inner boom. Treating the hydraulic manipulator as a rigid body, its equations of
motion will be formulated using the Euler-Lagrange equations. Assuming a single-link
configuration, these equations will be simplified into a single equation of motion that
captures the dynamics of the inner boom link. Furthermore, the mathematical models
for the hydraulic cylinder, main valve, pilot valves and hydraulic accumulators will be
presented.

3.1 Rigid Body Dynamics

q1

q2

q3

q4

q5 q6

q7

q8

Figure 3.1: Schematic illustration of the hydraulic manipulator.

Modeled as a rigid multi-body system, the dynamics of the hydraulic manipulator in
Figure 3.1 can be described by the Euler-Lagrange equations [3, 18]. The computation of
the Euler-Lagrange equations of motion leads to:

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ − τ f , (3.1)

7



3 Mathematical Modeling 3.1 Rigid Body Dynamics 8

where D(q) denotes the positive-definite, symmetric mass matrix, C(q, q̇) the matrix of
Coriolis forces, g(q) the vector of potential forces, τ the vector of generalized input torques,
τ f the vector of friction torques and qT =

�
q1 q2 . . . q8

�
the vector of generalized

coordinates. Since in this work only the inner boom is analyzed and all the other links
remain fixed during experiments, the vector of generalized coordinates and its derivatives
can be described as

q =
�
q1,0 q2 q3,0 . . . q8,0

�T
(3.2a)

q̇ =
�
0 q̇2 0 . . . 0

�T
(3.2b)

q̈ =
�
0 q̈2 0 . . . 0

�T
. (3.2c)

The set of equations (3.1) can be simplified to a single equation describing the dynamics
of the inner boom. Furthermore, it can be shown that D22(q2) = D22 for all q2 and the
matrix entry C22(q, q̇) = 0 for all q and q̇. These considerations lead to

D22q̈2 + g2(q2) = τ2 − τf,2, (3.3)

or with omitted subscripts for better readability:

Dq̈2 + g(q2) = τ − τf , (3.4)

For this work, D(q) and g(q) are provided by AIT in the form of Matlab functions and
can be evaluated numerically at any given point q.

The friction force in the hydraulic cylinder is modeled and estimated in the configuration
space. A model often used to represent friction torque is a combination of viscous and
Coulomb frictions [3, 19]. Viscous friction is proportional to the angular velocity, whereas
Coulomb friction depends on the direction of motion

τf (q̇2) = τC sgn(q̇2) + kv q̇2, (3.5)

with the Coulomb friction τC and the viscous friction coefficient kv. The Coulomb term
in (3.5) is a discontinuous function of q̇2, which necessitates small step sizes when using
variable-step solvers, resulting in longer simulation times. To avoid this, the Coulomb
term is approximated by differentiable tanh function

τf (q̇2) = τC tanh
�

q̇2
σ

�
+ kv q̇2, (3.6)

with a tunable constant parameter σ.
Many real hydraulic systems exhibit asymmetric friction forces. The model of the

friction torque is therefore extended to be able to model such asymmetry

τf =

����
τC+tanh

 q̇2
σ

�
+ kv+ q̇2, if q̇2 ≥ 0,

τC−tanh
 q̇2

σ

�
+ kv− q̇2, if q̇2 < 0.

(3.7)



3 Mathematical Modeling 3.2 Hydraulic System 9

3.2 Hydraulic System
3.2.1 Hydraulic Cylinder
Figure 3.2 shows a hydraulic cylinder that is designed in a single-rod, double-acting
configuration. It operates by utilizing hydraulic pressure to move the piston in both
directions. When pressurized fluid enters the head side of the cylinder, it pushes the
piston towards the rod side, extending the rod. To retract the piston, fluid pressure is
applied to the rod side while the head side serves as the exhaust [20].

To derive a mathematical model of the hydraulic cylinder the continuity equation is
applied to each of the cylinder chambers, which yields [19]

qa = V̇a + Va

β
ṗa (3.8a)

qb = V̇b + Vb

β
ṗb, (3.8b)

where Va and Vb are the chamber volumes, qa and qb describe the flows in each chamber,
pa and pb are the pressures in the chambers and β is the bulk modulus of the oil.

pa

ph pb

qbqa

sp, wp

Aa

Ab

Figure 3.2: Schematic diagram of a double-acting hydraulic cylinder with single rod.

The chamber volumes can be written as

Va = V0,a + spAa (3.9a)
Vb = V0,b + (lp − sp)Ab, (3.9b)

with sp being the piston position, Aa, Ab the effective piston areas, V0,a, V0,b the dead
volumes in the chambers and lp the stroke length. The piston position is limited to
sp ∈ [0, lp]. The time derivative of (3.9) is given by

V̇a = ṡpAa = wpAa (3.10a)
V̇b = −ṡpAb = −wpAb. (3.10b)
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By substituting (3.10) and (3.9) into (3.8), the pressure dynamics equations can be
calculated as

ṗa = β

V0,a + spAa
(qa − wpAa), (3.11a)

ṗb = β

V0,b + (lp − sp)Ab
(qb + wpAb). (3.11b)

Following the schematic illustration from the Figure 3.2, the actuator force, generated by
the hydraulics, can be computed from the chamber pressures via

fp = paAa − pbAb. (3.12)

The mapping sp(q2) between the piston position sp and the angular position of the inner
boom q2 can be used to calculate sp and ṡp from the measurements of the angular position
q2 and velocity q̇2 by

sp = sp(q2), (3.13a)

ṡp = ∂sp(q2)
∂q2

q̇2 = J(q2)q̇2, (3.13b)

where J(q2) denotes the geometric manipulator Jacobian. Additionally, the geometric
manipulator Jacobian is used to connect the hydraulic and mechanical systems by mapping
the measurable hydraulic actuator force to the input mechanical torque

τ = J(q2)fp = J(q2)(paAa − pbAb). (3.14)

By substituting (3.14) into (3.4), the equation of motion of the inner boom is formulated
as

Dq̈2 + g(q2) = J(q2)(paAa − pbAb) − τf (q̇2). (3.15)

3.2.2 Hydraulic Accumulators
Fluids are extremely poorly compressible and, as a result, cannot store pressure energy
[10]. In hydraulic accumulators, the compressibility of gases is leveraged to store energy.
Diaphragm accumulators operate on this principle, using nitrogen as the compressible
medium [10]. These accumulators have two sections: a fluid section and a gas section,
separated by a gas-tight diaphragm. The fluid section is connected to the hydraulic
circuit, allowing the diaphragm accumulator to draw in fluid when pressure increases,
compressing the gas. When the pressure decreases, the compressed gas expands, pushing
the stored fluid back into the circuit. Figure 3.3 depicts a schematic diagram of the
diaphragm hydraulic accumulators used in the hydraulic system. The subscripts 1 and
2 are used to distinguish between the two hydraulic accumulators. However, since both
hydraulic accumulators are of the same type and model, the subscripts will be omitted in
the following derivation of the mathematical model, and the derived equations will apply
to both hydraulic accumulators.
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ph

Flow restrictor

Diaphragm

Fluid

Gas

qo,2qo,1

qo

po,1 po,2

pg,1 pg,2

Figure 3.3: Schematic diagram of the diaphragm accumulators used in the hydraulic
system.

Given that no force is required to deform the diaphragm, the pressures in the gas and
fluid sections are equal, pg = po. The gas in the accumulator is initially precharged to
the pressure pg0 and the volume Vg0. Assuming that there is no heat exchange with the
environment and all thermodynamic processes are reversible, the relationship between the
pressure and the volume of the gas can be described by the adiabatic equation [21]

pgV κ
g = pg0V κ

g0 = ζ0 = const. (3.16)

Here κ denotes the isentropic exponent of the gas and pg, Vg represent the current pressure
and volume of the gas, respectively. For ideal diatomic gases the isentropic exponent
is calculated as κ = 7/5 and is constant [22]. However, for real gases as nitrogen the
isentropic exponent depends on pressure and temperature. In practice, the operation
of a hydraulic accumulator typically involves only slight fluctuations in pressure and
temperature. Therefore, an approximation using constant isentropic exponent κ provides
sufficiently accurate description of gas behaviour [13]. By applying the mass continuity
equation on the fluid section of the hydraulic accumulator

d
dt

(ρVo) = ρqo, (3.17)

the mathematical model of the hydraulic accumulator can be derived as:

d
dt

(ρVo) =
�dρ

dt

�
Vo + ρ

dVo

dt
= ∂ρ

∂po

�dpo

dt

�
Vo + ρ

dVo

dt
= 1

β

�dpo

dt

�
Vo + ρ

dVo

dt
, (3.18a)

dVo

dt
= −dVg

dt
= − d

dt

��
ζ0
po

� 1
κ

�
= 1

κ

� 1
ζ0

�− 1
κ

p
− 1

κ
−1

o
dpo

dt
. (3.18b)
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Substituting (3.18b) into (3.18a) and using the fact that Vo = Vg0 − Vg, the pressure
dynamics of the fluid is described as [13]:

d
dt

po = κβpoqo

κpoVg0 + (β − κpo)


ζ0
po

� 1
κ

. (3.19)

Orifice flow restrictors are placed in the ports of the hydraulic accumulators. The orifice
equation for turbulent flow describes the flow rate through the orifices

qo =

��
0, if po ≤ pg0,

sign
�
ph − po

�
Cd

πd2

4

�
2
ρ

 |ph − po|, otherwise,
(3.20)

where Cd denotes the discharge coefficient and d the internal orifice diameter.

3.2.3 Main Valve
Figure 3.4 shows a schematic representation of the main valve. The valve is a 4/3 direc-
tional control valve in closed-center configuration with the spool position controlled by
pilot control pressures p+ and p−. The main valve has four ports: supply port s, tank port
t, actuator ports a and b. The position of the spool ss determines one of three possible
flow paths. In the neutral position ss = 0 all orifices are closed to flow, ensuring that
the hydraulic cylinder is held in place. For negative spool displacement ss < 0, the valve
connects the pressure port to the actuator port a, and the actuator port b is connected to
the tank. This allows the fluid to flow from the supply port s to the port a, causing the
cylinder to extend. Conversely, if ss > 0, the valve connects the pressure port s to the
actuator port b, and the actuator port a is connected to the tank. This reverses the flow,
moving the hydraulic cylinder in the opposite direction [19, 23].

k

p−p+

As ss, ws
qbqh

ps ptpt

ph pb

Figure 3.4: Schematic diagram of the main valve actuated by proportional pressure control
pilot valves.

By summing up the forces exerted on the spool and applying Newton’s second law, the
equation of motion of the spool can be expressed as:

mss̈s + kss = (p+ − p−)As − ff , (3.21)
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where ms denotes the mass of the spool, k the stiffness of return spring, As the cross-
sectional area of the spool, ss the position of the spool and ff the friction force. The
friction force is modeled as a function of spool velocity ṡs and is assumed to be the sum
of Coulomb, and viscous components:

ff = dv ṡs + fc tanh
�

ṡs

σs

�
, (3.22)

with constant parameters dv, fc and σs. Additionally, an axial steady-state flow force
acts on the valve spool. However, because the spool displacement is not measurable and
existing mathematical models provide only a rough approximation of this force, the effect
of the flow force on the spool is neglected.

The spool position determines the area of the orifices and therefore the flow rate through
the valve. The flow rate is described using the orifice equation for turbulent flow, which
takes the direction of the pressure drop into account [19]:

qh =

��������
sgn(ps − ph)CdAsa(ss)

�
2
ρ

 |ps − ph|, if ss < 0

sgn(pt − ph)CdAta(ss)
�

2
ρ

 |ph − pt|, if ss ≥ 0
(3.23a)

qb =

��������
sgn(ps − pb)CdAsb(ss)

�
2
ρ

 |ps − pb|, if ss ≥ 0

sgn(pt − pb)CdAtb(ss)
�

2
ρ

 |pb − pt|, if ss < 0
(3.23b)

where Asa(ss), Asb(ss), Atb(ss), Ata(ss) denote nonlinear orifice areas as functions of the
spool displacement ss and

sgn(x) =

��
1 for x > 0
0 for x = 0
−1 for x < 0.

(3.24)

Additionally, the main valve is equipped with a pressure compensator. It continuously
adjusts the flow through the spool in response to the instantaneous value of the load
signal, ensuring a constant pressure drop Δpc between the loaded port and the supply
port s [24]. Here, Δpc is a factory-set value. To model the pressure-compensated valve,
the equations in (3.23) are modified as follows:

qh =

��������
CdAsa(ss)

�
2
ρ

√
Δpc, if ss < 0,

sgn(pt − ph)CdAta(ss)
�

2
ρ

 |ph − pt|, if ss ≥ 0,

(3.25a)

qb =

��������
CdAsb(ss)

�
2
ρ

√
Δpc, if ss ≥ 0,

sgn(pt − pb)CdAtb(ss)
�

2
ρ

 |pb − pt|, if ss < 0.

(3.25b)



3 Mathematical Modeling 3.2 Hydraulic System 14

3.2.4 Pilot Valves
Deriving mathematical model from first principles requires the knowledge of the design,
geometry and internal parameters of the pilot valves. Except of the circuit symbol,
no further information about the pilot valves is provided by the manufacturer. This
circumstance makes it challenging to construct a precise analytical mathematical model
that represents the dynamic behavior of the pilot valves. Instead, identification techniques
can be applied to create data-driven representation of the pilot valves by fitting a model
directly to the input-output data.

The subscripts + and − are used to distinguish between the two pilot valves. However,
since both pilot valves are of the same type and model, the subscripts will be omitted
in the following discussion and the identified model will apply to both pilot valves. The
pilot valves under study are proportional pressure control valves, driven by pulse-width
modulated (PWM) voltage signal u with frequency of 100 Hz. The input PWM voltage
generates an electrical current in the solenoid i, which is directly proportional to the pilot
control pressure p. The pilot valves are designed to be controlled by a PWM current
driver, therefore the electrical current i is assumed to be the input to the system. The
output of the system is the pilot control pressure p which controls the spool displacement
of the main valve.

Linear System Output Nonlinearity

G(s)
i(t) ν(t) p(t)

Figure 3.5: Block diagram of the mathematical model of the pilot valves.

A Wiener model [25] is used to describe the mathematical model of the pilot valves as
shown in Figure 3.5. The model consists of a linear dynamic system G(s) with |G(s)| = 1
and a static output nonlinear function h(·), where ν(t) represents an internal state that
does not correspond to a physical quantity. The output nonlinearity h(·) is modeled using
a second-order polynomial. The estimation of the polynomial coefficients is discussed in
Chapter 5.

The linear dynamic system G(s) is first identified in the discrete-time domain as Gd(z)
and then converted into G(s) using the Tustin approximation. The transfer function
Gd(z) is represented via an AutoRegressive with eXogenous input (ARX) model structure
due to its computational efficiency and flexibility [25, 26]. The ARX model structure is
described as:

A

δ−1

�
yk = B


δ−1

�
uk−d + ek, (3.26)

where A
�
δ−1�

and B
�
δ−1�

are polynomials in the shift operator δ−1, defined as [27, 28]

δ−1uk = uk−1. (3.27)

Specifically,
A


δ−1

�
= 1 + a1δ−1 + . . . + anδ−n, (3.28a)
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B

δ−1

�
= b0 + b1δ−1 + . . . + amδ−m. (3.28b)

yk, uk are the output and the input at time k, d is the input delay and ek represents the
noise. The orders (n, m) of the polynomials A and B determine the model’s dynamics and
are typically chosen based on the system’s response characteristics. Different configurations
of (m, n, d) were tested, but the best accuracy was achieved with m = 1, n = 1, d = 0,
which corresponds to the discrete-time ARX model

(1 + ad
1δ−1)yk = (bd

0 + bd
1δ−1)uk + ek, (3.29)

and the discrete-time transfer function

Gd(z) = bd
0z + bd

1
z + ad

1
. (3.30)

The discrete-time transfer function Gd(z) can be converted into continuous-time transfer
function G(s) using the Tustin approximation [29, 30]:

G(s) = Gd(z′), z′ = 1 + sTs/2
1 − sTs/2 , (3.31)

with sampling period Ts, which leads to

G(s) = bc
0s + bc

1
s + ac

1
. (3.32)

The continuous-time transfer function can be further converted into a state-space model

λ̇(t) = as
1λ(t) + i(t), (3.33a)

ν(t) = bs
0λ(t) + bs

1i(t), (3.33b)

with the internal state λ(t), input i(t) and output ν(t). The mathematical model of the
pilot valves is finally described by the following set of equations:

λ̇+(t) = as
1λ+(t) + i+(t), (3.34a)

ν+(t) = bs
0λ+(t) + bs

1i+(t), (3.34b)

p+(t) = h(ν+(t)), (3.34c)

λ̇−(t) = as
1λ−(t) + i−(t), (3.34d)

ν−(t) = bs
0λ−(t) + bs

1i−(t), (3.34e)

p−(t) = h(ν−(t)). (3.34f)

The estimation of the unknown parameters of the model will be discussed in Chapter 5.



4 Measurements
In this work, the measurements are divided into two stages with the aim of identifying the
unknown parameters of the model and verifying the mathematical model of the system. In
the first stage, the measurements are conducted specifically for the system identification
of the pilot valves. In the second stage, the cylinder chamber pressures, boom position,
and velocity are measured to estimate the unknown parameters of the hydraulic system
and validate the mathematical model of the entire system. The following sections provide
detailed description of both measurement stages, including their corresponding physical
setups.

4.1 First Measurement Campaign
Figure 4.1 shows a schematic of the pilot valve including measurable signals. The pilot
valve, denoted with the subscript + is used for illustration and explanation purposes.
However, since the pilot valves are of the same type and model, everything discussed
in this section also applies to the pilot valve denoted with the subscript −. A pressure
transducer is used to measure the pilot control pressure and to convert the pressure into
corresponding analog voltage signal. In total, the measurable variables include:

• Input PWM voltage u+

• Current i+ in the solenoid

• Pilot control pressure p+

u+, i+

p+

Figure 4.1: Schematic of the pilot valve including the measurable signals

The physical setup prepared by AIT for the first measurement stage is depicted in
Figure 4.2. A Tektronix MSO46 oscilloscope is employed to measure pilot valve signals
and store them on a USB flash drive for post-processing. The signals are sampled at
a rate of fs = 6.25 kHz, corresponding to a sampling period of Ts = 0.16 ms. During
the measurements, only the inner boom cylinder is controlled via the joystick while the
other hydraulic cylinders remain stationary. The joystick is operated to generate signals
that sweep through a wide range of frequencies, ensuring that the system’s response to

16
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various frequencies is captured. An example of the obtained signals is shown in Figure 4.3.
As depicted in the figure, the frequency of the signal increases with time, allowing the
system to be excited across a broad frequency spectrum with just one signal and providing
comprehensive frequency response information. These signals are used to identify a linear
dynamic model of the pilot valves. Additionally, static and ramp signals are measured to
reconstruct a static output nonlinear function in the Wiener model. Finally, general-shaped
signals are measured for the analysis and validation of the identified model. In total,
eleven trajectories are generated and measured, including signals sweeping through a wide
range of frequencies, ramp, static, and general-shaped signals. To verify the equivalence
of both pilot valves, their signals are measured and compared.

q2

Figure 4.2: The physical setup during the first measurement stage. The inner boom
cylinder is controlled via the joystick while the other hydraulic cylinders
remain stationary.
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Figure 4.3: Example of measured signals during the first stage by manually controlling
the crane with the joystick. The frequency of the signal increases with time,
allowing the system to be excited across a broad frequency spectrum with just
one signal.

4.2 Second Measurement Campaign
The physical setup prepared by AIT for the second measurement stage closely resembles
the setup from the first measurement stage: the inner boom cylinder is controlled via the
joystick while the other hydraulic cylinders remain stationary. However, unlike in the first
measurement stage, the sensors are now connected to the system’s CAN bus, allowing
sensor signals to be directly read and stored on a USB flash drive without the need for
an oscilloscope. The sensor signals are sampled at a rate of fs = 100 Hz, corresponding
to a sampling period of Ts = 10 ms. Figure 4.4 presents a schematic of the inner boom,
including the measurable variables. Installed sensors allow to measure:

• Angle of the inner boom q2
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• Angular velocity of the inner boom q̇2

• Chamber pressures in the cylinder pb

• Pressure in the hose ph

• Currents i+, i− in the solenoids of the pilot valves

Chamber pressures are obtained through pressure transducers, while angular displacement
and velocity are measured using an Inertial Measurement Unit (IMU) sensor mounted
on the inner boom. It is important to note that, due to the integration of the hose
burst valve into the hydraulic cylinder, the true chamber pressure pa on the cap side is
not directly measurable. Instead, the pressure in the hose after the hose burst valve ph

is recorded. Given the known pressure-flow characteristics of the hose burst valve, the
chamber pressure pa can be estimated from ph in the case of slowly-varying and static
signals, as will be demonstrated in Chapter 5.

pb

ph

q2, q̇2

Figure 4.4: Schematic illustration of the inner boom including measurable variables during
the second measurement phase.

During the measurement phase, forty-one trajectories are collected. These include static
and slowly varying trajectories for model parameter identification, as well as fast-varying
trajectories for model analysis and validation. To evaluate the model’s performance under
diverse load conditions, some trajectories are captured with a gripped wood log and with
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extended telescopic and outer boom cylinders. Figure 4.5 illustrates an example of a
measured trajectory during the second measurement phase. The inner boom exhibits
a sinusoidal pattern, with an amplitude of approximately 0.5 rad and a period of 20 s,
resulting from the alternating activation of the pilot valves during joystick control.
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Figure 4.5: Example of measured trajectory during the second measurement phase by
manually controlling the crane with the joystick.



5 System Identification
This chapter focuses on the parameter estimation and system identification of the hydraulic
components. Section 5.1 describes system identification of the pilot valves based on the
measured data. Section 5.2 covers parameter estimation of the main valve and the
modeling of the orifice areas, using a P-Spline approach to fit the nonlinear orifice areas
to the measurements. Section 5.3 discusses the modeling of the hose burst valve and
parameter estimation of the friction force in the cylinder based on the measurements.
By combining the mathematical models of the hydraulic components, the full model is
constructed and validated in Matlab/Simulink. Finally, the full model is simplified to
a reduced-order model for controller design.

5.1 Pilot Valves
The subscripts + and − are used to distinguish between the two pilot valves. However,
since both pilot valves are of the same type and model, the subscripts will be omitted
in the following discussion and the identified model will apply to both pilot valves. The
collected measurements of both variables i(t), p(t) allow the use of system identification
methods to estimate the unknown parameters.

The output nonlinearity and the linear system are estimated separately based on the
measurements. Since the pilot valves are driven by PWM voltage, the measured current is
a high-amplitude, periodic signal. To obtain average current, the current is filtered using
the moving average algorithm [29] with a window size of Nw = 64 sample points, which
corresponds to the period of the PWM voltage. Figure 5.1 shows the measured solenoid
current and the corresponding filtered current. The same filtering algorithm is applied to
the measured pilot control pressure p to compute average pressure p̄(t).
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Figure 5.1: Measured solenoid current and its average value. The current is averaged
using the moving average algorithm.

21



5 System Identification 5.1 Pilot Valves 22

The static output nonlinearity h(·) is reconstructed based on the stationary points of
p̄(t) and ī(t). The stationary points are defined as follows�

ī(t), p̄(t)
� $$$$$ | ˙̄p(t)| < pth, |˙̄i(t)| < ith



, (5.1)

where pth and ith denote constant threshold values. The time derivative of the current
and the pressure signals is estimated using a Savitzky–Golay filter of polynomial order 3.
Implementation of the Savitzky-Golay filter is provided by AIT in form of a Matlab
function. The stationary points are then collected from all experiments using the following
threshold values: pth = 1 bar/s and ith = 0.5 A/s. Figure 5.2 shows a representative
example of stationary values obtained from the measured signals.
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Figure 5.2: Measured solenoid current i(t), its average value ī(t) and stationary points
calculated based on the time derivative of p̄(t), ī(t).
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A second-order polynomial is fitted to the estimated stationary points to derive a closed-
form expression for the static output nonlinearity h(·). The polynomial’s coefficients are
determined by minimizing the squared error between the measured stationary points and
the polynomial’s predictions, resulting in

h(x) = 76.1x2 − 0.58x + 0.247. (5.2)
The fitted polynomial and stationary values collected from all experiments are depicted in
Figure 5.3. While controlling the crane with the joystick, the minimum and maximum
observed stationary values of the solenoid current are 0.3 A and 0.55 A, respectively, as
can be seen from the figure.
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Figure 5.3: The static output nonlinearity h(·) is modeled by fitting a second-order poly-
nomial to the stationary values of ī and p̄ collected from all experiments.

The Least Squares Method (LSM) is one of the most commonly used approaches in
the parametric identification due to its simplicity, efficiency, and robustness [25]. The
estimation of the model parameters

p =
�
a1 . . . an b0 . . . bm

�T
, (5.3)
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of an ARX model defined in (3.26) is performed by minimizing the sum of the squared
errors between the predicted and actual outputs [25, 27]:

p̂ = argmin
p

∥e∥2 = argmin
p

∥y − Sp∥2
2 =


STS

�−1
STy, (5.4)

with
sT

k =
�
−yk−1 . . . −yk−n uk−d . . . uk−d−m

�
, (5.5a)

S =

sT
1
...

sT
N

 , y =
�
y1 . . . yN

�T
. (5.5b)

To estimate the unknown coefficients of the pilot valve’s transfer function (3.30), the
measured pressure values pk are first mapped to νk by inverting the output nonlinearity
h(·)

νk = h−1(pk), (5.6)

The measured solenoid current ik is the input to the model, and νk is the corresponding
output. The chirp signal from Figure 4.3 with 104062 data points serves as the training
data. The model parameters are computed in Matlab using the arx command from
the System Identification Toolbox. The optimization process resulted in the following
estimated model parameters:

pd =
�
ad

1 bd
0 bd

1
�T

=
�
−0.996 −0.0269 0.031

�T
(5.7a)

pc =
�
ac

1 bc
0 bc

1
�T

=
�
19.67 −0.0285 19.67

�T
(5.7b)

ps =
�
as

1 bs
0 bs

1
�T

=
�
−19.67 20.23 −0.0285

�T
. (5.7c)

The full pilot valve model, i.e. the combination of the continuous-time transfer function
G(s) and the static output nonlinearity h(·) is subsequently tested on the validation
dataset and the simulation results are compared against the measurements. The linear
dynamic system G(s) is simulated in Matlab using the lsim command from the Control
System Toolbox. The measured solenoid current i(t) from the validation dataset serves
as the input and the predicted pilot control pressure is compared against the measured
pressure. Figure 5.4 illustrates the model’s accuracy by comparing its predictions to the
measured data. As shown in the figure, the model accurately represents the system across
its entire operational range, effectively capturing both the dynamic and steady-state
behavior of the system.
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Figure 5.4: Comparison between the simulated outputs of the identified pilot valve model
and the actual measurements from the validation dataset.
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5.2 Main Valve
Due to the inaccessibility of the spool displacement ss for direct measurement, precise
estimation of the main valve parameters is not feasible. Therefore, an approximate
estimation is employed in this work. Geometric parameters of the valve such as the volume
Vs and the cross-sectional area As of the spool are estimated based on the dimensional
drawings from the manufacture’s catalogue [17]. Given the known volume of the spool,
the spool mass can be computed as product of the density of iron ρi and the spool volume

ms = Vsρi. (5.8)

The maximum and minimum spool displacement smax
s , smin

s are determined based on the
information from the manufacture’s catalogue [17]. The spring coefficient k of the valve
is determined such that, when the maximum pilot control pressure pmax

+ is applied, the
valve is fully open with ss = smax

s . In the stationary state the equation of motion of the
spool is given by

ksmax
s = pmax

+ As, (5.9)

from which the spring coefficient can be calculated as

k = pmax
+ As

smax
s

. (5.10)

By combining (3.21) and (3.22), the transfer function of the main valve is defined as

Gs(s) = 1
mss2 + dvs + k

= Vs

(sTs)2 + 2ξs(sTs) + 1 , (5.11a)

where
Ts =

!
ms

k
, ξs = dv

2
√

kms
, Vs = 1

k
. (5.11b)

The friction force coefficients are selected to match the step response and friction force
characteristics typical for valves of this type [19, 31]:

ξs = 0.5 (5.12a)
σs = 0.01 m/s (5.12b)
dv = 2ξs

 
kms = 160 N s/m (5.12c)

fc = 75 N. (5.12d)

The total friction force
ff = dvws + fc tanh

�
ws

σs

�
(5.13)

with the estimated parameters and the step response of the spool are shown in Figure 5.5
and Figure 5.6, respectively.
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Figure 5.5: The friction force with the estimated parameters as function of the spool
velocity according to (5.13).
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Figure 5.6: The step response of the main valve by actuating the spool with a pilot control
pressure of 1 bar.

The orifice areas of the main valve are estimated based on the measurement data.
Assuming a steady-state situation, i.e.

ṗa = 0, ṗb = 0, ṗo,1 = 0, ṗo,2 = 0, (5.14)

(3.11) and (3.19) simplify to

qa = qh = wpAa, qb = −wpAb, (5.15)

with

qh =

��������
CdAsa(ss)

�
2
ρ

√
Δpc, if ss < 0,

sgn(pt − ph)CdAta(ss)
�

2
ρ

 |ph − pt|, if ss ≥ 0,

(5.16a)
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qb =

��������
CdAsb(ss)

�
2
ρ

√
Δpc, if ss ≥ 0,

sgn(pt − pb)CdAtb(ss)
�

2
ρ

 |pb − pt|, if ss < 0.

(5.16b)

By combining (5.15) and (5.16) the orifice areas can be calculated as

Amv
a (ss) =

�
Asa(ss), if ss < 0,
Ata(ss), otherwise, (5.17a)

Amv
b (ss) =

�
Asb(ss), if ss ≥ 0,
Atb(ss), otherwise, (5.17b)

Asa(ss) = wpAa

Cd

�
2
ρ

√
Δpc

, (5.17c)

Ata(ss) = wpAa

sgn(pt − ph)Cd

�
2
ρ

 |ph − pt|
, (5.17d)

Asb(ss) = −wpAb

Cd

�
2
ρ

√
Δpc

, (5.17e)

Atb(ss) = −wpAb

sgn(pt − pb)Cd

�
2
ρ

 |pb − pt|
. (5.17f)

The variables on the right-hand side of (5.17) are measurable, making it possible to
estimate the orifice areas based on the measurement data. The stationary value of the
spool position ss is estimated using (3.21)

ss = (p+ − p−)As

k
. (5.18)

Since the pilot solenoid currents i+, i− are both measurable, the corresponding pilot
control pressures, p+, p−, can be determined using the identified mathematical model of
the pilot valves. This enables the estimation of the spool displacement as described in
(5.18) and the reconstruction of the functions Asa(ss), Ata(ss), Asb(ss), Atb(ss).

A penalized B-Spline or P-Spline model [32, 33] is utilized to fit the nonlinear orifice
areas to the measured data. A B-Spline model is expressed as a linear combination of d
B-spline basis functions [33]:

y(x) =
d"

i=0
Bl

i(x)βi, (5.19)
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where Bl
i(x) denotes i-th basis function of order l, d number of basis functions and βi

parameters to be optimized. The basis function Bl
i(x) is defined recursively and has

non-zero values only within the interval x ∈ [κi, κi+1) [33]:

B0
i (x) =

�
1, for κi ≤ x < κi+1,
0, otherwise,

(5.20a)

Bl
i(x) = x − κi−l

κi − κi−l
Bl−1

i−1(x) + κi+1 − x

κi+1 − κi+1−l
Bl−1

i (x), (5.20b)

where κi and κi+1 refer to the nodes of the region [κi, κi+1]. To fit the model to measured
data, a cost function given by

L(β) = ∥y − Bβ∥2
2, (5.21)

is minimized with respect to spline coefficients β =
�
β1, β2, . . . , βd

�T
. Here, y denotes the

measured data
y =

�
y1 y2 . . . yn

�T
, (5.22)

and B matrix with entries Bij = Bl
j(xi). To control the smoothness of the model, the loss

function (5.21) is augmented with an additional regularization term [33]

LP (β) = ∥y − Bβ∥2
2 + λ

� 
d2y(x̃)

dx̃2

�2

dx̃, (5.23)

where λ is a constant smoothing parameter that penalizes curvature in the function. Using
(5.19), the loss function (5.23) reduces to

LP (β) = ∥y − Bβ∥2
2 + λβTΩβ, (5.24)

where Ω denotes matrix with entries

Ωij =
� d2Bl

i(x̃)
dx̃2

d2Bl
j(x̃)

dx̃2 dx̃. (5.25)

The fitted P-Spline is obtained by minimizing (5.24), and can be expressed as [33]:

β̂ = argmin
β

�
∥y − Bβ∥2

2 + λβTΩβ
�

=

BTB + λΩ

�−1
BTy, (5.26a)

ŷ(x) =
d"

i=0
Bl

i(x)β̂i. (5.26b)

In this work, the P-Spline optimization is conducted using the Matlab library CDSplines,
provided by AIT. Prior to model fitting, the measured data is filtered to include only
stationary values, ensuring that the steady-state assumption (5.14) is satisfied. The
P-Spline optimization is then performed on the normalized data:

Āmv
a = Amv

a

A0
, Āmv

b = Amv
b

A0
, (5.27a)
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s̄s = ss

smax
s

, (5.27b)

where both Āmv
a (s̄s) and Āmv

b (s̄s) are modeled using d = 15 basis functions of order l = 3
with equidistant nodes and λ = 100. Figure 5.7 and Figure 5.8 show the measured data
and the optimized P-Spline models of Āmv

a (s̄s) and Āmv
b (s̄s), respectively.
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Figure 5.7: Comparison between the P-Spline model of the normalized orifice area Āmv
a

and the measured data.
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Figure 5.8: Comparison between the P-Spline model of the normalized orifice area Āmv
b

and the measured data.

5.3 Hydraulic Cylinder
The flow through the hose burst valve qa can be computed from the pressure drop across
the valve Δpha = ph −pa using the flow-pressure diagram from the manufacture’s catalogue
[34]. The flow-pressure curve from the datasheet is shown in Figure 5.9. Polynomial
regression is utilized to fit a nonlinear model to the curve and find a closed-form expression
for qa(Δpha). To achieve this, the graph is partitioned into three regions and for each of
the regions an individual polynomial is defined. The flow rate qa(Δpha) can be expressed
as

qa(Δpha) =

����
qa,1(Δpha) = a11Δpha + a12

√
Δpha, if Δpha ≥ 0

qa,2(Δpha) = a21Δpha + a22Δp2
ha, if − 22 bar ≤ Δpha < 0

qa,3(Δpha) = a30 + a31Δpha, else.
(5.28)

Additionally, the functions qa,2 and qa,3 are required to be continuously differentiable at
the node Δpha = 22 bar to obtain smooth transition between the regions. As depicted
in Figure 5.9, the flow rate curve shows distinct behavior around the transition point
Δpha = 0 bar. As a result, it cannot be accurately modeled as differentiable at this point
using polynomials while still closely approximating the datasheet values. The requirement
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for differentiability at the node Δpha = 0 bar is therefore omitted.

g1 =

qa,2(Δpha) − qa,3(Δpha)

�$$$
Δpha=22 bar

= 0 (5.29a)

g2 =


dqa,2(Δpha)
dΔpha

− dqa,3(Δpha)
dΔpha

�$$$$$
Δpha=22 bar

= 0. (5.29b)
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Figure 5.9: Flow-pressure graph of the hose burst valve from the manufacture’s catalogue.
Polynomial regression is used to fit the curve and find a closed-form expression
for qa(Δpha).

The polynomial coefficients from (5.28) can be computed by solving the following
optimization problem:

min
a∈R6

f(a) =
3"

i=1
∥yi − Xiai∥2, (5.30a)

subject to: g1(a) = 0,

g2(a) = 0,
(5.30b)

where a denotes the polynomial coefficients

a =

a1
a2
a3

 , a1 =
�
a11
a12

�
, a2 =

�
a21
a22

�
, a3 =

�
a30
a31

�
, (5.31)

Xi denotes polynomial terms evaluated at the corresponding Δpha values in the region i:

X1 =


Δp1,1

 
Δp1,1

Δp1,2
 

Δp1,2
...

...
Δp1,n1

 
Δp1,n1

 , X2 =


Δp2,1 Δp2

2,1
Δp2,2 Δp2

2,2
...

...
Δp2,n2 Δp2

2,n2

 , X3 =


1 Δp3,1
1 Δp3,2
...

...
1 Δp3,n3

 , (5.32)
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and yi ∈ Rni the flow rate values from the graph in the region i. The Lagrangian function
for this optimization problem is defined as

L(a, λ) = f(a) + λTg(a) =
3"

i=1
∥yi − Xiai∥2 + λTg(a), (5.33)

with
gT =

�
g1 g2

�
(5.34a)

λT =
�
λ1 λ2

�
. (5.34b)

The first-order necessary conditions for the constrained optimality can be formulated
using the Lagrangian function as [35]:�

∂L
∂a

�T
(a∗, λ∗) = 0 and

�
∂L
∂λ

�T
(a∗, λ∗) = gT(a∗) = 0. (5.35)

The solution (a∗, λ∗) of the optimization problem (5.30) can be found by solving the
system of equations for (a∗, λ∗). The derivatives are computed in Maple and the system
of equations is solved using solve command, leading to

a∗ =



a11
a12
a21
a22
a30
a31


=



3.67
29.2
8.24
0.17

−80.3
0.84


, (5.36)

The fitted polynomials and the flow-pressure graph from the datasheet are shown in
Figure 5.9.

The unknown coefficients τC+ , kv+ , τC− , kv− in the friction force are estimated based
on the performed measurements. Since the pressure in the cylinder chamber pa is not
measurable, the friction torque can’t be reconstructed directly from the measurements
via (3.4). The pressure in the cylinder chamber pa is, therefore, approximated based on
the pressure in the hose ph and the flow-pressure graph of the hose burst valve. Under
steady-state conditions, where the pressure change ṗa is negligible, the flow rate qa can be
computed from the angular velocity q̇2 using (3.11):

qa = wpAa = J(q2)q̇2Aa. (5.37)

Finally, pa can be determined from the measurable q2, q̇2, ph using the following equation:

pa = ph − Δpha(q2, q̇2), (5.38)

with Δpha = ph − pa. Data points for τf are computed from the measured data using
(3.4). The measured data is pre-filtered to include only stationary points, ensuring that
steady-state conditions are met. Subsequently, the friction torque model (3.7) is fitted
to the measured friction torque, whereas the unknown coefficients τC+ , τC− , kv+ , kv− are
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identified using the Linear Least Squares method. Figure 5.10 illustrates a comparison
between the friction torque predicted by the model τf (q̇2) and the friction torque measured
experimentally. As shown in the figure, the measured friction torque exhibits asymmetric
behavior and demonstrates characteristic of Coulomb and viscous friction. It’s important
to note that the measured torque also includes inaccuracies from the crane’s hydraulic,
mechanical, and load models, contributing to the observed uncertainty. The proposed
mathematical model effectively captures the asymmetric friction torque, and the estimated
parameters provide an average approximation of the measured torque.
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Figure 5.10: Comparison between the identified and measured friction torques.
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5.4 Full Model
By combining the equations from the previous sections, the full model of the hydraulic
system is constructed and shown in Figure 5.11. The mathematical model of the hydraulic
system is described by the following set of equations:

Dq̈2 + g(q2) = J(q2)(paAa − pbAb) − τf (q̇2), (5.39a)

τf =

����
τC+tanh

 q̇2
σ

�
+ kv+ q̇2, if q̇2 ≥ 0,

τC−tanh
 q̇2

σ

�
+ kv− q̇2, if q̇2 < 0,

(5.39b)

qh

ph

qa qb

pa

pb

sp, wp

ss, ws

qo

qo,1 qo,2

po,2po,1

p+ p−

ptpspt

Figure 5.11: Schematic illustration of the hydraulic system of the inner boom.
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ṗa = β

V0,a + spAa
(qa − wpAa), (5.39c)

ṗb = β

V0,b + (lp − sp)Ab
(qb + wpAb), (5.39d)

Δpha = ph − pa, (5.39e)

qa(Δpha) =

����
a11Δpha + a12

√
Δpha, if Δpha ≥ 0,

a21Δpha + a22Δp2
ha, if − 22 bar ≤ Δpha < 0 ,

a30 + a31Δpha, otherwise,
(5.39f)

d
dt

po,1 = κβpo,1qo,1

κpo,1Vg0 + (β − κpo,1)


ζ0,1
po,1

� 1
κ

, (5.39g)

d
dt

po,2 = κβpo,2qo,2

κpo,2Vg0 + (β − κpo,2)


ζ0,2
po,2

� 1
κ

, (5.39h)

ṗh = β

Vh
(qh − qo − qa), (5.39i)

qo,1 =

��
0, if ph < po,1 ≤ pg0,1,

sign
�
ph − po,1

�
Cd

πd2

4

�
2
ρ

�
|ph − po,1|, otherwise,

(5.39j)

qo,2 =

��
0, if ph < po,2 ≤ pg0,2,

sign
�
ph − po,2

�
Cd

πd2

4

�
2
ρ

�
|ph − po,2|, otherwise,

(5.39k)

qh =

��������
CdAsa(ss)

�
2
ρ

√
Δpc, if ss < 0,

sgn(pt − ph)CdAta(ss)
�

2
ρ

 |ph − pt|, if ss ≥ 0,

(5.39l)

qb =

��������
CdAsb(ss)

�
2
ρ

√
Δpc, if ss ≥ 0,

sgn(pt − pb)CdAtb(ss)
�

2
ρ

 |pb − pt|, if ss < 0,

(5.39m)
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mss̈s + kss = (p+ − p−)As − ff , (5.39n)

ff = dv ṡs + fc tanh ṡs

σs
, (5.39o)

λ̇+(t) = as
1λ+(t) + i+(t), (5.39p)

ν+(t) = bs
0λ+(t) + bs

1i+(t), (5.39q)
p+(t) = h(ν+(t)), (5.39r)
λ̇−(t) = as

1λ−(t) + i−(t), (5.39s)
ν−(t) = bs

0λ−(t) + bs
1i−(t), (5.39t)

p−(t) = h(ν−(t)). (5.39u)

The full model is an 11th-order nonlinear dynamic system with the state vector defined
as:

x =
�
q2 q̇2 pa pb ph po,1 po,2 ss ws λ+ λ−

�T ∈ R11. (5.40)

5.5 Reduced-Order Model
The goal of developing a reduced-order model is to simplify a complex system while
retaining its essential dynamics and characteristics. This simplification allows for more
efficient design, and implementation of control strategies. This is especially useful for
high-dimensional systems where designing controllers for the full model would be too
complex. While reducing the model order can simplify computations, it can also lead to a
loss of accuracy. Therefore, the goal is to develop reduced-order models that capture the
most important dynamics of the original system while minimizing the computational cost
[25, 33].

The reduced-order model of the hydraulic system is derived in two steps. First, it is
assumed that the measured pressure ph is equal to pa and no hose burst valve is installed in
the cylinder. The effect of the hose burst valve is modeled as additional velocity-dependent
pressure-compensation term Δpha(q2, q̇2) acting on the piston:

Dq̈2 + g(q2) = J(q2)
�

(pa − Δpha(q2, q̇2)
�
Aa − pbAb

�
− τf (q̇2)

= J(q2)
�
paAa − pbAb

� − τf (q̇2) − AaJ(q2)Δpha(q2, q̇2).
(5.41)

The term AaJ(q2)Δpha(q2, q̇2) can be viewed as additional friction torque due to the
installed hose burst valve:

Dq̈2 + g(q2) = J(q2)
�
paAa − pbAb

� − τ̃f (q2, q̇2), (5.42a)
τ̃f (q2, q̇2) = τf + AaJ(q2)Δpha(q2, q̇2). (5.42b)

In the next step, the pressure dynamics in the hydraulic accumulators is eliminated
and it is assumed that po,1 = po,2 = pa. The chamber volume Va is modeled as function of
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pa and sp:

Va(pa, sp) =

����
V0,a + Aasp, if pa ≤ pg0,2,

V0,a + Aasp + Vo,1(pa), if pg0,2 < pa < pg0,1,

V0,a + Aasp + Vo,1(pa) + Vo,2(pa), if pa ≥ pg0,1,

(5.43)

with
Vo,1(pa) = Vg0 −

ζ0,1
pa

�1/κ
, ζ0,1 = pg0,1V κ

g0, (5.44a)

Vo,2(pa) = Vg0 −
ζ0,2

pa

�1/κ
, ζ0,2 = pg0,2V κ

g0. (5.44b)

The additional volumes Vo,1, Vo,2 in Va is due to the variable pressure-dependent oil volume
in the hydraulic accumulators. The time derivative of pa can now be written as:

ṗa =

����������������������������

β
qa − Aawp

V0,a + Aasp
, if pa ≤ pg0,2,

κβpa(qa − Aawp)

κpa(V0,a + Aasp + Vg0,2) + (β − κpa)
ζ0,2

pa

�1/κ
, if pg0,2 < pa < pg0,1,

κβpa(qa − Aawp)

κpa(V̄0,a + Aasp) + (β − κpa)
�ζ0,1

pa

�1/κ
+

ζ0,2
pa

�1/κ
�, if pa ≥ pg0,1,

(5.45)
with V̄0,a = V0,a + Vg0,1 + Vg0,2.

The full model is simplified to an 8th-order nonlinear dynamic system with state vector

x =
�
q2 q̇2 pa pb ss ws λ+ λ−

�T ∈ R8, (5.46)

and described by the following set of equations:

Dq̈2 + g(q2) = J(q2)
�

(pa − Δpha(q2, q̇2)
�
Aa − pbAb

�
− τf (q̇2), (5.47a)

τf =

����
τC+tanh

 q̇2
σ

�
+ kv+ q̇2, if q̇2 ≥ 0,

τC−tanh
 q̇2

σ

�
+ kv− q̇2, if q̇2 < 0,

(5.47b)

ṗa =

����������������������������

β
qa − Aawp

V0,a + Aasp
, if pa ≤ pg0,2,

κβpa(qa − Aawp)

κpa(V0,a + Aasp + Vg0,2) + (β − κpa)
ζ0,2

pa

�1/κ
, if pg0,2 < pa < pg0,1,

κβpa(qa − Aawp)

κpa(V̄0,a + Aasp) + (β − κpa)
�ζ0,1

pa

�1/κ
+

ζ0,2
pa

�1/κ
�, if pa ≥ pg0,1,

(5.47c)
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ṗb = β

V0,b + (lp − sp)Ab
(qb + wpAb), (5.47d)

qa =

��������
CdAsa(ss)

�
2
ρ

√
Δpc, if ss < 0,

sgn(pt − ph)CdAta(ss)
�

2
ρ

 |ph − pt|, if ss ≥ 0,

(5.47e)

qb =

��������
CdAsb(ss)

�
2
ρ

√
Δpc, if ss ≥ 0,

sgn(pt − pb)CdAtb(ss)
�

2
ρ

 |pb − pt|, if ss < 0,

(5.47f)

and (5.39n) - (5.39u).

5.6 Simulation and Experimental Validation
To simulate and validate the system, both the full and reduced-order models were imple-
mented in Matlab/Simulink. The dynamic models of the pilot valves were implemented
using Matlab Transfer Fcn blocks according to (3.32), while the remaining components
of the hydraulic system and the equation of motion for the inner boom were implemented
using Matlab Function blocks. The system was simulated in the continuous-time domain
using the variable-step solver ode15s. First, the full model was validated against the
measurements, and then the reduced-order model was compared to the full model.

To evaluate the full model, the measured solenoid currents i+, i− from the test trajecto-
ries are used as inputs to the Matlab/Simulink model, and the predicted state variables
ph, pb, q2, q̇2 are compared to the corresponding measurements. The four validation trajec-
tories reported in this work are summarized in Table 5.1. The table lists the positions
of the outer and telescopic booms, load conditions during the measurements, and the
achieved accuracy of the full model. For simplicity, the remaining generalized coordinates
were omitted as they do not affect the inner boom’s dynamics. The model’s accuracy for
each validation trajectory is assessed by calculating the mean absolute difference between
the predicted and measured angles of the inner boom:

MAE = 1
n

n"
i=1

|q2(ti) − q̂2(ti)|, (5.48)

where q2 denotes the predicted inner boom angle, q̂2 the measured inner boom angle
and ti the sampling points. Figure 5.12 - Figure 5.15 present the validation trajectories
and the qualitative results comparing the measured data and the model’s prediction.
The trajectories vary in terms of environmental and load conditions, as well as dynamic
behavior. The first two trajectories were measured indoors with the crane in a folded
position (i.e., q3 = 4.59 rad) and with a retracted telescopic boom. This configuration is
characterized by the lowest absolute value of the potential force g(q) and, consequently,
the lowest load pressure. The first trajectory in Figure 5.12 represents a slowly-varying
movement simulating a repetitive push-pull operation, while the second trajectory in
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Trajectory q3 [rad] q4 [m] Log MAE [rad]
1 4.59 0 No 0.019
2 4.59 0 No 0.021
3 0.28 2.2 No 0.035
4 0.28 2.8 Yes 0.037

Table 5.1: Description of the validation trajectories and the prediction error of the full
model in comparison to the measurements.

Figure 5.13, with a general shape, was included to demonstrate the model’s robustness in
highly dynamic applications. The third and fourth trajectories, depicted in Figure 5.14,
Figure 5.15, were measured outdoors with an extended telescopic boom and an outer boom
angle of q3 = 0.28 rad to mimic real-world operational conditions. The third trajectory
was recorded with an empty gripper, while the fourth trajectory corresponds to the
highest load pressure scenario with a wooden log in the gripper. Due to limitations in the
measurement setup, the exact mass of the log was not directly measured. Instead, it was
approximated based on its volume and wood density.

The quantitative and qualitative analysis indicates that the model achieves high accuracy
when compared with indoor measurements. However, in outdoor experiments involving
the highest load pressure, the model’s accuracy decreases slightly. Factors contributing
to this performance drop include discrepancies between the modeled and actual friction
forces in the cylinder, inaccuracies in the crane’s kinematic and load models, unmodeled
dynamics of the hose burst valve, rough estimations of the main valve parameters, and
the assumption of constant fluid compressibility.
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Figure 5.12: Comparison of the measurements with the full model’s predictions for Tra-
jectory 1 from the validation dataset.
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Figure 5.13: Comparison of the measurements with the full model’s predictions for Tra-
jectory 2 from the validation dataset.
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Figure 5.14: Comparison of the measurements with the full model’s predictions for Tra-
jectory 3 from the validation dataset.
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Figure 5.15: Comparison of the measurements with the full model’s predictions for Tra-
jectory 4 from the validation dataset.
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Finally, the full model is compared against the reduced-order model using the same four
validation trajectories. The reduced-order model’s accuracy was evaluated by calculating
the mean absolute difference between the inner boom angle predicted by the full model
and that predicted by the reduced-order model. Table 5.2 summarizes the validation
trajectories and the achieved accuracy of the reduced-order model. The qualitative results
are shown in Figure 5.16 - Figure 5.19. As illustrated in the figures, the reduced-order
model effectively approximates the full model in both indoor and outdoor experiments.
The difference between the full model and the reduced-order model is most evident in
the scenarios during high-frequency pressure variations in the cylinder, which cause the
hydraulic accumulators to undergo pressurization and depressurization. In such cases, the
dynamics of the hydraulic accumulators become significant and can no longer be ignored,
leading to mismatch between the reduced-order and full models. However, while these
discrepancies are apparent in the hydraulic pressures, their effect on the hydraulic force
fp = paAa − pbAb and consequently on the position and velocity of the inner boom is
minimal. These findings suggest that the reduced-order model is well-suited for controller
design purposes.

Trajectory q3 [rad] q4 [m] Log MAE [rad]
1 4.59 0 No 0.009
2 4.59 0 No 0.018
3 0.28 2.2 No 0.013
4 0.28 2.8 Yes 0.025

Table 5.2: Description of the validation trajectories and the prediction error of the reduced-
order model compared to the full model.
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Figure 5.16: Comparison of the full model and the reduced-order model for Trajectory 1
from the validation dataset.
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Figure 5.17: Comparison of the full model and the reduced-order model for Trajectory 2
from the validation dataset.
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Figure 5.18: Comparison of the full model and the reduced-order model for Trajectory 3
from the validation dataset.
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Figure 5.19: Comparison of the full model and the reduced-order model for Trajectory 4
from the validation dataset.



6 Control System Design
This chapter details the design of a tracking controller for the inner boom. The primary
goal of the controller is to regulate the motion of the inner boom so that it accurately follows
a given reference trajectory q∗

2(t). The block diagram of the tracking controller is shown
in Figure 6.1. The tracking controller is a cascade controller, composed of a feedforward
controller, a feedback position controller, and a feedback force controller. The feedforward
controller calculates the desired actuator force ff

p based on the reference trajectory, its
derivatives, and the mathematical model of the crane. Due to inevitable discrepancies
between the actual behavior and the mathematical model, the feedback position controller
is used to stabilize the inner boom’s motion along the reference trajectory. The combined
output of the feedforward and feedback position controllers, f∗

p = ff
p + f c

p , serves as the
set point for the feedback force controller. The objective of the feedback force controller is
to control the hydraulic actuator force by computing the desired solenoid currents ic

+, ic−,
ensuring that fp follows f∗

p . In the following sections, each component of the tracking
controller will be derived and discussed in detail. The controller will be designed for the
reduced-order model and subsequently validated in Matlab/Simulink using the full
model of the inner boom.

Trajectory
Generator

Feedforward
Controller

Position
Controller

Force
Controller

Hydraulic
System

Rigid Body
Dynamics

q2

q∗
2

f c
p

ff
p

f∗
p ic

+, ic−
fp

q∗
2, q̇∗

2, q̈∗
2

Figure 6.1: Block diagram of the tracking controller.

6.1 Feedforward and Feedback Position Controllers
The equation of motion for the reduced-order inner boom model is expressed as

Dq̈2 + g(q2) = J(q2)fp − τ̃f (q2, q̇2). (6.1)
The feedforward actuator force for a given reference trajectory q∗

2 can be computed from
the equation of motion as

ff
p (q∗

2, q̇∗
2, q̈∗

2) = 1
J(q∗

2)

Dq̈∗

2 + g(q∗
2) + τ̃f (q∗

2, q̇∗
2)

�
. (6.2)

50
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The control law for the feedback position controller is designed by analyzing the dynamics
of the error system

xp
e =

�
q2 − q∗

2
q̇2 − q̇∗

2

�
=

�
xp

e1
xp

e2

�
(6.3a)

ẋp
e =

 xp
e2

1
D


J(q2)fp − g(q2) − τ̃f (q2, q̇2) − J(q∗

2)ff
p + g(q∗

2) + τ̃f (q∗
2, q̇∗

2)
�. (6.3b)

After substituting fp = ff
p + f c

p into (6.3b), the dynamics of the error system is given by

ẋp
e =

 xp
e2

1
D

�
J(q2)f c

p +

J(q2) − J(q∗

2)
�
ff

p + g(q∗
2) − g(q2) + τ̃f (q∗

2, q̇∗
2) − τ̃f (q2, q̇2)

�. (6.4)

Since the angle q2 and the angular velocity q̇2 are measurable variables, the nonlinear
term in the equation (6.4) can be compensated. The control law

f c
p =

1
J(q2)

�
−


J(q2) − J(q∗

2)
�
ff

p −

g(q∗

2) − g(q2)
�

−

τ̃f (q∗

2, q̇∗
2) − τ̃f (q2, q̇2)

�
+ u

�
, (6.5)

leads to the linear error system

ẋp
e = Axp

e + bu, (6.6a)

A =
�
0 1
0 0

�
, b =

 0
1
D

, (6.6b)

with the new input u. In the next step, the continuous-time linear error system is
discretized [30]:

xp
e,k+1 = Φxp

e,k + Γuk, (6.7a)

Φ = exp(ATs) =
�
1 Ts

0 1

�
, (6.7b)

Γ =
� Ts

0
exp(Aτ)dτb =


T 2

s

2D

Ts

D

, (6.7c)

where Ts denotes the sampling period. The state vector xp
e,k of the error system is

augmented with the integral component [30]

xp
eI,k+1 = xp

eI,k + Ts(q2,k − q∗
2,k) = xp

eI,k + TsγTxp
e, (6.8a)
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γ =
�
1
0

�
, (6.8b)

q2,k = q2(kTs), q∗
2,k = q∗

2(kTs), (6.8c)

leading to the augmented error system described by the following equation�
xp

e,k+1
xp

eI,k+1

�
� �� �

x̃p
e,k+1

=
�

Φ 0
TsγT 1

�
� �� �

Φ̃

�
xp

e,k

xp
eI,k

�
� �� �

x̃p
e,k

+
�
Γ
0

�
����

Γ̃

uk, (6.9a)

x̃p
e,k+1 = Φ̃x̃p

e,k + Γ̃uk. (6.9b)

The control law [30]
uk = k̃Tx̃p

e,k, (6.10)

results in the closed-loop error system

x̃p
e,k+1 = (Φ̃ + Γ̃k̃T)x̃p

e,k. (6.11)

The controllability matrix R

Φ̃, Γ̃

�
of the augmented error system (6.9), defined as

R

Φ̃, Γ̃

�
=

�
Γ̃, Φ̃Γ̃, Φ̃2Γ̃

�
, (6.12)

has full rank. Thus, Ackermann’s formula can be utilized to determine the feedback gain
vector k̃T and position the eigenvalues of the closed-loop system’s dynamics matrix at
desired locations, ensuring stable error dynamics [30]. The poles of the linear system in
(6.6a) are placed at −3. The pole placement was carefully tuned after extensive testing
on the validation dataset to achieve a balance between tracking performance, robustness,
and smoothness. By combining (6.5) and (6.10) the control law for the feedback position
controller is expressed as

f c
p,k =

1
J(q2,k)

�
J(q∗

2,k)−J(q2,k)
�
ff

p,k −g(q∗
2,k)+g(q2,k)− τ̃f (q∗

2,k, q̇∗
2,k)+ τ̃f (q2,k, q̇2,k)+uk

�
,

(6.13a)
uk = k̃Tx̃p

e,k, (6.13b)

ff
p,k = 1

J(q∗
2,k)


Dq̈∗

2,k + g(q∗
2,k) + τ̃f (q∗

2,k, q̇∗
2,k)

�
. (6.13c)

It is important to note that while the nonlinear compensation term in (6.5) is assumed
to be evaluated continuously, this is not feasible on a digital computer with a finite
sampling rate. However, for applications where a sufficiently high sampling rate can be
used, discrete-time evaluation of the control law usually leads to satisfying results [36].
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6.2 Feedback Force Controller
The control law for the feedback force controller is derived by analyzing the following
error system:

xf
e = fp − f∗

p , (6.14)
with f∗

p = ff
p + f c

p . The desired dynamics of the error system (6.14) can be expressed as

ẋf
e = ḟp − ḟ∗

p = −kpxf
e − ki

�
xf

e dt. (6.15)

Calculating the time derivative ḟ∗
p requires differentiating the measured signal, which

inherently amplifies noise and leads to poor estimation of ḟ∗
p . To address this issue, the

time derivative is approximated using the time derivative of the feedforward force
ḟ∗

p ≈ ḟf
p . (6.16)

By substituting (6.16) into (6.15), the dynamics of the error system can be written as

ẋf
e = ḟp − ḟf

p = ṗaAa − ṗbAb − ḟf
p = −kpxf

e − ki

�
xf

e dt. (6.17)

The time derivative of pa depends on the value of pa requiring consideration of three
distinct cases:

ṗa =

����������������������������

β
qa − Aawp

V0,a + Aasp
, if pa ≤ pg0,2,

κβpa(qa − Aawp)

κpa(V0,a + Aasp + Vg0,2) + (β − κpa)
ζ0,2

pa

�1/κ
, if pg0,2 < pa < pg0,1,

κβpa(qa − Aawp)

κpa(V̄0,a + Aasp) + (β − κpa)
�ζ0,1

pa

�1/κ
+

ζ0,2
pa

�1/κ
�, if pa ≥ pg0,1,

(6.18)
To avoid redundancy, the control law derivation will be demonstrated for the case pa ≤ pg0,2,
as the derivations for other cases follow an analogous procedure. By substituting (6.18)
into (6.17), the dynamics of the error system follows as

Aaβqa

V0,a + Aasp
− Abβqb

V0,b + (lp − sp)Ab
= −kpxf

e − ki

�
xf

e dt + ḟf
p +

+
βA2

awp

V0,a + Aasp
+ βA2

bwp

V0,b + (lp − sp)Ab
.

(6.19)

There are two cases to consider, based on the sign of the right-hand side of (6.19). If the
right-hand side is positive, then qa > 0, qb < 0 leading to

Aaβ

CdAsa(ss)
�

2
ρ

√
Δpc

V0,a + Aasp
− Abβ

sgn(pt − pb)CdAtb(ss)
�

2
ρ

 |pb − pt|
V0,b + (lp − sp)Ab

=

− kpxf
e − ki

�
xf

e dt + ḟf
p +

βA2
awp

V0,a + Aasp
+ βA2

bwp

V0,b + (lp − sp)Ab

(6.20)
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otherwise qa ≤ 0 and qb ≥ 0:

Aaβ

sgn(pt − ph)CdAta(ss)
�

2
ρ

 |ph − pt|
V0,a + Aasp

− Abβ

CdAsb(ss)
�

2
ρ

√
Δpc

V0,b + (lp − sp)Ab
=

− kpxf
e − ki

�
xf

e dt + ḟf
p +

βA2
awp

V0,a + Aasp
+ βA2

bwp

V0,b + (lp − sp)Ab
.

(6.21)

After substituting

Ψ+ = Aaβ

Cd

�
2
ρ

√
Δpc

V0,a + Aasp
, (6.22a)

Ω+ = −Abβ

sgn(pt − pb)Cd

�
2
ρ

 |pb − pt|
V0,b + (lp − sp)Ab

, (6.22b)

Ψ− = Aaβ

sgn(pt − ph)Cd

�
2
ρ

 |ph − pt|
V0,a + Aasp

, (6.22c)

Ω− = −Abβ

Cd

�
2
ρ

√
Δpc

V0,b + (lp − sp)Ab
, (6.22d)

Σ = −kpxf
e − ki

�
xf

e dt + ḟf
p +

βA2
awp

V0,a + Aasp
+ βA2

bwp

V0,b + (lp − sp)Ab
, (6.22e)

into (6.20) and (6.21), the equations can be expressed in a compact form which yields

Ψ+Asa(ss) + Ω+Atb(ss) = Σ, (6.23a)

Ψ−Atb(ss) + Ω−Asb(ss) = Σ. (6.23b)
The desired spool position, s∗

s, can be determined by solving (6.23) for ss. However, since
the orifice areas are highly nonlinear functions of ss and the equations cannot be solved
analytically, the desired spool position must be determined by numerically solving the
nonlinear equation at each sampling step. While this is not a significant issue when the
controller is simulated in Matlab/Simulink, it can pose challenges when implemented
on a digital computer with limited computational resources. Therefore, for controller
implementation, the nonlinear orifice areas are approximated as piecewise linear functions,
as illustrated in Figure 6.2 and Figure 6.3. By modeling the orifice areas as piecewise
linear functions, a closed-form solution for (6.23) can be obtained, allowing the desired
spool position s∗

s to be efficiently computed at each sampling step.
Given known s∗

s, the desired pilot control pressure difference is determined using the
static relationship

p∗
+ − p∗

− = ks∗
s

As
. (6.24)
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Ā
m

v
a

Linear Model
Measurements

Figure 6.2: Comparison between the linear model of the normalized orifice area Āmv
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To improve the responsiveness of the pilot valves, both pilot valves are assumed to remain
active during control. The detailed mapping of the pilot control pressure difference to the
individual pressures p+ and p− is outside the scope of this work. Instead, a simple linear
mapping is assumed. Additionally, the pilot control pressures are offset to 5 bar in the
neutral position to reduce the power consumption. The function mapping p+ − p− to the
pilot control pressures p+, p− is illustrated in Figure 6.4. The controller output (ic

+, ic−) is
calculated from the desired pilot control pressures (p∗

+, p∗−) as follows:

ic
+ = h−1(p∗

+), (6.25)

ic
− = h−1(p∗

−), (6.26)
where h−1 is the inverse of the static output nonlinearity of the identified pilot valve
model.
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Figure 6.4: The relationship between the pilot control pressure difference and the individual
pilot pressures.

6.3 Trajectory Generator
As detailed in the next section, the measured trajectories will be used as desired trajectories
to evaluate the controller’s performance. To achieve this, a trajectory generator is necessary
for filtering the measured trajectories and calculating their time derivatives. The trajectory



6 Control System Design 6.4 Controller Implementation and Validation 58

generator is implemented as a state-variable filter, described by the following equations
[29]

d
dt

xf =


0 1 0 0
0 0 1 0
0 0 0 1

−f0 −f1 −f2 −f3

xf +


0
0
0
1

u = Af xf + bf u (6.27a)

yf =


yf

ẏf

ÿf...
y f

 =


f0 0 0 0
0 f0 0 0
0 0 f0 0
0 0 0 f0

xf = Cf xf , (6.27b)

where u represents the measured unfiltered trajectory, and the coefficients f0, f1, f2, f3 are
derived from the desired poles of the state-variable filter’s transfer function. The poles
are placed at −10 to balance noise reduction and signal fidelity, resulting in a filtered
signal that closely resembles the desired trajectory. The next step involves discretizing
the continuous-time state-variable filter to handle discrete measured signals, allowing for
implementation on a digital computer with a sampling period Ts:

xf,k+1 = Φf xf,k + Γf uk, (6.28a)
yf,k = Cxf,k, (6.28b)

Φf = exp(Af Ts), Γf =
� Ts

0
exp(Af τ)dτbf , (6.28c)

6.4 Controller Implementation and Validation
The trajectory generator and the controllers are implemented in Matlab/Simulink as
Matlab Function blocks. The closed-form expressions of the control laws are derived in
Maple and exported into Matlab/Simulink as Matlab expressions using the Matlab
command. For the simulations, the discrete-time function blocks of the controllers and the
trajectory generator are updated with a sample time of Ts = 10 ms, matching the sample
time of the available electronic hardware. For the feedback force controller, the parameters
kp, ki are calculated so that the poles of the error system in (6.15) are placed at −11. This
pole placement was chosen after extensive testing to ensure robust performance across
the validation trajectories while maintaining precise tracking accuracy. The dynamics of
the system is simulated in continuous-time domain and the measurable state variables
are sampled with sampling period Ts = 10 ms aligning with the sampling time of the
installed sensor electronics. To model the real behavior of the sensors, noise is applied to
the pressure and angle signals before they are fed to the controllers. The pressure sensor
noise is modeled as a combination of white noise and quantization noise, while the angle
of the inner boom is only affected by quantization noise. White noise and quantization
noise are generated using the Band-Limited White Noise and Quantizer blocks from the
Matlab/Simulink library. The power spectral density (PSD) for the pressure noise is set
to PSDp = 3 MPa2/Hz, chosen to closely match the measurement data. The quantization
interval for the pressure noise is 0.1 bar, and for the angle noise, it is 360◦/214.
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The angle trajectories measured during the second measurement stage are used as
reference trajectories for tracking. These trajectories are fed into the trajectory generator
to produce smooth reference trajectories q∗

2(t) and their time derivatives. The controller’s
tracking performance is assessed in Matlab/Simulink by controlling the system and
comparing the actual trajectory of the inner boom with the reference trajectory. To make
the results more interpretable, the actual piston position ss is compared with the reference
piston position, defined as s∗

p = sp(q∗
2). Three metrics are employed to quantitatively

evaluate the controller’s tracking performance:

MAE = 1
n

n"
i=1

|sp(ti) − s∗
p(ti)|, (6.29a)

RMSE =

�#n
i=1(sp(ti) − s∗

p(ti))2

n
, (6.29b)

MAXE = max
1≤i≤n

|sp(ti) − s∗
p(ti)|, (6.29c)

where MAE denotes the mean absolute error, RMSE the root mean square error and
MAXE the maximum error for the reference trajectory s∗

p(t). The validation of the tracking
controller also includes a robustness test against variations in the system parameters. Four
parameters were considered: initial pressure in the hydraulic accumulators pg0,1, pg0,2,
bulk modulus of the oil β, cylinder friction force τ̃f , and load mass. These parameters
were perturbed from their nominal values to simulate possible operational conditions. The
variation in the initial accumulator pressure is attributed to changes in environmental
temperature, while the reduction in bulk modulus value reflects potential air bubble
compression and dissolution in the oil. The minimum and maximum values for each
parameter are summarized in Table 6.1, representing the expected operational range.

Parameter Minimum value Maximum value

pg0,1, pg0,2 0.76 × nominal value 1.1 × nominal value

β 0.2 × nominal value nominal value

τ̃f 0.5 × nominal value 1.5 × nominal value

Load 0 kg 2000 kg

Table 6.1: Minimum and maximum parameter values for the control system robustness
test.

It’s important to note that the maximum bulk modulus value corresponds to the nominal
value, and thus only the minimum value is used in the robustness tests. Similarly, since
the load is not considered in the controller design, a nominal load of 0 kg is assumed,
and only the maximum load value is tested. In total, five test configurations, outlined in
Table 6.2, were used for the validation, whereas configuration C0 represents the nominal
parameter case.
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Configuration β Load pg0,1, pg0,2 τ̃f

C0 Nominal Min. Nominal Nominal
C1 Min. Max. Min. Min.
C2 Min. Max. Min. Max.
C3 Min. Max. Max. Min.
C4 Min. Max. Max. Max.

Table 6.2: Test configurations for the control system robustness test.

For each test configuration, nine trajectories from the validation dataset were evaluated.
Table 6.3 presents the quantitative results of the controller’s performance, averaged across
the validation trajectories.

Configuration MAE [mm] MAXE [mm] RMSE [mm]
C0 1.3 7.9 1.9
C1 2.9 21.5 4.4
C2 3.8 32.5 6.1
C3 3.8 33 6
C4 3.7 32.4 5.8

Table 6.3: Tracking performance of the controller while the model parameters were per-
turbed from their nominal values.

For qualitative illustration, the tracking performance for a single reference trajectory
under all test configurations is presented in Figure 6.5 - Figure 6.9. The higher maximum
errors observed in configurations C1 - C4 are attributed to the gripped log, which causes
the actual trajectory to deviate from the reference trajectory, as evident in the first row
of the figures. A time frame of approximately 5 seconds is required to account for the
instantaneous load perturbation and stabilize the reference trajectory. As expected, the
controller underperforms in scenarios where the reduced-order model fails to accurately
approximate the full model. These scenarios include cases where the dynamics of the
hydraulic accumulators become significant and during fast retraction of the cylinder, where
the impact of the hose burst valve and the resulting pressure difference pa − ph becomes
pronounced. This underperformance not only reduces tracking accuracy but can also lead
to high-frequency, high-amplitude oscillations in the hydraulic force, as evidenced in the
test case with nominal parameters and no load mass (Figure 6.5). While these oscillations
have only a marginal effect on the piston position and are not harmful in a simulation
environment, this behavior must be further investigated and tested on a real crane, as it
could potentially lead to system instability. During the simulations, it was observed that
the oscillations could be significantly dampened by placing the poles of the force controller
less aggressively. However, this approach noticeably worsens overall tracking performance
across the validation trajectories. Despite these challenges, the overall quantitative and
qualitative results demonstrate the control strategy’s ability to handle variations in the



6 Control System Design 6.4 Controller Implementation and Validation 61

model parameters and external disturbances. This suggests the controller’s suitability
for deployment on a real crane, where its strong tracking performance makes it a viable
candidate for automated logging tasks.
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Figure 6.5: Tracking performance with the nominal parameters.
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Figure 6.6: Tracking performance with the parameters according to test configuration C1.
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Figure 6.7: Tracking performance with the parameters according to test configuration C2.
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Figure 6.8: Tracking performance with the parameters according to test configuration C3.
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Figure 6.9: Tracking performance with the parameters according to test configuration C4.



7 Conclusion
This thesis presented an approach for the mathematical modeling and control of the inner
boom of a forestry crane Palfinger Epsilon TZ17. Starting with the analysis of the original
hydraulic circuit, in Chapter 2, a simplified version of the hydraulic circuit is derived
where only relevant components are included. The chapter describes the setup under
study and gives a short overview of the hydraulic components of the system.

In Chapter 3 the equations of motion of the hydraulic manipulator were formulated using
the Euler-Lagrange equations. Since only the inner boom link is analyzed in this work,
the equations of motion were further simplified to single equation of motion describing the
dynamics of the inner boom link. Additionally, the mathematical models for the hydraulic
cylinder, main valve, and hydraulic accumulators were derived and presented.

Chapter 4 outlines detailed description of the measurements conducted in this work,
including their corresponding physical setups. The measurements were divided into two
stages with the aim of identifying the unknown parameters of the model and validating the
mathematical model of the system. In the first stage, the measurements were conducted
specifically for the system identification of the pilot valves. In the second stage, cylinder
chamber pressures, boom position, and velocity were measured to estimate unknown
parameters of the hydraulic system and validate the mathematical model of the entire
system.

Chapter 5 focuses on parameter estimation and system identification of the hydraulic
components. First, system identification of the pilot valves was described. The behavior
of the pilot valves was modeled using a Wiener model - a combination of a linear dynamic
system with a static output nonlinearity. Next, parameter estimation of the hose burst
valve, the main valve, and P-Spline modeling of the nonlinear orifice areas were presented.
By combining the derived and estimated mathematical models of the hydraulic components,
the full model was constructed and validated in Matlab/Simulink. Finally, the full
model was simplified to the reduced-order model for controller design.

Chapter 6 details the design of the tracking controller. The primary goal of the
controller is to regulate the motion of the inner boom so that it accurately follows a
given reference trajectory. The tracking controller is a cascaded controller, composed of
a feedforward controller, a feedback position controller, and a feedback force controller.
The controller was designed for the reduced-order model and subsequently validated in
Matlab/Simulink using the full model of the inner boom. The validation of the tracking
controller also included the robustness test against variations in system parameters. Four
parameters were considered: initial pressure in the hydraulic accumulators, bulk modulus
of the oil, cylinder friction force, and load mass. Finally, the quantitative and qualitative
results of the evaluation were presented and discussed.

Based on the validation results, it is evident that the mathematical model successfully
captures the major dynamics of the system. However, there is potential for further
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improvements by incorporating the dynamics of the hose burst valve and more accurately
estimating the main valve parameters, either by disassembling the valve or by measuring
the spool position. Additional enhancements could include a more detailed model of the
friction force in the hydraulic cylinder and accounting for non-constant fluid compressibility.

Regarding controller performance, the results demonstrate the control strategy’s ro-
bustness to variations in model parameters and external disturbances. This robustness,
combined with its strong tracking performance, suggests that the controller is well-suited
for deployment on a real crane and holds promise for automated logging tasks. The next
logical step would be to implement the controller on real hardware and test it on the
crane.

During trajectory tracking, high-frequency and high-amplitude oscillations in the hy-
draulic force were observed. One possible solution to mitigate these oscillations and
improve overall tracking performance would involve redesigning the controller for the
full model, incorporating the dynamics of the hydraulic accumulators. Another option
could be modifying the experimental setup by removing the hydraulic accumulators and
comparing the results with and without them. Finally, alternative control strategies,
such as model predictive control or first- and second-order sliding mode control, could be
explored to further enhance tracking performance.
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