
1

Interpreters vs. Compiler Performance at Run-Time

Interpreter vs. Compiler Performance at Run-Time

M. Anton Ertl
anton@mips.complang.tuwien.ac.at

TU Wien

Abstract

Both “interpreter” and “compiler” cover a wide range of implementation
techniques, and in some cases one can argue where to draw the line. Con-
sequently, both approaches also have a wide performance spread, leading
to comparable performance in some cases. The present work looks closely
at the SwiftForth JIT compiler and the Gforth interpreter. Even with dy-
namic superinstructions and IP-update optimizations, Gforth suffers from
interpretive overhead, but that is compensated by Gforth’s additional so-
phistication in caching stack items in registers, an optimization that Swift-
Forth does not employ.

1 Introduction

The following properties are desired for program-
ming language implementations:

• Execution speed

• Compilation speed

• Cheap development and maintainence (of
the programming language implementation)

• Portability/retargetability

Programming language implementation tech-
niques have been traditionally been classified
as interpreters or compilers.1 Both classes en-
compass a wide range of implementation tech-
niques.

The conventional wisdom is that compilers are
not just faster than interpreters, but that the two
classes are so far apart that the claim

1 There is also metacompilation, where an interpreter is par-
tially evaluated [9]; this approach has become practical in re-
cent years thanks to huge efforts by developers of systems like
GraalVM/Truffle [12]. However, in the present work we focus
on more traditional approaches, and leave metacompilation to
further work.

There is a bigger performance gap
between a performance oblivious inter-
preter and a high-performance inter-
preter than between a high-performance
interpreter and a JIT.

in a draft version of a paper led a reviewer to ask
for some support for this claim. In a later draft this
claim had morphed into its final version [7]:

While [interpreters] cannot compete in
execution performance with JIT compil-
ers or ahead-of-time compilers, a fast
interpreter is not that far away: e.g.,
with the IP update optimizations of the
present work, Gforth has similar perfor-
mance to the SwiftForth JIT compiler
and to gcc -O0.

which led one reviewer to speculate “It might be
that SwiftForth [...] is simply a very weak com-
piler.” and the statement “None of these can let
us conclude that, in general, interpreters are not
lagging far behind compilers.” Another reviewer
was very impressed by the results (also shown in
Section 2).

These reactions show a widespread belief that in-
terpreter performance and compiler run-time per-
formance are islands separated by a vast ocean.

7

2

Engineering INSIGHTS

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
pentomino

sha512

Speedup over Gforth with all optimizations
PFE Gforth threaded c. SwiftForth VFX Forth
gcc -O0 gcc -O1 gcc -O3

81/

41/

21/

1

2

4

8

16

Figure 1: Speedup (above the baseline) or slowdown (below the baseline) of several Forth systems and gcc over
the fastest Gforth version, on Tiger Lake (Core i5-1135G7). If a benchmark does not work on a system,
no bar is shown for the combination.

I have written the present paper to address this
belief.

First I look at some performance results (Sec-
tion 2), then take a closer look at two of the in-
volved systems (Section 3).

2 Performance

Figure 1 shows the same data as Figure 10 of our
upcoming paper [7], but uses a different baseline
system (in the speedup numbers the run time of
the baseline is divided by the run time of the sys-
tem specified for the bar): here the baseline is the
fastest Gforth version, the one that includes the
optimizations from our recent paper [7]. We con-
sider it to be a virtual-machine (VM) interpreter,
because it needs to access the representation of
the VM code at run-time in order to access imme-
diate operands and to perform control flow. How-
ever, as we will see there is a degree of machine-
code generation involved.

The systems and compilers compared with the
baseline are:

PFE is an interpreted Forth system written in C
that uses one C function per VM instruc-
tion implementation. PFE is designed to rely
on explicit register allocation (a GCC exten-
sion) for performance, but unfortunately, for
AMD64 no explicit register definitions have
been added yet. We use PFE-0.33.71.

Gforth threaded c. This is the baseline Gforth
with the option –no-dynamic, which means
that it falls back to using direct-threaded code
[1]; this option also disables stack caching.
This is similar in implementation and perfor-
mance to Gforth around the year 2000.

SwiftForth, VFX Forth Two commercial Forth
systems with JIT compilers. We measured
SwiftForth x64-Linux 4.0.0-RC87 and VFX
Forth 64 5.43.

gcc-12 Various optimization options for
GCC 12.2. Manually written C code for
four of the benchmarks is available and was
used for generating these results. For gcc
the results do not include the compile time
(unlike for the Forth systems).

Coming back to the claims that prompted this
paper, while PFE is not performance-oblivious,

8

3

Interpreters vs. Compiler Performance at Run-Time

the baseline Gforth has a higher speedup over it
for the benchmarks where PFE works than VFX
Forth (the fastest JIT compiler we measured) has
over the baseline.

VFX Forth performs extensive inlining and allo-
cates data stack items to registers within basic
blocks. This leads to a speedup over Gforth by
about a factor of 2 in most benchmarks. Idiomatic
Forth code consists of short definitions, resulting
in many calls, so inlining is particularly effective.
cd16sim contains a large number of (implicit) calls
to an empty definition, making the inlining of VFX
particularly effective here.

SwiftForth, another JIT compiler, is typically in the
same ballpark as the fastest Gforth; for bubble
and pentomino the performance is so similar that
the SwiftForth bar is barely visible. We will discuss
SwiftForth in depth in Section 3.

gcc -O0 produces performance similar to the
baseline. gcc -O1 shows a good speedup.
gcc -O3 is better on some benchmarks, but worse
on others. We have looked at the two slowdown
cases. For bubble, gcc -O3 auto-vectorizes, and
the result is that there is partial overlap between
a store and a following load, which results in the
hardware taking a slow path rather than perform-
ing one of its store-to-load forwarding optimiza-
tions. For fib, we have not found the reason for
the slowdown.

3 A tale of two Forth systems

This section provides a closer look at SwiftForth
and Gforth and the tradeoffs in their creation, and
how this affects performance.

3.1 SwiftForth

SwiftForth is a commercial Forth system from
Forth, Inc. Forth, Inc. (the first commercial Forth
vendor) developed a number of interpreters using
indirect-threaded code [2] from the 1970s until the
1990s [11]. These systems were written in Forth
with a foundation of (Forth) assembly language.

With the introduction of SwiftForth during the
1990s Forth, Inc. switched from threaded-code
interpreters to native-code compilation (aka JIT
compilation). The intention of this change was im-
proved performance, and that also shows in Swift-
Forth’s name. And it delivers: In most bench-
marks, SwiftForth is 2–4 times faster than Gforth

threaded code (which probably has performance
similar to the threaded-code polyForth II sys-
tem that preceded SwiftForth). Fortunately, while
SwiftForth’s source code is proprietary, it is de-
livered with SwiftForth, which makes it easier to
study the compilation techniques used.

The basic compiler of SwiftForth concatenates the
native code of the primitive Forth words in a defi-
nition into the native code for that definition. The
primitives are still written in assembly language,
and are probably very similar to the code for the
primitives in polyForth II, with one exception: In
polyForth II each primitive ends with a threaded-
code dispatch, while in SwiftForth it ends with a
native-code ret instruction (which is not copied in
the concatenation).

In addition, for control-flow primitives the native
code is first copied and the the target offsets are
patched into the copied code; similarly, for literal
numbers the number is patched into the copied
code for the primitive (literal). This is the fun-
damental difference to Gforth’s interpreter-based
approach, which does not patch native code, but
instead keeps the interpreted code around and
accesses it when control flow or literal values are
needed.

In addition, SwiftForth optimizes pairs of Forth
primitives to better code with optimization rules
like

OPTIMIZE DUP + SUBSTITUTE 2*

The result of the substitution can be subject to an-
other optimization rule, resulting in the optimiza-
tion of longer sequences. There are 346 opti-
mization rules used in the version of SwiftForth
we measured; in many cases this requires to also
define the substitution word and/or a word that
performs additional compile-time work when an
optimization rule triggers. These optimizations
include tail-call optimization. In the version of
SwiftForth we measured, files containing a total
of 1819 lines contain most of the optimizations.

So while SwiftForth’s compiler is not the most so-
phisticated one in existence (and simplicity is a
major goal in SwiftForth development), it is far
from being “very weak”.

Forth native-code compilers have suffered from
running into microarchitectural pitfalls due to
legacy techniques for implementing certain fea-
tures of Forth. In particular, the measured version
of SwiftForth implements Forth’s does> in a way

9

4

Engineering INSIGHTS

that puts native code close to written-to data, re-
sulting in ping-ponging between the I-cache and
the D-cache due to false sharing. It also pops the
return address of a call instead of returning to it,
resulting in branch mispredictions in subsequent
returns. These pitfalls are responsible for the low
performance of SwiftForth on at least cd16sim.

These pitfalls have been reported to Forth, Inc.,
which fixed them (for the common case) in
SwiftForth-4.0.0-RC89, but that version appeared
too late for producing new results and working
them into this paper.

This episode demonstrates that on modern CPUs
it’s not enough to reduce the number of executed
instructions, you also have to be aware of microar-
chitectural pitfalls and avoid them. The bubble re-
sult of gcc -O3 demonstrates that even a project
that puts massive manpower into optimization can
run afoul of such problems.

One cost of SwiftForth’s assembly-based ap-
proach is that each of the i386 and the x64
ports has about 7000 lines of architecture-specific
files.

3.2 Gforth

Gforth is a non-commercial free software project
and was developed mainly on Unix systems start-
ing in 1992. Among the goals of Gforth was
that it should be efficient and available on many
machines. These goals were initially achieved
by implementing Gforth mostly in Forth, with an
indirect-threaded code interpreter, i.e., along tra-
ditional Forth implementation techniques, but us-
ing GNU C instead of assembly language for writ-
ing the interpreter foundation.

Given the wide range of general-purpose com-
puter architectures of the 1990s, our portability
goals made machine-specific code without a fall-
back to machine-independent code unattractive,
so we did not switch to native-code compilers.

From 2001 to 2005 we implemented a number
of optimizations and enabling changes: switch-
ing to primitive-centric threaded code [3], static
superinstructions [8], dynamic superinstructions
and stack caching [4, 6]. This frenzy was fol-
lowed by a long period of consolidation and fo-
cussing on other topics, but eventually additional
optimizations were added: generalized constant
folding [10] and the IP-update optimizations [7].
These improvements were research-driven, i.e.,

they used Gforth as a research vehicle, but they
then became production features.

A static superinstruction combines a sequence of
primitives into a better primitive, like simple substi-
tution rules for SwiftForth’s optimizer. The version
of Gforth that we have measured uses 55 static
superinstructions; the reasons why we don’t use
more are: One of the benefits of static superin-
structions is subsumed by stack caching, so we
use static superinstructions only in cases where
we expect an additional benefit; our implementa-
tion of static superinstructions does not work as
well with stack caching as we would like; adding
more static superinstructions increases the com-
pile time of Gforth.

Dynamic superinstructions optimize a sequence
of primitives by concatenating their native code,
but without the threaded-code dispatch. The ef-
fect on straight-line code is similar to the ef-
fect of SwiftForth’s basic compiler. One differ-
ence is that immediate operands of primitives
(e.g., of literals) and the targets of control flow
are not patched into the native code, but are
still accessed through the virtual-machine instruc-
tion pointer (IP), which points to the same place
as in the original threaded code. Performing
the next primitive in sequence is achieved by
falling through to the code of the next primitive,
but all other control flow is performed through
a threaded-code dispatch. A benefit of this ap-
proach is that one can fall back to plain threaded
code for a single primitive (e.g., because it is not
relocatable) by appending the threaded-code dis-
patch code to the dynamic superinstruction pre-
ceding it.

As implemented until 2023, every primitive still up-
dated the IP. Since 2023, we have implemented
a number of IP-update optimizations, which pro-
duce big speedups (up to a factor of 3) on loop-
dominated benchmarks on modern hardware.

Forth is a stack-based language. Stack caching
represents the stack in several different ways,
each with a different number of stack items in reg-
isters. This allows to implement variants of prim-
itives that perform fewer memory accesses and
fewer stack pointer updates than the base variant
of the primitive that uses the same representation
on entry and on exit. Gforth uses up to three reg-
isters for stack items on AMD64. This optimization
has a part of the effect of VFX’s register allocation
for data-stack items in a basic block.

Generalized constant folding allows to perform op-
timizations such as turning division by a constant

10

5

Interpreters vs. Compiler Performance at Run-Time

into a multiplication by the reciprocal, but in the in-
terest of brevity I will not discuss it further here.

Performancewise, compared to SwiftForth, Gforth
suffers from having to perform control flow through
threaded-code dispatch and having to access im-
mediate operands in memory through IP, but it
benefits from stack caching which SwiftForth does
not have.

The main benefit of Gforth’s approach is portabil-
ity: E.g., Gforth ran out of the box when AMD64,
ARM A64, and RISC-V became available to us (in
2003, 2016, and 2017, respectively), and with a
little work (typically less than an hour) all perfor-
mance features could be activated. By contrast,
SwiftForth’s AMD64 port only started in 2020 and
it is still in Beta testing, and the only other port
is the IA-32 port. However, SwiftX, the cross-
compiler for embedded systems, is available for
11 cores from 8 base architectures.

Gforth’s approach comes at a cost in complex-
ity, though. A rough estimate based on the sizes
of various files is that about 5000 lines of code
are spent on static superinstructions, dynamic su-
perinstructions, stack caching, and IP-update op-
timizations. The IP-update optimizations alone
have inserted 864 lines and deleted 316 lines
[7].

One development interesting in the present con-
text is that at one point we worked on completely
eliminating the IP from Gforth [5], turning it into
what was later called a copy-and-patch compiler
[13]. However, that approach appeared to be too
brittle (no fallback option that would work under
all circumstances), so we did not turn it into a pro-
duction feature.

3.3 Example

To make things more concrete, here’s a piece
of Forth source code that demonstrates the dif-
ferences between SwiftForth’s and Gforth’s code
generation. Consider the Forth definition:

: squared dup * ;

This definition defines the word squared to per-
form the primitives dup and *; then the definition
ends (and at run-time the execution returns). The
value to be squared is passed on the data stack,
and dup pushes another copy of that value on the
data stack. * then pops these two copies, multi-
plies them, and pushes the result.

For this example neither SwiftForth nor Gforth
have static superinstructions, so we can look at
the native code for the individual primitives (or,
with stack caching, primitive variants):

Src SwiftForth Gforth
dup lea -8(%rbp),%rbp mov %r8,%r15

mov %rbx,0(%rbp)
* mov 0(%rbp),%rax imul %r15,%r8

mul %rbx
mov %rax,%rbx
lea 8(%rbp),%rbp

; ret mov (%r14),%rbx
add $8,%r14
mov (%rbx),%rax
jmp *%rax

The big picture is that stack caching leads to
much shorter code for dup and * for Gforth, but
Gforth performs more instructions for the return
from squared to its caller; i.e., we see the inter-
pretive overhead in this return.

For SwiftForth the details are: the data-stack
pointer is in %rbp, and the lea instructions update
the data-stack pointer. The top of the data stack
is in %rbx. mul multiples %rax with the argument,
and puts the result in %rax.

For Gforth, with one data stack item in a register
(representation 1), the top-of-stack is in %r8; with
two data stack items in registers (representation
2), the second item is in %r8 and the top item is in
%r15. In this example, dup starts out in represen-
tation 1, and finishes in representation 2; * starts
in representation 2 and it finihes in representation
1.

For the return, the return-stack2 pointer is in %r14,
and IP is in %rbx. So the return first loads the
IP from the return stack, updates the return-stack
pointer, and then performs a threaded-code dis-
patch.

4 Conclusion

The Gforth interpreter shows performance in the
same ballpark as the SwiftForth compiler. When
looking at the details, we see that Gforth, despite
using several optimizations that reduce the inter-
pretive overhead, still suffers from the remain-
der of this overhead; in particular, the overhead
on control flow and when dealing with immedi-
ate operands. However, apparently stack caching

2 Forth stores return addresses on a separate stack so that
they are not in the way of accessing data on the data stack.

11

6

Engineering INSIGHTS

(implemented in Gforth, but not in SwiftForth) pro-
vides enough speedup to compensate for the in-
terpretive overhead slowdown.

In addition, with either approach one should avoid
falling prey to microarchitectural pitfalls.

References

[1] James R. Bell. “Threaded Code”. In: 16.6
(1973), pp. 370–372.

[2] Robert B.K. Dewar. “Indirect Threaded
Code”. In: 18.6 (June 1975), pp. 330–331.

[3] M. Anton Ertl. “Threaded Code Varia-
tions and Optimizations (Extended Ver-
sion)”. In: Forth-Tagung 2002. Garmisch-
Partenkirchen, 2002. URL: https : / / www .
complang.tuwien.ac.at/papers/ertl02.
ps.gz.

[4] M. Anton Ertl and David Gregg. “Combining
Stack Caching with Dynamic Superinstruc-
tions”. In: Interpreters, Virtual Machines and
Emulators (IVME ’04). 2004, pp. 7–14. URL:
https://www.complang.tuwien.ac.at/
papers/ertl%26gregg04ivme.ps.gz.

[5] M. Anton Ertl and David Gregg. “Retarget-
ing JIT compilers by using C-compiler gen-
erated executable code”. In: Parallel Archi-
tecture and Compilation Techniques (PACT’
04). 2004, pp. 41–50. URL: https://www.
complang . tuwien . ac . at / papers / ertl %
26gregg04pact.ps.gz.

[6] M. Anton Ertl and David Gregg. “Stack
Caching in Forth”. In: 21st EuroForth Confer-
ence. Ed. by M. Anton Ertl. 2005, pp. 6–15.
URL: https://www.complang.tuwien.ac.
at/papers/ertl%26gregg05.ps.gz.

[7] M. Anton Ertl and Bernd Paysan. “The
Performance Effects of Virtual-Machine In-
struction Pointer Updates”. In: 38th Euro-
pean Conference on Object-Oriented Pro-
gramming (ECOOP 2024). Ed. by Jonathan
Aldrich and Guido Salvaneschi. Vol. 313.
Leibniz International Proceedings in Infor-
matics (LIPIcs). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024, 14:1–14:26.
ISBN: 978-3-95977-341-6. URL: https : / /
drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.ECOOP.2024.14.

[8] M. Anton Ertl et al. “vmgen — A Genera-
tor of Efficient Virtual Machine Interpreters”.
In: Software—Practice and Experience 32.3
(2002), pp. 265–294. URL: https : / / www .
complang.tuwien.ac.at/papers/ertl+02.
ps.gz.

[9] Octave Larose et al. “AST vs. Bytecode: In-
terpreters in the Age of Meta-Compilation”.
In: Proc. ACM Program. Lang. 7.OOPSLA2
(Oct. 2023). URL: https : // doi . org/ 10 .
1145/3622808.

[10] Bernd Paysan. “Constant Folding für Gforth”.
In: Vierte Dimension 35.2 (2019), p. 17. URL:
https:// wiki .forth- ev.de/ lib /exe/
fetch.php/vd-archiv:4d2019-02.pdf.

[11] Elizabeth D. Rather, Donald R. Colburn,
and Charles H. Moore. “The Evolution of
Forth”. In: History of Programming Lan-
guages (HOPL-II) Preprints. SIGPLAN No-
tices 28(3). 1993, pp. 177–199.

[12] Thomas Würthinger et al. “Practical partial
evaluation for high-performance dynamic lan-
guage runtimes”. In: SIGPLAN Not. 52.6
(June 2017), pp. 662–676. ISSN: 0362-1340.
URL: https://doi.org/10.1145/3140587.
3062381.

[13] Haoran Xu and Fredrik Kjolstad. “Copy-
and-Patch Compilation”. In: Proc. ACM Pro-
gram. Lang. 5.OOPSLA (Oct. 2021), 136:1–
136:30. URL: https : / / fredrikbk . com /
publications/copy-and-patch.pdf.

12

