Check for
Updates

Conceptual service architecture to synchronise research data
management services using machine-actionable data management
plans

FILIP ZOUBEK, TU Wien, Wien, Austria
TOMASZ MIKSA, TU Wien, Wien, Austria and SBA Research gGmbH, Vienna, Austria
ANDREAS RAUBER, TU Wien, Wien, Austria

Researchers of all disciplines produce, share, and reuse data as part of everyday research. Most funders require them to
manage and document their data using data management plans (DMPs). DMPs are often static documents that researchers
create by answering questions in predefined templates at the beginning of the research and, therefore, may become outdated
and obsolete as the project progresses. It is essential to keep the DMP up to date at all stages of the research lifecycle since
numerous stakeholders and various services participate in data management that depend on information from them. In this
paper, we propose a conceptual service architecture that uses machine-actionable data management plans to automate the
exchange and synchronization of information between different semi-automated research data management (RDM) services
acting on behalf of different stakeholders. To solve the stated problem, we analyze typical use cases in which the DMPs change
and formulate requirements based on which we developed the conceptual architecture. We depict the designed architecture
through a set of views, namely physical, development, logical, and process, using UML and BPMN representation that describe
the processes required to synchronize DMP information among multiple services. We instantiate it by implementing a
service that connects a data repository and a DMP tool. Thus, we evaluate to what extent the defined processes help in
keeping DMP contents up to date and which criteria must be fulfilled to keep them highly automated. The result of the paper
feeds into a larger discussion on streamlining interconnectivity and machine-actionability across planning, tracking, and
assessing research phases. It also facilitates consensus building on enhancing the Research Data Alliance’s recommendation
for machine-actionable DMPs.

CCS Concepts: « Applied computing — Enterprise data management; Business process management; « Information
systems — Digital libraries and archives; « Computer systems organization — Client-server architectures.

Additional Key Words and Phrases: Data management plan; machine-actionable data management plan; research data
management services; integration; software architecture; integration service

1 Introduction

Research data management (RDM) is the process of handling data throughout its entire life cycle, encompassing
data collection, organization, storage, preservation, and sharing [5] to ensure its FAIRness [1] and reproducibility
[26]. Many stakeholders are part of this life cycle. Mostly researchers who work with data on a daily basis,
but also data stewards, infrastructure providers, funders, publishers, ethics reviewers, legal experts, repository
operators, and university management, to name just a few. They all can use systems developed to perform specific
RDM tasks. For example, researchers and data stewards can use data management planning tools to create data
management plans (DMPs) [7]. They can also use data repositories to store data for the long term and to share it

Authors’ Contact Information: Filip Zoubek, TU Wien, Wien, Austria; e-mail: filizub@seznam.cz; Tomasz Miksa, TU Wien, Wien, Austria and
SBA Research gGmbH, Vienna, Austria; e-mail: miksa@ifs.tuwien.ac.at; Andreas Rauber, TU Wien, Wien, Austria; e-mail: rauber@ifs.tuwien.
ac.at.

This work is licensed under a Creative Commons Attribution International 4.0 License.
© 2025 Copyright held by the owner/author(s).

ACM 2158-6578/2025/1-ART

https://doi.org/10.1145/3712014

ACM Trans. Manag. Inform. Syst.

HTTPS://ORCID.ORG/0000-0003-1269-2668
HTTPS://ORCID.ORG/0000-0002-4929-7875
HTTPS://ORCID.ORG/0000-0002-9272-6225
https://orcid.org/0000-0003-1269-2668
https://orcid.org/0000-0002-4929-7875
https://orcid.org/0000-0002-9272-6225
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712014
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712014&domain=pdf&date_stamp=2025-01-11

2 « F.Zoubeket al.

with peers. Funders have systems to store information about past, ongoing, or future projects [3]. Institutions
where researchers perform their research usually use so-called current research information systems (CRIS) for
managing, planning, and monitoring research in terms of finances and human resources, or to keep track of
the scientific output, e.g. published data and publications, and to link them to specific projects and funders [6]
[29]. The OSTrails! project identified pathways on how different RDM services can interact with each other by
exchanging information [21]. The pathways are based on community consultations, among others the IDCC24
workshop [24], and present existing and expected interactions.

All these RDM services contain isolated information on a specific aspect of research data management. This
information is often duplicated between systems and can change multiple times as the research progresses, e.g.
location of data has changed, a new license was assigned, etc. To allow stakeholders to make their decisions on
always up-to-date information and to evade inconsistencies between systems storing overlapping information,
we must ensure synchronization and consistency of information across all services within the specific RDM
context.

The Research Data Alliance (RDA) produced a recommendation on machine-actionable DMPs (maDMPs) to
represent traditional DMP information using a set of properties to allow for the reuse and exchange of information
by RDM services [12]. The recommendation is implemented by most of the DMP tool providers to import or
export maDMPs [17]. It is an important and necessary feature, but it is still similar to a unidirectional data flow,
rather than a continuous information exchange among various RDM services. There is an enterprise architecture
in which maDMPs are used to connect services and thus automate RDM tasks [13]. Yet, all of these integrations
are on a service-to-service basis and require custom adaptations. We still lack a universal framework to allow for
integrating information from individual RDM services so that information included in maDMPs is frequently
updated and reused by RDM services.

In this paper, we describe the conceptual service architecture to synchronise RDM services using maDMPs.
Based on the state-of-the-art analysis and a case study, we identify typical use cases and requirements that
become a basis for the service design. Specifically, we introduce a custom profile of the RDA recommendation for
maDMPs with modified constraints to better deal with evolving identifiers for various types of entities and to
track their evolution over lifetime. We also design generic processes for accessing and modifying specific parts of
maDMPs. Following the design science methodology and based on these developments, we design and implement
an integration service. The service uses the modified version of the RDA recommendation on maDMPs and
provides a set of functionalities to allow RDM services acting on behalf of various stakeholders to use and modify
parts of maDMPs, but only those to which access was granted. The service tracks the changes made by these
services. The information stored within the maDMPs acts as the single source of truth for all other RDM services
and can be accessed using the REST API. We evaluate the degree to which the proposed service improves the
automation of the maDMP modifications using functional test cases. While the paper focuses on the design of
the integration service, its implementation in the real-world setting will require further agreements within the
community. The paper streamlines all these discussions and can be used as a framework to advance consensus
building. For this reason, it is especially relevant to all system engineers and product owners of RDM services, as
well as anyone involved in automation of RDM.

The paper is structured into eight sections. Section 2 presents related work. Section 3 describes the results of
the requirements engineering process. Section 4 discusses the custom profile for maDMPs. Section 5 describes
the proposed service architecture. Section 6 describes the implemented proof-of-concept. Section 7 deals with
the assessment of the solution using functional test cases and evaluation of the level of automation. Section 8
provides a conclusion and discusses future developments.

Thttps://ostrails.eu

ACM Trans. Manag. Inform. Syst.

https://ostrails.eu

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«
3

2 Related work

We discuss existing DMP tools, the RDA recommendation on maDMPs that is central to our discussions, and
results of other attempts to automate and interconnect RDM services.

The primary limitation of traditional data management plans (DMPs) is their static nature, which can become
burdensome for researchers [23]. The quality of these DMPs is contingent upon when they are created and
the researcher’s precision and proficiency with RDM [14]. There exist numerous resources available to assist
researchers in the creation of DMPs. DMPonline? and DMPtool® are specifically designed to aid researchers in
satisfying the requirements set forth by funding organizations [22]. Additionally, the Data Stewardship Wizard*
(DSW) can automatically generate text-based DMPs by utilizing predefined templates through a questionnaire-
based approach [19]. When considering the output generated by these applications, all three tools currently allow
for the export of DMPs into static formats like PDF, and some even support machine-readable formats such as
JSON or XML. DMP tools hold a pivotal role in the management of research data, making them a primary focus
of our integration efforts within the realm of RDM services.

The findings of a community workshop [23] propose a shift towards the adoption of maDMPs. This transition
facilitates the seamless integration of data management services and allows institutions to evaluate their current
and future resource needs. The Research Data Alliance (RDA) has issued a recommendation [16] on maDMPs,
aiming to enable the exchange and utilization of information stored in DMPs by automated systems. This
recommendation serves as an application profile that leverages established standards like DCAT and Dublin Core
while extending them with customized fields and constraints. Its primary purpose is to support the integration
and information exchange between RDM services used by various stakeholders in research. We employ this
application profile with additional custom extensions and assumptions to'synchronize information among RDM
services. Our work is also in line with the ten principles for implementing maDMPs [15], e.g. we follow the
common data model, have version control, and ensure machine-readability.

The hackathon [2], organized by the RDA, was held in 2020 and covered a variety of topics, including the
integration of machine-actionable data management plans. The work [4] focused on the endeavor to use an
application profile in JSON format to share metadata amongst popular DMP tools, notably DMPTool, DMPonline,
DSW, easyDMP?, and Haplo®. The authors of [27] attempt to import and export the maDMP from or to their
developed software named OpenDMP’. Zimmer et al. [28] present an endeavor to align the criteria of the RDA
DMP Common Standard in both directions with the DMP tool Roadmap® and the data repository Figshare®.

Argos is a DMP tool that can be customized to integrate with Zenodo and other repositories [11]. To store
data in Zenodo, obtain a DOI for a DMP, or release a new maDMP version, Argos remaps DMP info into specific
metadata and sends it to Zenodo’s API with an app token due to Zenodo’s lack of maDMP API support.

In summary, the primary research focus has been on mapping the maDMP model to existing system models,
with generally positive outcomes. Most organizations or teams can create a maDMP in one service and import it
into another, with some automating this process through API calls. This paper aims to facilitate frequent data
updates across different RDM services, ensuring that even minor changes are properly propagated across the
entire institutional ecosystem.

2https://dmponline.dcc.ac.uk/

Shttps://dmptool.org/

4https://ds-wizard.org/

Shttps://www.sigma2.no/data-planning

Ohttps://www.haplo.com/

"https://gitlab.eudat.eu/dmp/Open AIRE-EUDAT-DMP-service-pilot
8https://github.com/DMPRoadmap/roadmap

“https://figshare.com/

ACM Trans. Manag. Inform. Syst.

4 « F.Zoubek et al.

3 Requirements Engineering

This section presents the requirements engineering that we conduct based on the literature review and a case
study of the largest technical university in Austria. First, we define the actors for whom the integration service is
relevant. Second, we formulate user stories that the service should support in order to meet the stakeholders’
expectations. Third, we derive functional requirements based on the user stories. Fourth, we model these functional
requirements into specific use cases that drive the design of the service. The methodology and terminology are in
line with [10] [20].

3.1 Actors

We categorize actors into two primary groups: users and administrators. Researchers, funders, publishers, ethics
reviewers, legal experts, repository operators, infrastructure providers, research support staff, or institutional
administrators are involved in the process of DMP development [12] and should thus use the integration service
to synchronize the DMP information among the RDM services. We classified this group of stakeholders as users.
The integration service must also facilitate the management of data related to RDM services, whether they are
newly deployed, relocated, require updates, or, in some cases, are discontinued. This management responsibility
falls solely on those individuals overseeing the RDM infrastructure. Therefore, we have introduced a second actor,
referred to as administrators, encompassing only institutional administrators among the defined stakeholders.

3.2 User Stories

Based on the explored research domain and current state-of-the-art, we collect business requests that make sense
from the perspective of the defined actors from Section 3.1. We formulate them into the following list of user
stories:

US1: As a user, I want automatic synchronization of DMP information within one institutional ecosystem
between the services that I use to manage research data after every modification I make in one of them.
US2: As a user, I want to have up-to-date DMP information within one institutional ecosystem, even if it is
changed by other users in their RDM services.

US3: As a user, I want to be able to get older versions of DMP.

US4: As a user, I want to be able to find out who added, modified, or removed specific DMP information.
US5: As an administrator, I want to be able to prevent RDM services from changing information that is not
within their scope.

3.3 Functional Requirements

We derive the list of the functional requirements from the formulated user stories (Section 3.2) in the context of
the integration service and the maDMP recommendation.

Each maDMP consists of maDMP objects. Each object is a set of maDMP properties that have a common
object identifier. For example, maDMP consists of multiple Datasets. Each dataset has an identifier and properties
like title, description, etc. The identifier of the maDMP object allows us to distinguish different instances of these
objects from each other. Many objects contain identifiers that can be reused for these purposes from the definition.
For others, we were able to find a single property that would fulfill this functionality. Identifiers are not persistent,
as they can be changed during the development of the maDMP. It can be demonstrated by an example where
researchers have a dataset stored on a commercial cloud without a persistent identifier, which will be assigned at
a later stage of the research. The RDA recommendation does not specify how to deal with changes in the maDMP
object identifiers, e.g. when a dataset gets a new identifier when moved between services hosting them. The
integration service must take such changes into account.

We identify the following requirements:

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«
5

Add a new contributor

o —~ Remove the
~1l- distribution

()
Integrz_ation
service

Data Repository

New version of maDMP

Get provenance N

information

RDM Service

Fig. 1. Example of architecture using integration service to fulfill all functional requirements.

FR1: Modify maDMP properties and objects. The integration service will allow the user to modify
DMP properties and objects, and synchronize the changes with RDM services within one institutional
ecosystem using maDMPs.

FR2: Modify the maDMP object identifier. The integration service will allow the user to modify the
maDMP object identifier and synchronize the change with RDM services within one institutional ecosystem.
FR3: Remove the maDMP object. The integration service will allow the user to delete the object from
the maDMP and synchronize the change with RDM services within one institutional ecosystem.

FR4: Get the maDMP. The integration service will allow the user to obtain the current or older version of
the maDMP.

FR5: Get provenance information. The integration service will allow the user to obtain the historical
values of a specific maDMP property, including the provenance information.

FR6: Act with the help of semi-automated RDM services. The integration service will allow the user
to-act with the help of semi-automated RDM services. It means that users do not communicate directly
with the integration service but use the RDM service to act on their behalf.

FR7: Set RDM service rights. The integration service will allow the administrator to set rights to modify
maDMP properties for individual RDM services.

Figure 1 depicts an example of how the integration service deployed at a research-performing organisation
synchronises information and manages updates among RDM services. There are four RDM services used in the
example: DMP tool that adds a new contributor to the DMP, e.g. a new person responsible for implementing it; a
data repository that updates a distribution section of the DMP after deleting data, e.g. when data violates terms
and conditions of the repository; an RDM service fetching provenance information of a specific maDMP object,
e.g. to resolve any conflicts with Scientific Knowledge Graphs; CRIS that consums all the modifications, e.g. to
update researcher information profile.

ACM Trans. Manag. Inform. Syst.

6 « F.Zoubeket al.

C1: Modify maDMP

information /7T Tl <<include>> UC9: Synchronize
R changes with RDM
*, <<include>> services
<<_include$; <<extend>>
o <<ingide>> E

uc1o:
Synchronize all
maDMPs

UC2: Modify the
maDMP object
identifier

‘\B:"’ “‘. " uct: validate and
S Nt =="7\ identify maDMP

UC3: Remove the
maDMP object

<<Include>>
E S # ol Sy
i) A, <<include>>

L [N .

- tae s X
<<include>> Ao <<includesp
L 7 5 (R

UC4: Get the maDMP}=. . s
<<include>> ;"

: Identify RDM

service

<<include>>

, 5
© <<include>>
C5: Get provenance) .. -~~~

information

UC6: Set RDM

service rights

Administrator

Fig. 2. A use case diagram showing the interaction between actors and individual use cases.

3.4 Use Cases

We capture the functional requirements from Section 3.3 by modeling the use cases that determine the boundaries
of the integration service and show its individual functionality in more detail. Figure 2 depicts a use case diagram
with the two identified actors. The administrator has only one use case, and that is to set the rights of RDM services
to specific maDMP properties. On the other hand, the user interacts with five use cases, namely: modification of
maDMP properties, modification of maDMP object identifier, deletion of maDMP object, retrieval of the previous
maDMP version or the current one, and lastly retrieval of provenance information, i.e. the change history of a
specific maDMP property with the actor that made it.

In addition, we identify several use cases that are included or extend the defined use cases. UC7 validates and
identifies the maDMP, as all five use cases associated with the user work with the specific DMP in the form of
the maDMP. This allows the integration service to recognize which particular maDMP is being worked with.
UC8 identifies the RDM service, which is needed as, according to FR5 and FR6, users communicate through their
RDM services and the integration service has to trace the provenance of the DMP information.

UC1, UC2, and UC3 are use cases that modify maDMP properties. It means that once the changes are successfully
made, the other RDM services within the particular institutional ecosystem need to be informed about these
modifications. Therefore, we identified UC9, which synchronizes new changes always for the particular maDMP. It

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«
7

may happen that some RDM service cannot successfully process the new version of the maDMP or is unavailable,
or a new one is added to the ecosystem and needs to be provided with with all maDMP instances. For these cases,
we also modelled UC10, which synchronizes all registered maDMPs for the concrete RDM service.

4 Custom application profile for maDMPs

We also have to re-evaluate the application profile as a tool for transferring maDMP properties between RDM
services within an integration service, which is a prerequisite to fulfill the FR1 from Section 3.3. There is a need to
modify constraints, see Table 1, as not all RDM services can provide all mandatory properties, and the integration
service needs to be able to identify each instance of the maDMP objects. Otherwise, we are unable to fulfill FR2
and FR3.

Table 1. The proposed changes in the property cardinalities of the application profile

Object Properties Original cardinality New cardinality
DMP contact 1 0.1
dataset 1.n 0.n
title 1 0..1
language 1 0..1
ethical_issues_exist 1 0.1
dmp_id type 1 0..1
Distribution access_url 0.1 1

We call the maDMP implementing the proposed constraints the customized maDMP in our design. This
customized maDMP has only three mandatory properties within the object dmp, which is required in every
version. These are the created property, which indicates when the maDMP was created and which can be used to
identify the maDMP, the nested identifier, which can be used to identify the maDMP as well, and the modified
property, which is used for versioning.

As part of the analysis, we also identify for each maDMP object a property that can be used for its identification
within the customized maDMP; see Table 2. One could argue that the dmp, contact, host, and grant id objects
are unique: dmp and contact within the maDMP, host within the distribution, and grant id within the funding.
Your argument is sound. Only these objects do not require the identifier, and specific instances can be identified
without one; however, from the standpoint of the integration service, we attempt to establish a consistent method
for identifying the particular instance of the maDMP object that we found: the nested property that can be used
to identify each instance of the customized maDMP object.

Table 2 shows the selected identifiers for each object in the customized maDMP. Lables: dmp, cost, contributor,
contact, project, funding, dataset, distribution, license, host, security and privacy, technical resource, metadata, and
grant id encapsulate a specific set of maDMP properties. Compared to the original schema, we classified grant id,
which is part.of the funding, as the object as well. As the funding object already has its own nested identifier, we
considered it as a separate one that carries additional data.

5 Architecture

This section presents the architecture of the integration service based on the requirements from Section 3. We
describe it using the 4+1 view model, which consists of four views: logical, process, development, and physical,
complemented by scenarios [8]. We present only a small subset of considered scenarios due to length restrictions
and skip the deployment view that would be specific to a particular implementation. Full documentation can

ACM Trans. Manag. Inform. Syst.

8 « F.Zoubeket al.

Table 2. The selected identifier of each object in the customized maDMP

Object of the customized maDMP Nested identifier
DMP created, nested identifier
Project title

Funding nested identifier
Grant ID identifier
Contact nested identifier
Contributor nested identifier
Cost title

Dataset nested identifier
Distribution access_url
License license_ref

Host url

Security and Privacy title

Technical Resource name

Metadata nested identifier

be found in the Annex. For graphic design, we decided to use the Unified Modeling Language (UML) [9] with
Business Process Models and Notation (BPMN) [18].

5.1 Process View

In this section, we present one of the designed processes, namely the business process for modifying the maDMP
object identifier that is depicted in Figure 3. All others are in Appendix A. Specifically, you can find there processes
for modifying maDMP properties, modifying the object identifier, deleting the object, identifying the maDMP,
and the synchronization process of new information within the integration service.

The process (cf. Figure 3) starts when the integration service receives a message and identifies the RDM service
and the maDMP. Subsequently, it is necessary to check a series of conditions, such as whether all necessary
information was sent, whether the object has a changeable identifier, or whether the RDM service has rights to
change the specific property. If they are met, the identifier of the object is changed along with all properties that
depend on it. It then continues with changing the modified property and synchronizing new information with
other RDM services.

In the process, we mention the condition check whether the object has the changeable identifier. We designed
this step to limit the identifier change to maDMP objects where it makes sense as maDMP objects are identified by
their properties. Table 3 displays the identifiers for each object extended by a column indicating if the identifier
may change in the course of research but the meaning of the instance will remain.

In order to bring the issue closer to the reader, we give an example in the context of the license object. As
license refers to the single particular specification, changing the identifier of this object affects the meaning of
the entire instance. Switching the license reference from the MIT to the GNU GPL alters the entire meaning
of the license object. Therefore, we prevented the license object from changing its identifier, and it is better if
the user deletes the whole object and creates a new one. On the other hand, when a distribution’s identification
changes, it may be due to a change in the environment, but the distribution instance itself remains the same. This
restriction can only be taken as a recommendation.

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«
9

Is it a new
maDMP?

Identify RDM Validate and
Service identify maDMP

Forbidden
operation

Receive message

Is the modified
property correct?

%?IGCK maDMP
maodified
property

End

Bad modified
property

Does the
message contain
all required

parameters?

Check message
parameters

Synchronize
Incomplete changes with
message RDM services

Are the parameter
values valid?

8
E Invalid values
w
5 T
‘é‘ Update
=3
% % Service references
- modification
scope check F Y

Cannct change
Is the identifier the identifier
changeable?

Has the semvice
rights to update?

Update the
identifier

Insufficient rights

Is the identifier
exist?

@)
Update maDMP
modified date

Find the original
identifier

—

Cannot find the
identifier

Data storage

Fig. 3. Business process model for the use case 2.

ACM Trans. Manag. Inform. Syst.

« F.Zoubek et al.

Table 3. Recommended restrictions on changing object identifiers

Object Identifier Changeable identifier
DMP created, nested identifier v
Project title v
Funding nested identifier v
Grant id identifier Vv
Contact nested identifier v
Contributor nested identifier v
Cost title Vv
Dataset nested identifier Vv
Distribution access_url Vv
License license_ref
Host url
Security and Privacy title
Technical Resource name
Metadata nested identifier
Eg Integration service {]
¥ 4 @
S [Romservicemodute g || ROMSMIertace g - @
s 8 4
g ,} ROMSMinterface 3 8 8
E o A RDMSewiceControllerg:] 2 %]
= Y 8 o @» g
3 H s 8
= # g <
oRM %] - Property £]° face el | @] ROM Service 5 |
s - : Froe-
5] .. RDMSMinterface £
i : <<delegate>> %
sal. /L g)— MaDMPController {] E
H 4
g ; /)_ MaDMP_RESTap %
3 ! DMPModule 3 | T i
<<delegate>> .)_ —OL DMPModulinterface *—<<de\ega|e>>—)[]—€l %}
PropertyModullnterface D face RESTapi 5% =
4
s
5

SQL Database E

Fig. 4. A component diagram showing the individual components of the integration service.

5.2 Development View

The development view is depicted using the component diagram shown in Figure 4. The integration service itself
consists of six components communicating with each other using clearly defined interfaces.
The system consists of key components:

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«

11

MaDMP Access to maDmp A

/madmp Madify maDMP information [« @ g

Gl

T /madmp Get the maDMP Bl @ v

fmadmp/object/identifier Modify the maDMP object identifier Bl « @ ~

/madmp/object/remove Remove the maDMP object E«~@ v

GET /madmp/provenance Get provenance information EI L @ ~

RDM Service Access to the management of RDM services I\

[service/{id}/rights/property St RDM service rights B«<@ v

Fig. 5. Overview of methods defined for the REST API of the integration service.

RDMServiceController: This component handles requests related to the management of RDM services,
including setting rights for maDMP properties.

RDMServiceModule: Responsible for the business logic of RDM services, it identifies the RDM service,
retrieves instances, and manages their states.

MaDMPController: This component processes requests for modifying maDMPs, including actions such
as changing object identifiers, deleting objects, fetching current or previous maDMPs, and retrieving
provenance information. It also ensures the synchronization of new information within RDM services.
DMPModule: This module contains the business logic for maDMP instances. It handles maDMP validation
and identification, creates customized maDMPs with current values, and supports various maDMP use
cases.

PropertyModule: This component manages properties, which store information related to maDMPs. It is
responsible for searching valid or outdated properties and creating or updating them.

ORM (Object-Relational Mapping): This component facilitates data storage by bridging the gap between
a relational database and an object-oriented programming language.

Additionally, the system interacts with a database system for data storage through SQL queries. Communication
between RDM services and the integration service is facilitated through a REST API, see Figure 5. This API
has been designed and documented in the SwaggerHub application!’. It comprises five endpoints for handling
maDMPs and one endpoint for managing RDM services. Each endpoint is dedicated to a specific use case outlined
in Section 3.4, representing interactions by users or administrators. The API specification includes parameters and
body schema requirements for requests, along with defined responses that RDM services should appropriately
handle to ensure data synchronization in case of errors.

Ohttps://app.swaggerhub.com/apis/e11938258/InDMP/1.0.0

ACM Trans. Manag. Inform. Syst.

12 « F.Zoubeket al.

Property RDMService

+ atLocation: String + title: String
+ specializationOf: String + accessRights: String

+ value: String + endpointURL: URI

+ state: Enum

+ hasSameValue(Property): boolean

. + hasPropertyRight(Property): boolean

1 1

PropertyRight

+ specializationOf: String

wasGeneratedBy wasStartedBy wasEndedBy

Activity

+ startedAtTime: Timestamp

+ endedAtTime: Timestamp

Fig. 6. A class diagram showing the integration service from the logical view.

5.3 Logical View

From the perspective of FR4 and FR5 (Section 3.3), the integration service needs to be able to version maDMP
properties with their provenance. Additionally, from the perspective of FR1, FR2, FR3, and FR7, the integration
service has to maintain information regarding the RDM services and their modification rights. We therefore
describe a logical view using the class diagram, see Figure 6.

The class diagram is composed of 4 classes and uses vocabulary from standard The PROV Ontology!! and Data
Catalog Vocabulary'2. Classes describe data regarding maDMP modifications, data provenance, and RDM services
within the institutional ecosystem, as well as information on which maDMP properties have rights. In this way,
we meet all functional requirements, but the scheme can be arbitrarily expanded during implementation.

The Property class describes all maDMP properties and consists of atLocation, which contains the path to the
particular object of the maDMP instance, specializationOf, which contains information about the type of object
and property, and value, which stores the maDMP property value. The validity of the values is ensured by the
Activity class, which consists of two properties, specifically the timestamp when the value became valid and
the timestamp when it was changed, i.e. ceased to be valid. Because of FR4 and FR5, the values of the maDMP
properties are not deleted but become invalid.

The Activity class is linked to the RDMService class by two associations that provide tracking of changes by
RDM services. The RDMService class then describes information about RDM services themselves, including their
title, accessRights, which is also used for their identification, endpointURL, which contains information about
the remote endpoint to which new maDMPs are sent, and state, which describes the state of the RDM service
lifecycle.

This RDM service lifecycle consists of 4 states, see Figure 7. After creation, the state becomes unsynchronized. It
switches to active if all instances of the maDMP are successfully transmitted to the RDM service, as it is consistent
with the integration service. The RDM service is marked as unavailable if it is not accessible during maDMP
synchronization. It returns to the unsynchronized state and waits for full synchronization if it then becomes
available again. Moreover, it is skipped when sending a new version of the maDMP if the administrators decide
that they no longer want it to be part of their ecosystem and change it to the terminated state. This state is
necessary, since the integration service needs to keep track of the properties’ provenance and the RDM service
instances are thus unable to remove.

Uhttps://www.w3.org/TR/prov-o/
12https://www.w3.org/TR/vocab-dcat-2/

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«
13

RDM Service Lifecycle /

Creation Unsynchronized

Unavailable Available

Synchronized

e

Terminated Terminated Terminated

Fig. 7. State diagram displaying the lifecycle of RDM service instances.

The rights of RDM services to individual maDMP properties are captured in their own class PropertyRight,
which consists only of the already defined property specializationOf. Each RDM service instance contains a list of
the specializationOf values on which it has the right to modify.

5.4 Requirements for RDM services

To ensure compatibility between the RDM services and the integration service, we have proposed several
requirements and restrictions that must be implemented on their side. The requirements are not described in
detail, as each RDM service can have a different implementation, and thus the final design depends mainly on the
institutions themselves.

We have identified and modeled two business processes that need to be implemented from the perspective of
RDM services. One describes the sequence of steps that occur when a user makes changes within a particular
DMP, resulting in new information being sent to the integration service. The second describes a series of steps
that must occur when the RDM service receives the customized maDMP from the integration service. Due to
their lengths, we have included them in Appendix B.

6 Implementation

We implement the InNDMP application to instantiate the proposed architecture of the integration service. The
application uses the Java programming language using the Java Spring Boot framework!?, with the PostgreSQL
database system!* for data storage and the Keycloak application'® for identity and access management. Most
of the logic has been implemented, with the only missing functionality being the retrieval of previous maDMP
versions. The source code is open-source, licensed under MIT, and published in the data repository Zenodo'® and
on GitHub!”..We opt for the Four-Tier Architecture [25], as shown in Figure 8, and divide the logic accordingly
into four tiers. Each tier can only interact with the tier above or below it, while the RDM services (clients) interact
solely with the presentation tier.

Bhttps://spring.io/projects/spring-boot
Yhttps://www.postgresql.org/
Bhttps://www.keycloak.org/
16https://doi.org/10.5281/zenodo.7317353
Thttps://github.com/e11938258/indmp-app

ACM Trans. Manag. Inform. Syst.

14 « F.Zoubeket al.

Client
—> > > I
Presentation Tier Business Tier Data Access Tier POStgr’eSQL
€« <« < —
R — —_— — <<Data Tier>>

Fig. 8. Applied the Four-Tier Architecture on INDMP application with layer-to-layer communication.

In the InNDMP application, information is mapped between the customized maDMP, where the integration
service receives new information, and the Property class that stores it. The application profile is implemented in
the form of Java classes with all restrictions and controlled vocabularies and applies polymorphism and a certain
level of abstraction. Specifically, three abstract classes are designed, which include, among other things, the
functions that return all non-zero values of each object instance as a list of properties. To retrieve the properties
from the received maDMP, these methods are called, one to retrieve properties from the dmp object and the
second to retrieve properties from its nested objects. The second method then calls itself on all nested objects,
resulting in a single list containing all presented relevant properties. During this process, the application checks
if the RDM service has modification rights and generates its specialization and location properties. The maDMP
is then built in a similar manner. The method for building the dmp object is invoked, which retrieves data from
the data storage and invokes itself on any nested objects that exist.

To generate the mentioned specializationOf and atLocation properties, which contain information about the
type of object and property and the location within the particular maDMP instance, respectively, two patterns
are designed. The first pattern consists of two properties; the object type and the property name separated by
a colon, and is used to construct the specializationOf. On the other hand, the atLocation property is composed
of the identifiers separated by slashes from the dmp object up to the object that contains the property, as each
object has a binding to this parent, as well as the identifier. For example, if the integration service needs to store
the property of the instance of the distribution object, the atLocation property will consist of three identifiers
from the dmp, dataset, and distribution separated by slashes. The only restriction is that instances of the same
object type must have a unique identifier, including the dmp object.

7 Evaluation

We evaluate the implemented InNDMP application and the proposed architecture in terms of functional require-
ments using test cases and level of automation. We execute the application using Java 11.0.13, Keycloak 6.0.1
for authentication and authorisation, and PostgreSQL 10.19 as a database. We generate a collection of test cases
using Postman!® that you can find in the GitHub repository.

7.1 Evaluation of Functional Requirements

We design eight functional test cases, see the outline with scope in the Table 4, to simulate a typical interaction
between the DMP tool and the data repository to verify the functionality of InNDMP. The test cases are designed
to discover to what extent our solution corresponds to the defined use cases in Section 3.4 and thus the functional
requirements that they model.

The majority of the test cases, which are described in detail in the repository, focus on specific concerns;
however, there are also two cases when common behaviour is simulated. We tested erroneous requests to ensure
the overall service’s coherence as well. Test cases contain three repeating steps, namely: sending a minimum
maDMP, a long maDMP, and a maDMP with the dataset. These steps send a request with a maDMP in a body

8https://www.postman.com/

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«
15

Table 4. Summary of functional test cases with their scope depending on the use cases.

Test case Test case name Scope

FTC1 Modification of maDMP properties UC1

FTC2 Get the maDMP UC1, UC4

FTC3 Modification of the maDMP object identifier UC1, UC2, UC4
FTC4 Deletion of the maDMP object UC1, UC3, UC4
FTC5 Getting provenance information UC1, UC2, UC5
FTC6 Verifying RDM service rights UC1, UCe, UC4
FTC7 Simulation of production environment 1 UC1, UC3

FTC8 Simulation of production environment 2 UC1, UC2, UC3, UC4

Table 5. Summary of level of automation from the perspective of individual use cases.

ucC UC name Manual Semi-Automated . Fully Automated

UC1 Modify maDMP properties

uc2 Modify the maDMP object identifier
ucCs3 Remove the maDMP object

UC4 Get the maDMP

UCs Get provenance information

UcCe Set RDM service rights

ucC7 Validate and identify maDMP 1

ucCs Identify RDM service

uc9 Synchronize changes with RDM services
UC10 Synchronize all maDMPs

NN N N N NN RN

that differs in size - 104B, 1.81KB, and 8.1KB, respectively. In the minimal maDMP, only mandatory properties
are sent, while in the long maDMP, a large maDMP with many properties and nested objects is sent. The maDMP
with dataset contains the minimal maDMP properties and one very extensively described dataset.

We execute all the functional test cases three times, and at each iteration we receive the correct response code
and the corresponding body for all steps. All test cases pass and that the InNDMP application meets all the defined
use cases and hence functional requirements.

7.2 Level of Automation

To assess the level of automation we have achieved in the process of information exchange between RDM services
using maDMPs to maintain DMP data up-to-date and consistent, we evaluate the effectiveness of the individual
steps from use case scenarios. We identify the scenarios (one scenario for one use case) during the design of
the architecture. We use three categories to assess the level of automation that each step can achieve: manual,
semi-automated, and fully automated. Table 5 presents the level of automation for each use case.

The aggregation was based on the condition that if a lower level of automation existed in at least one step, we
marked the whole use case as such. The results show that all use cases have achieved full automation. Please note
that the human work is still needed in modifying maDMP properties itself and managing RDM services within

ACM Trans. Manag. Inform. Syst.

16 « F.Zoubek et al.

the integration service, as the operator must specify the scope of modifications. In our assessment, we also did
not take into account the human work associated with the maintenance of the hardware, operating system, or
third-party applications, such as database systems, etc.

8 Conclusion and Outlook

In this paper, we discuss how to employ machine-actionable data management plans within the institutional
ecosystem to automate the synchronization of data management information between research data management
services, which are used by researchers, as well as other stakeholders throughout the data lifecycle. We present a
solution through the design of a conceptual service architecture that is informed by the gathered requirements.
This architecture can also handle versioning and tracking of DMP information provenance while limiting the
modification rights of RDM services to specific maDMP properties.

As part of the work, we instantiated the integration service into the InNDMP application, serving as a proof-of-
concept. We created the series of functional test cases to replicate the typical interaction between the DMP tool
and the data repository in order to verify application functionality. We evaluated the level of automation of the
individual steps of the identified use case scenarios, and the results show that the solution is fully automated,
leaving a human to focus solely on managing RDM services within the integration service, as the operator
must specify the scope of modifications at a minimum. In order for individual organizations to benefit from the
designed service, they still need to customize each individual RDM service to be compatible.

We believe that future work in this area should further focus on decoupling maDMP storage and access
functions from individual tools that often provide the presentation layer. For example, DMP tools should help
researchers to collect relevant information by providing customized guidance and an intuitive user interface, but
they should not maintain their own maDMP store that could become a silo. Instead, DMP tools should persist
their information in a service that is shared with other RDM services. In our opinion, this is a necessary step to
increase automation and reuse of information, and this paper shows that this is possible.

We aim to use this paper’s findings to launch a new Research Data Alliance working group focused on creating
a standardized API for DMP platforms. This API will form the foundation of an interoperability framework,
enabling new use cases for information exchange in research data management, including DMP platforms,
knowledge graphs, FAIR assessment tools, and repositories.

Acknowledgments

The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.
SBA Research (SBA-K1) is a COMET Centre within the framework of COMET - Competence Centers for Excellent
Technologies Programme and funded by BMK, BMDW, and the federal state of Vienna; COMET is managed by
FFG This research is co-funded by the European Union under Horizon Europe OSTrails project 101130187.

References

[1] Serge Abiteboul and Julia Stoyanovich. 2019. Transparency, Fairness, Data Protection, Neutrality: Data Management Challenges in the
Face of New Regulation. }. Data and Information Quality 11, 3, Article 15 (jun 2019), 9 pages. https://doi.org/10.1145/3310231

[2] Jodo Cardoso, Leyla Jael Castro, and Tomasz Miksa. 2021. Interconnecting Systems Using Machine-Actionable Data Management
Plans-Hackathon Report. Data Science Journal 20, 1 (2021).

[3] Paulo A Cauchick-Miguel, Suzana R Moro, Roberto Rivera, and Marlene Amorim. 2020. Data Management Plan in Research: Character-
istics and Development. In Data and Information in Online Environments. Springer International Publishing, 3-14.

[4] Benjamin Faure, Rob Hooft, Sarah Jones, Georgios Kakaletris, Hanne Moa, Maria Praetzellis, Tom Renner, Brian Riley, Sam Rust,
Marek Suchanek, and Diamantis Tziotzios. 2020. Exchange DMPs between DMP Tools using the RDA Common Standard. Zenodo.
https://doi.org/10.5281/zenodo.3944308. https://doi.org/10.5281/zenodo.3944308

[5] Sebastian S. Feger, Pawel W. Wozniak, Lars Lischke, and Albrecht Schmidt. 2020. *Yes, I Comply!’: Motivations and Practices around
Research Data Management and Reuse across Scientific Fields. Proc. ACM Hum.-Comput. Interact. 4, CSCW2, Article 141 (oct 2020),

ACM Trans. Manag. Inform. Syst.

https://doi.org/10.1145/3310231
https://doi.org/10.5281/zenodo.3944308

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«

(18]

(19

—

[20]
[21]

[22

—

(23]
[24]

[25

=

[26]

[27]

(28]

17

26 pages. https://doi.org/10.1145/3415212

Sofia Fernandes. 2018. Looking deep at current research information systems: The Information Science perspective in Higher Education.
Qualitative & Quantitative Methods in Libraries 7, 2 (2018).

Sarah Jones, Robert Pergl, Rob Hooft, Tomasz Miksa, Robert Samors, Judit Ungvari, Rowena I. Davis, and Tina Lee. 2020. Data
Management Planning: How Requirements and Solutions are Beginning to Converge. Data Intelligence 2, 1-2 (2020), 208-219. https:
//doi.org/10.1162/dint_a_00043 arXiv:https://doi.org/10.1162/dint_a_00043

Philippe B Kruchten. 1995. The 4+ 1 view model of architecture. IEEE software 12, 6 (1995), 42-50.

Christian FJ Lange, Michel RV Chaudron, and Johan Muskens. 2006. In practice: UML software architecture and design description.
IEEE software 23, 2 (2006), 40—46.

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and Sjaak Brinkkemper. 2016. The use and effectiveness of user stories
in practice. In International working conference on requirements engineering: Foundation for software quality. Springer, 205-222.

Paolo Manghi, Alessia Bardi, Claudio Atzori, Miriam Baglioni, Natalia Manola, Jochen Schirrwagen, Pedro Principe, Michele Artini,
Amelie Becker, Michele De Bonis, et al. 2019. The OpenAIRE research graph data model. Zenodo (2019).

Tomasz Miksa, Peter Neish, Paul Walk, and Andreas Rauber. 2018. Defining requirements for machine-actionable data management
plans.. In iPRES.

Tomasz Miksa, Simon Oblasser, and Andreas Rauber. 2021. Automating Research Data Management Using Machine-Actionable Data
Management Plans. ACM Transactions on Management Information Systems (TMIS) 13, 2 (2021), 1-22.

Tomasz Miksa, Andreas Rauber, Roman Ganguly, and Paolo Budroni. 2017. Information Integration for Machine Actionable Data
Management Plans. International Journal of Digital Curation 12 (09 2017), 22. https://doi.org/10.2218/ijdc.v12i1.529

Tomasz Miksa, Stephanie Simms, Daniel Mietchen, and Sarah Jones. 2019. Ten principles for machine-actionable data management
plans. PLoS computational biology 15, 3 (03 2019), €1006750.

Tomasz Miksa, Paul Walk, and Peter Neish. 2020. RDA DMP Common Standard for Machine-actionable Data Management Plans.
https://doi.org/10.15497/rda00039

Tomasz Miksa, Paul Walk, Peter Neish, Simon Oblasser, Hollydawn Murray, Tom Renner, Marie-Christine Jacquemot-Perbal, Jodo
Cardoso, Trond Kvamme, Maria Praetzellis, Marek Suchanek, Rob Hooft, Benjamin Faure, Hanne Moa, Adil Hasan, and Sarah Jones. 2021.
Application Profile for Machine-Actionable Data Management Plans. Data Science Journal 20 (10 2021), 32. https://doi.org/10.5334/dsj-
2021-032

Chun Ouyang, Marlon Dumas, Wil M. P. Van Der Aalst, Arthur H. M. Ter Hofstede, and Jan Mendling. 2009. From Business Process
Models to Process-Oriented Software Systems. ACM Trans. Softw. Eng. Methodol. 19, 1, Article 2 (aug 2009), 37 pages. https://doi.org/10.
1145/1555392.1555395

Robert Pergl, Rob Hooft, Marek Suchanek, Vojtéch Knaisl, and Jan Slifka. 2019. “Data Stewardship Wizard”: A tool bringing together
researchers, data stewards, and data experts around data management planning. Data Science Journal 18, 1 (2019).

Gustav Pomberger, Walter R. Bischofberger, Dieter Kolb, Wolfgang Pree, and Holger Schlemm. 1991. Prototyping-Oriented Software
Development - Concepts and Tools. Structured Programming 12, 1 (1991), 43-60.

Stefan Reichmann, Miguel Rey Mazén, Ilire Hasani-Mavriqi, Laura Thaci, and David Eckhard. 2024. D1.1: Plan-Track-Assess Pathways.
https://doi.org/10.5281/zenodo.13145788

Andrew Sallans and Martin Donnelly. 2012. DMP Online and DMPTool: Different Strategies Towards a Shared Goal. International
Journal of Digital Curation 7 (12 2012), 123-129. https://doi.org/10.2218/ijdc.v7i2.235

Stephanie Simms, Sarah Jones, Daniel Mietchen, and Tomasz Miksa. 2017. Machine-actionable data management plans (maDMPs).
Research Ideas and Outcomes 3 (2017), €13086.

Diana Sisu, Tomasz Miksa, Marie-Christine Jacquemot, Elli Papadopoulou, Maria Praetzellis, and Marek Suchanek. 2024. Elevating data
management planning: Interoperability of RDM services through machine- actionability. https://doi.org/10.5281/zenodo.10794257
Ahmad Pahlavan Tafti, Faezeh Rohani, and Mohammad Amin Moghaddasifar. 2012. Towards a scalable G2G framework for customs
information system through N-Tier architecture. In 2012 International Conference on E-Learning and E-Technologies in Education (ICEEE).
IEEE, 175-179.

Ana Trisovic, Philip Durbin, Tania Schlatter, Gustavo Durand, Sonia Barbosa, Danny Brooke, and Mercé Crosas. 2020. Advancing
Computational Reproducibility in the Dataverse Data Repository Platform. In Proceedings of the 3rd International Workshop on Practical
Reproducible Evaluation of Computer Systems (Stockholm, Sweden) (P-RECS °20). Association for Computing Machinery, New York, NY,
USA, 15-20. https://doi.org/10.1145/3391800.3398173

Diamadis Tziotzios, Georgios Kakaletris, Georgios Kalabokis, and Elli Papadopoulou. 2020. Import and Export of maDMPs from
Argos/OpenDMP. Zenodo. https://doi.org/10.5281/zenodo0.3944314. https://doi.org/10.5281/zenodo.3944314

Niklas Zimmer, Norman Smith, Ya’qub Ebrahim, Peter Neish, Joakim Philipson, Brian Riley, and Lyle Winton. 2020. Integrating a
Converis CRIS/RIMS with DMPRoadmap and Export/Import maDMP from Figshare. Zenodo. https://doi.org/10.5281/zenodo.3944381.
https://doi.org/10.5281/zenodo.3944381

ACM Trans. Manag. Inform. Syst.

https://doi.org/10.1145/3415212
https://doi.org/10.1162/dint_a_00043
https://doi.org/10.1162/dint_a_00043
https://arxiv.org/abs/https://doi.org/10.1162/dint_a_00043
https://doi.org/10.2218/ijdc.v12i1.529
https://doi.org/10.15497/rda00039
https://doi.org/10.5334/dsj-2021-032
https://doi.org/10.5334/dsj-2021-032
https://doi.org/10.1145/1555392.1555395
https://doi.org/10.1145/1555392.1555395
https://doi.org/10.5281/zenodo.13145788
https://doi.org/10.2218/ijdc.v7i2.235
https://doi.org/10.5281/zenodo.10794257
https://doi.org/10.1145/3391800.3398173
https://doi.org/10.5281/zenodo.3944314
https://doi.org/10.5281/zenodo.3944381

18 « F.Zoubeket al.

[29] E Zimmerman and Keith G Jeffery. 2004. The Need for a Standardised Current Research Information System (CRIS): A Call to Arms. In
International Conference on Current Research Information Systems, Vol. 7. 153-160.

A Process view
A.1 Business process model for the use case 1

Figure 9 shows the business process model for the task of modifying maDMP properties. It starts when the
integration service receives a new version of the maDMP. After identifying the RDM service and the maDMP,
the integration service checks all properties from the incoming maDMP against the stored ones, and if they differ
and the RDM service has the necessary rights, they are subsequently modified. If the maDMP is not identified,
all maDMP properties are stored. At the end of the process, new information is synchronized with other RDM
services in the ecosystem.

A.2 Business process model for the use case 3

The business process model for the situation when the integration service receives a message about the deletion
of the maDMP object is shown in Figure 10. It starts with identifying the RDM service and the maDMP. A series
of steps is then carried out to verify whether all conditions are met. The important step is that the integration
service verifies whether the RDM service has the right to all properties of the object, as well as all nested ones.
As long as the conditions are met, all the properties of the particular object and the nested ones are deleted, the
modified property is changed, and the modifications are synchronized with other RDM services. The process also
includes a step in which it is verified whether the object is removable. We do not have any recommendations for
this step, perhaps only to prevent the deletion of the dmp object, which means that the entire instance of the
maDMP is deleted.

A.3 Business process model for the use case 7

Figure 11 shows the business process model for identifying the maDMP. After verifying whether the maDMP
contains mandatory properties, there is an important decision point whether the created and modified dates are
the same. If so, the integration service processes it as.a new maDMP instance. If not, it processes it as an already
existing one and tries to identify it using the dmp identifier and/or using the created property depending on the
configuration.

A.4 Business process model for the use case 9

Figure 12 depicts the business process model for the synchronization of new information with RDM services.
It is done with the help of the customized maDMP, which contains all currently valid property values for the
particular instance. It is sent to all RDM services, except the one that initiated the modification. As part of this
process; the integration service verifies the availability of all RDM services within the institutional ecosystem
and reacts to their unavailability or possible re-availability.

B RDM Service Requirements
B.1 Processing New Modifications

Figure 13 shows the business process model for processing new modifications in the RDM service. The process
starts with the user, who changes and saves the particular maDMP properties. Depending on the type of
modification, the RDM service first modifies the new information in its data storage and then calls one of the
three endpoints from the maDMP APL If it is not a change of the object identifier nor the deletion of the object,
the RDM service generates the customized maDMP from all its current stored values, which is then part of
the message. Each customized maDMP must contain at least the mandatory values. It means that each RDM

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«

19
Identify RDM Validate and
service identify maDMP H
Receive maDMP H
: Data storage
@?‘\eck mabMP No Yes reats all new Synchronize
modified |4 X P erties changes with
property prap RDM services
Is ita new
maDMP? 4
No
& Yes
Is there another
Read property X property?
Bad modified A
property Is the modified —_—
property correct?
v
wa—
Service Does the ROM
- modification service have the
3 scope check right to modify
H property?
: B -
c
S N No
H =X
&
2
: £ Yes
. H (—\@
fovecbere e | Find the stored
property value
Dala storage —
b 4 .@
reate a new
Dogs the propsrty
ey (X proery wina
value
Yes “—/
Dala storage
L No
Terminate the Yes b4 Are the values
———
current property different?
A

Fig. 9. Business process model for the use case 1.

service, which wants to be able to send new modifications, must have these values stored as well as implement
the customized maDMP.

B.2 Processing of Incoming MaDMPs

Figure 14 depicts the business process model for processing of incoming maDMPs in the RDM service. The
process starts by receiving the message with a new version of the customized maDMP. The RDM service then
validates and identifies the incoming maDMP. If it is a new maDMP, it saves mandatory and relevant information
from it and checks whether it possesses other information that is not in the current maDMP. If it has, it generates
the customized maDMP from all stored values and sends it back to the integration service.

ACM Trans. Manag. Inform. Syst.

20 « F.Zoubek et al.

Is itanew
maDMP?

Receive message

Integration service

Cannol find the
object

Dala storage

@

Identify RDM

Bad modified

Is the object

Validate and
identify maDMP

service

Is the modified
property correct?

proparty

Check message
parametsrs

Are the property

exist?

Find the object
properties

A 4

Forbidden
operation

ia:k maDMP

modified
property

Doss the
message conlain
allrequired

parameters?

Incomplete
message

values valid?

Invalid value

Cannol remove
Is the object thef dbtect

removable?

Has the service
rights lo remave
all properties?

Insufficient rights

properties of
nested objects

Find all Service
madification

scope check

)

Remove the

A

r—@ —
Remove
properties of
nested objecls

A

modified date

object properties| T

5| Undate maDMP)

Fig. 10. Business process model for the use case 3.

Dala storage

If the maDMP was identified, the RDM service extracts all relevant information from it and synchronizes
DMP properties with the stored ones. If it cannot identify all stored objects during synchronization, it requests
the integration service to provide provenance information about the specific type of objects, from which it can
determine whether the object was deleted or its identifier was changed. At the end, it checks whether the maDMP
contains new relevant objects to store. Each RDM service thus has to store the identifiers of all the objects from
which it draws maDMP properties. The business process model for the use case 7 defined in Appendix A is
recommended for identifying maDMPs.

Received 9 February 2024; revised 8 November 2024; accepted 1 January 2025

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«

21

Integration service

Start of maDMP
idenification

Etandgatory
maDP
properties
verification

Gontains maDMP
mandatory
properies?

Invalid parameter

Is the modified
property future?

o .

maDMP not found
by creation date

Is the property
created same as
the property
modified?

Identify maDMP
by creation date

0

k.
p—

by identifier

Data storage

maDMP not found

Identify maDMP

Is identification
anly by identifier
allowed?

Was the maDMP
ientified using
the identfier?

No X\ Yes

Was the maDMP
identified using
the property
created?

Yy

Identify maDMP
by identifier

R

Was the maDMP

.

Endof
identificaton

Data storage

eniied using </ I

the identifier?

Is identification

only by the
property creatsd
- ad " maDMP not found
es by identiier
) &

Yes Repair the

x maDMP

identifier

Mutipie creation
Was multiple
created

properties found?

Fig. 11. Business process model for the use case 7.

ACM Trans. Manag. Inform. Syst.

22 « F.Zoubek et al.

Data storage

@Bu\ld the

Start

customized
maDMP from all
active properties

¥ ing the:
new changes with
RDM services

Load the RDM
service

O

End of sync

Integration se ri.rioe

Data storage

Yes Is the RDM
service in the
\ terminated state?
Is there another
RDM service?
Yes Did the ROM
service send the

change?

Send the
customized
maDMP

%nange the

state of the Is ;Z?V R.cEM
RDM service to unavaiabe?

unavailable

Synchronize |_

Is the state of

all maDMPs I‘

o AN
R

Is the state of
the ROM service
unsynchronized?

the RDM service
unavailable?

%nange the

state of the

RDM service to
unsynchronized

Fig. 12. Business process model for the use case 9.

ACM Trans. Manag. Inform. Syst.

Conceptual service architecture to synchronise research data management services using machine-actionable data management plans -«
23

Data storage

User saved new
modifications

O

Is itanew No
manwer <X
. : H
. - i sendmessage Recelved —
v :
" Bhemove the : essage
Was the object es object with all : Remove the
— _——t -] == - =
aeleted? X dependent H = > maDMP object
properties H
No :
8 :
3 :
3 H Received
E L @ Send message message ™
& Was the abject Yes vodiyne | 8 Modify the
entiier K Oo———¥ ticentner | - -4t -=-4d%|--- -@ maDMP abject
changed?) 2 identifier
2 End
No 3 —
&
g
5
Received
® Co iy ‘
nerate a
Store new customized b A Madify maDMP
modifications maDMP from all information
stored values

J Send maDMP

N

customized
maDMP

Data storage’

Fig. 13. Business process model illustrating the behavior of the RDM service upon a new change from the user.

ACM Trans. Manag. Inform. Syst.

24 « F.Zoubek et al.

Receired
customized ful

Yes X No
Is s anew
maDMP?
@, @ ncnvonize
be manaatory meon
| prperses properties win
Prep the stored ones
Data storage
abjects win
properties
Ensorsync

Does the RDM

can be shared
with other RDM
services?

8

e

3

H Send ne
Wodity maDmMp SR B - customized
information maDup

Receised maDMP

Data storage

8
g
8 Received a
s message
H Send message X h. -
£ S anc o get denier [W contan sistores
: S |
T information sy N
_________ - Yes
]
| Wait for a
! et
| oz e
!] iyl
]

Process the
response

Was the object
idenifier
changed?

Change object
identifier

Create new
objects

Remove the
object

Dala storage

Fig. 14. Business process model illustrating the behavior of the RDM service when receiving a new maDMP.

ACM Trans. Manag. Inform. Syst.

	Abstract
	1 Introduction
	2 Related work
	3 Requirements Engineering
	3.1 Actors
	3.2 User Stories
	3.3 Functional Requirements
	3.4 Use Cases

	4 Custom application profile for maDMPs
	5 Architecture
	5.1 Process View
	5.2 Development View
	5.3 Logical View
	5.4 Requirements for RDM services

	6 Implementation
	7 Evaluation
	7.1 Evaluation of Functional Requirements
	7.2 Level of Automation

	8 Conclusion and Outlook
	Acknowledgments
	References
	A Process view
	A.1 Business process model for the use case 1
	A.2 Business process model for the use case 3
	A.3 Business process model for the use case 7
	A.4 Business process model for the use case 9

	B RDM Service Requirements
	B.1 Processing New Modifications
	B.2 Processing of Incoming MaDMPs

