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Zusammenfassung
In dieser kumulativen Dissertation untersuchen wir erzeugende Funktionen rotations-
äquivarianter Minkowski-Bewertungen auf ihre analytischen Eigenschaften und Entwick-
lung in Kugelfunktionen.

Erstens zeigen wir, dass erzeugende Funktionen, von welchen nur Integrierbarkeit bekannt
war, stetig bis auf die Pole und fast überall differenzierbar sind. Für schwach monotone
Minkowski-Bewertungen beschreiben wir das lokale Verhalten um die Pole und folgern,
dass der Raum der konvexen Körper mit C2 Stützfunktion in sich abgebildet wird. Für
den zugehörigen Faltungsoperator weiten wir bekannte Eigenwertungleichungen auf eine
größere Klasse von Minkowski-Bewertungen aus. Als Anwendung beweisen wir, dass für
Schnittmittelungsoperatoren und für gerade, monotone Minkowski-Bewertungen euklidis-
che Kugeln die einzigen Fixpunkte in einer C2 Umgebung der Einheitskugel sind.

Zweitens betrachten wir die Wirkung von Aleskers Lefschetz-Integraloperator auf der
erzeugenden Funktion. Wir zeigen, dass der Faltungskern der auftretenden Transformation
eine strikt positive und bis auf den Nordpol glatte Funktion ist. Daraus schließen wir,
dass alle bekannten Beispiele rotations-äquivarianter Minkowski-Bewertungen durch die
Lefschetzoperatoren erhalten werden.

Allgemeiner beschreiben wir die Wirkung der Lefschetz-Operatoren auf der Klain–
Schneider-Funktion skalarwertiger Bewertungen durch eine Radontransformation zwischen
Fahnenmannigfaltigkeiten, womit wir ein Resultat von Schuster und Wannerer verall-
gemeinern. Im Zuge dessen entwickeln wir eine neue Methode, das gemischte Ober-
flächenmaß eines niedrigdimensionalen Körpers durch sein Oberflächenmaß bezüglich eines
Unterraumes auszudrücken.

Drittens zeigen wir ein Analogon des Satzes von Klain–Schneider für Bewertungen, die
invariant unter Rotationen um eine fixe Achse sind, zonal genannt, und somit auch
Minkowski-Bewertungen. Daraus erhalten wir neue Beweise der Darstellungssätze für
glatte und stetige Minkowski-Bewertungen, die erheblich kürzer und zugänglicher sind.
Wir ermitteln auch eine neue Integraldarstellung für zonale Bewertungen, in der die
Rolle des Oberflächenmaßes von einem gemischten Oberflächenmaß mit einer Scheibe
übernommen wird, und präsentieren eine einfache Weise, zwischen diesen Darstellungen
zu wechseln.

Als Anwendung liefern wir einen einfacheren Beweis für die Integraldarstellung der
Schnittmittelungsoperatoren von Goodey und Weil mittels Bergs Funktionen. Für einen
ursprungssymmetrischen Körper leiten wir eine neue Darstellung durch ein gemischtes
Volumen mit einer Scheibe her. Darüber hinaus können wir diverse integralgeometrische
Formeln zurückgewinnen und verallgemeinern.
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Abstract

In this cumulative thesis, we examine the analytic properties and spherical harmonic
decomposition of generating functions of rotationally equivariant Minkowski valuations.

First, we show that generating functions, which were merely known to be integrable, are in
fact continuous up to the poles and differentiable almost everywhere. For weakly monotone
Minkowski valuations, we describe the local behavior around the poles and conclude that
the space of convex bodies with C2 support functions gets mapped into itself. Regarding
the corresponding spherical convolution transform, we extend the known spectral gap
inequalities to a larger class of Minkowski valuations. As an application, we prove that
for mean section operators and for even, monotone Minkowski valuations, Euclidean balls
are the only fixed points in some C2 neighborhood of the unit ball.

Second, we consider the action of Alesker’s Lefschetz integration operator on the generating
function. We show that the convolution kernel of the arising transform is a strictly positive
function that is smooth up to the north pole. From this, we deduce that all known examples
of rotationally equivariant Minkowski valuations are preserved by the Lefschetz operators.

More generally, we describe the action of the Lefschetz operators on the Klain–Schneider
function of scalar valued valuations by a Radon type transform between flag manifolds,
generalizing a result of Schuster and Wannerer. In the course of this, we introduce a new
way to express the mixed area measure of a lower dimensional body in terms of its surface
area measure relative to a subspace.

Third, we show an analogue of the Klain–Schneider theorem for valuations that are
invariant under rotations around a fixed axis, called zonal, and thus, also Minkowski
valuations. From this, we obtain new proofs of the representation theorems of smooth and
continuous Minkowski valuations that are considerably shorter and more accessible. We
also establish a new integral representation for zonal valuations, where the role of the area
measure is taken by the mixed area measure with a disk, and we introduce an easy way
to move between these two representations.

As applications, we give a simpler proof of the integral representation of mean section
bodies by Goodey and Weil in terms of Berg’s functions. In the case of origin symmetric
bodies, we establish a new representation in terms of a mixed volume involving disks.
Moreover, we recover and extend various integral geometric formulas.
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Introduction
A Minkowski valuation is an operator on the space of convex bodies in Euclidean space
which is finitely additive with respect to Minkowski addition. Minkowski valuations which
are continuous, homogeneous, and compatible with rigid motions occur naturally in various
geometric constructions. For example, the projection body of a convex body encodes
information of the size of its shadows cast in every possible direction. Since its introduction
by Minkowski, it has become central in convex geometry (see, e.g., [11,75,76,82,90,111]).
A more recent instance is provided by the mean section body of Goodey and Weil [45]: it
is formed as an average from sections of a convex body with all possible affine subspaces
of a given dimension.

In recent years, the pursuit of a Hadwiger type theorem for Minkowski valuations (see,
e.g., [60,98,99,102]) has resulted in a spherical convolution representation by Schuster and
Wannerer [103] and Dorrek [36]. For a homogeneous, rotationally equivariant Minkowski
valuation Φ and a convex body K, the support function of the body ΦK is given as the
spherical convolution of the area measure of K with a unique zonal function, called the
generating function of Φ. When dealing with geometric problems involving Minkowski
valuations, this representation is a very powerful tool. To illustrate this, Goodey and
Weil [47] found the generating functions of the family of mean section operators; by
computing their multipliers (the coefficients in the spherical harmonic decomposition),
they show that every full-dimensional convex body is already determined by its mean
section body.

The main objective of this cumulative thesis is to investigate the analytic properties and
spherical harmonic decomposition of generating functions of Minkowski valuations. From
our findings, we obtain new local uniqueness results on fixed points and lay the foundation
for further progress on isoperimetric type inequalities and a complete classification of
rotationally equivariant Minkowski valuations.

Article 1, which is joint work with Ortega-Moreno, is devoted to the fixed points of
Minkowski valuations – a problem that is closely connected to Petty’s conjectured inequal-
ity [90]. We show that generating functions, which were merely known to be integrable,
are in fact locally Lipschitz outside the poles; in particular, they are continuous outside
the poles and differentiable almost everywhere. If the corresponding Minkowski valuation
is weakly monotone, we provide additional information on the behavior on small polar
caps, from which we conclude that weakly monotone Minkowski valuations map the space
of convex bodies with a C2 support function into itself.

Regarding the spherical convolution transform of a generating function, we extend the
spectral gap estimates that have been established by Ortega-Moreno and Schuster [88]
to a larger class of Minkowski valuations and settle the equality cases for the second
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Introduction

eigenvalue. We apply these findings to show that for every weakly monotone and even
Minkowski valuation, there exists some C2 neighborhood of the unit ball where its only
fixed points are Euclidean balls; the same holds for the family of mean section operators.
Our approach unifies and extends previous results by Ivaki [57, 58] and Ortega-Moreno
and Schuster [88].

In Article 2, which is joint work with Hofstätter and Ortega-Moreno, we deal with the
Lefschetz operators that were introduced by Alesker [5]. Providing a way to move between
valuations of different degrees, they are a powerful tool in valuation theory that has been
applied to obtain classification results and isoperimetric type inequalities (see, e.g., [7,12,
21,69–71,89,97]). The Lefschetz integration operator acts on the generating function of a
Minkowski valuation as a convolution transform.

From its spherical harmonic decomposition, we show that the convolution kernel, which
was merely known to be a distribution, is in fact a strictly positive function that is smooth
up to the north pole. We also characterize it as the solution to some strictly elliptic
Legendre type differential equation. As a direct consequence, we obtain that the Lefschetz
integration operator maps the space of Minkowski valuations that are generated by some
body of revolution into itself. Even more, we show that the Lefschetz operators preserve
all examples of rotationally equivariant Minkowski valuations that are currently known,
hinting at what a complete classification could look like.

In the same article, we also consider the Lefschetz operators on real valued valuations.
These are determined by certain restrictions, which are encoded in the Klain–Schneider
function [61, 62, 95]. We describe the action of the Lefschetz operators on the Klain–
Schneider function by a Radon type transform between flag manifolds, generalizing a
result of Schuster and Wannerer [102] from the even case. In order to compute the
restrictions of valuations and more specifically, mixed volume functionals, we introduce
mixed spherical liftings and projections. These allow us to express mixed area measures
of lower dimensional bodies in terms of their surface area measure relative to a subspace,
extending previous results of Goodey and Weil [44] for non-mixed area measures.

We pick up on this in Article 3, which is joint work with Hofstätter and Ortega-Moreno.
There, we focus on restrictions of scalar valued valuations that are invariant under rota-
tions around a fixed axis, called zonal, and thus, also Minkowski valuations. We show an
analogue of the Klain–Schneider theorem for zonal valuations, characterizing those that
vanish on hyperplanes containing the axis of revolution. From this, we deduce that every
homogeneous, zonal valuation is determined by a restriction to one particular subspace.
Conversely, we show that every zonal valuation on this subspace, if it is in addition smooth,
extends to a zonal valuation on the ambient space.

Through Klain’s approach, we recover the Hadwiger type theorem for smooth, zonal
valuations by Schuster and Wannerer [103] as well as a recent characterization of con-
tinuous, zonal valuations by Knoerr [68]. As a consequence, the spherical convolution
representation for homogeneous Minkowski valuations can also be written as a principal
value integral. Let us note that our proof is considerably shorter and does not rely on any
deep results from representation theory.
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Introduction

We also apply Klain’s approach to establish a completely new classification of contin-
uous, zonal valuations, where the role of the area measure is taken over by the mixed
area measure with a disk that is orthogonal to the axis of revolution. Using the mixed
spherical liftings and projections, we introduce an easy way to move between the two
integral representations. The newly established integral representation involving the disk
has certain benefits: the integral is always proper, the space of integral kernels is simple,
and convergence is easy to understand. As a further consequence, zonal valuations are
determined by their values on cones, and thus, on bodies of revolution.

We apply this to obtain various integral geometric formulas, recovering a Cauchy–
Kubota type formula and extending an additive kinematic formula, both having recently
been established by Hug, Mussnig, and Ulivelli [55,56]. Moreover, we give a simpler proof
of the integral representation of mean section bodies by Goodey and Weil [47] in terms of
Berg’s functions. In the case of origin symmetric bodies, we establish a new representation
in terms of a mixed volume involving disks.

Articles included in this thesis
Article 1 Fixed points of mean section operators [27]

with Oscar Ortega-Moreno
Trans. Amer. Math. Soc. (electronically published on October 31, 2024)
arxiv.org/abs/2302.11973
doi.org/10.1090/tran/9270

Article 2 Lefschetz operators on convex valuations [25]
with Georg C. Hofstätter and Oscar Ortega-Moreno
submitted
arxiv.org/abs/2402.14731

Article 3 The Klain approach to zonal valuations [26]
with Georg C. Hofstätter and Oscar Ortega-Moreno
submitted
arxiv.org/abs/2410.18651
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1 Fixed points of mean section operators

1.1 Introduction
Sections and projections of convex bodies play an essential role in the field of geometric
tomography. By taking measurements in lower dimensions, one seeks to recover informa-
tion about the geometry of the original object. A common procedure to work with these
measurements is to assemble them into a new convex body. For instance, the projection
body of a convex body K is built from the volumes of shadows of K cast from every
possible direction. To give the exact definition, recall that a convex body K (that is, a
convex, compact subset) in Rn, where throughout n ≥ 3, can be defined by its support
function h(K, u) = max{⟨x, u⟩ : x ∈ K}, u ∈ Sn−1. The projection body ΠK of a convex
body K is defined by

h(ΠK, u) = Vn−1(K|u⊥), u ∈ Sn−1,

where K|u⊥ denotes the orthogonal projection of K onto the hyperplane u⊥ and Vn−1
denotes the (n−1)-dimensional volume. The geometric operator Π was already introduced
by Minkowski and has since become central to convex geometry (see, e.g., [11,72,75,80–83,
90,111,112]).

A more recent instance of the procedure described above is the family of mean section
operators introduced by Goodey and Weil [45, 46]. For 0 ≤ j ≤ n, the j-th mean section
body MjK of a convex body K is essentially the average of all j-dimensional sections of
K with respect to Minkowski addition. More precisely,

h(MjK, u) =
�

AG(n,j)
h(K ∩ E, u)dE, u ∈ Sn−1,

where AG(n, j) denotes the affine Grassmannian (that is, the space of j-dimensional affine
subspaces of Rn) and integration is with respect to a suitably normalized, positive, rigid
motion invariant measure.

The projection body and mean section operators belong to a rich class of geometric
operators acting on the space Kn of convex bodies in Rn. A Minkowski valuation is a map
Φ : Kn → Kn satisfying

ΦK + ΦL = Φ(K ∪ L) + Φ(K ∩ L)

with respect to Minkowski addition whenever K ∪ L ∈ Kn. Scalar valued valuations have
a long history in convex geometry (see, e.g., [3, 4, 6, 18, 23, 51, 63, 79]). Their systematic
study goes back to Hadwiger’s [52] famous characterization of the intrinsic volumes Vi,
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1 Fixed points of mean section operators

0 ≤ i ≤ n, (see Section 1.2) as a basis for the space of continuous, rigid motion invariant
scalar valuations.

The investigation of Minkowski valuations has originated from Schneider’s [92] research
on Minkowski endomorphisms. However, it was the seminal work by Ludwig [75, 76]
which prompted further development. In [75], Ludwig identifies Minkowski’s projection
body map as the unique (up to a positive constant) continuous, translation invariant,
affine contravariant Minkowski valuation, solving a problem posed by Lutwak. Following
Ludwig’s steps, contributions of several authors (e.g., [1,24,30,50,78,101,109]) show that
the convex cone of Minkowski valuations compatible with affine transformations is in
many instances finitely generated. In contrast, a less restrictive condition such as rotation
equivariance produces a significantly larger class of valuations, making their classification
challenging.

Denote by MVal the space of all continuous, translation invariant Minkowski valuations
intertwining rotations and by MVali the subspace of Minkowksi valuations homogeneous
of degree i. A map Φ : Kn → Kn is said to have degree i if Φ(λK) = λiΦK for every
K ∈ Kn and λ ≥ 0. By a classical result of McMullen [85], continuous, translation
invariant, homogeneous valuations can only have integer degree i ∈ {0, . . . , n}. In recent
years, substantial progress (e.g., [60, 98, 99, 102, 103]) to obtain a Hadwiger-type theorem
for the space MVal has led to the following representation by Dorrek [36] involving the
spherical convolution of an integrable function and the area measures Si(K, ·) of a convex
body K (see Section 1.2): for every Φi ∈ MVali of degree 1 ≤ i ≤ n − 1, there exists a
unique centered, SO(n − 1) invariant function f ∈ L1(Sn−1) such that for every K ∈ Kn,

h(ΦiK, ·) = Si(K, ·) ∗ f. (1.1.1)

A function on Sn−1 is said to be centered if it is orthogonal to all linear functions. We call
the function f in (1.1.1) the generating function of Φi. If ΦiK = {o} for all K ∈ Kn, we
call Φi trivial.

For 1 ≤ i ≤ n−1, the i-th projection body map Πi is defined by h(ΠiK, u) = Vi(K|u⊥),
u ∈ Sn−1. Note that Πn−1 = Π is Minkowski’s projection body map. Each operator
Πi belongs to MVali and is generated by the support function of a line segment, as can
be easily deduced from Cauchy’s projection formulas (see, e.g., [43, p. 408]). The j-th
mean section operator Mj , up to a suitable translation, also belongs to MVali, where
i = n − j + 1. However, unlike for the projection body map, the determination of their
generating functions is non-trivial and involves the functions employed by Berg in his
solution of the Christoffel problem [29]. For each dimension n ≥ 2, Berg [13] constructed
a function gn ∈ C∞(−1, 1) with the property that h(K, ·) = S1(K, ·) ∗ ğn + ⟨s(K), ·⟩ for
every convex body K ∈ Kn, where ğn is the SO(n−1) invariant function on Sn−1 associated
to gn and s(K) denotes the Steiner point of K (see Section 1.2). Goodey and Weil [45,47]
showed that for 2 ≤ j ≤ n and every K ∈ Kn,

h(MjK, ·) = Sn−j+1(K, ·) ∗ ğj + cn,jVn−j(K)⟨s(K), ·⟩, (1.1.2)

where cn,j > 0 is some constant.
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1 Fixed points of mean section operators

Fixed points of geometric operators are closely related to a range of open problems
in convex geometry (see, e.g., [28, 43, 90]). For instance, Petty’s conjecture [90] can be
expressed in terms of fixed points of Π2 up to affine transformations. This was first
observed by Schneider [94] and later extended by Lutwak [81] to projection body maps
of all degrees. The global classification of fixed points of Π2

i has only been settled in
the polytopal case by Weil [111] and in the 1-homogeneous case by Schneider [93]. It is
conjectured that the only smooth fixed points of Π2 are ellipsoids. Locally around the
unit ball, this was recently confirmed independently by Saroglou and Zvavitch [91] and
Ivaki [58], motivated by the work of Fish, Nazarov, Ryabogin, and Zvavitch [41].

For degree 1 < i < n − 1, Ivaki [57] showed that in some C2 neighborhood of the unit
ball, the only fixed points of Π2

i are Euclidean balls. The second author and Schuster
[87, 88] have shown that this phenomenon also holds for the class of even C2

+ regular
Minkowski valuations, that is, Minkowski valuations generated by the support function
of an origin-symmetric convex body of revolution that has a C2 boundary with positive
Gauss curvature. A line segment is clearly not of this kind, so the results by Ivaki and by
the second author and Schuster appear to be disconnected. In this paper, we bridge this
gap with our first main result.

Theorem 1.A. Let 1 < i ≤ n − 1 and Φi ∈ MVali be generated by an origin-symmetric
convex body of revolution. Then there exists a C2 neighborhood of the unit ball where the
only fixed points of Φ2

i are Euclidean balls, unless Φi is a multiple of the projection body
map, in which case ellipsoids are also fixed points.

The case when i = 1 (that is, Φ1 ∈ MVal1 is a Minkowski endomorphism) has been
settled globally by Kiderlen [60]. With Theorem 1.A, we unify the previous results on
C2

+ regular Minkowski valuations and projection body maps obtained in [88] and [57,58],
respectively. However, none of them (including Theorem 1.A) cover any local uniqueness
of fixed points of mean section operators. This is because Berg’s functions are neither
even nor support functions. By further extending the techniques employed in the proof of
Theorem 1.A, we obtain the following.

Theorem 1.B. For 2 ≤ j < n, there exists a C2 neighborhood of the unit ball where the
only fixed points of M2

j are Euclidean balls.

Throughout, this is to be understood as follows: there exists some ε > 0 such that if
K ∈ Kn has a C2 support function satisfying ∥h(αK +x, ·)−1∥C2(Sn−1) < ε for some α > 0
and x ∈ Rn, and if M2

jK is a dilated and translated copy of K, then K is a Euclidean
ball. We want to emphasize that we will obtain both Theorem 1.A and 1.B from a
more general result (Theorem 1.5.2) that applies to all weakly monotone, homogeneous
Minkowski valuations in the space MVal. A Minkowski valuation Φ : Kn → Kn is called
weakly monotone if ΦK ⊆ ΦL whenever K ⊆ L and the Steiner points of K and L are at
the origin. The proof of Theorem 1.5.2 requires the convolution transform defined by its
generating function to be a bounded operator from C(Sn−1) to C2(Sn−1). The following
theorem provides necessary and sufficient conditions for the boundedness of convolution
transforms.
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1 Fixed points of mean section operators

Theorem 1.C. Let f ∈ L1(Sn−1) be SO(n−1) invariant. Then the convolution transform
φ �→ φ ∗ f is a bounded linear operator from C(Sn−1) to C2(Sn−1) if and only if □nf is a
signed measure and�

(0, π
2 )

1
r

|(□nf)({u ∈ Sn−1 : ⟨±ē, u⟩ > cos r})| dr < ∞. (1.1.3)

Here, ē ∈ Sn−1 denotes the north pole of the unit sphere fixing the axis of revolution of
f and □nf = 1

n−1ΔSf + f , where ΔS is the spherical Laplacian on Sn−1. Theorem 1.C
tells us that the regularity of the convolution transform defined by f is determined by the
mass distribution of □nf on small polar caps. It turns out that generating functions of
weakly monotone Minkowski valuations exhibit precisely this behavior.

Theorem 1.D. Let 1 ≤ i ≤ n − 1 and Φi ∈ MVali with generating function f . Then f
is locally Lipschitz outside the poles and □nf is a signed measure on Sn−1. Moreover, if
Φi is in addition weakly monotone, then there exists C > 0 such that for all r ≥ 0,

|□nf |�{u ∈ Sn−1 : |⟨ē, u⟩| > cos r}� ≤ Cri−1. (1.1.4)

As an immediate consequence of Theorems 1.C and 1.D, we obtain the following.

Corollary. Let 1 < i ≤ n − 1 and Φi ∈ MVali be weakly monotone with generating
function f . Then the convolution transform φ �→ φ ∗ f is a bounded linear operator from
C(Sn−1) to C2(Sn−1). In particular, Φi maps the space of convex bodies with a C2 support
function into itself.

To the best of our knowledge, apart from smooth Minkowski valuations, this was
previously only known for the projection body operators: it was shown by Martinez-Maure
[84] that the cosine transform is a bounded linear operator from C(Sn−1) to C2(Sn−1),
which is an essential tool in the proof of Ivaki’s [57, 58] fixed point results.

We want to remark that the continuity of f proven in Theorem 1.D confirms a conjecture
by Dorrek. Moreover, note that (1.1.4) relates the regularity of f to the degree of
homogeneity. It has been shown by Parapatits and Schuster [89] that if a function generates
a Minkowski valuation of a certain degree, then it also generates Minkowski valuations of
all lower degrees. Using (1.1.4), it can be shown that for each 1 ≤ i ≤ n − 1, the Berg
function gn−i+1 generates a weakly monotone Minkowski valuation of degree i but not
higher.

Organization of the article. In Section 1.2, we collect the required background on
convex geometry and analysis on the unit sphere. In Section 1.3, we investigate regularity
of zonal measures and convolution transforms, proving Theorem 1.C. In Section 1.4, we
show that weak monotonicity of Minkowski valuations implies additional regularity of the
generating function, proving Theorem 1.D. Finally, in Section 1.5 we apply our results
from the previous sections to the study of fixed points. There we prove Theorems 1.A and
1.B as well as a general result on even Minkowski valuations.
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1 Fixed points of mean section operators

1.2 Background material
In the following, we collect basic facts about convex bodies, mixed volumes and area
measures. We also discuss differential geometry and the theory of distributions on the
unit sphere. In the final part of this section, we gather the required material from
harmonic analysis, including spherical harmonics and the convolution of measures. As
general references for this section, we cite the monographs by Gardner [43], Schneider
[96], Hörmander [54], Lee [73, 74], and Groemer [49].

Convex geometry. The space Kn of convex bodies naturally carries an algebraic and
topological structure. The so-called Minkowski operations, dilation and the Minkowski
addition, are given by λK = {λx : x ∈ K}, λ ≥ 0, and K + L = {x + y : x ∈ K, y ∈ L}.
The Hausdorff metric can be defined as

d(K, L) = max{t ≥ 0 : K ⊆ L + tBn and L ⊆ K + tBn},

where Bn denotes the unit ball of Rn.
As was pointed out before, every convex body K ∈ Kn is uniquely determined by its

support function hK(x) = h(K, x) = max{⟨x, y⟩ : y ∈ K}, x ∈ Rn, which is homogeneous
of degree one and subadditive. Conversely, every function with these two properties is
the support function of a unique body K ∈ Kn. Associating a convex body with its
support function is compatible with the structure of Kn, that is, hλK+L = λhK + hL

and d(K, L) = ∥hK − hL∥∞, where ∥·∥∞ denotes the maximum norm on the unit sphere.
Moreover, K ⊆ L if and only if hK ≤ hL. In addition, hϑK+x(u) = hK(ϑ−1u) + ⟨x, u⟩ for
every ϑ ∈ SO(n) and x ∈ Rn.

The Steiner formula expresses the volume of the parallel set of a convex body K at
distance t ≥ 0 as a polynomial in t. To be precise,

Vn(K + tBn) =
n!

i=0
tn−iκn−iVi(K), (1.2.1)

where κi denotes the i-dimensional volume of Bi and the coefficient Vi(K) is called the
i-th intrinsic volume of K for 0 ≤ i ≤ n. The intrinsic volumes are important quantities
carrying geometric information on convex bodies. For instance, Vn is the volume, Vn−1
the surface area, and V1 the mean width.

The surface area measure Sn−1(K, ·) of a convex body is the positive measure on Sn−1

defined as follows: the measure Sn−1(K, A) of a measurable subset A ⊆ Sn−1 is the (n−1)-
dimensional Hausdorff measure of all boundary points of K with outer unit normal in A.
Analogously to (1.2.1), there is a Steiner-type formula for surface area measures:

Sn−1(K + tBn, ·) =
n−1!
i=0

tn−1−i�n−1
i

�
Si(K, ·),

where the measure Si(K, ·) is called the i-th area measure of K for 0 ≤ i ≤ n − 1. Each of
the area measures is centered, meaning that they integrate all linear functions to zero. By
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1 Fixed points of mean section operators

a theorem of Alexandrov-Fenchel-Jessen (see, e.g., [96, Section 8.1]), if K has non-empty
interior, then each area measure Si(K, ·) determines K up to translations.

The Steiner point of a convex body K is defined as s(K) =
�
Sn−1 h(K, u)udu. The

Steiner point map s : Kn → Rn is the unique continuous, vector valued valuation inter-
twining rigid motions (see, e.g., [96, p. 181]).

Differential geometry. As an embedded submanifold of Rn, the unit sphere Sn−1

naturally inherits the structure of an (n − 1)-dimensional Riemannian manifold. We
identify the tangent space at each point u ∈ Sn−1 with u⊥ ⊆ Rn, which allows us to
interpret tensor fields as maps from Sn−1 into some Euclidean space.

Throughout, we will only work with tensor fields up to order two. That is, we define a
vector field on Sn−1 as a map X : Sn−1 → Rn such that X(u) ∈ u⊥ for every u ∈ Sn−1,
and a 2-tensor field on Sn−1 as a map Y : Sn−1 → Rn×n such that Y (u)(u⊥) ⊆ u⊥ and
Y (u)u = 0 for every u ∈ Sn−1. For instance, let Y (u) = Pu⊥ be the orthogonal projection
onto u⊥ for each u ∈ Sn−1. Then the 2-tensor field Y acts as the identity on each tangent
space. The inner product of two 2-tensors Y1 and Y2 on u⊥ is given by ⟨Y1, Y2⟩ = tr(Y1Y2).

We denote by ∇S the standard covariant derivative and by divS the divergence operator
on Sn−1. The operators ∇S and divS are related via the spherical divergence theorem,
which states that �

Sn−1
⟨X(u), ∇Sφ(u)⟩du = −

�
Sn−1

divS X(u)φ(u)du

and �
Sn−1

⟨Y (u), ∇SX(u)⟩du = −
�
Sn−1

⟨divS Y (u), X(u)⟩du

for every smooth function φ, smooth vector field X, and smooth 2-tensor field Y on Sn−1.
The spherical gradient ∇Sφ and spherical Hessian ∇2

Sφ of a smooth function φ can be
expressed in terms of derivatives along smooth curves. If γ : I → Sn−1 is a geodesic in
Sn−1, then

d

ds

####
0
φ(γ(s)) = ⟨∇Sφ(γ(0)), γ′(0)⟩ and d2

ds2

####
0
φ(γ(s)) = ⟨∇2

Sφ(γ(0)), γ′(0) ⊗ γ′(0)⟩.

For the first identity, γ does not actually need to be a geodesic; for the second identity, the
fact that γ is a geodesic eliminates an additional first order term compared to a general
smooth curve. All geodesics γ in the unit sphere are of the form

γ(s) = cos(cs)u + sin(cs)v (1.2.2)

for some orthogonal vectors u, v ∈ Sn−1, where c ≥ 0 is the constant speed of γ.

Distributions. For an open interval (a, b) ⊆ R, we denote by D(a, b) the space of test
functions (that is, compactly supported smooth functions) on (a, b), endowed with the
standard Fréchet topology. The elements of the continuous dual space D′(a, b) are called

9



1 Fixed points of mean section operators

distributions on (a, b). Moreover, we denote the pairing of a test function ψ ∈ D(a, b) and
a distribution g ∈ D′(a, b) by ⟨ψ, g⟩D′ . The derivative of g and the product of a smooth
function η ∈ C∞(a, b) with g are defined by�

ψ, g′�
D′ = − �

ψ′, g
�

D′ and ⟨ψ, η · g⟩D′ = ⟨η · ψ, g⟩D′ ,

The space C−∞(Sn−1) of distributions on the unit sphere is defined as the continuous
dual space of the space C∞(Sn−1) of smooth functions, endowed with the standard Fréchet
topology. We denote the pairing of a test function φ ∈ C∞(Sn−1) and a distribution
µ ∈ C−∞(Sn−1) by ⟨φ, µ⟩C−∞ . By virtue of the spherical divergence theorem, we define
the spherical gradient and spherical Hessian of a distribution µ ∈ C−∞(Sn−1) by

⟨X, ∇Sµ⟩C−∞ = −⟨divS X, µ⟩C−∞ and ⟨Y, ∇2
Sµ⟩C−∞ = ⟨div2

S Y, µ⟩C−∞ ,

respectively, where X is an arbitrary smooth vector field and Y is an arbitrary smooth
2-tensor field on Sn−1.

The group SO(n) acts on the space C∞(Sn−1) in a natural way: for ϑ∈ SO(n) and φ∈
C∞(Sn−1), we define ϑφ by (ϑφ)(u) = φ(ϑ−1u). By duality, the action of SO(n) extends
to distributions: for µ ∈ C−∞(Sn−1), we define ϑµ by ⟨φ, ϑµ⟩C−∞ =

�
ϑ−1φ, µ

�
C−∞ . A

map T is said to be SO(n) equivariant if it intertwines rotations, that is, T(ϑµ) = ϑTµ
for every µ in the domain of T.

We may identify the space M(a, b) of finite signed measures on (a, b) with a subspace of
D′(a, b). By virtue of to the Riesz-Markov-Kakutani representation theorem, a distribution
is defined by a finite signed measure on (a, b) if and only if it is continuous on D(a, b) with
respect to uniform convergence. Similarly, the space M(Sn−1) of signed measures on Sn−1

corresponds to the subspace of distributions which are continuous on C∞(Sn−1) with
respect to uniform convergence.

Harmonic analysis. Denote by Hn
k the space of spherical harmonics of dimension n

and degree k ≥ 0, that is, the space of harmonic, k-homogeneous polynomials on Rn,
restricted to the unit sphere Sn−1. The spherical Laplacian ΔS = tr ∇2

S = divS ∇S is a
second-order uniformly elliptic self-adjoint operator on Sn−1 that intertwines rotations. It
turns out that the spaces Hn

k are precisely the eigenspaces of ΔS. Consequently, L2(Sn−1)
decomposes into a direct orthogonal sum of them. Each space Hn

k is a finite dimensional
and irreducible SO(n) invariant subspace of L2(Sn−1) and for every Yk ∈ Hn

k , we have that
ΔSYk = −k(k + n − 2)Yk. For the box operator □n = 1

n−1ΔS + Id, this implies

□nYk = −(k − 1)(k + n − 1)
n − 1 Yk, Yk ∈ Hn

k . (1.2.3)

Throughout, we use ē to denote a fixed but arbitrarily chosen pole of Sn−1 and write
SO(n − 1) for the subgroup of rotations in SO(n) fixing ē. Functions, measures, and
distributions on Sn−1 that are invariant under the action of SO(n − 1) are called zonal.
Clearly the value of a zonal function at u ∈ Sn−1 depends only on the value of ⟨ē, u⟩,
so there is a natural correspondence between zonal functions on Sn−1 and functions on
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1 Fixed points of mean section operators

[−1, 1]. For a zonal function f ∈ C(Sn−1), we define f̄ ∈ C[−1, 1] by f(u) = f̄(⟨ē, u⟩) and
for g ∈ C[−1, 1], we define ğ ∈ C(Sn−1) by ğ(u) = g(⟨ē, u⟩).

By identifying the unit sphere Sn−1 with the homogeneous space SO(n)/SO(n − 1), the
natural convolution structure on C∞(SO(n)) can be used to define a convolution structure
on C∞(Sn−1). For an extensive exposition of this construction, we refer the reader to the
excellent article by Grinberg and Zhang [48]. The spherical convolution φ ∗ ν of a smooth
function φ ∈ C∞(Sn−1) and a zonal distribution ν ∈ C−∞(Sn−1) is defined by

(φ ∗ ν)(ϑē) = ⟨φ, ϑν⟩C−∞ = ⟨ϑ−1φ, ν⟩C−∞ , ϑ ∈ SO(n).

Note that this definition does not depend on the special choice of ϑ and that φ ∗ ν ∈
C∞(Sn−1).

The convolution transform Tν : f �→ f ∗ ν is a self-adjoint endomorphism of C∞(Sn−1)
intertwining rotations and thus extends by duality to an endomorphism of C−∞(Sn−1)
which also intertwines rotations. That is, for a distribution µ ∈ C−∞(Sn−1),

⟨φ, µ ∗ ν⟩C−∞ = ⟨φ, Tνµ⟩C−∞ = ⟨Tνφ, µ⟩C−∞ = ⟨φ ∗ ν, µ⟩C−∞ .

This definition includes the convolution of signed measures. Moreover, the convolution
product is Abelian on zonal distributions. In the special case when φ ∈ C(Sn−1) and
f ∈ L1(Sn−1) is zonal, the convolution product can be expressed as

(φ ∗ f)(u) =
�
Sn−1

φ(v)f̄(⟨u, v⟩)dv, u ∈ Sn−1.

For each k ≥ 0, the space of zonal spherical harmonics in Hn
k is one-dimensional and

spanned by P̆ n
k , where P n

k ∈ C[−1, 1] denotes the Legendre polynomial of dimension n ≥ 3
and degree k ≥ 0. The orthogonal projection πk : L2(Sn−1) → Hn

k onto the space Hn
k turns

out to be the convolution transform associated with P̆ n
k , that is,

πkφ = dim Hn
k

ωn−1
φ ∗ P̆ n

k , φ ∈ L2(Sn−1),

where ωn is the surface area of Sn−1. By duality, πk extends to a map from C−∞(Sn−1)
onto Hn

k . Moreover, the formal Fourier series "∞
k=0 πkµ of a distribution µ ∈ C−∞(Sn−1)

converges to µ in the weak sense. If ν ∈ C−∞(Sn−1) is zonal, then

ν =
∞!

k=0

dim Hn
k

ωn−1
an

k [ν]P̆ n
k ,

where an
k [ν] = ⟨P̆ n

k , ν⟩C−∞ .
Throughout this work, we repeatedly use spherical cylinder coordinates u = tē +√
1 − t2v on Sn−1. For φ ∈ C(Sn−1) and g ∈ C[−1, 1],�

Sn−1
φ(u)g(⟨ē, u⟩)du =

�
(−1,1)

�
Sn−1∩ē

φ(tē +
 

1 − t2v)dvg(t)(1 − t2)
n−3

2 dt. (1.2.4)
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1 Fixed points of mean section operators

For a signed measure ν ∈ M(Sn−1) that carries no mass at the poles, we denote by
ν̄ ∈ M(−1, 1) the unique finite signed measure on (−1, 1) such that�

Sn−1
ğ(u)ν(du) = ωn−1

�
(−1,1)

g(t)(1 − t2)
n−3

2 ν̄(dt), g ∈ C[−1, 1].

By (1.2.4), this naturally extends the notation f̄ for f ∈ C(Sn−1). From the above, the
Fourier coefficient an

k [ν] can be computed as

an
k [ν] = ωn−1

�
(−1,1)

P n
k (t)(1 − t2)

n−3
2 ν̄(dt).

The Funk-Hecke Theorem states that the spherical harmonic expansion of the convolution
product of a signed measure µ and a zonal signed measure ν is given by

Tνµ = µ ∗ ν =
∞!

k=0
an

k [ν]πkµ.

Hence the convolution transform Tν acts as a multiple of the identity on each space Hn
k

of spherical harmonics. The Fourier coefficients an
k [ν] are called the multipliers of Tν .

For the explicit computations of multipliers, the following identity relating Legendre
polynomials of different dimensions and degrees is useful:

d

dt
P n

k (t) = k(k + n − 2)
n − 1 P n+2

k−1 (t). (1.2.5)

The Legendre polynomials also satisfy the following second-order differential equation,
which also determines them up to a constant factor:

(1 − t2) d2

dt2 P n
k (t) − (n − 1)t d

dt
P n

k (t) + k(k + n − 2)P n
k (t) = 0. (1.2.6)

1.3 Regularity of the spherical convolution
1.3.1 Zonal measures
In this section, we investigate the regularity of zonal signed measures. We provide
necessary and sufficient conditions to decide whether ∇Sµ and ∇2

Sµ are signed measures
and provide explicit formulas for them. As one might expect, this can be expressed in terms
of the corresponding measure µ̄ on (−1, 1). In the smooth case, we have the following.

Lemma 1.3.1 ([88]). Let f ∈ C∞(Sn−1) be zonal. Then for all u, v ∈ Sn−1,

∇Sfv(u) = f̄ ′(⟨u, v⟩)Pu⊥v, (1.3.1)
∇2

Sfv(u) = f̄ ′′(⟨u, v⟩)(Pu⊥v ⊗ Pu⊥v) − ⟨u, v⟩f̄ ′(⟨u, v⟩)Pu⊥ . (1.3.2)
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1 Fixed points of mean section operators

Throughout, Pu⊥ denotes the orthogonal projection onto u⊥, and fv denotes the rotated
copy of f with axis of revolution v ∈ Sn−1, that is, fv = ϑf where ϑ ∈ SO(n) is such that
ϑē = v. Moreover, for every v ∈ Sn−1, we define two operators Jv : C[−1, 1] → C(Sn−1)
and Jv : C(Sn−1) → C[−1, 1] by

Jv[ψ](u) = ψ(⟨u, v⟩) and Jv[φ](t) = (1 − t2)
n−3

2

�
Sn−1∩v⊥

φ(tv +
 

1 − t2w)dw.

By a change to spherical cylinder coordinates (see (1.2.4)), we obtain�
Sn−1

φ(u)Jv[ψ](u)du =
�

[−1,1]
Jv[φ](t)ψ(t)dt,

which shows that Jv and Jv are adjoint to each other. Hence, by continuity and duality,
both operators naturally extend to signed measures. With these notations in place, we
prove the following dual version of Lemma 1.3.1.

Lemma 1.3.2. Let v ∈ Sn−1, let X be a smooth vector field on Sn−1, and Y be a smooth
2-tensor field on Sn−1. Then for all t ∈ (−1, 1),

Jv[divS X](t) = d

dt
Jv[⟨X, v⟩](t), (1.3.3)

Jv[div2
S Y ](t) = d2

dt2 Jv[⟨Y, v ⊗ v⟩](t) + d

dt
(tJv[tr Y ](t)) . (1.3.4)

Proof. Let ψ ∈ D(−1, 1) be an arbitrary test function. Due to the spherical divergence
theorem and (1.3.1),�

Sn−1
divS X(u)ψ(⟨u, v⟩)du = −

�
Sn−1

⟨X(u), v⟩ψ′(⟨u, v⟩)du.

We transform both integrals to spherical cylinder coordinates. For the left hand side, we
have �

Sn−1
divS X(u)ψ(⟨u, v⟩)du =

�
(−1,1)

Jv[divS X](t)ψ(t)dt

and for the right hand side,

−
�
Sn−1

⟨X(u), v⟩ψ′(⟨u, v⟩)du = −
�

(−1,1)
Jv[⟨X, v⟩]ψ′(t)dt =

�
(−1,1)

d

dt
Jv[⟨X, v⟩](t)ψ(t)dt,

where the final equality is obtained from integration by parts. This yields (1.3.3).
For the second part of the lemma, let ψ ∈ D(−1, 1) be an arbitrary test function. Due

to the spherical divergence theorem for 2-tensor fields and (1.3.2),�
Sn−1

div2
S Y (u)ψ(⟨u, v⟩)du =

�
Sn−1

⟨Y (u), v ⊗ v⟩ψ′′(⟨u, v⟩) − tr Y (u)⟨u, v⟩ψ′(⟨u, v⟩)du.

We transform both integrals to spherical cylinder coordinates. For the left hand side, we
have �

Sn−1
div2

S Y (u)ψ(⟨u, v⟩)du =
�

(−1,1)
Jv[div2

S Y ](t)ψ(t)dt,
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1 Fixed points of mean section operators

and for the right hand side,�
Sn−1

⟨Y (u), v ⊗ v⟩ψ′′(⟨u, v⟩) − tr Y (u)⟨u, v⟩ψ′(⟨u, v⟩)du

=
�

(−1,1)
Jv[⟨Y, v ⊗ v⟩](t)ψ′′(t) − Jv[tr Y ](t)tψ′(t)dt

=
�

(−1,1)


d2

dt2 Jv[⟨Y, v ⊗ v⟩](t) + d

dt
(tJv[tr Y ](t))

�
ψ(t)dt,

where the final equality is obtained from integration by parts. This yields (1.3.4).

Throughout Sections 1.3 and 1.4, we repeatedly apply the following two technical
lemmas. Their proofs are given in Appendix 1.A.

Lemma 1.3.3. Let β > 0 and g ∈ D′(−1, 1) such that (1 − t2)
β
2 g′(t) ∈ M(−1, 1). Then

g is a locally integrable function and (1 − t2)
β−2

2 g(t) ∈ L1(−1, 1). Moreover, whenever
ψ ∈ C1(−1, 1) is such that both (1 − t2)− β−2

2 ψ′(t) and (1 − t2)− β
2 ψ(t) are bounded on

(−1, 1), then �
(−1,1)

ψ(t)g′(dt) = −
�

(−1,1)
ψ′(t)g(t)dt. (1.3.5)

Lemma 1.3.4. Let v ∈ Sn−1, w ∈ v⊥, and φ ∈ C∞(Sn−1\{±v}). Then for all k ≥ 0 and
α, β ≥ 0, there exists a constant Cn,k,α,β > 0 such that for all t ∈ (−1, 1),#### dk

dtk
Jv[⟨·, w⟩α(1 − ⟨·, v⟩2)

β
2 φ](t)

#### ≤ Cn,k,α,β |w|α∥φ∥Ck(Sn−1\{±v})(1 − t2)
n−3+α+β

2 −k. (1.3.6)

For now, we only the need the following instances of Lemma 1.3.4.

Lemma 1.3.5. Let v ∈ Sn−1, X be a smooth vector field, and Y be smooth 2-tensor field
on Sn−1. Then for all k ≥ 0, there exists a constant Cn,k > 0 such that for all t ∈ (−1, 1),#### dk

dtk
Jv[⟨X, v⟩](t)

#### ≤ Cn,k∥X∥Ck(1 − t2)
n−2

2 −k, (1.3.7)#### dk

dtk
Jv[⟨Y, v ⊗ v⟩](t)

#### ≤ Cn,k∥Y ∥Ck(1 − t2)
n−1

2 −k. (1.3.8)

Proof. For the proof of (1.3.7), note that ⟨X(u), v⟩ = (1 − ⟨u, v⟩2) 1
2 φ(u), where

φ(u) =


X(u), Pu⊥v

|Pu⊥v|
�

, u ∈ Sn−1\{±v}.

Clearly, φ ∈ C∞(Sn−1\{±v}), so we may apply (1.3.6) for α = 0 and β = 1. The proof of
(1.3.8) is analogous.
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1 Fixed points of mean section operators

In the following proposition, we characterize the zonal signed measures for which their
spherical gradient is a (vector-valued) signed measure and show that identity (1.3.1)
extends to this case in the weak sense.

Proposition 1.3.6. Let µ ∈ M(Sn−1) be zonal. Then ∇Sµ ∈ M(Sn−1,Rn) if and only
if µ does not carry any mass at the poles and (1 − t2) n−2

2 µ̄′(t) ∈ M(−1, 1). In this case,
µ(du) = f(u)du for some zonal f ∈ L1(Sn−1) such that for all v ∈ Sn−1,

∇Sµv(du) = Pu⊥v(Jvf̄ ′)(du). (1.3.9)

Proof. First, let X be a smooth vector field on Sn−1 and note that if µ does not carry any
mass on the poles or if supp X ⊆ Sn−1\{±v}, then

⟨X, ∇Sµv⟩C−∞ = −
�
Sn−1

divS X(u)µv(du) = −
�

(−1,1)
Jv[divS X](t)µ̄(dt)

= −
�

(−1,1)

d

dt
Jv[⟨X, v⟩](t)µ̄(dt),

(1.3.10)

where the second equality is obtained from a change to spherical cylinder coordinates and
the final equality from (1.3.3).

Suppose now that µ does not carry any mass on the poles and that (1 − t2) n−2
2 µ̄′(t) ∈

M(−1, 1). Then µ̄ and thus µ is absolutely continuous, that is, µ(du) = f(u)du for
some zonal f ∈ L1(Sn−1). By (1.3.7), we have that (1 − t2)− n−2

2 Jv[⟨X, v⟩](t) and (1 −
t2)− n−4

2 d
dtJv[⟨X, v⟩](t) are bounded, so for every smooth vector field X on Sn−1, (1.3.10)

and (1.3.5) yield

⟨X, ∇Sµv⟩C−∞ =
�

(−1,1)
Jv[⟨X, v⟩](t)f̄ ′(dt) =

�
Sn−1

⟨X(u), Pu⊥v⟩(Jvf̄ ′)(du),

where we applied a change to cylinder coordinates in the second equality. This proves
identity (1.3.9) and in particular that ∇Sµ ∈ M(Sn−1,Rn).

Conversely, suppose that ∇Sµ ∈ M(Sn−1,Rn). Take an arbitrary test function ψ ∈
D(−1, 1) and define a smooth vector field X by

X(u) = ψ(u · v) Pu⊥v

|Pu⊥v| , u ∈ Sn−1.

Then supp X ⊆ Sn−1\{±v} and Jv[⟨X, v⟩](t) = ωn−1(1 − t2) n−2
2 ψ(t), thus (1.3.10) yields

ωn−1
�
ψ(t), (1 − t2)

n−2
2 µ̄′(t)

�
D′ = −

�
(−1,1)

d

dt
Jv[⟨X, v⟩](t)µ̄(dt) =

�
Sn−1

⟨X(u), ∇Sµv(du)⟩.

Therefore, we obtain the estimate###�ψ(t), (1 − t2)
n−2

2 µ̄′(t)
�

D′

### ≤ ω−1
n−1∥∇Sµ∥TV∥X∥∞ = ω−1

n−1∥∇Sµ∥TV∥ψ∥∞,
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1 Fixed points of mean section operators

where ∥∇Sµ∥TV denotes the total variation of ∇Sµ. Hence, (1 − t2) n−2
2 µ̄′(t) ∈ M(−1, 1).

Denoting µ0 = Sn−1\{±ē}µ, the first part of the proof shows that ∇Sµ0 ∈ M(Sn−1,Rn),
and thus,

µ({ē})∇Sδē + µ({−ē})∇Sδ−ē = ∇Sµ − ∇Sµ0 ∈ M(Sn−1,Rn).
Since ∇Sδē and ∇Sδ−ē are distributions of order one (see, e.g., [54, Section 2.1]), this is
clearly possible only if µ carries no mass at the poles.

Employing the same technique as in Proposition 1.3.6, we can characterize signed
measures for which their spherical Hessian is a (matrix-valued) signed measure. Identities
(1.3.1) and (1.3.2) extend to this case in the weak sense.

Proposition 1.3.7. Let µ ∈ M(Sn−1) be zonal. Then ∇2
Sµ ∈ M(Sn−1,Rn) if and only if µ

carries no mass at the poles and (1−t2) n−1
2 µ̄′′(t) ∈ M(−1, 1). In this case, µ(du) = f(u)du

for some zonal f ∈ L1(Sn−1) such that ∇Sµ ∈ L1(Sn−1,Rn) and for all v ∈ Sn−1,

∇Sµv(du) = Pu⊥vf̄ ′(⟨u, v⟩), (1.3.11)
∇2

Sµv(du) = (Pu⊥v ⊗ Pu⊥v)(Jvf̄ ′′)(du) − ⟨u, v⟩f̄ ′(⟨u, v⟩)Pu⊥du. (1.3.12)

Proof. First, take a smooth 2-tensor field Y on Sn−1 and note that if µ does not carry any
mass on the poles or if supp Y ⊆ Sn−1\{±v}, then

⟨Y, ∇2
Sµv⟩C−∞ =

�
Sn−1

div2
S Y (u)µv(du) =

�
(−1,1)

Jv[div2
S Y ](t)µ̄(dt)

= −


d

dt
Jv[⟨Y, v ⊗ v⟩](t) + tJv[tr Y ](t), µ̄′(t)

�
D′

,

(1.3.13)

where the second equality is obtained from a change to spherical cylinder coordinates and
the final equality from (1.3.4).

Suppose now that µ carries no mass at the poles and that (1 − t2) n−1
2 µ̄′′(t) ∈ M(−1, 1).

Then µ̄, and thus, µ are absolutely continuous, that is, µ(du) = f(u)du for some zonal
f ∈ L1(Sn−1). Moreover, Lemma 1.3.3 implies that (1− t2) n−3

2 f̄ ′(t) ∈ L1(−1, 1), and thus,
Proposition 1.3.6 implies ∇Sµ ∈ L1(Sn−1,Rn) and identity (1.3.11). By (1.3.8), we have
that (1 − t2)− n−1

2 Jv[⟨Y, v ⊗ v⟩](t) and (1 − t2)− n−3
2 d

dtJv[⟨Y, v ⊗ v⟩](t) are bounded, so for
every smooth 2-tensor field Y on Sn−1, (1.3.13) and (1.3.5) yield

⟨Y, ∇2
Sµv⟩C−∞ =

�
(−1,1)

Jv[⟨Y, v ⊗ v⟩](t)f̄ ′′(dt) −
�

(−1,1)
tJv[tr Y ](t)f̄ ′(t)dt

=
�
Sn−1

⟨Y (u), Pu⊥v ⊗ Pu⊥v⟩(Jvf̄ ′′)(du) −
�
Sn−1

⟨Y (u), Pu⊥⟩⟨u, v⟩f̄ ′(⟨u, v⟩)du,

where we applied a change to cylinder coordinates in the second equality. This proves
(1.3.12) and in particular that ∇2

Sµ ∈ M(Sn−1,Rn).
Conversely, suppose now that ∇2

Sµ ∈ M(Sn−1,Rn). Take an arbitrary test function
ψ ∈ D(−1, 1) and define a smooth 2-tensor field Y on Sn−1 by

Y (u) = ψ(⟨u, v⟩)


Pu⊥v

|Pu⊥v| ⊗ Pu⊥v

|Pu⊥v| − 1
n − 2


Pu⊥ − Pu⊥v

|Pu⊥v| ⊗ Pu⊥v

|Pu⊥v|


, u ∈ Sn−1.
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1 Fixed points of mean section operators

Then supp Y ⊆ Sn−1\{±v}, and Y satisfies Jv[⟨Y, v ⊗ v⟩](t) = ωn−1(1 − t2) n−1
2 ψ(t) and

tr Y = 0, thus

ωn−1
�
ψ(t), (1 − t2)

n−1
2 µ̄′′(t)

�
D′ = ωn−1

�
Jv[Y, v ⊗ v], µ̄′′(t)

�
D′

= −


d

dt
Jv[⟨Y, v ⊗ v⟩](t) + tJv[tr Y ](t), µ̄′(t)

�
D′

=
�
Sn−1

⟨Y (u), ∇2
Sµv(du)⟩.

Therefore, we obtain the estimate:###�ψ(t), (1 − t2)
n−1

2 µ̄′′(t)
�

D′

### ≤ ω−1
n−1∥∇2

Sµ∥TV∥Y ∥∞ = ω−1
n−1∥∇2

Sµ∥TV∥ψ∥∞,

where ∥∇2
Sµ∥TV denotes the total variation of ∇2

Sµ. Hence, (1 − t2) n−1
2 µ̄′′(t) ∈ M(−1, 1).

Denoting µ0 = Sn−1\{±ē}µ, the first part of the proof shows that ∇2
Sµ0 ∈ M(Sn−1,Rn×n),

and thus,

µ({ē})∇2
Sδē + µ({−ē})∇2

Sδ−ē = ∇2
Sµ − ∇2

Sµ0 ∈ M(Sn−1,Rn×n).

Since ∇2
Sδē and ∇2

Sδ−ē are distributions of order two (see, e.g., [54, Section 2.1]), this is
clearly possible only if µ carries no mass at the poles.

For later purposes, it will be useful to describe the regularity of zonal functions f ∈
L1(Sn−1) in terms of their Laplacian.
Lemma 1.3.8. If f ∈ L1(Sn−1) is zonal and ΔSf ∈ M(Sn−1), then for almost all t ∈
(−1, 1),

(ΔSf)({u ∈ Sn−1 : ⟨ē, u⟩ > t}) = −ωn−1(1 − t2)
n−1

2 f̄ ′(t). (1.3.14)
Proof. Let ψ ∈ D(−1, 1) be an arbitrary test function. Define η(t) =

�
(−1,t) ψ(s)ds and

note that η(⟨ē, ·⟩) ∈ C∞(Sn−1). Then Lebesgue-Stieltjes integration by parts yields�
(−1,1)

(ΔSf)({u ∈ Sn−1 : ⟨ē, u⟩ > t})ψ(t)dt =
�

[−1,1]
Jē[ΔSf ]((t, 1])ψ(t)dt

=
�

[−1,1]
η(t)Jē[ΔSf ](dt) =

�
Sn−1

η(⟨ē, u⟩)(ΔSf)(du) =
�
Sn−1

ΔSη(⟨ē, ·⟩)(u)f(u)du,

where the third equality follows from the characteristic property of the pushforward
measure and the final equality, from the definition of the distributional spherical Laplacian.
Taking the trace in (1.3.2),

ΔSη(⟨ē, ·⟩)(u) = (1 − ⟨ē, u⟩2)η′′(⟨ē, u⟩) − (n − 1)⟨ē, u⟩η′(⟨ē, u⟩).
By a change to spherical cylinder coordinates, we obtain�

(−1,1)
(ΔSf)({u ∈ Sn−1 : ⟨ē, u⟩ > t})ψ(t)dt

= ωn−1

�
(−1,1)


(1 − t2)η′′(t) − (n − 1)tη′(t)


(1 − t2)

n−3
2 f̄(t)dt

= ωn−1

�
(−1,1)

d

dt


(1 − t2)

n−1
2 ψ(t)


f̄(t)dt = −ωn−1

�
ψ(t), (1 − t2)

n−1
2 f̄ ′(t)

�
D′ .

Since ψ was arbitrary, identity (1.3.14) holds for almost all t ∈ (−1, 1).
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1 Fixed points of mean section operators

From now on, we denote by

CS
r(u) = {v ∈ Sn−1 : ⟨u, v⟩ > cos r} (1.3.15)

the spherical cap around u ∈ Sn−1 with radius r ≥ 0. The following proposition classifies
zonal functions f for which their spherical Hessian is a signed measure in terms of the
behavior of ΔSf on small polar caps.

Proposition 1.3.9. For a zonal function f ∈ L1(Sn−1), the following are equivalent:
(a) ∇2

Sf ∈ M(Sn−1,Rn×n),

(b) ΔSf ∈ M(Sn−1) and
�

(0, π
2 )

|(ΔSf)(CS
r(±ē))|

r dr < ∞,

(c) □nf ∈ M(Sn−1) and
�

(0, π
2 )

|(□nf)(CS
r(±ē))|

r dr < ∞.

Proof. Each of the three statements above implies that ΔSf ∈ M(Sn−1). Due to
Lemma 1.3.8, we have that ∇Sf ∈ L1(Sn−1,Rn) and for almost all t ∈ (−1, 1),

Jē[ΔSf ]((t, 1]) = −ωn−1(1 − t2)
n−1

2 f̄ ′(t). (1.3.16)

Taking the distributional derivative on both sides yields

(−1,1)(t)Jē[ΔSf ](dt) = ωn−1

(1 − t2)

n−1
2 f̄ ′′(t) − (n − 1)(1 − t2)

n−3
2 f̄ ′(t)


(1.3.17)

in D′(−1, 1). According to Proposition 1.3.7, condition (a) is fulfilled if and only if (1 −
t2) n−1

2 f̄ ′′(t) is a finite signed measure. Due to (1.3.16) and (1.3.17), this is the case if and
only if�

(0,1)

|(ΔSf)({u ∈ Sn−1 : ⟨ē, u⟩ > t})|
1 − t2 dt +

�
(0,1)

|(ΔSf)({u ∈ Sn−1 : ⟨−ē, u⟩ > t})|
1 − t2 dt < ∞.

The substitution t = cos r then shows that conditions (a) and (b) are equivalent.
For the equivalence of (b) and (c), it suffices to show that (1− t2)−1## �

{u:|⟨ē,u⟩|>t} f(u)du
##

is integrable on (0, 1). To that end, using spherical cylinder coordinates, we estimate�
{u:|⟨ē,u⟩|>t}

|f(u)|du =
�

(t,1)
(1 − s2)

n−3
2 |f̄(s)|ds ≤ (1 − t2)

1
2

�
(−1,1)

(1 − s2)
n−4

2 |f̄(s)|ds,

for t ∈ (0, 1). Since ∇Sf ∈ L1(Sn−1,Rn), Proposition 1.3.6 and Lemma 1.3.3 imply that
(1 − t2) n−4

2 f̄(t) is integrable. This completes the proof.

We want to note that Lemma 1.3.8 and Proposition 1.3.9 still hold if the zonal function
f is replaced by a zonal signed measure that carries no mass at the poles.

Example 1.3.10. For Berg’s function gn we have that ğn = gn(⟨ē, ·⟩) is an integrable func-
tion on the sphere and □nğn = (Id − π1)δē is a finite signed measure. Hence Lemma 1.3.8
implies that ∇Sğn is integrable on Sn−1. At the same time, the integrability condition in
Proposition 1.3.9 (c) is clearly violated, so the distributional spherical Hessian ∇2

Sğn is not
a finite signed measure.

18



1 Fixed points of mean section operators

1.3.2 Convolution transforms
Linear operators on functions on the unit sphere intertwining rotations can be identified
with convolution transforms, as the following theorem shows.

Theorem 1.3.11 ([97]). If µ ∈ M(Sn−1) is zonal, then the convolution transform Tµ is
a bounded linear operator on C(Sn−1). Conversely, if T is an SO(n) equivariant bounded
linear operator on C(Sn−1), then there exists a unique zonal µ ∈ M(Sn−1) such that
T = Tµ.

The regularizing properties of a convolution transform correspond to the regularity of its
integral kernel. In this section, we classify rotation equivariant bounded linear operators
from C(Sn−1) to C2(Sn−1) in terms of their integral kernel, proving Theorem 1.C. We
require the following two lemmas.

Lemma 1.3.12. Let φ ∈ C∞(Sn−1) and let γ : I ⊆ R → Sn−1 be a smooth curve in Sn−1.
Then for all s ∈ I and t ∈ (−1, 1),

d

ds
Jγ(s)[φ](t) = − d

dt
Jγ(s)[⟨·, γ′(s)⟩φ](t), (1.3.18)

d

ds
Jγ(s)[⟨·, γ′(s)⟩φ](t) = − d

dt
Jγ(s)[⟨·, γ′(s)⟩2φ](t) + Jγ(s)[⟨·, γ′′(s)⟩φ](t). (1.3.19)

Proof. Let ψ ∈ D(−1, 1) be an arbitrary test function. On the one hand, spherical cylinder
coordinates yield

d

ds
(φ ∗ ψ̆)(γ(s)) = d

ds

�
(−1,1)

Jγ(s)[φ](t)ψ(t)dt =
�

(−1,1)

d

ds
Jγ(s)[φ](t)ψ(t)dt.

On the other hand,

d

ds
(φ ∗ ψ̆)(γ(s)) = d

ds

�
Sn−1

φ(v)Jv[ψ](γ(s))dv =
�
Sn−1

φ(v)⟨∇SJv[ψ](γ(s)), γ′(s)⟩dv.

By (1.3.1) and a change to spherical cylinder coordinates, we obtain

d

ds
(φ ∗ ψ̆)(γ(s)) =

�
Sn−1

φ(v)⟨v, γ′(s)⟩ψ′(⟨γ(s), v⟩)dv =
�

(−1,1)
Jγ(s)[φ⟨·, γ′(s)⟩](t)ψ′(t)dt

= −
�

(−1,1)

d

dt
Jγ(s)[φ⟨·, γ′(s)⟩](t)ψ(t)dt,

where the final equality follows from integration by parts. This implies (1.3.18).
For the second part of the lemma, let ψ ∈ D(−1, 1) be an arbitrary test function. On

the one hand, spherical cylinder coordinates yield

d

ds
((⟨·, γ′(s)⟩ψ) ∗ φ̆)(γ(s)) = d

ds

�
(−1,1)

Jγ(s)[⟨·, γ′(s)⟩φ](t)ψ(t)dt

=
�

(−1,1)

d

ds
Jγ(s)[⟨·, γ′(s)⟩φ](t)ψ(t)dt.
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1 Fixed points of mean section operators

On the other hand,

d

ds
((⟨·, γ′(s)⟩ψ) ∗ φ̆)(γ(s)) = d

ds

�
Sn−1

φ(v)⟨v, γ′(s)⟩Jv[ψ](γ(s))dv

=
�
Sn−1

φ(v)⟨v, γ′(s)⟩⟨∇SJv[ψ](γ(s)), γ′(s)⟩dv +
�
Sn−1

φ(v)⟨v, γ′′(s)⟩ψ(⟨v, γ(s)⟩)dv.

By (1.3.1) and a change to cylinder coordinates, we obtain

d

ds
((⟨·, γ′(s)⟩ψ) ∗ φ̆)(γ(s))

=
�
Sn−1

φ(v)⟨v, γ′(s)⟩2ψ′(⟨v, γ(s)⟩)dv +
�
Sn−1

φ(v)⟨v, γ′′(s)⟩ψ(⟨v, γ(s)⟩)dv

=
�

(−1,1)
Jγ(s)[⟨·, γ′(s)⟩2φ](t)ψ′(t)dt +

�
(−1,1)

Jγ(s)[⟨·, γ′′(s)⟩φ](t)ψ(t)dt

=
�

(−1,1)


− d

dt
Jγ(s)[⟨·, γ′(s)⟩2φ](t) + Jγ(s)[⟨·, γ′′(s)⟩φ](t)


ψ(t)dt,

where the final equality follows from integration by parts. This implies (1.3.19).

Lemma 1.3.13. Let φ ∈ C∞(Sn−1) and let γ : I ⊆ R → Sn−1 be a smooth curve in Sn−1.
Then for all s ∈ I and t ∈ (−1, 1),#### d

ds
Jγ(s)[φ](t)

#### ≤ Cn|γ′′(s)|∥φ∥C1(Sn−1)(1 − t2)
n−4

2 , (1.3.20)#### d

ds
Jγ(s)[⟨·, γ′(s)⟩φ](t)

#### ≤ Cn


|γ′(s)|2 + |γ′′(s)|


∥φ∥C1(Sn−1)(1 − t2)

n−3
2 . (1.3.21)

Proof. For the proof of (1.3.20), apply estimate (1.3.6) to the right hand side of (1.3.18)
in the instance where (k, α, β) = (1, 1, 0). To obtain (1.3.21), apply estimate (1.3.6) to
the right hand side of (1.3.19) in the instances where (k, α, β) = (1, 2, 0) and (k, α, β) =
(0, 0, 0).

Theorem 1.3.14. If f ∈ L1(Sn−1) is zonal and ∇Sf ∈ M(Sn−1,Rn), then the convolution
transform Tf is a bounded linear operator from C(Sn−1) to C1(Sn−1). Conversely, if T is
an SO(n) equivariant bounded linear operator from C(Sn−1) to C1(Sn−1), then there exists
a unique zonal f ∈ L1(Sn−1) satisfying ∇Sf ∈ M(Sn−1,Rn) such that T = Tf . In this
case, for every φ ∈ C(Sn−1) and u ∈ Sn−1,

∇S(φ ∗ f)(u) =
�
Sn−1

φ(v)Pu⊥v(Juf̄ ′)(dv). (1.3.22)

Proof. Suppose that f ∈ L1(Sn−1) is zonal and that ∇Sf ∈ M(Sn−1,Rn). Theorem 1.3.11
implies that Tf is a bounded linear operator on C(Sn−1). First, we will verify identity
(1.3.22) for an arbitrary smooth function φ ∈ C∞(Sn−1). Take a point u ∈ Sn−1 and
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1 Fixed points of mean section operators

a tangent vector w ∈ u⊥. Choosing a smooth curve γ in Sn−1 such that γ(0) = u and
γ′(0) = w yields

⟨∇S(φ ∗ f)(u), w⟩ = d

ds

####
0

(φ ∗ f)(γ(s)) = d

ds

####
0

�
(−1,1)

Jγ(s)[φ](t)f̄(t)dt.

Note that Proposition 1.3.6 and Lemma 1.3.3 imply that (1 − t2) n−2
2 f̄ ′(t) is a finite signed

measure and (1 − t2) n−4
2 f̄(t) is an integrable function on (−1, 1). Due to the estimate

(1.3.20), we have that (1−t2)− n−4
2 d

dsJγ(s)[φ](t) is bounded uniformly in s for all sufficiently
small s, so we may interchange differentiation and integration and obtain

⟨∇S(φ ∗ f)(u), w⟩ =
�

(−1,1)

d

ds

####
0

Jγ(s)[φ](t)f̄(t)dt = −
�

(−1,1)

d

dt
Ju[⟨·, w⟩φ](t)f̄(t)dt

=
�

(−1,1)
Ju[⟨·, w⟩φ](t)f̄ ′(dt) =

�
Sn−1

φ(v)⟨Pu⊥v, w⟩(Juf̄ ′)(dv),

where the second equality follows from (1.3.18), the third from (1.3.5), and the final
equality from a change to spherical cylinder coordinates. This proves identity (1.3.22) for
all φ ∈ C∞(Sn−1).

As an immediate consequence, ∥Tf φ∥C1(Sn−1) ≤ C∥φ∥C(Sn−1) for some constant C ≥ 0
and all φ ∈ C∞(Sn−1). Thus, Tf extends to a bounded linear operator T : C(Sn−1) →
C1(Sn−1). Since Tf : C(Sn−1) → C(Sn−1) is a bounded operator and the inclusion
C1(Sn−1) ⊆ C(Sn−1) is continuous, T agrees with Tf . By density and continuity, (1.3.22)
is valid for all φ ∈ C(Sn−1).

For the second part of the theorem, suppose that T is an SO(n) equivariant bounded
linear operator from C(Sn−1) to C1(Sn−1). Then Theorem 1.3.11 implies that T = Tµ for
a unique zonal µ ∈ M(Sn−1). According to Proposition 1.3.6, it suffices to show that µ

carries no mass at the poles and that (1 − t2) n−2
2 µ̄′(t) ∈ M(−1, 1). To that end, take an

arbitrary test function ψ ∈ D(−1, 1), a point u ∈ Sn−1, a unit tangent vector w ∈ u⊥, and
define

φ(v) = ⟨v, w⟩ 
1 − ⟨v, u⟩2 ψ(⟨v, u⟩), v ∈ Sn−1.

Then φ is a smooth function satisfying Ju[⟨·, w⟩φ](t) = Cn(1− t2) n−2
2 ψ(t), where Cn > 0 is

given by Cn =
�
Sn−1∩u⊥⟨w, v⟩2dv. Choosing a smooth curve γ in Sn−1 such that γ(0) = u

and γ′(0) = w yields

Cn

�
ψ(t), (1 − t2)

n−2
2 µ̄′(t)

�
D′ =

�
Ju[⟨·, w⟩φ](t), µ̄′(t)

�
D′

= −
�

(−1,1)

d

dt
Ju[⟨·, w⟩φ](t)µ̄(dt) =

�
(−1,1)

d

ds

####
0

Jγ(s)[φ](t)µ̄(dt),

where the final equality is due to (1.3.18). Observe that supp Jγ(s)[φ] ⊆ [−1 + ε, 1 − ε]
and that | d

dsJγ(s)[φ]| ≤ C uniformly in s for all sufficiently small s, so we may interchange
differentiation and integration and obtain

Cn

�
ψ(t), (1 − t2)

n−2
2 µ̄′(t)

�
D′ = d

ds

####
0

�
(−1,1)

Jγ(s)[φj ](t)µ̄(dt) = ⟨∇S(φ ∗ µ)(u), w⟩.
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1 Fixed points of mean section operators

Therefore, we arrive at the following estimate:###�ψ(t), (1 − t2)
n−2

2 µ̄′(t)
�

D′

### ≤ C−1
n ∥T∥∥φ∥C(Sn−1) = C−1

n ∥T∥∥ψ∥∞.

This shows that (1 − t2) n−2
2 µ̄′(t) ∈ M(−1, 1). Denoting µ0 = Sn−1\{±ē}µ, Proposi-

tion 1.3.6 and the first part of the proof show that Tµ0 is a bounded linear operator from
C(Sn−1) to C1(Sn−1). Hence also

µ({ē})Id + µ({−ē})Refl = T − Tµ0

is a bounded linear operator from C(Sn−1) to C1(Sn−1), where Refl = Tδ−ē is the reflection
at the origin. Clearly, this is possible only if µ carries no mass at the poles.

Theorem 1.3.15. If f ∈ L1(Sn−1) is zonal and ∇2
Sf ∈ M(Sn−1,Rn×n), then the convolu-

tion transform Tf is a bounded linear operator from C(Sn−1) to C2(Sn−1). Conversely, if
T is an SO(n) equivariant bounded linear operator from C(Sn−1) to C2(Sn−1), then there
exists a unique zonal f ∈ L1(Sn−1) satisfying ∇2

Sf ∈ M(Sn−1,Rn×n) such that T = Tf .
In this case, for every φ ∈ C(Sn−1) and u ∈ Sn−1,

∇S(φ ∗ f)(u) =
�
Sn−1

φ(v)Pu⊥vf̄ ′(⟨u, v⟩)dv, (1.3.23)

∇2
S(φ ∗ f)(u) =

�
Sn−1

φ(v)(Pu⊥v ⊗ Pu⊥v)(Juf̄ ′′)(dv) −
�
Sn−1

φ(v)⟨u, v⟩f̄ ′(⟨u, v⟩)dv Pu⊥ .

(1.3.24)

Proof. Suppose that f ∈ L1(Sn−1) is zonal and that ∇2
Sf ∈ M(Sn−1,Rn×n). Then ∇Sf ∈

L1(Sn−1,Rn) due to Proposition 1.3.7. According to Theorem 1.3.14, the convolution
transform Tf is a bounded linear operator from C(Sn−1) from C1(Sn−1) and identity
(1.3.23) holds for every φ ∈ C(Sn−1). Next, we will verify identity (1.3.24) for an arbitrary
smooth function φ ∈ C∞(Sn−1). Let u ∈ Sn−1 be a point and w ∈ u⊥ a tangent vector.
Choosing a geodesic γ in Sn−1 such that γ(0) = u and γ′(0) = w yields

⟨∇2
S(φ ∗ f)(u), w ⊗ w⟩ = d2

ds2

####
0
(φ ∗ f)(γ(s)) = d2

ds2

####
0

�
(−1,1)

Jγ(s)[φ](t)f̄(t)dt.

Note that Proposition 1.3.7 and Lemma 1.3.3 imply that (1− t2) n−1
2 f̄ ′′(t) is a finite signed

measure and both (1 − t2) n−3
2 f̄ ′(t) and (1 − t2) n−4

2 f̄(t) are integrable functions on (−1, 1).
Due to (1.3.20), we have that (1 − t2)− n−4

2 d
dsJγ(s)[φ](t) is bounded uniformly in s for all

sufficiently small s, so we may interchange differentiation and integration and obtain

⟨∇2
S(φ ∗ f)(u), w ⊗ w⟩ = d

ds

####
0

�
(−1,1)

d

ds
Jγ(s)[φ](t)f̄(t)dt

= − d

ds

####
0

�
(−1,1)

d

dt
Jγ(s)[⟨·, γ′(s)⟩](t)f̄(t)dt = d

ds

####
0

�
(−1,1)

Jγ(s)[⟨·, γ′(s)⟩](t)f̄ ′(t)dt,
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1 Fixed points of mean section operators

where the second equality follows from (1.3.18) and the final equality from (1.3.5). Due
to (1.3.21), we have that (1 − t2)− n−3

2 d
dsJγ(s)[⟨·, γ′(s)⟩φ](t) is uniformly bounded in s for

all sufficiently small s, so we may again interchange differentiation and integration and
obtain

⟨∇2
S(φ ∗ f)(u), w ⊗ w⟩ =

�
(−1,1)

d

ds

####
0

Jγ(s)[⟨·, γ′(s)⟩](t)f̄ ′(t)dt

=
�

(−1,1)


− d

dt
Ju[⟨·, w⟩φ](t) − |w|2tJu[φ](t)


f̄ ′(t)dt

=
�

(−1,1)
Ju[(. · w)2φ](t)f̄ ′′(dt) − |w|2

�
(−1,1)

Ju[φ](t)f̄ ′(t)dt

=
�
Sn−1

φ(v)⟨Pu⊥v ⊗ Pu⊥v, w ⊗ w⟩(Juf̄ ′′)(dv) −
�
Sn−1

⟨u, v⟩f̄ ′(⟨u, v⟩)dv ⟨Pu⊥ , w ⊗ w⟩,

where the second equality follows from (1.3.19) and (1.2.2), the third from (1.3.5), and the
final equality from a change to spherical cylinder coordinates. Since the space of 2-tensors
on the tangent space u⊥ is spanned by pure tensors w ⊗ w, this proves identity (1.3.24)
for all φ ∈ C∞(Sn−1).

As an immediate consequence, ∥Tf φ∥C2(Sn−1) ≤ C∥φ∥C(Sn−1) for some constant C ≥ 0
and all φ ∈ C∞(Sn−1). Thus, Tf extends to a bounded linear operator T : C(Sn−1) →
C2(Sn−1). Since Tf : C(Sn−1) → C1(Sn−1) is a bounded operator and the inclusion
C2(Sn−1) ⊆ C1(Sn−1) is continuous, T agrees with Tf . By density and continuity, (1.3.24)
is valid for all φ ∈ C(Sn−1).

For the second part of the theorem, suppose that T is an SO(n) equivariant bounded
linear operator from C(Sn−1) to C2(Sn−1). Then Theorem 1.3.14 implies that T = Tf

for a unique zonal f ∈ L1(Sn−1). According to Proposition 1.3.7, it suffices to show that
(1 − t2) n−1

2 f̄ ′′(t) is a finite signed measure. To that end, take an arbitrary test function
ψ ∈ D(−1, 1), a point u ∈ Sn−1, a unit tangent vector w ∈ u⊥ and define

φ(v) = P n−1
2

 ⟨v, w⟩ 
1 − ⟨v, u⟩2


ψ(⟨v, u⟩), v ∈ Sn−1.

Then φ is a smooth function satisfying Ju[φ](t) = 0 and Ju[⟨·, w⟩2φ](t) = Cn(1−t2) n−1
2 ψ(t),

where Cn > 0 is given by Cn =
�
Sn−1∩u⊥ P n−1

2 (⟨w, v⟩)⟨w, v⟩2dv. Choosing a geodesic γ in
Sn−1 such that γ(0) = u and γ′(0) = w yields

Cn

�
ψ(t), (1 − t2)

n−1
2 f̄ ′′(t)

�
D′ =

�
Ju[⟨·, w⟩2φ](t), f̄ ′′(t)

�
D′ −

�
Ju[φ](t), tf̄ ′(t)

�
D′

=
�

(−1,1)


d2

dt2 Ju[⟨·, w⟩2φ](t) + d

dt
(tJu[φ](t))

�
f̄(dt) =

�
(−1,1)

d2

ds2

####
0
Jγ(s)[φ](t)f̄(t)dt,

where the final equality is due to (1.3.19). Observe that supp Jγ(s)[φ] ⊆ [−1 + ε, 1 − ε] and
that | d2

ds2 Jγ(s)[φ](t)| ≤ C uniformly in s for all sufficiently small s, so we may interchange
differentiation and integration and obtain

Cn

�
ψ(t), (1 − t2)

n−1
2 f̄ ′′(t)

�
D′ = d2

ds2

####
0

�
(−1,1)

Jγ(s)[φ](t)f̄(t)dt = ⟨∇2
S(φ ∗ f)(u), w ⊗ w⟩.
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1 Fixed points of mean section operators

Therefore, we arrive at the following estimate:###�ψ(t), (1 − t2)
n−1

2 f̄ ′′(t)
�

D′

### ≤ C−1
n ∥T∥∥φ∥C(Sn−1) ≤ C−1

n ∥T∥∥ψ∥∞.

This shows that (1 − t2) n−1
2 f̄ ′′(t) ∈ M(−1, 1), which completes the proof.

In Theorems 1.3.14 and 1.3.15, we identify convolution transforms with zonal functions
for which the spherical gradient and Hessian are signed measures, respectively. In general,
checking these conditions directly can be difficult. However, Propositions 1.3.6, 1.3.7, and
1.3.9 provide more practical equivalent conditions. In this way, we obtain Theorem 1.C.

Proof of Theorem 1.C. According to Theorem 1.3.15, the convolution transform Tf is a
bounded linear operator from C(Sn−1) to C2(Sn−1) if and only if ∇2

Sf ∈ M(Sn−1,Rn×n).
Due to Lemma 1.3.8, this is the case precisely when □nf is a finite signed measure and
satisfies (1.1.3).

For a zonal f ∈ C2(Sn−1), integration and differentiation can be interchanged, and thus,

∇2
S(φ ∗ f)(u) =

�
Sn−1

φ(v)∇2
Sf̄(⟨·, v⟩)(u)dv

for every φ ∈ C(Sn−1). In light of (1.3.12), we see that (1.3.24) naturally extends this
identity to general f ∈ L1(Sn−1). Denote by D2φ the Hessian of the 1-homogeneous
extension of a function φ on Sn−1. Since D2φ(u) = ∇Sφ(u) + φ(u)Pu⊥ , as a direct
consequence of (1.3.24), we obtain the following formula for:

D2(φ ∗ f)(u) =
�
Sn−1

φ(v)(Pu⊥v ⊗ Pu⊥v)(Juf̄ ′′)(dv)

+
�
Sn−1

φ(v)

f̄(⟨u, v⟩) − ⟨u, v⟩f̄ ′(⟨u, v⟩)


dv Pu⊥ .

(1.3.25)

As an instance of Theorem 1.3.15, we obtain Martinez-Maure’s [84] result on the cosine
transform, which is discussed in the following example.
Example 1.3.16. The cosine transform is the convolution transform Tf generated by
the L1(Sn−1) function f(u) = |⟨ē, u⟩|, that is, f̄(t) = |t|. Thus f̄ ′′ = 2δ0 in the sense of
distributions, so Proposition 1.3.7 and Theorem 1.3.15 imply that the cosine transform is
a bounded linear operator from C(Sn−1) to C2(Sn−1).

Moreover, f̄(t)−tf̄ ′(t) = 0 and Juf̄ ′′ = 2λSn−1∩u⊥ , where λSn−1∩u⊥ denotes the Lebesgue
measure on the (n − 2)-dimensional subsphere Sn−1 ∩ u⊥. Hence (1.3.25) shows that for
every φ ∈ C(Sn−1),

D2(φ ∗ f)(u) = 2
�
Sn−1∩u⊥

φ(v)(Pu⊥v ⊗ Pu⊥v)dv = 2
�
Sn−1∩u⊥

φ(v)(v ⊗ v)dv.

Example 1.3.17. For Berg’s function gn, we have seen in Example 1.3.10 that ∇Sğn is an
integrable function on Sn−1 while the distributional spherical Hessian ∇2

Sğn is not a finite
signed measure. Thus, Theorems 1.3.14 and 1.3.15 imply that the convolution transform
Tğn is a bounded operator from C(Sn−1) to C1(Sn−1) but not a bounded operator from
C(Sn−1) to C2(Sn−1).
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1 Fixed points of mean section operators

1.4 Regularity of Minkowski valuations
In this section, we study the regularity of Minkowski valuations Φi ∈ MVali of degrees
1 ≤ i ≤ n−1, proving Theorem 1.D. In the (n−1)-homogeneous case, Schuster [98] showed
that Φn−1 is generated by a continuous function. For other degrees of homogeneity, all
that is known about the regularity of a generating function f is that □nf is a signed
measure and f is integrable (due to Dorrek [36]). Using our study of regularity of zonal
functions in Section 1.3, we are able to refine Dorrek’s results.

Theorem 1.4.1. Let 1 ≤ i ≤ n − 1 and Φi ∈ MVali with generating function f . Then
(i) □nf is a signed measure on Sn−1,
(ii) f is a locally Lipschitz function on Sn−1\{±ē},
(iii) f is differentiable almost everywhere on Sn−1, and ∇Sf ∈ L1(Sn−1,Rn).

Proof. By [102, Theorem 6.1(i)], the function f also generates a Minkowski valuation of
degree one. It follows from [36, Theorem 1.2] that □nf , and thus ΔSf , is a signed measure
on Sn−1. Therefore, (1.3.14) shows that (1 − t2) n−1

2 f̄ ′(t) is an L∞(−1, 1) function. This
implies that f̄ is locally Lipschitz on (−1, 1), and thus, f is locally Lipschitz on Sn−1\{±ē}.
Moreover, (1 − t2) n−2

2 f̄ ′(t) is in L1(−1, 1), so due to Proposition 1.3.6, the distributional
gradient ∇Sf is in L1(Sn−1,Rn). Since f is locally Lipschitz on Sn−1\{±ē}, according to
Rademacher’s theorem, the classical gradient of f exists almost everywhere on Sn−1 and
agrees with the distributional gradient.

As a consequence of Theorems 1.3.14 and 1.4.1, we obtain the following.

Corollary 1.4.2. For 1 ≤ i ≤ n−1, every Minkowski valuation Φi ∈ MVali maps convex
bodies with a C2 support function to strictly convex bodies.

Proof. Denote by f the generating function of Φi. Theorem 1.4.1 (iii) implies that ∇Sf ∈
L1(Sn−1,Rn). According to Theorem 1.3.14, the convolution transform Tf is a bounded
operator from C(Sn−1) to C1(Sn−1). Suppose now that K ∈ Kn has a C2 support function.
Then Si(K, ·) has a continuous density, so h(ΦiK, ·) = Si(K, ·) ∗ f is a C1(Sn−1) function,
and thus, ΦiK is strictly convex (see, e.g., [96, Section 2.5]).

We now turn to weakly monotone Minkowski valuations, for which we will obtain
additional regularity of their generating functions. Recall that Φi : Kn → Kn is called
weakly monotone if ΦiK ⊆ ΦiL whenever K ⊆ L and the Steiner points of K and L are
at the origin.

Theorem 1.4.3. Let 1 ≤ i ≤ n − 1 and Φi ∈ MVali be weakly monotone with generating
function f . Then □nf is a weakly positive measure on Sn−1 and there exists C > 0 such
that for all r ≥ 0,

|□nf |�{u ∈ Sn−1 : |⟨ē, u⟩| > cos r}� ≤ Cri−1. (1.4.1)
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1 Fixed points of mean section operators

Note that Theorems 1.4.1 and 1.4.3 together yield Theorem 1.D. Here and in the
following, a distribution on Sn−1 is called weakly positive if it can be written as the
sum of a positive measure and a linear function. In particular, every weakly positive
distribution is a signed measure. The following characterization of weak positivity is a
simple consequence of the Hahn-Banach separation theorem. For completeness, we provide
a proof in Appendix 1.A.

Lemma 1.4.4. A distribution ν ∈ C−∞(Sn−1) is weakly positive if and only if ⟨φ, ν⟩C−∞ ≥
0 for every positive centered smooth function φ ∈ C∞(Sn−1).

The proof of Theorem 1.4.3 relies on the behavior of area measures of convex bodies
on spherical caps. We need the following classical result by Firey (recall the notation
introduced in (1.3.15)).

Theorem 1.4.5 ([40]). Let 1 ≤ i ≤ n − 1 and K ∈ Kn be a convex body. Then for every
u ∈ Sn−1,

Si(K, CS
r(u)) ≤ Cn,i(diam K)irn−1−i (1.4.2)

where Cn,i > 0 depends only on n and i and diam K denotes the diameter of K.

The area measures of the (n − 1)-dimensional disk in ē⊥, which we denote by Dn−1,
exhibit the worst possible asymptotic behavior in (1.4.2). This is shown in the example
below.

Example 1.4.6. We seek to compute the area measures of Dn−1. For a convex body
K ∈ Kn it is well known that Sn−1(K, A) is the area of the reverse spherical image of a
measurable subset A ⊆ Sn−1. Thus,

Sn−1(Dn−1, ·) = κn−1 (δ−ē + δē) . (1.4.3)

In order to compute the area measures of lower order, note that if a convex body K ∈ Kn

with absolutely continuous area measure of order 1 ≤ i < n − 1 lies in a hyperplane u⊥

(where u ∈ Sn−1), then

si(K, v) = n − 1 − i

n − 1

1 − ⟨u, v⟩2

− i
2 su⊥

i


K,

Pu⊥v

|Pu⊥v|


, v ∈ Sn−1\{±u},

where si(K, ·) and su⊥
i (K, ·) denote the densities of the i-th area measure of K with respect

to the ambient space and the hyperplane u⊥, respectively (see [59, Lemma 3.15]). Hence,
for 1 ≤ i < n − 1,

Si(Dn−1, dv) = n − 1 − i

n − 1

1 − ⟨ē, v⟩2

− i
2 dv.

By a change to spherical cylinder coordinates, the measure of a polar cap can be estimated
by

Si(Dn−1, CS
r(ē)) ≥ n − 1 − i

n − 1 ωn−1

�
[cos r,1]

t(1 − t2)
n−3−i

2 dt = κn−1(sin r)n−1−i. (1.4.4)
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1 Fixed points of mean section operators

We require the following simple lemma, which relates the behavior of two positive
measures µ and ν on small polar caps to the behavior of their convolution product.

Lemma 1.4.7. Let µ ∈ M+(Sn−1) and let ν ∈ M+(Sn−1) be zonal. Then for all u ∈ Sn−1

and r ≥ 0,

µ(CS
r(u))ν(CS

r(ē)) ≤ (µ ∗ ν)(CS
2r(u)), (1.4.5)

µ(CS
r(u))ν(CS

r(−ē)) ≤ (µ ∗ ν)(CS
2r(−u)). (1.4.6)

Proof. First observe that (1.4.5) implies (1.4.6) by reflecting ν at the origin. Moreover,
we may assume that u = ē. The general case can be obtained from this by applying a
suitable rotation to the measure µ and exploiting the SO(n) equivariance of the convolution
transform Tν . Next, note that

(µ ∗ ν)(CS
2r(ē)) =

�
Sn−1

µ(CS
2r(u))ν(du),

as can be easily shown by approximating CS
2r(ē) with smooth functions from below and

applying the principle of monotone convergence. Thus

(µ ∗ ν)(CS
2r(ē)) ≥

�
CS

r(ē)
µ(CS

2r(u))ν(du) ≥
�

CS
r(ē)

µ(CS
r(ē))ν(du) = µ(CS

r(ē))ν(CS
r(ē)),

where the first inequality follows from shrinking the domain of integration and the second
from the fact that CS

2r(u) ⊇ CS
r(ē) for all u ∈ CS

r(ē) combined with the monotonicity of
µ.

Now we are in a position to prove Theorem 1.4.3.

Proof of Theorem 1.4.3. Define a functional ξi on the space of smooth support functions
by ξi(hK) = h(ΦiK, ē). For every φ ∈ C∞(Sn−1), the function 1 + tφ is a support function
whenever t ∈ R is sufficiently small. Therefore, we may compute the first variation of ξi

at φ0 = 1. To that end, note that as a consequence of (1.1.1) and the polynomiality of
area measures (see, e.g., [96, Section 5.1]),

ξi(1 + tφ) = an
0 [f ] + i ⟨□nφ, f⟩C−∞ t + O(t2) as t → 0.

Thus, for the first variation we obtain

δξi(1, φ) = d

dt

####
0

ξi(1 + tφ) = i ⟨□nφ, f⟩C−∞ = i ⟨φ,□nf⟩C−∞ .

Since Φi is weakly monotone, the functional ξi is monotone on the subspace of centered
functions, that is, ξi(φ1) ≤ ξi(φ2) whenever φ1 and φ2 are smooth centered support
functions and φ1 ≤ φ2. Consequently, the first variation δξi(1, φ) must be non-negative
for every positive and centered φ ∈ C∞(Sn−1). Lemma 1.4.4 implies that □nf is a weakly
positive measure.
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Since □nf is weakly positive, there exists some positive measure ν ∈ M+(Sn−1) and
x ∈ Rn such that □nf = ν + ⟨x, ·⟩. Observe that for every K ∈ Kn,

S1(ΦiK, ·) = □nh(ΦiK, ·) = □n(Si(K, ·) ∗ f) = Si(K, ·) ∗ □nf = Si(K, ·) ∗ ν.

Hence, (1.4.5) and (1.4.6) imply that for all r ≥ 0,

Si(K, CS
r(ē))ν(CS

r(±ē)) ≤ S1(ΦiK, CS
2r(±ē)).

Due to (1.4.2), the right hand side is bounded from above by a constant multiple of rn−2.
If we choose K to be the (n − 1)-dimensional disk Dn−1, then Si(K, CS

r(ē)) is bounded
from below by a multiple of rn−i−1, as is shown in (1.4.3) and (1.4.4). Thus,

ν(CS
r(±ē)) ≤ S1(ΦiD

n−1, CS
2r(±ē))

Si(Dn−1, CS
r(ē)) ≤ C ′ rn−2

rn−i−1 = C ′ri−1.

Since |□nf | ≤ ν + |⟨x, ·⟩|, we have that

|□nf |(CS
r(±ē)) ≤ ν(CS

r(±ē)) +
�

CS
r(±ē)

|⟨x, u⟩|du ≤ C ′ri−1 + |x|κn−1rn−1 ≤ Cri−1

for a suitable constant C ≥ 0, which proves (1.4.1).

By combining Theorem 1.4.3 with Theorem 1.C, we immediately obtain the following.

Corollary 1.4.8. Let 1 < i ≤ n − 1 and Φi ∈ MVali be weakly monotone with generating
function f . Then the convolution transform Tf is a bounded linear operator from C(Sn−1)
to C2(Sn−1).

As was pointed out in Proposition 1.3.9, the behavior of zonal measures on small
polar caps determines their regularity. In the following, we show that this behavior also
determines the rate of convergence of their multipliers, which is another way of expressing
regularity. We use the following classical asymptotic estimate for Legendre polynomials.

Theorem 1.4.9 ([106, 7.33]). For all n ≥ 3 and δ > 0, there exists M > 0 such that for
all k ≥ 0,

|P n
k (t)| ≤ Mk− n−2

2 (1 − t2)− n−2
4 for t ∈

�
− cos δ

k , cos δ
k

�
. (1.4.7)

Theorem 1.4.10. Let µ ∈ M(Sn−1) be zonal and suppose that there exist C > 0 and
α ≥ 0 such that

|µ|�{u ∈ Sn−1 : |⟨ē, u⟩| > cos r}� ≤ Crα

for all r ≥ 0. Then

an
k [µ] ∈

��
O(k−α), α < n−2

2 ,

O(k− n−2
2 ln k), α = n−2

2 ,

O(k− n−2
2 ), α > n−2

2 .

28



1 Fixed points of mean section operators

Proof. Since µ can be decomposed into two signed measures that are each supported on
one hemisphere, we may assume that supp µ ⊆ {u ∈ Sn−1 : ⟨ē, u⟩ ≥ 0}. Denoting by
ρ = Jē[|µ|] the pushforward measure of |µ| with respect to the map u �→ ⟨ē, u⟩, we have
that

|an
k [µ]| =

####�
Sn−1

P n
k (⟨ē, u⟩)µ(du)

#### ≤
�
Sn−1

|P n
k (⟨ē, u⟩)| |µ|(du) =

�
[0,1]

|P n
k (t)|ρ(dt).

Our aim now is to find suitable bounds for the integral on the right hand side. To that
end, we fix some arbitrary δ > 0 and split it into the two integrals

I1(k) =
�

[0,cos δ
k

]
|P n

k (t)|ρ(dt) and I2(k) =
�

(cos δ
k

,1]
|P n

k (t)|ρ(dt).

Observe that our assumption on µ implies that ρ((t, 1]) ≤ C(1 − t2) α
2 for all t ∈ [0, 1].

Since |P n
k (t)| ≤ 1 for all t ∈ [0, 1], we obtain

I2(k) ≤ ρ


cos δ
k , 1

�
≤ C


sin δ

k

α ∈ O(k−α).

For the integral I1(k), estimate (1.4.7) and Lebesgue-Stieltjes integration by parts yield

I1(k) ≤ Mk− n−2
2

�
[0,cos δ

k
]
(1 − t2)− n−2

4 ρ(dt)

= Mk− n−2
2


ρ

�
0, cos δ

k

�
−


sin δ

k

− n−2
2 ρ


cos δ

k , 1
�

+ Ĩ1(k)


≤ Mk− n−2
2


ρ([0, 1]) + Ĩ1(k)


,

where we defined
Ĩ1(k) = n−2

2

�
[0,cos δ

k
]
ρ ((t, 1]) t(1 − t2)− n+2

4 dt.

Employing again our estimate on ρ((t, 1]) and performing a simple computation shows
that

Ĩ1(k) ≤ C n−2
2

�
[0,cos δ

k
]
t(1 − t2)

1
2 (α− n−2

2 −1)dt ∈
��

O(k n−2
2 −α), α < n−2

2 ,
O(ln k), α = n−2

2 ,
O(1), α > n−2

2 .

Combining the estimates for I1(k) and I2(k) completes the proof.

As an immediate consequence of Theorems 1.4.3 and 1.4.10, we obtain the following.

Corollary 1.4.11. Let 1 < i ≤ n−1 and Φi ∈ MVali be weakly monotone with generating
function f . Then an

k [□nf ] ∈ O(k−1/2) as k → ∞.
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1.5 Fixed points
In this section, we prove a range of results regarding local uniqueness of fixed points of
Minkowski valuations Φi ∈ MVali of degree 1 < i ≤ n − 1 (the 1-homogeneous case has
been settled globally by Kiderlen [60]). This section is divided into three subsections. In
Section 1.5.1, we prove Theorem 1.B concerning the mean section operators. Section 1.5.2
is dedicated to Minkowski valuations Φi generated by origin-symmetric convex bodies of
revolution. There we prove Theorem 1.A, unifying previous results by Ivaki [57, 58] and
the second author and Schuster [88]. Finally, in Section 1.5.3 we consider general even
Minkowski valuations for which we obtain information about the fixed points of Φi (as
opposed to Φ2

i ).
The proofs given in this section utilize the following result for general Minkowski

valuations Φi ∈ MVali. It provides three sufficient conditions on the generating function
of Φi to obtain the desired local uniqueness of fixed points of Φ2

i . It contains however
no information on when these conditions are fulfilled. For instance, in the particular case
when Φi is generated by an origin symmetric C2

+ convex body of revolution, checking
condition (C3) turns out to be rather involved.

Theorem 1.5.1 ([88]). Let 1 < i ≤ n − 1 and Φi ∈ MVali with generating function f
satisfying the following conditions:

(C1) the convolution transform Tf is a bounded linear operator from C(Sn−1) to C2(Sn−1),
(C2) there exists α > 0 such that an

k [□nf ] ∈ O(k−α) as k → ∞,
(C3) for all k ≥ 2,

|an
k [□nf ]|

an
0 [□nf ] <

1
i
.

Then there exists a C2 neighborhood of Bn where the only fixed points of Φ2
i are Euclidean

balls.

Now we can apply our results on regularity of weakly monotone Minkowski valuations
Φi to these fixed point problems. Corollaries 1.4.8 and 1.4.11 show that conditions (C1)
and (C2) are fulfilled in the weakly monotone case, which yields the following.

Theorem 1.5.2. Let 1 < i ≤ n − 1 and Φi ∈ MVali be weakly monotone with generating
function f satisfying condition (C3). Then there exists a C2 neighborhood of Bn where
the only fixed points of Φ2

i are Euclidean balls.

Remark 1.5.3. The way Theorem 1.5.1 was stated in [88] additionally required Φi to
be even as the proof employs the following classical result by Strichartz [105]. Denote by
Hs(Sn−1), s ∈ N, the Sobolev space of functions on Sn−1 with weak covariant derivatives
up to order s in L2(Sn−1). Strichartz showed that

∥φ∥2
Hs ≈

∞!
k=0

(k2 + 1)s∥πkφ∥2
L2 (1.5.1)
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1 Fixed points of mean section operators

for every even φ ∈ Hs(Sn−1), where ∥·∥Hs is the standard norm of Hs(Sn−1). However,
the classical theory on the Dirichlet problem on compact Riemannian manifolds (see, e.g.,
[108, Section 5.1]) implies that (1.5.1) holds for every φ ∈ Hs(Sn−1). Therefore, by a
minor modification of the proof of [88, Theorem 6.1], the assumption on Φi to be even can
be omitted.

1.5.1 Mean section operators
As a first application, we show local uniqueness of fixed points of the mean section
operators Mj , which were defined at the beginning of this article. As was pointed out
in the introduction, the mean section operators are not generated by a convex body of
revolution. This is the main reason why they have not been included in previous results.
Due to our extensive study of regularity, we obtain Theorem 1.B as a simple consequence
of Theorem 1.5.2.

Theorem B. For 2 ≤ j < n, there exists a C2 neighborhood of Bn where the only fixed
points of M2

j are Euclidean balls.

Proof. Define the j-th centered mean section operator by M̃jK = Mj(K − s(K)). Then
M̃j ∈ MVali for i = n + 1 − j and due to (1.1.2) its generating function is given by
(Id−π1)ğj . Clearly Mj is monotone, and thus, M̃j is weakly monotone. By Theorem 1.5.2,
it suffices to check condition (C3) for ğj .

It was shown in [12] and [20] independently that the multipliers of ğj are given by

an
k [ğj ] = −π

n−j
2 (j − 1)

4
Γ

�n−j+2
2

�
Γ

�
k−1

2
�
Γ

�k+j−1
2

�
Γ

�k+n−j+1
2

�
Γ

�
k+n+1

2
�

for k ̸= 1. A simple computation using (1.2.3) and the functional equation Γ(x+1) = xΓ(x)
yields

an
k [□nğj ]

an
0 [□nğj ] = 1

i

Γ
�

n−1
2

�
Γ

�
i+2

2
�
Γ

�
k+1

2
�
Γ

�
k+n−i

2
�

Γ
�

n−i
2

�
Γ

�3
2
�
Γ

�
k+i

2
�
Γ

�
k+n−1

2
� .

Since the Gamma function is strictly positive and strictly increasing on [3
2 , ∞), it follows

that ğj satisfies condition (C3).

1.5.2 Convex bodies of revolution
We now turn to Minkowski valuations that are generated by a convex body of revolution,
that is, their generating function is a support function. This class includes all even
Minkowski valuations in MValn−1, as was shown in [98]. Our aim for this section is
to prove Theorem 1.A which is restated below.

Theorem A. Let 1 < i ≤ n − 1 and Φi ∈ MVali be generated by an origin-symmetric
convex body of revolution. Then there exists a C2 neighborhood of Bn where the only fixed
points of Φ2

i are Euclidean balls, unless Φi is a multiple of the projection body operator, in
which case ellipsoids are also fixed points.
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1 Fixed points of mean section operators

Note that if Φi ∈ MVali is generated by a convex body of revolution L, then for every
K ∈ Kn,

h(ΦiK, u) = V (K[i], L(u), Bn[n − i − 1]), u ∈ Sn−1,

where L(u) denotes a suitably rotated copy of L, and V (K1, . . . , Kn) is the mixed volume of
the convex bodies K1, . . . , Kn ∈ Kn (see, e.g., [96, Section 5.1]). Due to the monotonicity
of the mixed volume we see that every Minkowski valuation generated by a convex body of
revolution is monotone. In light of Theorem 1.5.2, it is natural to ask when condition (C3)
is fulfilled. The following result shows that L being origin symmetric is already sufficient
up to the second multiplier.

Theorem 1.5.4 ([88]). Let L be a convex body of revolution. Then for all even k ≥ 4,

|an
k [□nhL]|

an
0 [□nhL] <

1
n − 1 , (1.5.2)

and
− 1

n − 1 ≤ an
2 [□nhL]

an
0 [□nhL] <

1
n − 1 , (1.5.3)

where the left hand side inequality in (1.5.3) is strict if L is of class C2
+.

If i < n− 1, then condition (C3) is fulfilled. If i = n − 1, then Theorem 1.5.4 shows that
condition (C3) is fulfilled under the additional assumption that L is of class C2

+. We will
show that imposing this regularity is not necessary: line segments are the only bodies for
which equality is attained in the left hand side of inequality (1.5.3).

Definition 1.5.5. On (−1, 1), we define the two differential operators

A1 = Id − t
d

dt
and A2 = (1 − t2) d2

dt2 + Id − t
d

dt
. (1.5.4)

These operators come up naturally in the study of zonal functions. For a zonal function
f ∈ C2(Sn−1), the Hessian of its 1-homogeneous extension D2f at each point only has
two eigenvalues: A1f̄ is the eigenvalue of multiplicity n − 2, and A2f̄ the eigenvalue of
multiplicity one (see (1.3.25)). The following lemma is a simple consequence of this fact.

Lemma 1.5.6 ([88]). Let g ∈ C[−1, 1]. Then g(⟨ē, ·⟩) is the support function of a convex
body of revolution if and only if A1g ≥ 0 and A2g ≥ 0 in the weak sense.

In [88], this lemma was proven only for C2[−1, 1] functions, however it extends to
C[−1, 1] by a simple approximation argument. Next, we determine the kernels of A1 and
A2.

Lemma 1.5.7. Let g be a locally integrable function on (−1, 1).
(i) A1g = 0 in the weak sense if and only if g(t) = c1|t| + c2t for some c1, c2 ∈ R.
(ii) A2g = 0 in the weak sense if and only if g(t) = c1

√
1 − t2 + c2t for some c1, c2 ∈ R.
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1 Fixed points of mean section operators

Proof. Clearly, g(t) = c1|t| + c2t is a weak solution of the differential equation A1g = 0.
Conversely, suppose that A1g = 0 in the weak sense. Observe that on the interval (0, 1),
the change of variables t = es transforms the differential operator A1 as follows:

Ã1 = Id − d

ds
.

Therefore, there exists c+ ∈ R such that g(es) = c+es in D′(−∞, 0). Reversing the change
of variables yields g(t) = c+t in D′(0, 1). Similarly, there exists c− ∈ R such that g(t) = c−t
in D′(−1, 0). Since g is locally integrable, choosing c1 = 1

2(c+ + c−) and c2 = 1
2(c+ − c−),

we obtain that g(t) = c1|t| + c2t in D′(−1, 1).
For the second part of the lemma, note that g(t) = c1

√
1 − t2 +c2t solves the differential

equation A2g = 0. Conversely, suppose that A2g = 0 in the weak sense. Observe that the
change of variables t = sin θ transforms the differential operator A2 as follows:

Ã2 = Id + d2

dθ2 .

Therefore, there exist c1, c2 ∈ R such that g(sin θ) = c1 cos θ + c2 sin θ in D′(−π
2 , π

2 ).
Reversing the change of variables yields g(t) = c1

√
1 − t2 + c2t in D′(−1, 1).

The following lemma describes the action of A1 and A2 on Legendre polynomials.

Lemma 1.5.8. For every k ≥ 2,

n − 1
(k − 1)(k + n − 1)A1P n

k = − k

2k + n − 2P n+2
k−2 − k + n − 2

2k + n − 2P n+2
k , (1.5.5)

n − 1
(k − 1)(k + n − 1)A2P n

k = k(k + n − 3)
2k + n − 2 P n+2

k−2 − (k + 1)(k + n − 2)
2k + n − 2 P n+2

k . (1.5.6)

Proof. We need the following two identities:

(2k + n − 2)(n − 1)P n
k (t) = (k + n − 2)(k + n − 1)P n+2

k (t) − (k − 1)kP n+2
k−2 (t), (1.5.7)

(k − 1)P n
k−2(t) − (2k + n − 4)tP n

k−1(t) + (k + n − 3)P n
k (t) = 0. (1.5.8)

Both follow from (1.2.5) by a simple inductive argument (see [49, Section 3.3]). By (1.2.5)
and (1.5.8),

(2k + n − 2)(n − 1)t d

dt
P n

k (t) = k(k + n − 2)((k − 1)P n+2
k−2 (t) + (k + n − 1)P n+2

k (t)). (1.5.9)

Combining (1.2.6) with (1.5.7) and (1.5.9) yields

(2k + n − 2)(n − 1)(1 − t2) d2

dt2 P n
k (t) = (k − 1)k(k + n − 2)(k + n − 1)(P n+2

k−2 (t) − P n+2
k (t)).
(1.5.10)

By (1.5.4) and a combination of identities (1.5.7), (1.5.9), and (1.5.10), we obtain (1.5.5)
and (1.5.6).
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1 Fixed points of mean section operators

We use (1.5.5) and (1.5.6) to derive the following recurrence relation for multipliers.

Lemma 1.5.9. Let g be a locally integrable function on (−1, 1).
(i) If (1 − t2) n−1

2 g′(t) ∈ M(−1, 1), then for all k ≥ 0,

k − 1
2k + n

an
k [g] + k + n + 1

2k + n
an

k+2[g] = − 1
2π

an+2
k [A1g]. (1.5.11)

(ii) If (1 − t2) n+1
2 g′′(t) ∈ M(−1, 1), then for all k ≥ 0,

(k − 1)(k + 1)
2k + n

an
k [g] − (k + n − 1)(k + n + 1)

2k + n
an

k+2[g] = − 1
2π

an+2
k [A2g]. (1.5.12)

Proof. In the following, we use that the family (P n
k )∞

k=0 of Legendre polynomials is an
orthogonal system with respect to the inner product [ψ, g]n =

�
[−1,1] ψ(t)g(t)(1 − t2) n−3

2 dt

on [−1, 1]. Moreover, [P n
k , P n

k ]n = ωn(k+n−2)
ωn−1(2k+n−2)

�k+n−2
n−2

�−1 (see, e.g., [49, Section 3.3]).
For the first part of the lemma, note that due to (1.3.5), for every ψ ∈ C1[−1, 1],

[ψ, A1g]n+2 = [A∗
1ψ, g]n, (1.5.13)

where A∗
1 denotes the differential operator

A∗
1 = (1 − (n + 1)t2)Id + (1 − t2)t d

dt
.

Clearly A∗
1 increases the degree of a polynomial at most by two, so there exist xk,j ∈ R

such that for every k ≥ 0,

A∗
1P n+2

k =
k+2!
j=0

xk,jP n
j .

Choosing ψ = P n+2
k in (1.5.13) yields

1
ωn+1

an+2
k [A1g] = [P n+2

k , A1g]n+2 = [A∗
1P n+2

k , g]n =
k+2!
j=0

xk,j [P n
j , g]n = 1

ωn−1

k+2!
j=0

xk,jan
j [g].

Hence, it only remains to determine the numbers xk,j . By applying the identity above to
g = P n

j for 0 ≤ j ≤ k + 2, and employing (1.5.5), we obtain that

xk,k = −(k − 1)(n − 1)
2k + n

, xk,k+2 = −(k + n + 1)(n − 1)
2k + n

,

and xk,j = 0 for j /∈ {k, k + 2}, which proves (1.5.11).
For the second part of the proof, note that due to (1.3.5), for every ψ ∈ C2[−1, 1],

[ψ, A2g]n+2 = [A∗
2ψ, g]n, (1.5.14)
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where A∗
2 denotes the differential operator

A∗
2 = (1 − t2)2 d2

dt2 + (n − 1)((n + 1)t2 − 1)Id − (2n + 1)(1 − t2)t d

dt
.

Clearly A∗
2 increases the degree of a polynomial at most by two, so there exist yk,j ∈ R

such that for every k ≥ 0,

A∗
2P n+2

k =
k+2!
j=0

yk,jP n
j .

Choosing ψ = P n+2
k in (1.5.14) yields

1
ωn+1

an+2
k [A2g] = [P n+2

k , A2g]n+2 = [A∗
2P n+2

k , g]n =
k+2!
j=0

yk,j [P n
j , g]n = 1

ωn−1

k+2!
j=0

yk,jan
j [g].

Hence, it only remains to determine the numbers yk,j . By applying the identity above to
g = P n

j for 0 ≤ j ≤ k + 2, and employing (1.5.6), we obtain that

yk,k = −(k − 1)(k + 1)(n − 1)
2k + n

, yk,k+2 = −(k + n − 1)(k + n + 1)(n − 1)
2k + n

,

and yk,j = 0 for j /∈ {k, k + 2}, which proves (1.5.12).

We arrive at the following geometric inequality for convex bodies of revolution. This
shows that equality is attained in (1.5.3) only by line segments, which completes the proof
of Theorem A.
Theorem 1.5.10. Let L ∈ Kn be a convex body of revolution. Then

− 1
n − 1 ≤ an

2 [□nhL]
an

0 [□nhL] ≤ 1
(n − 1)2 (1.5.15)

with equality in the left hand inequality if and only if L is a line segment and equality in
the right hand inequality if and only if L is an (n − 1)-dimensional disk.
Proof. As an instance of (1.5.11),

an
2 [□nhL] + 1

n − 1an
0 [□nhL] = n

2π(n − 1)an+2
0 [A1hL].

Due to Lemma 1.5.6, we have that A1hL ≥ 0, which proves the first inequality in (1.5.15).
Moreover, equality holds precisely when A1hL = 0. According to Lemma 1.5.7 (i), this is
the case if and only if hL(t) = c1|t| + c2t for some c1, c2 ∈ R, which means that L is a line
segment.

As an instance of (1.5.12),

an
2 [□nhL] − 1

(n − 1)2 an
0 [□nhL] = n

2π(n − 1)2 an+2
0 [A2hL].

Due to Lemma 1.5.6, we have that A2hL ≥ 0, which proves the second inequality in
(1.5.15). Moreover, equality holds precisely when A2hL =0. According to Lemma 1.5.7 (ii),
this is the case if and only if hL(t) = c1

√
1 − t2 + c2t for some c1, c2 ∈ R, which means

that L is an (n − 1)-dimensional disk.

35



1 Fixed points of mean section operators

1.5.3 Even Minkowski valuations
This section is dedicated to even Minkowski valuations Φi ∈ MVali of degree 1 < i ≤ n−1.
In the previous subsection, we have shown that if Φi is generated by an origin-symmetric
convex body of revolution, then condition (C3) is fulfilled, unless Φi is a multiple of the
projection body map (see Theorems 1.5.4 and 1.5.10).

In general, the generating function of an even Minkowski valuation does not need to be
a support function. In this broader setting, we prove a weaker condition than (C3), which
we use to obtain information about the fixed points of the map Φi itself as opposed to Φ2

i .
To that end, we require the following version of Theorem 1.5.1, which can be obtained
from a minor modification of its proof, as was observed in [88].

Theorem 1.5.11 ([88]). Let 1 < i ≤ n − 1 and Φi ∈ MVali with generating function f
satisfying conditions (C1), (C2), and
(C3’) for all k ≥ 2,

an
k [□nf ]

an
0 [□nf ] <

1
i
.

Then there exists a C2 neighborhood of Bn where the only fixed points of Φi are Euclidean
balls.

Again, Corollaries 1.4.8 and 1.4.11 show that conditions (C1) and (C2) are fulfilled in
the weakly monotone case. Hence we obtain the following.

Theorem 1.5.12. Let 1 < i ≤ n−1 and Φi ∈ MVali be weakly monotone with generating
function f satisfying condition (C3’). Then there exists a C2 neighborhood of Bn where
the only fixed points of Φi are Euclidean balls.

The main result of this section will be that if Φi ∈ MVali is even, then its generating
function satisfies condition (C3’). We require the following lemma, which is a consequence
of a classical result by Firey [39]. We call a convex body of revolution smooth if it has a
C2(Sn−1) support function and A2hK > 0 on [−1, 1].

Lemma 1.5.13. Let 1 ≤ i < n − 1 and let φ ∈ C(Sn−1) be zonal and centered. Then φ is
the density of the i-th area measure of a smooth convex body of revolution if an only if for
all t ∈ (−1, 1),

φ̄(t) >
n − 1 − i

n − 1 A1
�
φ ∗ ğn

�
(t) > 0.

Proof. It was proved in [39] that φ is the density of the i-th area measure of a smooth
convex body if and only if for all t ∈ (−1, 1),

φ̄(t) > (n − 1 − i)(1 − t2)− n−1
2

�
(t,1)

φ̄(s)s(1 − s2)
n−3

2 ds > 0.

Therefore it only remains to show that for all t ∈ (−1, 1),�
(t,1)

φ̄(s)s(1 − s2)
n−3

2 ds = 1
n − 1(1 − t2)

n−1
2 A1

�
φ ∗ ğn

�
(t). (1.5.16)
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We have seen in Example 1.3.17 that the convolution transform Tğn is a bounded operator
from C(Sn−1) to C1(Sn−1), so both sides of (1.5.16) depend continuously on φ ∈ C(Sn−1)
with respect to uniform convergence. Therefore it suffices to show (1.5.16) only for smooth
φ.

To that end, let ζ = φ ∗ ğn ∈ C∞(Sn−1) and observe that according to (1.3.2),

φ̄(s) = □nζ(s) = 1
n − 1ΔSζ(s) + ζ̄(s) = 1

n − 1(1 − s2)ζ̄ ′′(s) + ζ̄(s) − sζ̄ ′(s).

A direct computation yields

φ̄(s)s(1 − s2)
n−3

2 = − 1
n − 1

d

ds


(1 − s2)

n−1
2 A1ζ̄(s)


.

Hence, we obtain (1.5.16), which completes the proof.

Next, we prove the following two technical lemmas. For smooth functions ψ ∈C∞[−1, 1],
we define □nψ = □nψ(⟨ē, ·⟩). Note that □nψ(t) = 1

n−1(1 − t2)ψ′′(t) + ψ(t) − tψ′(t) due to
(1.3.2).

Lemma 1.5.14. For every ψ ∈ C∞[−1, 1],

max
[−1,1]

A1ψ ≤ max
[−1,1]

□nψ. (1.5.17)

Proof. Let t0 ∈ [−1, 1] be a maximum point of A1ψ. We will show that

(1 − t2
0)ψ′′(t0) ≥ 0. (1.5.18)

If t0 = ±1, then clearly we have (1.5.18). If t0 ∈ (−1, 1), then

−t0ψ′′(t0) = (A1ψ)′(t0) = 0 and − ψ′′(t0) − t0ψ′′′(t0) = (A1ψ)′′(t0) ≤ 0,

which implies that t0 = 0 or that ψ′′(t0) = 0. In the latter case, we obtain (1.5.18) again.
In the case where t0 = 0, we obtain that −ψ′′(t0) ≤ 0, which also yields (1.5.18). Therefore

A1ψ(t0) = □nψ(t0) − 1
n−1(1 − t2

0)ψ′′(t0) ≤ □nψ(t0),

which proves (1.5.17).

Lemma 1.5.15. For every k ≥ 2,

min
[−1,1]

A1P n
k = A1P n

k (1) = −(k − 1)(k + n − 1)
n − 1 . (1.5.19)

Proof. According to (1.5.5), the function an
k [□n]−1A1P n

k is a convex combination of the
two Legendre polynomials P n+2

k−2 and P n+2
k . They both have 1 as their maximum value

on [−1, 1] and they both attain it at t0 = 1. Therefore, this must also be the case for
an

k [□n]−1A1P n
k , which proves (1.5.19).
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We now define a family of polynomials that turns out to be instrumental in the following.
Definition 1.5.16. For 1 ≤ i ≤ n − 1, k ≥ 0 and k ̸= 1, we define

Qn
k,i = P n

k + n − 1 − i

(k − 1)(k + n − 1)A1P n
k . (1.5.20)

Observe that for i = n − 1, the polynomial Qn
k,n−1 is the classical Legendre polynomial

P n
k . Denote the extrema of Qn

k,i on the interval [−1, 1] by

mn
k,i = min

[−1,1]
Qn

k,i and Mn
k,i = max

[−1,1]
Qn

k,i.

The following lemma about the minima mn
k,i is why we require k to be even.

Lemma 1.5.17. Let k ≥ 2 be even. Then the sequence (mn
k,i)

n−1
i=1 is strictly increasing,

that is,
mn

k,1 < mn
k,2 < · · · < mn

k,n−1. (1.5.21)
Proof. For fixed even k ≥ 2, define a family (ηt)t∈[−1,1] of affine functions by

ηt(s) = P n
k (t) + sA1P n

k (t)

and observe that it suffices to show that the function η defined by

η(s) = min
t∈[−1,1]

ηt(s) = min
[−1,1]

{P n
k + sA1P n

k }

is strictly decreasing on [0, ∞).
To that end, note that as the point-wise minimum of a family of affine functions, η

is a concave function. Next, note that since P n
k is an even Legendre polynomial, it is

minimized in the interior of [−1, 1], that is, there exists t0 ∈ (−1, 1) such that

η(0) = min
[−1,1]

P n
k = P n

k (t0) < 0.

Moreover, d
dtP

n
k (t0) = 0, so for every s > 0,

η(s) ≤ ηt0(s) = P n
k (t0) + sA1P n

k (t0) = (1 + s)P n
k (t0) < P n

k (t0) = η(0).

Since η is concave, this implies that η is strictly decreasing on [0, ∞), which completes the
proof.

The following two propositions are an extension of [88, Proposition 5.4].
Proposition 1.5.18. For 1 ≤ i ≤ n − 1 and k ≥ 2, denote by Jn

k,i the set of all λ ∈ R
for which 1 + λP n

k (⟨ē, ·⟩) is the density of the i-th area measure of a smooth convex body
of revolution. If 1 ≤ i < n − 1 and k ≥ 2 is even, then

− i

(n − 1)Mn
k,i

, − i

(n − 1)mn
k,i

�
⊆ Jn

k,i ⊆
�
− i

(n − 1)Mn
k,i

, − i

(n − 1)mn
k,i

�
. (1.5.22)

Moreover, if i = n − 1, then the interval on the right hand side of (1.5.22) is precisely the
set of all λ ∈ R for which 1 + λP n

k (⟨ē, ·⟩) is the density of the surface area measure of a
convex body of revolution.
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Proof. To simplify notation, all minima and maxima in this proof refer to the interval
[−1, 1]. Lemma 1.5.13 shows that λ ∈ Jn

k,i if and only if

1 + λP n
k (t) >

n − 1 − i

n − 1 − λ
n − 1 − i

(k − 1)(k + n − 1)A1P n
k (t) > 0 (1.5.23)

for all t ∈ (−1, 1). An easy rearrangement of (1.5.23) implies the right hand set inclusion
in (1.5.22). For the other set inclusion, let λ ∈ R and suppose that

− i

(n − 1)Mn
k,i

< λ < − i

(n − 1)mn
k,i

. (1.5.24)

Due to (1.5.19), we have that

(k − 1)(k + n − 1)
(n − 1) min A1P n

k

= −1 = − i

(n − 1)Qn
k,i(1) ≤ − i

(n − 1)Mn
k,i

< λ. (1.5.25)

Moreover, (1.5.21) combined with (1.5.17) applied to P n
k yields

λ < − i

(n − 1)mn
k,i

≤ − 1
mn

k,i

< − 1
mn

k,n−1
= (k − 1)(k + n − 1)

(n − 1) max□nP n
k

≤ (k − 1)(k + n − 1)
(n − 1) max A1P n

k

.

(1.5.26)
Finally, observe that (1.5.24), (1.5.25), and (1.5.26) jointly imply (1.5.23), thus λ ∈ Jn

k,i.
This shows the left hand set inclusion in (1.5.22).

For the second part of the proposition, observe that λ lies in the interval on the right
hand side of (1.5.22) precisely when 1 + λP n

k (⟨ē, ·⟩) ≥ 0. According to Minkowski’s
existence theorem (see, e.g., [96, p. 455]), this is the case if and only if 1 + λP n

k (⟨ē, ·⟩)
is the density of the surface area measure of a convex body.

Proposition 1.5.19. Let k ≥ 2 be even and In
k denote the set of all λ ∈ R for which

1 + λP n
k (⟨ē, ·⟩) is the support function of a convex body of revolution Kλ. Then

In
k =

�
− 1

(k − 1)(k + n − 1)mn
k,1

, − 1
(k − 1)(k + n − 1)Mn

k,1

�
. (1.5.27)

Proof. Denote the interval on the right hand side of (1.5.27) by Ĩn
k . Since the space of

support functions is a closed convex cone of C(Sn−1), the set In
k must be a closed interval.

Recall that S1(K, ·) = □nh(K, ·) for every convex body K ∈ Kn. Hence, (1.5.22) shows
that

In
k ⊇ an

k [□n]−1 cl(Jn
k,1) = Ĩn

k ,

where cl denotes the closure. For the converse set inclusion, let λ ∈ In
k . Then D2hKλ

(u) =
Pu⊥ + λD2P̆ n

k (u) is positive semidefinite for all u ∈ Sn−1. This implies that for every
ε > 0, the matrix Pu⊥ + (1 − ε)λD2P̆ n

k (u) is positive definite for all u ∈ Sn−1. Therefore,
1 + (1 − ε)λP̆ n

k is the support function of a convex body of revolution which is of class
C∞

+ , and thus, strictly convex (see, e.g., [96, Section 2.5]). Hence, (1.5.22) implies that
(1 − ε)λ ∈ Ĩn

k for all ε > 0, and thus, λ ∈ Ĩn
k .
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1 Fixed points of mean section operators

We are now in a position to prove the main result of this section.

Theorem 1.5.20. Let 1 < i ≤ n − 1 and Φi ∈ MVali be non-trivial. Then its generating
function f satisfies for all even k ≥ 2,

an
k [□nf ]

an
0 [□nf ] <

1
i
.

Proof. First, observe that for every convex body K ∈ Kn,

Si(K, ·) ∗ □nf = □n(Si(K, ·) ∗ f) = □nh(ΦiK, ·) = S1(ΦiK, ·),
thus the convolution transform T□nf maps i-th order area measures to first order area
measures. Moreover, for every λ ∈ R,

(1 + λP n
k (⟨ē, ·⟩)) ∗ □nf = an

0 [□nf ] + λan
k [□nf ]P n

k (⟨ē, ·⟩).
Hence, we obtain that

an
k [□nf ]

an
0 [□nf ]J

n
k,i ⊆ In

k .

The descriptions of the intervals Jn
k,i and In

k given in (1.5.22) and (1.5.27) imply that

an
k [□nf ]

an
0 [□nf ] ≤ 1

i

mn
k,i

mn
k,1

<
1
i
,

where the strict inequality is due to (1.5.21).

Combining Theorem 1.5.20 with Theorem 1.5.12, we obtain the following.

Corollary 1.5.21. Let 1 < i ≤ n − 1 and Φi ∈ MVali be weakly monotone and even.
Then there exists a C2 neighborhood of Bn where the only fixed points of Φi are Euclidean
balls.

Remark 1.5.22. Computational simulations suggest that for every 1 ≤ i ≤ n − 1 and
k ≥ 2, the maximum of Qn

k,i on [−1, 1] is attained in t = 1, that is,

Mn
k,i = Qn

k,i(1) = i

n − 1 . (1.5.28)

As an immediate consequence, the intervals in (1.5.22) could be simplified.
Computational simulations also suggest that for 1 ≤ i ≤ n − 1 and for every even k ≥ 4,

− 1
n − 1 < mn

k,i. (1.5.29)

If both (1.5.28) and (1.5.29) were shown to be true, then the argument in the proof of
Theorem 1.5.20 would immediately imply that whenever 1 < i ≤ n − 1 and Φi ∈ MVali
is non-trivial with generating function f , then for all even k ≥ 4,

−1
i

<
an

k [□nf ]
an

0 [□nf ] .
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1 Fixed points of mean section operators

1.A Appendix

Proof of Lemma 1.3.3. We may assume that (1 − t2)
β
2 g′(t) is a positive measure: all

statements of the lemma follow from this case by the Jordan decomposition theorem
and linearity. Thus g′ itself is a locally finite positive measure on (−1, 1), so there exists
some constant c ∈ R such that for almost all t ∈ (−1, 1),

g(t) =
�

c − g′((t, 0]), t < 0,
c + g′((0, t]), t ≥ 0.

We may assume that c = g(0) = 0. Since g is an increasing function, we have that g ≤ 0
on (−1, 0] and g ≥ 0 on [0, 1).

For 0 < a < 1, Lebesgue-Stieltjes integration by parts yields

β

�
(−a,a]

t(1 − t2)
β−2

2 g(t)dt =
�

(−a,a]
(1 − t2)

β
2 g′(dt) − g′((−a, a])(1 − a2)

β
2

≤
�

(−a,a]
(1 − t2)

β
2 g′(dt).

By passing to the limit a → 1− and applying the monotone convergence theorem, we
obtain that (1 − t2)

β−2
2 g(t) is integrable on (−1, 1).

For the second part of the lemma, note that since g is increasing,

g(a)(1 − a2)
β
2 = βg(a)

�
(a,1)

t(1 − t2)
β−2

2 dt ≤ β

�
(a,1)

g(t)t(1 − t2)
β−2

2 dt

and the right hand side tends to zero as a tends to 1. An analogous argument applies to
−a, thus

lim
a→1−

g(a)(1 − a2)
β
2 = lim

a→1−
g(−a)(1 − a2)

β
2 = 0.

Suppose now that ψ is as stated above. For 0 < a < 1, Lebesgue-Stieltjes integration by
parts yields�

(−a,a]
ψ(t)g′(dt) +

�
(−a,a]

ψ′(t)g(t)dt = (g(a) − g(−a))(ψ(a) − ψ(−a)).

Due to our assumptions on ψ, the right hand hand side tends to zero as a tends to 1.
Thus, by passing to the limit a → 1− and applying the dominated convergence theorem,
we obtain (1.3.5).

Proof of Lemma 1.3.4. First, fix v, α and β and observe that it suffices to find a family
of bounded linear operators Dk : Ck(Sn−1\{±v}) → C(Sn−1\{±v}) such that for every
φ ∈ C∞(Sn−1\{±v}) and w ∈ v⊥,

dk

dtk
Jv[⟨·, w⟩α(1 − ⟨·, v⟩2)

β
2 φ](t) = (1 − t2)−kJv[⟨·, w⟩α(1 − ⟨·, v⟩2)

β
2 Dkφ](t).
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1 Fixed points of mean section operators

We will construct this family Dk inductively, starting with D0 = Id.
For the induction step, define a first order differential operator D̃k by

D̃kφ(u) = ⟨∇Sφ(u), Pu⊥v⟩ − 2


n−3+α+β
2 − (k − 1)


⟨u, v⟩φ(u).

A straightforward computation using spherical cylinder coordinates shows that

d

dt


(1 − t2)−(k−1)Jv[⟨·, w⟩α(1 − ⟨·, v⟩2)

β
2 φ](t)


= d

dt


(1 − t2)

n−3+α+β
2 −(k−1)

�
Sn−1∩v

φ(tv +
 

1 − t2u)du


= (1 − t2)−kJv[⟨·, w⟩α(1 − ⟨·, v⟩2)

β
2 D̃kφ](t),

thus we see that the operators Dk = D̃kD̃k−1 · · · D̃1 have the desired property. Since
every D̃j is a bounded linear operator from Cj(Sn−1\{±v}) to Cj−1(Sn−1\{±v}), it
follows by induction that every Dk is a bounded linear operator from Ck(Sn−1\{±v})
to C(Sn−1\{±v}).

Proof of Lemma 1.4.4. Suppose that ν ∈ C−∞(Sn−1) is weakly positive, that is, ν = µ+y
for some positive measure µ and some linear function y. Then for every positive centered
φ ∈ C∞(Sn−1), we have that ⟨φ, ν⟩C−∞ = ⟨φ, µ + y⟩C−∞ ≥ 0.

Conversely, suppose that ν ∈ C−∞(Sn−1) is not weakly positive. Observe that the
set of weakly positive distributions is a closed convex cone of C−∞(Sn−1). Due to the
Hahn-Banach separation theorem there exists some φ ∈ C∞(Sn−1) such that

⟨φ, ν⟩C−∞ < ⟨φ, µ + y⟩C−∞

for every positive measure µ and linear function y. By fixing µ = 0 and varying y ∈ Hn
1 ,

we see that φ is centered. By fixing y = 0 and varying µ ∈ M+(Sn−1), we see that φ ≥ 0.
Finally, by choosing µ = y = 0, we see that ⟨φ, ν⟩C−∞ < 0.
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2 Lefschetz operators on convex
valuations

2.1 Introduction
Scalar valued valuations. A valuation on the space K(Rn) of convex bodies (convex,
compact subsets) in Rn is a functional ϕ : K(Rn) → R such that

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L)

whenever K, L, K ∪ L ∈ K(Rn). Valuations have a long history in convex and integral
geometry (see, e.g., [3–6,18,38,51,52,63,79]). We denote by Val the space of continuous,
translation invariant valuations. By a classical result of McMullen [86], the space Val
is the direct sum of the subspaces Vali of valuations that are homogeneous of degree
i ∈ {0, . . . , n} (that is, ϕ(λK) = λiϕ(K) for all K ∈ K(Rn) and λ ≥ 0).

Motivated by the Hard Lefschetz theorem from Kähler geometry, Alesker [5] introduced
Lefschetz operators on valuations. For ϕ ∈ Val and K ∈ K(Rn),

(Λϕ)(K) = d

dt

####
t=0+

ϕ(K + tBn) and (Lϕ)(K) =
�

Grn,n−1
ϕ(K ∩ H) dH,

where Bn is the unit ball in Rn and Grn,j is the Grassmann manifold of affine
j-dimensional subspaces of Rn, endowed with a (suitably normalized) rigid motion in-
variant measure. The Lefschetz operators are a powerful tool in valuation theory, since
they allow to transfer results between valuations of different degrees (see, e.g., [5,7,12,14,
21, 69–71, 89, 97]). The derivation operator Λ decreases the degree of a valuation by one;
the integral operator L increases it by one.

In this article, we investigate the action of the Lefschetz operators on two well-known
representations of valuations: Klain–Schneider functions for scalar valued valuations and
generating functions for Minkowski valuations. Denoting by Grn,i the Grassmann manifold
of i-dimensional subspaces of Rn, Klain [61] showed that if ϕ ∈ Vali is even and E ∈ Grn,i,
then ϕ|E = cEvolE for some cE ∈ R, where ϕ|E is the restriction of ϕ to convex bodies
in E. Its Klain function Klϕ ∈ C(Grn,i), Klϕ : E �→ cE , uniquely determines ϕ ∈ Vali, as
was proved by Klain [62].

Schuster and Wannerer [102] showed that for smooth valuations (see Section 2.5.1), the
Lefschetz operators act on the Klain function by a Radon transform between the different
Grassmannians. In the following, κk denotes the volume of Bk and GrE

n,i ⊆ Grn,i denotes
the submanifold of spaces that are contained in E or that contain E, depending on the
dimension of E. Integration is with respect to the unique probability measure invariant
under rotations fixing E.
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2 Lefschetz operators on convex valuations

Theorem ([102]). Let 1 ≤ i ≤ n − 1 and ϕ ∈ Vali be smooth and even.

(i) KlΛϕ(E) = (n − i + 1)κn−i+1
κn−i

�
GrE

n,i

Klϕ(F )dF for E ∈ Grn,i−1, if i > 1.

(ii) KlLϕ(E) = (i + 1)κn−1κi+1
nκnκi

�
GrE

n,i

Klϕ(F )dF for E ∈ Grn,i+1, if i < n − 1.

In the odd case, Schneider [95] introduced the natural counterpart to the Klain function,
called the Schneider function, and showed that it determines the respective valuation
uniquely. We combine these representations for the even and odd part of a valuation
ϕ ∈ Vali into one common continuous function on the flag manifold Fln,i+1 = {(E, u) :
E ∈ Grn,i+1, u ∈ Si(E)}, where Si(E) denotes the unit sphere in E. This function,
called its Klain–Schneider function and denoted by KSϕ, has the property that for every
E ∈ Grn,i+1,

ϕ(K) =
�
Si(E)

KSϕ(E, u) SE
i (K, du), K ∈ K(E),

where SE
i (K, · ) is the surface area measure of K relative to E (cf. [96, Section 4.2]).

This determines KSϕ(E, · ) only up to the addition of linear functions, so for now, we
define it as the corresponding equivalence class. By the results of Klain and Schneider, ϕ
is uniquely determined by KSϕ.

With our first main result, we describe the action of the Lefschetz operators on the
Klain–Schneider function, generalizing the theorem above. Here, · |E denotes the orthog-
onal projection onto a linear subspace E ⊆ Rn and prEu = ∥u|E∥−1u|E for u ∈ Sn−1 \E⊥.

Theorem 2.A. Let 1 ≤ i ≤ n − 1 and ϕ ∈ Vali.
(i) If i > 1, then for all (E, u) ∈ Fln,i,

KSΛϕ(E, u) = (n − i + 1)κn−i+1
κn−i

�
GrE∩u⊥

n,i

KSϕ(span(F ∪ u), prF ⊥u)dF.

(ii) If i < n − 1, then for all (E, u) ∈ Fln,i+2,

KSLϕ(E, u) = (i + 2)κn−1κi+2
nκnκi+1

�
GrE

n,i+1

KSϕ(F, prF u)∥u|F∥dF.

In fact, our results extend to more general Lefschetz operators: we can describe the
Alesker product and the Bernig–Fu convolution with an even valuation of degree and
codegree one, respectively (see Remarks 2.3.5 and 2.3.7).

We also want to emphasize that our approach is very different from that in [102]. Our
proof of (ii) only uses simple geometric properties of polytopes. For (i), we reduce the
general case to valuations of the form ϕ(K) = V (K [i], C) defined in terms of a mixed volume
with a family C = (C1, . . . , Cn−i) of fixed reference bodies. Indeed, as a consequence
of his irreducibility theorem [4], Alesker proved that such valuations are dense in Vali,
confirming a conjecture by McMullen [86] (this was recently refined by Knoerr [66] for
smooth valuations).
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2 Lefschetz operators on convex valuations

The computation of the Klain–Schneider function of a mixed volume boils down to a
relation between mixed area measures and surface are measures relative to a subspace. In
order to establish the required relation, we generalize the spherical projections and liftings
that were introduced by Goodey, Kiderlen, and Weil [44].

Theorem 2.B. Let 0 ≤ i ≤ n − 1, E ∈ Grn,i+1, and C = (C1, . . . , Cn−i−1) be a family of
convex bodies with C2 support functions. Then for all K ∈ K(E),

S(K [i], C, · ) = 1�n−1
i

�π∗
E,CSE

i (K, · ). (2.1.1)

Here, S(K [i], C, · ) denotes the mixed area measure and π∗
E,C denotes the C-mixed

spherical lifting, which we define in Section 2.2 as a linear operator mapping measures
on Si(E) to measures on Sn−1. The special case where the reference bodies are balls was
treated in [44].

Minkowski valuations. We now turn to valuations that are convex body valued: A
Minkowski valuation is a map Φ : K(Rn) → K(Rn) such that

Φ(K ∪ L) + Φ(K ∩ L) = ΦK + ΦL

whenever K, L, K ∪L ∈ K(Rn), where addition on K(Rn) is the usual Minkowski addition.
In the last two decades, starting with the seminal work of Ludwig [75, 76], considerable
advances in the theory of Minkowski valuations have been made, including classification
results and isoperimetric type inequalities (see, e.g., [12, 27, 50, 53, 77, 87–89, 97]). We
denote by MVal the space of continuous, translation invariant Minkowski valuations
that intertwine all rotations and by MVali the subspace of i-homogeneous Minkowski
valuations.

Through the correspondence between a convex body K ∈ K(Rn) and its support
function hK ∈ C(Sn−1), hK(u) = maxx∈K⟨u, x⟩ with the Euclidean inner product ⟨ · , · ⟩,
it is natural to define the Lefschetz operators on the space MVal by

h(ΛΦ)(K) = d

dt

####
t=0+

hΦ(K+tBn) and h(LΦ)(K) =
�

Grn,n−1
hΦ(K∩H) dH,

where these identities are to be understood pointwise. The integration operator L clearly
preserves convexity, whereas the non-trivial fact that the derivation operator Λ is well-
defined on MVal is due to Parapatits and Schuster [89].

Every Φ ∈ MVal is determined by its associated real valued valuation, which is the
SO(n − 1)-invariant valuation ϕ ∈ Val defined by ϕ(K) = hΦK(en), where en is the
north pole of Sn−1. In this sense, Minkowski valuations present a special case of real
valued valuations and in addition to the Klain–Schneider function, we have a more specific
representation available involving the spherical convolution (see Appendix 2.A) and the
i-th order area measure Si(K, · ) = S(K [i], Bn[n−i−1], · ).
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2 Lefschetz operators on convex valuations

Theorem ([36, 103]). Let 1 ≤ i ≤ n − 1 and Φ ∈ MVali. Then there exists a unique
centered, SO(n − 1)-invariant function fΦ ∈ L1(Sn−1) such that

hΦK = Si(K, · ) ∗ fΦ, K ∈ K(Rn). (2.1.2)

The function fΦ is called the generating function of Φ, and by centered, we mean that
fΦ is orthogonal to all linear functions. The representation above was first established
by Schuster and Wannerer [103] for a measure fΦ and then improved by Dorrek [36] to
fΦ ∈ L1(Sn−1). More recently, the first- and third-named author [27] refined this further
by showing that fΦ is in fact locally Lipschitz continuous outside the poles ±en.

The action of the Lefschetz derivation operator Λ on the generating function is a simple
multiplication by a constant, which is a direct consequence of the Steiner formula for
area measures. For the integration operator L however, things are far more intricate: For
Φ ∈ MVali,

fΛΦ = ifΦ and fLΦ = fΦ ∗ ρi (2.1.3)

with some unique SO(n − 1)-invariant, centered distribution ρi on Sn−1, as was shown
in [103]. Since this is a purely structural statement, describing the action of the Lefschetz
integration operator L on Minkowski valuations boils down to describing the distribution
ρi. This is the content of our second main result.

Theorem 2.C. Let 1 ≤ i < n − 1. Then ρi is an L1(Sn−1) function that is smooth on
Sn−1 \ {en} and strictly positive up to the addition of a linear function. Moreover, the
function ρ̄i, defined by ρi(u) = ρ̄i(⟨en, u⟩), satisfies for all t ∈ (−1, 1),

(1 − t2) d2

dt2 ρ̄i(t) − nt
d

dt
ρ̄i(t) − i(n − i − 1)ρ̄i(t) = 0. (2.1.4)

In particular, we obtain a representation of ρi in terms of a hypergeometric function. The
positivity of ρi has several notable consequences. Whenever Φ is generated by the support
function of a body of revolution, then so is LΦ. This answers a question of Schuster [100].
Moreover, the combined Lefschetz operators Λ ◦L and L ◦ Λ act on Minkowski valuations
as a composition with some Minkowski endomorphism, that is, a Minkowski valuation in
MVal1.

Corollary. Let 1 ≤ i < n − 1. There exists Ψ(i) ∈ MVal1 such that

Λ(LΦi) = Ψ(i) ◦ Φi and L(ΛΦi+1) = Ψ(i) ◦ Φi+1

for every Φi ∈ MVali and Φi+1 ∈ MVali+1.

Subsequently, the examples of Minkowski valuations that are currently known are pre-
served under the Lefschetz operators (see Sections 2.4.2 and 2.5.3). Moreover, we want to
point out that the notion of generating functions and the validity of (2.1.3) extends to the
much larger class of spherical valuations (see Section 2.5.1), and thus, so does the scope
of Theorem 2.C.

46



2 Lefschetz operators on convex valuations

Organization of the article In Section 2.2, we introduce mixed spherical projections
and liftings and prove Theorem 2.B. We apply this in Section 2.3 to the Klain–Schneider
function of scalar valued valuations; in there, we show Theorem 2.A. Then, in Section 2.4
we turn to Minkowski valuations, discussing the structure of the space MVal and making
some key preparations. Section 2.5 is devoted to the action of the Lefschetz operators on
generating functions; in there, we prove Theorem 2.C and its consequences. Finally, in
Section 2.6, we discuss the connection between generating functions and Klain–Schneider
functions.

2.2 Mixed spherical projections and liftings
In this section, we recall weighted spherical projections and lifting and introduce a mixed
version of them with the main goal of proving Theorem 2.B. To that end, we need to fix
some notation: For E ∈ Grn,k,

Hn−k(E, u) = {v ∈ Sn−1 \ E⊥ : prEv = u}
denote the relatively open (n − k)-dimensional half-sphere generated by E⊥ and u ∈
Sk−1(E). Note that Hn−k(E, u) = Sn−k(E⊥ ∨ u) ∩ u+, where we denote by E′ ∨ u =
span(E′∪u) the subspace generated by E′ and u ∈ Sn−1, and by u+ = {x ∈ Rn : ⟨x, u⟩ > 0}
the open half-space in the direction of u ∈ Sn−1. Throughout, integration on j-dimensional
spheres or half-spheres, unless indicated otherwise, is with respect to the j-dimensional
Hausdorff measure Hj .

Now we want to recall the weighted spherical liftings and projections that were intro-
duced by Goodey, Kiderlen, and Weil [44]. These prove to be helpful when it comes to
relating the geometry of convex bodies in a subspace to their geometry relative to the
ambient space. In the following, M(Sn−1) denotes the space of finite signed measures on
Sn−1.

Definition 2.2.1 ([44]). Let 1 ≤ k ≤ n, E ∈ Grn,k, and m > −k. The m-weighted
spherical projection is the bounded linear operator

πE,m : C(Sn−1) → C(Sk−1(E)),

(πE,mf)(u) =
�
Hn−k(E,u)

f(v)⟨u, v⟩k+m−1dv, u ∈ Sk−1(E).

The m-weighted spherical lifting is its adjoint operator

π∗
E,m : M(Sk−1(E)) → M(Sn−1).

If m > 0, then (π∗
E,mf)(u) = ∥u|E∥mf(prEu) for f ∈ C(Sk−1(E)) and u ∈ Sn−1. Hence,

π∗
E,m restricts to a bounded linear operator C(Sk−1(E)) → C(Sn−1), and by duality, πE,m

naturally extends to an operator M(Sn−1) → M(Sk−1(E)).
Goodey, Kiderlen, and Weil [44] showed the following formula for convex bodies of a

subspace, expressing its i-th order area measure relative to the ambient space in terms
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of the one relative to the subspace. As a general reference for mixed area measures and
volumes, we cite [96, Chapters 4 and 5].

Theorem 2.2.2 ([44, Theorem 6.2]). Let 1 ≤ i < k < n and E ∈ Grn,k. Then for all
K ∈ K(E),

Si(K, · ) =
�k−1

i

��n−1
i

�π∗
E,−iS

E
i (K, · ). (2.2.1)

For our purposes, the relevant instance of this is when i = k − 1 and the measure
SE

i (K, · ) is the surface area measure of K relative E. In this instance, we propose a
generalization of Definition 2.2.1. Here and in the following, the notational convention
(L1, . . . , Li)|E = (L1|E, . . . , Li|E) where L1, . . . , Li ∈ K(Rn) and E ⊆ Rn is a linear
subspace, will be used frequently.

Definition 2.2.3. Let 1 ≤ k ≤ n and E ∈ Grn,k. Also, let C1, . . . , Cn−k ∈ K(Rn) and set
C = (C1, . . . , Cn−k). The C-mixed spherical projection is the bounded linear operator

πE,C : C(Sn−1) → C(Sk−1(E)),

(πE,Cf)(u) =
�
Hn−k(E,u)

f(v) SE⊥∨u(C|(E⊥ ∨ u), dv), u ∈ Sk−1(E).

The C-mixed spherical lifting is its adjoint operator

π∗
E,C : M(Sk−1(E)) → M(Sn−1).

In the instance where k = n and the family C is empty, the above is to be understood as
πE,C = Id and π∗

E,C = Id. Next, as an intermediate step, we prove a polytopal version of
Theorem 2.B. The following reduction theorem for mixed volumes will be a key ingredient.

Theorem 2.2.4 ([96, Theorem 5.3.1]). Let 1 ≤ k < n and E ∈ Grn,k. For all convex
bodies K ∈ K(E) and C1, . . . , Cn−k ∈ K(Rn),

V (K [k], C1, . . . , Cn−k) = 1�n
k

�Vk(K)V E⊥(C1|E⊥, . . . , Cn−k|E⊥), (2.2.2)

where V E⊥ denotes the mixed volume relative to the subspace E⊥.

Theorem 2.2.5. Let 1 ≤ i < n − 1, E ∈ Grn,i+1, and Q = (Q1, . . . , Qn−i−1) be a family
of polytopes in Rn. Then for every polytope P ∈ K(E),

Sn−1\E⊥S(P [i], Q, · ) = 1�n−1
i

�π∗
E,QSE

i (P, · ). (2.2.3)

Proof. First, observe that both sides of (2.2.3) are multilinear in the reference polytopes
Q1, . . . , Qn−i−1. Thus, by polarization, it suffices to consider the case where Q1 = · · · =
Qn−i−1 = Q for some polytope Q ∈ K(Rn).
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2 Lefschetz operators on convex valuations

The mixed area measure of polytopes P1, . . . , Pn−1 ∈ K(Rn) can be written as

S(P1, . . . , Pn−1, · ) =
!

u∈Sn−1

V u⊥(F (P1, u), . . . , F (Pn−1, u))δu, (2.2.4)

where V u⊥ denotes the mixed volume relative to u⊥ and F (Pj , u) denotes the support set
of Pj with outer unit normal u ∈ Sn−1 (cf. [96, (5.22)]). Note that the sum in fact extends
only over the outer unit normals of the facets of P1 + · · · + Pn−1, and thus, is a finite sum.
By (2.2.4), we have that for every f ∈ C(Sn−1),�

Sn−1\E⊥
f(u)S(P [i], Q[n−i−1], du) =

!
u∈Sn−1\E⊥

f(u)V u⊥(F (P, u)[i], F (Q, u)[n−i−1])

= 1�n−1
i

� !
u∈Sn−1\E⊥

f(u)Vi(F (P, u))Vn−i−1(F (Q, u)|(E ∩ u⊥)⊥(u⊥)),

where in the second equality, we applied reduction formula (2.2.2) relative to u⊥, using the
fact that E ∩ u⊥ ∈ Gru⊥

n,i for u ∈ Sn−1 \ E⊥, and denoting by (E ∩ u⊥)⊥(u⊥) the orthogonal
complement of E ∩ u⊥ relative to u⊥.

Every x ∈ Rn can be written as the orthogonal sum x = x|(E ∩ u⊥) + x|(E⊥ ∨ u); by
choosing x ∈ u⊥, this yields x|(E ∩ u⊥)⊥(u⊥) = x|(E⊥ ∨ u). Thus,�

Sn−1\E⊥
f(u)S(P [i], Q[n−i−1], du)

= 1�n−1
i

� !
u∈Sn−1\E⊥

f(u)Vi(F (P, u))Vn−i−1(F (Q, u)|E⊥ ∨ u)

= 1�n−1
i

� !
u∈Si(E)

Vi(F (P, u))
!

v∈Hn−i−1(E,u)
f(v)Vn−i−1(F (Q, v)|(E⊥ ∨ u)),

(2.2.5)

where in the second equality, we used that for every v ∈ Sn−1 \ E⊥, there exists a unique
u ∈ Si(E) such that v ∈ Hn−i−1(E, u); moreover, F (P, v) = F (P, u) and E⊥ ∨ v = E⊥ ∨ u.
Next, note that an instance of (2.2.4),

(πE,Qf)(u) =
!

v∈Hn−i−1(E,u)
f(v)Vn−i−1(F (Q|(E⊥ ∨ u), v)). (2.2.6)

Note that F (C, v)|E′ = F (C|E′, v) for every convex body C ∈ K(Rn), subspace E′ ⊆ Rn,
and direction v ∈ E′. Hence, plugging (2.2.6) into (2.2.5) yields�

Sn−1\E⊥
f(u)S(P [i], Q[n−i−1], du) = 1�n−1

i

� !
u∈Si(E)

(πE,Qf)(u)Vi(F (P, u))

= 1�n−1
i

� �
Si(E)

(πE,Qf)(u)SE
i (P, du) = 1�n−1

i

� �
Sn−1

f(u) [π∗
E,QSE

i (P, · )](du),

where the second equality is another instance of (2.2.4). Since f ∈ C(Sn−1) was arbitrary,
this yields Sn−1\E⊥S(P [i], Q[n−i−1], · ) = 1/

�n−1
i

�
π∗

E,QSE
i (P, · ). As was noted at the

beginning of the proof, this shows the theorem.
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2 Lefschetz operators on convex valuations

In the theorem above, we have deliberately avoided the set Sn−1 ∩ E⊥. This is because
in the polytopal case, S(P [i], Q, · ) assigns positive mass to this set which can not be
captured by the mixed spherical lifting. However, if we replace the polytopes Qj by
smooth bodies Cj , then this is no longer the case, as the following lemma shows.

Lemma 2.2.6. Let 0 ≤ i < n − 1 and C = (C1, . . . , Cn−i−1) be a family of convex bodies
with C2 support functions. Then for all K ∈ K(Rn), the mixed area measure S(K [i], C, · )
is absolutely continuous with respect to Hn−i−1.

Proof. First, note that the i-th area measure of K is absolutely continuous with respect
to Hn−i−1 (cf. [96, Theorem 4.5.5]). In order to pass to the mixed area measure, recall
that if L1, . . . , Ln−1 ∈ K(Rn) have C2 support functions, then

S(L1, . . . , Ln−1, du) = D(D2hL1(u), . . . , D2hLn−1(u))du,

where D2hL(u) denotes the restriction of the Hessian of the support function hL (as a one-
homogeneous function on Rn) to the hyperplane u⊥ and D denotes the mixed discriminant
(cf. [96, (2.68) and (5.48)]). Thus, whenever K also has a C2 support function,

S(K [i], C1, . . . , Cn−i−1, du) = D(D2hK(u)[i], D2hC1(u), . . . , D2hCn−i−1(u))du

≤ ∥hC1∥C2 · · · ∥hCn−i−1∥C2D(D2hK(u)[i], Id[n−i−1])du = MSi(K, du),

where we used the monotonicity of mixed discriminants and M > 0 is a constant depending
on C1, . . . , Cn−i−1 but not on K. The obtained inequality

S(K [i], C1, . . . , Cn−i−1, · ) ≤ MSi(K, · ),

by continuity of the mixed area measure, extends to all convex bodies K ∈ K(Rn), which
concludes the proof.

Now we want to pass from the polytopal to the smooth case. To that end, we need
the following formulation of the classical Portmanteau theorem that characterizes weak
convergence of measures.

Theorem 2.2.7 ([64, Theorem 13.16]). Let µm, µ be finite positive measures on a compact
metric space X. Then the following are equivalent:

(a) µm → µ weakly.
(b) For every f ∈ C(X), we have limm→∞

�
X fdµm =

�
X fdµ.

(c) For every bounded, measurable function f on X such that its discontinuity points
are a set of µ-measure zero, limm→∞

�
X fdµm =

�
X fdµ.

We are now ready to prove Theorem 2.B, which we state here again.

Theorem 2.2.8. Let 0 ≤ i < n − 1, E ∈ Grn,i+1, and C = (C1, . . . , Cn−i−1) be a family
of convex bodies with C2 support functions. Then for all K ∈ K(E),

S(K [i], C, · ) = 1�n−1
i

�π∗
E,CSE

i (K, · ). (2.2.7)
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2 Lefschetz operators on convex valuations

Proof. As in the proof of Theorem 2.2.5, it suffices to consider the case where
C1 = · · · = Cn−i−1 = C for some body C ∈ K(Rn) with a C2 support function. Next, let
K = P ∈ K(E) be a polytope and let Qm ∈ K(Rn) be a sequence of polytopes such that
Qm → C in the Hausdorff metric. By Theorem 2.2.5, for every f ∈ C(Sn−1),�

Sn−1 Sn−1\E⊥(u)f(u)S(P [i], Q[n−i−1]
m , du) = 1�n−1

i

� �
Si(E)

(πE,Qmf)(u)SE
i (P, du).

Now we want to pass to the limit m → ∞ on both sides. On the left hand side, we have
weak convergence of the mixed area measures and according to Lemma 2.2.6, the mixed
area measure S(P [i], C [n−i−1], · ) vanishes on Sn−1 ∩ E⊥, as it is of Hausdorff dimension
n − i − 2. Thus, by Theorem 2.2.7,

lim
m→∞

�
Sn−1 Sn−1\E⊥(u)f(u)S(P [i], Q[n−i−1]

m , du) =
�
Sn−1

f(u)S(P [i], C [n−i−1], du).

For the limit on the right hand side, note that for every fixed u ∈ Si(E), the projections
Qm|(E⊥ ∨ u) converge to C|(E⊥ ∨ u). This implies weak convergence of the respective
surface area measures relative to E⊥ ∨ u. The support function of C|(E⊥ ∨ u) is just
the restriction to Sn−i−1(E⊥ ∨ u) of the support function of C, and thus, is again of
class C2. Consequently, the respective surface area measure relative to E⊥∨u is absolutely
continuous; in particular, it vanishes on Sn−i−1(E⊥ ∨ u) ∩ E⊥, so Theorem 2.2.7 implies
that

lim
m→∞

�
Sn−i−1(E⊥∨u)

Hn−i−1(E,u)(v)f(v)SE⊥∨u
n−i−1(Qm|(E⊥ ∨ u), dv)

=
�
Sn−i−1(E⊥∨u)

Hn−i−1(E,u)(v)f(v)SE⊥∨u
n−i−1(C|(E⊥ ∨ u), dv).

That is, limm→∞ πE,Qmf = πE,Cf pointwise on Si(E). Since the measure SE
i (P, · ) has

finite support, passing to the limit m → ∞ yields�
Sn−1

f(u)S(P [i], C [n−i−1], du) = 1�n−1
i

� �
Si(E)

(πE,Cf)(u)SE
i (P, du).

Observe that both sides of this identity depend continuously on P , and thus, by approx-
imation, we may replace P by any convex body K ∈ K(Rn). Since f ∈ C(Sn−1) was
arbitrary, we obtain for every K ∈ K(Rn),

S(K [i], C [n−i−1], · ) = 1�n−1
i

�π∗
E,CSE

i (K, · ).

As was noted at the beginning of the proof, this shows the theorem.

Remark 2.2.9. Comparing Theorems 2.2.2 and 2.2.8, it might be natural to ask for a
unification that deals with mixed area measures of the form S(K [i], Bn[k−i−1], C, · ), where
E ∈ Grn,k, K ∈ K(E), and C = (C1, . . . , Cn−k). However, the methods in the proofs of
Theorems 2.2.2 and 2.2.8 seem to be disconnected, and thus, it is not immediately clear
to the authors how such a unification would look like and how it could be obtained.
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2 Lefschetz operators on convex valuations

2.3 Action on the Klain–Schneider function
This section is devoted to describing the action of the Lefschetz operators on the Klain–
Schneider function, which from now on we require to be centered. First, we introduce the
aforementioned Radon type transforms. Then we consider the operator Λ, where we apply
our findings from the previous section; afterwards we turn to the operator L.

2.3.1 Two Radon type transforms
Let us now formally introduce the integral transforms that occur in Theorem 2.A. Through-
out, integration on compact Grassmann manifolds, unless indicated otherwise, is with
respect to the unique rotationally invariant probability measure.

Definition 2.3.1. Let 1 ≤ k ≤ n.
(i) If k > 1, we define R̃k,k−1 : C(Fln,k) → C(Fln,k−1) by

[R̃k,k−1ζ](E, u) =
�

GrE∩u⊥
n,k−1

ζ(F ∨ u, prF ⊥u) dF, (E, u) ∈ Fln,k−1.

(ii) If k < n, we define R̃k,k+1 : C(Fln,k) → C(Fln,k+1) by

[R̃k,k+1ζ](E, u) =
�

GrE
n,k

ζ(F, prF u)∥u|F∥ dF, (E, u) ∈ Fln,k+1.

Subsequently, we will need the fact that these transforms map linear functions to linear
functions. To that end, recall that the orthogonal projection π1 from L2(Sn−1) onto the
space of linear functions is given by

(π1f)(u) = 1
ωn

�
Sn−1

⟨u, v⟩f(v) dv, u ∈ Sn−1,

where ωk = kκk denotes the surface area of Sk−1. For E ∈ Grn,k, we denote by πE
1 the

respective orthogonal projection relative to E. Moreover, we define an operator π
⟨k⟩
1 on

the space C(Fln,k) by [π⟨k⟩
1 ζ](E, u) = [πE

1 ζ(E, · )](u) for ζ ∈ C(Fln,k) and (E, u) ∈ Fln,k.
The interplay between the Radon type transforms defined above and linear functions is
summarized in the following proposition, which we prove in Appendix 2.C.

Proposition 2.3.2. Let 1 ≤ k ≤ n.
(i) If k > 1, then R̃k,k−1π

⟨k⟩
1 = π

⟨k−1⟩
1 R̃′

k,k−1.
(ii) If k < n, then R̃k,k+1π

⟨k⟩
1 = k+1

k π
⟨k+1⟩
1 R̃k,k+1.

Here, we also defined an auxiliary transform R̃′
k,k−1 : C(Fln,k) → C(Fln,k−1) by

[R̃′
k,k−1ζ](E, u) = ωn−k+1ωn−k+3ωk−1

ω2
n−k+2ωk

�
GrE

n,k

[πF
E,1ζ(F, · )](u)dF, (E, u) ∈ Fln,k−1,

where πF
E,1 : C(Sk−1(F )) → C(Sk−2(E)) denotes the 1-weighted spherical projection

relative to F .
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2.3.2 The Lefschetz derivation operator
Our strategy to prove Theorem 2.A (i) is to reduce the general case to certain mixed
volume valuations: For 1 ≤ i ≤ n − 1, consider valuations of the form V ( · [i], C, f) ∈ Vali,
defined by

V (K [i], C, f) =
�
Sn−1

f(u) S(K [i], C, du), K ∈ K(Rn), (2.3.1)

where C = (C1, . . . , Cn−i−1) is a family of convex bodies with C2 support functions and
f ∈ C(Sn−1).

The reduction will require an approximation argument. To that end, recall first that by
a classical result of McMullen [86],

Val =
n�

i=0
Vali.

The space Val0 is spanned by the Euler characteristic and, due to a famous characteri-
zation by Hadwiger [52], the space Valn is spanned by the volume. We endow the space
Val with the norm ∥ϕ∥ = max{|ϕ(K)| : K ⊆ Bn}. It is easy to see that this is a complete
norm on each space Vali. By virtue of the homogeneous decomposition, the space Val is
a Banach space.

Moreover, there is a natural representation of the general linear group GL(n) on the
space Val. For g ∈ GL(n) and ϕ ∈ Val, we set

(g · ϕ)(K) = ϕ(g−1(K)), K ∈ K(Rn).

Clearly, each space of valuations with a given degree and parity is GL(n)-invariant. By
Alesker’s irreducibility theorem [4], these are the building blocks of all closed GL(n)-
invariant subspaces of Val:

Theorem 2.3.3 ([4, Theorem 1.3]). For 0 ≤ i ≤ n, the natural representation of GL(n)
on the spaces Valeven

i and Valodd
i is irreducible.

This result has far-reaching consequences in valuation theory. Especially relevant for
our purposes, it is not hard to see that for fixed 1 ≤ i ≤ n − 1, the valuations of the
form (2.3.1) span a GL(n)-invariant subspace of Vali containing non-trivial even and odd
elements. Therefore, by Theorem 2.3.3, the linear span of such mixed volumes is dense in
Vali.

As a direct consequence of Theorem 2.B, the Klain–Schneider function of a valuation of
the form (2.3.1) is given by

KSV (·[i],C,f)(E, u) = 1�n−1
i

��
(Id − πE

1 )(πE,Cf)
�
(u), (E, u) ∈ Fln,i+1. (2.3.2)

In order to describe the action of the Lefschetz derivation operator Λ on these Klain–
Schneider functions, we need the following Cauchy–Kubota type formula for mixed area
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measures (cf. [96, (4.78)]): For every family C = (C1, . . . , Cn−2) of convex bodies in Rn

and all f ∈ C(Sn−1),�
Sn−1

f(u)S(C, B, du) = ωn

ωn−1

�
Grn,n−1

�
Sn−2(H)

f(u)SH(C|H, du) dH. (2.3.3)

We are now ready to prove Theorem 2.A (i).

Theorem 2.3.4. Let 1 < i ≤ n − 1 and ϕ ∈ Vali. Then

KSΛϕ = (n − i)ωn−i+1
ωn−i

(Id − π
⟨i⟩
1 )R̃i+1,iKSϕ. (2.3.4)

Proof. As a consequence of Theorem 2.3.3, valuations of the form ϕ = V ( · [i], C, f), where
C = (C1, . . . , Cn−i−1) is a family of convex bodies with C2 support functions and f ∈
C(Sn−1), span a dense subspace of Vali. Hence, by linearity and by continuity of the
Klain–Schneider map and the operator Λ, it suffices to consider these valuations.

Due to the Steiner formula for mixed area measures, Λϕ = iV ( · [i−1], C, Bn, f). Hence,
by (2.3.2), we have that KSϕ = (Id − π

⟨i+1⟩
1 )ζϕ and KSΛϕ = (Id − π

⟨i⟩
1 )ζΛϕ, where we

defined

ζϕ(F, v) = 1�n−1
i

�(πF,Cf)(v) and ζΛϕ(E, u) = i�n−1
i−1

�(πE,(C,Bn)f)(u)

for (F, v) ∈ Fln,i+1 and (E, u) ∈ Fln,i. By applying the definition of πE,(C,Bn) and an
instance of (2.3.3) relative to the space E⊥ ∨ u, we obtain

ζΛϕ(E, u) = i�n−1
i−1

� �
Hn−i(E,u)

f(v)SE⊥∨u(C|(E⊥ ∨ u), Bn|(E⊥ ∨ u), dv)

= i�n−1
i−1

� ωn−i+1
ωn−i

�
GrE∩u⊥

n,i

�
Hn−i−1(F ∨u,pr

F ⊥ u)
f(v)SF ⊥(C|F ⊥, dv) dF,

where we used that whenever F ∈ GrE∩u⊥
n,i , then (C|(E⊥ ∨ u))|F ⊥ = C|F ⊥ and

Hn−i(E, u) ∩ F ⊥ = Hn−i−1(F ∨ u, prF ⊥u).

Moreover, since F ⊥ = (F ∨ u)⊥ ∨ prF ⊥u for almost all F ∈ GrE∩u⊥
n,i , applying again the

definition of the mixed spherical projection yields

ζΛϕ(E, u) = i�n−1
i−1

� ωn−i+1
ωn−i

�
GrE∩u⊥

n,i

(πF ∨u,Cf)(prF ⊥u)dF

= (n − i)ωn−i+1
ωn−i

[R̃i+1,iζϕ](E, u).

Finally, the linear components remain to be eliminated. Due to Proposition 2.3.2 (i),

R̃i+1,iKSϕ = R̃i+1,iζϕ − R̃i+1,iπ
⟨i+1⟩
1 ζϕ = ωn−i

(n − i)ωn−i+1
ζΛϕ − π

⟨i⟩
1 R̃′

i+1,iζϕ.

By applying Id − π
⟨i⟩
1 to both sides of this equation, we obtain (2.3.4).
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Remark 2.3.5. For an even measure µ ∈ M(Sn−1), we define a generalized Lefschetz
operator on Val by

(Λµϕ)(K) = d

dt

####
t=0+

ϕ(K + tZµ)

where Zµ is the zonoid generated by the measure µ (cf. [96, p. 193]). It is not too difficult
to generalize the Cauchy–Kubota type formula (2.3.3) to zonoids:�

Sn−1
f(v)S(C, Zµ, dv) = 2

n − 1

�
Sn−1

�
Sn−2(u⊥)

f(v)Su⊥(C|u⊥, dv) µ(du).

Note also that Zµ|E′ = ZπE′,1µ for every subspace E′ ⊆ Rn. We introduce a generalized
transform R̃µ

i+1,i : C(Fln,i+1) → C(Fln,i) by

[R̃µ
i+1,iζ](E, u) =

�
GrE∩u⊥

n,i

ζ(F ∨ u, prF ⊥u) [J (E,u)
∗ (πE⊥∨u,1µ)](dF ), (E, u) ∈ Fln,i,

where we defined the map J (E,u) : Sn−i(E⊥ ∨ u) → GrE∩u⊥
n,i : w �→ (E ∩ u⊥) ∨ w. Then,

by carrying out the same argument as in the proof of Theorem 2.3.4, we obtain that
KSΛµϕ(E, u) = 2(Id − π

⟨i⟩
1 )R̃µ

i+1,iKSϕ.
This has the following application: Every even, smooth valuation ψ ∈ Valn−1 (see

Section 2.5.1) admits a representation

ψ(K) =
�
Sn−1

Vn−1(K|u⊥)µ(du), K ∈ K(Rn),

where µ is a signed measure on Sn−1 with a smooth density, called Crofton measure of ψ.
Then for every smooth valuation ϕ ∈ Val, its Bernig–Fu convolution (see [9]) with ψ is
given by ϕ ∗ ψ = (Λµ+ − Λµ−)ϕ, where µ = µ+ − µ− is the Jordan decomposition of µ.
In this sense, we obtain a description of the Bernig–Fu convolution of a smooth valuation
with an even, smooth valuation of codegree one.

2.3.3 The Lefschetz integration operator
We now turn to the action of the operator L on the Klain–Schneider function, proving
Theorem 2.A (ii). We want to stress that the proof utilizes only basic tools from convex
and integral geometry.

On affine Grassmann manifolds, there exists a positive rigid motion invariant Radon
measure which is unique up to normalization. For 0 ≤ k ≤ n, we fix this normalization by
setting �

Grn,k

f(E)dE =
�

Grn,k

�
E′⊥

f(E′ + x)dx dE′

for f ∈ Cc(Grn,k). Below, we will need the following change of variables rule for affine
Grassmannians: If 0 ≤ j ≤ k ≤ n and E ∈ Grn,k, then�

Grn,n−j

f(E ∩ F )dF =
�n−j
k−j

��n
k

� �
GrE

n,k−j

f(F )dF (2.3.5)
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for all f ∈ Cc(GrE
n,k−j), where GrE

n,k−j denotes the Grassmann manifold of affine (k − j)-
dimensional affine subspaces of E and

�n
k

�
=

�n
k

� κn
κkκn−k

, the flag coefficient.
Now we prove Theorem 2.A (ii).

Theorem 2.3.6. Let 1 ≤ i < n − 1 and ϕ ∈ Vali. Then

KSLϕ =
�n−1

i+1
�� n

i+2
� R̃i+1,i+2KSϕ. (2.3.6)

Proof. First, we fix a subspace E ∈ Grn,i+2. We will show (2.3.6) by evaluating Lϕ on
arbitrary polytopes P ∈ K(E). By the definition of the Lefschetz integration operator L
and (2.3.5),

(Lϕ)(P ) =
�

Grn,n−1
ϕ(P ∩ (E ∩ H))dH =

�n−1
i+1

�� n
i+2

� �
GrE

n,i+1

ϕ(P ∩ F )dF

=
�n−1

i+1
�� n

i+2
� �

GrE
n,i+1

�
E∩H′⊥

ϕ(P ∩ (H ′ + x))dx dH ′.

(2.3.7)

Next, denote by Fj the facets of P relative to E with corresponding outer unit normals
uj ∈ Si+1(E), where j ∈ {1, . . . , N}. Observe that for H ′ ∈ GrE

n,i+1 and x ∈ E ∩ H ′⊥, the
outer unit normals and facets of P ∩ (H ′ + x) relative to H ′ + x are given by the vectors
prH′uj and sets Fj ∩ (H ′ + x) whenever they are i-dimensional. Thus, by the translation
invariance of ϕ,

ϕ(P ∩ (H ′ + x)) =
�
Si(H′)

KSϕ(H ′, u)SH′
i ((P − x) ∩ H ′, du)

=
N!

j=1
KSϕ(H ′, prH′uj)Vi(Fj ∩ (H ′ + x)).

Note that for every u ∈ Si+1(E) and convex body L ∈ K(E ∩ u⊥),�
E∩H′⊥

Vi(L ∩ (H ′ + x))dx = ∥u|H ′∥Vi+1(L),

as follows from Fubini’s theorem. By combining these identities, it follows that�
E∩H′⊥

ϕ(P ∩ (H ′ + x))dx =
N!

j=1
KSϕ(H ′, prH′uj)∥uj |H ′∥Vi+1(Fj)

=
�
Si+1(E)

KSϕ(H ′, prH′u)∥u|H ′∥SE
i+1(P, du).

Plugging this into (2.3.7) and changing the order of integration yields

(Lϕ)(P ) =
�n−1

i+1
�� n

i+2
� �

Si+1(E)

�
GrE

n,i+1

KSϕ(H ′, prH′u)∥u|H ′∥dH ′ SE
i+1(P, du).
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By the definition of the Klain–Schneider function, this proves (2.3.6) up to the addition
of a linear function. By Proposition 2.3.2 (ii) however, R̃i+1,i+2KSϕ is centered, and thus,
we obtain (2.3.6).

Remark 2.3.7. For a translation invariant signed Radon measure µ on Grn,n−1, define a
generalized Lefschetz operator on Val by

(Lµϕ)(K) =
�

Grn,n−1
ϕ(K ∩ H) µ(dH), K ∈ K(Rn).

We define a generalized transform R̃µ
i+1,i+2 : C(Fln,i+1) → C(Fln,i+2) by

[R̃µ
i+1,i+2ζ](E, u) =

�
GrE

n,i+1

ζ(F, prF u)∥u|F∥ µE(dF ), (E, u) ∈ Fln,i+2,

where µE is the unique signed measure on GrE
n,i+1 such that for all f ∈ Cc(GrE

n,i+1),�
Grn,n−1

f(E ∩ H)µ(dH) =
�

GrE
n,i+1

�
E∩H′⊥

f(H ′ + x)dx µE(dH ′).

Then the argument in the proof of (2.3.6) shows that KSLµϕ = R̃µ
i+1,i+2KSϕ.

This has the following application: Every even, smooth valuation ψ ∈ Val1 (see Sec-
tion 2.5.1) admits a representation

ψ(K) =
�

Grn,n−1
χ(K ∩ H)µ(dH),

where χ denotes the Euler characteristic and µ is a translation invariant signed Radon
measure with a smooth density on Grn,n−1, called a Crofton measure of ψ. Then for every
valuation ϕ ∈ Val, its Alesker product (see [8]) with ψ is given by ϕ · ψ = Lµϕ. In this
sense, we obtain a description of the Alesker product of a continuous valuation with an
even, smooth valuation of degree one.

2.4 Minkowski valuations
In this section, we turn to Minkowski valuations and more specifically, the mean section
operators. This family of geometric operators, which was introduced by Goodey and
Weil [45], are of particular interest to us as they will play a crucial role in the proof of
Theorem 2.C.

Definition 2.4.1 ([45]). For 0 ≤ j ≤ n, the j-th mean section body MjK of a convex
body K ∈ K(Rn) is defined by

hMjK(u) =
�

Grn,j

hK∩E(u) dE, u ∈ Sn−1.
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The j-th mean section operator Mj is a continuous, rotationally equivariant Minkowski
valuation, but it is not translation invariant. By defining the j-th centered mean section
operator M̃j as

M̃jK = Mj(K − s(K)),

where s(K) is the Steiner point of K (cf. [96, p. 50]), it follows that M̃j ∈ MVali for
2 ≤ j ≤ n, where i + j = n + 1. Determining their generating functions is highly non-
trivial and requires the family of functions introduced by Berg [13] in his solution to the
Christoffel problem [29]. The Berg functions gj ∈ C∞(−1, 1), for j ≥ 2, are defined
recursively as follows:

g2(t) = 1
2π

(π − arccos t)(1 − t2)
1
2 − 1

4π
t,

g3(t) = 1
2π


1 + t log(1 − t) +

4
3 − log 2


t


,

gj+2(t) = j + 1
2π

gj(t) + j + 1
2π(j − 1) tg′

j(t) + j + 1
2πωj

t,

(2.4.1)

where ωj = jκj is the (j−1)-dimensional Hausdorff measure of Sj−1. Goodey and Weil [47]
showed that essentially, the j-th Berg function generates the j-th mean section operator
– independently of the dimension n ≥ 3 of the ambient space.

Theorem 2.4.2 ([47]). For n ≥ 3 and 2 ≤ j ≤ n,

fM̃j
= mn,j(Id − π1)gj(⟨en, · ⟩). (2.4.2)

Here, mn,j is a constant which depends only on n and j, and was explicitly determined
in [47]. Moreover, π1f denotes the linear component of a function f ∈ L1(Sn−1) (see
Section 2.3.1).

2.4.1 The Berg functions
Next, we discuss analytic properties of the Berg functions. Berg [13] showed that they
satisfy the following second order differential equation: For every j ≥ 2 and t ∈ (−1, 1),

1
j − 1(1 − t2)g′′

j (t) − tg′
j(t) + gj(t) = − j

ωj
t. (2.4.3)

Moreover, g2 extends to a continuous function on [−1, 1] and for all j ≥ 3, the function gj

extends to a continuous function on [−1, 1) and limt→1 gj(t) = −∞. Berg showed that for
every ε > 0,

lim
t→±1

(1 − t2)
j−3+ε

2 gj(t) = 0. (2.4.4)

In the following, we investigate the behavior of the Berg functions at the end points in
more detail. In particular, we determine the precise order of the singularity at t = 1 as
well as the scaling limit.
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Lemma 2.4.3. For every j ≥ 2 and m ≥ 0 where (j, m) /∈ {(2, 0), (3, 0)},

lim
t→−1

(1 − t2)
j−3

2 +mg
(m)
j (t) = 0,

lim
t→+1

(1 − t2)
j−3

2 +mg
(m)
j (t) = −(j − 1)2m−2 Γ

� j−3
2 + m

�
π

j−1
2

.
(2.4.5)

Proof. We show the lemma by induction on j ≥ 2. First, note that for j ∈ {2, 3} and
m = 1, one can show (2.4.5) by a simple direct computation. In order to apply L’Hôpital’s
rule, we need to justify the existence of the limits for the higher order derivatives. To that
end, observe that we can express them as

g
(m)
2 (t) = p2,m(t)(1 − t2)

1
2 −m + q2,m(t)(1 − t2)

1
2 −m arccos t + r2,m(t),

g
(m)
3 (t) = p3,m(t) log(1 − t) + q3,m(t)(1 − t)−m + r3,m(t),

with some polynomials pj,m, qj,m and rj,m, where j ∈ {2, 3} and m ≥ 0. This can be shown
by a simple induction on m ≥ 0. Consequently, the limits in (2.4.5) exist for j ∈ {2, 3}
and m ≥ 1, and by applying L’Hôpital’s rule repeatedly, we obtain the desired identities,
which proves the lemma in the instance where j ∈ {2, 3}.

For the inductive step, suppose that (2.4.5) holds for some fixed j ≥ 2 and all m ≥ 0.
Next, observe that m-fold differentiation of the recurrence relation in (2.4.1) yields the
following recurrence relation for the m-th order derivatives:

2π

j + 1g
(m)
j+2(t) = j + m − 1

j − 1 g
(m)
j (t) + 1

j − 1 tg
(m+1)
j (t) + 1

ωj

dmt

dtm
,

as can be shown by a simple induction on m ≥ 0. Now we multiply both sides with
(1 − t2)

j−1
2 +m, pass to the limit t → ±1, and employ both the induction hypothesis and

(2.4.4). In this way, we obtain the desired identities for j + 2 and all m ≥ 0, which
concludes the argument.

As was mentioned before, the functions gj extend continuously to t = −1. In order to
investigate the behavior at t = −1 further, the change of variables t = − cos θ turns out
to be quite useful. That is, we define a family of functions ĝj , where j ≥ 2, by

ĝj(θ) = gj(− cos θ), θ ∈ (−π, π)\{0}.

Transforming the recursion (2.4.1) yields the following recursion for the functions ĝj :

ĝ2(θ) = 1
2π

θ sin θ + 1
4π

cos θ,

ĝ3(θ) = 1
2π


1 − cos θ log(1 + cos θ) −

4
3 − log 2


cos θ


,

ĝj+2(θ) = j + 1
2π

ĝj(θ) − j + 1
2π(j − 1)

ĝ′
j(θ)

tan θ
− j + 1

2πωj
cos θ.

(2.4.6)
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This recursion shows that the functions ĝj extend to even analytic functions on (−π, π).
For ĝ2 and ĝ3, this is obvious. If ĝj extends to an even analytic function on (−π, π), then
its derivative ĝ′

j has a simple zero in θ = 0 which cancels with the zero of the tangent
function, and thus, ĝj+2 also extends to an even analytic function on (−π, π).

This observation allows us to obtain new information about the regularity of the gen-
erating functions of the mean section operators. To that end, denote by dSn−1(u, v) :=
arccos⟨u, v⟩ the geodesic distance on Sn−1. The following lemma is a classical fact from
Riemannian geometry; for the convenience of the reader, we provide an elementary proof.

Lemma 2.4.4. For v ∈ Sn−1, the function dSn−1(v, · )2 is smooth on Sn−1 \ {−v}.

Proof. Clearly, the function q : Sn−1 × Sn−1 → R, defined as

q(u, v) = dSn−1(u, v)2 = (arccos⟨u, v⟩)2,

is smooth on the set of all pairs (u, v) for which |⟨u, v⟩| < 1. Next, observe that sin2 θ, as
an even analytic function, can be written as a power series of θ2. Thus, there is a unique
analytic function f such that sin2 θ = f(θ2) for θ ∈ R. Since

f ′(0) = lim
θ→0

f(θ2)
θ2 = lim

θ→0

sin θ

θ

2
= 1 ̸= 0,

there exists δ > 0 such that f is invertible on (−δ, δ) and its inverse f−1 is also smooth.
Consequently, whenever dSn−1(u, v)2 < δ, we can express q(u, v) as

q(u, v) = dSn−1(u, v)2 = f−1(sin2 dSn−1(u, v)) = f−1(1 − ⟨u, v⟩2).

This shows that q is smooth on the set of all pairs (u, v) for which dSn−1(u, v)2 < δ. Hence,
we have found two open sets covering the space {(u, v) ∈ Sn−1 : u ̸= −v} such that q is
smooth on each set, which proves the lemma.

Remark 2.4.5. Let n ≥ 2 and j ≥ 2 and consider the function gj(⟨en, · ⟩) on Sn−1.
Clearly, this function is smooth on Sn−1 \ {±en}. Since ĝj is even and analytic, there
exists a smooth function qj such that ĝj(θ) = qj(θ2), and thus,

gj(⟨en, u⟩) = gj(− cos dSn−1(−en, u)) = qj(dSn−1(−en, u)2).

Combined with Lemma 2.4.4, this shows that gj(⟨en, ·⟩) is a smooth function on Sn−1\{en}.
Consequently, the generating functions of the mean section operators are smooth outside
the north pole.

Next, we turn to the value that is attained at the south pole. To that end, we apply
the change of variables t = − cos θ to the differential equation (2.4.3), which yields the
following: For all θ ∈ (−π, π) \ {0},

1
j − 1 ĝ′′

j (θ) + j − 2
j − 1

ĝ′
j(θ)

tan θ
+ ĝj(θ) = j

ωj
cos θ. (2.4.7)

This allows us to deduce a recurrence relation for the value ĝj(0), which is instrumental
in the proof of the following lemma.
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Lemma 2.4.6. Let j ≥ 3. Then limt→−1 gj(t) < 0.

Proof. We show that ĝj(0) < 0 by induction on j ≥ 3. Direct computation shows that
ĝ3(0) = − 1

6π and ĝ4(0) = − 3
2π2 . Letting θ → 0 in (2.4.7) yields

ĝ′′
j (0) + ĝj(0) = j

ωj
.

By taking the limit θ → 0 in the recurrence relation in (2.4.6) and combining this with
the identity above, we obtain that

ĝj+2(0) = j + 1
2π

ĝj(0) − j + 1
2π(j − 1) ĝ′′

j (0) − j + 1
2πωj

= j + 1
2π(j − 1)


jĝj(0) − 2j − 1

ωj


,

which shows that if ĝj(0) < 0, then also ĝj+2(0) < 0.

2.4.2 The space MVali

We want to make some remarks about the structure of the space MVali, which we will
come back to in the subsequent section. Before that, since it is convenient and will also be
needed later on, we want to recall the natural action of SO(n) on (generalized) functions
on the unit sphere.

For a rotation ϑ ∈ SO(n) and a smooth function φ ∈ C∞(Sn−1), we set (ϑφ)(u) =
φ(ϑ−1u) for u ∈ Sn−1. For a distribution γ ∈ C−∞(Sn−1), we set ⟨φ, ϑγ⟩Sn−1 =
⟨ϑ−1φ, γ⟩Sn−1 , where ⟨ · , · ⟩Sn−1 denotes the natural pairing of a distribution and a smooth
function. An SO(n − 1)-invariant (generalized) function on Sn−1 is also called zonal.
This also encompasses continuous functions, Lebesgue integrable functions, and signed
measures, by virtue of the chain of identifications

C∞(Sn−1) ⊆ C(Sn−1) ⊆ L2(Sn−1) ⊆ M(Sn−1) ⊆ C−∞(Sn−1). (2.4.8)

To date, a complete classification of continuous, translation invariant and rotation-
ally equivariant Minkowski valuations is not known. In view of the integral representa-
tion (2.1.2), this open problem reduces to a characterization of generating functions. It is
not hard to see that the support function hL of a convex body of revolution L ∈ K(Rn)
generates a Minkowski valuation Φ ∈ MVali in every degree i ∈ {1, . . . , n − 1}. However,
not all Minkowski valuations in MVali are of this form, as is exemplified by the mean
section operators.

Since the space MVali, endowed with the pointwise Minkowski operations, has the
structure of a convex cone, we may consider generating functions of the form

f = hL + cfM̃j
, (2.4.9)

where L is a convex body of revolution, i + j = n + 1, and c ≥ 0. Another family of
operations on MVali is the composition with Minkowski endomorphisms. These are a
continuous, translation invariant, rotationally equivariant Minkowski additive operators
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on K(Rn). Note that the space of Minkowski endomorphisms is precisely MVal1. Their
action on the support function can be described in terms of the spherical convolution (see
Appendix 2.A). Kiderlen [60] and Dorrek [36] showed that for every Ψ ∈ MVal1, there is
a unique centered, zonal signed measure µΨ ∈ M(Sn−1) such that for all K ∈ K(Rn),

hΨK = hK ∗ µΨ. (2.4.10)

We call µΨ the generating measure of Ψ. Kiderlen [60] showed that whenever a zonal
measure µ ∈ M(Sn−1) is weakly positive, that is, positive up to the addition of a linear
function, then it generates some Minkowski endomorphism.

Observe that whenever Φi ∈ MVali and Ψ is a Minkowski endomorphism, then Ψ◦Φi ∈
MVali and its generating function is given by

fΨ◦Φi = fΦi ∗ µΨ. (2.4.11)

That is, the space of generating functions of Minkowski valuations is closed with respect to
convolution with generating measures of Minkowski endomorphisms, including all weakly
positive zonal measures. Consequently, we may consider generating functions of the form

f = hL + fM̃j
∗ µΨ, (2.4.12)

where L is a convex body of revolution, i+j = n+1, and Ψ is a Minkowski endomorphism.
In fact, this encompasses all instances of generating functions that are known to date.

The following example demonstrates that generating functions of the form (2.4.12)
create a much greater class than those of the form (2.4.9). This indicates the importance
of taking compositions with Minkowski endomorphisms into account.

Example 2.4.7. Let n ≥ 3, 1 ≤ i < n − 1, and i + j = n + 1. Due to Lemma 2.4.6 and
the fact that limt→1 gj(t) = −∞, there exists some δ > 0 such that gj(t) < 0 whenever
|t| > 1 − δ. Choose some non-trivial, zonal, positive, even measure µ ∈ M(Sn−1) with a
smooth density that is supported on {u ∈ Sn−1 : |⟨en, u⟩| > 1 − δ}.

Then µ is the generating measure of a Minkowski endomorphism, and thus, f = gj(⟨en, ·
⟩) ∗ µ is a generating function of the form (2.4.12). Moreover, f is smooth and f(en) =
f(−en) < 0, as follows from the definition of the convolution. Suppose now that f is of the
form (2.4.9). Since f is smooth, we must have c = 0, but since f is not weakly positive,
we must also have L = {o}; consequently f = 0, which is a contradiction.

2.5 Action on the generating function
In this section, we investigate the action of the Lefschetz integration operator L on
generating functions of Minkowski valuations, proving Theorem 2.C and its consequences.
As was already indicated in the introduction, we consider a broader framework, which we
introduce below.
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2.5.1 Spherical valuations
A valuation ϕ ∈ Val is called smooth if the map GL(n) → Val : g �→ g · ϕ is infinitely
differentiable, where g · ϕ denotes the natural action of GL(n) on Val (see Section 2.3.2).
Then, for 0 ≤ i ≤ n, the subspace Val∞i ⊆ Vali of smooth valuations is dense in Vali and
the map

Val∞i → C∞(GL(n), Vali) : ϕ �→ (g �→ g · ϕ)
leads to an identification of Val∞i with a closed subspace of C∞(GL(n), Vali), endowed
with the standard Fréchet topology (cf. [110, Section 4.4]). Hence, Val∞i also becomes a
Fréchet space by endowing it with the induced topology, called the Gårding topology. The
space Val∞,sph

i of smooth spherical valuations is the closure of the direct sum of SO(n)-
irreducible subspaces of Val∞i that contain a non-trivial SO(n − 1)-invariant element.

This representation theoretic and somewhat implicit definition does not provide a clear
idea of what a spherical valuation looks like. However, Schuster and Wannerer [103] showed
that these are precisely the valuations in Val∞i that admit an integral representation on
Sn−1 with respect to the i-th area measure. In the following, we denote by C∞

o (Sn−1) and
C−∞

o (Sn−1) the spaces of centered smooth functions and distributions, respectively.

Theorem 2.5.1 ([103]). Let 1 ≤ i ≤ n−1. For every valuation ϕ ∈ Val∞,sph
i , there exists

a unique function fϕ ∈ C∞
o (Sn−1) such that for all K ∈ K(Rn),

ϕ(K) =
�
Sn−1

fϕ(u) Si(K, du). (2.5.1)

The map Val∞,sph
i → C∞

o (Sn−1) : ϕ �→ fϕ is an SO(n)-equivariant isomorphism of
topological vector spaces.

We call the function fϕ the generating function of ϕ. As was already pointed out in
the introduction, the Lefschetz derivation operator acts on the generating function as a
multiple of the identity. That is, fΛϕ = ifϕ for ϕ ∈ Val∞,sph

i , which is a simple consequence
of the Steiner formula for area measures. For this reason, we set the operator Λ aside and
turn to the Lefschetz integration operator L.

As a direct consequence of Theorem 2.5.1, there exists a unique SO(n)-equivariant
endomorphism Ti on the topological vector space C∞

o (Sn−1) such that fLϕ = Tifϕ for
ϕ ∈ Val∞,sph

i . By setting ρi = T′
i(Id − π1)δen , where T′

i is the continuous transpose map
of Ti on C−∞

o (Sn−1), one obtains the following.

Corollary 2.5.2. For 1 ≤ i < n − 1, there exists a unique centered, zonal distribution
ρi ∈ C−∞(Sn−1) such that for all ϕ ∈ Val∞,sph

i ,

fLϕ = fϕ ∗ ρi.

Interestingly enough, all the information that is needed to determine and subsequently
describe the distribution ρi can be obtained from the action of L on the mean section
operators. For 1 ≤ i < n − 1.

LM̃j =
� j
j−1

�� n
n−1

�M̃j−1,
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where i + j = n + 1, as was shown in [102]. By approximating the associated real valued
valuations of the centered mean section operators with smooth valuations, it follows that

fM̃j
∗ ρi =

� j
j−1

�� n
n−1

�fM̃j−1
. (2.5.2)

In the following, we use methods from harmonic analysis on Sn−1 (see Appendix 2.B)
to determine the spherical harmonic expansion of ρi. To that end, recall that by (2.4.2),
the centered mean section operators are generated by a constant multiple of the centered
Berg functions. Their multipliers were explicitly computed in [20] and [12] independently:
for 2 ≤ j ≤ n and k ≠ 1,

an
k [gj ] = −π

n−j
2 (j − 1)

4
Γ

�n−j+2
2

�
Γ

�
k−1

2
�
Γ

�k+j−1
2

�
Γ

�k+n−j+1
2

�
Γ

�
k+n+1

2
� .

These numbers are all non-zero, and thus, by a simple division, for all k ̸= 1,

an
k [ρi] =

� j
j−1

�� n
n−1

� an
k [fM̃j−1

]
an

k [fM̃j
] = cn,i

Γ
�

k+i
2

�
Γ

�
k+n−i−1

2
�

Γ
�

k+i+1
2

�
Γ

�
k+n−i

2
� ,

where i + j = n + 1 and the constant cn,i > 0 only depends on n and i. The above was
already done by Berg, Parapatits, Schuster, and Weberndorfer [12]. Our contribution will
be to extract the information of Theorem 2.C from the spherical harmonic expansion of
ρi.

2.5.2 A Legendre type differential equation
Our aim is now to establish the differential equation (2.1.4). To that end, it is convenient
to renormalize ρi and manipulate its linear part: We define an auxiliary distribution
ρ̃i ∈ C−∞(Sn−1) in terms of its multipliers by

an
k [ρ̃i] =

Γ
�

k+i
2

�
Γ

�
k+n−i−1

2
�

Γ
�

k+i+1
2

�
Γ

�
k+n−i

2
� , k ≥ 0. (2.5.3)

Next, note that we can lift every test function ψ ∈ D(−1, 1) to a smooth function
ψ(⟨en, · ⟩) ∈ C∞(Sn−1). In the following, we let

I∗ = {(n, i) ∈ N × N : n ≥ 3, 1 ≤ i < n − 1}
denote the set of admissible index pairs. Then we define a family of distributions ρn,i ∈
D′(−1, 1), where (n, i) ∈ I∗, by

⟨ψ, ρn,i⟩ = ⟨ψ(⟨en, · ⟩), ρ̃i⟩, ψ ∈ D(−1, 1).

This construction on the interval (−1, 1) will allow us to relate distributions ρ̃i that live
on spheres Sn−1 of different dimensions.
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We continue with two simple, yet crucial observations about the family ρn,i that are
immediate from their definition and the fact that every distribution is uniquely determined
by its sequence of multipliers. Firstly, for (n, i) ∈ I∗,

ρn,i = ρn,n−i−1. (2.5.4)

Secondly, we compare the multipliers of ρn,n−2 with those of gn−1 and the box operator
□n = 1

n−1ΔSn−1 + Id (see Appendix 2.B). Its action on zonal functions (see, e.g., [88,
Lemma 5.3]) can be described in terms of the differential operator

□n = 1
n − 1(1 − t2) d2

dt2 − t
d

dt
+ Id.

Namely, for all test functions ψ ∈ D(−1, 1), we have that

[□nψ(⟨en, · ⟩)](u) = (□nψ)(⟨en, u⟩), u ∈ Sn−1.

In this way, for all n ≥ 3, we obtain that the distribution ρn,n−2 is a C∞(−1, 1) function
and that for all t ∈ (−1, 1),

ρn,n−2(t) = n − 1
2(n − 2)□ngn−1(t) + n

2ωn−1
t. (2.5.5)

Next, we establish the smoothness of the distributions ρn,i on (−1, 1), their behavior at
the end points, and a remarkably simple recurrence relation.

Lemma 2.5.3. Let (n, i) ∈ I∗.
(i) ρn,i ∈ C∞(−1, 1) and for all m ≥ 0,

lim
t→−1

(1 − t2)
n−2

2 +mρ
(m)
n,i (t) = 0,

lim
t→+1

(1 − t2)
n−2

2 +mρ
(m)
n,i (t) = 2m−2 Γ

�
n−2

2 + m
�

π
n−2

2
.

(2.5.6)

(ii) For all t ∈ (−1, 1),
ρn+2,i+1(t) = 1

2π
ρ′

n,i(t). (2.5.7)

In order to show the recurrence relation (2.5.7), we need the following multiplier relation,
which we prove in Appendix 2.B.

Lemma 2.5.4. If n ≥ 3 and g ∈ C1(−1, 1) is such that (1 − t2) n−1
2 g′(t) is integrable on

(−1, 1), then (1 − t2) n−3
2 g(t) is integrable on (−1, 1) and for all k ≥ 0,

an+2
k [g′] = 2πan

k+1[g]. (2.5.8)

We want to point out that (2.5.4), (2.5.5), and (2.5.7) together result in a complete
recursion such that every ρn,i can be traced back to the Berg functions. In this way, we
will obtain many of the desired properties inductively. The following lemma provides the
necessary induction scheme on I∗; the statement is obvious, so we omit the proof.
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2 Lefschetz operators on convex valuations

Lemma 2.5.5. Let I ⊆ I∗ and suppose that for all (n, i) ∈ I∗, the following holds:
• (n, n − 2) ∈ I,
• (n, i) ∈ I if and only if (n, n − i − 1) ∈ I,
• whenever (n, i) ∈ I, then also (n + 2, i + 1) ∈ I.

Then I = I∗.

Proof of Lemma 2.5.3. First, we show that for some fixed (n, i) ∈ I∗, the assertion of
Item (i) implies the assertion of Item (ii). For this purpose, suppose that ρn,i ∈ C∞(−1, 1)
and satisfies (2.5.6). Then the requirements of Lemma 2.5.4 are met, and thus, (2.5.8)
shows that for all k ≥ 0,

1
2π

an+2
k [ρ′

n,i] = an
k+1[ρn,i] =

Γ
�

k+i+1
2

�
Γ

�
k+n−i

2
�

Γ
�

k+i+2
2

�
Γ

�
k+n−i+1

2
� = an+2

k [ρn+2,i+1].

This proves (2.5.7) in the sense of distributions. Since we assumed ρn,i to be smooth, it
follows that ρn+2,i+1 is also smooth, and thus, identity (2.5.7) holds pointwise.

We will now prove Lemma 2.5.3 through the induction scheme from above. To that end,
denote by I ⊆ I∗ the set of admissible index pairs for which Lemma 2.5.3 (or equivalently,
Item (i)) is true. Due to (2.5.4), we have that (n, i) ∈ I if and only if (n, n − i − 1) ∈ I.
From (2.5.5) and by applying the general Leibniz rule, it follows that ρn,n−2 ∈ C∞(−1, 1)
and for all m ≥ 0,

ρ
(m)
n,n−2(t) = 1

2(n − 2)(1 − t2)g(m+2)
n−1 (t) − 2m + n − 1

2(n − 2) tg
(m+1)
n−1 (t)

− (m + n − 1)(m − 1)
2(n − 2) g

(m)
n−1(t) + n

2ωn−1

dmt

dtm
.

Now we multiply both sides with (1 − t2) n−2
2 +m, pass to the limit t → ±1, and employ

(2.4.5). This verifies (2.5.6) in the instance where i = n − 2 for all m ≥ 0, and thus,
(n, n − 2) ∈ I.

Suppose now that (n, i) ∈ I. Then, as we have established at the beginning of the proof,
ρn+2,i+1 ∈ C∞(−1, 1) and for all m ≥ 0,

lim
t→+1

(1 − t2)
n
2 +mρ

(m)
n+2,i+1(t) = 1

2π
lim

t→+1
(1 − t2)

n−2
2 +(m+1)ρ

(m+1)
n,i (t)

= 1
2π

2(m+1)−2 Γ
�

n−2
2 + (m + 1)

�
π

n−2
2

= 2m−2 Γ
�

n
2 + m

�
π

n
2

,

where we applied the appropriate instance of recurrence relation (2.5.7). Similarly,

lim
t→−1

(1 − t2)
n
2 +mρ

(m)
n+2,i+1(t) = 1

2π
lim

t→−1
(1 − t2)

n−2
2 +(m+1)ρ

(m+1)
n,i (t) = 0,

and thus, we obtain that also (n + 2, i + 1) ∈ I. Lemma 2.5.5 now yields I = I∗, which
concludes the argument.
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2 Lefschetz operators on convex valuations

We now establish the Legendre type differential equation (2.1.4).

Theorem 2.5.6. Let (n, i) ∈ I∗. Then for all t ∈ (−1, 1),

(1 − t2)ρ′′
n,i(t) − ntρ′

n,i(t) − i(n − i − 1)ρn,i(t) = 0. (2.5.9)

Proof. First, define a second order differential operator

Dn,i = (1 − t2) d2

dt2 − nt
d

dt
− i(n − i − 1)Id

and denote by I the set of all index pairs (n, i) ∈ I∗ for which Dn,iρn,i = 0. Due to (2.5.4)
and the fact that Dn,i = Dn,n−i−1, we have that (n, i) ∈ I if and only if (n, n − i − 1) ∈ I.
Note that

(n − 1)Dn,n−2□n = (n − 2)Dn+1,n−1□n−1,

as can be shown by direct computation. Therefore, by applying (2.5.5), we obtain

Dn,n−2ρn,n−2(t) = n − 1
2(n − 2)Dn,n−2□ngn−1(t) + n

2ωn−1
Dn,n−2t

= 1
2Dn+1,n−1□n−1gn−1(t) + n

2ωn−1
Dn,n−2t

= − n − 1
2ωn−1

Dn+1,n−1t + n

2ωn−1
Dn,n−2t = 0,

where the third equality is due to (2.4.3). It follows that (n, n − 2) ∈ I.
Suppose now that (n, i) ∈ I. Note that Dn+2,i+1 ◦ d

dt = d
dt ◦ Dn,i, as can again be

shown by direct computation. By employing recurrence relation (2.5.7), we get that for
all t ∈ (−1, 1),

Dn+2,i+1ρn+2,i+1(t) = 1
2π

Dn+2,i+1ρ′
n,i(t) = 1

2π
(Dn,iρn,i)′(t) = 0,

and thus, (n + 2, i + 1) ∈ I. By Lemma 2.5.5, we have that I = I∗.

The differential equation (2.5.9), combined with the behavior at the end points has the
following notable interpretation: If we lift ρn,i to a zonal function on the unit sphere in
Rn+1, then it is the Green’s function of some strictly elliptic Helmholtz type operator.

Corollary 2.5.7. Let (n, i) ∈ I∗. Then ρn,i(⟨en+1, · ⟩) ∈ L1(Sn) and

(−ΔSn + i(n − i − 1)Id)ρn,i(⟨en+1, · ⟩) = πδen+1 (2.5.10)

in the sense of distributions on Sn.

Proof. Due to Lemma 2.5.3 (i), the function (1 − t2) n−2
2 ρn,i(t) is smooth and bounded,

and thus, integrable on (−1, 1). By a change to spherical cylinder coordinates, this implies
that ρn,i(⟨en+1, · ⟩) is integrable on Sn.
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2 Lefschetz operators on convex valuations

Next, observe that both sides of (2.5.10) are zonal distributions on Sn. Hence, it suffices
to test the identity on zonal smooth functions φ ∈ C∞(Sn). Then φ is of the form φ(u) =
ψ(⟨en+1, u⟩) for some ψ ∈ C∞(−1, 1). By a change to spherical cylinder coordinates,

⟨φ, (ΔSn − i(n − i − 1)Id)ρn,i(⟨en+1, · ⟩)⟩Sn

= ⟨(ΔSn − i(n − i − 1)Id)φ, ρn,i(⟨en+1, · ⟩)⟩Sn

= ωn

�
(−1,1)


((1 − t2)

n
2 ψ′(t))′ − i(n − i − 1)ψ(t)(1 − t2)

n−2
2


ρn,i(t)dt.

We consider the first part of the integral and perform integration by parts. Then�
(−1,1)

((1 − t2)
n
2 ψ′(t))′ρn,i(t)dt

=
�

(−1,1)
ψ′(t)ρ′

n,i(t)(1 − t2)
n
2 dt +

�
(1 − t2)

n
2 ψ′(t)ρn,i(t)

�t=1

t=−1
,

where the marginal terms are to be understood as limits. If γ is a geodesic in Sn such that
γ(0) = −en+1, then

d

dθ
(φ ◦ γ)(θ) = d

dθ
ψ(− cos θ) = (sin θ)ψ′(− cos θ) = (1 − t2)

1
2 ψ′(t),

where we applied the change of variables t = − cos θ in the final equality. Since φ ∈
C∞(Sn), the final expression is bounded, so by (2.5.6), the marginal terms vanish. Inte-
grating by parts a second time yields�

(−1,1)
((1 − t2)

n
2 ψ′(t))′ρn,i(t)dt

=
�

(−1,1)
ψ(t)((1 − t2)

n
2 ρ′

n,i(t))′dt −
�
(1 − t2)

n
2 ψ(t)ρ′

n,i(t)
�t=1

t=−1

=
�

(−1,1)
ψ(t)((1 − t2)

n
2 ρ′

n,i(t))′dt − π

ωn
ψ(1),

where the marginal terms are again to be understood as limits. The final equality is due to
(2.5.6) and the fact that ψ is bounded. By the differential equation (2.5.9), the remaining
integral terms add up to zero, and thus, we obtain that

⟨φ, (ΔSn − i(n − i − 1)Id)ρn,i(⟨en+1, · ⟩)⟩Sn = πφ(en+1),

which completes the proof.

2.5.3 Description of ρi

In the following, we use the Legendre type differential equation (2.5.9) to obtain the
desired description of the distributions ρi; we prove what is left to prove of Theorem 2.C
and discuss its consequences.
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2 Lefschetz operators on convex valuations

First, we want to point out that the differential equation (2.5.9), combined with the
behavior at the end points t = 1 and t = −1, determines each function ρn,i uniquely.
In particular, we obtain an interesting representation for the family ρn,i. For parameters
λ, µ ∈ R, the associated Legendre function P̃ µ

λ is defined as

P̃ µ
λ (t) = eiπ µ

2

Γ(1 − µ)

1 + t

1 − t

µ
2

2F1


−λ, λ + 1, 1 − µ,

1 − t

2


,

where 2F1 is the hypergeometric function (cf. [2, 8.1.2]). We show that ρn,i is a constant
multiple of a reflection of an associated Legendre function.

Proposition 2.5.8. Let (n, i) ∈ I∗. Then for all t ∈ (−1, 1),

ρn,i(t) = Γ(i)Γ(n − i − 1)
4(2π) n−2

2
eiπ n−2

4 (1 − t2)− n−2
4 P̃

1− n
2

i− n
2

(−t). (2.5.11)

Proof. For fixed (n, i) ∈ I∗, we consider the function y(t) = (1 − t2) n−2
4 ρn,i(t).

A simple transformation of (2.5.9) shows that y is a solution to Legendre’s differential
equation: For all t ∈ (−1, 1),

(1 − t2)y′′(t) − 2ty′(t) +


λ(λ + 1) − µ2

1 − t2


y(t) = 0 (2.5.12)

with parameters λ = i − n
2 and µ = 1 − n

2 .
Moreover, the associated Legendre function P̃ µ

λ (t), and thus, also its reflection P̃ µ
λ (−t)

solve this differential equation (cf. [2, 8.1.1]). In order to describe their behavior at the
end points, we recall Gauss’ summation theorem (cf. [2, 15.1.20]), which states that

lim
t→+1 2F1(a, b, c, t) = Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)

whenever c − a − b > 0. As an instance of this identity and due to the simple fact that
2F1(a, b, c, 0) = 1, we obtain that

lim
t→−1

(1 − t2)
n−2

4 P̃ µ
λ (t) = e−iπ n−2

4
2 n−2

2 Γ
�

n−2
2

�
Γ(i)Γ(n − i − 1) ,

lim
t→+1

(1 − t2)
n−2

4 P̃ µ
λ (t) = 0.

(2.5.13)

This entails that P̃ µ
λ (t) and P̃ µ

λ (−t) are linearly independent, and thus, they form a basis
of the two-dimensional space of solutions to (2.5.12). Consequently, the function y(t) is a
linear combination of those two functions. By comparing (2.5.6) and (2.5.13), we observe
that y(t) must in fact be a constant multiple of P̃ µ

λ (−t), and we obtain the respective
multiplicative constant from a simple division.
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In (2.5.6), we have shown that the functions ρn,i have a singularity at t = 1 and
determined the precise asymptotic behavior. In order to investigate their behavior at
t = −1, we perform the substitution t = − cos θ (just like we did for the Berg functions in
Section 2.4.1). That is, we define a family of functions ρ̂n,i, where (n, i) ∈ I∗, by

ρ̂n,i(θ) = ρn,i(− cos θ), θ ∈ (−π, π)\{0}.

Applying the transformation t = − cos θ to the recursion for the family ρn,i yields the
following recursion for the family ρ̂n,i:

ρ̂n,i = ρ̂n,n−i−1, (2.5.14)

ρ̂n,n−2(θ) = 1
2(n − 2) ĝ′′

n−1(θ) + 1
2

ĝ′
n−1(θ)
tan θ

+ n − 1
2(n − 2) ĝn−1(θ) − n

2ωn−1
cos θ, (2.5.15)

ρ̂n+2,i+1(θ) = 1
2π

ρ̂′
n,i(θ)
sin θ

. (2.5.16)

This recursion shows that the functions ρ̂n,i extend to even analytic functions on (−π, π).
To that end, denote by I the set of all index pairs (n, i) ∈ I∗ for which this is the case.
Due to (2.5.14), we have that (n, i) ∈ I if and only if (n, n − i − 1) ∈ I. We have shown in
Section 2.4.1 that ĝn−1 is an even analytic function on (−π, π). Consequently, its derivative
ĝ′

n−1 has a simple zero in θ = 0 which cancels with the zero of the tangent function, thus
(n, n − 2) ∈ I. Applying a similar argument to the recurrence relation (2.5.16) shows that
if (n, i) ∈ I, then also (n + 2, i + 1) ∈ I. Lemma 2.5.5 now yields I = I∗.

We can now complete the proof of Theorem 2.C.

Theorem 2.5.9. Let 1 ≤ i < n − 1. Then ρi is an L1(Sn−1) function which is smooth on
Sn−1 \ {en} and strictly positive up to the addition of a linear function.

Proof. Due to Lemma 2.5.3 (i), the function ρn,i(⟨en, · ⟩) is integrable on Sn−1 and smooth
on Sn−1 \{±en}. In particular, it defines a zonal distribution on Sn−1 which must coincide
with ρ̃i, since zonal distributions are uniquely determined by their multipliers.

Observe that ρ̂n,i(θ), as an even analytic function on (−π, π), can be written as a
power series of θ2. Thus, there exists a unique analytic smooth function qn,i such that
ρn,i(− cos θ) = qn,i(θ2). Consequently,

ρ̃i(u) = ρn,i(⟨en, u⟩) = ρn,i(− cos dSn−1(−en, u)) = qn,i(dSn−1(−en, u)2)

for all u ∈ Sn−1 \ {en}. Together with Lemma 2.4.4, this shows that ρ̃i is smooth around
the south pole.

We have shown that ρn,i satisfies the second-order elliptic differential equation (2.5.9)
on (−1, 1). Moreover, due to the representation formula (2.5.11),

lim
t→−1

ρn,i(t) = Γ(i)Γ(n − i − 1)
2nπ

n−2
2 Γ

�
n
2

� .
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Combined with (2.5.6), we see that

lim
t→−1

ρn,i(t) > 0 and lim
t→+1

ρn,i(t) > 0,

so the strong maximum principle (cf. [37, Section 6.4.2]) implies that the function ρn,i

attains a strictly positive minimum on (−1, 1). Since ρ̃i is just a renormalization of ρi up
to the addition of a linear function, the claim follows.

As was pointed out in the introduction, this result has some interesting consequences
for Minkowski valuations that we will now touch upon, revisiting our discussion in Sec-
tion 2.4.2. Since ρi is weakly positive, it is the density of the generating measure of some
Minkowski endomorphism Ψ(i). Hence, if a Minkowski valuation Φi ∈ MVali is generated
by some body of revolution L ∈ K(Rn), then, by (2.1.3) and (2.4.11),

fLΦi = fΦi ∗ ρi = hL ∗ µΨ(i) = hΨ(i)L,

and thus, LΦ is again generated by some body of revolution. More generally, we obtain
that all known examples of generating functions are preserved under the action of the
Lefschetz operators.

Corollary 2.5.10. Generating functions of the form (2.4.12) are preserved under the
action of the Lefschetz operators.

Proof. Consider a Minkowski valuation Φi ∈ MVali with a generating function of the form
(2.4.12), that is, fΦi = hL +fM̃j

∗µΨ, where L is a convex body of revolution, Ψ ∈ MVal1,
and i + j = n + 1. Due to (2.1.3), (2.4.10), and (2.5.2),

fLΦi = hL ∗ ρi + (fM̃j
∗ ρi) ∗ µΨ = hΨ(i)L + an,ifM̃j−1

∗ µΨ,

fΛΦi
= ifΦi = hiL + fM̃j+1

∗ (ρi−1 ∗ µΨ) = hiL + bn,ifM̃j+1
∗ µΨ◦Ψ(i−1) ,

with some constants an,i and bn,i. Consequently, both fLΦi are fΛΦi
are again of the form

(2.4.12).

Lastly, the combined Lefschetz operators Λ ◦ L and L ◦ Λ act on Minkowski valuations
as a composition with Minkowski endomorphisms.

Corollary 2.5.11. Let 1 ≤ i < n − 1. There exists Ψ(i) ∈ MVal1 such that

Λ(LΦi) = iΨ(i) ◦ Φi and L(ΛΦi+1) = iΨ(i) ◦ Φi+1

for every Φi ∈ MVali and Φi+1 ∈ MVali+1.

Proof. Due to (2.1.3) and (2.4.11),

fΛ(LΦi) = ifLΦi = ifΦi ∗ ρi = fiΨ(i)◦Φi
,

fL(ΛΦi+1) = fΛΦi
∗ ρi = ifΦi ∗ ρi = fiΨ(i)◦Φi

.

Since a Minkowski valuation is uniquely determined by its generating function, this proves
the corollary.
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2.6 Klain–Schneider functions of Minkowski valuations
In this final section, we discuss the connection between Klain–Schneider functions and
generating functions. For a smooth spherical valuation ϕ ∈ Val∞,sph

i , where 1 ≤ i ≤ n−1,
we can express its Klain–Schneider function in terms of its generating function by

KSϕ(E, u) = 1�n−1
i

�(πE,−ifϕ)(u), (E, u) ∈ Fln,i+1, (2.6.1)

as can easily be deduced from (2.2.1), and is a special case of (2.3.2).
Now we turn to Minkowski valuations. For Φ ∈ MVal and v ∈ Sn−1, we define a

valuation ϕv ∈ Val by ϕv(K) = hΦK(v), generalizing its associated real valued valuation.
The Klain function of an even Minkowski valuation Φ ∈ MVali can then be defined as a
continuous function on Grn,i × Sn−1 by

KlΦ(F, v) = Klϕv (F ), F ∈ Grn,i, v ∈ Sn−1.

For fixed F ∈ Grn,i, the function KlΦ(F, · ) is the support function of a convex body that
is invariant under all rotations stabilizing F , called the Klain body of Φ. It was introduced
by Schuster and Wannerer [102] and is given by 1/κiΦ(Bn ∩ F ). Every even Φ ∈ MVali
is uniquely determined by its Klain body.

In order to also encompass non-even Minkowski valuations, like the mean section op-
erators, we define the Klain–Schneider function of a Minkowski valuation Φ ∈ MVali
as

KSΦ((E, u), v) = KSϕv (E, u), (E, u) ∈ Fln,i+1, v ∈ Sn−1.

Then KSΦ is a continuous function on Fln,i+1×Sn−1 that determines Φ uniquely. Moreover,
due to the rotationally equivariance of Φ, we have that

KSΦ(ϑ(E, u), ϑv) = KSΦ((E, u), v)

for every ϑ ∈ SO(n). Since the group of rotations SO(n) acts transitively on Fln,i+1, this
implies that whenever we fix some (E, u) ∈ Fln,i+1, the function KSΦ((E, u), ·) ∈ C(Sn−1)
already contains all the information of KSΦ. In this way, it also makes sense to consider
the Klain–Schneider function of Φ as this continuous function on the unit sphere that is
invariant under all rotations stabilizing (E, u).

We consider some concrete examples. In [102], the Klain bodies of the projection body
maps and the even parts of the mean section operators were computed. Below, we compute
the respective Klain–Schneider functions (taking into account the odd part of the mean
section operators) in a very direct way.

Example 2.6.1. For 1 ≤ i ≤ n − 1, the i-th projection body map Πi is even, and thus,
for every (E, u) ∈ Fln,i+1 and v ∈ Sn−1,

KSΠi((E, u), v) = 1
2KlΠi(E ∩ u⊥, v)

= 1
2κi

Vi((Bn ∩ (E ∩ u⊥)⊥)|v⊥) = 1
2∥v|(E⊥ ∨ u)∥.
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Example 2.6.2. Let 1 ≤ i ≤ n − 1 and i + j = n + 1. For a subspace E ∈ Grn,i+1 and a
convex body K ∈ K(E), an application of (2.3.5) shows that for v ∈ Sn−1,

h(M̃jK, v) =
�j
2
�� n

i+1
�h(M̃E

2 K, v) =
�j
2
�� n

i+1
�∥v|E∥h(M̃E

2 K, prEv),

where M̃E
2 denotes the centered mean section operator M̃2 relative to E. By (2.4.2),

h(M̃E
2 K, prEv) = mi+1,2

�
Si(E)

g2(⟨prEv, w⟩)SE
i (K, dw).

In conclusion, for every (E, u) ∈ Fln,i+1 and v ∈ Sn−1,

KSM̃j
((E, u), v) =

�j
2
�� n

i+1
�mi+1,2∥v|E∥g2(⟨prEv, u⟩).

Next, we show that the Klain–Schneider function of a Minkowski valuation can be
expressed in terms of its generating function via some hemispherical transform. As
an application, we can describe how the Klain–Schneider function is transformed under
composition with Minkowski endomorphisms.

Theorem 2.6.3. Let 1 ≤ i ≤ n − 1 and Φ ∈ MVali. Then for (E, u) ∈ Fln,i+1,

KSΦ((E, u), · ) = 1�n−1
i

�λHn−i−1(E,u) ∗ fΦ, (2.6.2)

where λHn−i−1(E,u) denotes the restriction of Hn−i−1 to Hn−i−1(E, u).

Proof. Suppose first that (the associated real valued valuation of) Φ is smooth, and thus,
fΦ is smooth. Then (2.6.1) yields for all ϑ ∈ SO(n),

KSΦ((E, u), ϑen) = 1�n−1
i

�(πE,−i(ϑfΦ))(u) = 1�n−1
i

� �
Hn−i−1(E,u)

(ϑfΦ)(w)dw

= 1�n−1
i

� �
Sn−1

(ϑfΦ)(w) λHn−i−1(E,u)(dw) = 1�n−1
i

��
λHn−i−1(E,u) ∗ fΦ

�
(ϑen).

To pass from the smooth to the general case, we follow the argument of the proof
of [99, Theorem 6.5]. Let ηδ ∈ C∞(Sn−1) be a spherical approximate identity of zonal
functions. Then fΦ ∗ ηδ converges to fΦ in L1(Sn−1) as δ → 0. Moreover, the functions
fΦ ∗ ηδ generate Minkowski valuations Φ(δ) ∈ MVali and Φ(δ) converges to Φ uniformly
on compact subsets of K(Rn). Thus, by continuity of the Klain–Schneider map, KSΦ(δ)

converges uniformly to KSΦ.

Corollary 2.6.4. Let 1 ≤ i ≤ n − 1 and Φ ∈ MVali. Then for every Minkowski
endomorphism Ψ and (E, u) ∈ Fln,i+1,

KSΨ◦Φ((E, u), · ) = KSΦ(E, u), · ) ∗ µΨ. (2.6.3)
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2 Lefschetz operators on convex valuations

Proof. By combining (2.4.11) and (2.6.2),

KSΨ◦Φ((E, u), · ) = 1�n−1
i

�λHn−i−1(E,u) ∗ fΨ◦Φ = 1�n−1
i

�λHn−i−1(E,u) ∗ (fΦ ∗ µΨ)

= 1�n−1
i

�(λHn−i−1(E,u) ∗ fΦ) ∗ µΨ = KSΦ((E, u), · ) ∗ µΨ,

and thus, we obtain (2.6.3).

This corollary shows that composition with Minkowski endomorphisms acts on the
Klain–Schneider function of a Minkowski valuation in the same way as on its generating
function: by convolution with the corresponding generating measure from the right.
Consequently, the discussion of the structure of the space of generating functions in
Section 2.4.2 also translates to Klain–Schneider functions of Minkowski valuations.

2.A The spherical convolution
We can identify Sn−1 with the homogeneous space SO(n)/SO(n − 1), where we denote by
SO(n − 1) ⊆ SO(n) the the subgroup of rotations that stabilize the north pole en. Due to
this identification, the convolution structure on the compact Lie group SO(n) naturally
induces a convolution structure on Sn−1. For an in-depth exposition, we recommend the
article by Grinberg and Zhang [48] and the book by Takeuchi [107].

The convolution of some φ ∈ C∞(Sn−1) and γ ∈ C−∞(Sn−1)zonal is defined by

(φ ∗ γ)(ϑen) = ⟨φ, ϑγ⟩Sn−1 = ⟨ϑ−1φ, γ⟩Sn−1 , ϑ ∈ SO(n).

Since SO(n) operates transitively on the unit sphere and γ is zonal, this is well-defined
and it turns out that φ ∗ γ ∈ C∞(Sn−1). Thus, we may define the convolution of spherical
distributions by

C−∞(Sn−1) × C−∞(Sn−1)zonal → C−∞(Sn−1) : (ν, γ) �→ ν ∗ γ

⟨φ, ν ∗ γ⟩Sn−1 = ⟨φ ∗ γ, ν⟩Sn−1 , φ ∈ C∞(Sn−1).

Clearly, the convolution product is linear in each of its arguments. Although its definition
is fundamentally asymmetrical (in that the right factor must always be zonal), it enjoys
the nice properties one might expect. For all distributions ν ∈ C∞(Sn−1) and γ, γ1, γ2 ∈
C−∞(Sn−1)zonal, we have the following:

• (ν ∗ γ1) ∗ γ2 = ν ∗ (γ1 ∗ γ2). (associativity)
• γ1 ∗ γ2 = γ2 ∗ γ1. (commutativity)
• ν ∗ δen = ν and δen ∗ γ = γ. (neutral element)
• (ϑν) ∗ γ = ϑ(ν ∗ γ) for all ϑ ∈ SO(n). (SO(n)-equivariance)
Next, note that by virtue of the chain of identifications (2.4.8), the definition above

also encompasses the convolution of continuous functions, Lebesgue integrable functions,
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2 Lefschetz operators on convex valuations

and signed measures. We want to note that the spherical convolution of two signed
measures is again a signed measure. Also, the convolution of a signed measure and an
L1(Sn−1) function is an L1(Sn−1) function. In particular, identities such as (2.5.1) are to
be understood in a weak sense, as an equality in the space L1(Sn−1).

Moreover, the convolution of a signed measure and a continuous function is again a
continuous function that can be expressed by an integral representation. If f ∈ C(Sn−1)
and µ ∈ M(Sn−1)zonal, then

(f ∗ µ)(ϑen) =
�
Sn−1

f(ϑv) µ(dv), ϑ ∈ SO(n).

In the case where µ ∈ M(Sn−1) and f ∈ C(Sn−1)zonal, there is a unique function f̄ ∈
C[−1, 1] such that f(w) = f̄(⟨en, w⟩) for all w ∈ Sn−1, and then,

(µ ∗ f)(u) =
�
Sn−1

f̄(⟨u, v⟩) µ(dv), u ∈ Sn−1.

2.B Spherical Harmonics
As a general reference for this section, we cite the monograph by Groemer [49]. Denote
by Hn

k the space of spherical harmonics of dimension n ≥ 3 and degree k ≥ 0, that is,
harmonic, k-homogeneous polynomials, restricted to the unit sphere. These turn out to be
precisely the eigenspaces of the spherical Laplacian, that is, ΔSn−1Yk = −k(k + n − 2)Yk

for every Yk ∈ Hn
k . Recall that ΔSn−1 is a second-order uniformly elliptic self-adjoint

differential operator that has compact resolvent and intertwines rotations. Consequently,
L2(Sn−1) decomposes into an orthogonal direct sum of the spaces Hn

k , each of which is
finite dimensional and SO(n)-irreducible.

For each k ≥ 0, the subspace of zonal spherical harmonics in Hn
k is of dimension one and

spanned by P n
k (⟨en, · ⟩), where P n

k denotes the Legendre polynomial of dimension n ≥ 3
and degree k ≥ 0. It can be defined by Rodrigues’ formula, which states that

P n
k (t) = (−1)k Γ

�
n−1

2
�

2kΓ
�

n−1
2 + k

�(1 − t2)− n−3
2


d

dt

k

(1 − t2)
n−3

2 +k. (2.B.1)

The orthogonal projection πk from L2(Sn−1) onto the subspace Hn
k is given by

πkφ = dim Hn
k

ωn−1
φ ∗ P n

k (⟨en, · ⟩), φ ∈ L2(Sn−1).

As a convolution transform, πk extends to a map from C−∞(Sn−1) onto Hn
k , and for every

distribution ν ∈ C−∞(Sn−1), its formal Fourier series "∞
k=0 πkν, also called its spherical

harmonic expansion, converges to ν in the weak sense. Moreover, if γ ∈ C−∞(Sn−1)zonal,
then

γ =
∞!

k=0

dim Hn
k

ωn−1
an

k [γ]P n
k (⟨en, · ⟩),
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2 Lefschetz operators on convex valuations

where an
k [γ] = ⟨P n

k (⟨en, · ⟩), γ⟩Sn−1 . The Funk–Hecke Theorem states that the convolution
product of two distributions ν ∈ C−∞(Sn−1) and γ ∈ C−∞(Sn−1)zonal has the spherical
harmonic expansion

ν ∗ γ =
∞!

k=0
an

k [γ]πkν.

That is, the convolution transform ν �→ ν∗γ acts as a multiple of the identity on each space
Hn

k of spherical harmonics. The Fourier coefficients an
k [γ] are thus also called multipliers.

If γ is defined by some L1(Sn−1) function, then the multipliers can be computed using
cylindrical coordinates on the sphere: If g : (−1, 1) → R is measurable and (1 − t2) n−3

2 g(t)
is integrable on (−1, 1), then g(⟨en, · ⟩) ∈ L1(Sn−1)zonal and

an
k [g(⟨en, · ⟩)] = ωn−1

�
(−1,1)

P n
k (t)(1 − t2)

n−3
2 g(t)dt. (2.B.2)

For convenience, we use the convention an
k [g] = an

k [g(⟨en, · ⟩)].
Finally, we prove Lemma 2.5.4, which is a refinement of [87, Lemma 3.6]. To that end,

we need the following technical integration by parts lemma.

Lemma 2.B.1 ([27, Lemma 3.3]). Let α > 0 and let g ∈ D′(−1, 1) be such that (1 −
t2) α

2 g′(t) is a finite signed measure on (−1, 1). Then g is a locally integrable function
and (1 − t2) α−2

2 g(t) ∈ L1(−1, 1). Moreover, whenever ψ ∈ C1(−1, 1) such that both (1 −
t2)− α−2

2 ψ′(t) and (1 − t2) α
2 ψ(t) are bounded, then�
(−1,1)

ψ(t)g′(dt) = −
�

(−1,1)
ψ′(t)g(t)dt. (2.B.3)

Proof of Lemma 2.5.4. By Lemma 2.B.1, we have that (1 − t2) n−3
2 g(t) ∈ L1(−1, 1). Com-

bining (2.B.2) with identity (2.B.3) in the instance where ψ = P n+2
k yields

1
ωn+1

an+2
k [g′] =

�
(−1,1)

P n+2
k (t)(1 − t2)

n−1
2 g′(t)dt

= (n − 1)
�

(−1,1)
P n

k+1(t)(1 − t2)
n−3

2 g(t)dt = n − 1
ωn−1

an
k+1[g],

where in the second equality, we also employed Rodrigues’ formula (2.B.1). Since (n −
1)ωn+1 = 2πωn−1, this yields (2.5.8).

2.C Proof of Proposition 2.3.2
For the proof of Item (i), we express the Radon type transform R̃k,k−1 in terms of an actual
Radon transform of some weighted spherical projections. To that end, if E ⊆ F ⊆ Rn are
nested subspaces, we denote by πF

E,m and πF ∗
E,m the m-weighted spherical projection and

lifting relative to F . Moreover, if F ∈ Grn,k and E ∈ GrF
n,k−1, then for all f ∈ C(Sk−1(F ))�

Sk−1(F )
f(u)du =

�
Sk−2(E)

�
H1(F ;E,u)

f(v)⟨u, v⟩k−2dv du, (2.C.1)
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2 Lefschetz operators on convex valuations

where H1(F ; E, u) = {v ∈ Sk−1(F ) \ E⊥ : prEv = u} (cf. [44, (3.3)]).

Lemma 2.C.1. Let 1 < k ≤ n. Then for all ζ ∈ C(Fln,k) and (E, u) ∈ Fln,k−1,

[R̃k,k−1ζ](E, u) = ωn−k+1
ωn−k+2

�
GrE

n,k

[πF
E,n−2k+2ζ(F, · )](u) dF (2.C.2)

Proof. First, we parametrize the Grassmann manifold GrE∩u⊥
n,k−1 through setting F = (E ∩

u⊥) ∨ w for F ∈ GrE∩u⊥
n,k−1 and w ∈ Sn−k+1(E⊥ ∨ u). This yields

[R̃k,k−1ζ](E, u) = 1
ωn−k+2

�
Sn−k+1(E⊥∨u)

ζ(E ∨ w, prw⊥u)dw

= 1
ωn−k+2

�
Sn−k(E⊥)

�
H1(E⊥∨u;E⊥,w)

ζ(E ∨ v, prv⊥u)⟨w, v⟩n−kdv dw

= 1
ωn−k+2

�
Sn−k(E⊥)

�
S1(u∨w)∩w+

ζ(E ∨ w, prv⊥u)⟨u, prv⊥u⟩n−kdv dw,

where the second equality is an application of (2.C.1) relative to the space E⊥ ∨ u and
in the final equality, we simply rewrote the inner integral. Next, observe that for every
vector w ∈ Sn−k(E⊥) and function f ∈ C(S1(u ∨ w)),�

S1(u∨w)∩w+
f(prv⊥u)dv =

�
S1(u∨w)∩u+

f(v)dv =
�
H1(E∨w;E,u)

f(v)dv,

as follows from applying a change of variables with respect to a rotation by π/2 in the
plane u ∨ w. Applying this to f(v) = ζ(E ∨ w, v)⟨u, v⟩n−k yields

[R̃k,k−1ζ](E, u) = 1
ωn−k+2

�
Sn−k(E⊥)

�
H1(E∨w;E,u)

ζ(E ∨ w, v)⟨u, v⟩n−kdv dw

= ωn−k+1
ωn−k+2

�
GrE

n,k

�
H1(F ;E,u)

ζ(F, v)⟨u, v⟩n−kdy dF,

where in the second equality, we applied the parametrization F = E ∨ w with F ∈ GrE
n,k

and w ∈ Sn−k(E⊥).

We will need the fact that weighted spherical projections map linear functions to linear
functions, which was shown in [47].

Lemma 2.C.2 ([47, Lemma 2.3]). Let 1 ≤ k ≤ n, E ∈ Grn,k, and m > −k. Then for all
u ∈ Sn−1 and v ∈ Sk−1(E),

[πE,m⟨u, · ⟩](v) = ωn+m+1
ωk+m+1

⟨u, v⟩. (2.C.3)
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Proof of Proposition 2.3.2 (i). Let ζ ∈ C(Fln,k) and denote by z : Grn,k → Rn the
continuous function with the property that πF

1 ζ(F, · ) = ⟨z(F ), · ⟩ for F ∈ Grn,k. By
combining (2.C.2) and (2.C.3), we have that for all (E, u) ∈ Fln,k−1,

ωn−k+2
ωn−k+1

[R̃k,k−1π
⟨k⟩
1 ζ](E, u) =

�
GrE

n,k

[πF
E,n−2k+2⟨z(F ), · ⟩](u)dF

= ωn−k+3
ωn−k+2

�
GrE

n,k

⟨z(F ), u⟩dF = ωn−k+3
ωn−k+2

1
ωk

�
GrE

n,k

�
Sk−1(F )

ζ(F, v)⟨u, v⟩dv dF,

Note that whenever F ∈ GrE
n,k, then [πF ∗

E,1⟨u, · ⟩](v) = ⟨u, v⟩ for all u ∈ Sk−2(E) and
v ∈ Sk−1(F ), and thus,�

Sk−1(F )
ζ(F, v)⟨u, v⟩dv =

�
Sk−1(F )

ζ(F, v)[πF ∗
E,1⟨u, · ⟩](v)dv

=
�
Sk−2(E)

[πF
E,1ζ(F, · )](v)⟨u, v⟩dv.

By changing the order of integration, we obtain that

[R̃k,k−1π
⟨k⟩
1 ζ](E, u) = ωn−k+1ωn−k+3

ω2
n−k+2

1
ωk

�
Sk−2(E)

�
GrE

n,k

[πF
E,1ζ(F, · )](v)dF ⟨u, v⟩dv

= 1
ωk−1

�
Sk−2(E)

[R̃′
k,k−1ζ](E, v)⟨u, v⟩dv = [π⟨k−1⟩

1 R̃′
k,k−1ζ](E, u),

which concludes the argument.

Similar as for R̃k,k−1, we can express the Radon type transform R̃k,k+1 in terms of an
actual Radon transform and the 1-weighted spherical lifting. More precisely, if 1 ≤ k < n,
then for all ζ ∈ C(Fln,k) and (E, u) ∈ Fln,k+1,

[R̃k,k+1ζ](E, u) =
�

GrE
n,k

[πE∗
F,1ζ(F, · )](u) dF, (2.C.4)

which is immediate from the definition. Now we prove Item (ii) of Proposition 2.3.2.

Proof of Proposition 2.3.2 (ii). Let ζ ∈ C(Fln,k) and (E, u) ∈ Fln,k+1. Then by (2.C.4)
and a change of order of integration,

[π⟨k+1⟩
1 R̃k,k+1ζ](E, u) = 1

ωk+1

�
GrE

n,k

�
Sk(E)

[πE∗
F,1ζ(F, · )](v)⟨u, v⟩dv dF

= 1
ωk+1

�
GrE

n,k

�
Sk−1(F )

ζ(F, v)[πE
F,1⟨u, · ⟩](v)dv dF

= ωk+3
ωk+2

1
ωk+1

�
GrE

n,k

�
Sk−1(F )

ζ(F, v)⟨u, v⟩dv dF,
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where the final equality is due to (2.C.3). Note that for every F ∈ GrE
n,k,

1
ωk

�
Sk−1(F )

ζ(F, v)⟨u, v⟩dv = [π⟨k⟩
1 ζ](F, u) = [πE∗

F,1(π⟨k⟩
1 ζ)(F, · )](u).

Plugging this into the expression above and applying (2.C.4) again, we obtain

[π⟨k+1⟩
1 R̃k,k+1ζ](E, u) = ωk+3

ωk+2

ωk

ωk+1

�
GrE

n,k

[πE∗
F,1(π⟨k⟩

1 ζ)(F, · )](u) dF

= k

k + 1[R̃k,k+1π
⟨k⟩
1 ζ](E, u),

which concludes the argument.
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3 The Klain approach to zonal valuations

3.1 Introduction
A valuation on the space K(Rn) of convex bodies (that is, convex, compact subsets) of
Rn, where n ≥ 3, is a map ϕ : K(Rn) → R satisfying

ϕ(K) + ϕ(L) = ϕ(K ∪ L) + ϕ(K ∩ L)

whenever K, L ∈ K(Rn) and K ∪ L is convex. We denote by Val(Rn) the space of con-
tinuous, translation-invariant valuations on Rn. Valuations in Val(Rn) play a central role
in convex and integral geometry, appearing naturally in a wide range of applications (see
the monographs [43, 96]). Notable examples include the intrinsic volumes – fundamental
geometric quantities that encode information about the size and shape of convex bodies,
such as volume, surface area, and mean width – and, more generally, mixed volumes.

Among the most celebrated results in valuation theory is Hadwiger’s characterization of
rigid motion invariant valuations in terms of intrinsic volumes. This foundational theorem
has sparked a long and ongoing line of research (see, e.g., [3, 18, 32, 61, 79]). Below, we
state it in a homogeneous form: for the subspaces Vali(Rn) ⊆ Val(Rn) of valuations that
are homogeneous of degree i ∈ {0, . . . , n} (that is, ϕ(λK) = λiϕ(K) for all λ > 0).

Theorem 3.1.1 ([52]). For 0 ≤ i ≤ n, a valuation ϕ ∈ Vali(Rn) is rotation invariant if
and only if it is a constant multiple of the i-th intrinsic volume.

Theorem 3.1.1 was originally proved without assuming homogeneity. However, by
McMullen’s homogeneous decomposition theorem [86], the space Val(Rn) is the direct
sum of the spaces Vali(Rn) for i ∈ {0, . . . , n}. Since Val0(Rn) consists only of constant
valuations and Valn(Rn) is spanned by the volume functional Vn [52], the problem reduces
to understanding the intermediate degrees, 1 ≤ i ≤ n − 1.

Classification theorems, such as Theorem 3.1.1, reveal the underlying geometric struc-
ture of valuations, providing conceptual proofs of central integral geometric formulas,
such as the classical Crofton, Cauchy–Kubota, and kinematic formulas (see, e.g., [63]).
Motivated by this, recent efforts have focused on classification theorems for valuations in-
variant under different linear groups (see, e.g., [3,10,15–19,22,23,42,79,104]). One of these
is the subgroup SO(n − 1) of SO(n): the stabilizer of the n-th canonical basis vector en.
Valuations invariant under SO(n−1), called zonal, appear naturally in the study of convex-
body valued (Minkowski) valuations (see, e.g., [1,27,36,50,60,75,76,78,87,88,99,102,103])
and possess similarities to rigid motion invariant valuations on convex functions (see, e.g.,
[31–35,65,67]).
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Recently in [68], a full characterization of zonal valuations in Val(Rn) was obtained
using the following function spaces: We set D0 = C[−1, 1] and for α > 0, we define Dα as
the class of functions f̄ ∈ C(−1, 1) such that

lim
s→±1

f̄(s)(1 − s2)
α
2 = 0 and lim

s→±1

� s

0
f̄(t)(1 − t2)

α−2
2 dt exists and is finite.

Knoerr’s main result in [68] is the following Hadwiger-type theorem for zonal valuations,
which gives an improper integral representation in terms of the i-th order area measure
Si(K, · ) of a convex body K ∈ K(Rn) (cf. [96, Ch. 4]). In the following, a function on
Sn−1 is called zonal if it is invariant under SO(n − 1).

Theorem 3.1.2 ([68]). For 1 ≤ i ≤ n − 1, a valuation ϕ ∈ Vali(Rn) is zonal if and only
if there exists a function f = f̄(⟨en, · ⟩) ∈ C(Sn−1 \ {±en}) with f̄ ∈ Dn−i−1 such that

ϕ(K) = lim
ε→0+

�
Sn−1\Uε

f(u) dSi(K, u), K ∈ K(Rn), (3.1.1)

where Uε = {u ∈ Sn−1 : |⟨en, u⟩| > 1 − ε}. Moreover, f is unique up to the addition of a
zonal linear function.

Here, we denote by ⟨ · , · ⟩ the standard Euclidean inner product on Rn. For degrees
1 ≤ i < n − 1, Theorem 3.1.2 is obtained by approximation from an earlier result of
Schuster and Wannerer [103] for smooth valuations (see Section 3.4.1). For i = n − 1, it is
an immediate consequence of a classical result by McMullen [86] and the principal value
is in fact a proper integral.

Inspired by the Hadwiger type theorem for convex functions with Monge–Ampère mea-
sures [33], our first main result is an analogue of Theorem 3.1.2, where the role of the i-th
area measure is replaced by the mixed area measure

Si(K,D, · ) = S(K [i],D[n−i−1], · ),

see [96, Sec. 5.1], where D denotes the (n−1)-dimensional unit disk in e⊥
n and L[j] denotes

the tuple consisting of j copies of the body L.

Theorem 3.A. For 1 ≤ i ≤ n − 1, a valuation ϕ ∈ Vali(Rn) is zonal if and only if there
exists a zonal function g ∈ C(Sn−1) such that

ϕ(K) =
�
Sn−1

g(u) dSi(K,D, u), K ∈ K(Rn). (3.1.2)

Moreover, g is unique up to the addition of a zonal linear function.

This integral representation has certain benefits. In contrast to (3.1.1), the integral is
always proper and the corresponding class of integral kernels is simpler, depending neither
on the dimension nor the degree. Moreover, the values of a zonal valuation ϕ on cones with
axis en determine the integral kernel g (up to linear maps), and therefore, the valuation
itself. As a further consequence, we can easily express convergence of zonal valuations as
uniform convergence of the integral kernels (see Section 3.2.1).
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The Klain approach. To establish Theorem 3.A, we follow the approach of Klain [61],
who provided a significantly simpler proof of Hadwiger’s classical Theorem 3.1.1. At the
core of Klain’s approach lies the following characterization of valuations vanishing on
all hyperplanes, also known as simple valuations. Here and throughout, we say that a
valuation vanishes on a subspace E if it vanishes on all convex bodies K ⊆ E.
Theorem 3.1.3 ([61, 95]). A valuation ϕ ∈ Val(Rn) vanishes on all hyperplanes if and
only if there exist a constant c ∈ R and an odd function f ∈ C(Sn−1) such that

ϕ(K) = cVn(K) +
�
Sn−1

f(u) dSn−1(K, u), K ∈ K(Rn).

Let us point out that Theorem 3.1.3 is due to Klain [61] for even valuations and
due to Schneider [95] for odd valuations. Denoting by Grk(Rn) the Grassmannian of k-
dimensional linear subspaces of Rn, a simple corollary of Theorem 3.1.3 can be formulated
as follows.
Corollary 3.1.4. Let 0 ≤ i ≤ n − 1 and ϕ ∈ Vali(Rn). If ϕ vanishes on all subspaces
E ∈ Gri+1(Rn), then ϕ = 0.

Recently, Klain’s approach was employed by Colesanti, Ludwig, and Mussnig in [35] to
give a new and simpler proof of their previously established Hadwiger-type theorem for
valuations on convex functions [32]. To adapt Klain’s method to our context, we require
an analogue of Theorem 3.1.3 for zonal valuations.
Theorem 3.B. A zonal valuation ϕ ∈ Val(Rn) vanishes on some hyperplane containing
en if and only if there exist a constant c ∈ R and a zonal function f ∈ C(Sn−1) vanishing
on Sn−1 ∩ e⊥

n such that

ϕ(K) = cVn(K) +
�
Sn−1

f(u) dSn−1(K, u), K ∈ K(Rn). (3.1.3)

Let us note that a zonal valuation that vanishes on one hyperplane containing en

must already vanish on all such hyperplanes. In a similar way to Theorem 3.1.3, Theo-
rem 3.B implies that every i-homogeneous valuation is already determined by its restriction
to a single (i + 1)-dimensional subspace.
Corollary 3.C. Let 0 ≤ i ≤ n − 1 and ϕ ∈ Vali(Rn) be zonal. If ϕ vanishes on some
subspace E ∈ Gri+1(Rn) containing en, then ϕ = 0.

As will be demonstrated later, Corollary 3.C proves extremely helpful in showing integral
geometric formulas for SO(n − 1)-invariant quantities.

Another important step in Klain’s approach is the extension of valuations from proper
subspaces. In the setting of rigid motion invariant valuations, where only intrinsic volumes
appear, this is trivial: the restriction of the i-th intrinsic volume to an i-dimensional
subspace is exactly the volume on that subspace. In general, the problem of extending
valuations is more delicate (see, e.g., [38]). In fact, for zonal valuations this is not always
possible; a difficulty that also arises in the functional setting [35]. For smooth valuations,
however, we can always extend the integral representations that naturally emerge from
Klain’s approach.
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3 The Klain approach to zonal valuations

Theorem 3.D. Let 1 ≤ i ≤ n − 1 and E ∈ Gri+1(Rn) be such that en ∈ E. Then for
every zonal function fE ∈ C∞(Si(E)), there exists a zonal function f ∈ C∞(Sn−1) such
that �

Sn−1
f(u) dSi(K, u) =

�
Si(E)

fE(u) dSE
i (K, u), K ∈ K(E).

Here, Si(E) = Sn−1∩E and by SE
i (K, ·) we denote the i-th order area measure of K ⊆ E

relative to E ∈ Gri+1(Rn). The Hadwiger-type theorem for smooth, zonal valuations of
[103] is now a direct consequence of Corollary 3.C and Theorem 3.D (see Section 3.4.1).
Let us point out that our proof does not rely on any deep results from representation
theory such as the irreducibility theorem [4].

Moving between representations. In order to deduce the general Hadwiger-type
theorems (for continuous valuations) from the statement for smooth valuations, it is
crucial to understand how to move between the integral representations (3.1.1) and (3.1.2).
Indeed, in Section 3.2.1, we define a map Tn−i−1 that transforms the integral kernel from
one representation to the other. In order to show that this is in fact the right transform, by
Corollary 3.C, it suffices to check that the corresponding integral representations coincide
on some subspace containing en.

These restrictions can be made explicit by certain maps πn−i−1 and πn−i−1,D, derived
from the mixed spherical projections, which were recently introduced by the authors in
[25] to describe the relations between (mixed) area measures of lower dimensional bodies
in different ambient spaces (see Section 3.2.2).

Dn−i−1 C[−1, 1]

C[−1, 1]
πn−i−1

Tn−i−1
∼=

πn−i−1,D

Figure 3.1

Once all the elements are in place, it is easy to check that the diagram in Fig. 3.1
commutes. By Corollary 3.C, we can thus move between the different representations for
zonal valuations via the transform Tn−i−1.

Furthermore, using the simpler description of convergence of zonal valuations in terms
of the integral representation (3.1.2), and the fact that every continuous zonal function
trivially defines a valuation in this way, we obtain Theorem 3.A by a simple approximation
argument. Having established Theorem 3.A, we can use the diagram of Fig. 3.1 to recover
Theorem 3.1.2 without further difficulty.

Applications Just as their counterparts for rigid motion invariant valuations, Theo-
rems 3.A and 3.B have various applications to integral geometry that we will now discuss.
First, we show the following additive kinematic formula for SO(n − 1), extending a recent
result by Hug, Mussnig, and Ulivelli [55, Thm. 1.5] from the even to the general case.
Throughout, we denote by κm the volume of the m-dimensional unit ball in Rm.
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3 The Klain approach to zonal valuations

Theorem 3.E. Let 1 ≤ j ≤ n − 1 and g ∈ C(Sn−1) be zonal. For all K, L ∈ K(Rn),�
SO(n−1)

�
Sn−1

g(u) dSj(K + ϑL,D, u) dϑ

= 1
κn−1

j!
i=0


j

i

� �
Sn−1

�
Sn−1

q(u, v) dSi(K,D, u) dSj−i(L,D, v),
(3.1.4)

where g = ḡ(⟨en, · ⟩) and q(u, v) = max{⟨en, u⟩, ⟨en, v⟩}ḡ(min{⟨en, u⟩, ⟨en, v⟩}).

In [55], the statement is derived for even g from an additive kinematic formula for
convex functions. As the functional setting is related to the even geometrical setting (see
Remark 3.3.10), this leads to an additional symmetry assumption. Here, as the left-hand
side of (3.1.4) is a zonal valuation, Theorem 3.A yields (3.1.4) for an unknown integral
kernel q, depending a priori on i and j. The map q can then be easily determined by
plugging in cones with axis en.

In a similar way, we can recover the following Kubota-type formula from [56, Thm. 3.2]:
For 1 ≤ i ≤ n − 1, K ∈ K(Rn), and f ∈ C(Sn−1),�

Gri(Rn,en)

�
Si−1(E)

f(u) dSE
i−1(K|E, u) dE = κi−1

κn−1

�
Sn−1

f(u) dSi−1(K,D, u). (3.1.5)

where integration on Gri(Rn, en) = {E ∈ Gri(Rn) : en ∈ E} is with respect to the unique
rotation invariant probability measure and K|E denotes the orthogonal projection of K
onto E. From (3.1.5), in turn, we can retrieve the following Crofton-type formula. Here, we
denote by AGrj(Rn) the affine j-Grassmannian, endowed with the rigid motion invariant
measure, normalized so that the set of j-flats intersecting the unit ball has measure κn−j ,
and by hL(u) = max{⟨u, x⟩ : x ∈ L} the support function of L ∈ K(Rn).

Corollary 3.F. Let 1 ≤ j ≤ n − 1. If K ∈ K(Rn) is origin-symmetric, then�
AGrj(Rn)

hK∩E(en) dE = an,jV (K [n−j+1],D[j−1]), (3.1.6)

where an,j = πjκjκn−j

(j+1)(n−j+1)κj+1κn
.

Our primary interest in (3.1.6) stems from the fact that the expression on the left-hand
side coincides with the support function of the mean section body of K. Indeed, the j-th
mean section operator Mj : K(Rn) → K(Rn) is defined by

hMjK(u) =
�

AGrj(Rn)
hK∩E(u) dE, u ∈ Sn−1. (3.1.7)

These operators were introduced by Goodey and Weil [45], motivated by the question
whether every convex body can be reconstructed from the mean of random sections. They
gave a positive answer to this question by finding an integral representation of Mj using
the Berg functions gj ∈ C∞(−1, 1), j ≥ 2. The functions gj were constructed by Berg [13]
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3 The Klain approach to zonal valuations

in his solution to the Christoffel problem [29] so that for every dimension n ≥ 2 and
K ∈ K(Rn),

hK−s(K)(u) =
�
Sn−1

gn(⟨u, v⟩) dS1(K, v), u ∈ Sn−1, (3.1.8)

where s(K) denotes the Steiner point of K (cf. [96, p. 50]). Interestingly enough, the
integral representation of Mj of type (3.1.1) arises by lifting Berg’s functions to the unit
sphere in different dimensions.

Theorem 3.1.5 ([45, 47]). Let 2 ≤ j < n. Then for every K ∈ K(Rn),

hMj(K−s(K))(u) = cn,j

�
Sn−1

gj(⟨u, v⟩) dSn−j+1(K, v), u ∈ Sn−1, (3.1.9)

where cn,j = jκjκn−j

(n−j+1)nκn
.

Let us note that the case j = 2 of Theorem 3.1.5 was settled in [45], while the cases
2 < j < n were deduced from this more recently in [47]. The proofs in [45, 47] rely on
heavy tools from harmonic analysis. Applying our Corollary 3.C, we can give a new,
shorter proof of the results in [47] using the case j = 2 from [45].

Corollary 3.G. Theorem 3.1.5 holds for all 2 < j < n.

Organization of the article. In Section 3.2, we introduce the transform Tn−i−1 and
examine restrictions of integral representations; in there, we establish the commuting
diagram above and Theorem 3.D. In Section 3.3, we prove Theorem 3.B and the subsequent
corollary. Section 3.4 is devoted to the Hadwiger type theorems for zonal valuations; using
our findings from the previous sections, we show Theorem 3.1.2 and Theorem 3.A. Finally,
in Section 3.5, we discuss the applications to integral geometry and the mean section
operators.

3.2 Moving between integral representations
In this section, we investigate how we can move between different integral representations
of zonal valuations in Vali(Rn) – in terms of the i-th area measure and the mixed area
measure with the disk – and how to restrict to and extend from an (i + 1)-dimensional
subspace containing en. For 1 ≤ i ≤ n − 1 and zonal functions f, g ∈ C(Sn−1), we define
zonal valuations ϕi,f , ψi,g ∈ Vali(Rn) by

ϕi,f (K) :=
�
Sn−1

f(u) dSi(K, u) and ψi,g(K) :=
�
Sn−1

g(u) dSi(K,D, u)

for K ∈ K(Rn). We want to find a transform Tn−i−1 with the property that ϕi,f = ψi,g,
whenever Tn−i−1f̄ = ḡ, where f = f̄(⟨en, · ⟩) and g = ḡ(⟨en, · ⟩). We will evaluate ϕi,f and
ψi,g on a certain family of cones to see how Tn−i−1 needs to be defined. Then, we show
that this transform ensures that ϕi,f and ψi,g also coincide on subspaces E ∈ Gri+1(Rn)
containing en.

85



3 The Klain approach to zonal valuations

3.2.1 Evaluation on cones
For s ∈ [−1, 1] \ {0}, we denote by Cs the cone with basis D and apex

√
1−s2
s en, that is,

Cs := conv

D ∪

�√
1−s2
s en

�
.

Observe that C−s = −Cs; for s > 0, the cone Cs is pointing “up”, for s < 0, it is pointing
“down”. As s → 0, the height of Cs tends to infinity, and C−1 = C1 = D. Moreover, the
support function of Cs is given by

hCs(u) =
� 

1 − ⟨en, u⟩2, sgn(s)⟨en, u⟩ ≤ |s|,√
1−s2
s ⟨en, u⟩, sgn(s)⟨en, u⟩ ≥ |s|, u ∈ Sn−1.

Evaluating ϕi,f on the cones Cs boils down to computing their area measures. This has
been done recently in [68, Lemma 2.2].

Lemma 3.2.1 ([68]). Let 1 ≤ i < n−1 and f = f̄(⟨en, ·⟩) ∈ C(Sn−1). For s ∈ [−1, 1]\{0},

ϕi,f (Cs) = κn−1

 1
|s|(1 − s2)

n−i−1
2 f̄(s) + (n − i − 1) sgn s

� s

− sgn s
f̄(t)(1 − t2)

n−i−3
2 dt


.

Next, we evaluate the valuation ψi,g on the family Cs.

Lemma 3.2.2. Let 1 ≤ i ≤ n − 1 and g = ḡ(⟨en, · ⟩) ∈ C(Sn−1). For s ∈ [−1, 1] \ {0},

ψi,g(Cs) = κn−1


ḡ(− sgn s) + 1

|s| ḡ(s)


. (3.2.1)

Proof. First, note that C−s = −Cs, and thus, the case when s < 0 can easily be deduced
from the case when s > 0. Therefore, we will now restrict ourselves to the case when
s > 0. For degree i = n−1, we deduce (3.2.1) from the classical facts that the surface area
measure Sn−1(Cs, · ) is the area of the reverse spherical image of Cs and that it integrates
all linear functions to zero (cf. [96, Section 4.2].

For degrees 1 ≤ i < n − 1, note that for λ ≥ 0, the body λCs + D is a truncated cone
with basis (λ + 1)D which is cut off at a unit disk of radius one. That is,

λCs + D =
�
(λ + 1)Cs \ (Cs +

√
1−s2
s en)

� ∪ (D +
√

1−s2
s en).

Hence, by the valuation property and the translation invariance of the surface area mea-
sure, we have that

Sn−1(λCs + D, · ) = Sn−1((λ + 1)Cs, · ) − Sn−1(Cs, · ) + Sn−1(D, · ).

Subsequently, applying (3.2.1) for degree n − 1, we obtain that

ψn−1,g(λCs + D) = κn−1


((λ + 1)n−1 − 1)


ḡ(−1) + 1

s
ḡ(s)


+ (ḡ(−1) + ḡ(1))


.
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Moreover, by the multilinearity of the surface area measure (cf. [96, p. 280]),

ψn−1,g(λCs + D) =
n−1!
i=0


n − 1

i

�
λiψi,g(Cs).

By a comparison of coefficients, we obtain (3.2.1) for degrees 1 ≤ i < n − 1.

Note that (3.2.1) allows us to extract the function g easily from the valuation ψi,g.
To pursue this further, for 1 ≤ i ≤ n − 1 and ϕ ∈ Vali(Rn), we define a function
ḡϕ : [−1, 1] → R by

ḡϕ(s) := 1
κn−1

·

����
s(ϕ(D) − ϕ(Cs)), s ∈ [−1, 0),
1
i (ϕ(D + [0, en]) − ϕ(D)), s = 0,

sϕ(Cs), s ∈ (0, 1].
(3.2.2)

It is initially unclear whether ḡϕ is continuous at s = 0. This will be ensured by the
following elementary lemma; it was shown in [68, Proposition 4.4], but we also provide a
proof for the convenience of the reader. Here and in the following, we denote by B the
unit ball in Rn and by ∥ϕ∥ := sup{|ϕ(K)| : K ⊆ B} the Banach norm on Val(Rn).

Lemma 3.2.3 ([68]). Let 1 ≤ i ≤ n − 1 and ϕ ∈ Vali(Rn). Then ḡϕ ∈ C[−1, 1] and
∥ḡϕ∥∞ ≤ Mi∥ϕ∥, where Mi > 0 is a constant depending only on i.

Proof. Observe that for s ∈ (0, 1√
2), the cone Cs has height strictly larger than one, so

making a cut at height one splits it into two parts. The upper part is the cone asCs + en

and the lower part is the truncated cone Zs = conv(D ∪ (asD + en)), where we defined
as = 1 − s/

√
1 − s2. That is,

Zs ∪ (asCs + en) = Cs and Zs ∩ (asCs + en) = asD + en.

Hence, by the valuation property, translation invariance, and homogeneity of ϕ,

sϕ(Cs) = s

1 − ai
s

(ϕ(Cs) − ϕ(asCs)) = s

1 − ai
s

(ϕ(Zs) − ϕ(asD)).

First, note that if we pass to the limit s → 0+, then as → 1, and by L’Hôpital’s rule,
s/(1 − ai

s) → 1/i. Moreover Zs converges to the cylinder Z0 = D + [0, en], so by the
continuity of ϕ, the right hand side converges to 1

i (ϕ(Z0)−ϕ(D)). Repeating this argument
for s ∈ (− 1√

2 , 0) yields the first claim.
For the second claim, note that for s ∈ (0, 1√

2), the term s/(1 − ai
s) is bounded by some

number M ′
i > 0. Thus,

|sϕ(Cs)| ≤ M ′
i(|ϕ(Zs)| + |ϕ(asD)|) ≤ M ′

i(
√

2 i + 1)∥ϕ∥,

due to the fact that asD ⊆ B and Zs ⊆ Z0 ⊆ √
2B. If s ∈ [ 1√

2 , 1], then Cs ⊆ B, and thus,
|sϕ(Cs)| ≤ ∥ϕ∥. Repeating this argument for s ∈ [−1, 0) yields the second claim.
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Note that the lemma above does not require the valuation ϕ to be zonal. For the
converse estimate on zonal valuations, let 1 ≤ i ≤ n − 1 and g ∈ C(Sn−1) be zonal. For
every K ∈ K(Rn) such that K ⊆ B,

ψi,g(K) =
�
Sn−1

g(u) dSi(K,D, u) ≤
�
Sn−1

dSi(K,D, u) ∥g∥∞

= nV (K [i],D[n−i−1],B)∥g∥∞ ≤ nVn(B)∥g∥∞,

(3.2.3)

which shows that ∥ψi,g∥ ≤ nκn∥g∥∞. From Theorem 3.A, we will obtain that every
zonal valuation ϕ ∈ Vali(Rn) is of the form ϕ = ψi,g, where we can choose g to be
g = ḡϕ(⟨en, · ⟩). From this, we will deduce that zonal valuations are determined on cones,
and that convergence in the Banach norm is equivalent to uniform convergence of the
corresponding integral kernels (see Section 3.4.2).

3.2.2 Restricting to subspaces
Now we investigate how the integral representations of ϕi,f and ψi,g behave when restricted
to subspaces containing en. In the following, for E ∈ Grk(Rn) and u ∈ Sk−1(E), we define
the relatively open (n − k)-dimensional half-sphere generated by E⊥ and u as

Hn−k(E, u) = {v ∈ Sn−1 \ E⊥ : (v|E)/∥v|E∥ = u}
= {v ∈ Sn−k(E⊥ ∨ u) : ⟨u, v⟩ > 0}.

Here, E⊥ ∨u = span(E⊥ ∪u) denotes the subspace generated by E⊥ and u. When dealing
with mixed area measures of lower dimensional bodies, a key tool will be provided by the
mixed spherical projections and liftings that were introduced recently by the authors [25].

Definition 3.2.4 ([25, Definition 2.3]). Let 1 ≤ k < n and E ∈ Grk(Rn). Also, let
C1, . . . , Cn−k ∈ K(Rn) and set C = (C1, . . . , Cn−k). The C-mixed spherical projection is
the bounded linear operator πE,C : C(Sn−1) → C(Sk−1(E)),

(πE,Cf)(u) =
�
Hn−k(E,u)

f(v) dSE⊥∨u(C|(E⊥ ∨ u), v), u ∈ Sk−1(E).

We call its adjoint operator π∗
E,C : M(Sk−1(E)) → M(Sn−1) the C-mixed spherical lifting.

That is, for µ ∈ M(Sk−1(E)) and f ∈ C(Sn−1),�
Sn−1

f d(π∗
E,Cµ) =

�
Sk−1(E)

πE,Cf dµ.

Here, we used the abbreviation C|E′ = (C1|E′, . . . , Cn−k|E′). Moreover, in the case
when C1 = · · · = Cn−k = C, we will write πE,C = πE,C . In [25], the authors established
the following theorem, expressing the mixed area measure of a lower dimensional body in
terms of its surface area measure relative to a subspace.
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Theorem 3.2.5 ([25, Theorem B]). Let 1 ≤ i < n − 1 and E ∈ Gri+1(Rn). Also, let
C = (C1, . . . , Cn−i−1) be a family of convex bodies with C2 support functions. Then for all
K ∈ K(E),

S(K [i], C, · ) = 1�n−1
i

�π∗
E,CSE

i (K, · ). (3.2.4)

In the instance where the reference bodies C1, . . . , Cn−i−1 are Euclidean balls, this
coincides with a particular case of a result by Goodey, Kiderlen, and Weil (see [44, The-
orem 6.2]). In order to compute the B-mixed and D-mixed spherical projection of zonal
functions, we will need spherical cylinder coordinates: For every f̄ ∈ C[−1, 1],�

Sn−1
f̄(⟨en, u⟩) du = ωn−1

� 1

−1
f̄(t)(1 − t2)

n−3
2 dt,

where ωm denotes the surface area of the unit sphere in Rm (cf. [49, p. 9]). In the following,
we also define ωα := 2π

α
2 /Γ(α

2 ) for α > 0.

Lemma 3.2.6. Let 1 ≤ i < n − 1 and E ∈ Gri+1(Rn) be such that en ∈ E. Then for
every function f = f̄(⟨en, · ⟩) ∈ C(Sn−1), we have πE,Bf = (πn−i−1,Bf̄)(⟨en, · ⟩), where we
define for α > 0,

(πα,Bf̄)(s) = ωα

� 1

0
f̄(st)(1 − t2)

α−2
2 dt, s ∈ (−1, 1).

Proof. By definition of the mixed spherical projection,

(πE,Bf)(u) =
�
Hn−i−1(E,u)

f̄(⟨en, v⟩) dv =
�
Hn−i−1(E,u)

f̄(s⟨u, v⟩) dv,

where dv denotes the spherical Lebesgue measure on Sn−i−1(E ∨ u⊥) and the second
equality is due to the fact that ⟨en, v⟩ = ⟨en|(E⊥∨u), v⟩ = ⟨en, u⟩⟨u, v⟩. Applying spherical
cylinder coordinates in Sn−i−1(E⊥ ∨ u) then yields the desired identity.

Next, we want to do the same for πE,D. However, the disk D does not have a C2 support
function, so we can not apply Theorem 3.2.5 directly. By an approximation argument, we
can obtain the required formula as a corollary of Theorem 3.2.5. For this, we recall the
classical Portmanteau theorem.

Theorem 3.2.7 ([64, Theorem 13.16]). Let µk, µ be finite positive measures on a compact
metric space X. Then the following are equivalent:

(a) µk → µ weakly.
(b) For every f ∈ C(X), we have limk→∞

�
X fdµk =

�
X fdµ.

(c) For every bounded, measurable function f on X such that its discontinuity points
are a set of µ-measure zero, limk→∞

�
X fdµk =

�
X fdµ.

Corollary 3.2.8. Let 1 ≤ i < n − 1 and E ∈ Gri+1(Rn) be such that E ̸⊆ e⊥
n . Then for

all K ∈ K(E),
S(K [i],D[n−i−1], · ) = 1�n−1

i

�π∗
E,DSE

i (K, · ). (3.2.5)
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Proof. Take a sequence of convex bodies Dk ∈ K(Rn) with C2 support functions, converg-
ing to D in the Hausdorff metric. By Theorem 3.2.5, for every f ∈ C(Sn−1),�

Sn−1
f(u) dS(K [i], D

[n−i−1]
k , u) = 1�n−1

i

� �
Si(E)

(πE,Dk
f)(u) dSE

i (K, u).

We want to pass to the limit k → ∞ on both sides. On the left hand side, as mixed area
measures are weakly continuous,�

Sn−1
f(u) dS(K [i], D

[n−i−1]
k , u) →

�
Sn−1

f(u) dS(K [i],D[n−i−1], u).

Next we want to establish pointwise convergence of πE,Dk
f to πE,Df . To this end, we first

show that for all u ∈ Si(E),

SE⊥∨u
n−i−1(D|(E⊥ ∨ u), Sn−i−1(E⊥ ∨ u) ∩ E⊥) = 0.

We consider the surface area measure SF
n−i−1(D|F, · ) on the unit sphere Sn−i−1(F ) of

F = E⊥ ∨ u, and distinguish two cases. If en /∈ F , then D|F is a smooth convex body
in F , so SF

n−i−1(D|F, · ) is absolutely continuous with respect to the spherical Lebesgue
measure. If en ∈ F , then D|F is a disk in F , and thus, SF

n−i−1(D|F, · ) is concentrated on
the two points en and −en. In either case, the set Si(F ) ∩ E⊥, which is a great sphere of
Si(F ) containing neither en nor −en, is a null set of SF

n−i−1(D|F, · ).
Consequently, by the definition of the mixed spherical projection, Theorem 3.2.7, and

the fact that the set Sn−i−1(E⊥ ∨ u) ∩ E⊥ contains all possible discontinuity points of
Hn−i−1(E,u)f , we obtain that (πE,Dk

f)(u) → (πE,Df)(u) for all u ∈ S(E). By dominated
convergence, �

Si(E)
(πE,Dk

f)(u) dSE
i (K, u) →

�
Si(E)

(πE,Df)(u) dSE
i (K, u),

which yields the desired identity.

Remark 3.2.9. Note that the proof of Corollary 3.2.8 works verbatim if the disk D is
replaced by any smooth convex body in e⊥

n .
We also want to comment on the condition that E ̸⊆ e⊥

n . Since we mainly consider
restrictions so subspaces containing en, this is not an obstacle to our purposes. However,
we want to point out that the condition is necessary. Indeed, if E ⊆ e⊥

n , then for all
K ∈ K(E),

S(K [i],D[n−i−1], · ) = κn−1κn−i−1�n−1
i

� Vi(K) (δen + δ−en) .

This follows by polarization from the fact that Sn−1(C, · ) = Vn−1(C)(δen + δ−en) for
every convex body C ∈ K(e⊥

n ). This also exemplifies that the regularity condition in
Theorem 3.2.5 can not be dropped completely.

Next, we prove the analogue of Lemma 3.2.6 for the disk. For this, we need the following
formula of the surface area measure of smooth convex bodies of revolution. It is an easy
consequence of the proof of [88, Lemma 5.3].
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3 The Klain approach to zonal valuations

Lemma 3.2.10 ([88]). Let L ∈ K(Rn) be a convex body of revolution with support function
hL = η(⟨en, · ⟩) ∈ C2(Sn−1). Then

dSn−1(L, u) = (A1η)(⟨en, u⟩)n−2(A2η)(⟨en, u⟩)du, (3.2.6)

where (A1η)(t) = η(t) − tη′(t) and (A2η)(t) = (1 − t2)η′′(t) + η(t) − tη′(t).

Lemma 3.2.11. Let 0 ≤ i < n − 1 and E ∈ Gri+1(Rn) be such that en ∈ E. Then for
every f = f̄(⟨en, · ⟩) ∈ C(Sn−1), we have that πE,Df = (πn−i−1,Df̄)(⟨en, · ⟩), where we
define for α > 0,

(πα,Df̄)(s) = ωα(1 − s2)
� 1

0
f̄(st)(1 − s2t2)− α+2

2 (1 − t2)
α−2

2 dt, s ∈ (−1, 1).

Proof. By definition of the mixed spherical projection, for all u ∈ Si(E),

(πE,Df)(u) =
�
Hn−i−1(E,u)

f̄(⟨en, v⟩) dSE⊥∨u
n−i−1(D|(E⊥ ∨ u), v).

Note that for all v ∈ Sn−i−1(E⊥ ∨ u), we have that for s = ⟨en, u⟩,

hD|(E⊥∨u)(v) = hD(v|(E⊥ ∨ u)) = hD(v) =
�

1 − ⟨en, v⟩2 =
�

1 − s2⟨u, v⟩2,

since ⟨en, v⟩ = ⟨en|(E⊥∨u), v⟩ = ⟨en, u⟩⟨u, v⟩. Consequently, the projected disk D|(E⊥∨u)
is a smooth body of revolution in E⊥ ∨ u with axis of revolution u. Its support function is
given by hD|(E⊥∨u) = ηs(⟨u, · ⟩), where ηs(t) =

√
1 − s2t2. Direct computation shows that

A1ηs(t) = (1 − s2t2)− 1
2 and A2ηs(t) = (1 − s2)(1 − s2t2)− 3

2 .

Therefore, by (3.2.6), we obtain that

(πE,Df)(u) = (1 − s2)
�
Hn−i−1(E,u)

f̄(s⟨u, v⟩)(1 − s2⟨u, v⟩2)− n−i+1
2 dv.

Applying spherical cylinder coordinates in Sn−i−1(E⊥ ∨u) then yields the desired identity.

3.2.3 The commuting diagram
Comparing the expressions for ϕi,f (Cs) found in Lemma 3.2.1 and for ψi,g(Cs) found in
Lemma 3.2.2 motivates the following definition of a family of integral transforms.

Definition 3.2.12. Let α ≥ 0 and f̄ ∈ C(−1, 1). We define T0f̄ := f̄ and for α > 0,

Tαf̄(s) := (1 − s2)
α
2 f̄(s) + αs

� s

0
f̄(t)(1 − t2)

α−2
2 dt, s ∈ (−1, 1).
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3 The Klain approach to zonal valuations

Note that integrating on (0, s) instead of (−1, s) alters the outcome only by a linear
function, however this domain of integration turns out to be convenient in later computa-
tions. We will prove that if ϕi,f = ψi,g, then ḡ must be related to f̄ (up to the addition of
linear functions) via the transform Tn−i−1.

Next, as we have defined the transform Tn−i−1 and computed the B-mixed and D-
mixed spherical projections of zonal functions, we can show that the diagram in Fig. 3.1
commutes. This will ensure that whenever ḡ = Tn−i−1f̄ , then the valuations ϕi,f and
ψi,g agree on subspaces E ∈ Gri+1(Rn) containing en. We require the following technical
lemma.

Lemma 3.2.13. For all α > 0 and x, t ∈ (−1, 1),� t

x
s(1 − s2)− α+2

2 |s2 − t2| α−2
2 ds = (1 − x2)− α

2 |t2 − x2| α
2

α(1 − t2) . (3.2.7)

Proof. Fix the parameters α > 0 and t ∈ (−1, 1) and observe that the right hand side
of (3.2.7) defines a continuous function of x ∈ (−1, 1) that vanishes at x = t and is
differentiable on (−1, 1)\{t}. Differentiating the right hand side at x ∈ (−1, 1)\{t} yields

d

dx

(1 − x2)− α
2 |t2 − x2| α

2

α(1 − t2) = −x(1 − x2)− α+2
2 |x2 − t2| α−2

2 .

Hence, by the fundamental theorem of calculus, we obtain (3.2.7).

Lemma 3.2.14. Let α > 0 and f̄ ∈ C(−1, 1). Then πα,DTαf̄ = πα,Bf̄ .

Proof. Define a function ḡ ∈ C(−1, 1) by ḡ := Tαf̄ , that is,

ḡ(s) = (1 − s2)
α
2 f̄(s) + αs

� s

0
f̄(x)(1 − x2)

α−2
2 dx, s ∈ (−1, 1).

By a change of variables, we have that

πα,Dḡ(t) = ωα(1 − t2)
� 1

0
ḡ(st)(1 − s2t2)− α+2

2 (1 − s2)
α−2

2 ds

= ωα

tα−1 (1 − t2)
� t

0
ḡ(s)(1 − s2)− α+2

2 (t2 − s2)
α−2

2 ds.

Next, inserting one integral expression into the other and changing the order of integration
yields � t

0
s

� s

0
f̄(x)(1 − x2)

α−2
2 dx (1 − s2)− α+2

2 (t2 − s2)
α−2

2 ds

=
� t

0
f̄(x)(1 − x2)

α−2
2

� t

x
s(1 − s2)− α+2

2 (t2 − s2)
α−2

2 ds dx

= 1
α(1 − t2)

� t

0
f̄(x) 1

1 − x2 (t2 − x2)
α
2 dx,
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3 The Klain approach to zonal valuations

where the final equality is due to (3.2.7). Consequently, we obtain that

πα,Dḡ(t) = ωα

tα−1

� t

0
f̄(x) 1

1 − x2


(t2 − x2)

α
2 + (1 − t2)(t2 − x2)

α−2
2


dx

= ωα

tα−1

� t

0
f̄(x)(t2 − x2)

α−2
2 dx = πα,Bf̄(t),

where the final equality is again due to a change of variables.

The uniqueness of the respective integral kernels in Theorem 3.1.2 and Theorem 3.A
will be deduced from the following.

Proposition 3.2.15. For α > 0, the maps πα,B and πα,D are injective and map linear
functions to linear functions.

Proof. First, observe that the map πα,B is an instance of the Ra,b transform defined in
Section 3.A, which are all injective by Proposition 3.A.4. Similarly, the map πα,D, as a
composition of an Ra,b transform and two maps of the form f̄ �→ (1− t2)β f̄(t), is injective.

Clearly, πα,B maps linear functions to linear functions. A direct computation shows that
Tα maps the function f̄(t) := t to itself, so Lemma 3.2.14 yields that πα,D also maps linear
functions to linear functions.

Lemma 3.2.16. Let 1 ≤ i ≤ n − 1 and f, g ∈ C(Sn−1) be zonal.
(i) If ϕi,f = 0, then f is a zonal linear function.
(ii) If ψi,g = 0, then g is a zonal linear function.

Proof. Statement (i) follows immediately from Theorem 3.2.5, Lemma 3.2.6, the unique-
ness result in Theorem 3.3.5, and Proposition 3.2.15. Similarly, statement (ii) follows
immediately from Corollary 3.2.8, Lemma 3.2.11, the uniqueness result in Theorem 3.3.5,
and Proposition 3.2.15.

3.2.4 Extending from subspaces
Next, for E ∈ Gri+1(Rn) containing en, we show that a zonal valuation ϕE

i,fE
on E always

extends to a zonal valuation ϕi,f on Rn, provided that fE is smooth; this is the content of
Theorem 3.D. For the proof, we need the following basic lemma. We denote by C∞[−1, 1]
the space of C[−1, 1] functions that are infinitely differentiable on (−1, 1) and also posses
all (one-sided) higher order derivatives at ±1.

Lemma 3.2.17. Let f = f̄(⟨en, · ⟩) : Sn−1 → R be zonal. Then f ∈ C∞(Sn−1) if and only
if f̄ ∈ C∞[−1, 1].

Proof. We can parametrize the unit sphere by u = (cos θ)en + (sin θ)v with θ ∈ R and
v ∈ Sn−2(e⊥

n ). Then f(u) = f̄(cos θ), which shows that f ∈ C∞(Sn−1) if and only if
f̄(cos θ) is a smooth function of θ. If f̄ ∈ C∞[−1, 1], then f̄(cos θ) is a smooth function of
θ by the chain rule.
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3 The Klain approach to zonal valuations

Conversely, suppose that f̄(cos θ) is a smooth function of θ. Then clearly f̄ ∈ C∞(−1, 1),
and it remains to show the existence of all higher order derivatives at ±1. Since f̄(cos θ)
is an even, smooth function, there is a smooth function f̃ such that f̄(cos θ) = f̃(θ2).
Similarly, there is a smooth function q̃ such that cos θ = q̃(θ2). By L’Hôpital’s rule,

q̃′(0) = lim
θ→0

q̃(θ2) − q̃(0)
θ2 = lim

θ→0

cos θ − 1
θ2 = −1

2 ̸= 0,

so there exists some neighborhood of zero where q̃ is invertible and its inverse is also
smooth. Hence, if t is close to 1, then f̄(t) = f̃((arccos t)2) = f̃(q̃−1(t)), so by the chain
rule f̄ ∈ C∞(−1, 1]. The argument for f̄ ∈ C∞[−1, 1) is analogous.

Theorem 3.D is now an easy consequence of what we have shown so far and our study
of integral transforms in Section 3.A.

Proof of Theorem 3.D. Due to Theorem 3.2.5, proving the theorem corresponds to finding
a zonal function f ∈ C∞(Sn−1) such that

fE = 1�n−1
i

�πE,Bf.

Writing f = f̄(⟨en, · ⟩) and fE = f̄E(⟨en, · ⟩), by Lemmas 3.2.6 and 3.2.17, this is equivalent
to finding a function f̄ ∈ C∞[−1, 1] such that

f̄E = 1�n−1
i

�πn−i−1,Bf̄ = ωn−i−1�n−1
i

� R1, n−i−1
2

f̄ ,

where Ra,b is the transform defined in Section 3.A. According to Proposition 3.A.7, such
a function f̄E ∈ C∞[−1, 1] exists, concluding the argument.

3.3 The Klain–Schneider theorem for zonal valuations
In this section we establish Theorem 3.B, the zonal analogue of the classical Klain–
Schneider theorem and centerpiece of the Klain approach. The main step in the proof
is to eliminate the (n − 2)-homogeneous component, which is subsumed in the following
theorem.

Theorem 3.3.1. Let ϕ ∈ Valn−2(Rn) be zonal. If ϕ vanishes on some hyperplane H ∈
Grn−1(Rn) such that en ∈ H, then ϕ = 0.

We will prove this theorem by induction on the dimension n ≥ 3; the three-dimensional
case will be the induction base.
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3.3.1 The three-dimensional case
First, we consider Theorem 3.3.1 in three dimensions. To this end, we prove the one-
homogeneous instance of Theorem 3.A, using our computation of the area measures of
cones.

Proposition 3.3.2. For every zonal valuation ϕ ∈ Val1(Rn), there exists a zonal function
g ∈ C(Sn−1) such that

ϕ(K) =
�
Sn−1

g(u) dS1(K,D, u), K ∈ K(Rn). (3.3.1)

Proof. Take g to be g = ḡϕ(⟨en, · ⟩), where ḡϕ is defined as in (3.2.2). Due to Lemma 3.2.3,
the function g is continuous on Sn−1, and by (3.2.1), the valuations ϕ and ψi,g coincide
on the family of cones Cs for s ∈ [−1, 1] \ {0}.

Next, observe that the valuation property implies that ϕ and ψi,g coincide on truncated
cones and subsequently, on all bodies of revolution with axis en that have a polytopal
cross-section by two-dimensional planes containing en. By continuity, ϕ and ψi,g agree on
all bodies of revolution with axis en.

For a general body K ∈ K(Rn), we define a body of revolution K ∈ K(Rn) by

hK(x) =
�

SO(n−1)
hK(ϑ−1x) dϑ =

�
SO(n−1)

hϑK(x) dϑ, x ∈ Rn,

where integration is with respect to the unique invariant probability measure on SO(n−1).
Hence, by the invariance, Minkowski additivity, and continuity of the valuations ϕ and
ψi,g,

ϕ(K) =
�

SO(n−1)
ϕ(ϑK) dϑ = ϕ(K) = ψi,g(K) =

�
SO(n−1)

ψi,g(ϑK) dϑ = ψi,g(K).

This shows that ϕ = ψi,g, which concludes the argument.

Lemma 3.3.3. Let ϕ ∈ Val1(R3) be zonal. If ϕ vanishes on some plane E ∈ Gr2(R3)
such that e3 ∈ E, then ϕ = 0.

Proof. By Proposition 3.3.2, ϕ admits an integral representation (3.3.1) with some zonal
function g = ḡ(⟨e3, · ⟩) ∈ C(S2). Suppose now that ϕ vanishes on a plane E ∈ Gr2(R3)
containing e3. Then Corollary 3.2.8 and Lemma 3.2.11 imply that for all K ∈ K(E),�

S1(E)
(π1,Dḡ)(⟨e3, u⟩) dSE

1 (K, u) = 2ϕ(K) = 0,

and thus, π1,Dḡ is a linear function. Hence, by Proposition 3.2.15, g is a linear function,
and subsequently ϕ = 0.
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3.3.2 The induction step
Now we pass from three dimensions to general dimensions. One of the main ideas is to
show that the valuation in question vanishes on certain orthogonal sums of convex bodies.
First, we need the following easy lemma. Recall that we globally assumed the dimension
to be n ≥ 3.

Lemma 3.3.4. Let ℓ : Rn → R be such that its restriction to e⊥
n and to each hyperplane

containing en is a linear function. Then ℓ is a linear function.

Proof. By assumption, we find x0 ∈ e⊥
n such that ℓ|e⊥

n
= ⟨x0, · ⟩ and for every hyperplane

H containing en, we find xH ∈ H such that ℓ|H = ⟨xH , ·⟩. As n ≥ 3, we have e⊥
n ∩H ̸= {o}

and we can consider ℓ|e⊥
n ∩H to deduce that

PHx0 = PH∩e⊥
n

x0 = PH∩e⊥
n

xH = Pe⊥
n

xH ,

where PE denotes the orthogonal projection onto a subspace E ⊆ Rn and we used the fact
that PH∩e⊥

n
= PHPe⊥

n
= Pe⊥

n
PH . Next, by plugging en into ℓ, we see that ℓ(en) = ⟨xH , en⟩

for each hyperplane H containing en. Consequently,

xH = ⟨xH , en⟩en + Pe⊥
n

xH = ℓ(en)en + PHx0 = PH(ℓ(en)en + x0),

and we conclude that the linear function ⟨ℓ(en)en + x0, · ⟩ coincides with ℓ on every
hyperplane H containing en, and thus, everywhere.

For the next lemma, we require the following classical result of McMullen.

Theorem 3.3.5 ([86]). For every valuation ϕ ∈ Valn−1(Rn), there exists a function
f ∈ C(Sn−1) such that

ϕ(K) =
�
Sn−1

f(u) dSn−1(K, u), K ∈ K(Rn).

Moreover, f is unique up to the addition of a linear function.

Lemma 3.3.6. Let ϕ ∈ Valn−1(Rn) and suppose that

ϕ(K + I) = 0 for all K ∈ K(H) and I ∈ K(H⊥)

whenever H = e⊥
n or H is a hyperplane containing en. Then ϕ = 0.

Proof. By Theorem 3.3.5, there exists a function f ∈ C(Sn−1) such that

ϕ(K) =
�
Sn−1

f(u) dSn−1(K, u), K ∈ K(Rn).

96



3 The Klain approach to zonal valuations

en

E�

F �

H=E�⊕F �PHen

E

Figure 3.2: We extend the orthogonal sum H = E′ ⊕ F ′, where
PHen ∈ E′, to an orthogonal sum Rn = E ⊕ F ′.

Let now H be some hyperplane such that ϕ(K +I) = 0 for all K ∈ K(H) and I ∈ K(H⊥).
Since K +I is a cylinder over K, its boundary splits naturally, and thus, so does its surface
area measure, yielding

0 = ϕ(K + I) =
�
Sn−1

f(u) dSn−1(K + I, u)

= Vn−1(K)(f(w) + f(−w)) + V1(I)
�
Sn−2(H)

f(u) dSH
n−2(K, u),

where w ∈ Sn−1 is such that H = w⊥. By choosing I = {o}, we see that f(w)+f(−w) = 0.
By choosing I ̸= {o}, we see that the final integral expression vanishes for all K ∈ K(H),
and thus, the restriction f |Sn−2(H) is linear.

Finally, let ℓ : Rn → R denote the one-homogeneous extension of f to Rn, that is,
ℓ(o) = 0 and ℓ(x) = ∥x∥f(x/∥x∥) for x ̸= o. Lemma 3.3.4 shows that ℓ is a linear function
on Rn, so f is a linear function on Sn−1, and thus, ϕ = 0.

We are now ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. We prove the theorem by induction on the dimension n ≥ 3. The
three-dimensional case is precisely the content of Lemma 3.3.3.

For the induction step, let n > 3 and take some zonal ϕ ∈ Valn−2(Rn) that vanishes
on some, and thus, on every hyperplane H ∈ Grn−1(Rn) containing en. Consider a proper
orthogonal sum Rn = E ⊕F , where en ∈ E. We claim that ϕ(K +L) = 0 for all K ∈ K(E)
and L ∈ K(F ). To show this, observe that for fixed K, the map ϕ(K + · ) defines
a continuous and rigid motion invariant valuation on F . According to Theorem 3.1.1,
it must be a linear combination of intrinsic volumes. Since ϕ(K + · ) is also a simple
valuation on F , it is a multiple of volF , the only simple intrinsic volume on F . That
is, there exists some map ψE : K(E) → R such that ϕ(K + L) = ψE(K)volF (L) for all
K ∈ K(E) and L ∈ K(F ). Fixing the body L reveals that ψE is a continuous, translation
invariant, and zonal valuation on E. Moreover, ψE is homogeneous of degree dim E − 2
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and vanishes on all hyperplanes of E containing en. By induction hypothesis, ψE = 0,
and thus, ϕ(K + L) = 0 for all K ∈ K(E) and L ∈ K(F ).

Next, we want to show that ϕ vanishes on every hyperplane H ∈ Grn−1(Rn). If en ∈ H,
then this is due to our assumption on ϕ; for H = e⊥

n , this is due to the previous step.
Otherwise, consider a proper orthogonal sum H = E′ ⊕ F ′, where PHen ∈ E′ and PH

denotes the orthogonal projection onto H. Note that for every x ∈ F ′,

⟨x, en⟩ = ⟨PHx, en⟩ = ⟨x, PHen⟩ = 0,

hence F ′ ⊆ e⊥
n . Consequently, if we define E = span(E′ ∪ {en}) and F = F ′, we obtain

the proper orthogonal sum Rn = E ⊕ F (see Fig. 3.2). Since E′ ⊆ E, the previous step
implies that ϕ(K + L) = 0 for all K ∈ K(E′) and L ∈ K(F ′). Therefore, the restriction
ϕ|H meets the requirements of Lemma 3.3.6, so ϕ|H = 0. This shows that the valuation
ϕ is simple, so Theorem 3.1.3 implies that ϕ = 0, concluding the proof.

As we have announced at the beginning of this section, the main part in the proof of
Theorem 3.B is to eliminate the (n−2)-homogeneous component. Now that we have dealt
with this case, it remains to handle the other homogeneous cases and reduce the general
case to these.

Lemma 3.3.7. If a valuation ϕ ∈ Val(Rn) vanishes on a subspace E ⊆ Rn, then so do
all of its homogeneous components.

Proof. Suppose that ϕ ∈ Val(Rn) vanishes on the subspace E ⊆ Rn and let ϕ = ϕ0 +
· · · + ϕn denote its homogeneous decomposition. Then for K ∈ K(E) and λ ≥ 0,

0 = ϕ(λK) =
n!

i=0
ϕi(λK) =

n!
i=0

λiϕi(K).

By comparison of coefficients, we see that the homogeneous components of ϕ vanish on
E.

We can now finally prove Theorem 3.B.

Proof of Theorem 3.B. It is easy to see that every zonal valuation ϕ ∈ Val(Rn) of the
form (3.1.3) vanishes on all hyperplanes containing en. Conversely, take a zonal valuation
ϕ ∈ Val(Rn) and suppose that it vanishes on some hyperplane H containing en. Letting
ϕ = ϕ0+· · ·+ϕn denote its homogeneous decomposition, each component ϕi ∈ Vali(Rn) is
again zonal and vanishes on H. In particular, ϕi vanishes on all subspaces E ∈ Grn−2(Rn),
so according to Corollary 3.1.4, all homogeneous components but ϕn−2, ϕn−1, and ϕn must
vanish.

By Theorem 3.3.1, ϕn−2 = 0. Due to Theorem 3.3.5 and Hadwiger’s classification of n-
homogeneous valuations [52], the valuation ϕ is thus of the form (3.1.3) for some constant
c ∈ R and function g ∈ C(Sn−1) which must clearly be zonal. In order to see that g(u) = 0
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for u ∈ Sn−1 ∩ e⊥
n , we evaluate ϕ on the body K = B∩ u⊥, where B denotes the Euclidean

unit ball, which yields

0 = ϕ(K) =
�
Sn−1

g(v) dSn−1(K, v) = κn−1(g(u) + g(−u)).

As g is zonal, this shows that g vanishes on Sn−1 ∩ e⊥
n .

Note that the assumption of ϕ being zonal cannot be dropped in Theorem 3.B. For
instance, consider the valuation ϕ ∈ Valn−2(Rn) defined by

ϕ(K) =
�
Sn−2(e⊥

n )
f(u) dS

e⊥
n

n−2(K|e⊥
n , u), K ∈ K(Rn),

for some odd function f ∈ C(Sn−2(e⊥
n )). Then ϕ vanishes on all hyperplanes containing en,

but it is not of the form (3.1.3). This raises the question of how to characterize valuations
in Val(Rn) that vanish on all hyperplanes containing en.

In the case of even valuations, however, it turns out that the assumption of SO(n − 1)-
invariance can be dropped and the proof is a simple application of the following corollary
of Theorem 3.1.3.

Corollary 3.3.8. Let 0 ≤ i ≤ n − 1 and ϕ ∈ Vali(Rn) be even. If ϕ vanishes on all
subspaces E ∈ Gri(Rn), then ϕ = 0.

Proposition 3.3.9. An even valuation ϕ ∈ Val(Rn) vanishes on all hyperplanes con-
taining en if and only if there exist a constant c ∈ R and an even function f ∈ C(Sn−1)
vanishing on Sn−1 ∩ e⊥

n such that

ϕ(K) = cVn(K) +
�
Sn−1

f(u) dSn−1(K, u), K ∈ K(Rn). (3.3.2)

Proof. As every subspace of dimension less or equal n − 2 is contained in a hyperplane
containing en, by Corollary 3.3.8, the proof reduces to considering valuations of degree
n and n − 1. The claim then follows directly from Hadwiger’s characterization of n-
homogeneous valuations [52] and Theorem 3.3.5.

Remark 3.3.10. In the Klain–Schneider type theorem in the functional setting, [35, The-
orem 1.2], the valuations are merely assumed to be epi-translation invariant. It might seem
that this is somehow more general than Theorem 3.B since there is no additional rotational
invariance imposed. However, it turns out that from Proposition 3.3.9 and the correspon-
dence between the functional and the even geometrical setting (see [65, Section 3]), one
can deduce [35, Theorem 1.2]. This will be discussed in more detail in future work.

Like the classical Klain–Schneider theorem, Theorem 3.B entails that zonal valuations
are determined by certain restrictions; this is the content of Corollary 3.C.
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Proof of Corollary 3.C. For degree i = n − 1, the statement is trivial. For degrees 1 ≤ i <
n − 1, we prove the claim by induction on the dimension n ≥ 3. For dimension n = 3 and
degree i = 1, this is precisely the content of Lemma 3.3.3.

For the induction step, let n > 3 and 1 ≤ i < n−1. Take a zonal valuation ϕ ∈ Vali(Rn)
that vanishes on some subspace E ∈ Gri+1(Rn) containing en. Choose a hyperplane
H ∈ Grn−1(Rn) such that H ⊇ E. Then ϕ|H is a zonal valuation on H and by the
induction hypothesis, ϕ|H = 0. Consequently, ϕ meets the requirements of Theorem 3.B,
so due to its homogeneity, ϕ = 0.

As a consequence of Corollary 3.C and the commuting diagram in Fig. 3.1, we obtain
that the transform Tn−i−1 allows us to move between integral representations as expected.

Corollary 3.3.11. Let 1 ≤ i ≤ n − 1 and f = f̄(⟨en, · ⟩), g = ḡ(⟨en, · ⟩) ∈ C(Sn−1). If
ḡ = Tn−i−1f̄ , then ϕi,f = ψi,g.

Proof. Consider a subspace E ∈ Gri+1(Rn) containing en. By Theorem 3.2.5 and
Lemma 3.2.6,

ϕi,f (K) = 1�n−1
i

� �
Si(E)

(πn−i−1,Bf̄)(⟨en, u⟩) dSE
i (K, u), K ∈ K(E).

Similarly, by Corollary 3.2.8 and Lemma 3.2.11,

ψi,g(K) = 1�n−1
i

� �
Si(E)

(πn−i−1,Dḡ)(⟨en, u⟩) dSE
i (K, u), K ∈ K(E).

Since ḡ = Tn−i−1f̄ , Lemma 3.2.14 yields πn−i−1,Bf̄ = πn−i−1,Dḡ, so the valuations ϕi,f

and ψi,g coincide on E. Hence, Corollary 3.C implies that ϕi,f = ψi,g.

3.4 Hadwiger type theorems for zonal valuations
In this section, we establish several integral representations for zonal valuations using the
Klain approach. First, we recover a Hadwiger type theorem for smooth, zonal valuations
by Schuster and Wannerer [103]. From this we deduce Theorem 3.A, and, finally, we also
obtain Theorem 3.1.2.

3.4.1 Smooth Valuations
Recall that the space Val(Rn) is a Banach space, when endowed with the norm ∥ϕ∥ =
sup{|ϕ(K)| : K ⊆ B}. Moreover, there is a natural representation of the group GL(n) on
this space: For ϕ ∈ Val(Rn) and ϑ ∈ GL(n), we set

(ϑ · ϕ)(K) = ϕ(ϑ−1(K)), K ∈ K(Rn).

A valuation ϕ ∈ Val(Rn) is called smooth if the map GL(n) → Val(Rn) : ϑ �→ ϑ · ϕ is
infinitely differentiable.

For (n − 1)-homogeneous smooth valuations, we have the following integral representa-
tion. It is a corollary of the classical Theorem 3.3.5 by McMullen [86].
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Corollary 3.4.1 ([86]). For every smooth valuation ϕ ∈ Valn−1(Rn), there exists a
function f ∈ C∞(Sn−1) such that

ϕ(K) =
�
Sn−1

f(u) dSn−1(K, u), K ∈ K(Rn).

Moreover, f is unique up to the addition of a linear function.

The fact that f ∈ C∞(Sn−1) whenever ϕ is smooth can be easily obtained in a similar
fashion as in the proof of McMullen for the continuity of f . By combining this with
Corollary 3.C and Theorem 3.D, we recover the following Hadwiger type theorem about
smooth, zonal valuations by Schuster and Wannerer [103].

Theorem 3.4.2 ([103]). Let 1 ≤ i ≤ n − 1. Then for every smooth, zonal valuation
ϕ ∈ Vali(Rn), there exists a zonal function f ∈ C∞(Sn−1) such that

ϕ(K) =
�
Sn−1

f(u) dSi(K, u), K ∈ K(Rn). (3.4.1)

Moreover, f is unique up to the addition of a zonal linear function.

Proof. The uniqueness of f follows from Lemma 3.2.16 (i).
For i = n − 1, we apply Corollary 3.4.1 to obtain integral representation (3.4.1) with a

function f ∈ C∞(Sn−1). Since ϕ is zonal, so is f .
For i < n − 1, choose some subspace E ∈ Gri+1(Rn) such that en ∈ E and consider

the restriction ϕ|E ∈ Vali(E). Then ϕ|E , as a valuation on E, is smooth (with respect to
the natural representation of GL(E)) and zonal. Therefore, by the first part of the proof,
there exists a zonal function fE ∈ C∞(Si(E)) such that

ϕ(K) =
�
Si(E)

fE(v) dSE
i (K, v), K ∈ K(E).

By Theorem 3.D, there exists a zonal function f ∈ C∞(Sn−1) such that

ϕ(K) =
�
Sn−1

f(u) dSi(K, du), K ∈ K(E).

Observe now that the right hand side defines a valuation ϕ̃ ∈ Vali(Rn) which agrees with
ϕ on E. According to Corollary 3.C, this already implies that ϕ = ϕ̃, yielding the desired
integral representation.

3.4.2 Continuous valuations
We now turn to the Hadwiger type theorems for continuous zonal valuations that we have
presented in the introduction: Theorem 3.A involving mixed area measures with the disk
and Theorem 3.1.2 involving the classical area measures. First, we obtain Theorem 3.A
by an approximation argument from Theorem 3.4.2. This requires the following lemma
which can be proved using a standard convolution argument.
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Lemma 3.4.3. Let 1 ≤ i ≤ n − 1. Then for every zonal valuation ϕ ∈ Vali(Rn), there
exists a sequence of smooth, zonal valuations in Vali(Rn) converging to ϕ in the Banach
norm.

Proof of Theorem 3.A. The uniqueness of g follows from Lemma 3.2.16 (ii).
For the existence, by Lemma 3.4.3, we may choose a family of smooth, zonal valuations

ϕk ∈ Vali(Rn) converging to ϕ in the Banach norm as k → ∞. By Theorem 3.4.2,
there exist zonal functions fk = f̄k(⟨en, · ⟩) ∈ C∞(Sn−1) such that ϕk = ϕi,fk

. If we let
ḡk := Tn−i−1f̄k, then gk = ḡk(⟨en, · ⟩) ∈ C(Sn−1) and Corollary 3.3.11 yields ϕk = ψi,gk

.
Modifying each gk by a linear function, if necessary, by the uniqueness part above and

Lemma 3.2.3, the functions ḡk form a Cauchy sequence in C[−1, 1], so by completeness,
they converge uniformly to some function ḡ ∈ C[−1, 1] as k → ∞. If we set g := ḡ(⟨en, · ⟩),
then

ϕ(K) = lim
k→∞

ϕk(K) = lim
k→∞

ψi,gk
(K) = ψi,g(K), K ∈ K(Rn).

Thus ϕ = ψi,g, which concludes the argument.

As was already indicated in the introduction, we obtain the following two corollaries as
a direct consequence of Theorem 3.A, Lemma 3.2.3, and (3.2.3).

Corollary 3.4.4. Let 1 ≤ i ≤ n − 1 and ϕ ∈ Vali(Rn) be zonal. If ϕ(Cs) = 0 for all
s ∈ [−1, 1] \ {0}, then ϕ = 0.

Corollary 3.4.5. Let 1 ≤ i ≤ n − 1 and ϕk, ϕ ∈ Vali(Rn) be zonal for k ∈ N, and let
gk, g ∈ C(Sn−1) be as in (3.1.2). Then ϕk → ϕ in the Banch norm if and only if there
exist constants ak ∈ R such that gk + ak⟨en, · ⟩ → g uniformly on Sn−1.

Next, we want to recover Theorem 3.1.2. One key step of the proof is to extend the
definition of ϕi,f from continuous f̄ ∈ C[−1, 1] to f̄ ∈ Dn−i−1 and to extend Corol-
lary 3.3.11 about moving between the different integral representations. For this, we need
the following classical result by Firey [40].

Theorem 3.4.6 ([40]). Let 1 ≤ i ≤ n − 1. Then there exists a constant An,i > 0 such
that for all K ∈ K(Rn), v ∈ Sn−1, and ε ≥ 0,

Si(K, {u ∈ Sn−1 : ⟨u, v⟩ > 1 − ε}) ≤ An,i(diam K)iε
n−i−1

2 .

Proposition 3.4.7. Let 1 ≤ i ≤ n − 1, f̄ ∈ Dn−i−1, and f = f̄(⟨en, · ⟩). Then f ∈
C(Sn−1 \ {±en}) and there exists a zonal valuation ϕi,f ∈ Vali(Rn) such that

ϕi,f (K) = lim
ε→0+

�
Sn−1\Uε

f(u) dSi(K, u), K ∈ K(Rn),

where Uε = {u ∈ Sn−1 : |⟨en, u⟩| > 1 − ε}.
Moreover, if ḡ = Tn−i−1f̄ , then g = ḡ(⟨en, · ⟩) ∈ C(Sn−1) and ϕi,f = ψi,g.
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Proof. The idea is to obtain the statement by approximation and Corollary 3.3.11. To
this end, take a family of bump functions η̄ε ∈ C[−1, 1], ε > 0, such that

η̄ε(s) = 1 for |s| ≤ 1 − ε, η̄ε(s) = 0 for |s| ≥ 1 − ε
2 , and 0 ≤ η̄ε ≤ 1.

For ε > 0, we define f̄ε = η̄εf̄ ∈ C[−1, 1]. We also define ḡε = Tn−i−1f̄ε and ḡ = Tn−i−1f̄ ,
and observe that ḡε, ḡ ∈ C[−1, 1]. We denote the respective zonal extensions of these
functions to the unit sphere by ηε, fε, gε, g ∈ C(Sn−1).

According to Corollary 3.3.11, we have that ϕi,fε = ψi,gε for all ε > 0, and due to
Lemma 3.B.1, the functions gε converge to g uniformly on Sn−1 as ε → 0+. Hence, by
Corollary 3.4.5,

lim
ε→0+

ϕi,fε(K) = lim
ε→0+

ψi,gε(K) = ψi,g(K), K ∈ K(Rn).

Consequently, it remains to show that for every given K ∈ K(Rn), the principal value
integral in the statement of the proposition exists and agrees with the limit of ϕi,fε(K) as
ε → 0+. To this end, observe that

ϕi,fε(K) −
�
Sn−1\Uε

f dSi(K, · ) =
�

U+
ε

ηεf dSi(K, · ) +
�

U−
ε

ηεf dSi(K, · ),

where U±
ε = {u ∈ Sn−1 : ±⟨en, u⟩ > 1 − ε} are spherical caps around the individual

poles. Since U+
ε is connected, by the mean value theorem for integrals, there exists some

t ∈ (1 − ε, 1 − ε
2) such that�

U+
ε

ηεf dSi(K, · ) = f̄(t)
�

U+
ε

ηε dSi(K, · ).

Consequently, using Theorem 3.4.6, we can estimate that####�
U+

ε

ηεf dSi(K, · )
#### = |f̄(t)|

�
U+

ε

ηε dSi(K, · ) ≤ |f̄(t)|Si(K, U+
ε )

≤ An,i(diam K)i|f̄(t)|ε n−i−1
2 ≤ 2

n−i−1
2 An,i(diam K)i|f̄(t)|(1 − t2)

n−i−1
2 ,

where the final inequality uses that ε
2 < 1 − t < 1 − t2. Since f̄ ∈ Dn−i−1, the final term

tends to zero as ε → 0+. The argument on U−
ε is completely analogous. As we have

pointed out before, this concludes the argument.

For our later applications, we also note the following immediate consequence of Propo-
sition 3.4.7 and the commuting diagram in Fig. 3.1.

Corollary 3.4.8. Let 1 ≤ i ≤ n − 1, f̄ ∈ Dn−i−1, and f = f̄(⟨en, · ⟩). Then for every
subspace E ∈ Gri+1(Rn) with en ∈ E,

ϕi,f (K) =
�
Si(E)

(πn−i−1,Bf̄)(⟨en, u⟩) dSE
i (K, u), K ∈ K(E).
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We are now ready to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Let ϕ ∈ Vali(Rn) be zonal. By Theorem 3.A, there exists a zonal
function g = ḡ(⟨en, · ⟩) ∈ C(Sn−1) such that ϕ = ψi,g. According to Proposition 3.B.2,
there exists some f̄ ∈ Dn−i−1 such that ḡ = Tn−i−1f̄ . Due to Proposition 3.4.7, the
function f = f̄(⟨en, · ⟩) then provides the desired improper integral representation.

For the uniqueness, suppose that ϕ = 0. Then Theorem 3.A implies that ḡ is a linear
function. According to Proposition 3.B.2, the transform Tn−i−1 is injective, and direct
computation shows that it maps linear functions to linear functions. Hence, f̄ is a linear
function.

3.5 Applications
3.5.1 Integral geometric formulas
In the following, we apply the Hadwiger type Theorem 3.A for zonal valuations, and more
specifically, the determination by their values on cones (see Section 3.2.1), to prove some
integral geometric formulas. First, we establish the additive kinematic formula (3.1.4) in
Theorem 3.E.

Proof of Theorem 3.E. For convenience, we define functionals ϕ and ϕi as follows.

ϕ(K, L) := 1
κn−1

�
SO(n−1)

�
Sn−1

g(u) dSj(K + ϑL,D, u) dϑ,

ϕi(K, L) := 1
κ2

n−1

�
Sn−1

�
Sn−1

q(u, v) dSi(K,D, u) dSj−i(L,D, v),

where q(u, v) = q̄(⟨en, u⟩, ⟨en, v⟩) and q̄(s, t) = max{s, t}ḡ(min{s, t}). Observe that ϕ is a
translation-invariant, continuous, and zonal valuation in both of its arguments. The same
is true for ϕi, which is also homogeneous in each argument; that is, ϕi( · , L) ∈ Vali(Rn)
and ϕi(K, ·) ∈ Valj−i(Rn). Thus, by Corollary 3.4.4 and the homogeneous decomposition
theorem by McMullen [86], it suffices to show that for all s, t ∈ [−1, 1] \ {0} and λ, µ ≥ 0,

ϕ(λCs, µCt) =
j!

i=0


j

i

�
λiµj−iϕi(Cs, Ct). (3.5.1)

First, we consider the case where both cones are pointing in the same direction. To this
end, let 0 < s ≤ t. Then the Minkowski sum λCs + µCt is the cone (λ + µ)Cs, truncated
and glued together with a translate of µCt (see Fig. 3.3). More precisely,

λCs + µCt =
�
(λ + µ)Cs \ (µCs + λ

√
1−s2
s en)

� ∪ (µCt + λ
√

1−s2
s en).
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0 < s ≤ t t < 0 < s

Figure 3.3: The Minkowski sum λCs + µCt.

From (3.2.1), the valuation property, homogeneity, and translation invariance of ψj,g (see
the definition at the beginning of Section 3.2), the left hand side of (3.5.1) becomes

ϕ(λCs, µCt) = 1
κn−1

�
ψj,g((λ + µ)Cs) − ψj,g(µCs) + ψj,g(µCt)

�
= ((λ + µ)j − µj)


ḡ(−1) + ḡ(s)

s


+ µj


ḡ(−1) + ḡ(t)

t


.

For the right hand side, applying again (3.2.1),

ϕi(Cs, Ct) =

��������������

q̄(−1, −1) + q̄(1, −1) + q̄(−1, t)
t

+ q̄(1, t)
t

, i = 0,

q̄(−1, −1) + q̄(s, −1)
s

+ q̄(−1, t)
t

+ q̄(s, t)
st

, 0 < i < j,

q̄(−1, −1) + q̄(s, −1)
s

+ q̄(−1, 1) + q̄(s, 1)
s

, i = j.

Plugging in the definition of q̄ in terms of ḡ, one readily verifies (3.5.1). If 0 < t ≤ s, the
argument is analogous.

Next, we consider the case where the two cones have opposite orientations. To this end,
let t < 0 < s. Then the Minkowski sum λCs + µCt consists of two truncated cones glued
together (see Fig. 3.3). More precisely,

λCs + µCt =
�
(λ + µ)Cs \ (µCs + λ

√
1−s2
s en)

� ∪ (µD + λ
√

1−s2
s en)

∪ �
(λ + µ)Ct \ (λCt + µ

√
1−t2
t en)

� ∪ (λD + µ
√

1−t2
t en).

Hence, similarly as before, the left hand side of (3.5.1) amounts to

ϕ(λCs, µCt) = ((λ + µ)j − µj) ḡ(s)
s

+ µj ḡ(1) + ((λ + µ)j − λj) ḡ(t)
|t| + λj ḡ(−1).

105



3 The Klain approach to zonal valuations

For the right hand side, applying (3.2.1),

ϕi(Cs, Ct) =

����������������

q̄(−1, 1) + q̄(1, 1) + q̄(−1, t)
|t| + q̄(1, t)

|t| , i = 0,

q̄(−1, 1) + q̄(s, 1)
s

+ q̄(−1, t)
|t| + q̄(s, t)

s|t| , 0 < i < j,

q̄(−1, 1) + q̄(s, 1)
s

+ q̄(−1, −1) + q̄(s, −1)
s

, i = j.

Plugging in the definition of q̄ in terms of ḡ, one readily verifies (3.5.1). If s < 0 < t,
the argument is analogous. Thus, we have shown (3.5.1) for all s, t ∈ [−1, 1] \ {0} and
λ, µ ≥ 0, which concludes the proof.

Note that the choice of the function q̄ in the proof of Theorem 3.E is far from unique.
In fact, one can add any function of the form q̄1(s)t+sq̄2(t)+ c ·st, where q̄1, q̄2 ∈ C[−1, 1]
and c ∈ R.

We now turn to the Kubota-type formula (3.1.5). First, we prove a version of this
formula involving intrinsic volumes of projections.

Theorem 3.5.1. Let 1 ≤ i ≤ n − 1. Then for all K ∈ K(Rn),�
Gri(Rn,en)

Vi(K|E) dE = nκi−1
iκn−1

V (K [i],D[n−i]). (3.5.2)

Proof. Observe that both sides define zonal valuations in Vali(Rn). Therefore, according
to Corollary 3.4.4, it suffices to show the identity on the family Cs of cones for s ∈
[−1, 1] \ {0}. According to (3.2.1), for 1 ≤ i ≤ n,

V (C [i]
s ,D[n−i]) = 1

n

�
Sn−1

hCs(u) dS(C [i−1]
s ,D[n−i], u) = κn−1

n

√
1 − s2

|s| .

Clearly, the orthogonal projection of Cs onto E ∈ Gri(Rn, en) is precisely the cone with
base D ∩ E and apex

√
1−s2
s en, so
�

Gri(Rn,en)
Vi(Cs|E) dE = κi−1

i

√
1 − s2

|s| .

Hence, (3.5.2) holds for all Cs, which, by Corollary 3.4.4, concludes the proof.

By a classical polarization argument, we obtain from (3.5.2) that for all functions f ∈
C(Sn−1) and convex bodies K1, . . . , Ki−1 ∈ K(Rn),�

Gri(Rn,en)

�
Si−1(E)

f(u) dSE(K1|E, . . . , Ki−1|E, u) dE

= κi−1
κn−1

�
Sn−1

f(u) dS(K1, . . . , Ki−1,D[n−i], u).
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This is the formulation of the Kubota-type formula in [56, Theorem 3.2]. In particular,
by setting K1 = · · · = Ki−1 = K, we obtain (3.1.5).

Next, we want to deduce the Crofton-type formula (3.1.6). To this end, we recall
the following formula about integration over affine Grassmannians. If 1 ≤ j ≤ n and
F ∈ AGrk(Rn) is some fixed affine subspace, where n − j ≤ k ≤ n, then for every
measurable function ξ : AGrj+k−n(F ) → [0, ∞),�

AGrj(Rn)
ξ(E ∩ F ) dE = ωj+k−n+1ωn+1

ωj+1ωk+1

�
AGrj+k−n(F )

ξ(E) dE. (3.5.3)

This follows from the uniqueness of the invariant measure on AGrj+k−n(F ), where the
multiplicative constant can be computed from the classical Crofton formula (see, e.g.,
[47, p. 481]). We require the following integral identity.

Lemma 3.5.2. Let 1 ≤ j ≤ n and ξ : AGrj−1(Rn) → [0, ∞) be measurable. Then�
AGrj(Rn)

�
R

ξ(E ∩ (e⊥
n + ten)) dt dE = ωjωn+1

ωj+1ωn

�
Grj−1(e⊥

n )

�
E⊥

ξ(E + x) dx dE.

Proof. As an instance of (3.5.3), with k = n − 1 and F = e⊥
n + ten,

ωj+1ωn

ωjωn+1

�
AGrj(Rn)

ξ(E ∩ (e⊥
n + ten)) dE =

�
AGrj−1(e⊥

n +ten)
ξ(E) dE

=
�

AGrj−1(e⊥
n )

ξ(E + ten) dE =
�

Grj−1(e⊥
n )

�
E⊥(e⊥

n )
ξ(E + y + ten) dy dE,

where the final equality is by the uniqueness of the invariant measure on AGrj−1(e⊥
n ) and

E⊥(e⊥
n ) denotes the orthogonal complement of E relative to e⊥

n . Hence,�
AGrj(Rn)

�
R

ξ(E ∩ (e⊥
n + ten)) dt dE

= ωjωn+1
ωj+1ωn

�
Grj−1(e⊥

n )

�
E⊥(e⊥

n )

�
R

ξ(E + y + ten) dt dy dE

= ωjωn+1
ωj+1ωn

�
Grj−1(e⊥

n )

�
E⊥

ξ(E + x) dx dE,

where we applied Fubini’s theorem.

Proof of Corollary 3.F. First, note that for every convex body C ∈ K(Rn),

hC(en) + hC(−en) = V1(C|span en) =
�
R

V0(C ∩ (e⊥
n + ten)) dt.

Consequently, since K is origin symmetric, we have that�
AGrj(Rn)

hK∩E(en) dE = 1
2

�
AGrj(Rn)

�
hK∩E(en) + hK∩E(−en)

�
dE

= 1
2

�
AGrj(Rn)

�
R

V0(K ∩ E ∩ (e⊥
n + ten)) dt dE.
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Applying Lemma 3.5.2 to ξ(E) := V0(K ∩ E) yields

ωj+1ωn

ωjωn+1

�
AGrj(Rn)

hK∩E(en) dE = 1
2

�
Grj−1(e⊥

n )

�
E⊥

V0(K ∩ (E + x)) dx dE

= 1
2

�
Grj−1(e⊥

n )
Vn−j+1(K|E⊥) dE = 1

2

�
Grn−j+1(Rn,en)

Vn−j+1(K|E) dE.

By combining this with the Kubota-type formula (3.5.2), we obtain (3.1.6).

3.5.2 Mean section operators
We now turn to the application of Corollary 3.C to the mean section operators. Our aim
is to deduce Theorem 3.1.5 for j > 2 from the instance where j = 2. In our argument, we
use the fact that for a convex body of some linear subspace E, its Steiner point relative
to E agrees with its Steiner point relative to the ambient space (cf. [96, p. 315]).

We require the following relation between Berg’s functions.

Lemma 3.5.3. For every j > 2, there exists aj ∈ R such that

πj−2,Bgj(s) = (j − 1)g2(s) + ajs, s ∈ (−1, 1). (3.5.4)

Proof. Take E ∈ Gr2(Rn) with en ∈ E and K ∈ K(E). Then, by combining Berg’s identity
(3.1.8) with Lemma 3.2.6 and (3.2.4), we have that

hK−s(K)(en) =
�
Sn−1

gn(⟨en, u⟩) dS1(K, u)

= 1
n − 1

�
S1(E)

[πn−2,Bgn](⟨en, u⟩) dSE
1 (K, u).

On the other hand, applying (3.1.8) in the subspace E yields

hK−s(K)(en) =
�
S1(E)

g2(⟨en, u⟩) dSE
1 (K, u).

Since K ∈ K(E) was arbitrary, πn−2,Bgn − (n − 1)g2 is a linear function.

Note that the lemma yields the following integral identity, which might be of independent
interest. For every j > 2, there exists aj ∈ R such that

ωj

� 1

0
gj(st)(1 − t2)

j−4
2 dt = (j − 1)g2(s) + ajs, s ∈ (−1, 1).

We are now ready to recover [47, Theorem 4.4]. Let us remark that the existence of the
integrals on the right hand side of (3.1.8) and (3.1.9) was shown in [13] and [47] using a
certain regularization procedure. More recently, Knoerr [68] gave a simpler argument that
these integrals exist and also define continuous valuations.
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Proof of Corollary 3.G. Let 2 < j < n and write i = n − j + 1. Due to the rotational
equivariance, it suffices to show the claim only for u = en. Let E ∈ Gri+1(E) with en ∈ E
and take K ∈ K(E). As a consequence of (3.5.3), MjK = ω3ωn+1

ωj+1ωn−j+3
ME

2 K, where ME
2

denotes the mean section operator relative to E (see [47, Lemma 3.3]). Consequently, by
an application of Theorem 3.1.5 for j = 2,

hMj(K−s(K))(en) = ω3ωn+1
ωj+1ωn−j+3

hME
2 (K−s(K))(en)

= ω3ωn+1
ωj+1ωn−j+3

cn−j+2,2

�
Si(E)

g2(⟨en, u⟩) dSE
i (K, u).

Moreover, by relation (3.5.4), we have that�
Si(E)

g2(⟨en, u⟩) dSE
i (K, u) = 1

j − 1

�
Si(E)

[πj−2,Bgj ](⟨en, u⟩) dSE
i (K, u)

=
� n−1

n−j+1
�

j − 1

�
Sn−1

gj(⟨en, u⟩) dSi(K, u)

where the final equality is due to Lemma 3.2.6 and (3.2.4). Finally, note that
hMj(K−s(K))(en) defines a zonal valuation in Vali(Rn) and the final integral expression
does too, as was shown in [68, Section 3]. Our argument shows that they coincide on E,
so by Corollary 3.C, they coincide on all convex bodies in Rn.

3.A The transform Ra,b

In this section, we consider the following integral transform that comes up naturally when
dealing with restrictions of zonal valuations to proper subspaces.

Definition 3.A.1. For a, b > 0, we define Ra,b : C(−1, 1) → C(−1, 1) by

(Ra,bf̄)(t) :=
� 1

0
f̄(st)sa−1(1 − s2)b−1ds, t ∈ (−1, 1).

In order to see that the transform Ra,b is well-defined, note that for every compact set
I ⊆ (−1, 1), there exists C > 0 such that maxs∈[0,1] |f(st)| ≤ C for all t ∈ I. Thus, the
integral exists and by dominated convergence, Ra,bf ∈ C(−1, 1). We want to show that
the map is injective, for which we require two lemmas.

Lemma 3.A.2. Let a > 0, b ≥ 1, and f ∈ C(−1, 1). Then for all t ∈ (−1, 1) \ {0}, the
function |t|aRa,bf(t) is differentiable at t and

d

dt
[|t|a(Ra,bf)(t)] =

�
|t|a−1f(t), b = 1,

2(b − 1)t−3(Ra+2,b−1f)(t), b > 1.
(3.A.1)
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Proof. By a change of variables,

|t|a(Ra,bf̄)(t) =
� t

0
f̄(s)|s|a−1


1 − s2

t2

b−1
ds.

For b = 1, the claim follows directly from the fundamental theorem of calculus. For
b > 1, note that at every t ∈ (−1, 1) \ {0} and s ∈ [0, t] (or [t, 0], respectively), the partial
derivative of (1−s2/t2)b−1 with respect to t exists. Hence, the Leibniz integral rule implies
that Ra,bf̄ is differentiable at t and

d

dt

�
|t|a(Ra,bf̄)(t)

�
= f̄(t)|t|a−1


1 − t2

t2

b−1
+

� t

0
f̄(s)|s|a−1 ∂

∂t


1 − s2

t2

b−1
ds

= 2(b − 1)t−3
� t

0
f̄(s)|s|a+1


1 − s2

t2

b−2
ds = 2(b − 1)t−3(Ra+2,b−1f̄)(t),

which yields the claim for b > 1.

Lemma 3.A.3. Let a1, b1, a2, b2 > 0 and suppose that a1 = a2 + 2b2. Then

Ra1,b1Ra2,b2 = 1
2B(b1, b2)Ra2,b1+b2 .

Proof. For every f̄ ∈ C(−1, 1) and t ∈ (−1, 1), we have that

(Ra1,b1Ra2,b2 f̄)(t) =
� 1

0

� 1

0
f̄(xst)xa2−1(1 − x2)b2−1dx sa1−1(1 − s2)b1−1ds.

By applying the change of variables r = sx to the inner integral, we obtain

(Ra1,b1Ra2,b2 f̄)(t) =
� 1

0

� s

0
f̄(rt)ra2−1

sa2−1


1 − r2

s2

b2−1
dr sa1−1(1 − s2)b1−1 1

s
ds

=
� 1

0
f̄(rt)ra2−1

� 1

r
sa1−a2−1


1 − r2

s2

b2−1
(1 − s2)b1−1ds dr,

where the second equality is due to a change of the order of integration. It remains to
compute the inner integral. To that end, we rearrange the integrand using the identity
a1 = a2 + 2b2 and then apply the change of variables y = (1 − s2)/(1 − r2), which yields� 1

r
sa1−a2−1


1 − r2

s2

b2−1
(1 − s2)b1−1ds =

� 1

r
(s2 − r2)b2−1(1 − s2)b1−1sds

= 1
2(1 − r2)b1+b2−1

� 1

0
yb1−1(1 − y)b2−1dy = 1

2B(b1, b2)(1 − r2)b1+b2−1,

where B( · , · ) denotes the classical beta function. Plugging this into the expression above
yields the desired result.

Proposition 3.A.4. For each a, b > 0, the map Ra,b is injective.
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Proof. First note, that by Lemma 3.A.2, Ra,1 is injective for every a > 0. Next, if
0 < b < 1, Lemma 3.A.3 applied with (a2, b2) = (a, b) and (a1, b1) = (a + 2b, 1 − b) implies
that

Ra+2b,1−bRa,b = 1
2B(1 − b, b)Ra,1.

Consequently, using that the beta function takes always positive values on real arguments,
we deduce that Ra,b is injective for every a > 0 and 0 < b < 1, since Ra,1 is. Lemma 3.A.2
shows that Ra,b is injective whenever Ra+2,b−1 is. Finally, we complete the proof by
induction.

Next, we want to show that the transform Ra,b maps the space C∞[−1, 1] into itself
bijectively.

Lemma 3.A.5. For a, b > 0, the map Ra,b maps the space C∞[−1, 1] into itself.

Proof. Take f̄ ∈ C∞[−1, 1] and note that for k ≥ 0 and t ∈ (−1, 1),

dk

dtk
Ra,bf̄(t) =

� 1

0
f̄ (k)(st)sa+k−1(1 − s2)b−1ds.

This follows by induction on k ≥ 0 by interchanging integral and derivative, using the
fact that f̄ is infinitely differentiable and all of its derivatives are bounded. Thus, Ra,bf̄
is a C∞(−1, 1) function. By interchanging the above integral with the limit limt→±1,
we see that all higher order derivatives of Ra,bf̄ extend continuously to [−1, 1], that is,
Ra,bf̄ ∈ C∞[−1, 1].

We want to show that the transform Ra,b also maps the space C∞[−1, 1] onto itself. We
define the right candidate for the inverse operator recursively.

Definition 3.A.6. For a, b > 0, we define Qa,b : C∞[−1, 1] → C∞[−1, 1] recursively as
follows. Let ḡ ∈ C∞[−1, 1].

(i) If b = 1, then Qa,1ḡ(s) := aḡ(s) + sḡ′(s), s ∈ [−1, 1].

(ii) If 0 < b < 1, then Qa,bḡ := 2
B(b, 1 − b)Qa,1Ra+2b,1−bḡ.

(iii) If b > 1, then Qa,bḡ := 1
2(b − 1)Qa,b−1Qa+2b−2,1ḡ.

From Lemma 3.A.5 and an inductive argument, it is immediate that Qa,b is well-defined
as a transform mapping the space C∞[−1, 1] into itself.

Proposition 3.A.7. For each a, b > 0, the map Ra,b : C∞[−1, 1] → C∞[−1, 1] is a
bijection and R−1

a,b = Qa,b.
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Proof. We want to show inductively that Ra,bQa,bḡ = ḡ for all a, b > 0 and ḡ ∈ C∞[−1, 1].
If b = 1, then

[Ra,1Qa,1ḡ](t) =
� 1

0
[Qa,1ḡ](st)sa−1ds =

� 1

0

�
aḡ(st) + stḡ′(st)

�
sa−1ds

=
� 1

0

d

ds
[ḡ(st)sa] ds = ḡ(t)

for all t ∈ [−1, 1], and thus, Ra,1Qa,1ḡ = ḡ. For 0 < b < 1, by definition

Qa,bḡ = 2
B(b, 1 − b)Qa,1Ra+2b,1−bḡ.

Applying the operator Ra+2b,1−bRa,b on both sides yields

Ra+2b,1−bRa,bQa,bḡ = 2
B(b, 1 − b)Ra+2b,1−bRa,bQa,1Ra+2b,1−bḡ

= Ra,1Qa,1Ra+2b,1−bḡ = Ra+2b,1−bḡ,

where the second equality is an instance of Lemma 3.A.3 and the final equality is due to
the previous step. According to Proposition 3.A.4, the map Ra+2b,1−b is injective, which
implies that Ra,bQa,bḡ = ḡ.

For the induction step, let b > 1 and note that Ra,b = 2(b − 1)Ra+2b−2,1Ra,b−1 due to
Lemma 3.A.3. Therefore, by the recursive definition of Qa,b,

Ra,bQa,bḡ = Ra+2b−2,1Ra,b−1Qa,b−1Qa+2b−2,1ḡ = Ra+2b−2,1Qa+2b−2,1ḡ = ḡ,

where the second equality is due to the induction hypothesis, and the final equality is due
to the case where b = 1. In conclusion, Ra,bQa,bḡ = ḡ for all a, b > 0.

Finally, for all a, b > 0 and f̄ ∈ C∞[−1, 1],

Ra,b(Qa,bRa,bf̄) = Ra,bQa,b(Ra,bf̄) = Ra,bf̄ ,

and since Ra,b is injective by Proposition 3.A.4, we also have that Qa,bRa,bf̄ = f̄ .

3.B The transform Tα

In this section, we investigate the transform Tα from Definition 3.2.12.

Lemma 3.B.1. Let α ≥ 0, f̄ ∈ Dα, and let η̄ε ∈ C[−1, 1], ε > 0, be a family of bump
functions such that

η̄ε(s) = 1 for |s| ≤ 1 − ε, η̄ε(s) = 0 for |s| ≥ 1 − ε
2 , and 0 ≤ η̄ε ≤ 1.

Then Tα(η̄εf̄) → Tαf̄ uniformly on [−1, 1] as ε → 0+.
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Proof. We define ζ̄ε := 1 − η̄ε and will show that Tα(ζ̄εf̄) → 0 uniformly on [−1, 1]. For
all s ∈ [−1, 1],

Tα(ζ̄εf̄)(s) = (1 − s2)
α
2 ζ̄ε(s)f̄(s) + αs

� s

0
ζ̄ε(t)f̄(t)(1 − t2)

α−2
2 dt.

For the first term, observe that for all s ≥ 0,###(1 − s2)
α
2 ζ̄ε(s)f̄(s)

### ≤ sup
x≥1−ε

|f̄(x)|(1 − x2)
α
2 .

The right hand side is independent of s, and since lims→1(1 − s2) α
2 f̄(s) = 0, it tends to

zero as ε → 0+. We now turn to the integral expression. For |s| ≤ 1 − ε, it vanishes. For
1 − ε ≤ s ≤ 1 − ε

2 , by the mean value theorem, there exists s0 ∈ (1 − ε, 1 − ε
2) such that

αs

� s

1−ε
ζ̄ε(t)f̄(t)(1 − t2)

α−2
2 dt = f̄(s0)αs

� s

1−ε
ζ̄ε(t)(1 − t2)

α−2
2 dt.

For the integral on the right hand side, we find the following estimate.

α

� s

1−ε
ζ̄ε(t)(1 − t2)

α−2
2 dt ≤ α

� 1

1−ε
(1 − t2)

α−2
2 dt ≤ α

1 − ε

� 1

1−ε
t(1 − t2)

α−2
2 dt

= (1 − (1 − ε)2) α
2

1 − ε
≤ 2 α

2 (1 − (1 − ε
2)2) α

2

1 − ε
≤ 2 α

2 (1 − s2
0) α

2

1 − ε
.

By combining these computations, we obtain####αs

� s

0
ζ̄ε(t)f̄(t)(1 − t2)

α−2
2 dt

#### =
####αs

� s

1−ε
ζ̄ε(t)f̄(t)(1 − t2)

α−2
2 dt

####
≤ 2 α

2

1 − ε
|f(s0)|(1 − s2

0)
α
2 ≤ 2 α

2

1 − ε
sup

x≥1−ε
|f̄(x)|(1 − x2)

α
2 .

The final expression is again independent of s an converges to zero as ε → 0+.
For s ≥ 1 − ε

2 , we split the integral at 1 − ε
2 , which yields#### � s

0
ζ̄ε(t)f̄(t)(1 − t2)

α−2
2 dt

####
≤

#### � 1− ε
2

0
ζ̄ε(t)f̄(t)(1 − t2)

α−2
2 dt

#### + sup
x≥1− ε

2

#### � x

1− ε
2

f̄(t)(1 − t2)
α−2

2 dt

####.
For the integral on [0, 1 − ε

2 ], we can use our estimate from above to show that it tends
to zero as ε → 0+. The final term is independent of s and also tends to zero because the
limit lims→1

� s
0 f̄(t)(1− t2) α−2

2 dt exists. In conclusion, we have shown that Tα(ζ̄εf̄)(s) → 0
uniformly for s ∈ [0, 1]. For s ∈ [−1, 0], the argument is completely analogous.

Proposition 3.B.2. For each α > 0, the map Tα : Dα → C[−1, 1] is a bijection and for
ḡ ∈ C[−1, 1],

T −1
α ḡ(t) = (1 − t2)− α

2 ḡ(t) − αt

� t

0
ḡ(s)(1 − s2)− α+2

2 ds, t ∈ (−1, 1).
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Proof. Clearly, Tα maps C(−1, 1) functions to C(−1, 1) functions and a direct computation
verifies the inverse transform on the space C(−1, 1). We observe that Tα maps the subspace
Dα into the subspace C[−1, 1]. Thus, it remains to show that T −1

α maps C[−1, 1] into Dα.
To this end, take some ḡ ∈ C[−1, 1] and let f̄ := T −1

α ḡ. Then for all t ∈ (−1, 1),

(1 − t2)
α
2 f̄(t) = ḡ(t) − αt(1 − t2)

α
2

� t

0
ḡ(s)(1 − s2)− α+2

2 ds.

Note that whenever 0 < t0 < t < 1, by the mean value theorem for integrals, there exists
t1 ∈ (t0, t) ⊆ (t0, 1) such that

αt(1 − t2)
α
2

� t

t0
ḡ(s)(1 − s2)− α+2

2 ds = αt(1 − t2)
α
2

� t

t0

ḡ(s)
s

s(1 − s2)− α+2
2 ds

= ḡ(t1)
t1

αt(1 − t2)
α
2

� t

t0
s(1 − s2)− α+2

2 ds = ḡ(t1)
t1

t


1 −

1 − t2

1 − t2
0

α
2


.

Let now ε > 0 be arbitrary. Then, by the continuity of ḡ at t = 1, we may choose t0 ∈ (0, 1)
such that for all t, t1 ∈ (t0, 1),#####ḡ(t) − ḡ(t1)

t1
t


1 −

1 − t2

1 − t2
0

α
2

##### < ε.

Consequently, with this choice of t0, we obtain that

lim
t→1

###(1 − t2)
α
2 f̄(t)

### = lim
t→1

####ḡ(t) − αt(1 − t2)
α
2

� t

0
ḡ(s)(1 − s2)− α+2

2 dt

####
= lim

t→1

####ḡ(t) − αt(1 − t2)
α
2

� t

t0
ḡ(s)(1 − s2)− α+2

2 dt

#### ≤ ε,

where in the second equality, we used that changing the lower integral bound does not
affect the limit. Since ε > 0 was arbitrary, limt→1(1 − t2) α

2 f̄(t) = 0. The argument for the
limit as t → −1 is completely analogous. For the second condition, note that

αs

� s

0
f̄(t)(1 − t2)

α−2
2 dt = ḡ(s) − (1 − s2)

α
2 f̄(s),

so from what we have shown and the continuity of ḡ at ±1, we obtain that the limits
lims→±1

� s
0 f̄(t)(1 − t2) α−2

2 dt exist and are finite, and thus, f̄ ∈ Dα.
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