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Abstract Insight into steering and stability properties
of automobiles in critical driving conditions is essen-
tial to advance driver assist systems and autonomous
driving functions. To study the dynamic properties of
an automobile with rear-wheel drive, methods of geo-
metric singular perturbation theory are applied to a
planar two-wheel vehicle model. Following a branch
of periodic solutions bifurcating from the steady state
of the vehicle at the limits of handling, a behaviour
similar to a cycle near a homoclinic orbit is observed.
The periodic orbit spends most of its period on a seg-
ment with an almost constant sideslip angle and slowly
varying velocity. This behaviour can be explained by
the nearby existence of a critical manifold consist-
ing of a family of stationary solutions and a hetero-
clinic orbit connecting two points of this critical mani-
fold. For slightly perturbed parameter values the criti-
cal manifold is replaced by a slow manifold with very
slow dynamics, which governs the dynamics along the
observed slow segment. The critical manifold and the
heteroclinic orbit are calculated numerically, and good
agreementwith the derived approximations is obtained.
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1 Introduction

Vehicle models for numeric simulation of the dynam-
ics of automobiles have become increasingly complex
in recent years. The aim to simulate real dynamic
behaviour brought engineers to include a high level of
detail in their vehicle models, facilitated by the appli-
cation of multibody dynamics software. Basic vehicle
models are popular in control design, however, they
are still indispensable to reveal and understand basic
dynamic phenomena.

Handling characteristics of automobiles have been
investigated over many decades, leading to a deep
insight into the steering and stability properties of auto-
mobiles [10,11] as an example of early contributions.
Considering extreme and critical driving conditions,
however, there are still phenomena, well-known from
observations, which deserve closer attention.

Inspired from observations in rallye sports, mea-
surements of large sideslip manoeuvres have been pre-
sented in Abdulrahim [1], Velenis et al. [17]. On the
basis of a simple nonlinear four-wheel vehicle model
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with rear-wheel drive and a tyre model, that comprises
the mutual influence of longitudinal and lateral tyre
forces, up to four different steering angles have been
numerically identified for steady-state cornering at the
same velocity and cornering radius [4]. These results
have been supported by measurements. Stability anal-
ysis in Edelmann and Plöchl [3] reveals the unstable
nature of two of these steady-state solutions includ-
ing the powerslide motion, also denoted drifting. The
powerslide of an automobile with rear-wheel drive is
defined in Edelmann and Plöchl [3] as a steady-state
cornering motion with a large sideslip angle of the
vehicle, considerably large traction forces and a steer-
ing angle towards the outside of the curve (counter-
steering), see also Fig. 1. A study on the post-critical
behaviour of the powerslide motion is conducted in
Edelmann et al. [5] applying bifurcation and contin-
uation methods. It is shown that after loss of stabil-
ity, assuming fixed driver controls, i.e. steering angle
and drive torque, a transient motion of the vehicle may
result in steady-state cornering conditions tacking a
very narrow circular path, or stable limit cycles. Mea-
surements confirm the findings of the theoretical study.
These conditions are known from motorsports and are
denoted ‘donuts’ by vehicle dynamicists.

InDella Rossa et al. [2] published an analysis of pos-
sible equilibria for different vehicle handling and tyre
characteristics and configurations with a two-degree-
of-freedom two-wheel vehicle and a ’magic formula’
type tyre model [12]. By systematically analysing all
the equilibria and their bifurcations for both oversteer-
ing vehicles and understeering vehicles [12], a cata-
logue of the system behaviours, including the transi-
tion from and to limit cycles, is derived. Applying a
similar vehicle model, the sensitivity of tyre param-
eters and driver input quantities w.r.t. the appearance
and characteristics of limit cycles in automobiles are
investigated in Pauwelussen [13]. Two conditions for
the appearance of limit cycles are found: The ratio of
the lateral peak friction potential between the front and
rear tyres/axles, and a dedicated interval of front steer-
ing angle. In Steindl et al. [15], the loss of stability
and the post-critical behaviour of oversteering vehicles
are studied for a rear-wheel drive two-wheel vehicle
model. A Hopf-type loss of stability is identified, and
the Canard phenomenon is observed in the bifurcation
analysis for small variations of the steering angle and
the drive torque close to the saturation of the front and
rear tyres.

Applying a four-degree-of-freedom two-wheel vehi-
cle model, the influence of the peak friction coefficient
w.r.t the sliding friction coefficient in the tyre character-
istics on periodicmotions is studied in Steindl et al. [16]
for understeering vehicles. Results using the ‘classi-
cal’, monotonous brush tyre model [12], are compared
to results obtained using a modified brush tyre model
with decaying friction force potential for large slips,
and to findings using a magic formula type tyre model.
Both the modified brush tyre model and the magic for-
mula type tyre model deliver similar results, where,
compared to the monotonous brush tyre model, in par-
ticular, the orbit of the periodic motions differs and a
switching behaviour close to one of the Hopf points
may be noticed.

In this paper, the nonlinear handling and stability
properties of a planar two-wheel vehicle model with
rear-wheel drive are investigated. After introducing the
vehicle model in Sect. 2, findings on the characteristics
of the handling diagram shown in Edelmann et al. [4]
are confirmed and periodic solutions bifurcating from
the steady-state powerslide branch and a steady-state
branchwith a small radius of curvature of the trajectory
of the centre of gravity of the vehicle in the road plane
are presented in Sect. 3. These periodic solutions are
discussed thoroughly in Sect. 4 applying the geometric
singular perturbation theory. Concluding remarks on
the findings and an outlook are given in Sect. 5.

2 System model

In this study the dynamics of a planar two-wheel vehi-
cle model with rear-wheel drive displayed in Fig. 1
is investigated. The equations of motion are given by
Steindl et al. [16],

mv̇ cosβ − m(ψ̇ + β̇)v sin β

= FxR − FyF sin δF , (1a)

mv̇ sin β + m(ψ̇ + β̇)v cosβ

= FyR + FyF cos δF , (1b)

Iψψ̈ = lF FyF cos δF − lR FyR, (1c)

Iωω̇R = MR − rR FxR . (1d)

The degree of freedom of the system is represented by
the velocity v, the vehicle sideslip angle β, the yaw rate
ψ̇ , and the angular velocity of the driven rear wheelωR .
The control variables are given by the front steering
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Fig. 1 Two-wheel vehicle model shown in powerslide condi-
tion, with state variables v, β, ψ̇ , ωR (not depicted) and control
parameters δF and MR (not depicted)

Fig. 2 Normalized tyre characteristics of front and rear tyre

angle δF and the drive torque MR . These control vari-
ables are considered to be constant inputs in this study.

The mass and inertia w.r.t. the vertical axis of the
vehicle are denoted m and Iψ , respectively and the
inertia of the rear tyre is denoted Iω. The horizontal
tyre forces FyF , FxR, FyR depend on the tyre slips σi ,
i ∈ {F, R}, and are described by the brush tyre model,

Fi = μi Fzi f (|σi |/σi,sat) sign(σi ),
where σi,sat represents the tyre slips at the onset of the
saturation of the tyre forces and

f (s) =
{
3s − 3s2 + s3 for s ≤ 1
1 for s > 1

(2)

The normalized tyre characteristics μi f (σi/σi,sat) for
the chosen tyre parameters with μF = 0.95 and
μR = 1 are displayed inFig. 2, characterising an under-
steering vehicle.

It is assumed that the longitudinal slip σx F vanishes
since no drive forces are applied at the front wheel,

Table 1 Parameters of vehicle and simplified tyre/axle model
([16])

Parameter Abbr. Value Unit

Vehicle mass m 2000 kg

Vehicle yaw inertia Iψ 2650 kgm2

Axle inertia Iω 6 kgm2

Front axle position CG F lF 1.45 m

Rear axle position CG R lR 1.50 m

Effective tyre radius rR 0.35 m

Front axle slip stiffness 2cpFa2F 2.6·105 N

Rear axle slip stiffness 2cpRa2R 3.6·105 N

Max. friction coefficient μF , μR 0.95, 1 –

Saturated slip values σF,sat 0.109 –

σR,sat 0.0804 –

and the inertia of the front wheel may be disregarded.
Therefore, the angular velocity of the front wheel is
governed by the longitudinal velocity vxcF of the con-
tact point, and the lateral tyre slip σyF is given by

σyF = vycF

|vxcF | , (3)

with(
vxcF
vycF

)
=

(
cos δF sin δF
sin δF − cos δF

)(
v cosβ

v sin β + lF ψ̇.

)
(4)

Since instances where vxcF becomes negative may be
observed, corresponding to a backward rotation of the
front wheel, the absolute value in (3) avoids a discon-
tinuity.

For the slip at the rear wheel, the formulas from
Steindl et al. [15] are used:

σx R = −vxcR

vR
and σyR = −vycR

vR
(5)

with

(
vxcR
vycR

)
=

(
v cosβ − rRωR

v sin β − lRψ̇

)
,

σR =
√

σ 2
x R + σ 2

yR, and vR = rRωR .

For the numerical results, the parameters of an
understeering vehicle shown in Table 1 are applied.

3 Derivation of steady-state and periodic solutions

The handling diagram for the considered vehiclemodel
driving with a constant radius of curvature of ρ = 50m
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Fig. 3 Handling diagram for the radius of curvature ρ = 50m
(‘regular’ and ‘Powerslide’ branch), and ‘Branch 2’ related to the
‘Powerslide’ branch, with varying radius of curvature ρ. Solid
lines refer to stable sections of the respective branches; dashed
lines refer to unstable sections of the branches

on the roadplane is displayed inFig. 3. It shows the rela-
tion between the normal acceleration an = v2/ρ and
the steering angle δF for steady-state cornering. Since
an understeering vehicle is considered in this study,
the ‘regular’ branch, which corresponds to regular cor-
nering, is stable. A second family of mostly unstable
steady-state cornering conditions is called ‘powerslide’
[3,5], or ‘drifting’. At this branch the frontwheel points
to the outside of the curve, opposite to regular driving.
Since for steady-state cornering the vehicle velocity v

and yaw rate ψ̇ satisfy the relation

v = ρψ̇, (6)

two free parameters are necessary to obtain a family of
steady states. In this study, the constant control inputs
δF and MR are selected as free parameters. These con-
trol inputs vary along the regular branch and power-
slide branch depicted in Fig. 3 according to Fig. 4,
MR = MR(δF ). Since in powerslide condition the tyre
forces are quite large, also the required drive torqueMR

is large even for small absolute values of the steering
angle δF .

By simulating the dynamics starting close to an
unstable point of the powerslide branch and assuming
fixed control parameters δF and MR , trajectories are
obtained that converge to either a different steady state
with a very small radius of curvature ρ of the trajectory
of the centre of gravity of the vehicle in the road plane,
or to a periodic motion. Also the sense of rotation is
reversed. The new steady states are denoted ‘Branch
2’ in Fig. 3. Along Branch 2, two Hopf points H1 and

Fig. 4 Relation between steering angle δF and drive torque MR
for the radius of curvature ρ = 50m

Fig. 5 Periodic solutions bifurcating from the Hopf bifurcation
points H1 and H2

H2 are found. In between these points the steady states
are unstable.

The periodic solutions bifurcating from the Hopf
points H1 and H2 are displayed in Figs. 5, 6 together
with the respective steady-state branch. The square
denoted ‘S’ indicates the pointwhere the friction poten-
tial of the font tyre is saturated for both the steady-state
powerslide branch and Branch 2: Along the powerslide
branch the slip σyF becomes σF,sat, while on Branch 2
σyF = −σF,sat.

For the periodic solutions, theminimal andmaximal
values of the velocity v are drawn. It may be observed
that the branches of the periodic solutions, ‘Cycle 1’
and ‘Cycle 2’, are not connected. Close to δF = −3.4◦
the diameter of the branch Cycle 1 grows strongly and
vmin approaches zero while the period becomes very
large. The branch Cycle 2 bifurcates from the Hopf
point H2 at Branch 2 in Fig. 3, encounters a limit point
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Fig. 6 Enlarged view of Fig. 5 close to H2

Fig. 7 Phase portrait of periodic solutions in the (v, β)-plane

of cycles and approaches a periodic solution with an
infinitely long period. The related limiting solution,
which corresponds to the heteroclinic trajectory dis-
cussed in Sect. 4, is indicated in Figs. 5, 6 by black
diamonds.

Three phase portraits of these periodic solutions are
presented in Fig. 7. The orbit depicted in blue colour
corresponds to a large amplitude cycle close to the
endpoint of the branch Cycle 1 in Fig. 6, while the
brown orbit shows the periodic solution for the same
parameter values of δF and MR on the branch Cycle
2. The green orbit refers to a periodic solution near
to the right end of Cycle 2. Both the blue and green
orbits contain an almost horizontal segment close to
the right ‘nose’. Along this segment, the sideslip angle
β(t) remains almost constant, while the velocity v(t)
increases slowly, as depicted in Fig. 8 for the green
orbit. The structure of these solutions is investigated in
Sect. 4.

Fig. 8 Evolution of v(t) and β(t) for the periodic solution at
δF = −3◦ depicted in green color in Fig. 7

The squares in Fig. 7 indicate the onset and the endof
the section of the orbit, where the front tyre is operated
at large slips σF ≥ σF,sat, i.e. the friction potential of
the tyre is saturated. The circles indicate the onset and
the end of the section, where the rear tyre is operated
at large slips. Considering the blue orbit, the friction
potential of the front tyre and the rear tyre is not satu-
rated in the left segment of the orbit between the squares
and circles, respectively. Please note that the onset of
the saturation of both the front tyre and the rear tyre
almost coincide on the blue orbit at v ≈ 30 m/s and
β ≈ 3◦. On the orbits depicted in brown and green
colour in Fig. 7, the friction potential of the rear tyre
is always saturated, whereas the friction potential of
the front tyre is unsaturated only in the short, almost
horizontal segments.

4 Explanation of the ‘long period’ periodic
solutions using geometric singular perturbation
theory

The equations (1) representing the dynamics of the
vehicle contain several sources of singular behaviour:

• The tyre forces strongly depend on the slip between
the tyres and the road in both longitudinal and lat-
eral directions. For small slips, the system becomes
singularly perturbed with the tyre stiffness as large
parameter. A ‘Canard explosion’ after the onset of
periodic solutions at a Hopf bifurcation point is
observed in Steindl et al. [15].
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• For very small steering angles and drive torques
(‘free rolling’ of the vehicle) the variables v and
ωR become almost linearly dependent. This leads
to a very small, stable eigenvalue.

• The brush tyre model is not valid if the velocity of
the tyres’ contact point vanishes [12].

• When both tyres operate in the saturated range
(σi > σi,sat), i ∈ {F, R}, of the brush tyre model,
a zero eigenvalue occurs, because the magnitude
of the tyre forces becomes constant, and only
the direction depends on the state variables. Also
applying more sophisticated tyre models, e.g. a
‘magic formula’ type tyre model [12], the asymp-
totic behaviour for large slips (σi > σi,sat) can cause
similar phenomena. The dynamics caused by this
singularity will be explored subsequently.

4.1 Critical manifold in the saturated range of the
tyres

Along the almost horizontal segments of the periodic
solutions in Fig. 7 both tyres operate in the saturated
range σi > σi,sat, therefore the magnitude of the tyre
forces is given by the constant values Fi = ±μi Fzi for
the brush model and near these segments there exists
a one-dimensional family of steady-state solutions of
the equations derived from (1)

FyF sin(β − δF ) + FxR cosβ + FyR sin β = 0, (7a)

−mvψ̇ + FyF cos(δF − β)

+FyR cosβ − FxR sin β = 0, (7b)

lF FyF cos δF − lR FyR = 0, (7c)

MR − rR FxR = 0. (7d)

for a certain value of MR .
For the lateral tyre force at the front wheel FyF =

±μF FzF with FzF = mglR/(lF + lR) is obtained. The
observed solution is given by FyF = −μF FzF . From
(7c) it follows that

FyR = lF FyF cos δF/ lR,

from which the remaining tyre force is found

FxR = ±
√

μ2
RF

2
zR − F2

yR (8)

with FzR = mglF/(lF + lR).
Since in the considered parameter range MR > 0,

the positive value according to (7d) is chosen.

Since
FxR
FyR

= γR := vxcR

vycR
,

the ratio γR must be constant along the branch of
steady-state solutions.

The steady-state sideslip angle β can now be
obtained from (7a)

tan β = FyF sin δF − FxR
FyF cos δF + FyR

.

From (7b) a further equation for the remaining state
variables v and ψ̇ is obtained. Eqn. (7d) can now be
solved for MR , it yields a constant value for constant
values of γR . As γR is already determined by (8), (7d)
cannot be used to solve for any state variable.

If MR satisfies (7d), the equations (7a-c) determine
a one-dimensional manifold of steady-state solutions,
the so-called ‘critical manifold’ Mc ( [7]).

In the following

MR = M0
R + ε, with M0

R = rR FxR, (9)

is assumed, where ε denotes a small perturbation
parameter and FxR is given by (8).

Numerical calculations show that along Mc two
eigenvalues of the Jacobian are stable, one is unstable
and one eigenvalue becomes zero because the steady-
state solutions form a continuous curve and are not
isolated. The shape of the periodic solutions displayed
in Fig. 7 suggests, that points on Mc are connected
by a heteroclinic orbit, which leaves a point P1 ∈ Mc

along the unstablemanifold and returns to another point
P2 ∈ Mc along the stable manifold. The existence of
a family of such orbits, which depends on the steering
angle δF , has been established numerically by solving
a corresponding boundary value problem. The respec-
tive method is explained in the appendix. For long
periods the periodic solution follows the heteroclinic
solution and the critical manifold between P2 and P1.
For ε �= 0 the points along Mc are not steady-state
anymore and according to Fenichel [6], Kuehn [7] the
presence of a ‘slow manifold’ Ms is expected nearby,
which takes on the role of saddle points for homoclinic
orbits. AlongMs the state variables evolve slowly and
show the same saddle point-like stability properties in
transversal direction as the stationary solutions along
Mc: along the stable manifold neighboring trajectories
converge to Ms , whereas they diverge from it along
the unstable manifold. During their slow evolution the
periodic solutions approach Ms exponentially close.
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Fig. 9 Periodic solution, slow manifold Ms , heteroclinic orbit
and critical manifold Mc for δF = −3◦.

Figure 9 shows a detailed view of the periodic
solution (green), the corresponding slow manifoldMs

(magenta), the heteroclinic orbit (red) and the critical
manifold Mc for δF = −3◦. For the periodic solution
and Ms the control variable MR is chosen according
to Fig. 4, whereas for Mc and the heteroclinic orbit it
is given by the value M0

R according to (9).

4.2 Dynamics along the slow manifoldMs

The control parameters δF and MR for the periodic
solutions are selected according to the powerslide
branch for steady-state cornering with radius of cur-
vature ρ = 50m. The ‘long’ periodic solutions occur
when the slip σyF at the front tyre for the steady-state
motion approaches saturation, while the slip σR at the
rear tyre is far beyond the initial saturation. Let δFs
and MRs denote the corresponding values of the input
parameters, which can numerically be calculated by
stating the additional equation

|σyF | = σF,sat. (10)

For δF slightly smaller than δFs , |σyF | < σF,sat is
observed and to first order

σF,sat − σyF = cσ �δF = cσ (δFs − δF ),

where the factor cσ is obtained by differentiating (3)
w.r.t. δF , taking into account that also the steady-state
values of v, β and ψ̇ in (4) depend on δF .

Since f (1) = 1, f ′(1) = 0, f ′′(1) = 0, and
f ′′′(1) = 6, the tyre force at the front wheel satisfies

FyF = μF FzF f (|σyF |/σF,sat) sign(σyF )

≈ −μF FzF
(
1 − f ′′′(1)(cσ �δF )3/6

)

= −μF FzF
(
1 − O(�δF )3

)
.

For the tyre force at the rear wheel the estimates

FyR = F0
yR(1 − O(�δF )3),

FxR = F0
x R(1 + O(�δF )3),

are obtained, where the quantities F0
yR and F0

x R denote
the forces at the critical manifold.

Inserting these findings into (7d) results in

MR = M0
R + O(�δF )3, (11)

such that ε = O(�δF )3. Along the slow manifold the
speed of the trajectory is of orderO(ε). Hence, the peri-
odic solutions converge to the heteroclinic orbit when
δF converges to δFs . The period grows with 1/�δ3F , as
it can be seen in Fig. 12.

According to Kuehn [7] the slow manifoldMs is ε-
close toMc and the velocities along the slow manifold
are of order O(ε). The typical dynamics are discussed
in Kuehn [7] and can be guessed from Fig. 7: For ε = 0
there exists a heteroclinic orbit, which starts and ends at
different points P1 and P2 onMc. For ε �= 0 a periodic
trajectory is expected, which approximates the hetero-
clinic orbit and slowly evolves along Ms between P2
and P1. If ε approaches zero, the period T of the peri-
odic solution goes to infinity. Along the heteroclinic
solution and sufficiently far from the steady-state points
P1 and P2 the transition time is almost constant, while
it takes O(1/ε) time units to travel from P2 back to
P1 and O(log(1/ε)) units to enter and leave the vicin-
ity of the slow manifold. For small values of �δF the
expression O(1/�δF )3 dominates the estimate for the
periodic solution.

The behavior along the periodic solution is quite
similar to a homoclinic orbit for a saddle point, except
that the slow dynamics take place close toMs . A com-
parison between periodic solutions and the limiting het-
eroclinic orbit is shown in Fig. 10. Figure 11 displays
the corresponding road trajectory of the centre of grav-
ity of the vehicle for the periodic orbit in the road plane.
Along the slow manifold the vehicle velocity v and the
radius of cornering ρ = v/ψ̇ grow slowly, and the
vehicle moves along a spiral.
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Fig. 10 Periodic and heteroclinic orbits in the (v, β)-plane for
δF = −3◦ (periodic orbit) and δF = δFs ≈ −2.77◦ (Mc and
heteroclinic orbit), respectively

Fig. 11 Vehicle trajectory for the periodic solution at δF = −3◦
depicted in green color in Fig. 10

4.3 Second branch of heteroclinic orbits

As shown in Fig. 3 there exists also a Hopf bifurcation
point H0 along the powerslide branch. The periodic
solutions bifurcating from H0 show a similar behaviour
as those bifurcating from H2.After passing a limit point
cycle (LPC), they approximate a heteroclinic orbit con-
necting steady-state points on a criticalmanifold,which
differs from the previous critical manifold: The steady-
state friction force FyF at the front wheel now reaches
the positive value μF FzF , also FyR changes its sign
due to (7c), the value of FxR is the same as before. Due
to (7a) the side slip angle β takes a different value, very
close to its value on the powerslide branch.

Figure 12 displays a bifurcation diagram for the
branches of periodic solutions bifurcating from the
Hopf bifurcation points H2 and H0 in the (δF , 3

√
1/T )

Fig. 12 Bifurcation diagrams for the periodic solutions bifur-
cating at the Hopf points H2 and H0

parameter plane. Both branches end up at the limit point
with δF = δFs and T = ∞. The periodic solutions in
the (v, β)-plane for δF = −3◦ are shown in Fig. 13
together with the heteroclinic solutions for δF = δFs .

For details on the numerical calculation of the peri-
odic and heteroclinic solutions please refer to the
Appendix.

5 Summary and outlook

In this manuscript, the handling and stability behaviour
of a planar two-wheel vehicle model with rear-wheel
drive has been investigated. The occurrence of a family
of periodic solutions converging to a heteroclinic solu-
tion connecting two points on a critical manifold has
been explained. These periodic solutions arisewhen the
tyre slip in the steady-state solution reaches the maxi-
mum friction potential of the front tyre, which is asso-
ciated with the post-critical behaviour of the power-
slidemotion in automobiles [5]. To derive these results,
methods of geometric singular perturbation theory [7],
have been applied.

To investigate the impact of the decaying friction
force potential for large slips of typical rubber tyres on
the dynamic behaviour of the vehicle, future work will
include a corresponding tyre model. Preliminary inves-
tigations suggest the emergence of solution patterns
that should also be tractable using geometric singular
perturbation theory. The presented research addressed
the characteristics of the uncontrolled vehicle. Consid-
ering the coupled vehicle-driver system, a model of
the human or robot driver control behaviour may be
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Fig. 13 Trajectories of periodic solutions for δF = −3◦ and
corresponding heteroclinic orbits

included to analyse the dynamics of the closed-loop
system.
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Appendix: Numerical calculation of the stationary,
periodic and heteroclinic solutions

Since most of the obtained periodic solutions are
numerically very unstable, a robust solver for the
boundary value problems had to be applied. In this
study, the multiple shooting algorithm Boundsco [9],
was used. For very long periodic solutions several thou-
sand grid points had to be used to obtain solutions.

Since the parameters δF and MR are assumed to
vary along the PS-curve for ρ = 50m in the handling
diagramFig. 4, the steady-state solutions along the han-
dling diagrams had to be calculated together with the
stationary solutions on branch 2, the periodic and het-
eroclinic solutions.

To obtain the stationary solutions on Branch 2 in
Fig. 3, a system for two state vectors y1 and y2 and the
control variables δF andMR had to be solved by aNew-
ton iteration: Both vectors yi satisfy (7), the point y1
on the powerslide branch has to satisfy the additional
relation v1 = ρψ̇1; for the point y2 on Branch 2 there
is no such restriction. The equations for y1 guarantee
that the control variables vary on the powerslide branch
shown in Fig. 4.

For the periodic and heteroclinic solutions the
parameters and steady states were introduced as free
parameters, that is state variables yi satisfying the triv-
ial differential equations ẏi = 0. The steady-state con-
ditions (7) and the relation v = ρψ̇ for the steady states
were prescribed as boundary conditions at the left end-
point.

Since the period of solutions of autonomous sys-
tems is unknown and the numerical method requires
a fixed integration interval, the unknown time inter-
val t ∈ [0, T ] was transformed to the fixed interval
τ ∈ [0, 1] with t = T τ , where T was treated as further
free parameter and the right-hand side of the original
differential equations was multiplied by T . To fix the
phase of the periodic solutions, the additional boundary
condition

v̇(0) = 0

was prescribed.
In order to efficiently calculate families of periodic

solutions, a local adaption of the continuation algo-
rithm Hom [14], with automatic step size control and
tangential updating was used. By Hom the direction
of the solution path is selected by specifying an addi-
tional boundary condition yk(0) = η, where the vector
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y contains all unknown variables and the index k is cho-
sen such that relative variation in the component yk(0)
during the previous steps is maximized. With Hom it
is easily possible to pass LPCs.

For the calculation of the heteroclinic orbits also
the algorithm Boundsco was applied. The unknown
endpoints P1 and P2 on the critical manifoldMc were
regarded as free parameters satisfying the conditions
(7) for P1 and (7a-c) for P2. Since both points lie on
the critical manifold, the condition (7d) for both points
would be linearly dependent.

A further set of free parameters was related to the
steady-state values along the curve in the handling dia-
gram, which have to satisfy the additional conditions

v = ρψ̇ and |σyF | = σF,sat.

In order to guarantee the proper convergence of the
heteroclinic orbit towards the steady-state points P1
and P2

lim
t→−∞ y(t) = P1, lim

t→∞ y(t) = P2,

the infinite integration interval was truncated to a suf-
ficiently large interval [T1, T2] with T1 < 0 < T2 and
asymptotic boundary conditions [8], were stated: Since
alongMc one eigenvalue vanishes, one is unstable and
two are stable, it had to be ensured that

y(T1) ∈ M u(P1),

y(T2) ∈ M s(P2),

where M u(Pi ) and M s(Pi ) denote the unstable and
stable invariant manifolds at the points Pi , respectively.
These can locally be approximated by the correspond-
ing eigenspaces, spanned by the eigenvectors with pos-
itive and negative real parts, respectively.

Let Ai denote the Jacobian of the differential equa-
tion at Pi and λi j and vi j the corresponding left eigen-
values and eigenvectors, respectively:

AT
i vi j = λi jvi j ,

for i ∈ {1, 2} and j ∈ {1, 2, 3, 4}. Then the (linearized)
conditions (1) can be written as

vT1cs( y(T1) − P1) = 0,

vT2cu( y(T2) − P2) = 0.

Here, v1cs [v2cu] are the left eigenvectors for the
eigenvalues with non-positive and non-negative real
parts at P1 [P2], respectively.

Since it would be very expensive to solve the eigen-
value problems at every iteration, it is usually more
efficient to select T1 and T2 large enough and calcu-
late the eigenvectors just for one point on the critical
manifold.

Finally, also a phase condition for the solution had
to be stated, where again

v̇(0) = 0.

was used. As an initial guess for the heteroclinic solu-
tion, the fast segment of a periodic solution with a long
period was used.
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