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Abstract

Irrigation accounts for approximately 70 % of global freshwater withdrawals, significantly impacting the
water cycle through reduced streamflow and groundwater tables and increased evapotranspiration. Accurate
long-term estimates of irrigation water use (IWU) are essential for improving climate model simulations.
However, in situ irrigation data are extremely rare on a global scale, and statistical surveys, as well as
irrigation simulated by models, are too uncertain to provide reliable estimates. Satellite-derived soil moisture
(SM) data offer a promising alternative approach for monitoring long-term IWU globally.

This thesis builds on the Soil Moisture (SM) Delta method, which estimates IWU by calculating the differences
between satellite and modeled SM data. The approach is based on the fact that satellite-based SM theoretically
contains an irrigation signal, whereas model-based SM lacks such a signal if irrigation is not modeled. The
methodology is used to assess the ability of five satellite-based SM products to retrieve long-term irrigation
estimates. 15-year IWU datasets have been produced over the Ebro Basin (86,000 km²) and the Murray-Darling
Basin (1,000,000 km²) using coarse-scale (0.25°) SM data, and validated against in situ IWU data from an
irrigation district in the Ebro Basin and four irrigation districts in the Murray-Darling Basin.

Validation of the IWU estimates against in situ IWU data from the irrigation district in the Ebro Basin showed
a significant correlation when using the ESA CCI COMBINED product (R=0.75), which also yielded the
lowest Root Mean Square Deviation (RMSD=22.84 mm/month), showing the best performance over this
basin. In the Murray-Darling Basin, validation results varied among the four irrigation districts, with ESA
CCI ACTIVE performing best in three irrigation districts (R=0.40, RMSD=21.84, bias=4.01 mm/month on
average) and ESA CCI PASSIVE in one district (R=0.64, RMSD=19.70 mm/month, bias=0.83 mm/month).
In terms of overall performance, ESA CCI COMBINED proved to be the most reliable product with a good
balance between low RMSD (22.01 mm/month on average) and the highest correlation (R=0.45 on average)
in the four irrigation districts.

All products show an underestimation of IWU in the Ebro Basin, which could be improved by including
evapotranspiration in the algorithm. Furthermore, when compared with studies obtaining high-resolution
IWU estimates, our coarse-resolution method performed comparably well in the Ebro Basin. These large-scale,
long-term IWU datasets are an important step towards better accounting for the impacts of irrigation in
climatic and hydrological modeling and can improve water resource management.





Kurzfassung

Die Bewässerung macht etwa 70 % der globalen Süßwasserentnahmen aus und beeinflusst den Wasserkreislauf
erheblich durch erhöhten Wasserverbrauch und Evapotranspiration. Präzise langfristige Schätzungen des
Wasserverbrauchs durch Bewässerung sind entscheidend für die Verbesserung von Klimamodellen. In
situ Messungen bieten jedoch keine globale Abdeckung, und modellierte Bewässerungsdaten sind zu
ungenau, um verlässliche Schätzungen zu liefern, wodurch leistungsfähigere Methoden erforderlich werden.
Satellitenbasierte Bodenfeuchtedaten bieten eine vielversprechende alternative Möglichkeit zur Überwachung
des langfristigen Wasserverbrauchs durch Bewässerung auf globaler Ebene.

Diese Arbeit baut auf der SM-Delta-Methode auf, welche den Wasserverbrauch durch Bewässerung abschätzt,
indem sie Unterschiede zwischen satellitenbasierten und modellierten Bodenfeuchtedaten berechnet. Die
Methode wird verwendet, um die Fähigkeit von fünf satellitengestützten Bodenfeuchteprodukten zu
bewerten langfristige Bewässerungsschätzungen zu erhalten. 15-jährige Bewässerungsdatensätze wurden
über dem Ebro-Becken (86.000 km²) und dem Murray-Darling-Becken (1.000.000 km²) unter Verwendung
von grob aufgelösten (0,25°) Bodenfeuchtedaten erstellt und anhand von in situ Bodenfeuchtedaten aus
einem Bewässerungsgebiet im Ebro-Becken und vier im Murray-Darling-Becken validiert.

Die Validierung gegenüber in situ Bewässerungsdaten im Ebro-Becken zeigte eine starke Korrelation für das
ESA CCI COMBINED Produkt (R=0,75), das zudem die niedrigste Root Mean Square Deviation (RMSD=22,84
mm/Monat) aufwies und somit das geeignetste Produkt für diese Region darstellt. Im Murray-Darling-Becken
variierten die Validierungsergebnisse zwischen den vier Bewässerungsgebieten, wobei ESA CCI ACTIVE in
drei Bewässerungsgebieten am besten abschnitt (R=0,40, RMSD=21,84 mm/Monat, bias=4,01 mm/Monat
im Durchschnitt) und ESA CCI PASSIVE in einem Gebiet (R=0,64, RMSD=19,70 mm/Monat, bias=0,83
mm/Monat). In Bezug auf die Gesamtleistung erwies sich ESA CCI COMBINED als das zuverlässigste
Produkt mit einem guten Gleichgewicht zwischen niedrigem RMSD (22,01 mm/Monat im Durchschnitt)
und starker Korrelation (R=0,45 im Durchschnitt) in den vier Bewässerungsgebieten.

Alle Produkte zeigen eine Unterschätzung der Bewässerung im Ebro-Einzugsgebiet, die durch die Ein-
beziehung der Evapotranspiration in den Algorithmus verbessert werden könnte. Im Vergleich zu Studien, in
denen Bewässerungsschätzungen mit hoher Auflösung vorgenommen wurden, schnitt unsere grob aufgelöste
Methode im Ebro-Becken vergleichbar gut ab. Diese groß angelegten, langfristigen Bewässerungsdatensätze
sind ein wichtiger Schritt zur besseren Berücksichtigung der Auswirkungen der Bewässerung in klimatischen
und hydrologischen Modellen und können das Management der Wasserressourcen verbessern.
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1.1 Irrigation and climate modeling

Insufficient water availability often leads to crop yield losses, making
irrigation crucial for preventing these and enhancing food security,
especially in semi-arid regions [1]

[1]: Kukal et al. (2019), ‘Irrigation-limited
yield gaps: trends and variability in the
United States post-1950’

. Due to climate change long dry
periods and water scarcity are expected to become even more severe
in the future making irrigation more and more important for food
security [2]

[2]: Allan et al. (2008), ‘Atmospheric
warming and the amplification of precip-
itation extremes.’

. Moreover, worldwide, 20 % of cropland is irrigated while
delivering 40 % of the entire food production and causing 70 % of
freshwater withdrawals [3]

[3]: WWAP (UNESCO World Water As-
sessment Programme) (2019), The United
Nations world water development report
2019: leaving non one behind

. In addition, irrigation significantly affects the
environment by causing groundwater depletion, nutrient leaching, and
increasing soil salinity [4–6]

[4]: Deng et al. (2018), ‘Changes in Irri-
gation Practices Likely Mitigate Nitrous
Oxide Emissions From California Crop-
land’
[5]: Famiglietti (2014), ‘The global
groundwater crisis’
[6]: Pokhrel et al. (2016), ‘Recent
progresses in incorporating human
land–water management into global land
surface models toward their integration
into Earth system models’

. Furthermore, extensive irrigation impacts
local meteorological conditions by increasing soil moisture (SM), which
in turn elevates evapotranspiration (ET). This rise in ET has a cooling
effect on surface temperatures while simultaneously enhancing humidity,
cloud cover, and precipitation [7]

[7]: Cook et al. (2015), ‘Irrigation as an
historical climate forcing.’

. Additionally, irrigation influences
hydroclimatic patterns both locally and remotely [8]

[8]: McDermid et al. (2023), ‘Irrigation in
the Earth system’

. However, even
if irrigation impacts the climate regionally, many meteorological and
climate models do not directly incorporate irrigation information due to
i) lack of available irrigation data (or too uncertain data), ii) too uncertain
irrigation models [9]

[9]: Puy et al. (2022), ‘The delusive ac-
curacy of global irrigation water with-
drawal estimates’

. Therefore, obtaining accurate, long-term, and
global estimates of IWU is essential to ensure robust climate simulation
in irrigated areas [8].

1.2 How can we obtain information on
irrigation?

1.2.1 In situ irrigation and FAO statistics

Survey-based irrigation estimates are typically available only at a local
scale with low temporal resolution, often limited to annual data. These
estimates carry significant uncertainties due to the self-reporting of
farmers, upscaling procedures, and the representativeness of surveyed
farms, making them unsuitable for accurately indicating the timing and
amount of individual irrigation events [10] [10]: Massari et al. (2021), ‘A Review of

Irrigation Information Retrievals from
Space and Their Utility for Users’

. The Food and Agriculture
Organization (FAO) of the United Nations provides country-level data
on irrigation water withdrawals worldwide [11]

[11]: FAO (2021), AQUASTAT - FAO’s
Global Information System on Water and
Agriculture

. Although these surveys
are essential for validating estimated IWU, they lack the spatial and
temporal detail needed for integration into climate models, where fine-
scale irrigation dynamics are crucial for accurate predictions.
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[12]: Olivera-Guerra et al. (2023), ‘Mod-
eling actual water use under different
irrigation regimes at district scale: Appli-
cation to the FAO-56 dual crop coefficient
method’

[13]: Elachi et al. (2021), Introduction to the
physics and techniques of remote sensing

[14]: Demtröder (2017), Experimental-
physik 2

[15]: Schmugge (1987), ‘Remote sensing
applications in hydrology’

[16]: Lusch (1999), Introduction To Mi-
crowave Remote Sensing

[17]: Das et al. (2015), ‘Present status of
soil moisture estimation by microwave
remote sensing’

[13]: Elachi et al. (2021), Introduction to the
physics and techniques of remote sensing

1.2.2 Modeling

Hydrological models quantify irrigation water withdrawals and could
represent an alternative to survey-based irrigation estimates. Puy et al.
(2022) [9] analyzed the accuracy of global irrigation water withdrawal es-
timates. Models use an empirically and arbitrarily defined SM threshold
to trigger irrigation, not reflecting agricultural practices [12]. In addi-
tion, irrigation efficiency, the ratio of water used by crops to the total
water taken from the source, is also often uncertain and differs between
irrigation districts [9], making models even more uncertain.

1.2.3 Remote sensing

Remote sensing allows for consistently measuring land surface condi-
tions, including those related to irrigation practices, at global scale, fine
resolution, and long periods. As our method is based on the use of re-
mote sensing-derived SM, this subsection aims to provide the theoretical
background necessary to understand what these SM products are, and
how they are obtained.

Remote sensing measures and analyzes electromagnetic waves emitted
or reflected by an object to observe information about its properties
[13]. Various wavelengths of the electromagnetic spectrum are used for
remote sensing. The electromagnetic spectrum spans from a wavelength
of 10−16 m to 108 m or, expressed in frequency, from 1 Hz to 1024 Hz. The
spectrum is divided into the following regions: gamma rays (highest
frequency and shortest wavelength), X-rays, ultraviolet, visible light,
infrared, microwaves, and radio waves (lowest frequency and longest
wavelength) [14]. Various useful data for tracking agricultural water flows
can be derived from electromagnetic waves captured by satellites using
specific algorithms. Thermal infrared observations are used to estimate
surface temperature, visible, near-, and shortwave-infrared bands reveal
vegetation growth stages, and microwave data provides information on
SM [13].

Microwaves are highly sensitive to the soil’s dielectric properties cor-
related with the water content, which enables microwave sensing to
estimate SM [15]. Microwave remote sensing employs both active and
passive sensors, operating at a wavelength spectrum between 1 mm
and 1 m, which is divided into several bands. The most commonly
used bands are presented in Table 1.1 [16]. Passive sensors, which are
called microwave radiometers, measure microwaves naturally emitted
by the Earth’s surface which are non-coherent, whereas active sensors
emit microwaves and measure the backscattered signal. For active sen-
sors, a further distinction between scatterometers, side-looking radars,
and radar-altimeters is made. To measure SM, both scatterometers and
microwave radiometers are used [17].

A major advantage of microwaves is their independence from the weather,
due to their high transmissivity through the atmosphere. In addition,
microwave remote sensing systems are independent of sunlight, allowing
them to operate 24 hours a day [13]. The penetration depth of microwaves
is significantly larger compared to optical wavelengths. Depending on
the wavelength, the measurement angle, and the SM, the signal can
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band wavelength frequency

L 30-15 cm 1-2 GHz
C 7.5-3.75 cm 4-8 GHz
X 3.75-2.5 cm 8-12 GHz

Ku 2.5-1.6 cm 12-18 GHz

Table 1.1: Commonly used bands in mi-
crowave remote-sensing [16].

[18]: Dorigo et al. (2017), ‘ESA CCI Soil
Moisture for improved Earth system un-
derstanding: State-of-the art and future
directions’

[19]: De Lannoy et al. (2022), ‘Perspective
on satellite-based land data assimilation
to estimate water cycle components in
an era of advanced data availability and
model sophistication’
[20]: Kumar et al. (2015), ‘Evaluating the
utility of satellite soil moisture retrievals
over irrigated areas and the ability of
land data assimilation methods to cor-
rect for unmodeled processes’
[21]: Modanesi et al. (2022), ‘Challenges
and benefits of quantifying irrigation
through the assimilation of Sentinel-1
backscatter observations into Noah-MP’
[10]: Massari et al. (2021), ‘A Review of
Irrigation Information Retrievals from
Space and Their Utility for Users’
[22]: van Eekelen et al. (2015), ‘A novel
approach to estimate direct and indirect
water withdrawals from satellite mea-
surements: A case study from the Inco-
mati basin’
[23]: Brombacher et al. (2022), ‘A
novel evapotranspiration based irriga-
tion quantification method using the hy-
drological similar pixels algorithm’

[24]: Olivera-Guerra et al. (2020), ‘Irriga-
tion retrieval from Landsat optical/ther-
mal data integrated into a crop water
balance model: A case study over winter
wheat fields in a semi-arid region’

1: 𝑍 ·𝑑𝑆(𝑡)/𝑑𝑡 = 𝑖(𝑡)+𝑟(𝑡)−𝑔(𝑡)−𝑠𝑟(𝑡)−
𝑒(𝑡), where Z [mm] is the water capacity,
S(t) [-] is the relative SM, t [d] is the
time, i(t) [mm/d] is the irrigation rate, r(t)
[mm/d] is the rainfall rate, g(t) [mm/d]
is the drainage term, sr(t) [mm/d] is the
surface runoff and e(t) [mm/d] is the ET
rate

penetrate up to one meter or more into the surface [13]. Observations in
the L-band for example show a better capacity to penetrate vegetation
and sense soil to a greater depth compared to the C-band or X-band. In
return, suitable spatial resolution (0.25°) is more difficult to achieve with
the L-band compared to the C- and X-band [18].

Assimilation

One approach is to assimilate variables related to irrigation observed by
satellites, such as backscatter, brightness temperature, or SM to adjust
model variables to each observation by adding more or less irrigation
[19]. However, assimilation techniques to retrieve irrigation still need
further efforts in terms of modeling and data integration [20, 21].

Satellite-based irrigation retrieval

Satellite observations of hydrological variables—such as SM, ET, vege-
tation growth, and Land Surface Temperature (LST)—provide valuable
proxies for irrigation. Remote sensing offers comprehensive and consis-
tent monitoring of the Earth’s surface, delivering spatially detailed and
temporally frequent data that can help improve our understanding of
irrigation dynamics [10].

Several studies have used ET data to estimate IWU. Van Eekelen et al.
(2015) [22] introduced an approach that combines land use, rainfall,
and evaporation data to spatially estimate water withdrawals. More
recently, Brombacher et al. (2022) [23] utilized high-resolution ET to
compare irrigated and non-irrigated pixels to derive monthly IWU over
the Ebro Basin in Spain. However, their analysis was limited to a single
year, making it insufficient for long-term climate studies where extended
temporal coverage is critical.

LST has also been explored for irrigation detection. Olivera-Guerra et al.
(2020) [24] applied Landsat optical and thermal data to estimate irrigation
amounts in several wheat fields in central Morocco, showcasing LST’s
potential in monitoring irrigation.

SM data has proven particularly promising for irrigation detection, with
approaches such as the SM Delta [25–28] and SM Inversion [29–33]
techniques extensively studied. The SM Inversion method estimates
irrigation using the soil water balance equation 1, calculating irrigation
as the residual after subtracting precipitation from total soil water input.
Both coarse and high-resolution SM satellite products have already been
used in studies based on the SM Inversion approach [29–33].

The SM Delta method calculates irrigation as the difference between
observed and modeled SM variations. It takes advantage of the fact,
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[29]: Brocca et al. (2015), ‘Rainfall esti-
mation from in situ soil moisture ob-
servations at several sites in Europe: an
evaluation of the SM2RAIN algorithm’
[30]: Dari et al. (2023), ‘Regional data sets
of high-resolution (1 and 6 km) irrigation
estimates from space’
[31]: Dari et al. (2022), ‘Irrigation esti-
mates from space: Implementation of
different approaches to model the evap-
otranspiration contribution within a soil-
moisture-based inversion algorithm’
[32]: Dari et al. (2020), ‘Exploiting High-
Resolution Remote Sensing Soil Moisture
to Estimate Irrigation Water Amounts
over a Mediterranean Region’
[33]: Jalilvand et al. (2019), ‘Quantifica-
tion of irrigation water using remote sens-
ing of soil moisture in a semi-arid region’
[20]: Kumar et al. (2015), ‘Evaluating the
utility of satellite soil moisture retrievals
over irrigated areas and the ability of
land data assimilation methods to correct
for unmodeled processes’
[25]: Zaussinger et al. (2019), ‘Estimating
irrigation water use over the contiguous
United States by combining satellite and
reanalysis soil moisture data’

[34]: Zohaib et al. (2020), ‘Satellite-based
global-scale irrigation water use and its
contemporary trends’

[26]: Zappa et al. (2021), ‘Detection
and Quantification of Irrigation Water
Amounts at 500 m Using Sentinel-1 Sur-
face Soil Moisture’
[35]: Quast et al. (2019), ‘A Generic First-
Order Radiative Transfer Modelling Ap-
proach for the Inversion of Soil and Veg-
etation Parameters from Scatterometer
Observations’

that satellite-derived SM contains an irrigation signal, whereas modeled
SM does not. Hence, IWU can be derived by computing the difference
between satellite and modeled SM variations. The SM Delta method has
been applied across different regions with varying resolutions and time
frames. The following section highlights key studies that have applied
the SM Delta method.

1.2.4 SM Delta approach: State of the art

Kumar et al. (2015) [20] first studied the applicability of satellite-derived
SM for irrigation retrieval. They showed that it is possible to map irrigated
areas based on satellite SM.

Zaussinger et al. (2019) [25] developed the SM Delta method, which
defines an irrigation event as a simultaneous increase in satellite SM and a
decrease in model SM. The irrigation amount for each event is calculated
as the difference between satellite SM and model SM over two time steps.
Seasonal IWU is then defined as the accumulated irrigation from the start
to the end of the growing season. In their study, Zaussinger et al. (2019)
first computed the correlations of three satellite sensors (Soil Moisture
Active Passive (SMAP), Advanced Microwave Scanning Radiometer 2
(AMSR2), and Advanced Scatterometer (ASCAT)) against a modeled
SM product (Modern-Era Retrospective Reanalysis for Research and
Application 2 (MERRA-2)) and found that correlations are lower over
irrigated areas compared to non-irrigated areas indicating the potential
of satellite SM to detect irrigation. Then, they retrieved IWU from the
aggregated difference between satellite and model SM variations over
the Contiguous United States (CONUS) from 2013-2016. Validation of
IWU against state-aggregated observed and reported irrigation volumes
showed the highest correlation for the SMAP-derived IWU (R=0.80), fol-
lowed by AMSR-2 (R=0.56) and ASCAT (R=0.36). However, the obtained
bias values indicate a significant underestimation for the three products
(𝑏𝑖𝑎𝑠𝑆𝑀𝐴𝑃 = -2.47 𝑘𝑚3, 𝑏𝑖𝑎𝑠𝐴𝑀𝑆𝑅−2 = -2.32 𝑘𝑚3, and 𝑏𝑖𝑎𝑠𝐴𝑆𝐶𝐴𝑇 = -2.29
𝑘𝑚3). They point out that a limitation of the coarse-resolution satellite
SM products is that the area of irrigated fields is much smaller than the
area covered by a pixel, so the algorithm fails to capture local irrigation
patterns.

Zohaib et Choi (2020) [34] analyzed IWU estimated from satellite
and reanalysis SM globally from 2000 to 2015. They revealed that
the Kolmogorov-Smirnov (KS) metric between the three ESA CCI SM
products and ERA5 SM significantly differs between irrigated and non-
irrigated areas, indicating the potential of satellite-derived SM to retrieve
irrigation. Validation against country-level IWU from FAO showed a
high correlation (R ≈ 0.80) and high negative biases (-76.55 𝑘𝑚3, -76.01
𝑘𝑚3 and 73.93 𝑘𝑚3 for the ACTIVE, PASSIVE and COMBINED product,
respectively). However, as already present in Zaussinger et al. (2019) [25],
IWU amounts were systematically underestimated.

Zappa et al. (2021) [26] introduced a method to use RT1 Sentinel-1 SM [35]
for irrigation retrieval at 500 m sampling. Furthermore, they improved
irrigation estimates by implementing an ET and a drainage term in the
formulation. They showed that the contribution of ET to the irrigation
estimates was twice as high as the contribution of SM.
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In another study, Zappa et al. (2022) [27] investigated the influence of
SM spatio-temporal resolution on the detection of individual irrigation
events by introducing a synthetic experiment. By varying the frequency
and spatial resolution of the SM data used in the SM Delta algorithm, they
found that IWU becomes increasingly underestimated with sampling
intervals greater than one day. This underestimation also scales with the
irrigated fraction of the pixel, indicating that coarser spatial resolution
tends to produce larger underestimations.

In their most recent study, Zappa et al. (2024) [28] compared irrigation
retrieval from two satellite-based methods, SM Delta and SM Inversion,
using high-resolution Sentinel-1-derived SM data (1 km), and from a land
surface model, Noah-MP. They found that SM Delta and SM Inversion
can distinguish irrigated from non-irrigated areas fairly well and show
much better performance (R ≈ 0.7, bias ≈ -4 mm/15 days, ubRMSD ≈ 12
mm/15 days) than NOAH-MP (R ≈ 0.7, bias ≈ 18 mm/15 days, ubRMSD
≈ 29 mm/15 days) in the Ebro Basin.

To date, most studies have primarily focused on short investigation
periods, with only limited exploration of different regions, highlighting
the need for more comprehensive, long-term analyses.

1.3 Objective

The objective of this thesis is to investigate the potential of five coarse-
resolution satellite-derived SM products for long-term irrigation simula-
tion, using the SM Delta method to estimate irrigation. This method is
applied to two distinct regions: the Ebro Basin in Spain and the Murray-
Darling Basin in Australia. Additionally, the simulated irrigation datasets
are compared with benchmark irrigation data available for districts within
these basins, enabling an assessment of agreement between simulated
and in situ IWU.

The overarching goal is to develop a methodology for accurately simulat-
ing IWU at a coarse spatial resolution over long-term periods. Addition-
ally, the following research questions are addressed:

Research Questions

▶ Which satellite-derived SM product is most suitable for de-
veloping a coarse-scale, long-term irrigation dataset based
on key statistical metrics (KS-value, bias, RMSD, and Pear-
son correlation) computed against modeled SM? How do
these metrics vary between irrigated and non-irrigated
seasons for different SM products?

▶ What is the frequency of satellite SM observations in the
study areas, and how does this frequency differ across
various satellite products?

▶ Which satellite-derived SM product is most suitable for
accurately estimating long-term global IWU, based on bias,
correlation, and RMSD, when compared to in situ observa-
tions?



6 1 Introduction

1.4 Thesis Outline

Chapter 2 gives an overview of the study areas and the datasets used.
In Chapter 3 the SM Delta approach is described, followed by the
preprocessing of the datasets and the statistical metrics used. The results
are presented in Chapter 4 and later discussed in Chapter 5. A conclusion
is given in Chapter 6.
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The objective of this section is to provide an overview of the analyzed
study areas and the employed data. Firstly, the two study areas are
presented in Section 2.1, namely the Ebro Basin and the Murray-Darling
Basin. Then, in Section 2.2, the SM datasets, categorized into modeled and
satellite-based SM, are introduced. Finally, ancillary data is presented,
namely in situ data for the Ebro Basin and the Murray-Darling Basin
in Section 2.2.2, as well as ESA CCI landcover maps used for masking
non-irrigated areas in Section 2.2.3.

2.1 Study areas

2.1.1 Ebro Basin

The Ebro River Basin (∼ 86 000 km²), located in Spain (Figure 2.1),
is an agricultural area highly irrigated and mainly characterized by
a cold semi-arid climate by the Köppen-Geiger climate classification
[30, 36]. Mean annual precipitation amounts vary between 1800 mm
in the Pyrenees and less than 500 mm in the agricultural valley [30].
Furthermore, ET is around 700 mm/year on average in the Ebro Basin
[37] but reaches values of above 1000 mm/year in some irrigated areas,
such as the Algerri-Balaguer district [38]. An extensive network of canals,
dams, and reservoirs was constructed to redistribute water spatially, from
the wetter mountainous regions upstream to the dryer central valley,
where agricultural irrigation is applied on an area of approximately 9660
𝑘𝑚2, and temporally, from the wetter winter months to the dry summer
months [37]. The majority of cultivated crops in the Ebro Basin are winter
cereals, primarily barley and wheat (grown from March to July), and
summer cereals (grown from June to October), predominantly maize.
Furthermore, alfalfa and fruit trees are cultivated [38]. The Ebro Basin
employs a mix of irrigation methods, including sprinkler, drip, and flood
irrigation. Some regions utilize modern and efficient techniques like
sprinkler and drip irrigation, while others rely on older, less efficient
methods such as flood irrigation. [32]

2.1.2 Murray-Darling Basin

The Murray-Darling Basin spans roughly 14 % of Australia (Figure 2.2),
covering approximately 1,000,000 km² [30]. Classified as a dry, semi-arid
region by the Köppen-Geiger climate classification [36], it is often referred
to as Australia’s food bowl. Its extensive water storage capacities support
the majority of the nation’s IWU [30].

Precipitation within the basin varies significantly, from approximately
350 mm annually in the arid western plains to 1500 mm/year in the wet,
mountainous east [39]. Managed under the Murray-Darling Basin Plan,
the interconnected river system is regulated by sustainable diversion



8 2 Material

Figure 2.1: The Iberian Peninsula with
the Ebro Basin (fat black line) and the
irrigated areas (thin black lines). Base
map from Google satellite.

limits. [40]. The basin’s diverse agricultural output includes rice, maize,
wheat, grapes, citrus fruits, winter and summer cereals, cotton, and
pasture, with irrigation playing a critical role in sustaining productivity
in its predominantly dry landscape.

Figure 2.2: Australia with the Murray-
Darling Basin (fat black line) and the
irrigated areas (thin black lines). Base
map from Google Satellite.

2.2 Data

2.2.1 Soil moisture data

Since the SM Delta method relies on the premise that satellite-based
SM includes irrigation signals, while modeled SM does not, we first
introduce the satellite and modeled SM datasets used in this study.



2.2 Data 9

Table 2.1: Time coverage, spatial resolution, revisit time, operation mode and band for the five satellite products.

satellite time coverage spatial res. revisit time active/passive frequency

ESA CCI ACTIVE 1991/08 - onwards 0.25◦ daily active C-band (5.3 GHz)
ESA CCI PASSIVE 1978/11 - onwards 0.25◦ daily passive Ku-, X-, C- & L-band
ESA CCI COMBINED 1978/11 - onwards 0.25◦ daily active & passive (1.4 - 19.3 GHz)
SMOS L2 2009/11 - onwards 42 km 3 days passive L-band (1.4 GHz)
SMAP L2 2015/02 - onwards 40 km 3 days passive L-band (1.4 GHz)

[13]: Elachi et al. (2021), Introduction to the
physics and techniques of remote sensing

[18]: Dorigo et al. (2017), ‘ESA CCI Soil
Moisture for improved Earth system un-
derstanding: State-of-the art and future
directions’
[41]: Dorigo et al. (2023), ESA Climate
Change Initiative Plus - Soil Moisture
Algorithm Theoretical Baseline Document
(ATBD) Supporting Product Version 08.1

[42]: Rodell et al. (2004), ‘The Global
Land Data Assimilation System’
[43]: Dorigo et al. (2024), ESA Climate
Change Initiative Plus - Soil Moisture
Algorithm Theoretical Baseline Document
(ATBD) Supporting Product Version 09.0

[18]: Dorigo et al. (2017), ‘ESA CCI Soil
Moisture for improved Earth system un-
derstanding: State-of-the art and future
directions’
[44]: Gruber et al. (2016), ‘Recent ad-
vances in (soil moisture) triple colloca-
tion analysis’
[45]: Gruber et al. (2019), ‘Evolution of
the ESA CCI Soil Moisture climate data
records and their underlying merging
methodology’

Satellite soil moisture

A variety of global SM satellite products are available. Some employ active
sensors that exploit the linear relationship between backscatter and SM,
while others utilize passive microwave sensors that measure microwaves
emitted by the Earth [13]. Additionally, these products exhibit variability
in terms of spatial and temporal resolution, and temporal coverage.
Furthermore, differences in penetration depth, which depends on the
band used for observation, result in varying sensitivities to vegetation.
Table 2.1 presents an overview of the various satellite products used in
this study.

ESA CCI SM

The European Space Agency Climate Change Initiative for soil moisture
(ESA CCI SM) merges SM data retrievals from various satellites to a
0.25° grid, globally and daily aiming to retrieve an SM Climate Data
Record of at least 30 years to fit to climate research needs. The product
specifications are described by Dorigo et al. (2017) [18] and (2023) [41].
In the first step, Level 2 SM products are mapped to a common daily
time step using the nearest neighbor search in time. Then, cumulative
distribution function (CDF) matching is used to calibrate the various
SM products. The merging is executed for the PASSIVE and ACTIVE
products separately using Advanced Microwave Scanning Radiometer -
Earth Observing System sensor (AMSR-E) and Advanced Scatterometer
(ASCAT) as a reference, respectively. Furthermore, to obtain the ESA
CCI COMBINED version 09.1 SM product, the ESA CCI ACTIVE and
the ESA CCI PASSIVE products are first rescaled pixel-wise against the
long-term Land Surface Model based SM (GLDSAS-Noah v2.1 [42]) using
mean-standard deviation rescaling and are then merged. [43]

A triple collocation analysis (TCA) is conducted on both the ESA CCI
ACTIVE and ESA CCI PASSIVE products with the objective of estimating
the random error, which serves as a direct measure of the observation’s
sensitivity to SM changes. These random errors are used to estimate the
merging parameters. The ESA CCI ACTIVE and ESA CCI PASSIVE SM
products are provided with these errors at the pixel level. A TCA can only
be performed if three SM products with independent error structures
are available. At the global scale, this constraint can only be satisfied
through the use of a combination of active and passive remotely sensed
SM products and an LSM-based SM product. Therefore, a TCA is not
feasible for the combined product, and classical error propagation is
employed instead. [18, 44, 45]

The three products ESA CCI ACTIVE, ESA CCI PASSIVE, and ESA CCI
COMBINED are explained in more detail in the following part:
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▶ The ESA CCI ACTIVE product merges SM products from active-
microwave-based sensors, which retrieve SM using the TU Wien
Water Retrieval Package (WARP) [46, 47], which is based on the
linear relationship between backscatter and SM. ESA CCI SM
ACTIVE uses SM data retrieved from two sensors: the European
Remote Sensing (ERS) scatterometer and the Advanced Scatterom-
eter (ASCAT). ASCAT provides SM data with an original spatial
resolution of 25 km, available from May 2007. The backscatter
instrument is installed on ESA’s European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) meteoro-
logical operational satellites MetOp-A, which was launched in
2006, MetOp-B, launched in 2012, and MetOp-C, launched in 2018.
ASCAT operates in the C-band at a frequency of 5.255 GHz and
is therefore unaffected by cloud cover. The ASCAT SM product,
which estimates the water content of the topsoil layer (0-5 cm) in
terms of degrees of saturation (%), is based on the linear relation-
ship between scatterometer backscatter and SM. Change detection
is also used to remove contributions from vegetation, land cover,
and surface topography. Satellite products operating in the C-band
result in reduced penetration in the soil and higher sensitivity to
vegetation compared to satellite products operating in the L-band.

▶ The ESA CCI PASSIVE product merges 12 passive microwave sen-
sors, each with different radiometric characteristics. SM is derived
from level 1 brightness temperature using the Land Parameter Re-
trieval Model (LPRM) [48]. Based on a microwave radiative transfer
model linking SM to the observed brightness temperature, the
model retrieves vegetation optical depth (VOD), SM, and surface
temperature. Notably, the LPRM utilizes globally constant param-
eters, allowing it to compensate for variations in frequency and
incidence angle across different satellite platforms. This attribute
ensures the ESA CCI SM product maintains long-term consistency
in SM measurements [41]. The ESA CCI PASSIVE SM product is
obtained from the merging of the following passive microwave
sensors (the platform is mentioned in parenthesis): SMMR (Nimbus
7), SSM/I, SSMIS (DMSP), TMI (TRMM), AMSR-E (Aqua), AMSR2
(GCOM-W1), Windsat (Coriolis), MIRAS (SMOS), SMAP (SMAP),
GMI (GPM), MWRI (FY-3B, FY-3C, FY-3D).

▶ ESA CCI SM COMBINED merges the ESA CCI ACTIVE and ESA
CCI PASSIVE products by rescaling the data sets against GLDAS-
Noah v2.1 [42]. The merge is performed based on the weighted
average between the satellite products. The weights are determined
by the inverse signal-to-noise ratio. In addition, breaks that occur
as a result of merging different products are detected and corrected
using Quantile Category Matching (QCM) with ERA5-SM as the
reference. [41] Errors of the ESA CCI SM COMBINED products are
estimated by error propagation.

In this thesis, the ESA CCI SM ACTIVE version 08.1 [49] and ESA CCI SM
PASSIVE version 08.1 [50] are used. For the ESA CCI COMBINED product,
the rescaling method against long-term Land Surface Model (LSM) based
SM (GLDAS-Noah v2.1 [42]) was changed from CDF-matching, which can
partly remove the irrigation signal, to mean-standard deviation rescaling,
which better preserves seasonal features, in the latest version 09.1 [43].
Hence, to take advantage of this improvement, we decided to use the
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Figure 2.3: Irrigated districts with avail-
able in situ data in the Ebro Basin.

ESA CCI COMBINED SM version 09.1 product [51].

SMOS

The Soil Moisture and Ocean Salinity (SMOS) [52] mission of ESA’s
Living Planet Programme, launched in 2009, is the first satellite mission
dedicated to SM observation. [53] It provides global observations of
variability in SM and sea surface salinity at an average spatial resolution
of 42 km and global coverage every 3 days. The instrument installed is a
Microwave Imaging Radiometer using Aperture Synthesis (MIRAS). It
is a passive microwave 2-D interferometric microwave radiometer that
receives radiation from the Earth at a frequency of 1.4 GHz in the L-band.
The measured signal is then related to the moisture content in the topsoil
layer (0 to 5 cm depth). [52]

SMAP

NASA’s Soil Moisture Active Passive (SMAP) satellite mission was de-
signed to retrieve SM from active and passive L-band microwave sensors
[54]. Shortly after its launch in January 2015, however, the active sensor
failed and hence SMAP only provides surface SM up to a depth of 5
cm remotely sensed by the passive microwave radiometer [29]. SMAP’s
radiometric-based instrument detects radio waves emitted by the Earth
at a frequency of 1.4 GHz in L-band. The SMAP Level 2 SM data used in
this thesis are provided with a spatial resolution of 40 km sampled on a
36-km grid and an average global revisit time of 3 days [54].

Modeled soil moisture

ERA5-Land

The land component of the fifth generation of the European ReAnalysis
(ERA5-Land) is produced by the Copernicus Climate Change Service
(C3S) at the European Centre for Medium-Range Weather Forecasts
(ECMWF) [55]. The period covered by the data set extends from 1950 to
the present. ERA5-Land describes the water and energy cycles over land
at a spatial resolution of 9 km and hourly time steps. First, the coarser
ERA5 meteorological data, with a resolution of 31 km, are downscaled
to a spatial resolution of 9 km. Then, the land surface model uses a
daily lapse rate from ERA5 to correct the meteorological forcing data.
Finally, a 24-hour integration is performed to provide the evolution of
the land surface state and the associated energy and water fluxes [56].
As ERA5-Land is a reanalysis product, driven by meteorological forcing,
it does not contain an irrigation signal [34]. To match the sensor depth of
the satellite SM data, only the volumetric soil water layer 1 (0-7 cm) is
considered [56].

2.2.2 In situ irrigation data

Ebro Basin

Irrigation benchmark data within the Ebro Basin are available for irri-
gated land organized into five irrigation districts, namely Urgell, Algerri
Balaguer, Pinyana, and the Catalan and Aragonese district, which is
divided into North and South (Figure 2.3). Daily data are available from
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Table 2.2: Overview of the irrigation districts in the Ebro Basin as in Dari et al. [32].

District name Area 𝑘𝑚2 Loss factor Irrigation technique

Algerri Balaguer 71 10% sprinkler and drip irrigation
Catalan and Aragonese North 657 15% sprinkler (54 %), drip (28 %)

and flood (18 %) irrigationCatalan and Aragonese South 504 15%
Pinyana 150 30% mixed irrigation
Urgell 812 30% mostly flood irrigation

[32]: Dari et al. (2020), ‘Exploiting High-
Resolution Remote Sensing Soil Moisture
to Estimate Irrigation Water Amounts
over a Mediterranean Region’

[57]: SAIH (), Sistema automatico de Infor-
macion Hidrologica del Ebro

Figure 2.4: Irrigated districts with avail-
able in situ data in the Murray-Darling
Basin.

2007 to 2023 for Algerri-Balaguer and Catalan and Aragonese North, and
from 1997 to 2023 for Catalan and Aragonese South and Urgell. Monthly
data for the Pinyana district are available for 2016 and 2017 [32]. The
districts vary in size and irrigation system (see Table 2.2), which results in
different irrigation efficiencies generating more or less water loss, which
was accounted for in the in situ irrigation data provided. Urgell is the
largest district covering an area of about 812 𝑘𝑚2. It is mainly irrigated
by flood irrigation, which is an old irrigation technique generating more
losses by drainage and runoff compared to modern irrigation techniques.
Consequently, losses of 30 % are generally considered [32]. The Catalan
and Aragonese North and South districts cover similarly large areas of
657 𝑘𝑚2 and 504 𝑘𝑚2, respectively. Irrigation systems are mixed, but
sprinkler (54 %), drip (28 %), and flood (18 %) irrigation are the most
common [32]. Losses of 15 % are considered for both the northern and
southern districts. The smallest district, covering only about 70 𝑘𝑚2, is
Algerri-Balaguer. It is the most modern and efficient of the five irrigation
districts and is equipped with recently installed sprinkler and drip irriga-
tion systems. Losses are assumed to be only 10 % for Algerri-Balaguer. In
the districts described so far, all in situ irrigation data are provided daily
by the Automatic Hydrologic Information System of the Ebro River Basin
(SAIH Ebro, [57]). For the Pinyana district, with an area of approximately
1150 𝑘𝑚2, data are provided monthly by the canal’s technical office.

Irrigation water is distributed to the five irrigation districts through
canals. The volume of the water through-flow is measured just upstream
of the districts and is converted into water thickness (mm) by dividing
by the area of each irrigation district. Figure 2.3 shows the location of
the five districts within the Ebro Basin. Given the surface area of the
irrigation districts and the coarse resolution (0.25◦) of the SM satellite and
model pixels, we decided to carry out the validation on this area using
the average of the in situ data from four districts, excluding Pinyana due
to the limited availability of in situ data over time.

Murray-Darling Basin

For the Murray-Darling Basin, monthly irrigation benchmark data, ex-
pressed as monthly water thickness (mm/month), is available for five
districts (see Table 2.3, with four of them being illustrated in Figure 2.4.

The data set of the Coleambally district with an area of 977 𝑘𝑚2 covers a
period from July 2009 to June 2019. Irrigation data in Murray Mulwala and
Murray Wakool with areas of 3093 𝑘𝑚2 and 1455 𝑘𝑚2, respectively, are
available from July 2010 to June 2019. Benchmark irrigation data in Mur-
rumbidgee is available from July 2013 to June 2019. The Murrumbidgee
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district covers an area of approximately 2790 𝑘𝑚2. The monthly irrigation
data are provided by an Irrigation Infrastructure Operator (IIO) in the
form of annual reports. The discharge (𝑚3/𝑚𝑜𝑛𝑡ℎ) values measured
upstream of each district are divided by the irrigated area to obtain water
thickness in mm/month. [30]

[30]: Dari et al. (2023), ‘Regional data sets
of high-resolution (1 and 6 km) irrigation
estimates from space’

District name Area 𝑘𝑚2 Time span

Coleambally 977 2009-2009
Murrumbidgee 2789 2013-2019

Murray Mulwala 3093 2010-2019
Murray Wakool 1455 2010-2019

Table 2.3: Overview of the irrigation dis-
tricts in the Murray-Darling Basin as in
Dari et al. (2023) [30].

2.2.3 ESA CCI landcover map

The ESA Climate Change Initiative Land Cover (ESA CCI-LC) product
provides global land cover maps with a spatial resolution of 300 meters.
These maps follow the typology defined by the Land Cover Classification
System (LCCS) [58], developed by FAO. Annual land cover maps are
derived from a foundational LC map based on the complete Envisat
Medium Resolution Imaging Spectrometer (MERIS) Full Resolution (FR)
and Reduced Resolution (RR) archives [59].

In this study, we used mask 20 from the "level 1" or "global" legend, which
is globally valid and represents irrigated cropland worldwide [60]. We
spatially resampled the land cover data from 300 m to the 0.25° ESA CCI
grid, keeping only those pixels with at least 10 % of their area classified
as irrigated cropland.
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3.1 Preprocessing

3.1.1 Spatial resampling

All SM satellite and modeled SM estimates were resampled to the 0.25◦
ESA CCI SSM v08.1 grid [61]

[61]: Hirschi et al. (2023), ‘ESA Climate
Change Initiative Plus - Soil Moisture
Product Validation and Intercomparison
Report (PVIR) Supporting Product ver-
sion v08.1 (issue 1.0)’

, using linear interpolation. Moreover, all data
available on a sub-daily basis, particularly ERA5-Land, were temporally
resampled to daily time steps.

3.1.2 Rescaling

Observation depths and units employed differ between the different
products. The ERA5-Land volumetric soil water layer 1, for instance, is
modeled for a depth of up to 7 cm [55]

[55]: Muñoz-Sabater (2019), ‘ERA5-Land
hourly data from 1950 to present’

and is provided in volumetric
units 𝑚3𝑚−3, whereas the SM product provided by ESA CCI ACTIVE
represents approximately the 0-5 cm topsoil layer in degrees of saturation
% [61].

Consequently, each satellite time series is rescaled to the modeled SM time
series ERA5-Land. The rescaling is a crucial and non-trivial step that can
have a significant impact on the simulated irrigation. We employed two
distinct rescaling methodologies, the "mean-standard deviation" rescaling
and "1%-99%-quantile" rescaling, and investigated which approach is
more appropriate. The following section presents an overview of the two
rescaling methods.

"Mean-standard deviation" rescaling method

The "mean-standard deviation" rescaling method has been widely used
(see for example Zaussinger et al. (2019) [25] and Escorihuela et al.
(2016) [62]). It is a linear rescaling technique that aligns the satellite SM
time series 𝑆𝑀𝑠𝑎𝑡 , with the same mean 𝜇 and standard deviation 𝜎, as
the modeled SM time series 𝑆𝑀𝑚𝑜𝑑. This methodology is expressed in
Equation 3.1:

𝑆𝑀𝑠𝑎𝑡
𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑆𝑀𝑠𝑎𝑡 − 𝜇(𝑆𝑀𝑠𝑎𝑡)
𝜎(𝑆𝑀𝑠𝑎𝑡) 𝜎(𝑆𝑀𝑚𝑜𝑑) + 𝜇(𝑆𝑀𝑚𝑜𝑑). (3.1)

Over irrigated areas, 𝑚𝑢(𝑆𝑀𝑠𝑎𝑡 likely increases during irrigation periods,
altering scaling parameters. While this should not affect the temporal
evolution of SM changes, the impact of irrigation on temporal variability
introduces uncertainty, especially in very dry regions where model
SM may not reach saturation, but remotely sensed data might due to
irrigation.



16 3 Methods

[63]: Brocca et al. (2011), ‘Soil moisture
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ison of remote sensing and simulated
soil moisture datasets in Mediterranean
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[20]: Kumar et al. (2015), ‘Evaluating the
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global-scale irrigation water use and its
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[64]: Nair et al. (2019), ‘Improvement
of land surface model simulations over
India via data assimilation of satellite-
based soil moisture products’

"1%-99%-quantile" rescaling method

The objective of the quantile rescaling method is to align the 1 % and 99 %
quantiles of the satellite SM time series with the 1 % and 99 % quantiles
of the modeled SM time series [63]. The concept is illustrated in Equation
3.2. Escorihuela et Quintana (2016) [62] highlight that the limitation of
this normalization method is the need for a long time series to ensure
that the satellite and modeled SM reach their maximum and minimum
values during the period considered and that the method is susceptible
to extreme values. However, compared to mean-standard rescaling, this
method has the advantage of being less sensitive to seasonal variability
caused by irrigation.

𝑆𝑀𝑠𝑎𝑡
𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑆𝑀𝑠𝑎𝑡 − 𝑆𝑀𝑠𝑎𝑡
𝑄0.01

𝑆𝑀𝑠𝑎𝑡
𝑄0.99 − 𝑆𝑀𝑠𝑎𝑡

𝑄0.01
(𝑆𝑀𝑚𝑜𝑑

𝑄0.99 − 𝑆𝑀𝑚𝑜𝑑
𝑄0.01) + 𝑆𝑀𝑚𝑜𝑑

𝑄0.01. (3.2)

where the index 𝑄0.01 indicates the value of the 1 % quantile and the
index 𝑄0.99 indicates the value of the 99 % quantile.

3.1.3 Masking

Pixels with at least 10 % of their area classified as irrigated cropland by
the ESA CCI land cover map are retained to ensure the presence of an
irrigation signal.

3.2 Statistical analysis of soil moisture data

3.2.1 Kolmogorov-Smirnov test

Prior to computing IWU, we validated our assumption that satellite-
derived SM data capture an irrigation signal, while modeled SM data re-
main unaffected by irrigation. To assess this, we performed a Kolmogorov-
Smirnov (KS) test. The KS-test is a statistical tool that assesses the em-
pirical distribution functions of two or more time series data sets. It has
been employed in numerous studies, including Kumar et al. (2015) [20],
Zohaib et Choi (2020) [34] and Nair et al. (2019) [64]. The null hypothesis
(𝐻0) states that the two SM datasets have similar distributions, while
the alternative hypothesis (𝐻𝑎) postulates that the two distributions are
different. The two empirical distribution functions, designated as 𝐹1(𝑥)
and 𝐹2(𝑥) are calculated, and the absolute difference between them is
determined as follows:

𝐷𝑚,𝑛 = 𝑚𝑎𝑥𝑥 |𝐹1(𝑥) − 𝐹2(𝑥)| (3.3)

where 𝑚 and 𝑛 represent the sample sizes of 𝐹1 and 𝐹2, respectively. A
similar distribution of the two SM datasets is indicated by KS statistic
values (𝐷) close to zero. Conversely, significant differences in the distri-
butions are represented by higher values of 𝐷. Higher 𝐷 values during
the irrigated period suggest differences in the distributions, indicating
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[34]: Zohaib et al. (2020), ‘Satellite-based
global-scale irrigation water use and its
contemporary trends’

[27]: Zappa et al. (2022), ‘How accurately
can we retrieve irrigation timing and wa-
ter amounts from (satellite) soil mois-
ture?’

the presence of an irrigation signal in the satellite SM data. Thus, this
metric serves as an indicator for assessing the suitability of a satellite SM
product for irrigation retrieval.

3.2.2 Statistical metrics

In addition to the Kolmogorov-Smirnov test the statistical metrics bias,
Root-Mean-Squared-Deviation (RMSD), and Pearson correlation coeffi-
cient (R) are computed between ERA5-Land SM and the various satellite
SM data sets to further assess the potential of SM satellite products to
detect irrigation. The statistical metrics are defined as follows [34]:

𝑏𝑖𝑎𝑠 =
1
𝑛

𝑛�
𝑖=1

(𝑆𝑀𝑠𝑎𝑡
𝑖 − 𝑆𝑀𝑚𝑜𝑑

𝑖 ) (3.4)

𝑅𝑀𝑆𝐷 =

�
1
𝑛

𝑛�
𝑖=1

(𝑆𝑀𝑚𝑜𝑑
𝑖 − 𝑆𝑀𝑠𝑎𝑡

𝑖 )2 (3.5)

𝑅 =

�𝑛
𝑖=1(𝑆𝑀𝑠𝑎𝑡

𝑖 − 𝑆𝑀𝑠𝑎𝑡
𝑖 )(𝑆𝑀𝑚𝑜𝑑

𝑖 − 𝑆𝑀𝑚𝑜𝑑
𝑖 )��𝑛

𝑖=1(𝑆𝑀𝑠𝑎𝑡
𝑖 − 𝑆𝑀𝑠𝑎𝑡

𝑖 )2
��𝑛

𝑖=1(𝑆𝑀𝑚𝑜𝑑
𝑖 − 𝑆𝑀𝑚𝑜𝑑

𝑖 )2
(3.6)

The bias is calculated as the average difference between satellite and
modeled SM values, where positive values suggest that the satellite SM
estimates are generally higher than those from the model, while negative
values indicate that the model provides higher SM values on average.
The bias serves to highlight systematic deviations between the datasets
and provides insight into persistent under- or overestimation trends.

The RMSD quantifies the typical magnitude of differences between
satellite and modeled SM values, where smaller RMSD values suggest
a closer agreement between the two datasets. Larger RMSD values,
by contrast, indicate a broader spread and reduced alignment in SM
estimates, reflecting less consistency between the satellite and model
data.

The Pearson correlation coefficient, ranging from -1 to 1, measures the
strength and direction of the linear relationship between the satellite and
modeled SM dynamics. A coefficient close to 1 implies a strong positive
correlation, where satellite and model SM values increase or decrease
together, while values near -1 suggest a strong inverse relationship.
Correlation values close to 0 indicate weak or no linear relationship,
meaning the datasets vary independently.

All three statistical metrics help determine the presence of an irrigation
signal, providing valuable insights into which of the five satellite SM
products are strong candidates for irrigation retrieval.

3.3 Observation frequency

Zappa et al. (2022) [27] showed that the performance of the SM Delta
algorithm decreases significantly when the SM frequency is greater than
3 days. Furthermore, they point out that the performance of the algorithm
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is best with daily observations and drops off sharply when observations
are available less than every third day. Given the sensitivity of the SM
Delta algorithm to the number of observations available, an analysis has
been conducted on the measurement frequency of the various satellites.
Hence, spatial maps of the observation frequency estimations have been
computed for the various sites, representing the number of observations
per year. This analysis helps identify the satellite-based products most
suitable for accurately retrieving irrigation data.

3.4 The SM Delta approach

The SM Delta approach, which was developed by Zaussinger et al. (2019)
[25] over the CONUS, then globally expanded by Zohaib et Choi (2020)
[34] and further investigated by Zappa et al. (2021, 2022, 2024) [26–28],
aims to retrieve irrigation based on the difference in satellite and modeled
SM variations. It takes advantage of the fact that modeled SM, if irrigation
is not modeled, theoretically only contains precipitation signals [34] (see
Equation 3.8), whereas satellite SM additionally contains an irrigation
signal [65], [34] (see Equation 3.7).

Zaussinger et al. (2019) [25] proposed defining an irrigation event as
occurring when there is a simultaneous increase in satellite-derived SM
( 𝑑𝑆𝑀𝑠𝑎𝑡

𝑑𝑡 > 0) and either a decrease or no change in model-based SM
( 𝑑𝑆𝑀𝑚𝑜𝑑

𝑑𝑡 ≤ 0). Hereby, it can be assured that the increase in satellite SM is
very likely a result of an irrigation event and not caused by precipitation.
The SM Delta method is based on the soil water balance equations, which
describe the respective change in SM for each time step t (day).

The equations are expressed as

𝑍∗ 𝑑𝑆𝑀𝑠𝑎𝑡

𝑑𝑡
= 𝑃(𝑡) + 𝐼(𝑡) − 𝐸𝑇(𝑡) − 𝑅(𝑡) − Δ𝑆𝑟𝑒𝑠𝑡 (3.7)

for the satellite observation and as

𝑍∗ 𝑑𝑆𝑀𝑚𝑜𝑑

𝑑𝑡
= 𝑃(𝑡) − 𝐸𝑇(𝑡) − 𝑅(𝑡) − Δ𝑆𝑟𝑒𝑠𝑡 (3.8)

for the model simulation.

Where 𝑍∗ is the soil depth considered in 𝑚𝑚, 𝑆𝑀𝑠𝑎𝑡 represents the
satellite SM in volumetric units 𝑚3𝑚−3, 𝑆𝑀𝑚𝑜𝑑 is the modeled SM in
volumetric units 𝑚3𝑚−3, P represents precipitation in 𝑚𝑚, I is irrigation
in 𝑚𝑚, ET is evapotranspiration, which is the evaporation of soil and
transpiration of vegetation, in 𝑚𝑚, R is the runoff in 𝑚𝑚 and Δ𝑆𝑟𝑒𝑠𝑡 is
the change in water storage 𝑚3𝑚−3 beneath the topsoil layer [25, 34].

The amount of irrigation water per event is calculated as the difference
between the change in satellite and model SM within a certain time step.
The fundamental assumption of the SM Delta approach, as proposed by
Zaussinger et al. (2019) [25], is that the discrepancies between the model
and satellite observations in terms of ET, P, R, and ΔS can be considered
negligible and therefore be disregarded. This results in the following
equation calculating the IWU by subtracting Equation 3.8 from Equation
3.7.
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𝐼(𝑡) = 𝑍∗ 𝑑𝑆𝑀𝑠𝑎𝑡

𝑑𝑡
− 𝑍 ∗ 𝑑𝑆𝑀𝑚𝑜𝑑

𝑑𝑡
(3.9)

In addition, a threshold parameter is introduced, as proposed by Zaussinger
et al. (2019) [25], which allows to ensure that the change in satellite SM is
significant to be considered as irrigation. Indeed, there is noise present in
the SM signals [66], and distinguishing between the irrigation signal and
the high-frequency noise is essential to the algorithm. Accordingly, the
relative change in satellite SM between two time steps is calculated, and
the retrieved irrigation is only considered if the relative change exceeds a
certain threshold, as illustrated in Equation 3.10. Zaussinger et al. (2019)
[25] performed an extensive sensitivity analysis and concluded that a
threshold of 0.12 yields the optimal results. Thus, this study uses 0.12 as
the threshold value, following the finding of Zaussinger et al. (2019).

𝑆𝑀𝑠𝑎𝑡
𝑡 − 𝑆𝑀𝑠𝑎𝑡

𝑡−𝑛
𝑆𝑀𝑠𝑎𝑡

𝑡−𝑛
≥ 0.12 ≡ 𝑡ℎ𝑟𝑒𝑠ℎ. (3.10)

The seasonal IWU is subsequently calculated as the aggregated difference
of the change in satellite and model SM for irrigation events exceeding
the determined threshold within the growing season period.

𝐼𝑊𝑈𝑠𝑒𝑎𝑠 =
∫ 𝑖𝐸𝑂𝑆

𝑖𝑆𝑂𝑆

(𝑑𝑆𝑀𝑠𝑎𝑡
𝑖 − 𝑑𝑆𝑀𝑚𝑜𝑑

𝑖 )𝑑𝑡 ≈
𝐸𝑂𝑆�
𝑖=𝑆𝑂𝑆

Δ𝑆𝑀𝑠𝑎𝑡−𝑚𝑜𝑑
𝑖 (3.11)

where

Δ𝑆𝑀𝑠𝑎𝑡−𝑚𝑜𝑑
𝑖 =

�
Δ𝑆𝑀𝑠𝑎𝑡

𝑖 − Δ𝑆𝑀𝑚𝑜𝑑
𝑖 , 𝑖 𝑓 Δ𝑆𝑀𝑠𝑎𝑡

𝑖 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Δ𝑆𝑀𝑠𝑎𝑡
𝑖 = 𝑆𝑀𝑠𝑎𝑡

𝑖 − 𝑆𝑀𝑠𝑎𝑡
𝑖−𝑛

Δ𝑆𝑀𝑚𝑜𝑑
𝑖 = 𝑆𝑀𝑚𝑜𝑑

𝑖 − 𝑆𝑀𝑚𝑜𝑑
𝑖−𝑛

with 𝑖𝑆𝑂𝑆 and 𝑖𝐸𝑂𝑆 representing the start and end of irrigation season
respectively. 𝑆𝑀𝑖 and 𝑆𝑀𝑖−𝑛 represent the SM observation on day 𝑖 and
the last available SM observation n days before. Note that if the satellite
data frequency is larger than 4 days, it is not possible to say with certainty
whether the increase in satellite SM is due to irrigation or precipitation.
Therefore, when the gaps between two observations exceed 4 days, this
period is conservatively disregarded.

3.5 Area factor for validation

Validation data are available for irrigation districts covered by multiple
0.25◦ pixels. While some pixels are fully contained within the district
boundaries, others only partially overlap, resulting in a theoretically
weaker irrigation signal in those pixels. To address this variation in
pixel coverage and the resulting underestimation of irrigation values, the
average IWU of all the pixels including a portion of an irrigation district
is calculated, and a spatial adjustment factor is applied to this average.
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To do so, the intersection area between the pixel and the irrigated area
is computed for each pixel. Then, the conversion factor is calculated as
the division of the area of the pixel and the intersection area as shown in
Equation 3.12.

𝑓𝑖 , 𝑎𝑟𝑒𝑎 =
𝐴𝑝𝑖𝑥𝑒𝑙

𝐴𝑖 , 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡
(3.12)

where 𝐴𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑚2 is the area of a 0.25◦ pixel, and 𝐴𝑖 , 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑖𝑛 𝑚2 is
the intersecting area between the pixel 𝑖 and the irrigation district.

The conversion factor 𝑓𝑖 , 𝑎𝑟𝑒𝑎 is then applied to the IWU of the pixel 𝑖 by
multiplying the original time series by the computed conversion factor
(compare Equation 3.13).

𝐼𝑊𝑈𝑖 , 𝑓 𝑎𝑐𝑡𝑜𝑟 = 𝐼𝑊𝑈𝑖 , 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ 𝑓𝑖 , 𝑎𝑟𝑒𝑎 (3.13)

Furthermore, the weight of the pixel 𝑖 is calculated by dividing the
intersection area of the pixel with the irrigated area 𝐴𝑖 , 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 by the
whole irrigated area 𝐴𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑:

𝑤𝑒𝑖𝑔ℎ𝑡𝑖 =
𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡,𝑖

𝐴𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑
(3.14)

The total IWU is then calculated as the sum of the weighted IWU values
for each district, where each IWU value is multiplied by its corresponding
weight:

𝐼𝑊𝑈 =
𝑛�
𝑖=1

𝐼𝑊𝑈𝑖 , 𝑓 𝑎𝑐𝑡𝑜𝑟 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 (3.15)

In the Murray-Darling Basin, the extension of the irrigated area underwent
changes over the years analyzed. To account for the alterations in the
irrigated area, the conversion factor, designated as 𝑓𝑎𝑟𝑒𝑎 , was calculated
for three distinct time periods and applied individually. The first period
includes the years before 2013, the second period ranges from 2013 to
2016 and the third period includes the years 2017 to 2019. Additionally,
the weights were calculated and applied separately.
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4.1 Rescaling

To select the most appropriate rescaling method, we performed a visual
assessment of the rescaled time series obtained with both rescaling
methodologies over about 60 pixels spread over the two study areas.
To illustrate the effect of scaling on SM time series, Figures 4.1a to 4.1e
show the original (gray lines), rescaled (dotted orange for the "mean-
standard deviation" and dotted green for the "1%-99%-quantile" rescaling
method) and modeled (ERA5-Land, blue line) SM time series. Figures
4.1a, 4.1b and 4.1c show these SM time series for an irrigated pixel in
the Ebro Basin for ESA CCI COMBINED, SMOS, and ESA CCI ACTIVE,
respectively. Figures 4.1d and 4.1e show the effect of rescaling for an
irrigated pixel in the Murray-Darling Basin for ESA CCI PASSIVE and
ESA CCI COMBINED, respectively. We see that both methods have a clear
impact on the SM time series, particularly visible in Figures 4.1b, 4.1d and
4.1e, showing that without rescaling, the satellite SM is systematically
lower than the model SM. Furthermore, we can see that both rescaling
methods ("mean-standard deviation" and "1%-99%-quantile") modify
the SM time series in a fairly similar way in the Figures 4.1a to 4.1e. In
addition, literature suggests that the mean-standard rescaling method is
less prone to extreme values [62, 67]. Consequently, we decided to use
the mean-standard rescaling method for this study.
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(a) Rescaling ESA CCI COMBINED time series to ERA5-Land SM using mean-std-rescaling and quantile rescaling.

(b) Rescaling SMOS time series to ERA5-Land SM using mean-std-rescaling and quantile-rescaling.

(c) Rescaling ESA CCI ACTIVE time series to ERA5-Land SM using mean-std-rescaling and quantile-rescaling. The original ESA CCI
ACTIVE SM time series is not shown, as it is provided in % and the values are in a range not comparable to the rescaled SM time series.

(d) Rescaling ESA CCI PASSIVE time series to ERA5-Land SM using mean-std-rescaling and quantile-rescaling.

(e) Rescaling ESA CCI COMBINED time series to ERA5-Land SM using mean-std-rescaling and quantile-rescaling.

Figure 4.1: Rescaling satellite SM time series to ERA5-Land SM using mean-std-rescaling and quantile-rescaling in the Ebro Basin and
the Murray-Darling Basin.
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(a)

(b)

(c)

Figure 4.2: KS test [-] (a) between ESA
CCI COMBINED SM and ERA5-Land
SM in the Ebro Basin, (b) between ESA
CCI ACTIVE SM and ERA5-Land SM in
the Ebro Basin and (c) between ESA CCI
ACTIVE SM and ERA5-Land SM in the
Murray-Darling Basin.

Figure 4.3: RMSD [𝑚3𝑚−3] between ESA
CCI COMBINED SM and ERA5-Land
SM in the Ebro Basin.

4.2 Spatial analysis of the soil moisture products

In order to assess the difference between satellite SM and model SM
and to evaluate the potential of different satellite-model pairs to retrieve
irrigation, a spatial analysis was carried out. It consisted of computing
four different metrics (KS test, RMSD, Pearson correlation, and bias)
on agricultural pixels and only on non-rainy days during the irrigation
season, i.e. the periods when the difference in SM between satellite and
model due to irrigation is expected to be most significant. The non-
irrigation season has also been analyzed for comparison. Figures 4.2a to
4.5b show the KS-test, RMSD, bias, and Pearson correlation on non-rainy
days during the irrigation season in the Ebro and Murray-Darling basins
using the ESA CCI COMBINED and ACTIVE products and ERA5-Land
SM. Furthermore, all the computed metrics are summarized in Tables
4.1 and 4.2 for non-rainy days during the irrigation and non-irrigation
seasons, respectively.

It is anticipated that the KS test will yield higher values (closer to 1) on
dry days during the irrigation season, when distributions are distinct
due to the irrigation signal being only present in the satellite time series,
than on dry days during the non-irrigated season, when values closer
to 0 are expected. This expectation is met partially in the Ebro Basin,
where ESA CCI COMBINED, ESA CCI ACTIVE, and SMAP exhibit
higher KS values during the irrigated season (𝐾𝑆𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.19,
𝐾𝑆𝐴𝐶𝑇𝐼𝑉𝐸 = 0.32, 𝐾𝑆𝑆𝑀𝐴𝑃 = 0.22) in comparison to the non-irrigated
season (𝐾𝑆𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.15, 𝐾𝑆𝐴𝐶𝑇𝐼𝑉𝐸 = 0.21, 𝐾𝑆𝑆𝑀𝐴𝑃 = 0.17) (see
Figure 4.2a and Table 4.1). A clearer picture is drawn in the Murray-
Darling Basin, where higher KS values are obtained for the irrigated
season in comparison to the non-irrigated season for all five satellite
products. The ESA CCI ACTIVE product (Figures 4.2b and 4.2c and
Table 4.2), exhibits the highest KS value (𝐾𝑆𝐴𝐶𝑇𝐼𝑉𝐸 = 0.32 in the Ebro
Basin and 𝐾𝑆𝐴𝐶𝑇𝐼𝑉𝐸 = 0.28 in the Murray-Darling Basin), indicating the
most distinct distribution between the satellite and modeled SM in both
basins.

The second metric computed is the RMSD. As a reminder, we expect to
see higher values during the irrigation period in comparison to the non-
irrigated season. A comparison of the RMSD values computed for the two
seasons and presented in Figure 4.3, showing the metric between ESA CCI
COMBINED and ERA5-Land SM in the Ebro Basin, did not yield any evi-
dence of an irrigation signal, as the RMSD values were found to be approx-
imately equal. In the Ebro Basin the ESA CCI products have RMSD values
of𝑅𝑀𝑆𝐷𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.054𝑚3/𝑚3,𝑅𝑀𝑆𝐷𝑃𝐴𝑆𝑆𝐼𝑉𝐸 = 0.060𝑚3/𝑚3 and
𝑅𝑀𝑆𝐷𝐴𝐶𝑇𝐼𝑉𝐸 = 0.068 𝑚3/𝑚3 for the irrigated season and RMSD values
of𝑅𝑀𝑆𝐷𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.047𝑚3/𝑚3,𝑅𝑀𝑆𝐷𝑃𝐴𝑆𝑆𝐼𝑉𝐸 = 0.063𝑚3/𝑚3 and
𝑅𝑀𝑆𝐷𝐴𝐶𝑇𝐼𝑉𝐸 = 0.052 𝑚3/𝑚3 for the non-irrigated season. SMOS yields
an RMSD value of 𝑅𝑀𝑆𝐷𝑆𝑀𝑂𝑆 = 0.051 𝑚3/𝑚3 for both, the irrigated
and the non-irrigated season. The small differences in the RMSD values
across both seasons suggest that the model and satellite-derived SM
datasets exhibit similar patterns throughout the year, with no identifiable
irrigation signal evident from RMSD alone.

Figure 4.4a illustrates the bias between ESA CCI COMBINED and ERA5-
Land SM in the Ebro Basin and Figure 4.4b shows the bias between
ESA CCI ACTIVE and ERA5-Land SM in the Murray-Darling Basin.
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(a)

(b)

Figure 4.4: Bias [𝑚3𝑚−3] between (a) ESA
CCI COMBINED SM and ERA5-Land
SM in the Ebro Basin and (b) ESA CCI
ACTIVE SM and ERA5-Land SM in the
Murray-Darling Basin.

(a)

(b)

Figure 4.5: Pearson correlation [-] be-
tween ESA CCI ACTIVE SM and ERA5-
Land SM in the Ebro Basin during (a) the
irrigated period and (b) non-irrigated
period.

The two plots demonstrate that the satellite SM is wetter than the mod-
eled SM on dry days during the irrigated season in both basins for the
respective satellite product. This corresponds to what was expected
based on the theoretical assessment. In addition, this is confirmed by the
positive averages obtained for the three CCI SM products for the irriga-
tion season (𝑏𝑖𝑎𝑠𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.012 𝑚3/𝑚3, 𝑏𝑖𝑎𝑠𝑃𝐴𝑆𝑆𝐼𝑉𝐸 = 0.011 𝑚3/𝑚3

and 𝑏𝑖𝑎𝑠𝐴𝐶𝑇𝐼𝑉𝐸 = 0.011 𝑚3/𝑚3). Conversely, during the non-irrigated
season, while the ESA CCI COMBINED product yields a similar re-
sult of 𝑏𝑖𝑎𝑠𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.011 𝑚3/𝑚3, the ESA CCI PASSIVE and ESA
CCI ACTIVE products yield negative bias averages of 𝑏𝑖𝑎𝑠𝑃𝐴𝑆𝑆𝐼𝑉𝐸 =
−0.015 𝑚3/𝑚3 and 𝑏𝑖𝑎𝑠𝐴𝐶𝑇𝐼𝑉𝐸 = −0.003 𝑚3/𝑚3, respectively.

It is noteworthy that the ESA CCI products exhibit positive bias values,
whereas SMOS and SMAP display negative bias values during the
irrigated season for both sites, indicating a lack of irrigation signal
(compare Tables 4.1, 4.2 and 4.3). In contrast, the ESA CCI PASSIVE and
ESA CCI ACTIVE, as well as the SMOS satellite product, exhibit negative
bias values during the non-irrigated season, indicating a higher modeled
SM compared to the SM moisture.

The fourth statistical metric analyzed is the Pearson correlation, which is
anticipated to be high in the absence of irrigation and lower in case of
irrigation events. These expectations are corroborated by all five satellite
products within the Murray-Darling Basin, as evidenced by the lower
Pearson correlation values observed on dry days during the irrigation
season relative to those on dry days during the non-irrigation season
(see Table 4.2). In the Ebro Basin, the ESA CCI ACTIVE (Figures 4.5a and
4.5b, 𝑅𝑖𝑟𝑟 = 0.33, 𝑅𝑛𝑜𝑛−𝑖𝑟𝑟 = 0.67), SMOS (𝑅𝑖𝑟𝑟 = 0.64, 𝑅𝑛𝑜𝑛−𝑖𝑟𝑟 = 0.68),
and SMAP (𝑅𝑖𝑟𝑟 = 0.81, 𝑅𝑛𝑜𝑛−𝑖𝑟𝑟 = 0.84) also exhibit a similar pattern.

Table 4.3 summarizes the differences of the metrics between the irrigated
and non-irrigated seasons in both basins. The positive Δ KS values
indicate that the distribution of SM during the irrigated season is more
different to the modeled SM than the distribution of SM during the non-
irrigated season. The ESA CCI ACTIVE product indicates the greatest
distinction for this metric. Positive Δ𝑅𝑀𝑆𝐷, as well as positive Δ𝑏𝑖𝑎𝑠
values indicate that the satellite-derived SM differs greater from the
modeled SM during the irrigated season compared to the non-irrigated
season. The Δ𝑅𝑀𝑆𝐷 computed from the ESA CCI ACTIVE and ERA5-
Land SM products shows the highest difference. However, differences in
RMSD are overall small for all five products in both basins. In the Ebro
Basin, the Δ𝑏𝑖𝑎𝑠 computed from ESA CCI PASSIVE and ERA5-Land SM
is the largest, indicating that the ESA CCI PASSIVE SM product is a good
candidate for retrieving irrigation. In the Murray-Darling Basin, SMOS

Table 4.1: Metrics for the Ebro Basin. KS-test [-]. RMSD in 𝑚3/𝑚3 , bias in 𝑚3/𝑚3 and Pearson’s correlation [-]

dry irrigated season dry non-irrigated season

satellite KS RMSD bias Pearson’s R KS RMSD bias Pearson’s R

ESA CCI COMBINED 0.19 0.054 0.012 0.70 0.15 0.047 0.011 0.61
ESA CCI PASSIVE 0.20 0.060 0.011 0.64 0.22 0.063 -0.015 0.54
ESA CCI ACTIVE 0.32 0.068 0.011 0.33 0.21 0.052 -0.003 0.67
SMOS 0.19 0.051 -0.005 0.64 0.21 0.051 -0.018 0.68
SMAP 0.22 0.040 -0.004 0.81 0.17 0.037 0.005 0.84
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Table 4.2: Metrics in the Murray-Darling Basin. KS-test [-]. RMSD in 𝑚3/𝑚3 , bias in 𝑚3/𝑚3 and Pearson’s correlation [-]

dry irrigated season dry non-irrigated season

satellite KS RMSD bias Pearson’s R KS RMSD bias Pearson’s R

ESA CCI COMBINED 0.22 0.036 0.0007 0.80 0.13 0.033 0.005 0.85
ESA CCI PASSIVE 0.21 0.037 0.0009 0.77 0.13 0.034 0.003 0.84
ESA CCI ACTIVE 0.28 0.045 0.0080 0.59 0.17 0.043 0.007 0.75
SMOS 0.22 0.035 -0.0014 0.74 0.15 0.033 -0.005 0.84
SMAP 0.21 0.033 -0.0006 0.77 0.16 0.03 0.006 0.88

Table 4.3: Differences in metrics for the Ebro and Murray-Darling Basins. KS-test [-], RMSD in 𝑚3/𝑚3, bias in 𝑚3/𝑚3 and Pearson’s
correlation [-]. Calculated as irrigated season minus non-irrigated season.

Ebro Basin Murray-Darling Basin

satellite ΔKS ΔRMSD ΔBias ΔPearson’s R ΔKS ΔRMSD ΔBias ΔPearson’s R

ESA CCI COMBINED 0.04 0.007 0.001 0.09 0.09 0.003 -0.0043 -0.05
ESA CCI PASSIVE -0.02 -0.003 0.026 0.10 0.08 0.003 -0.0021 -0.07
ESA CCI ACTIVE 0.11 0.016 0.014 -0.34 0.11 0.002 0.001 -0.16
SMOS -0.02 0.000 0.013 -0.04 0.07 0.002 0.0036 -0.10
SMAP 0.05 0.003 -0.009 -0.03 0.05 0.003 -0.0066 -0.11

satellite counts

ESA CCI ACTIVE 245
ESA CCI PASSIVE 283
ESA CCI COMBINED 268
SMOS 202
SMAP 212

Table 4.4: Yearly number of observations
on average in the Ebro Basin.

satellite counts

ESA CCI ACTIVE 293
ESA CCI PASSIVE 342
ESA CCI COMBINED 336
SMOS 85
SMAP 135

Table 4.5: Yearly number of observations
on average in the Murray-Darling Basin.

shows the best potential, when only considering the bias. For the Δ𝑅, the
combination of ESA CCI ACTIVE with ERA5-Land SM shows by far the
best distinction between irrigated and non-irrigated seasons, indicated
by large negative values in Table 4.3.

4.3 Observation frequency

The quantity of available data varies considerably between the satellites
and sites. Figure 4.6 shows the observation frequency in the Ebro Basin
and Table 4.4 specifies the average number of observations per year for the
five analyzed satellites. The ESA CCI COMBINED and ESA CCI PASSIVE
satellite products have numerous observations (268 observations/year
and 283 observations/year, respectively). Similarly, the ESA CCI ACTIVE
product has only slightly fewer observations per year compared to the
other two ESA CCI products (245 observations/year). Moreover, the
number of measurements made per pixel per year for SMOS and SMAP
is on average 202 observations/year and 212 observations/year. The
lower number of observations for SMOS and SMAP can be attributed to
the longer revisit intervals of these satellites. The ESA CCI COMBINED
and the ESA CCI PASSIVE products have the highest observation fre-
quency due to the important number of satellite products they include.
Consequently, this analysis shows the considerable potential of ESA CCI
COMBINED and ESA CCI PASSIVE in the Ebro Basin compared with
the other satellite products.

The context of the Murray-Darling Basin is very different, as depicted
in Figure 4.7 and specified in Table 4.5. Compared to the Ebro Basin,
the ESA CCI COMBINED and PASSIVE products show significantly
higher observation frequencies, with nearly daily observations (335.8
observations/year, and 342 observations/year, respectively). ESA CCI
ACTIVE product provides 293 observations per year on average. The
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Figure 4.6: Yearly number of observations between 2008 and 2022 for the ESA CCI products, 2010 to 2022 for SMOS and 2015 to 2022 for
SMAP over the Ebro Basin.

SMAP and SMOS products show a very different picture. SMAP provides
135 observations/year on average, whereas SMOS exhibits even fewer
observations (85 observations/year). The low observation frequency
values of SMOS and SMAP are related to the satellites’ three-day revisit
time and the masking of spurious data. In addition, the data are masked
in some irrigated regions. In conclusion, as for the Ebro Basin, the ESA
CCI COMBINED and ESA CCI PASSIVE products show the greatest
potential compared to the other SM products in the Murray-Darling
Basin.
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Figure 4.7: Yearly number of observations between 2008 and 2022 for the ESA CCI products, 2010 to 2022 for SMOS and 2015 to 2022 for
SMAP over the Murray-Darling Basin.

4.4 Irrigation water use maps

4.4.1 Ebro Basin

Figure 4.8 shows maps of IWU retrieved with the five satellite products,
each for the irrigated (left column, March to October) and non-irrigated
seasons (right column, November to February) over the Ebro Basin. The
three ESA CCI products effectively differentiate between the seasons,
with an average IWU of 24.7 mm/month, 24.0 mm/month, and 19.8
mm/month for the ESA CCI PASSIVE, ESA CCI COMBINED, and ESA
CCI ACTIVE products, respectively, on average during the irrigated
season (Figure 4.8 (a),(c) and (e) and Table 4.6). During the non-irrigated
season (Figures 4.8 (b), (d) and (f)) retrieved IWU for the ESA CCI
products is lower compared to the irrigated season. The little simulated
irrigation during the non-irrigated period might be due to noise in the
SM data. However, this thesis focuses on the irrigation period. In contrast,
SMOS and SMAP estimate comparable IWU amounts for both irrigated
and non-irrigated seasons, albeit slightly higher for the irrigated season.
SMAP (Figure 4.8 (g), (h)), generates low values of IWU, amounting
to only 7.1 mm/month during the irrigated season and simulates very
little irrigation during the non-irrigated season. In comparison, SMOS
(Figure 4.8 (i) and (j)) estimates IWU of up to 17.4 mm/month on average
in the Ebro Basin for the irrigated season, and also simulates a similar
amount of irrigation during the non-irrigated season, which again might
be caused by noise in the SM data.
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Figure 4.8: Mean monthly IWU maps for the Ebro Basin for the irrigated (March to October) and non-irrigated (November to February)
seasons. ESA CCI ACTIVE (a) irrigation season and (b) non irrigation season, (c) ESA CCI COMBINED (c) irrigation and (d) non-irrigation
season, ESA CCI PASSIVE (e) irrigation and (f) non-irrigation season, SMAP (g) irrigation and (h) non-irrigation season, SMOS (i)
irrigation and (j) non irrigation season.
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satellite product irrigated season in mm/month

ESA CCI COMBINED 19.8
ESA CCI PASSIVE 24.7
ESA CCI ACTIVE 24.0
SMOS 17.4
SMAP 7.1

Table 4.6: Mean monthly IWU during
the irrigated season (March to October)
over the Ebro Basin in mm/month.

satellite product irrigated season in mm/month

ESA CCI COMBINED 10.7
ESA CCI PASSIVE 13.0
ESA CCI ACTIVE 9.3
SMOS 1.3
SMAP 1.9

Table 4.7: Mean monthly IWU during
the irrigated season (September to April)
over the Murray-Darling Basin in mm/-
month.

4.4.2 Murray-Darling Basin

In comparison to the Ebro Basin, the IWU retrieval in the Murray-Darling
Basin indicates a less distinct seasonal pattern. Figure 4.9 illustrates the
mean monthly IWU during the irrigated and the non-irrigated seasons in
the Murray-Darling Basin and Table 4.7 summarizes the mean monthly
IWU averaged over the Murray-Darling Basin. SMOS and SMAP are
unable to distinguish between irrigated and non-irrigated seasons, and
retrieve low IWU amounts for both seasons. ESA CCI ACTIVE yields an
average IWU of 9.3 mm/month during the irrigation season and lower
IWU during the rest of the year. The ESA CCI COMBINED and ESA CCI
PASSIVE datasets are able to differentiate between the two seasons. The
retrieved IWU values during the irrigated period are on average 10.7
mm/month for the ESA CCI COMBINED product and 13.0 mm/month
for the ESA CCI PASSIVE product.
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Figure 4.9: Mean monthly IWU for the Murray Basin for the irrigated (September to April) and non-irrigated (Mai to August) seasons.
ESA CCI COMBINED (a) irrigation season and (b) non-irrigated season, (c) ESA CCI PASSIVE (c) irrigation and (d) non-irrigation season,
ESA CCI ACTIVE (e) irrigation and (f) non-irrigation season, SMAP (g) irrigation and (h) non-irrigation season, SMOS (i) irrigation and
(j) non-irrigation season.
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4.5 Evaluation using in situ irrigation data

4.5.1 Time series analysis

In this subsection, simulated irrigation is compared to in situ irrigation
data in several districts in the Ebro Basin and the Murray-Darling Basin.
The non-irrigated season is masked, as we know that no irrigation is
applied during this period.

Ebro Basin irrigation districts

Figure 4.10 shows the time series of simulated irrigation (blue line)
and measured in situ irrigation (gray) over the averaged four irrigation
districts in the Ebro Basin for the period 2008 to 2022 for the five SM
satellite products. The metrics bias, RMSD, and the Pearson correlation
coefficient (R) are shown above the different subplots. It should be noted
that the metrics were calculated over the whole simulated period, which
differs between the satellite products.

The ESA CCI COMBINED product demonstrates the highest correlation
(R=0.75), and the lowest RMSD (22.84 mm/month) between the in situ
and the simulated IWU time series (see Table 4.8). ESA CCI PASSIVE
product performs slightly below that of the ESA CCI COMBINED product
with a Pearson correlation coefficient of R=0.62 and an RMSD of 27.27
mm/month. However, the picture is reversed for the bias, where ESA CCI
PASSIVE (bias=-4.24 mm/month) outperforms ESA CCI COMBINED
(bias=-8.07 mm/month). The SMAP and the SMOS products yield
correlation coefficients of R=0.55 and R=0.58, respectively, RMSD values
of 33.66 mm/month and 30.38 mm/month, and bias values of -22.47
mm/month and -16.94 mm/month. The ESA CCI ACTIVE product
exhibits the poorest agreement between in situ and simulated IWU in
terms of the correlation (R=0.49). Although showing a small bias (-6.49
mm/month), the RMSD value of the ESA CCI ACTIVE product is the
second highest for the Ebro Basin (RMSD=32.27 mm/month).

satellite simulated-period BIAS RMSD R
𝑚𝑚

𝑚𝑜𝑛𝑡ℎ
𝑚𝑚

𝑚𝑜𝑛𝑡ℎ [-]

ESA CCI COMBINED 2008-2022 -8.07 22.84 0.75
ESA CCI PASSIVE 2008-2022 -4.24 27.27 0.62
ESA CCI ACTIVE 2008-2022 -6.49 32.27 0.49
SMOS 2010-2022 -16.94 30.38 0.58
SMAP 2015-2022 -22.47 33.66 0.55

Table 4.8: Metrics computed between
in situ and simulated IWU in the Ebro
Basin. The numbers in bold indicate the
satellite with the best performance for
that metric.

Murray-Darling Basin irrigation districts

Figures 4.11 to 4.14 shows the irrigation time series for the subbasins
Coleambally, Murray Mulwala, Murray Wakool, and Murrumbidgee
within the Murray-Darling Basin. The metrics are summarized in Tables
4.9 and 4.10.

In the Coleambally irrigation district (Figure 4.11 and Table 4.10), the
ESA CCI ACTIVE and SMAP datasets show the highest performances
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Figure 4.10: Comparison of retrieved irrigation time series with in situ data in the Ebro Basin. (a) ESA CCI COMBINED for the period
2008 to 2022, (b) ESA CCI PASSIVE for the period 2008 to 2022, (c) ESA CCI ACTIVE for the period 2008 to 2022, (d) SMOS for the
period 2010 to 2022 and (e) SMAP for the period 2015 to 2022.

with R values of 0.45 and 0.44, respectively, and RMSD values of 29.88
mm/month and 18.82 mm/month.

Figure 4.11: Comparison of retrieved irrigation time series with in situ data in the Coleambally Basin in Australia. (a) ESA CCI COMBINED
for the period 2009 to 2019, (b) ESA CCI PASSIVE for the period 2009 to 2019, (c) ESA CCI ACTIVE for the period 2009 to 2019, (d) SMOS
for the period 2010 to 2019 and (e) SMAP for the period 2015 to 2019.

In the Murray Wakool irrigation district (Figure 4.12 and Table 4.9),
ESA CCI PASSIVE retrieves the irrigation dynamics best with a Pearson
correlation coefficient of R=0.38. ESA CCI COMBINED (R=0.34) and
ESA CCI ACTIVE (R=0.32) show a similar performance in terms of R.
However, ESA CCI COMBINED (bias=5.99 mm/month, RMSD=21.77
mm/month) and ESA CCI ACTIVE (bias=5.27 mm/month, RMSD=20.79
mm/month) quantitatively retrieve IWU better compared to the ESA
CCI PASSIVE product (bias= 11.85 mm/month, RMSD=27.43). SMOS
(bias=-6.5 mm/month, RMSD = 14.51 mm/month) and SMAP (bias=-2.01
mm/month, RMSD=7.18 mm/month) outperform the ESA CCI products
in terms of bias and RMSD, but show smaller correlation values (R=0.21
and R=0.26, respectively). Overall, ESA CCI ACTIVE performs best in
the Murray Wakool district.
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Figure 4.12: Comparison of retrieved irrigation time series with in situ data in the Murray Wakool Basin in Australia. (a) ESA CCI
COMBINED for the period 2010 to 2019, (b) ESA CCI PASSIVE for the period 2010 to 2019, (c) ESA CCI ACTIVE for the period 2010 to
2019, (d) SMOS for the period 2010 to 2019 and (e) SMAP for the period 2015 to 2019.

SMAP Pearson correlation coefficient are
computed with data from 2015 onwards
and from 2010 onwards for SMOS. How-
ever, in situ IWU during the years 2011
to 2014 was approximately twice as high
compared to subsequent years. Conse-
quently, the calculated RMSD is signif-
icantly influenced by the time span of
available in situ irrigation data.

In the Murray Mulwala district (Figure 4.13 and Table 4.10), the ESA CCI
products show the best Pearson correlation values (𝑅𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.45,
𝑅𝑃𝐴𝑆𝑆𝐼𝑉𝐸 = 0.44, and𝑅𝐴𝐶𝑇𝐼𝑉𝐸 = 0.43) compared to SMOS (𝑅 = 0.23) and
SMAP (𝑅 = 0.38). While the ESA CCI products overestimate irrigation,
which is indicated by a positive bias, SMOS (bias=-6.35 mm/month) and
SMAP (bias=-5.70 mm/month) underestimate irrigation. Overall, ESA
CCI ACTIVE (bias = 3.19 mm/month) shows the smallest absolute bias
and SMAP the smallest RMSD value (RMSD= 11.35 mm/month).

Figure 4.13: Comparison of retrieved irrigation time series with in situ data in the Murray Mulwala Basin in Australia. (a) ESA CCI
COMBINED for the period 2010 to 2019, (b) ESA CCI PASSIVE for the period 2010 to 2019, (c) ESA CCI ACTIVE for the period 2010 to
2019, (d) SMOS for the period 2010 to 2019 and (e) SMAP for the period 2015 to 2019.

The ESA CCI COMBINED and ESA CCI PASSIVE products perform best
in the Murrumbidgee Basin (Figure 4.14 and Table 4.10), reaching the
highest Pearson correlation values of 𝑅𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.61 and 𝑅𝑃𝐴𝑆𝑆𝐼𝑉𝐸 =
0.64, while showing the lowest RMSD values (𝑅𝑀𝑆𝐷𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 =
16.70𝑚𝑚/𝑚𝑜𝑛𝑡ℎ and 𝑅𝑀𝑆𝐷𝑃𝐴𝑆𝑆𝐼𝑉𝐸 = 19.70𝑚𝑚/𝑚𝑜𝑛𝑡ℎ) in this sub-
basin.
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Figure 4.14: Comparison of retrieved irrigation time series with in situ data in the Murrumbidgee Basin in Australia. (a) ESA CCI
COMBINED for the period 2013 to 2019, (b) ESA CCI PASSIVE for the period 2013 to 2019, (c) ESA CCI ACTIVE for the period 2013 to
2019, (d) SMOS for the period 2013 to 2019 and (e) SMAP for the period 2015 to 2019.

In the Murray Wakool, Murray Mulwala, and Coleambally districts, ESA
CCI ACTIVE shows the strongest performance, while ESA CCI PASSIVE
and ESA CCI COMBINED achieve the best results in the Murrumbidgee
district. However, when evaluating the overall best-performing product,
ESA CCI COMBINED emerges as the top choice due to its consistent
performance across all regions, striking a balance between low RMSD
and strong correlation.

Table 4.9: Metrics between in situ and simulated IWU in the Murray-Darling Basin. The numbers in bold indicate the satellite with the
best performance for that metric.

Coleambally Murray Wakool

satellite simulated-period BIAS RMSD R BIAS RMSD R
𝑚𝑚

𝑚𝑜𝑛𝑡ℎ
𝑚𝑚

𝑚𝑜𝑛𝑡ℎ [-] 𝑚𝑚
𝑚𝑜𝑛𝑡ℎ

𝑚𝑚
𝑚𝑜𝑛𝑡ℎ [-]

ESA CCI COMBINED 2009/2010-2019 0.01 31.80 0.38 5.99 21.77 0.34
ESA CCI PASSIVE 2009/2010-2019 3.47 36.57 0.34 11.85 27.43 0.38
ESA CCI ACTIVE 2009/2010-2019 3.58 29.88 0.45 5.27 20.79 0.32
SMOS 2010-2019 -19.81 34.05 0.28 -6.50 14.51 0.21
SMAP 2015-2019 -8.29 18.82 0.44 -2.01 7.18 0.26
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Table 4.10: Metrics between in situ and simulated IWU in the Murray-Darling Basin.

Murray Mulwala Murrumbidgee

satellite validation-period BIAS RMSD R BIAS RMSD R
𝑚𝑚

𝑚𝑜𝑛𝑡ℎ
𝑚𝑚

𝑚𝑜𝑛𝑡ℎ [-] 𝑚𝑚
𝑚𝑜𝑛𝑡ℎ

𝑚𝑚
𝑚𝑜𝑛𝑡ℎ [-]

ESA CCI COMBINED 2010/2013-2019 5.24 17.78 0.45 -3.49 16.70 0.61
ESA CCI PASSIVE 2010/2013-2019 10.73 24.38 0.44 0.83 19.70 0.64
ESA CCI ACTIVE 2010/2013-2019 3.19 14.85 0.43 -2.47 20.80 0.41
SMOS 2010/2013-2019 -6.35 12.15 0.23 -15.58 22.50 0.33
SMAP 2015-2019 -5.70 11.35 0.38 -15.84 22.51 0.37

1: Data points lying outside of the irri-
gated period are masked and also metrics
are computed only on the irrigated pe-
riod. Hence, correlations are expected to
be lower, RMSD, and bias to be higher,
compared to the metrics computed in
Section 4.5.1, where the whole period
was considered for the computation of
the metrics.

4.5.2 Scatter plots

Figures 4.15 to 4.17 show scatterplots of monthly simulated (x-axis) and
in situ (y-axis) IWU along with the Pearson correlation coefficient R, the
bias and the RMSD for the five SM products, computed only for the
irrigated seasons. 1 If the points cluster above the line of equality (dotted
line), the simulated IWU is underestimated. Conversely, if the points
cluster below the line of equality, the simulated IWU is overestimated.

Bias values close to zero indicate that dots are evenly distributed on
both sides of the equality line. Meanwhile, dots located inside the gray
area indicate little under- and overestimation leading to a small RMSD
value. The Pearson correlation coefficient indicates if the simulated and
the in situ IWU have a linear relationship or not. Values close to 1
indicate a strong positive correlation, whereas negative values indicate a
negative correlation. R values close to 0 represent datasets with a weak
correlation.

Ebro Basin irrigation districts
Figure 4.15 illustrates that the ESA CCI products over- and underestimate
IWU amounts over the irrigation districts located in the Ebro Basin. This
is indicated by the wide spread of the data points lying outside the gray
area and further confirmed by the RMSD values of 26.99 mm/month,
32.63 mm/month, and 38.91 mm/month for ESA CCI COMBINED, ESA
CCI PASSIVE and ESA CCI ACTIVE, respectively. Values situated within
the gray marked area exhibit a relative error of less than 30 %.

In terms of irrigation dynamics, the ESA CCI COMBINED product
demonstrates the highest correlation, with R=0.45. Meanwhile, ESA
CCI PASSIVE, SMOS, and SMAP exhibit positive correlation values
of R=0.11, R=0.05, and R=0.05, respectively. ESA CCI ACTIVE, on the
other hand, shows a slightly negative correlation of R=-0.09. A major
difference between the ESA CCI products and SMOS and SMAP is found
when looking at the bias value. The bias values of -7.28 mm/month, -1.50
mm/month, and -5.18 mm/month for the ESA CCI COMBINED, ESA CCI
PASSIVE, and ESA CCI ACTIVE products, respectively, indicate that these
products show deviations that are relatively balanced around the equality
line. SMOS and SMAP, however, show systematic underestimations
indicated by a bias value of -20.03 mm/month and -28.79 mm/month,
respectively.
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Figure 4.15: Comparison of simulated and in situ IWU in the Ebro Basin.

Murray-Darling Basin irrigation districts
Figures 4.16 to 4.19 show scatterplots of monthly simulated (x-axis) and
in situ (y-axis) IWU for the four irrigation districts in the Murray-Darling
Basin.

In the Mulwala subbasin, the ESA CCI ACTIVE product yields the
best correlation of R=0.46 as well as the lowest absolute bias (bias=2.32
mm/month), indicating a small overestimation on average. In addition,
the RMSD yields 19.81 mm/month. The ESA CCI COMBINED product
provides a similar picture, as it shows a weaker positive correlation
(R=0.30), but the bias of 6.12 mm/month still indicates only a slight
overestimation. However, the RMSD of 26.60 mm/month of the ESA CCI
COMBINED product indicates that significant over- and underestima-
tions are observed. SMAP shows a similarly strong correlation of R=0.29,
with a bias of -4.30 mm/month and an RMSD of 11.00 mm/month,
suggesting that IWU is more accurately retrieved compared to the other
products. However, it has to be considered, that the validation period
for SMAP is shorter compared to the other satellite products and IWU
amounts vary within the analyzed period. ESA CCI PASSIVE has a weak
positive correlation (R=0.19), an acceptable bias (11.67 mm/month), and
RMSD (31.75 mm/month). Simulated IWU retrieved from SMOS does
not correlate with in situ IWU (R=0.02). Overall, for the Murray Mulwala
district ESA CCI ACTIVE performs best.

In the Murray Wakool district, as none of the IWU datasets shows high
correlations (𝑅𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.09, 𝑅𝑃𝐴𝑆𝑆𝐼𝑉𝐸 = 0.11, 𝑅𝐴𝐶𝑇𝐼𝑉𝐸 = 0.06,
𝑅𝑆𝑀𝑂𝑆 = −0.02 and 𝑅𝑆𝑀𝐴𝑃 = 0.16). Bias values vary between -0.02
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Figure 4.16: Comparison of simulated and in situ IWU in the Murray Mulwala Basin.

mm/month for SMAP and 18.94 mm/month for ESA CCI PASSIVE and
RMSD values reach from 7.11 mm/month for SMAP to 33.47 mm/month
for ESA CCI PASSIVE. SMAP demonstrates the best performance in the
Murray Wakool district. However, when considering longer time series,
the ESA CCI COMBINED product offers the best trade-off.

The Coleambally district in the Murray-Darling Basin presents a similarly
low correlation for most of the satellite products (𝑅𝐶𝑂𝑀𝐵𝐼𝑁𝐸𝐷 = 0.08,
𝑅𝑃𝐴𝑆𝑆𝐼𝑉𝐸 = 0.04, 𝑅𝐴𝐶𝑇𝐼𝑉𝐸 = 0.13 and 𝑅𝑆𝑀𝑂𝑆 = −0.10). Only SMAP
shows a small positive correlation (𝑅𝑆𝑀𝐴𝑃 = 0.29). However, RMSD
values are even higher compared to the Murray Wakool district reaching
values up to 44.80 mm/month for ESA CCI PASSIVE. In terms of metrics,
SMAP performs best in the Coleambally district. Out of the three ESA CCI
products, ESA CCI ACTIVE performs best in the Coleambally district.

In the Murrumbidgee district, ESA CCI PASSIVE shows the strongest
correlation between simulated and in situ IWU measurements, with a
moderate positive correlation (R=0.42). ESA CCI COMBINED and SMAP
also display positive correlations (R=0.32 and R=0.35, respectively). In
contrast, ESA CCI ACTIVE and SMOS exhibit negligible correlations
with simulated IWU (R=-0.04 and R=-0.08, respectively), suggesting
limited alignment with in situ observations. Notably, ESA CCI ACTIVE
demonstrates the smallest absolute bias (BIAS=-0.91 mm/month), indi-
cating a balanced representation of over- and underestimation across the
simulation period. Meanwhile, ESA CCI COMBINED achieves the lowest
RMSD (RMSD=19.65 mm/month) among the five products, highlighting
its superior quantitative alignment with in situ IWU measurements. The
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Figure 4.17: Comparison of simulated and in situ IWU in the Murray Wakool Basin.

ESA CCI PASSIVE performs best in the Murrumbidgee district, due to
the high correlation.

Overall, the ESA CCI ACTIVE product performs best in specific subbasins
of the Murray-Darling Basin. However, if a single product were to be
chosen, the ESA CCI COMBINED product would be the preferred option
due to its consistent performance across all regions, striking a balance
between low RMSD and strong correlation.
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Figure 4.18: Comparison of simulated and in situ IWU in the Coleambally Basin.

Figure 4.19: Comparison of simulated and in situ IWU in the Murrumbidgee Basin.
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Discussion 5
In the Murray-Darling Basin, the observed decrease in simulated and in
situ irrigation over time can be attributed to increasingly larger irrigation
areas (see Section 3.5). As a result, irrigation volumes are spread over a
larger area and even though irrigation volumes at the district scale vary
little from one year to the next, water heights per unit area are decreasing
over time. During the 2015/2016 irrigation season, in situ irrigation is
particularly low, due to restrictions in IWU caused by droughts during
this period [40]. The lower irrigation values are not reflected in the
simulated IWU, leading to overestimated irrigation. This overestimation
may originate from noisy SM data not being able to reflect the low SM
values. Furthermore, the limited availability of SMAP data, starting only
in 2015, complicates the evaluation of whether the observed good metrics
genuinely reflect strong model performance or are influenced by dataset
constraints.

The performance of satellite-SM-based IWU products varies across
the subbasins in the Murray-Darling Basin (see Tables 4.9 and 4.10).
Those differences in performance might arise from the different crop
types, precipitation amounts, or irrigation densities varying between the
districts [40]. ESA CCI ACTIVE performs best in the Murray Wakool,
Murray Mulwala, and Coleambally districts, while ESA CCI PASSIVE
yields the best results in the Murrumbidgee district. However, when
considering overall performance, ESA CCI COMBINED emerges as the
most reliable product, consistently balancing low RMSD and strong
correlation across all regions.

The comparison of the retrieved IWU with the in situ IWU in the Ebro
basin, as shown in Figure 4.10 and Table 4.8, demonstrates the better
performance of the ESA CCI SM products when compared to SMOS
and SMAP to retrieve irrigation. ESA CCI COMBINED shows the best
performance, with the highest correlation (R=0.75) and lowest RMSD
(22.84 mm/month) in the Ebro Basin. This is in line with the finding
of Zohaib et Choi (2020) [34], who compared country-aggregated IWU
estimations using SM Delta with observed IWU at the global scale, and
found that ESA CCI COMBINED (R=0.80) outperforms the ESA CCI
PASSIVE (R=0.72) and ESA CCI ACTIVE (R=0.77) product. One of the
reasons for the better performance of the ESA CCI COMBINED product
may be that it is the only one of the five products analyzed that combines
measurements from active and passive sensors. As a result, ESA CCI
COMBINED SM has a higher signal-to-noise ratio than ESA CCI ACTIVE
and ESA CCI PASSIVE, resulting in more accurate SM data overall.

However, all five satellite products significantly underestimate the IWU
in the Ebro Basin, which is indicated by the negative bias values obtained.
The ESA CCI products yield the lowest absolute bias values (-8.07
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mm/month, -4.24 mm/month, and -6.49 mm/month for COMBINED,
PASSIVE, and ACTIVE, respectively compared to -16.94 mm/month
and -22.47 mm/month for SMOS and SMAP) and hence the lowest
underestimation of the five satellite products. Especially for SMOS and
SMAP, the months with higher observed in situ IWU values (June to
August) are significantly underestimated. An explanation for that might
be their revisit time of 3 days. Indeed, because of the low frequency,
not all irrigation events are captured leading to an underestimation
[27]. Furthermore, as explained in Section 3.4, irrigation events captured
during a data gap between two observations further than 4 days apart,
are conservatively disregarded by the implemented algorithm. The revisit
time of 3 days of SMOS and SMAP makes it more probable that this
exception is applied, namely, as soon as there is one observation missing
due to masking of erroneous data.

The underestimations observed are in line with the results of several
studies. Zaussinger et al. (2019) [25] applied the SM Delta algorithm to the
CONUS using coarse-resolution SM data (ASCAT, AMSR2, and SMAP)
and validated the retrieved irrigation at the state scale. Despite showing
high correlations between estimated and observed IWU at the state scale,
especially for SMAP (R=0.8), they found that irrigation is underestimated
across all analyzed products (bias=-2.36 𝑘𝑚3 on average for the three
products). Another study by Zohaib et Choi (2020) [34] applied the
SM Delta algorithm to ESA CCI ACTIVE, ESA CCI PASSIVE, and ESA
CCI COMBINED SM globally and validated the retrieved IWU at the
country level. They also found that IWU is underestimated (bias=-75.5
𝑘𝑚3 on average for the three products). The underestimation of IWU is
generally attributed to the coarse scale resolution of the SM products
used and the exclusion of ET in the SM Delta approach. [26, 27] Using
coarse spatial resolution SM data may lead to an underestimation of
IWU, especially in small, sparsely irrigated areas. Zappa et al. (2022) [27]
found that high-resolution IWU retrievals are able to detect irrigation
events on the field scale, whereas it is more challenging using coarse-scale
resolution data since the irrigation signal is less strong. This may lead to a
significant underestimation of the irrigation amounts detected. However,
high-resolution data are not available globally and on a long-term basis.
Several studies used Sentinel-1-derived (Zappa et al. (2021, 2022, 2024)
[26–28], Dari et al. (2023) [30]) SM products to retrieve high-resolution
IWU, but for shorter periods and a limited spatial domain.

In a recent study, Zappa et al. (2024) [28] compared IWU obtained
with Sentinel-1 SM data at 1 km using the SM Delta approach, the SM
Inversion method, a satellite-based irrigation retrieval approach based
on the inversion of the soil water balance equation (Brocca et al. (2018)
[29], Dari et al. (2020), (2022), (2023) [30–32]), and a model assimilation
approach based on Noah-MP (Modanesi et al. [21]), over the Ebro Basin.
When comparing IWU retrieved with the SM Delta method with in situ
IWU data, they found a Pearson correlation coefficient of approximately
0.65, a bias of -10 mm/month, and an ubRMSD of 24 mm/month. Their
results are in line with the results of this study but do not show the
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expected improvement due to the use of high-resolution SM data. The
SM Inversion approach showed similar performances (approximately R=
0.7, bias = -8 mm/month, and ubRMSD = 22 mm/month). Those results
are also comparable to those of Dari et al. (2023) [30], who applied high-
resolution SM data from Sentinel 1 to the SM-based Inversion algorithm
to estimate IWU over the Ebro, Po, and Murray-Darling basins. Analyzing
the years 2016 to 2020, they obtained similar metrics as we did in our
study in the irrigation districts of the Ebro Basin (RMSD=26 mm/month,
R=0.60, and bias =-13.47 mm/month). Over the Murray-Darling Basin,
their results demonstrated higher correlation coefficients (R=0.66 to
R=0.84) and lower RMSD values (8.65 mm/month to 15.22 mm/month)
compared to our study, where R ranged from 0.32 to 0.64 and RMSD from
14.85 mm/month to 36.57 mm/month for ESA CCI products. Notably,
their analysis is limited to 2016 and 2017, reducing its representativeness
for broader temporal variability. The fact that the results obtained with
high-resolution SM data are as good as those we achieved with coarse-
scale SM data in the Ebro Basin is a significant finding. This challenges
the commonly cited argument that high resolution is necessary to avoid
underestimation and the quality of the estimates obtained with high-
resolution SM data.

Underestimation of IWU might be due to the fact that we do not take into
account the difference in ET between satellite observations (irrigated pixel)
and model observations (non-irrigated pixel), assuming in equation 3.9
that ET is the same between the both. Several studies (Zappa et al. (2024)
[28], Kragh et al. (2024) [68] and Dari et al. (2020) [32]) showed that leaving
out the information on ET could be the reason for this underestimation.
The increased SM caused by irrigation leads to increased ET making the
latter differ considerably between irrigated and rainfed fields. Hence,
including ET is expected to reduce the underestimation of IWU. In
their study, Zappa et al. (2021) [26] took into account ET in the SM
Delta algorithm by adding the difference in ET between irrigated and
rainfed fields to the irrigation retrieved using SM data. They found that
ET contributed twice as much as SM to the estimated irrigation water
level, improving irrigation estimates. Kragh et al. (2024) [68] investigated
different approaches similar to the SM Delta algorithm by employing a
range of techniques, including SM alone, ET alone, and a joint approach,
and concluded that the joint approach is the most effective method
for retrieving irrigation when compared to benchmark data. Moreover,
several studies by Brocca et al. (2018) [29] and Dari et al. (2020, 2022a,
2023) [30–32] used ET in the SM-based inversion algorithm.

Future research should address the limitations highlighted in this study
by focusing on improving the temporal resolution of SM datasets in
future missions to capture irrigation events better. Moreover, exploring
the integration of additional hydrological variables, such as ET data,
could help refine IWU estimates and reduce underestimation. Expanding
the availability of in situ irrigation data, such as the CONUS Irrigation
and Water Management Survey dataset [69], is also crucial for better
validating our approach and confirming the results obtained for the
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Ebro and Murray-Darling basins. Finally, extending these analyses to
other regions and incorporating longer validation periods could provide
valuable insights into the adaptability and consistency of these methods
across varying climatic and agricultural conditions.
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Conclusion 6
This thesis demonstrates the potential of the SM Delta method for
estimating long-term IWU using five coarse-resolution satellite-derived
SM products. By applying the method to long-term datasets, this study
offers a novel contribution to the field. The SM Delta approach [25]
was evaluated in the Ebro and Murray-Darling basins using in situ
data to assess its ability to capture long-term irrigation dynamics with
coarse-scale SM data.

Spatial statistical analysis of the differences between the satellite SM
datasets and the model dataset showed that the three ESA CCI products
demonstrate clear distinctions between irrigated and non-irrigated sea-
sons, making them strong candidates for IWU retrieval. Furthermore,
the ESA CCI products, with near-daily observations, outperform SMOS
and SMAP in terms of their observation frequency.

When using the three ESA CCI SM datasets, the SM Delta method
was able to reproduce quite well the irrigation dynamics related to the
irrigated and rainfed season, which was not the case using SMAP and
SMOS SM data. The distinction between irrigated and non-irrigated
seasons was less apparent in the Murray-Darling Basin for all datasets.

Validation with in situ data showed that the ESA CCI COMBINED
(R=0.75, bias=-8.07 mm/month and RMSD=22.84 mm/month) and
ESA CCI PASSIVE (R=0.62, bias=-4.24 mm/month and RMSD=27.27
mm/month) products best captured the irrigation dynamics in the Ebro
Basi among the five products. In the Murray-Darling Basin, ESA CCI
COMBINED is identified as the most reliable product, demonstrating
a consistent balance of low RMSD (22.01 mm/month on average) and
strong correlation (R=0.45 on average) across all regions.

The study identified two key findings: first, IWU retrieval using coarse
spatial resolution SM data performs comparably to high-resolution
methods over the Ebro Basin, challenging the assumption that higher
resolution always yields better results. Second, the omission of ET in the
algorithm is a critical limitation. Since irrigation increases ET, excluding
ET may lead to underestimations by not fully accounting for its role in
the water balance. Future improvements should focus on integrating ET
to enhance accuracy.

In conclusion, the SM Delta method shows strong potential for long-term
IWU retrieval, particularly with high-frequency datasets like ESA CCI
COMBINED and ESA CCI PASSIVE. Incorporating ET could improve
IWU estimates. These datasets mark a significant step toward integrating
anthropogenic impacts into climate models and improving water resource
management.
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