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Abstract
We consider generalized gradient systems in Banach spaces whose evolutions are generated
by the interplay between an energy functional and a dissipation potential. We focus on the
case in which the dual dissipation potential is given by a sum of two functionals and show that
solutions of the associated gradient-flow evolution equation with combined dissipation can
be constructed by a split-step method, i.e. by solving alternately the gradient systems featur-
ing only one of the dissipation potentials and concatenating the corresponding trajectories.
Thereby the construction of solutions is provided either by semiflows, on the time-continuous
level, or by using Alternating Minimizing Movements in the time-discrete setting. In both
cases the convergence analysis relies on the energy-dissipation principle for gradient systems.

Mathematics Subject Classification 34G20 · 47J20 · 49S05 · 58E30 · 35Q74

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The time-splitting approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The alternating minimizing movement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Our analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Splitting schemes for block structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Communicated by A. Mondino.

The research of AM was partially supported by Deutsche Forschungsgemeinschaft via SPP2256, Subproject
Mi459/9-1 (Project No.441470105). RR has been partially supported by GNAMPA and by the MIUR -
PRIN Project 2020F3NCPX “Mathematics for industry 4.0 (Math414)”.

B Artur Stephan
artur.stephan@tuwien.ac.at

Alexander Mielke
alexander.mielke@wias-berlin.de

Riccarda Rossi
riccarda.rossi@unibs.it

1 WIAS, Berlin, Germany

2 Humboldt-Universität zu Berlin, Berlin, Germany

3 DIMI, Università degli studi di Brescia, Brescia, Italy

4 Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-024-02849-8&domain=pdf
http://orcid.org/0000-0001-9871-3946


   63 Page 2 of 49 A. Mielke et al.

2 Setup and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Preliminaries on gradient systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The chain rule and the Quantitative Young Estimate . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Assumptions on the generalized gradient systems . . . . . . . . . . . . . . . . . . . . . . . . . .

Ordering of Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driving energy functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dissipation potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Existence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 The time-splitting approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Repetition operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The time-splitting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Our main convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Two examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Non-convergence for multi-valued ∂E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 A doubly nonlinear PDE example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Properties of the energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Properties of the dissipation potentials R1, R2 andReff . . . . . . . . . . . . . . . . . . . . . . .

5 Convergence proof of the time-splitting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Approximated energy-dissipation balance and a priori estimates . . . . . . . . . . . . . . . . . . .
5.2 Liminf estimate for the rate term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Liminf estimate for the slope term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Conclusion of the proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Alternating Minimizing Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Setup and convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 The time-splitting method for systems with a block structure . . . . . . . . . . . . . . . . . . . . . . .
7.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Time-splitting for block structure systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Alternating minimizing movements for block structures . . . . . . . . . . . . . . . . . . . . . . .
7.4 An application to linearized visco-elasto-plasticity . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5 Proof of Theorem 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A More on the quantitative young estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

This paper revolves around the application of time-splitting methods to dissipative evolu-
tionary processes that are generated by a generalized gradient system (X , E ,R), which is a
triple such that

1. the ambient space (X , ‖ · ‖) is a (separable) reflexive Banach space;
2. the energy is a lower semicontinuous, time-dependent functional E : [0, T ]×X →

(−∞,∞], bounded from below and has the proper domain [0, T ]×D ;
3. and the dissipation mechanisms are encoded by a convex lower semicontinuous dissipa-

tion potential R : X → [0,∞).

In what follows, we will confine the discussion to the case in which both R and its convex
conjugate R∗ : X ∗ → [0,∞), ξ �→ supv∈X (〈ξ, v〉X −R(v)), (where 〈·, ·〉X denotes the
duality pairing between X ∗ and X ), have superlinear growth at infinity. We will refer to
the triple (X , E ,R) as a generalized gradient system, because for true gradient systems the
dissipation potentialR : X → [0,∞) has to be quadratic, leading to a Hilbert-space struc-
ture, see [20]. Whenever convenient, we will alternatively write (X , E ,R∗). Throughout
the paper, the dissipation potential R will be assumed state-independent.

Typically, in this class there fall processes whose evolution results from a balance between
the two competingmechanismof decrease of the energyE anddissipation of energy according
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to R. Thus, they are governed by the subdifferential inclusion

∂R(u′(t))+ ∂E (t, u(t)) � 0 in X ∗ for a.a. t ∈ (0, T ). (1.1)

Indeed, (1.1) is a balance law between frictional forces in the (convex analysis) subdifferential
∂R : X ⇒ X ∗ given by

∂R(v) := {ω ∈ X ∗ : R(v̂)−R(v) ≥ 〈ω, v̂−v〉X for all v̂ ∈ X },
and potential restoring forces in the Fréchet subdifferential ∂E : [0, T ] ×X ⇒ X ∗ of E
with respect to its second variable: at a given (t, u) ∈ [0, T ]×D we define ∂E (t, u) as the
set of all ξ ∈ X ∗ satisfying

E (t, w)− E (t, u) ≥ 〈ξ,w−u〉X + o(‖w−u‖) as ‖w−u‖ → 0. (1.2)

Therefore, (1.1) can be recast as

− ξ(t) ∈ ∂R(u′(t)) in X ∗ and ξ(t) ∈ ∂E (t, u(t)) for a.a. t ∈ (0, T ). (1.3a)

From the thermodynamical point of view the primal dissipation potentialR has a prominent
role in defining the kinetic relation η ∈ ∂R(v) between the rate v ∈ X and friction force
η ∈ X ∗. By the Fenchel equivalence in convex analysis the kinetic relation can be inverted
as v ∈ ∂R∗(η), such that it is also meaningful to reformulate (1.2) in the rate form

u′(t) ∈ ∂R∗(−ξ(t)) in X and ξ(t) ∈ ∂E (t, u(t)) for a.a. t ∈ (0, T ), (1.3b)

which casts the dual dissipation potential under the spotlight. The first existence results for
evolution equations (1.3a),(1.3b), in the Hilbert space setting and for a quadratic dissipation,
date back to the late ’60 s [11, 17]; in particular, we refer to the monograph [6]. Existence in
general doubly nonlinear case has been first systematically tackled in the seminal papers [9,
10]. In the last three decades, the existence theory has been extended to encompass nonsmooth
and nonconvex driving energies [26, 29], based on the variational theory for the analysis of
gradient flows in metric spaces [2, 3, 28].

Both dissipation potentials R and R∗ feature in the energy-dissipation balance

E (t, u(t))+
∫ t

s

{
R(u′(r))+R∗(−ξ(r))

}
dr = E (s, u(s))+

∫ t

s
∂tE (r , u(r))dr (1.4)

for all 0 ≤ s ≤ t ≤ T , which is equivalent to the primal and dual formulations under the
validity of a suitable chain-rule property for the gradient system (X , E ,R). As a matter of
fact, (1.4) lies at the core of our variational approach to gradient systems. Indeed, it turns out
that, if the chain rule holds, a pair (u, ξ) fulfills (1.4) (and thus (1.3)) if and only if it satisfies
the upper inequality≤, and this has paved the way for the usage of the toolbox from Calculus
of Variations in order to prove existence results for (1.3), see [2, 26, 28] and the references
in the survey [20].

So far, we have used (X , E ,R) to denote an abstract gradient system. Now we will work
with specific gradient systems (X j , E,R j ), where we emphasize that the energy E stays the
same, but we have two different dissipations R j : X j → [0,∞), j = 1, 2. Our aim is
to study the interaction between those two systems and the effective system (X1, E,Reff),
where

R∗
eff = R∗

1 +R∗
2.

Thus, (X1, E,Reff) generates the subdifferential inclusion

u′(t) ∈ ∂(R∗
1+R∗

2)(−ξ(t)) in X1 and ξ(t) ∈ ∂E(t, u(t)) for a.a. t ∈ (0, T ). (1.5)
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The spaces X j are (separable) reflexive spaces, ‘ordered’ in such a way that X2 ⊂ X1

continuously. The energy functional E : [0, T ] × X2 → (−∞,∞] is defined on the smaller
space and is extended to the larger space by +∞.

As we will see, under our conditions,Reff is given by the inf-convolution ofR1 andR2,
namely

Reff(v) := inf
v1, v2∈X1, v=v1+v2

(R1(v1)+R2(v2)
)
. (1.6)

In order to construct solutions to (1.5), it may then be convenient to use a time-splitting
approach, capable of handling the different properties of the potentials R1 and R2. We
will discuss two different approaches: (i) a time-splitting approach using exact solutions of
(X j , E,R j ) on half-intervals and (ii) an alternating minimizing approach.

The time-splitting approach

Indeed, the split-step method with time step τ = T /N and N � 1, inducing a uniform
partition of the interval [0, T ] in sub-intervals ((k−1)τ, kτ), k ∈ {1, . . . , N }, with midpoint
(k−1/2)τ , amounts to

(i) solving on the semi-intervals of length 1
2 τ , alternately, the single-dissipation gradient

systems (X j , E, 2R∗
j ), j ∈ {1, 2} (i.e., with rescaled potentials R̃ j (·) = 2R j (

1
2 · ));

(ii) concatenating the solutions to finally fill the whole interval [0, T ] and obtain a trajectory
Uτ : [0, T ] → X1.

To bemore precise (see Sect. 3 for details), we consider for k ∈ {1, . . . , N } the twoCauchy
problems:

1. ∂R̃1(u′(t)) + ∂E(t, u(t)) � 0 in X∗
1 on ((k−1)τ, (k−1/2)τ ], u((k−1)τ ) = u ∈

dom (E) ,

2. ∂R̃2(u′(t))+∂E(t, u(t)) � 0 in X∗
2 on ((k−1/2)τ, kτ ], u((k−1/2)τ ) = u ∈ dom (E) ,

where the scaling factor in R̃ j reflects the halved length of the intervals ((k−1)τ, (k−1/2)τ ]
and ((k−1/2)τ, kτ ] on which the systems (X j , E, R̃ j ) evolve. Working with the rescaled
potentials R̃1 and R̃2 will prove convenient for our analysis, see the discussion at the end
of Sect. 3. Then, we define recursively the approximate solution Uτ : [0, T ] → dom (E) by
Uτ (0) := u0 and

Uτ solves the first Cauchy problem with u := Uτ ((k−1)τ ) on ((k−1)τ, (k−1/2)τ ],
Uτ solves the second Cauchy problem with u := Uτ ((k−1/2)τ ) on ((k−1/2)τ, kτ ].
Then, and this is the main objective of the paper, the task in the convergence analysis is to

show that in the limit N →∞ the sequence of trajectories (Uτ )τ converge to a curve solving
the effective gradient-flow equation

∂Reff(u
′(t))+ ∂E(t, u(t)) � 0 for a.a. t ∈ (0, T ), (1.7)

which is equivalent to (1.5).
For instance, in the case of reaction-diffusion systems, with this approach the approximate

solutions can be constructed by concatenating a solution obtained in the diffusion step,
by a method tailored to the linear parabolic structure, and a solution arising from a pure
reaction step, which exploits the distinct features of the nonlinear ODE. Split-step methods
for evolution equations, where the right-hand side is given by a sum of two parts as in (1.5),
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have a long history starting with the works of Lie and Trotter for linear evolution equations
(see e.g. [33]). A generalization for nonlinear semigroups given by subdifferentials of convex
functions on aHilbert space (i.e. quadratic dissipation and twodifferent energies) can be found
in [6] (Prop. 4.3−4.4, Ch.VI) and [15]. In [8] convergence of split-step methods for gradient
flows in metric spaces as in [2] has been shown, in the case the driving energy consists of
two contributions with different properties.

In contrast, the functional setup considered in this paper is significantly different from
that usually addressed for time-splitting methods applied to gradient systems, because we
tackle the situation in which the dissipation consists of two parts. Hence, we have to account
for the two different geometries in the underlying space.

The alternatingminimizingmovement scheme

So far, we have illustrated the time-splitting approach to the generalized gradient system
(X1, E,R∗

1+R∗
2) on the time-continuous level.

Nonetheless, a commonly used procedure for constructing solutions to the subdifferential
inclusions for the single-dissipation gradient systems (X j , E,R j ) is via Minimizing Move-
ments. Adopting this method in the context of the time-splitting approach means that for
each j = 1, 2 we solve the time-incremental minimization problems involving the potentials
R̃ j (·) = 2R j (

1
2 · ), whose rescaling corresponds to the halved length 1

2 τ of the discrete inter-
vals. Approximate solutions are then defined by piecing together these discrete solutions, i.e.,
the concatenation step is carried out on the time-discrete level.

We briefly illustrate the latter procedure in the following lines and postpone a detailed
analysis to Sect. 6, where we prove our convergence result in Theorem 6.1.

For illustrative reasons, we confine ourselves to a uniform partition by intervals of equal
length; the rigorous analysis in the main text allows for general partitions. Starting from
an initial datum u0 ∈ dom(E), we define the piecewise constant time-discrete solutions
Uτ : [0, T ] → dom(E) ⊂ X1 via Uτ (0) := u0 =: U 2

0 and, for k = 1, . . . , N , we set

Uτ (t) := U 1
k for t ∈ ((k−1)τ, (k−1/2)τ ], Uτ (t) := U 2

k for t ∈ ((k−1/2)τ, kτ ],
where U 1

k ∈ Argmin
U∈X1

{
τ
2 R̃1

( 2
τ
(U−U 2

k−1)
)+E((k−1/2)τ,U )

}
,

and U 2
k ∈ Argmin

U∈X2

{
τ
2 R̃2

( 2
τ
(U−U 1

k )
)+E(kτ,U )

}
, (1.8)

cf. also (6.1) ahead; indeed, also on the time-discrete level it is useful to work with the
rescaled potentials R̃ j . Further, we introduce the piecewise linear function Ûτ : [0, T ] → X1

so obtained by affinely interpolating the values Uτ (t) and Uτ (t−τ/2) for t in the semi-
intervals [(k−1)τ, (k−1/2)τ ] and [(k−1/2)τ, kτ ]. We also consider the piecewise constant
interpolant ξτ of the discrete forces ξ1k ∈ ∂X1E((k−1/2)τ,U 1

k ) and ξ2k ∈ ∂X2E(kτ,U 2
k ) (with

∂X j E(t, ·) : X j ⇒ X∗
j the Fréchet subdifferentials of E(t, ·) with respect to the 〈·, ·〉X j

pairings), that feature in the Euler-Lagrange equations for the minimum problems (1.8).

Our analysis

Let us now hint at the key points in the convergence argument for the approximate solutions
arising from the alternating Minimizing Movement scheme (1.8). To simplify the exposition
in this introduction we assume now that E : [0, T ] × X2 → (−∞,∞] is λ-convex in its
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second variable, uniformly in t ∈ [0, T ], with respect to the coarser norm ‖ · ‖X1 , namely

∃ λ ∈ R ∀ t ∈ [0, T ] ∀ u0, u1 ∈ dom(E) ∀ θ ∈ [0, 1] :
E(t, (1−θ)u0+θu1) ≤ (1−θ)E(t, u0)+ θE(t, u1)− λ

2
θ(1−θ)‖u0−u1‖2X1

.

The condition of λ-convexity will not be used in the later sections; wherever needed the
piecewise linear interpolant Ûτ will be replaced by themore advanced variational interpolants,
see Sect. 6.

Staying in the simpler λ-convex case, the functions (Uτ , Ûτ , ξτ ) satisfy a discrete version
of the energy-dissipation upper estimate, i.e. for every 0 ≤ s ≤ t ≤ T we have

E(tτ (t),Uτ (t))+Drate
τ ([s, t])+Dslope

τ ([s, t])
≤ E(tτ (s),Uτ (s))+

∫ t

s
∂tE(tτ (r),Uτ

(
r− τ

2

)
)dr + Remτ ([s, t]),

(1.9)

where tτ : [0, T ] → [0, T ] denotes the piecewise constant interpolant of the notes (kτ)Nk=1 of
the partition. Here, the rate contribution Drate

τ incorporates the primal dissipation potentials
depending on the rate Û ′

τ and featuring in the discrete energy-dissipation balances for the
individual systems (X j , E, 2R∗

j ), namely

Drate
τ ([s, t]) := 2

∫ t

s

{
χτ (r)R1

( 1
2 Û

′
τ (r)

)+(1−χτ (r))R2
( 1
2 Û

′
τ (r)

)}
dr , (1.10a)

whereχτ : [0, T ] → {0, 1} is the characteristic function of the union of the left semi-intervals
((k−1)τ, (k−1/2)τ ]. Accordingly, the slope contributionDslope

τ features the dual dissipation
potentials evaluated at the force ξτ (t) ∈ ∂E(tτ (t),Uτ (t)), i.e.

Dslope
τ ([s, t]) := 2

∫ t

s

{
χτ (r)R∗

1(−ξτ (r))+(1−χτ (r))R∗
2(−ξτ (r))

}
dr . (1.10b)

The previously required λ-convexity of the energy E(t, ·) plays a key role in the estimate of
the remainder term via

Remτ ([s, t]) := 1

τ

∫ t

s

(
E(tτ (r),Uτ (r))−E(tτ (r),Uτ

(
r − τ

2
)
)− 〈

ξτ (r),Uτ (r)−Uτ

(
r − τ

2
)〉
X1

)
dr

≤ λ

2

∫ t

s
‖Û ′

τ (r)‖X1 ‖Uτ (r)−Uτ (r− τ
2 )‖X1dr .

This estimate ensures that limτ→0 Remτ ([s, t]) = 0. However, once again we emphasize
that λ-convexity of E(t, ·) is not necessary for our analysis and will not be used elsewhere
in the paper. It is assumed here, only, in order to illustrate the derivation of the discrete
energy-derivation upper estimate for (X1, E,R∗

1+R∗
2) in a simple and self-contained way.

Taking the limit in (1.9) leads to an upper energy-dissipation inequality that, assuming
the validity of a suitable chain rule property for the energy E, is in fact equivalent to the
corresponding energy-dissipation balance and yields a solution to the generalized gradient
system (X1, E,R∗

1+R∗
2). This is summarized in the following result, anticipating Theorem

6.1 ahead. In the statement below we do not detail all technical assumptions on the quintuple
(X1,X2, E,R1,R2), but we highlight the crucial, additional requirement that the Fréchet
subdifferential is a singleton, called singleton condition subsequently.

The counterexample constructed in Sect. 4.1 shows that convergence of the time-splitting
scheme to a solution of (1.5) may in fact be false, if the singleton condition (1.11) is not
assumed, even in the simple case X1 = X2 = R

2.
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Theorem Under suitable conditions on (X1,X2, E,R1,R2), suppose also that

∂X1E(t, u) = ∂X2E(t, u) is a singleton for all (t, u) ∈ dom(E). (1.11)

Then, for any null sequence τ → 0 the curves (Uτ ), (Ûτ ), and (ξτ ) suitably converge to a
pair (U , ξ) solving the subdifferential inclusion (1.5) and fulfilling the energy-dissipation
balance

E(t,U (t))+
∫ t

s

(Reff (U
′(r))+(R∗

1+R∗
2)(−ξ(r))

)
dr = E(s,U (s))+

∫ t

s
∂tE(r ,U (r))dr

(1.12)

for every 0 ≤ s ≤ t ≤ T , where Reff : X1 → [0,∞) is the primal dissipation potential
corresponding to (R∗

1+R∗
2), namely the inf-convolution ofR1 andR2 (cf. (1.6)).

Without entering into the details of the proof, we now motivate howReff naturally arises
in the passage to the limit in the rate term from (1.10a). For simplicity, and with no loss in
generality, we illustrate this when [s, t] = [0, T ]. Then, for τ > 0 we have

Drate
τ ([0, T ]) =

N∑
k=1

{∫ (k−1/2)τ

(k−1)τ
2R1(

1
2 Û

′
τ (r))dr +

∫ kτ

(k−1/2)τ
2R2(

1
2 Û

′
τ (r))dr

}

(1)=
N∑

k=1

τ

{
−
∫ (k−1/2)τ

(k−1)τ
R1(

1
2 Û

′
τ (r))dr +−

∫ kτ

(k−1/2)τ
R2(

1
2 Û

′
τ (r))dr

}

(2)≥
N∑

k=1

τ

{
R1

(
−
∫ (k−1/2)τ

(k−1)τ

1
2 Û

′
τ (r))dr

)
+R2

(
−
∫ kτ

(k−1/2)τ

1
2 Û

′
τ (r)dr

)}

(3)≥
N∑

k=1

τ Reff

(
1

τ

∫ kτ

(k−1)τ
U
′
τ (r)dr

)
=
∫ T

0
Reff

(
U
′
τ (r))dr ,

where U : [0, T ] → X1 denotes the piecewise affine interpolant with Uτ (kτ) = Uτ (kτ)

for k ∈ {0, . . . , N }. In the above calculation, on the right-hand side of (1) the symbol −
∫

denotes the integral average, for (2) we have used convexity of R j and Jensen’s inequality,
while (3) follows from the definition ofReff. Taking the limit τ → 0 we can use U

′
τ⇀U ′ in

L1(0, T ;X1), and obtain the first liminf estimate:

lim inf
τ→0

Drate
τ ([0, T ]) ≥

∫ T

0
Reff

(
U ′(t)

)
dt .

Likewise, the role of the singleton condition can be understood by a perusal of the argument
for taking the limit in the slope term. For this we introduce a key tool for our analysis: the
repetition operators T

(1)
τ and T

(2)
τ that, applied to a given function ζ : [0, T ] → X∗

j , are
defined via

(T(1)
τ ζ )(t) :=

{
ζ(t) if t ∈ ((k−1)τ, (k−1/2)τ ] for k = 1, . . . , N ,

ζ(t− τ
2 ) if t ∈ ((k−1/2)τ, kτ ] for k = 1, . . . , N ,

(T(2)
τ ζ )(t) :=

{
ζ(t+ τ

2 ) if t ∈ ((k−1)τ, (k−1/2)τ ] for k = 1, . . . , N ,

ζ(t) if t ∈ ((k−1/2)τ, kτ ] for k = 1, . . . , N .

Thus, T
(1)
τ replicates, on the right semi-intervals ((k−1/2)τ, kτ ], the restriction of ζ to the

preceding left semi-intervals ((k−1/2)τ, kτ ],whileT
(2)
τ does the converse.Acrucial property
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of the repetition operators T
( j) is seen when calculating the slope part of the dissipation

integral, namely (see (5.7) for more details)

Dslope
τ ([0, T ]) =

∫ T

0

{
χτ (r) 2R∗

1

(−ξτ (r)
)+ (

1−χτ (r)
)
2R∗

2

(−ξτ (r)
)}
dr

=
∫ T

0

{
R∗

1

(−T
(1)
τ ξτ (r)

)+R∗
2

(−T
(2)
τ ξτ (r)

)}
dr .

In the first line the integrand on the right-hand side is a sum of two products, where each
factor only weakly converges for τ → 0; thus convergence is not clear. However, in the
second line, where the repetition operators appear, we only have one weakly converging
sequence in each term. Moreover, the above expression for Dslope

τ well motivates the crucial
role of the singleton condition (1.11). In fact, the two sequences (T

( j)
τ ξτ )τ can be shown to

converge to limits ξ j that fulfill ξ j (t) ∈ ∂X j E(t,U (t)) for almost all t ∈ (0, T ), provided
a suitable closedness property for the subdifferentials ∂X j E is assumed. Then, condition
(1.11) guarantees that ∂X j E(t,U (t)) is a singleton of X∗

j , so that ∂
X1E(t,U (t)) = {ξ1(t)} =

{ξ2(t)} = ∂X2E(t,U (t)) for a.a. t ∈ (0, T ). Then, ξ := ξ1 = ξ2 : (0, T ) → X∗
1 gives rise to

the force term in (1.12) since

lim inf
τ→0

Dslope
τ ([0, T ]) ≥

∫ T

0

{R∗
1(−ξ(r))+R∗

2(−ξ(r))
}
dr =

∫ T

0
R∗

eff(−ξ(r))dr .

Splitting schemes for block structures

In the second part of the paper we tackle the application of the splitting method to generalized
gradient systems with a block structure. In such systems,

the state variable u is a vector u = (y, z)� ∈ U := Y×Z,

with Y and Z (separable) reflexive Banach spaces. The evolution of the system is governed
by a driving energy functional E : [0, T ]×U→ (−∞,∞] and by two dissipation potentials
Ry : Y → [0,∞) and Rz : Z → [0,∞), each acting on the components of the rate vector
u′ = (y′, z′)�, namely

R(u′) = R(y′, z′) = (Ry⊗Rz
)
(y′, z′) := Ry(y

′)+Rz(z
′).

Models in solidmechanics described by the evolution of the displacement, or the deforma-
tion, of the body, coupled with that of an internal variable describing inelastic processes such
as, e.g., plasticity, heat transfer, delamination, fracture, damage, typically fit into this frame-
work. Applying the splitting method to this context boils down to letting first the variable y
evolve on a semi-interval while keeping z fixed, and then letting z evolve with y fixed on the
next semi-interval. On the discrete level, this can be compared with staggered minimization
schemes, which have been recently used for gradient flows and rate-independent systems, cf.
e.g. [1, 16, 30, 31] among others.

The analysis of this kind of systems can be framed in the context of our splitting approach
by introducing the dissipation potentialsR j : U→ [0,∞]
R1(u

′) = R1(v,w) = Ry(v)+ I{0}(w), R2(u
′) = R2(v,w) = I{0}(v)+Rz(w),

(1.13)

where I{0} is the indicator function of the singleton {0}, with I{0}(0) = 0 and∞ otherwise.
We then concatenate the (time-discrete or time-continuous) solutions to the subdifferential
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inclusions

∂R j (u
′(t))+ ∂UE(t, u(t)) � 0 in U∗ for a.a. t ∈ (0, T )

governing the single-dissipation systems (U, E,R j ). Because of (1.13), in each step we
either freeze the variable z (for j=1), or the variable y (for j=2). In particular, on the time-
discrete level the corresponding Alternating Minimizing Movement scheme consists of two
consecutive minimum problems in which either the variable z stays fixed and minimization
only involves the variable y, or y is fixed andweminimize onlywith respect to z. Nonetheless,
let us stress that the energy functional E(t, ·) is defined on the product space U, and likewise
the Fréchet subdifferential ∂UE involves the 〈·, ·〉U duality.

The analysis in Sects. 2 to 6 relies on the ordering assumption that X2 ⊂ X1 continuously
and thatR j andR∗

j are superlinear onX j . This ordering property no longer holds in the case
with block structure, hence Sect. 7 shows how the analysis can be adapted; in particular the
singleton condition (1.11) can be replaced by the weaker cross-product condition

∂UE(t, y, z) = ∂yE(t, y, z)×∂zE(t, y, z) for all (t, y, z) ∈ [0, T ] × U.

Under this and other conditions on the generalized gradient system (U, E,Ry⊗Rz)we prove
our two convergence results, Theorem 7.5 for the concatenation of time-continuous solutions,
and Theorem 7.7 for the Alternating Minimizing Movement scheme.
Plan of the paper. Sect. 2 lays down the foundations for our analysis: after recalling some
known facts about the energy-dissipation balance and its role in characterizing solutions for
an abstract gradient system (X , E ,R) in Sects. 2.1, 2.2 we specify our working assumptions
on the quintuple (X1,X2, E,R1,R2) and expound some of their consequences.

We devise the time-splitting scheme on the time-continuous level in Sect. 3, which also
contains the statement of our first main convergence result in Theorem 3.5, proved throughout
Sect. 5. Section4 is instead devoted to examples illustrating the theory: a counterexample to
convergence of the time-splitting scheme without the singleton condition, and a doubly-
nonlinear PDE example. In Sect. 6 we show that the analysis carried out in Sects. 3 and 5
can be easily adapted to the Alternating Minimizing Movement scheme introduced in (1.8)
and state our second convergence result in Theorem 6.1, which is the discrete counterpart
to Theorem 3.5. In Sect. 7 we turn to systems with block structure and provide our last two
convergence results in Theorems 7.5 and 7.7. Finally, Appendices A and B contain some
auxiliary results.

2 Setup and assumptions

In the ensuing Sect. 2.1 we are going to collect some key facts about general gradient systems
(X , E ,R) that will be used throughout the paper. Then, in Sect. 2.2 we will move to the
context of two dissipation mechanisms and settle our working assumptions on the gradient
systems (X j , E,R j ), j ∈ {1, 2}.

2.1 Preliminaries on gradient systems

By generalized gradient system we mean a triple (X , E ,R) satisfying the conditions (1),
(2), (3) explained in the Introduction.More precisely, throughout this section, wewill assume
that E and R satisfy the following basic conditions:
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<E> (time differentiability and power control):The energy E : [0, T ]×X → (−∞,∞]
is a lower semicontinuous functional, bounded from below by a positive constant, and
has a proper domain [0, T ]×D withD ⊂ X . Moreover, for every u ∈ D the function
t �→ E (t, u) is differentiable and

∃C# > 0 ∀ (t, u) ∈ [0, T ]×D : |∂tE (t, u)| ≤ C#E (t, u) . (2.1)

<R> (superlinear dissipation potential): The potential R : X → [0,∞) is lower
semicontinuous and convex, R(0) = 0 and, together with its convex conjugate
R∗ : (X ∗, ‖ · ‖∗) → [0,∞), the functional R is superlinear:

lim‖v‖↑∞
R(v)

‖v‖ = lim‖ξ‖∗↑∞
R∗(ξ)

‖ξ‖∗ = ∞. (2.2)

In particular, we emphasize that we will confine our study to the case of state-independent
dissipation potentials, although we believe that all of our results could be extended to poten-
tials R = R(u, v) with a suitably tamed dependence on the state variable u. Instead, our
analysis cannot encompass potentials taking the value ∞ (for instance, including indicator
terms that force unidirectional evolution), since the treatment of the corresponding gradient
systems necessitates additional estimates that are outside the scope of the present paper.

The central result of this section is Proposition 2.1, which is indeed at the core of our
approach to gradient systems. It provides a characterization of the gradient-system evolution
given by the subdifferential inclusion (1.1), in terms of the so-called Energy-Dissipation
Principle, combined with the chain rule for the energy functional E . The following charac-
terization of the (1.1) via an upper energy estimate has been circulating for some time: it is in
fact underlying the analysis of gradient flows and generalized gradient flows in Banach and
metric spaces, cf. e.g. [2, 3, 18, 26, 28]. Nonetheless, in order tomake the paper self-contained
we detail the proof of the following result here as well.

Proposition 2.1 (Energy-dissipation principle) Let u ∈ AC([0, T ];X ) and ξ ∈ L1([0, T ];
X ∗) with ξ(t) ∈ ∂E (t, u(t)) for almost all t ∈ (0, T ). Suppose that the map t �→ E (t, u(t))
is absolutely continuous on [0, T ] and that for (u, ξ) the chain rule

d

dt
E (t, u(t))− ∂tE (t, u(t)) = 〈ξ(t), u′(t)〉X for a.a. t ∈ (0, T ) (2.3)

holds. Then, the following conditions are equivalent:

(C1) The pair (u, ξ) complies with the upper energy-dissipation estimate, i.e.

E (T , u(T ))+
∫ T

0

{
R(u′(r))+R∗(−ξ(r))

}
dr ≤ E (0, u(0))+

∫ T

0
∂tE (r , u(r))dr .

(2.4)

(C2) The pair (u, ξ) solves

− ξ(t) ∈ ∂R(u′(t)) for a.a. t ∈ (0, T ), (2.5)

and fulfills the energy-dissipation balance

E (t, u(t))+
∫ t

s

{
R(u′(r))+R∗(−ξ(r))

}
dr = E (s, u(s))+

∫ t

s
∂tE (r , u(r))dr (2.6)

for all s, t ∈ [0, T ] with s ≤ t .
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Proof Obviously, (C2) implies (C1).
To show that condition (C1) implies (C2), we apply the chain rule (2.3) and deduce from

the energy-dissipation upper estimate (2.4) that
∫ T

0

{
R(u′(r))+R∗(−ξ(r))

}
dr ≤ E (0, u(0))− E (T , u(T ))+

∫ T

0
∂tE (r , u(r))dr

=
∫ T

0
〈−ξ(r), u′(r)〉X dr .

Now, since R(v) +R∗(ζ ) ≥ 〈ζ, v〉X for all (v, ζ ) ∈ X ×X ∗, from the above inequality
we immediately infer that

R(u′(t))+R∗(−ξ(t)) = 〈−ξ(t), u′(t)〉X for a.a. t ∈ (0, T ) (2.7)

which, by a well-known convex analysis result, is equivalent to the inclusion (2.5). The
energy-dissipation balance (2.6) follows by integrating (2.7) on an arbitrary time interval
[s, t] ⊂ [0, T ] and again applying the chain rule (2.3). This concludes the proof. ��

The chain rule and the Quantitative Young Estimate

The cornerstone in the proof of Proposition 2.1 is indeed the chain rule formula (2.3). Let
us now gain further insight on its validity: In view of estimate (2.1), for any curve u ∈
AC([0, T ];X ) along which t �→ E (t, u(t)) is absolutely continuous we even have that
t �→ ∂tE (t, u(t)) is in L∞([0, T ]). Therefore, underlying (2.3) is the fact that the function
t �→ 〈ξ(t), u′(t)〉X ∈ L1([0, T ]).

The most general and flexible version of the chain rule for a generalized gradient system
(X , E ,R) in theBanach spaceX is the following;wemention in advance that, for this paper
it will be sufficient to use this version only for the effective gradient system (X1, E,R∗

1+R∗
2):

<CR> (chain rule): the generalized gradient system (X , E ,R) with specified subdifferen-
tial ∂E satisfies the following: for all (u, ξ) ∈ AC([0, T ];X )×L1([0, T ];X ∗) such
that ξ(t) ∈ ∂E (t, u(t)) for almost all t ∈ (0, T ) and

sup
t∈[0,T ]

|E (t, u(t))| < ∞ and
∫ T

0

(
R(u′(t))+R∗(ξ(t))

)
dt < ∞ , (2.8)

the function t �→ E (t, u(t)) is absolutely continuous and the chain rule (2.3) holds.

In practice, it is often convenient to establish <CR> without reference to the dissipation
potential R. This can be done by strengthening the assumption (2.8).

<CR”> (chain rule): the pair (E , ∂E ) satisfies the following property: for all (u, ξ) ∈
AC([0, T ];X )×L1([0, T ];X ∗) such that ξ(t) ∈ ∂E (t, u(t)) for almost all t ∈
(0, T ) and

sup
t∈[0,T ]

|E (t, u(t))| < ∞ and
∫ T

0
‖ξ(t)‖∗ ‖u′(t)‖dt < ∞ , (2.9)

the function t �→ E (t, u(t)) is absolutely continuous and the chain rule (2.3) holds.

Clearly, the stronger version <CR”> implies the general version <CR> if we provide a
condition onR such that (2.8) implies (2.9). For this, wewill introduce below theQuantitative
Young Estimate QYE, which strengthens the classical Young estimate

R(v)+R∗(ξ) ≥ 〈ξ, v〉X for all (v, ξ) ∈ X ×X ∗.
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<QYE> (Quantitative Young Estimate):

∃ c,C > 0 ∀ (v, ξ) ∈ X ×X ∗ : R(v)+R∗(ξ) ≥ c‖v‖ ‖ξ‖∗ − C . (2.10)

Indeed, if (X , E ,R) satisfies conditions <E>, <R>, <CR”>, and <QYE>, then, thanks
to (2.10), for any pair (u, ξ) ∈ AC([0, T ];X )×L1([0, T ];X ∗) satisfying (2.8) we have
that the estimates in (2.9) hold. Hence, the chain rule formula (2.3) is valid.

Let us now gain further insight into condition <QYE>. It is known that estimate (2.10)
is not true in general, see [21, Ex.3.4] for a counterexample. In turn, the following result
provides a useful sufficient condition for (2.10).

Lemma 2.2 Assume that there exists a continuous, convex and superlinear function ψ :
[0,∞[→ [0,∞[ and constants c1 ≥ 1 and c2, c3 > 0 such that

∀ v ∈ X : ψ

(
1

c3
‖v‖

)
− c2 ≤ R(v) ≤ c1 ψ(c3‖v‖)+ c2. (2.11)

Then, the quantitative Young estimate (2.10) holds with c = 1/(c1c23) and C = 2c2.

In particular, the quantitative Young estimate (2.10) holds if R is given by a functional of
the norm, i.e. R(v) = ψ(‖Bv‖) with a bounded, invertible operator B : X → X .

Proof Thanks to (2.11), we have R∗(ξ) ≥ c1ψ∗(‖ξ‖∗/(c1c3)) − c2. Combining this with
the Young’s inequality ψ(r)+ ψ∗(s) ≥ rs and using that c1 ≥ 1 we infer

R(v)+R∗(ξ) ≥ ψ(‖v‖/c3)− c2 + c1ψ
∗(‖ξ‖∗/c1c3)− c2

≥ ψ(‖v‖/c3)+ ψ∗(‖ξ‖∗/c1c3)− 2c2 ≥ 1

c1c23
‖v‖ ‖ξ‖∗ − 2c2.

Thus, the result is established. ��

2.2 Assumptions on the generalized gradient systems

We now depart from the general setup (X , E ,R) of Sect. 2.1 and tackle two specific (as
highlighted from the change of fonts) gradient systems (X1, E,R1) and (X2, E,R2). As we
will see in settling our requirements on (X j , E,R j ), j ∈ {1, 2}, the conditions expounded
in Sect. 2.1 will have to be adjusted to the interplay between the topologies of the spaces
(X j , ‖ · ‖ j ).

Ordering of Banach spaces

We consider two (separable) and reflexive Banach spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2), such
that

X2 ⊂ X1 and X∗
1 ⊂ X∗

2 densely and continuously. (2.12a)

More precisely, we assume that

∃CN ≥ 1 ∀ v ∈ X2 : ‖v‖1 ≤ CN‖v‖2. (2.12b)
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Driving energy functional

Clearly, the time-dependent energy functional E needs to have a domain contained in the
smaller space [0, T ]×X2. It is on this domain that we require the first set of basic condi-
tions, namely conditions <E> previously introduced: boundedness from below (by a constant
that, up to a shift, can be assumed positive), time differentiability, and control of the power
functional by means of the energy functional itself.

Hypothesis 2.3 (Time differentiability) The energy E : [0, T ]×X1 → (−∞,∞] has the
proper domain

dom(E) = [0, T ]×D0 with D0 ⊂ X2 and ∃C0 > 0 ∀ (t, u) ∈ [0, T ]×D0 : E(t, u) ≥ C0.

(2.13)

Moreover, on [0, T ]×D0 the functional E complies with <E>.

It is convenient to introduce the functional

E : D0 → [0,∞), E(u) := sup
t∈[0,T ]

E(t, u), (2.14)

and observe that, by (2.1) and Grönwall’s lemma,

E(u) ≤ eC#T E(t, u) for all (t, u) ∈ [0, T ]×D0. (2.15)

We will work with the sublevel sets

SE := {u ∈ X2 : E(u) ≤ E}, E > 0. (2.16)

We can now formulate our second condition.

Hypothesis 2.4 (Lower semicontinuity & continuity of the power) We require that for every
j ∈ {1, 2} there holds

∀ E > 0 :
(
(tn, un)⇀(t, u) in [0, T ]×X1 and un ∈ SE for all n ∈ N

)

�⇒
{
lim infn→∞ E(tn, un) ≥ E(t, u),

limn→∞ ∂tE(tn, un) = ∂tE(t, u).

(2.17)

Thanks to (2.17), the functional E is weakly lower semicontinuous in X1 and thus the
sublevel sets SE are (sequentially) weakly closed in X1. We highlight that, in (2.17) lower
semicontinuity of E(t, ·) is, a priori, required with respect to the coarser topology given by
X1. Nonetheless, in concrete examples E(t, ·) may turn out to be coercive with respect to the
norm ‖ · ‖2, recall D0 ⊂ X2. Hence, the information that there exists E > 0 with un ∈ SE
for all n ∈ N may yield additional compactness information on the sequence (un)n , and in
fact weaken the above lower semicontinuity/continuity requirements.

Hypothesis 2.5 below involves the Fréchet subdifferentials of E(t, ·) with respect to the
duality pairings 〈·, ·〉X j

, namely the operators ∂X j E : [0, T ]×D j ⇒ X∗
j defined by

ξ ∈ ∂X j E(t, u) ⇐⇒ E(t, w)− E(t, u) ≥ 〈ξ,w−u〉X j
+ o(‖w−u‖ j ) as ‖w−u‖ j → 0,

where for all t ∈ [0, T ] we define D j = {u ∈ D0 : ∂X j E(t, u) �= ∅}. We have D1 ⊂ D2 and

∂X1E(t, u) ⊂ ∂X2E(t, u) ∩ X∗
1 for all (t, u) ∈ [0, T ]×D1. (2.18)
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Hypothesis 2.5 (Closedness of ∂X j E on energy sublevels)We require that for every j ∈ {1, 2}
we have

∀ E > 0 :
{

(tn, un, ξn)⇀(t, u, ξ) in [0, T ]×X1×X∗j ,
un ∈ SE , ξn ∈ ∂X j E(tn, un) for all n ∈ N

}
�⇒ ξ ∈ ∂X j E(t, u). (2.19)

We emphasize that in (2.19) closedness is imposed along sequences weakly converging in
X1; thus, for j = 2 condition (2.19) may also be understood as a compatibility requirement
between the duality pairing of X1 and that of X2. Again, we remark that the requirement
(un)n ⊂ SE and the additional compactness information granted by it may turn (2.19) into a
(more standard) closedness condition of the graph of ∂X j E in X j × X∗

j .
Finally, along the footsteps of [21, 26] we will assume the validity of the following chain-

rule condition for the subdifferentials ∂X j E. This condition is only used for constructing the
approximate solutionsUτ (cf. (3.12)) via the solution u j : [0, T ] → X j from Theorem 2.10;
it will not be needed for the major convergence result in Theorem 3.5.

Hypothesis 2.6 (Chain rules) For j = 1, 2, the generalized gradient systems (X j , E,R j )

with subdifferentials ∂X j E satisfy the chain rule <CR>.

Dissipation potentials

In what follows, we will work with two dissipation potentials satisfying the following con-
ditions.

Hypothesis 2.7 For j ∈ {1, 2} the functionals R j : X j → [0,∞) and their conjugates
R∗

j : X∗j → [0,∞) comply with condition <R>.

For later use, we reformulate the superlinear growth conditions (2.2) that we require forR j

andR∗
j in terms of a unique convex, superlinear and monotone function providing a lower

bound for the primal and dual dissipation potentials.

Lemma 2.8 The dissipation potentials R j : X j → [0,∞) fulfill (2.2) if and only if there
exists a convex and increasing function : [0,∞) → [0,∞), with superlinear growth, such
that, for j ∈ {1, 2},

R j (v) ≥ (‖v‖ j ) and R∗
i (ξ) ≥ (‖ξ‖ j,∗) for all v ∈ X j and ξ ∈ X∗j . (2.20)

Proof Clearly, (2.20) implies the superlinear growth (2.2) for the potentials R j and R∗
j .

To check the converse implication, observe that, since R j and R∗
j are superlinear, for each

j ∈ {1, 2} we have

∀ K ≥ 0 ∃ S j
K , S j,∗

K ≥ 0 ∀ v ∈ X j , ξ ∈ X∗
j :

{
R j (v) ≥ K‖v‖ j − S j

K ,

R∗
j (ξ) ≥ K‖ξ‖ j,∗ − S j,∗

K ,
(2.21)

with S j
0 = S j,∗

0 = 0. For fixed K ≥ 0, set SK := max j=1,2{S j
K , S j,∗

K } and define
(r) := sup{Kr − SK : K ≥ 0} for r ∈ [0,∞).

By construction, R j and R∗
j satisfy (2.20). It is immediate to check that  is monotone

increasing, has superlinear growth at infinity, and since (0) = 0, satisfies (r) ≥ 0 for all
r ≥ 0. Moreover,  is convex as it is given by the supremum of linear functions. ��
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We now introduce some specific conditions to deal with the split-step system driven by
the inf-convolution of R1 and R2. Since R1 and R2 are defined on two different Banach
spaces, the effective dissipation potential Reff needs to be carefully specified. It is more
straightforward to first define the dual potentialR∗

eff on the smaller dual spaceX∗
1. Therefore,

let us introduce the functional

R∗ : X∗
1 → [0,∞), R∗(ξ) := R∗

1(ξ)+R∗
2(ξ) for ξ ∈ X∗

1.

We now identifyR∗ as the conjugate of the potential given by the infimal convolution ofR1

and of the functional R2 that extends R2 to the whole of X1 by∞ on X1\X2. We mention
in advance that in (2.22) below we will directly define Reff via a minimum: in the proof of
Lemma 2.9 we will show by the direct method that the infimum is attained.

Lemma 2.9 (Properties of the inf-convolution) Let R2 : X1 → [0,∞) be defined by
R2(v) := R2(v) if v ∈ X2, and by R2(v) := ∞ else. Define

Reff : X1 → [0,∞) Reff (v) := min
v1, v2∈X1, v=v1+v2

(R1(v1)+R2(v2)
)
. (2.22)

Then, the following statements hold:

(1) Reff is lower semicontinuous and convex, with R∗
eff = R∗.

(2) With  from Lemma 2.8 there holds

2

(
1

2CN
‖v‖1

)
≤ Reff (v) ≤ R1(v) ≤ ∗(‖v‖1) for all v ∈ X1. (2.23)

Estimate (2.23) highlights that, ultimately, the relevant Banach space for Reff is X1. That is
why, from now on we will use the notation Xeff := X1.

Proof Preliminarily, observe that also the extended potential R2 is lower semicontinuous
on X1. To see this, take a sequence vn → v in X1 such that lim infn R2(vn) < ∞. Then
vn ∈ X2 andR2(vn) = R2(vn). By coercivity ofR2 and reflexivity of X2 we have vn⇀v in
X2 for a non-relabeled subsequence. Hence, v ∈ X2. SinceR2 is convex and strongly lower
semicontinuous, it is also weakly lower semicontinuous, which yields that lim infn R2(vn) =
lim infn R2(vn) ≥ R2(v) = R2(v).

Proof of Claim (1): Applying [14, Thm.1, p. 178] we immediately find that

R∗
eff = R∗

1 +R2
∗ = R1 +R∗

2|X∗1 = R∗
(where the duality pairing with respect to all the conjugates above is that between X∗

1 and
X1). In turn, thanks to Hypothesis 2.7, dom(R∗

j ) = X∗
j for j ∈ {1, 2}, hence both conjugate

potentials R∗
j are continuous on their common domain X∗

1. Therefore, [14, Thm.1] again

applies, yielding that (R∗
1+R∗

2)
∗ = (R∗∗

1
inf◦ R∗∗

2 ) (where the have simply written R∗
2 in

place ofR∗
2|X∗1 ). Thus,

R∗∗
eff = R∗∗ = (R∗

1+R∗
2)
∗ = (R∗∗

1
inf◦ R∗∗

2 ) = (R1
inf◦ R2) = Reff,

which ensures thatReff is convex and lower semicontinuous on X1.
Moreover, we see that in (2.22) theminimum is attained. Indeed, taking, for a given v ∈ X1

with Reff(v) < ∞, minimizing sequences (v1n)n, (v2n)n ⊂ X1 such that v1n + v2n = v, we
again observe that, by coercivity, up to a (non-relabeled) subsequence we have v1n⇀v1 inX1

and v2n⇀v2 in X2 for some vi ∈ Xi . Hence, we obtain that

Reff(v) ≥ lim inf
n

R1(v
1
n)+ lim inf

n
R2(v

2
n) ≥ R1(v

1)+R2(v
2),
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and the claim follows.
Proof of Claim (2): For all ξ ∈ X∗

1 we observe the following chain of inequalities:


(‖ξ‖1,∗) (1)≤ R∗

1(ξ) ≤ R∗
eff(ξ)

(2)≤ ∗(‖ξ‖1,∗)+∗(‖ξ‖2,∗) (2.24)

(3)≤ ∗(‖ξ‖1,∗)+∗(CN‖ξ‖1,∗
) (4)≤ 2∗(CN‖ξ‖1,∗

)
, (2.25)

where (1) and (2) follow from (2.20), while (3) and (4) are due to (2.12b), also taking into
account the monotonicity of  and CN ≥ 1. Then, (2.23) follows by conjugation. ��

Existence results

It follows from the Hypotheses listed above that the existence result [26, Thm.2.2] applies
to the (generalized) gradient systems (X j , E,R j ), j = 1, 2. In particular, observe that,
since weak convergence in X2 implies weak convergence in X1, Hypothesis 2.4 guarantees
(sequential) lower semicontinuity of E and continuity of ∂tEwith respect to theweak topology
of X2; likewise, Hypothesis 2.5 ensures (sequential) closedness of ∂X2E with respect to the
weak-weak topology of X2×X∗

2. Therefore, we conclude the existence of solutions to the
Cauchy problems for

∂R j (u
′(t))+ ∂X j E(t, u(t)) � 0 in X∗

j a.e. in (0, T ), u(0) = u0 ∈ D0, j ∈ {1, 2}
(2.26)

also satisfying the associated energy-dissipation balance. In fact, by Lemma 2.9 the effective
dissipation potential Reff enjoys the same properties of R1 and R2, and we can likewise
directly conclude an existence result for the Cauchy problem associated with

∂Reff(u
′(t))+ ∂X1E(t, u(t)) � 0 in X∗

1 a.e. in (0, T ), u(0) = u0 ∈ D0 . (2.27)

Theorem 2.10 below states the existence of solutions to the Cauchy problems for (2.26) and
(2.27). In fact, the main objective of the analysis carried out in the ensuing Sects. 3 and 5 will
be to demonstrate that a solution to (2.27) can be constructed via the time-splitting method.

Theorem 2.10 Assume Hypotheses 2.3, 2.4, 2.5, 2.6, and 2.7. Then, for every u0 ∈ D0

and each j ∈ {1, 2, eff} the subdifferential inclusions (2.26) and (2.27) admit a solution
u j ∈ AC([0, T ];X j ) (where Xeff = X1) satisfying u j (0) = u0, and indeed there exist
measurable selections (0, T ) � t �→ ξ j (t) ∈ ∂X j E(t, u j (t)) ∈ X∗j with−ξ j (t) ∈ ∂R j (u′j (t))
for a.a. t ∈ (0, T ), such that (u j , ξ j ) fulfills the energy-dissipation balance

E(t, u j (t))+
∫ t

s

(
R j (u

′
j (r))+R∗

j (−ξ j (r))
)
dr = E(s, u j (s))+

∫ t

s
∂tE(r , u j (r))dr

(2.28)

for every 0 ≤ s ≤ t ≤ T .

It is important to mention that our conditions on the generalized gradient systems
(X j , E,R j ) are slightly weaker than those required in [26]. There, compactness of sub-
levels was required of the energy functional and, accordingly, the lower semicontinuity and
closedness conditions were imposed along sequences converging with respect to the strong
topology. Here, we work in the more general setup of Hypotheses 2.4 and 2.5: in fact, a close
perusal of the proof of [26, Thm.2.2] reveals that its arguments can be adapted to the present
setup, see also [21].
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3 The time-splitting approach

For the time-splittingmethod let us consider a (possibly non-uniform) partition of the interval
[0, T ]

Pτ := {t0τ = 0 < t1τ < · · · < tkτ < tk+1
τ < · · · < t Nτ

τ = T }
with τk = tkτ−tk−1

τ and |τ | := max{τk | k = 1, . . . , Nτ }.
(3.1)

We also introduce the ‘left’ and ‘right’ semi-intervals generated by Pτ , namely

Ik,τleft :=
(
tk−1
τ , tk−1

τ + τk
2

]
, Ik,τright :=

(
tk−1
τ + τk

2 , tkτ
]
. (3.2)

In what follows, we will use the short-hand

tk−1/2
τ := tk−1

τ + τk
2 = 1

2

(
tk−1
τ + tkτ

)
for k = 1, . . . , Nτ . (3.3)

To simplify notation, we introduce the piecewise constant interpolants associated with the
nodes of the partition

tτ : [0, T ] → [0, T ], tτ (0) := 0, tτ (t) := tkτ for t ∈ (tk−1
τ , tkτ ];

tτ : [0, T ] → [0, T ], tτ (T ) := T , tτ (t) := tk−1
τ for t ∈ [tk−1

τ , tkτ ).
(3.4)

We will also use the notation

kτ (t) := k for t ∈ Ik,τleft ∪ Ik,τright and τ̃ (t) := τkτ (t) for t ∈ (0, T ], (3.5)

with τ̃ (0) := τ1.

Repetition operators

A key tool for our analysis are the following operators, defined on the space L1([0, T ];X )

with a (general) separable and reflexive Banach space X :

T
(1)
τ : L1([0, T ];X ) → L1([0, T ];X ); (

T
(1)
τ g

)
(t) :=

{
g(t) for t ∈ Iτ ,kτ (t)

left ,

g
(
t− τ̃ (t)

2

)
for t ∈ Iτ ,kτ (t)

right ,

(3.6a)

T
(2)
τ : L1([0, T ];X ) → L1([0, T ];X ); (

T
(2)
τ g

)
(t) :=

{
g
(
t+ τ̃ (t)

2

)
for t ∈ Iτ ,kτ (t)

left ,

g(t) for t ∈ Iτ ,kτ (t)
right .

(3.6b)

We shall refer to T
(1)
τ and T

(2)
τ as repetition operators, since T

(1)
τ g repeats, on the ‘right’

semi-intervals, the values of the function g from the ‘left’ semi-intervals, while T
(2)
τ g does

the converse, see Fig. 1 for an illustration.
The following result collects some properties of the operators T

( j)
τ : though straightfor-

wardly checked, they will play a key role in our analysis. Ahead of the statement, we recall
that the convergence in the space C0([0, T ];Xw) is, by definition, given by the convergence
of C0([0, T ]; (X , dweak)), where the metric dweak induces the weak topology on a closed
bounded set of the reflexive space X .

Lemma 3.1 For j ∈ {1, 2} we have the following properties:
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Fig. 1 Left: Schematic sketch of a function g generated by a split-step approach with equidistant partition.

Right: The repetition operator T
(1)
τ selects the left semi-intervals and repeats them in the right semi-intervals

1. For all τ ∈ � we have

‖T( j)
τ ‖Lin ≤ 2 ,

where ‖ · ‖Lin is the norm of Lin(L1([0, T ];X );L1([0, T ];X )).
2. T

( j)
τ g → g for every g ∈ L1([0, T ];X ) as |τ | → 0.

3. For any family (gτ )τ ⊂ C0([0, T ];Xw), we have

gτ → g in C0([0, T ];Xw) as |τ | → 0 �⇒ T
( j)
τ gτ → g in L∞([0, T ];Xw) . (3.7)

4. For any family (gτ )τ ⊂ L1([0, T ];X ), we have, in the limit |τ | → 0,

gτ⇀g in L1([0, T ];X ) �⇒ 1

2

(
T

(1)
τ +T

(2)
τ

)
(gτ )⇀g in L1([0, T ];X ) . (3.8)

The proof of Lemma 3.1 will be carried out in Appendix B.

The time-splitting algorithm

We recall the rescaled dissipation potentials R̃ j : X j → [0,∞) given by

R̃ j (v) := 2R j
( 1
2v
)

with conjugates R̃∗
j (ξ) = 2R∗

j (ξ) for j ∈ {1, 2}. (3.9)

For k ∈ {1, . . . , Nτ }, we consider the Cauchy problems associated with (X j , E, R̃ j ):

1. the Cauchy problem for (X1, E, R̃1) with some initial datum u ∈ D0:{
∂R̃1(u′(t))+ ∂E(t, u(t)) � 0 in X∗

1 for a.a. t ∈ Ik,τleft ,

u(tk−1
τ ) = u.

(3.10)

2. the Cauchy problem for (X2, E, R̃2) with some initial datum u ∈ D0:{
∂R̃2(u′(t))+ ∂E(t, u(t)) � 0 in X∗

2 for a.a. t ∈ Ik,τright,

u(tk−1/2
τ ) = u,

(3.11)

(cf. (3.3) for the definition of tk−1/2
τ ).

Thanks to Theorem 2.10, both Cauchy problems admit a solution. We are now in a position
to detail the time-splitting algorithm. Starting from an initial datum u0 ∈ D0, we recursively
define the approximate solution Uτ : [0, T ] → D0 in the following way:

Uτ (0) := u0 and, for t ∈ (tk−1
τ , tkτ ] with k = 1, . . . , Nτ , we define

Uτ as a solution of Cauchy problem (3.10) with u = Uτ (tk−1
τ ) on Ik,τleft ,

Uτ as a solution of Cauchy problem (3.11) with u = Uτ

(
tk−1
τ + τk

2

)
on Ik,τright.

(3.12)

By construction, we have Uτ ∈ AC([0, T ];X1).
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Our main convergence result

Wewill prove the convergence of (a subsequence of) the family of curves (Uτ )τ to a solution
U of the Cauchy problem for the generalized gradient system (1.7), under the additional
singleton condition on ∂X2E.Wemention in advance that the fact that ∂X2E(t, u) is a singleton
does not imply Fréchet differentiability of E at (t, u), cf. e.g. the counterexample in [24, §1.3,
p. 90].

Hypothesis 3.2 (Singleton condition)We assume that

∂X2E(t, u) is a singleton for all (t, u) ∈ [0, T ]×D2. (3.13)

Obviously, due to (2.18), Hypothesis 3.2 implies that, whenever it is non-empty, ∂X1E(t, u)

is also a singleton and coincides with ∂X2E(t, u). Indeed, in Sect. 4.1 we will present a
counterexample to convergence of the split-step scheme, in the case of an energy with multi-
valuedFréchet subdifferentials, i.e. the singleton condition fails.As before,we have to assume
a suitable chain rule for the effective generalized gradient system (X1, E,Reff).We emphasize
that for the upcoming convergence result, the chain-rule Hypothesis 2.6 for the individual
systems (X j , E,R j ) is not really needed, if we assume that the split-step approximationsUτ

are given.

Hypothesis 3.3 (Chain rule for (X1, E,Reff )) The effective generalized gradient system
(X1, E,Reff ) with subdifferential ∂X1E satisfies <CR>.

Remark 3.4 (QYE for R j with j ∈ {1, 2, eff}) As <CR> may be deduced with the help of
the QYE (2.10), it is a natural question to ask whether the validity of QYE for R1 and R2

implies the validity of QYE forReff. In general, this is false, see the example in Sect. 4.2 and
the discussion in Appendix A.

Ourmain convergence result states the convergence of (a subsequence of) the curves (Uτ )τ ,
as |τ | ↓ 0, to a solution of the Cauchy problem for (2.27). We highlight that we even have
convergence of the ‘repeated velocities’ (T

( j)
τ U ′

τ )τ , to the optimal velocities contributing to
Reff(U ′).

Theorem 3.5 (Convergence of time-splitting method) In addition to the assumptions of The-
orem 2.10, assume the ordering condition (2.12), the singleton condition of Hypothesis 3.2,
and the chain rule of Hypothesis 3.3. Starting from an initial datum u0 ∈ D0, define the curves
(Uτ )τ∈� as in (3.12). Then, for any sequence (τ n)n with limn→∞ |τ n | = 0 there exist a (non-
relabeled) subsequence, a curve U ∈ AC([0, T ];X1), some E > 0, and Vj ∈ L1([0, T ];X j )

for j = 1, 2 such that U (0) = u0, U (t) ∈ D1 ∩ SE for all t ∈ [0, T ],
Uτ n (t)⇀U (t) in X1 for all t ∈ [0, T ], (3.14a)

1

2
T

( j)
τ n (U ′

τ n
)⇀Vj in L1([0, T ];X j ) for j = 1, 2, (3.14b)

U ′
τ n

⇀U ′ = V1+V2 in L1([0, T ];X1), (3.14c)

and there exists a function ξ ∈ L1([0, T ];X∗1) such that the pair (U , ξ) solves the subdiffer-
ential inclusion {

∂Reff (U
′(t))+ ξ(t) � 0

∂X1E(t,U (t)) = {ξ(t)} in X∗1 for a.a. t ∈ (0, T ) (3.15)
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and fulfills the energy-dissipation balance, for every 0 ≤ s ≤ t ≤ T ,

E(t,U (t))+
∫ t

s

(Reff (U
′(r))+R∗

eff (−ξ(r))
)
dr = E(s,U (s))+

∫ t

s
∂tE(r ,U (r))dr .

(3.16)

Moreover, (V1, V2) provides an optimal decomposition for U ′, namely

V1(t)+ V2(t) = U ′(t)
R1(V1(t))+R2(V2(t)) = Reff (U ′(t)) = min

v1+v2=U ′(t)
R1(v1)+R2(v2)

}
for a.a. t ∈ (0, T ).

(3.17)

The proof of Theorem 3.5 will be carried out in Sect. 5.We onlymention that, as suggested
by Proposition 2.1, our argument for proving that the curves (Uτ n )n converge to a solution of
(3.15) will be tightly related to the proof of the energy-dissipation balance (3.16). We shall
obtain (3.16) by taking the limit in its approximate version, which is in turn obtained by piec-
ing together the energy-dissipation balances for the individual gradient systems (X j , E,R j ).
In this connection, we mention that, starting from (upper) estimates in place of balances for
the systems (X j , E,R j ) would be sufficient. Hence, imposing the chain-rule Hypothesis 2.6
(X j , E,R j ) could be avoided): in fact, we will need to take the limit only in the approximate
upper energy-dissipation estimate as described in the Introduction, see (1.9).

In order to obtain the approximate version of (3.16) (cf. (5.4) ahead), resorting to the
rescaled dissipation potentials R̃ j proves handy, for it allows us to rewrite in a concise and

suggestive way the two integral termsDrate
τ andDslope

τ encoding the dissipative contributions
to (5.4).

More precisely, let us bring into play the characteristic function of (the union of) the
semi-intervals Ik,τleft , i.e.

χτ : (0, T ) → {0, 1} χτ (t) :=
{
1 if t ∈ Ikτ (t),τ

left ,

0 otherwise.
(3.18)

Recalling R̃ j = 2R j (
1
2 ·) and R̃

∗
j = 2R∗

j , on subintervals [s, t] ⊂ [0, T ]
1. the rate term from (1.10a) rewrites as

Drate
τ ([s, t]) :=

∫ t

s

(
χτ (r) R̃1

(
U ′

τ (r)
)+ (1−χτ (r)) R̃2

(
U ′

τ (r)
) )
dr (3.19a)

2. while the slope term from (1.10b) is given by

Dslope
τ ([s, t]) :=

∫ t

s

(
χτ (r) R̃∗

1(−ξτ (r))+ (1−χτ (r)) R̃∗
2(−ξτ (r))

)
dr . (3.19b)

When we take the limit |τ n | → 0 in the approximate energy-dissipation balance featuring
the two terms above, we will obtain, a by-product, enhanced convergence information for
(Uτ n )n , in addition to the convergences (3.14). Indeed, we will succeed in proving that

E(t,Uτ n (t)) −→ E(t,U (t)) for all t ∈ [0, T ], (3.20a)⎧⎪⎪⎨
⎪⎪⎩
Drate

τ n
([s, t]) −→

∫ t

s
Reff(U

′(r))dr ,

Dslope
τ n ([s, t]) −→

∫ t

s
R∗

eff(−ξ(r))dr
for all [s, t] ⊂ [0, T ] . (3.20b)
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In fact, for the velocities we will even obtain the following, more precise, convergence
statement on all subintervals [s, t] ⊂ [0, T ]:

∫ t

s
R j (

1
2T

( j)
τ n U

′
τ n

(r)) −→
∫ t

s
R j (Vj (r))dr for j = 1, 2. (3.21)

4 Two examples

In the upcoming Sect. 4.1 we exhibit a counterexample to Theorem 3.5 in the case in which
the Fréchet subdifferential does not comply with the singleton condition from Hypothesis
3.2. In Sect. 4.2 we provide two gradient systems (X1, E,R1) and (X2, E,R2) fulfilling all
assumptions of Theorem 3.5.

4.1 Non-convergence for multi-valued @E

Following [19, Section 3.1] we consider the simple case X1 = X2 = R
2 and a one-

homogeneous energy E(t, u) = E(u) = max{|u1|, |u2|}. Clearly, E is convex and its convex
subdifferential is multi-valued, with

∂E(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{±(1, 0)�} for ± u1 > |u2|,
{±(0, 1)�} for ± u2 > |u1|,
{±(θ, 1−θ)�|θ ∈ [0, 1]} for u1 = u2, ±u1 > 0,

{±(θ, θ−1)�|θ ∈ [0, 1]} for u1 = −u2, ±u1 > 0,

[ − 1, 1]×[ − 1, 1] for u = 0.

For a general dissipation potential of the form

R∗(ξ) = a

2
ξ21 +

b

2
ξ22 (4.1)

we can solve the gradient-flow equation for (R2, E,R∗) and obtain a contraction semigroup
on the Hilbert space R

2 (cf. [6, Theorem3.1]). We consider the solution with the initial
condition u0 = u(0) = (2, 1)�, which leads to the piecewise affine solution

⎧⎪⎨
⎪⎩
u(t) = (2−at

1

)
for t ∈ [0, 1

a ],
u(t) = (1− (t− 1

a ) ab
a+b )

(1
1

)
for t ∈ ] 1a , 2

a + 1
b

[
,

u(t) = (0
0

)
for t ≥ 2

a + 1
b .

Note that in themiddle regime the solution satisfies u1 = u2 > 0 and hence the subdifferential
∂E(u(t)) is set-valued. This multi-valuedness is necessary as the choice for (θ, 1−θ) ∈ ∂E(u)

indeed depends onR∗, namely θ = b/(a+b). For later use, it is nice to observe that−u′1(t)
only takes three values, namely a, ab/(a+b), and 0.

We now apply the split-step algorithm for the two dissipation potentials

R∗
1(ξ) = a1

2
ξ21 +

b1
2

ξ22 and R∗
2(ξ) = a2

2
ξ21 +

b2
2

ξ22 .

Clearly, we have the effective potentials

R∗
eff(ξ) = a

2
ξ21 +

b

2
ξ22 and Reff(ξ) = 1

2a
ξ21 +

1

2b
ξ22 with a = a1+a2 and b = b1+b2.
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The three gradient systems (R2, E,R∗
eff), (R2, E, 2R∗

1), and (R2, E, 2R∗
2) have the same

form as the gradient system (R2, E,R∗) with the general potentialR from (4.1). Hence, the
obtained solutions are again piecewise affine and V := −u′(t) only takes three values.

In the first regime u1(t) > |u2(t)| we have the three velocities:

R∗
eff : Veff =

(
a1+a2

0

)
, 2R∗

1 : V1 =
(
2a1
0

)
, 2R∗

2 : V2 =
(
2a2
0

)
.

Hence, we observe that the split-step solutions uτ oscillate between the two velocities V1 and
V2 in such away that theweak limit of−u′τ equals 1

2 (V1+V2) =
(a1+a2

0

)
. Hence, in this regime

(where ∂E(u) is single-valued), we have convergence of uτ to ueff as Veff = 1
2 (V1+V2).

However, for t ∈ ] 1a , 2
a + 1

b

[
the situation is different, because for u1(t) = u2(t) > 0 the

subdifferential is multi-valued. The three velocities are

R∗
eff : Veff = ab

a+b

(
1

1

)
, 2R∗

1 : V1 = 2a1b1
a1+b1

(
1

1

)
, 2R∗

2 : V2 = 2a2b2
a2+b2

(
1

1

)
.

Clearly, for t ∈ ] 1a , 2
a + 1

b

[
we obtain

uτ (t) → ulim(t) :=
(
1

1

)
− (t− 1

a )
1

2

(
V1+V2

)
, while ueff(t) =

(
1

1

)
− (t− 1

a ) V .

We always have |V | ≥ ∣∣ 1
2 (V1+V2)

∣∣ but in general with a strict inequality, e.g. for (a1, b1) =
(1, 3) and (a2, b2) = (3, 1) we have a = b = 4 and obtain Veff =

(2
2

)
and V1 = V2 =

(3/2
3/2

)
.

We observe that the effective solution has a higher speed and is reaching u(t) = 0
already at t = 1/4 + 1/2 = 0.75. However, the split-step solution uτ , which is actually
not oscillating with τ because of V1 = V2, is slowed down as it reaches uτ (t) = 0 only for
t = 1/4+ 2/3 ≈ 0.917.

Remark 4.1 In this example one can follow the limiting procedure in the energy-dissipation
balance. One observes that the liminf estimate for the velocities always works. However,
because of the limiting rate being too small, there is a true drop. With t1 = 1/a and t2 =
2/a + 1/b and (a1, b1) = (1, 3) and (a2, b2) = (3, 1) we have

1

t2−t1

∫ t2

t1
R̃Jτ (t)(u

′
τ )dτ =

1

2

(
R̃1(V1)+ R̃2(V2)

)
= 1

2

( a1b1
a1+b1

+ a2b2
a2+b2

)
= 3

4
.

However, the limit ulim of uτ satisfies u′lim = V1 = V2 = 3
2

(1
1

)
and

1

t2−t1

∫ t2

t1
Reff(u

′
lim(t))dt = Reff

(
Vj
) = 1

8
|Vj |2 = 9

16
�

3

4
.

Such a drop cannot be recovered if we treat the rate part of the dissipation and the slope part
of the dissipation separately, as is done in [32], see also the discussion in [20, Sec. 5.4]. The
approach of EDP convergence as studied in [12, 23, 25] may be capable to pass to the limit
as well, but this lies outside the range of this paper.

4.2 A doubly nonlinear PDE example

In this section we consider a doubly nonlinear PDE of Allen-Cahn type where the above
split-step method applies. Let � ⊂ R

d be a bounded Lipschitz domain. On the

Banach spaces X1 = Lp(�) with p ∈ (1, pd ], and X2 = H1
0(�) (4.2a)
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with pd = 2d
d−2 for d ≥ 3, and pd arbitrary in (1,∞) for d ∈ {1, 2}, so that X2 ⊂

X1 densely and continuously, we consider the

dissipation potentials R1(v) := 1

p
‖v‖pLp(�) and R2(v) := 1

2
‖∇v‖2L2(�)

, (4.2b)

and the

energy functional E : [0, T ] × Lp(�) → (−∞,∞] defined via (4.2c)

E(t, u) :=
{∫

�
1
2 |∇u|2+W (u)dx − 〈�(t), u〉H1

0(�) for u ∈ H1
0(�) and W (u) ∈ L1(�),

∞ otherwise.

In what follows, we will suppose that

� ∈ C1([0, T ];H−1(�)), (4.3a)

and, following [28, Sec. 7], we will require that W : R → R satisfies W ∈ C2(R) and

∃CW ,1,CW ,2,CW ,3 > 0 ∃ sp ∈ (1, pd
p∗ ) ∀ r ∈ R :

⎧⎨
⎩
W ′′(r) ≥ −CW ,1,

W (r) ≥ −CW ,2,

|W ′(r)| ≤ CW ,3(1+|r |sp ),
(4.3b)

where with p∗ is the dual exponent to p.
Theorem4.2 belowaddresses the validity of the assumptions forTheorem3.5 in the context

of the two gradient systems (X1, E,R1) and (X2, E,R2). Observe that the corresponding
evolutionary equations are

(X1, E,R1) : |u′|p−2u′ −�u +W ′(u) = � in (0, T )×�,

(X2, E,R2) : −�u′ −�u +W ′(u) = � in (0, T )×�.

Theorem 4.2 Under conditions (4.3), the gradient systems (X1, E,R1) and (X2, E,R2) from
(4.2) comply with Hypotheses 2.3–2.7 and Hypothesis 3.2. The QYE (2.10) holds forR1 and
R2; but it is valid for Reff if and only if p ≤ 2. In particular, for p ≤ 2 the solution of the
gradient system (X1, E,Reff ) can be constructed by the time-splitting method.

The proof will be carried out in the two following sections, starting with a discussion of the
properties of the energy functional E.

Properties of the energy

The lower bound onW ′′ required in (4.3b) will be used to derive λ-convexity of E, the bound
on W shall provide the lower bound on the energy, the third bound on W will be exploited
for proving the closedness of the subdifferentials of E.

Indeed, it is immediate to check that E, whose proper domain dom(E) is of the form
[0, T ]×D0 with D0 ⊂ H1

0(�), is bounded from below and complies with the power-control
condition (2.1). Since for every E > 0 the corresponding sublevel set SE (cf. (2.16)) is
contained in a bounded set in H1

0(�), we also immediately verify Hypothesis 2.4.
The same arguments as in the proof of [28, Lem.7.3] (cf. also [28, Rmk.7.4]) yield the

following representations for the Fréchet subdifferentials ∂X j E of E(t, ·):
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for X1 = Lp(�) : ∂X1E(t, u) =
{
−�u+W ′(u)−�(t) if −�u+W ′(u)−�(t) ∈ Lp∗(�),

∅ else;

for X2 = H1
0(�) : ∂X2E(t, u) =

{
−�u+W ′(u)−�(t) if −�u+W ′(u)−�(t) ∈ H−1(�),

∅ else.

Hence, the singleton condition fromHypothesis 3.2 is satisfied. As for the closedness require-
ment from Hypothesis 2.5, let tn → t in [0, T ] and let us consider a sequence (un)n ⊂ SE
for some E > 0, weakly converging to some u in Lp(�). Hence, (un)n is bounded in H1

0(�)

and thus un⇀u in H1(�), so that −�un⇀ − �u in H−1(�), and un → u strongly in
Lpd−ε(�) (as pd is the critical exponent from the Rellich-Kondrachov theorem). In partic-
ular, un → u, and thus W ′(un) → W ′(u), a.e. in �. Furthermore, W ′(un) ≤ C |un |sp a.e.
in �. Since sp <

pd
p∗ , by dominated convergence we conclude that W ′(un) → W ′(u) in

Lp∗(�). Also using that �(tn) → �(t) in H−1(�), we immediately conclude the closedness
of both subdifferentials ∂X j E.

Finally, it was shown in [28, Lem.7.3] that E(t, ·) is λ-convex in L1(�), i.e.

∃ λ < 0 ∀ t ∈ [0, T ] ∀ u0, u1 ∈ D0 ∀ θ ∈ [0, 1] :
E(t, uθ ) ≤ (1−θ)E(t, u0)+ θE(t, u1)− λ

2
θ(1−θ)‖u0−u1‖2L1(�)

with uθ = (1−θ)u0 + θu1

(4.4)

Then, E(t, ·) are λ-uniformly convex in X1 and in X2 (namely, estimate (4.4) holds with
‖ · ‖L1(�) replaced by ‖ · ‖Lp(�) and ‖ · ‖H1

0(�), respectively, and λ suitably adjusted). Then,
we are in a position to apply [21, Prop.A.1] and conclude the validity of the chain rule
property <CR> for (E, ∂X j E).

Properties of the dissipation potentialsR1,R2 andReff

Finally, we discuss the validity of Hypotheses 2.7 and the QYE 2.10 for R1 and R2. Obvi-
ously, the dissipation potential R1 and its conjugate R∗

1 comply with condition (2.2); also
R2 has superlinear growth, since on X2 = H1

0(�) the function ‖∇ · ‖L2(�) provides a norm
equivalent to the H1(�)-norm. Finally, we observe that

R∗
2(ξ) = sup

v∈H1
0(�)

{
〈v, ξ 〉 − 1

2
‖∇v‖2L2(�)

}
= 1

2
‖∇v∗‖2L2(�)

,

where v∗ ∈ H1
0(�) is the unique solution of ξ = −�v∗ in the H1

0×H−1 duality. Hence,

∃ c,C > 0 ∀ ξ ∈ H−1(�): c‖ξ‖2H−1(�)
≤ R∗

2(ξ) = 1

2
‖∇(−�)−1ξ‖2L2(�)

≤ C‖ξ‖2H−1(�)
.

(4.5)

We now discuss the validity of the Quantitative Young Estimate (2.10) forReff,

Reff(u) = min
v∈Lp(�)

(
1

p
‖v−u‖pLp(�)+

1

2
‖∇v‖2L2(�)

)
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(where we omit to detail that the term ‖∇v‖2
L2(�)

is replaced by∞ if v ∈ L p(�)\H1
0(�), cf.

(2.22)). We will distinguish the cases p ∈ (1, 2), p = 2 and p > 2, and show that the QYE
holds if and only if p ≤ 2. For this, recall Xeff = X1 = Lp(�).

QYE for p ∈ (1, 2). Using ‖∇u‖L2(�) ≥ C‖u‖Lpd (�) on X2 = H1
0(�), we have

R2(v) ≥ 1

2
‖∇v‖2L2(�)

≥ C

2
‖v‖2Lpd (�).

Since pd > 2 > p, we obtain

∃ c > 0 ∀ v ∈ H1
0(�) : R2(v) ≥ C‖v‖2Lpd (�) ≥ c‖v‖2Lp(�).

Therefore, R1 and R2 comply with condition (A.2) of Lemma A.2, which guarantees the
validity of the QYE forReff.

QYE for p = 2. In this case,

R∗
eff(ξ) = R∗

1(ξ)+R∗
2(ξ) = 1

2
‖ξ‖2L2(�)

+ 1

2
‖∇(−�)−1ξ‖2L2(�)

for all ξ ∈ X∗
1 = L2(�).

Hence, also for Reff we have both a quadratic upper bound and a quadratic lower bound.
Therefore, we may apply Lemma 2.2 and conclude that Reff complies with the QYE.

Failure of QYE for p > 2. Below we will establish the following two statements:

(A) ∃ v �= 0 ∃CA > 0 ∀ λ > 0 : Reff(λv) ≤ CAλ2 ,

(B) ∃ (ξn)n∈N in X∗
1 ∃CB > 0 : ‖ξn‖Lp∗ (�) →∞ and R∗

eff(ξn) ≤ CB‖ξn‖p
∗

Lp∗ (�)
.

Step 1: (A) and (B) imply that QYE does not hold. In (A) we can choose λ = λn = ‖ξn‖p
∗/2

Lp∗ .
Then, (A) and (B) imply the upper bound

Reff(λnv)+R∗
eff(ξn) ≤

(
CA + CB

)‖ξn‖p∗Lp∗ (�)
for all n ∈ N. (4.6)

However, QYE would imply the lower bound

Reff(λnv)+R∗
eff(ξn) ≥ c‖λnv‖Lp(�)‖ξn‖Lp∗ (�) − C = c‖v‖Lp(�) ‖ξn‖1+p∗/2

Lp∗ (�)
− C .

Because of p > 2 we have p∗ = p/(p − 1) ∈ (1, 2) and hence p∗ � 1 + p∗/2. Since, by
(B) we can take ‖ξn‖Lp∗ arbitrarily large, we see that the lower bound derived from QYE
contradicts the upper bound (4.6). Hence, QYE is false.
Step 2: (A) holds. We choose any v ∈ Lp(�) ∩ H1

0(�) with v �= 0. Then, Reff(λv) ≤
R2(λv) = CAλ2 with CA = 1

2‖∇v‖2
L2(�)

.

Step 3: (B) holds.We set ξn(x) = n sin
(
n1−p∗/2x1

)
and observe

‖ξn‖p
∗

Lp∗ =
∫

�

n p∗ ∣∣ sin(n1−p∗/2x1)
∣∣p∗dx ≥ n p∗

∫
�

∣∣ sin(n1−p∗/2x1)
∣∣2dx ≥ n p∗

2

√|�|,
where we used | sin α|p∗ ≥ | sin α|2 because of p∗ ∈ (1, 2). Moreover, using ξn = −∂x1�n

for �n(x) = n p∗/2 cos(n1−p∗/2x1) we find

‖ξn‖H1
0(�)∗ = sup

‖v‖
H10
≤1

∫
�

ξn vdx = sup
‖v‖

H10
≤1

∫
�

−∂x1�n vdx

= sup
‖v‖

H10
≤1

∫
�

�n ∂x1vdx ≤ ‖�n‖L2(�) ≤ n p∗/2√|�| .
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With the above estimates, we arrive at R∗
eff(ξn) = R∗

1(ξn) + R∗
2(ξn) = 1

p∗ ‖ξn‖p
∗

Lp∗ (�)
+

1
2‖ξn‖2H1

0(�)∗ ≤ C̃ n p∗ , and (B) follows with CB = 2C̃/
√|�|.

5 Convergence proof of the time-splittingmethod

Our argument for the proof of Theorem 3.5 is carried out in the following steps, tackled in
the upcoming Sects. 5.1–5.4. It follows the classical existence theory for solutions to gradient
flow equations, see the survey [20].

(1) A priori estimates and compactness: From the energy-dissipation balances for the
Cauchy problem (3.10) on the semi-intervals (Ik,τleft )

Nτ

k=1, and for (3.11) on the semi-intervals

(Ik,τright)
Nτ

k=1, we will deduce an overall energy-dissipation balance satisfied on the interval
[0, T ] by the curves Uτ from (3.12). Therefrom we will derive all the a priori estimates
on the family (Uτ )τ , cf. Proposition 5.1 ahead. Consequently, we will deduce suitable
compactness properties for a sequence (Uτ n )n .

We then pass to the limit in the energy-dissipation balance, by separately addressing

(2) the limit passage in the rate term Drate
τ ([0, T ]), where we use Reff = R1

inf◦ R2, and

(3) the limit passage in the slope term Dslope
τ ([0, T ]), where we exploit the singleton

condition (3.13).

With Steps (1)–(3) we will thus show that (along a subsequence) the curves (Uτ n )n converge
to a curve U ∈ AC([0, T ];X1) for which there exists ξ ∈ L1([0, T ];X∗

1) such that the pair
(U , ξ) complies with the upper energy-dissipation estimate

E(T ,U (T ))+
∫ T

0

(Reff(U
′(r))+R∗

eff(−ξ(r))
)
dr ≤ E(0,U (0))+

∫ T

0
∂tE(r ,U (r))dr .

(5.1)

(4)Conclusion of the proof :Wewill apply the energy-dissipation principle fromProposition
2.1 to conclude that (U , ξ) fulfills the subdifferential inclusion (3.15) and the energy-
dissipation balance (3.16). With a careful argument based on the limit passage from the
approximate energy-dissipation balance to (3.16), we then derive the optimal decomposi-
tion (3.17) and the enhanced convergences (3.20) and (3.21).

5.1 Approximated energy-dissipation balance and a priori estimates

To state the approximate energy-dissipation balance we introduce a curve ξτ : [0, T ] → X∗
2

encompassing the force terms that appear in the subdifferential inclusions (3.10) & (3.11).
We will separately define ξτ on the sets

⋃Nτ

k=1 I
k,τ
left and

⋃Nτ

k=1 I
k,τ
right whose union gives [0, T ].

Recall that, for every k ∈ {1, . . . , Nτ }, on the semi-interval Ik,τleft the curve Uτ fulfills the
energy dissipation balance

E(t,Uτ (t))+
∫ t

tk−1
τ

(
R̃1(U

′
τ (r))+R̃∗

1(−ξτ (r))
)
dr = E(tk−1

τ ,Uτ (tk−1
τ ))+

∫ t

tk−1
τ

∂tE(r ,Uτ (r))dr

for tk−1
τ ≤ t ≤ tk−1/2τ (5.2a)
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(recall tk−1/2
τ = tk−1

τ + τk
2 ), where ξτ :⋃Nτ

k=1 I
k,τ
left → X∗

1 satisfies

ξτ (r) ∈ ∂X1E(r ,Uτ (r)) ∩ (−∂R̃1(U
′
τ (r))) for a.a. r ∈

Nτ⋃
k=1

Ik,τleft . (5.2b)

Likewise, on each interval Ik,τright an energy-dissipation balance involving the dissipation poten-

tial R̃2 holds, namely

E(t,Uτ (t))+
∫ t

tk−1/2
τ

(
R̃2(U

′
τ (r))+R̃∗

2(−ξτ (r))
)
dr

= E(tk−1/2
τ ,Uτ (tk−1/2

τ ))+
∫ t

tk−1/2
τ

∂tE(r ,Uτ (r))dr for tk−1/2
τ ≤ t ≤ tkτ ,

(5.3a)

where ξτ :⋃Nτ

k=1 I
k,τ
right → X∗

2 satisfies

ξτ (r) ∈ ∂X2E(r ,Uτ (r)) ∩ (−∂R̃2(U
′
τ (r))) for a.a. r ∈

Nτ⋃
k=1

Ik,τright. (5.3b)

Combining (5.2a) and (5.3a) we deduce the overall energy-dissipation balance satisfied
by the curves Uτ , featuring the rate and slope terms Drate

τ and Dslope
τ from (3.19), which are

defined by alternating between R̃1 and R̃2. This energy balance is the starting point for the
derivation of the first set of a priori estimates on the curves (Uτ )τ∈�.

Proposition 5.1 The functions (Uτ )τ∈� and (ξτ )τ∈� satisfy the energy-dissipation balance

E(t,Uτ (t))+Drate
τ ([s, t])+Dslope

τ ([s, t]) = E(s,Uτ (s))+
∫ t

s
∂tE(r ,Uτ (r))dr (5.4)

for every [s, t] ⊂ [0, T ]. Furthermore, there exists a positive constant C > 0 such that the
following estimates are valid for all τ ∈ �:

sup
t∈[0,T ]

E(Uτ (t)) ≤ C, sup
t∈[0,T ]

|∂tE(t,Uτ (t))| ≤ C, (5.5a)

Drate
τ ([0, T ]) ≤ C, (5.5b)

Dslope
τ ([0, T ]) ≤ C, (5.5c)

and the families
(
χτU ′

τ

)
τ∈�

⊂ L1([0, T ];X1) and
(
(1−χτ )U ′

τ

)
τ∈�

⊂ L1([0, T ];X2) are

uniformly integrable; in particular, (U ′
τ )τ∈� ⊂ L1([0, T ];X1) is uniformly integrable.

Proof The energy-dissipation balance (5.4) follows on [0, t] simply adding (5.2a) and (5.3a)
over all relevant intervals. By subtracting the result for [0, s] from that for [0, t] the desired
result for [s, t] follows.

Estimates (5.5) follow from standard arguments (cf., e.g., [26, Prop. 6.3]), which rely on
the power-control estimate (2.1) giving

∫ t
s ∂tE(r ,Uτ (r))dr ≤ C#

∫ t
s E(r ,Uτ (r))dr . Hence,

via Grönwall’s lemma, from (5.4) we derive the energy estimate in (5.5a); the power estimate
immediately follows via (2.1). From (5.4) we then immediately conclude (5.5b) and (5.5c).

From (5.5b), taking into account that the termsR j
( 1
2U

′
τ

)
contribute toDrate

τ and that each
R j have superlinear growth, we deduce that the families (χτU ′

τ )τ∈� and ((1−χτ )U ′
τ )τ∈�

are uniformly integrable in L1([0, T ];X1) and L1([0, T ];X2), respectively. ��
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It is now convenient to rewrite the ‘rate’ and ‘slope’ terms featuring in (5.4) in terms
of the repetition operators T

( j)
τ from (3.6). Their role, in the context of the present time-

splitting scheme, is now clear: T
(1)
τ repeats “1-steps” and omits “2-steps”, while T

(2)
τ does

the converse. Trivial calculations based on the definition of the repetition operators identify
the contributions to Drate

τ and Dslope
τ with quantities involving the ‘repeated rates’ and the

‘repeated forces’, namely

∫ tkτ

0
χ

( j)
τ (r) R̃ j (V (r)) dr =

∫ tkτ

0
R j (

1
2T

( j)
τ V (r))dr for V ∈ L1([0, T ];X j ),

∫ tkτ

0
χ

( j)
τ (r) R̃∗

j (�(r))dr =
∫ tkτ

0
R∗

j (T
( j)
τ �(r))dr for � ∈ L1([0, T ];X∗

j ),

(5.6)

where we have used the place-holder

χ(1)
τ := χτ and χ(2)

τ := 1−χτ .

Therefore, the rate and slope parts of the dissipation take the form

Drate
τ

([0, tkτ ]) =
∫ tkτ

0

{
R1

(
1
2T

(1)
τ U ′

τ (r)
)
+R2

(
1
2T

(2)
τ U ′

τ (r)
)}

dr , (5.7a)

Dslope
τ

([0, tkτ ]) =
∫ tkτ

0

{
R∗

1

(
−T

(1)
τ ξτ (r)

)
+R∗

2

(
−T

(2)
τ ξτ (r)

)}
dr . (5.7b)

We stress that, in (5.7a) the termsT
( j)
τ U ′

τ are the ‘repeated rates’T
( j)
τ (U ′

τ ), not to be confused

with the rates of the repeated curves T
( j)
τ Uτ . As a straightforward consequence of estimates

(5.5b) and (5.5c), combined with (5.7) and the superlinear growth of R j and R∗
j , we have

the following

Corollary 5.2 For j ∈ {1, 2} the families (T
( j)
τ U ′

τ )τ∈� ⊂ L1([0, T ];X j ) and (T
( j)
τ ξτ )τ∈� ⊂

L1([0, T ];X∗j ) are uniformly integrable.

Relying on Proposition 5.1 and Corollary 5.2 we obtain the following compactness result.
In (5.8a) below we refer to the convergence in the space C0([0, T ];X1,w), whose meaning
has been specified prior to the statement of Lemma 3.1.

Corollary 5.3 Let (τ n)n ⊂ � fulfill limn→∞ |τ n | = 0. Then, there exist a (non-relabeled)
subsequence and a limit curve U ∈ AC([0, T ];X1) such that the following convergences
hold as n →∞:

Uτ n → U in C0([0, T ];X1,w), (5.8a)

U ′
τ n

⇀U ′ in L1([0, T ];X1), (5.8b)

and

lim inf
n→∞ E(t,Uτ n (t)) ≥ E(t,U (t)) for all t ∈ [0, T ], (5.9a)

∂tE(t,Uτ n (t)) → ∂tE(t,U (t)) for all t ∈ [0, T ]. (5.9b)
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Furthermore, for j ∈ {1, 2} there exist Vj ∈ L1([0, T ];X j ) and
¯̄ξ j ∈ L1([0, T ];X∗j ) such

that, up to a further subsequence, we have as n →∞
1

2
T

( j)
τ n U

′
τ n

⇀Vj in L1([0, T ];X j ), (5.10a)

T
( j)
τ n ξτ n⇀

¯̄ξ j in L1([0, T ];X∗j ), (5.10b)

and there holds

V1(t)+ V2(t) = U ′(t) for a.a. t ∈ (0, T ). (5.11)

Proof Convergence (5.8b) follows from the uniform integrability of the family (U ′
τ )τ∈� ⊂

L1([0, T ];X1), while (5.8a) ensues, e.g., from the Arzelà-Ascoli compactness type result in
[2, Prop. 3.3.1]. Then, the energy and power convergences (5.9) follow from condition (2.17).

Now, Corollary 5.2 ensures that, up to a subsequence, the sequences
( 1
2T

( j)
τ n U

′
τ n

)
n and

(T
( j)
τ n ξτ n )n have a weak limit in L1([0, T ];X j ) and L1([0, T ];X∗

j ), respectively. Relation
(5.11) follows from combining convergence (5.8b) with item (4) in Lemma 3.1. ��

In the following sections we will address the passage to the limit in the ‘rate term’ from
(3.19a) and the ‘slope term’ from (3.19b).

5.2 Liminf estimate for the rate term

We are going to prove the following

Claim 1 : lim inf
n→∞ Drate

τ n
([0, T ]) ≥

∫ T

0
Reff(U

′(r))dr . (5.12)

Indeed,

lim inf
n→∞ Drate

τ n
([0, T ]) (1)= lim inf

n→∞

∫ T

0

{
R1(

1
2T

(1)
τ n
U ′

τ n
(r))+R2(

1
2T

(2)
τ n
U ′

τ n
(r))

}
dr

(2)≥
∫ T

0
{R1(V1(r))+R2(V2(r))} dr

(3)≥
∫ T

0
Reff(U

′(r))dr ,
(5.13)

where (1) follows from (5.7a), (2) is due to convergences (5.10a) and the convexity and lower
semicontinuity of R j , while (3) follows by property (5.11) and the definition of Reff as an
infimal convolution. Hence, Claim 1 is established.

5.3 Liminf estimate for the slope term

Claim 2: There exists ξ ∈ L1([0, T ];X∗
1) such that

∂X1E(t,U (t)) = ∂X2E(t,U (t)) = {ξ(t)} for a.a. t ∈ (0, T ), (5.14a)

lim inf
n→∞ Dslope

τ n ([0, T ]) ≥
∫ T

0

{R∗
1(−ξ(r))+R∗

2(−ξ(r))
}
dr . (5.14b)
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Clearly, recalling (5.7b) and convergences (5.10b) we immediately have, by the convexity
and lower semicontinuity ofR∗

j ,

lim inf
n→∞ Dslope

τ n ([0, T ]) = lim inf
n→∞

∫ T

0

{
R∗

1(−T
(1)
τ n

ξτ n (r))+R∗
2(−T

(2)
τ n

ξτ n (r))
}
dr

≥
∫ T

0

{
R∗

1(−¯̄ξ1(r))+R∗
2(−¯̄ξ2(r))

}
dr ,

(5.15)

where ¯̄ξ j ∈ L1([0, T ];X∗
j ) is the weak limit of the sequence (T

( j)
τ n ξτ n )n , cf. Corollary 5.3.

In the following lines we demonstrate that ¯̄ξ1 and ¯̄ξ2 coincide by resorting to the ‘singleton
condition’ from Hypothesis 3.2. For this we use a Young measure argument.

With this aim, it will be convenient to introduce the ‘repeated curves’

T
(1)
τ Uτ : [0, T ] → D0, T

(2)
τ Uτ : [0, T ] → D0, (5.16)

with the convention that T
(1)
τ Uτ (t = 0) = T

(2)
τ Uτ (t = 0) = u0. Note that T

( j)
τ Uτ may no

longer be continuous, but we immediately observe that, sinceUτ n → U in C0([0, T ];X1,w),
applying the continuity of the repetition operators (cf. item (3) in Lemma 3.1) we have

T
( j)
τ n Uτ n → U in L∞([0, T ];X1,w) for j ∈ {1, 2}. (5.17)

By construction and using (5.2b) and (5.3b), it now follows that

∂X j E(t, T
( j)
τ n Uτ n (t)) = {T( j)

τ n ξτ n (t)} for a.a. t ∈ (0, T ), for j ∈ {1, 2}. (5.18)

Relying on (5.18) we will infer further information on the limits ¯̄ξ j .
For this, we resort to a Young-measure compactness result, [29, Thm.3.2], which states

that, up to a (non-relabeled) subsequence, the sequences (T
(1)
τ n ξτ n )n and (T

(2)
τ n ξτ n )n admit

two limiting Young measures (μ
j
t )t∈(0,T ), with μ1

t ∈ Prob(X∗
1) and μ2

t ∈ Prob(X∗
2) for a.a.

t ∈ (0, T ), enjoying the following properties for j ∈ {1, 2}:
1. the supports of themeasuresμ

j
t are contained in the set of the limit points of the sequences

(T
( j)
τ n ξτ n (t))n in the weak topology of X∗

j , i.e. for a.a. t ∈ (0, T ) we have

supp(μ j
t ) ⊂ LsweakX∗j

({T( j)
τ n ξτ n (t)}n

) := ⋂
k≥1

{T( j)
τ l ξτ l (t) : l ≥ k}

weak
, (5.19a)

where the notation refers to the notion of lim sup in the sense of the Kuratowski conver-
gence of sets, cf. e.g. [4];

2. the weak limits ¯̄ξ j of (T
( j)
τ n ξτ n )n in L1([0, T ];X∗

j ) coincide with the barycenters of the

measures μ
j
t , namely

¯̄ξ j (t) =
∫
X∗

ζdμ j
t (ζ ) for a.a. t ∈ (0, T ). (5.19b)

It turns out that supp(μ j
t ) is a singleton for j = 1, 2. Indeed, using the convergence

of T
( j)
τ n Uτ n → U in L∞([0, T ];X1,w) by (5.17), the subdifferential inclusions (5.18), and

the closedness property (2.19), we have that LsweakX∗j

({T( j)
τ n ξτ n (t)}n

) ⊂ ∂X j E(t,U (t)) for a.a.

t ∈ (0, T ) and j ∈ {1, 2}. From (5.19a) we then infer

123



On time-splitting methods for gradient flows... Page 31 of 49    63 

supp(μ1
t ) = supp(μ2

t ) = LsweakX∗j
({T( j)

τ n ξτ n (t)}n
) = ∂X j E(t,U (t)) = {ξ(t)} for a.a. t ∈ (0, T ).

By (5.19b) we then conclude that ¯̄ξ1 = ξ = ¯̄ξ2. Hence, the liminf estimate (5.14b) follows
from the previously observed (5.15), and Claim 2 is established.

5.4 Conclusion of the proof of Theorem 3.5

Relying on convergences (5.8), on the lower semicontinuity and continuity properties of E
and ∂tE (cf. Hypothesis 2.4), and on the lower semicontinuity estimates (5.12) from Claim
1 and (5.14) from Claim 2, we are in a position to take the limit in the energy-dissipation
balance (5.4), written on the interval [0, T ], and thus conclude the validity of the energy-
dissipation inequality (5.1) along a curve U ∈ AC([0, T ];X1) and ξ ∈ L1([0, T ];X∗

1). By
lower semicontinuity, we immediately have supt∈[0,T ] E(U (t)) ≤ C withC > 0 from (5.5a),
and thus supt∈[0,T ] |∂tE(t,U (t))| ≤ C . Therefore, from (5.1) we infer that

∫ T

0

(Reff(U
′(r))+R∗

eff(−ξ(r))
)
dr < ∞.

Since Hypothesis 3.3 provides the chain rule for the effective system, we deduce that t �→
E(t,U (t)) is absolutely continuous on [0, T ], and that the chain rule formula (2.3) holds for
the pair (U , ξ). Then, Proposition 2.1 allows us to conclude that (U , ξ) solves (3.15) and
fulfills the energy-dissipation balance (3.16).

Now, it remains to show property (3.17), i.e. the weak limits Vj of
( 1
2T

( j)
τ n U

′
τ n

)
n provide an

optimal decomposition ofU ′ in the sense that V1+ V2 = U ′ as well asR1(V1)+R2(V2) =
Reff(U ′) a.e. in (0, T ).

To see this, we first observe that the limit passage from the approximate energy-dissipation
balance (5.4) to the limit energy-dissipation balance (3.16) on the interval [0, T ] ultimately
implies that the liminf estimates (5.12) and (5.14b) turn into convergences (see e.g. [26,
Thm.4.4] or [27, Thm.3.11] for the standard argument). In particular, combining the con-
vergences for the rate term with (5.13) we conclude

∫ T

0
Reff(U

′(r))dr = lim
n→∞Drate

τ n
([0, T ]) ≥

∫ T

0
{R1(V1(r))+R2(V2(r))}dr

≥
∫ T

0
Reff(U

′(r))dr ,

which turns the above relations into a chain of equalities. Hence, from

lim
n→∞

∫ T

0

{
R1(

1
2T

(1)
τ U ′

τ (r))+R2(
1
2T

(2)
τ U ′

τ (r))
}
dr =

∫ T

0
{R1(V1(r))+R2(V2(r))} dr

we obtain the individual convergences (3.21) on the interval [0, T ], as the liminf of each
integral term on the left-hand side is estimated from below by the corresponding term on the
right-hand side.

Finally, recall that U ′ = V1 + V2 a.e. in (0, T ), so that Reff(U ′) ≤ R1(V1) + R2(V2)
a.e. in (0, T ). Combining this with the fact that

∫ Reff(U ′)dr equals
∫ {R1(V1)+R2(V2)}dr

ultimately leads to the desired optimality property Reff(U ′) = R1(V1) + R2(V2) a.e. in
(0, T ). Hence, we conclude the validity of (3.17), and thus, the proof of Theorem 3.5. ��
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Finally, we briefly comment on the enhanced convergences (3.20). It is clear that it suffices
to show the convergence results on intervals of the form [0, t]. The technical issue arises
because a general t ∈ (0, T ) is in general not aligned with the partition Pτ of (3.1).

To show the enhanced convergence, we recall the time-interpolants tτ : [0, T ] → [0, T ]
from (3.4), which satisfy tτ (t) → t for τ → 0. With this, we repeat the argument from above
for proving the convergence of the rate and slope terms, while passing from the approximate
energy-dissipation balance (5.4) on [0, tkτ ] to the limit energy-dissipation balance (3.16) on
the interval [0, t]. Using the liminf estimates for energy and powers in (5.9a) and (5.9b), it
again suffices to show a liminf estimate for the rate and slope terms on intervals [0, t]. For
convenience, we consider only the rate term, because the slope can be treated analogously.
In particular, it suffices to show the following liminf estimate:

lim inf
τ→0

∫ tτ (t)

0
R j (

1
2T

( j)
τ U ′

τ (r))dr ≥
∫ t

0
R j (Vj (r))dr ,

where 1
2T

( j)
τ U ′

τ =: V ( j)
τ ⇀Vj in L1([0, T ];X j ). Introducing W ( j)

τ := χ[0,tτ (t)]V
( j)
τ ∈

L1([0, T ];X j ), we get

∫ tτ (t)

0
R j (

1
2T

( j)
τ U ′

τ (r))dr =
∫ T

0
χ[0,tτ (t)](r)R j (V

( j)
τ (r))dr

=
∫ T

0
R j (χ[0,tτ (t)](r)V

( j)
τ (r))dr =

∫ T

0
R j (W

( j)
τ (r))dr ,

where we usedR j (0) = 0. Moreover, ‖W ( j)
τ (r)‖X j ≤ ‖V ( j)

τ ‖X j allows us to apply the com-

pactness argument in Corollary 5.2 such that there is Wj ∈ L1([0, T ];X j ) with W ( j)
τ ⇀Wj

in L1([0, T ];X j ). Using that tτ (t) → t as τ → 0, we find Wj = χ[0,t]Vj and obtain

lim inf
τ→0

∫ tτ (t)

0
R j (

1
2T

( j)
τ U ′

τ (r))dr = lim inf
τ→0

∫ T

0
R j (W

( j)
τ (r))dr

≥
∫ T

0
R j (Wj (r))dr =

∫ T

0
R j (χ[0,t]Vj (r))dr =

∫ t

0
R j (Vj (r))dr .

With this, the enhanced convergences (3.20) and (3.21) are established.

6 AlternatingMinimizingMovements

In this section we discuss an extension of our convergence result in Theorem 3.5. Namely,
we show that the splitting scheme can be combined with the Minimizing-Movement approx-
imations of the single-dissipation gradient systems (X j , E, R̃ j ) with R̃ j = 2R j (

1
2 ·).

6.1 Setup and convergence result

More precisely, for each j = 1, 2 we set up the Minimizing Movement scheme and con-
struct discrete solutions to the subdifferential inclusions (3.10) and (3.11) by solving the
time-incremental minimization problems involving the rescaled potentials R̃1 and R̃2 in
an alternating manner. Then, we define approximate solutions by suitably interpolating the
discrete solutions.
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Hence, letPτ be a (possibly non-uniform) partition as in (3.1); recall that the sub-interval
(tk−1

τ , tkτ ] is split into semi-intervals via

(tk−1
τ , tkτ ] = Ik,τleft ∪ Ik,τright with Ik,τleft =

(
tk−1
τ , tk−1/2

τ

]
and Ik,τright =

(
tk−1/2
τ , tkτ

]
,

where tk−1/2
τ = tk−1

τ + τk
2 . Starting from an initial datum u0 ∈ D0, we define the piecewise

constant time-discrete solutionsUτ : [0, T ] → D0 in the followingway:We setUτ (0) := u0
and, for t ∈ (0, T ), we define

for t ∈ Ik,τleft :Uτ (t) := U 1
k with

U 1
k ∈ Argmin

U∈X1

{
τk
2 R̃1

(
2
τk

(
U−Uτ

(
tk−1
τ

)))
+E(tk−1/2

τ ,U )
}

, (6.1a)

for t ∈ Ik,τright:Uτ (t) := U 2
k with

U 2
k ∈ Argmin

U∈X2

{
τk
2 R̃2

(
2
τk

(
U−Uτ

(
tk−1/2
τ

)))
+E(tkτ ,U )

}
. (6.1b)

We also define the piecewise constant interpolant Uτ : [0, T ] → D0 by

Uτ (t) :=
{
u0 for t ∈ (0, τ1

2 ],
Uτ

(
t − τ̃ (t)

2

)
for t ∈ ( τ1

2 , T ] (6.2)

(cf. (3.5) for the notation τ̃ (t)).
Furthermore, we introduce the piecewise linear interpolant Ûτ : [0, T ] → D0, i.e.

Ûτ (t) :=

⎧⎪⎪⎨
⎪⎪⎩

t−tk−1
τ

τk/2
Uτ (t)+ tk−1/2

τ −t

τk/2
Uτ (t) for t ∈ [tk−1

τ , tk−1/2
τ ],

t−tk−1/2
τ

τk/2
Uτ (t)+ tkτ−t

τk/2
Uτ (t) for t ∈ [tk−1/2

τ , tkτ ].
(6.3)

Thus, the piecewise constant and linear interpolants satisfy the Euler-Lagrange equations for
the minimum problems (6.1), namely

∂R̃1
(
Û ′

τ (t)
)+ ∂X1E(tk−1/2

τ ,Uτ (t)) � 0 in X∗
1 for a.a. t ∈ Ik,τleft ,

∂R̃2
(
Û ′

τ (t)
)+ ∂X2E(tkτ ,Uτ (t)) � 0 in X∗

2 for a.a. t ∈ Ik,τright.

Nonetheless, like in the time-continuous setup we will not directly pass to the limit in the
above inclusions but instead resort to a discrete energy-dissipation inequality that will act
as a proxy of the energy-dissipation balance (5.4) and will be at the core of the proof of the
following convergence result.

Theorem 6.1 (Alternating Minimizing Movements) In addition to the assumptions of Theo-
rem 2.10, assume the singleton condition in Hypothesis 3.2 and replace Hypothesis 2.6 (for
(X j , E,R j )) by the chain rule in Hypothesis 3.3 for (X1, E,Reff ). Starting from an initial
datum u0 ∈ D0, define the curves (Uτ )τ∈� and (Ûτ )τ∈� as in (6.1) and (6.3).

Then, for all sequences (τ n)n with limn→∞ |τ n | = 0 there exist a (non-relabeled) subse-
quence, a curve U ∈ AC([0, T ];X1) and functions Vj ∈ L1([0, T ];X j ), j = 1, 2, such that
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U (0) = u0, the following convergences hold (for n →∞)

Uτ n (t)⇀U (t) and Ûτ n (t)⇀U (t) in X1 for all t ∈ [0, T ], (6.4a)

1

2
T

( j)
τ n (Û ′

τ n
)⇀Vj in L1([0, T ];X j ) for j = 1, 2, (6.4b)

Û ′
τ n

⇀U ′ = V1+V2 in L1([0, T ];X1), (6.4c)

and there exists a function ξ ∈ L1([0, T ];X∗1) such that the pair (U , ξ) solves the subdiffer-
ential inclusion (3.15) and fulfills the energy-dissipation balance (3.16). Furthermore, the
functions (V1, V2) provide an optimal decomposition for U ′ in the sense of (3.17).

Remark 6.2 A standard way for constructing solutions to the subdifferential inclusion (3.15),
also viable under the present conditions,would be through theMinimizingMovement scheme
for the gradient system (X1, E,Reff), featuring at the k-th step the minimum problem

min
U∈X1

{
τk Reff

(
1
τk

(U−Uk−1
τ )

)
+E(tkτ ,U )

}
. (6.5)

Since

Reff

(
1
τk

(U−Uk−1
τ )

)
= min

W

{
R1

(
1
τk

(W−Uk−1
τ )

)
+R2

(
1
τk

(U−W
)}

the minimization scheme (6.5) reformulates as

min
U ,W∈X1

{
τk R1

(
1
τk

(W−Uk−1
τ )

)
+ τk R2

(
1
τk

(U−W
)
+E(tkτ ,U )

}
, (6.6)

which produces two discrete solutions Uk−1/2
τ := W and Uk

τ := U .
Observe that the minimization scheme (6.6) does not define a split-step method because

one has to handle both dissipation potentials at the same time.

6.2 Proof of Theorem 6.1

We start by deriving the discrete analogue (in fact, an inequality) of the energy-dissipation
balance (5.4). For this, we need to bring into the picture a further interpolant, commonly
known as the variational interpolant, which was first introduced in the framework of the
Minimizing Movement theory for metric gradient flows by E. De Giorgi, cf. [2, 3]. In
the present context, the interpolant Ũτ : [0, T ] → D0 is defined in the following way:
Ũτ (0) := u0 and, for t > 0,

for t ∈ Ik,τleft , t = tk−1
τ +r : Ũτ (t) ∈ Argmin

U∈X

{
rR̃1

(
1
r

(
U−Uτ (tk−1

τ )
))

+E(t,U )
}
;

for t ∈ Ik,τright, t = tk−1/2
τ +r : Ũτ (t) ∈ Argmin

U∈X

{
rR̃2

(
1
r

(
U−Uτ (tk−1/2

τ )
))

+E(t,U )
}

.

(6.7)

The existence of ameasurable selection in the sets of minimizers in (6.7) follows by, e.g., [7,
Cor. III.3, Thm. III.6]. Since, for t = tk−1/2

τ and for t = tkτ the minimum problems in (6.1)
coincide with those in (6.7), we may assume that

Uτ (s) = Uτ (s) = Ûτ (s) = Ũτ (s) for s = tk−1/2
τ , s = tkτ and k = 1, . . . , Nτ .
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Furthermore, by [5, Thm.8.2.9], with Ũτ we can associate a measurable function ξ̃τ :
(0, T ) → X∗

2 fulfilling the Euler equation for the minimum problems (6.7), i.e.

ξ̃τ (t) ∈

⎧⎪⎨
⎪⎩

∂X1E(t, Ũτ (t)) ∩
(
−∂R̃1

(
1

t−tk−1
τ

(
Ũτ (t)−Uτ (tk−1

τ )
)))

for t ∈ Ik,τleft ,

∂X2E(t, Ũτ (t)) ∩
(
−∂R̃2

(
1

t−tk−1/2
τ

(
Ũτ (t)−Uτ (tk−1/2

τ )
)))

for t ∈ Ik,τright,

for k = 1, . . . , Nτ . Then, we may apply [26, Lem.6.1] (see also [22]), and conclude that
that interpolants Uτ , Ûτ , Ũτ , and ξ̃τ fulfill, on the semi-intervals Ik,τleft = (tk−1

τ , tk−1/2
τ ], the

following estimate

E(tk−1/2
τ ,Uτ (tk−1/2

τ ))+
∫ tk−1/2

τ

tk−1
τ

{
R̃1(Û

′
τ (r))+ R̃∗

1(−ξ̃τ (r))
}
dr

≤ E(tk−1
τ ,Uτ (tk−1

τ ))+
∫ tk−1/2

τ

tk−1
τ

∂tE(r , Ũτ (r))dr .

(6.8)

The analogue holds on Ik,τright = (tk−1/2
τ , tkτ ], involving the dissipation potential R̃2.

Relying on (6.8) and its analogue on the intervals Ik,τright, we can deduce the discrete energy-
dissipation inequality (6.9) below, replacing the time-continuous energy-dissipation balance
(5.4). In order to state it in a compact form, we introduce the discrete analogues of the rate
and slope terms from (3.19). With slight abuse, we will denote them with the same symbols
used in (3.19):

Drate
τ ([0, T ]) :=

∫ T

0

{
χτ (r) R̃1

(
Û ′

τ (r)
)+ (1−χτ (r)) R̃2

(
Û ′

τ (r)
)}

dr

(5.7a)=
∫ T

0

{
R1(

1
2T

(1)
τ Û ′

τ (r))+R2(
1
2T

(2)
τ Û ′

τ (r))
}
dr ,

Dslope
τ ([0, T ]) :=

∫ T

0

{
χτ (r) R̃∗

1(−ξ̃τ (r))+ (1−χτ (r)) R̃∗
2(−ξ̃τ (r))

}
dr

(5.7b)=
∫ T

0

{
R∗

1(−T
(1)
τ ξ̃τ (r))+R∗

2(−T
(2)
τ ξ̃τ (r))

}
dr .

The following result (to be compared with Proposition 5.1 and Corollary 5.2) collects all of
the a priori estimates stemming from (6.9).

Proposition 6.3 The interpolants Uτ , Ûτ , and Ũτ and ξ̃τ fulfill the discrete energy-dissipation
inequality

E(t,Uτ (t))+Drate
τ ([s, t])+Dslope

τ ([s, t]) ≤ E(s,Uτ (s))+
∫ t

s
∂tE(r , Ũτ (r))dr (6.9)

for all 0 ≤ s ≤ t ≤ T . Moreover, there exists a positive constant C > 0 such that the
following estimates hold for all τ ∈ �:

sup
t∈[0,T ]

E(Uτ (t)) ≤ C, sup
t∈[0,T ]

E(Ũτ (t)) ≤ C, sup
t∈[0,T ]

|∂tE(t, Ũτ (t))| ≤ C, (6.10a)

Drate
τ ([0, T ])+Dslope

τ ([0, T ]) ≤ C . (6.10b)

Thus, the families (Û ′
τ )τ∈� ⊂ L1([0, T ];X1), (T

( j)
τ Û ′

τ )τ∈� ⊂ L1([0, T ];X j ), and

(T
( j)
τ ξ̃τ )τ∈� ⊂ L1([0, T ];X∗j ), for j ∈ {1, 2}, are uniformly integrable. Finally, as |τ | ↓ 0,
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we have

sup
t∈[0,T ]

‖Uτ (t)−Uτ (t)‖L1 + sup
t∈[0,T ]

‖Uτ (t)−Uτ (t)‖L1 + sup
t∈[0,T ]

‖Ũτ (t)−Uτ (t)‖L1 = o(1).

(6.11)

Proof Clearly, estimates (6.10) follow from (6.9) via the same arguments as in the proof
of Proposition 5.1. The estimate for supt∈[0,T ] E(Ũτ (t)) can be retrieved from the discrete

energy-dissipation inequality (6.8) and its analogue on the semi-intervals Iτ ,k
right. Let us just

comment on the proof of (6.11): the estimates for ‖Uτ−Uτ‖L1 and ‖Uτ−Uτ‖L1 derive from
the uniform integrability of the family (U ′

τ )τ∈� in L1([0, T ];X1), while we refer to the proof
of [26, Prop. 6.3] for the estimate of ‖Ũτ−Uτ‖L1 . ��

Sketch of the passage to the limit in the energy-dissipation inequality (6.9). By repeating
the very same arguments as in the proof of Corollary 5.3 and relying on (6.11), we show that
for any sequence (τ n)n with |τ n | ↓ 0 as n →∞ there exist a (non-relabeled) subsequence
of (Uτ n )n , (Uτ n

)n , (Uτ n )n and (Ũτ n )n and a curve U ∈ AC([0, T ];X1) such that for all
t ∈ [0, T ] there holds

Uτ n (t),Uτ n
(t), Ûτ n (t), Ũτ n (t)⇀U (t) in X1.

Convergences (6.4c) for (Û ′
τ n

)n and (6.4b) for ( 12T
( j)
τn Û

′
τn

)n (to functions Vj such that V1 +
V2 = U ′), hold, too. Likewise, we conclude the analogues of convergences (5.10b) for the
sequences (T

( j)
τn ξ̃τ n )n . Therefore, we are in a position to take the limit as n →∞ in (6.9). A

straightforward adaptation of the arguments from Sects. 5.2 and 5.3 leads us to conclude that
there exists ξ ∈ L1([0, T ];X∗

1) such that the pair (U , ξ) complies with the energy-dissipation
inequality (5.1). Then, we repeat the very same arguments from Sect. 5.4 and establish that
(U , ξ) in fact fulfills the energy-dissipation balance (3.16), that it solves the subdifferential
inclusion (3.15), and that (V1, V2) provide an optimal decomposition of the rate U ′.

This finishes the proof of Theorem 6.1. ��

7 The time-splittingmethod for systems with a block structure

In this section we tackle the application of the splitting method to generalized gradient
systems with a block structure. In such systems,

the state variable u is a vector

(
y

z

)
∈ U := Y×Z,

with Y and Z (separable) reflexive Banach spaces. The evolution of the system is governed
by an energy functional

E : [0, T ]×U→ (−∞,∞], E = E(t, u) = E(t, y, z)

(we will use both notations with slight abuse), whereas dissipation mechanisms are encoded
by two dissipation potentials Ry and Rz, each acting on one of the components of the rate
vector u′ = (

v
w

)
, namely

R(v,w)=(Ry⊕Rz
)
(v,w) :=Ry(v)+Rz(w) with Ry: Y→ [0,∞) and Rz: Z→[0,∞).
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The analysis of these systems can be carried out in the context of the splitting approach in
the previous case of Sect. 3, by introducing the dissipation potentialsR j : U→ [0,∞] via
R1(u

′) = R1(v,w) = Ry(v)+ I{0}(w), R2(u
′) = R2(v,w) = I{0}(v)+Rz(w),

(7.1)

where I{0} is the indicator function of the singleton {0} with I{0}(0) = 0 and∞ else. Let

∂UE : [0, T ]×U ⇒ U∗ be the Fréchet subdifferential of E(t, ·)
in the duality pairing 〈·, ·〉U. Our time-splitting schemewill be based on the Cauchy problems
for the subdifferential inclusions

∂R j (u
′(t))+ ∂UE(t, u(t)) � 0 in U∗ for a.a. t ∈ (0, T ),

in which we either freeze the variable z (for j = 1), or the variable y (for j = 2). It can be
easily calculated that, in this setup, the effective dissipation potential is

Reff : U→ [0,∞), Reff(u
′) = Ry(v)+Rz(w) with

R∗
eff : U∗ → [0,∞), R∗

eff(ξ) = R∗
y(η)+R∗

z(ζ ).
(7.2)

7.1 Assumptions

Our conditions on E and on the dissipation potentialsRy andRz mimic the setup of Sect. 2.2,
but with some significant differences. We start by settling the properties of the energy func-
tional.

Hypothesis 7.1 The functional E : [0, T ]×U → (−∞,∞] has the proper domain dom(E)
= [0, T ]×D0, on which E is bounded from below (2.13) and complies with the time-
differentiability condition <E>. Along all sequences (tn, un)⇀(t, u) in [0, T ] × U with
(un)n∈N contained in an energy sublevel SE

– the lower semicontinuity and power continuity conditions from (2.17) hold;
– the closedness condition (2.19) for ∂UE : [0, T ]×U ⇒ U∗ holds.

The following subsumes our requirements on the dissipation potentialsRy andRz.

Hypothesis 7.2 For x ∈ {y,z} and X ∈ {Y,Z} the functionals Rx : X → [0,∞) and their
conjugatesR∗

x : X∗ → [0,∞) comply with condition <R>.

Although Hypotheses 7.1 and 7.2 mimic the setup of Sect. 3, it is clear that the overall
gradient system (X,E,Reff) is different from that considered therein. The first, striking differ-
ence is that, after extending the dissipation potentialsRy andRz to the dissipation potentials
R1 andR2, on the common space U = Y×Z (cf. (7.1)), we lose the coercivity ofR∗

1 = R∗
y

and R∗
2 = R∗

z required via (2.2) on U∗ = Y∗×Z∗. Moreover, we emphasize that, here, the
Fréchet subdifferential of E(t, ·) is considered in the duality pairing of the common space
U. Nonetheless, in what follows we are going to show that the techniques at the core of the
analysis in Sect. 5 carry over to the present setting. For this, a crucial role will be played by
the condition that ∂UE has a ‘cross-product structure’, which is weaker than the singleton
condition needed in the setup of Sect. 3.

Hypothesis 7.3 (Cross-product condition) For all (t, u) = (t, y, z) ∈ dom(∂E) we have
∂UE(t, y, z) = ∂yE(t, y, z)×∂zE(t, y, z) (7.3)
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where ∂xE : [0, T ]×U ⇒ X∗, for x ∈ {y, z} and correspondingly X ∈ {Y,Z}, is the partial
subdifferential of E with respect to the variable x, while fixing the other variable.

We note that this condition is more general than the singleton condition because multi-
valued subdifferentials are still possible. We also remark for later use that, in view of (7.3),
the closedness condition for ∂UE is indeed equivalent to

∀ E > 0 :
{

(tn, yn, zn, ηn, ζn)⇀(t, y, z, η, ζ ) in [0, T ]×Y×Z×Y∗×Z∗,
(yn, zn) ∈ SE , ηn ∈ ∂yE(tn, yn, zn), ζn ∈ ∂zE(tn, yn, zn) ∀ n ∈ N

�⇒ η ∈ ∂yE(t, y, z) and ζ ∈ ∂zE(t, y, z).
(7.4)

Obviously, in view of (7.2) and (7.3) the subdifferential inclusion

∂Reff(u
′(t))+ ∂UE(t, u(t)) � 0 in U∗ for a.a. t ∈ (0, T ) (7.5)

is indeed equivalent to the system

∂Ry(y
′(t))+ ∂yE(t, y(t), z(t)) � 0 in Y∗

∂Rz(z
′(t))+ ∂zE(t, y(t), z(t)) � 0 in Z∗ for a.a. t ∈ (0, T ).

Last but not least, we need to specify our chain-rule assumption on (E, ∂UE).

Hypothesis 7.4 (Abstract chain rule) The quadruple (U, E, ∂UE,Reff ) satisfies the chain rule
property <CR>.

7.2 Time-splitting for block structure systems

As in Sect. 3 we introduce the rescaled dissipation potentials R̃ j : U→ [0,∞)

R̃1(u
′) = 2R1

( 1
2u

′) = 2Ry
( 1
2v
)+ I{0}(w), R̃2(u

′) = 2R2
( 1
2u

′) = 2Rz
( 1
2w

)+ I{0}(v).

We will construct our approximate solution to the Cauchy problem for (7.5) by solving, in
suitable sub-intervals I j of [0, T ], the Cauchy problems for the doubly nonlinear equations

∂R̃ j (u
′(t))+ ∂UE(t, u(t)) � 0 in U∗ for a.a. t ∈ I j , j ∈ {1, 2},

which, thanks to the cross product condition (7.3), reformulate in the same way as the subd-
ifferential inclusion (7.5) forReff.

More precisely, let Pτ be a non-uniform partition of [0, T ] (cf. (3.1)) and let (Ik,τleft )
Nτ

k=1

and (Ik,τright)
Nτ

k=1 be the associated ‘left’ and ‘right’ semi-intervals, see (3.2). Starting from an
initial datum u0 = (y0, z0) ∈ D0, we define the approximate solutions Uτ = (Yτ , Zτ ) :
[0, T ] → D0 ⊂ Y×Z to (7.5) in the following way (cf. (3.12)). We start with

(Yτ (0), Zτ (0)) := (y0, z0) (7.6a)

and proceed for t ∈ (tk−1
τ , tkτ ] and k ∈ {1, . . . , Nτ } as follows:

– On the semi-interval Ik,τleft , we define (Yτ , Zτ ) to be a solution of the Cauchy problem:
⎧⎨
⎩

∂Ry(y
′(t))+ ∂yE(t, y(t), z(t)) � 0 in Y∗ and

z′(t) ≡ 0 in Z for a.a. t ∈ Ik,τleft ;
(y(tk−1

τ ), z(tk−1
τ )) = (Yτ (tk−1

τ ), Zτ (tk−1
τ )).

(7.6b)

On the semi-interval Ik,τright, we define (Yτ , Zτ ) to be a solution of the Cauchy problem
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⎧⎪⎨
⎪⎩

y′(t) ≡ 0 in Y and

∂Rz(z′(t))+ ∂zE(t, y(t), z(t)) � 0 in Z∗ for a.a. t ∈ Ik,τright;
(y(tk−1/2τ ), z(tk−1/2τ )) = (Yτ (tk−1/2τ ), Zτ (tk−1/2τ )).

(7.6c)

Existence of solutions for the Cauchy problems (7.6b) follows by noting that for fixed z ∈ Z
the triple (Y, E(·, ·, z),Ry) satisfies the required assumptions of Theorem 2.10. Analogously,
the same holds for the triple (Z, E(·, y, ·),Rz) if y ∈ Y is fixed, which provides existence
of solutions of the Cauchy problems (7.6c). Hence, we conclude that the solution curve
Uτ = (Yτ , Zτ ) : [0, T ] → U fulfills Uτ ∈ AC([0, T ];U). We also introduce the functions
ητ ∈ L1([0, T ];Y∗) and ζτ ∈ L1([0, T ];Z∗) featuring in the force terms in the subdifferential
inclusions (7.6b) and (7.6c). Namely, for k ∈ {1, . . . , Nτ } we set

ητ (t)

{
∈ ∂yE(t, Yτ (t), Zτ (t)) ∩ (−∂Ry(Y ′τ (t))) for t ∈ Ik,τleft ,

≡ 0 for t ∈ Ik,τright,

ζτ (t)

{
≡ 0 for t ∈ Ik,τleft ,

∈ ∂zE(t, Yτ (t), Zτ (t)) ∩ (−∂Rz(Z ′τ (t))) for t ∈ Ik,τright.

(7.7)

Finally, for tailoring analysis to the block structure context, in addition to the ‘overall’ rep-
etition operators T

( j)
τ : L1([0, T ];U ) → L1([0, T ];U ) for U ∈ {U,U∗}, we will resort to

the operators (denoted by the same symbols)

T
(1)
τ : L1([0, T ];Y ) → L1([0, T ];Y ); (

T
(1)
τ g

)
(t) :=

{
g(t) if t ∈ Iτ ,kτ (t)

left ,

g
(
t− τ̃ (t)

2

)
if t ∈ Iτ ,kτ (t)

right ,

(7.8a)

T
(2)
τ : L1([0, T ];Z ) → L1([0, T ];Z ); (

T
(2)
τ g

)
(t) :=

{
g
(
t+ τ̃ (t)

2

)
if t ∈ Iτ ,kτ (t)

left ,

g(t) if t ∈ Iτ ,kτ (t)
right ,

(7.8b)

with Y ∈ {Y,Y∗} and Z ∈ {Z,Z∗}.
Now, we are in a position to give our convergence result for the time-splitting scheme in

the setup with block structure. Observe that, due to the block structure we will succeed in
relating the weak limits of the repeated rates (T

(1)
τ n (Y ′τ n

)) and (T
(2)
τ n (Z ′τ n

)) to the limiting rates
Y ′ and Z ′, cf. (7.9c) below.

Theorem 7.5 (Convergence of time-splitting method for block systems) Under Hypotheses
7.1, 7.2, 7.3, and 7.4, starting from an initial datum u0 = (y0, z0) ∈ D0, define the curves
Uτ as in (7.6).

Then, for any sequence (τ n)n with limn→∞ |τ n | = 0 there exist a (non-relabeled) subse-
quence and a curve U = (Y , Z) ∈ AC([0, T ];U) with U (0) = u0 such that the following
convergences hold for the sequences (Yτ n )n and (Zτ n )n as n →∞:

Yτ n (t)⇀Y (t) in Y and Zτ n (t)⇀Z(t) in Z for all t ∈ [0, T ], (7.9a)

Y ′τ n
⇀Y ′ in L1([0, T ];Y) and Z ′τ n

⇀Z ′ in L1([0, T ];Z), (7.9b)
1
2T

(1)
τ n

(Y ′τ n
)⇀Y ′ in L1([0, T ];Y) and 1

2T
(2)
τ n

(Z ′τ n
)⇀Z ′ in L1([0, T ];Z) , (7.9c)
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and there exists a function ξ = (η, ζ ) ∈ L1([0, T ];U∗) such that the pair (U , ξ) solves the
subdifferential system, for a.a. t ∈ (0, T ),

∂Ry(Y ′(t))+ η(t) � 0 and η(t) ∈ ∂yE(t, Y (t), Z(t)) in Y∗,
∂Rz(Z ′(t))+ ζ(t) � 0 and ζ(t) ∈ ∂zE(t, Y (t), Z(t)) in Z∗, (7.10)

and fulfills the energy-dissipation balance

E(t, Y (t), Z(t))+
∫ t

s

{Ry(Y
′(r))+Rz(Z

′(r))+R∗
y(−η(r))+R∗

z (−ζ(r))
}
dr

= E(s, Y (s), Z(s))+
∫ t

s
∂tE(r , Y (r), Z(r))dr for 0 ≤ s ≤ t ≤ T .

(7.11)

Like for Theorem 3.5, we obtain the enhanced convergences

E(t,Uτ n (t)) −→ E(t,U (t)) for all t ∈ [0, T ], (7.12a)∫ t

s
Ry(

1
2T

(1)
τ n

Y ′τ n
(r))dr −→

∫ t

s
Ry(Y

′(r))dr ,∫ t

s
Rz(

1
2T

(2)
τ n

Z ′τ n
(r))dr −→

∫ t

s
Rz(Z

′(r))dr ,∫ t

s
R∗

y(−T
(1)
τ n

ητ n (r))dr −→
∫ t

s
R∗

y(−η(r))dr ,∫ t

s
R∗

z(−T
(2)
τ n

ζτ n (r))dr −→
∫ t

s
R∗

y(−ζ(r))dr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for all [s, t] ⊂ [0, T ]. (7.12b)

Remark 7.6 (Non-convergence) It can be easily checked in our “multi-valued” counterexam-
ple of Sect. 4.1 that (i) the “cross-product condition” does not hold and (ii) that the solutions
of the split-step algorithm using the block structure of Y×Z = R×R get stuck completely
when reaching the diagonal u1 = u2. Hence, we have non-convergence because solutions
for the effective problem move along the diagonal until they reach u = 0.

7.3 Alternatingminimizingmovements for block structures

Last but not least, we point out that the analogue of Theorem 6.1 holds for systems with
block structure, assuming Hypotheses 7.1, 7.2, 7.3, and 7.4. Let us briefly illustrate the
Alternating Minimizing Movement approach to block-structured systems. As in Sect. 6, we
construct approximate solutions by solving the time incremental minimization schemes for
the subdifferential inclusions (7.6b) and (7.6c). This results in the alternating minimization
scheme (7.13) below.

More precisely, starting from an initial datum u0 = (y0, z0) ∈ D0, we define the piecewise
constant solutions Uτ : [0, T ] → U, Uτ = (Yτ , Zτ ), by setting Yτ (0) := y0, Zτ (0) := z0,
and for t ∈ (0, T ) and k ∈ {1, . . . , Nτ } we define
for t ∈ Ik,τleft : Yτ (t) := Yk, Zτ (t) := Zk−1,

with Yk ∈ Argmin
Y∈Y

{
τk
2 R̃y

( 2
τk

(Y−Yk−1)
)+ E(tk−1/2

τ , Y , Zk−1)
}

, (7.13a)

for t ∈ Ik,τright: Yτ (t) := Yk, Zτ (t) := Zk,

with Zk ∈ Argmin
Z∈Z

{
τk
2 R̃z

( 2
τk

(Z−Zk−1)
)+ E(tkτ , Yk, Z)

}
. (7.13b)
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We also introduce the ‘delayed’ piecewise constant interpolantUτ = (Yτ , Zτ ) via (6.2), and
the piecewise linear interpolant Ûτ : [0, T ] → U of the discrete solutions by setting

Ûτ (t) := (Ŷτ , Zτ ) for t ∈ [tk−1
τ , tk−1/2

τ ] and Ûτ (t) := (Yτ , Ẑτ ) for t ∈ [tk−1/2
τ , tkτ ].

(7.14)

where ⎧⎨
⎩
Ŷτ (t) = t−tk−1

τ
τk/2

Yτ (t)+ tk−1/2
τ −t

τk/2
Yτ (t) for t ∈ [tk−1

τ , tk−1/2
τ ],

Ẑτ (t) = t−tk−1/2
τ

τk/2
Zτ (t)+ tkτ−t

τk/2
Zτ (t) for t ∈ [tk−1/2

τ , tkτ ].
Finally, the variational interpolant Ũτ can be defined by replacing (6.7) by an alternate
minimization scheme, in analogy with (7.13).

After these preparations, we can state the result corresponding to Theorem 6.1, in the
context of the block system from Sect. 7.1. We omit its proof because it follows easily by
adapting the proof of Theorem 6.1 to the case with block structure, in the same way as as
we will tailor the proof of Theorem 3.5 to provide a proof of Theorem 7.5 in the upcoming
Sect. 7.5.

Theorem 7.7 (Alternating Minimizing Movements for block systems) Under Hypotheses
7.1, 7.2, 7.3, and 7.4, starting from an initial datum u0 = (y0, z0) ∈ D0, define the curves
Uτ = (Yτ , Zτ ) and Ûτ = (Ŷτ , Ẑτ ) as in (7.13) and (7.14).

Then, for any sequence (τ n)n with limn→∞ |τ n | = 0 there exist a (non-relabeled) subse-
quence and a curve U = (Y , Z) ∈ AC([0, T ];U) with U (0) = u0 such that the following
convergences hold as n →∞:

Yτ n (t), Ŷτ n (t)⇀Y (t) in Y
Zτ n (t), Ẑτ n (t)⇀Z(t) in Z

}
for all t ∈ [0, T ], (7.15a)

Ŷ ′τ n
⇀Y ′ in L1([0, T ];Y) and Ẑ ′τ n

⇀Z ′ in L1([0, T ];Z), (7.15b)
1
2T

(1)
τ n

(Ŷ ′τ n
)⇀Y ′ in L1([0, T ];Y) and 1

2T
(2)
τ n

(Ẑ ′τ n
)⇀Z ′ in L1([0, T ];Z), (7.15c)

and there exists a function ξ = (η, ζ ) ∈ L1([0, T ];U∗) such that the pair (U , ξ) solves the
subdifferential system (7.10) and fulfills the energy-dissipation balance (7.11).

7.4 An application to linearized visco-elasto-plasticity

In this section we discuss the applicability of Theorems 7.5 and 7.7 to a prototypical class of
coupled systems, also considered in [21, Sec. 2]. These systems include a model combining
linearized viscoelasticity and viscoplasticity, cf. Example 7.8 ahead.

Let

Y and Z be Hilbert spaces. (7.16a)

The dissipation potential Ry : Y → [0,∞) is quadratic, while Rz : Z → [0,∞) consists
of a 1-homogeneous part and of a contribution with p-growth for some p > 1, namely

Ry(v) = 1

2
〈Vyv, v〉, Rz(w) = 1(w)+p(w) (7.16b)

whereVy : Y→ Y∗ is a bounded, linear, symmetric operator,1 : Z→ [0,∞) is positively
1-homogeneous and p(w) = ψ(‖w‖Z) for some convex, increasing ψ : [0,∞) → [0,∞)
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with cr p � ψ(r) � Cr p giving p-growth. The energy functional is of the form

E(t, y, z) := 1

2
〈Ay, y〉Y+ 〈By, z〉Z+

1

2
〈Gz, z〉Z− 〈 f (t), y〉Y− 〈g(t), z〉Z, (7.16c)

where A : Y → Y∗ and G : Z → Z∗ are linear, bounded, and symmetric, B : Y → Z∗
is linear and bounded such that

(
A B

∗
B G

)
is positive definite. Moreover, we assume that

( f , g) ∈ C1([0, T ];Y∗×Z∗) are time-dependent applied forces. In this setup, the subd-
ifferential inclusion (7.5) translates into the system

Vyy
′ + Ay + B

∗z = f (t) in Y∗ for a.a. t ∈ (0, T ), (7.17a)

∂1(z
′)+ ∂p(z

′)+ By +Gz = g(t) in Z∗ for a.a. t ∈ (0, T ). (7.17b)

A concrete model that falls in this class of systems is provided by the following example.

Example 7.8 We consider an elastoplastic body in a bounded Lipschitz domain � ⊂ R
d .

Linearized elastoplasticity is described in terms of the displacement y : � → R
d , with

y ∈ Y = H1
0(�), and the symmetric, trace-free plastic strain tensor z : � → R

d×d
dev :={

z ∈ R
d×d
sym : tr(z) = 0

}
. Let Z = L2(�, R

d×d
dev ). The energy functional E : [0, T ]×Y×Z→

R is defined by

E(t, y, z) =
∫

�

{
1

2
(e(y)−z) : C(e(y)−z)+ 1

2
z : Hz

}
dx − 〈 f (t), y〉Y

where e(y) = 1
2 (∇u+∇u�) is the linearized symmetric strain tensor, C ∈ Lin(Rd×d

sym ) and

H ∈ Lin(Rd×d
dev ) are the positive definite and symmetric elasticity and hardening tensors,

respectively, and f : [0, T ] → H−1(�;Rd) a time-dependent volume loading. The dissipa-
tion potentials are

Ry(y
′) =

∫
�

1

2
e(y′) : De(y′)dx, Rz(z

′) =
∫

�

σyield|z′| + �
2 |z′|2dx

with D ∈ Lin(Rd×d
sym ) the positive definite viscoelasticity tensor, σyield > 0 the yield stress

and � > 0 a positive coefficient. System (7.17) rephrases as

−div
(
De(y′)+ C(e(y)−z)

) = f (t) in �×(0, T ),

σyieldSign(z
′)+ �z′ + dev

(
C(z−e(y))

)+Hz � 0 in �×(0, T ).

where dev A = A − 1
d (tr A) I is the deviatoric part of a tensor A ∈ R

d×d .

It is very easy to check that the energy functional E from (7.16c) satisfies Hypotheses
7.1 and 7.3. Likewise, it is immediate to check that the dissipation potentials Ry and Rz

in (7.16b) both comply with condition <R>. It remains to discuss the validity of the chain-
rule Hypothesis 7.4. For this, let us consider a curve u = (y, z) ∈ AC([0, T ];Y×Z) with
supt∈[0,T ] |E(t, y(t)), z(t))| < ∞ such that

sup
t∈[0,T ]

|E(t, u(t))| < ∞, and
∫ T

0

(Reff(u
′(t))+R∗

eff(−ξ(t))
)
dt < ∞.

It is immediate to check that the above estimate implies
∫ T

0
‖Ay(t)+B

∗z(t)− f (t)‖Y∗‖y′(t)‖Ydt +
∫ T

0
‖By(t)+Gz(t)−g(t)‖Z∗‖z′(t)‖Zdt < ∞.
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Now, since (y, z) ∈ L∞([0, T ];Y×Z) we readily infer that Ay ∈ L∞([0, T ];Y∗), B
∗z ∈

L∞([0, T ];Y∗), By ∈ L∞([0, T ];Z∗), and Gz ∈ L∞([0, T ];Z∗). Therefore, the individual
contributions to E from (7.16c), evaluated along the curve u, are absolutely continuous, and
for them the following chain rules hold:⎧⎨

⎩
d
dt

( 1
2 〈Ay(t), y(t)〉Y

) = 〈Ay(t), y′(t)〉Y,
d
dt

( 〈By(t), z(t)〉Z
) = 〈B∗z(t), y′(t)〉Y+ 〈By(t), z′(t)〉Z,

d
dt

( 1
2 〈Gz(t), z(t)〉Z

) = 〈Gz(t), z′(t)〉Z .

From that we immediately conclude the chain rule of Hypothesis 7.4.
All in all, we have proved that the block-structured system (Y×Z, E,Ry⊕Rz) from (7.16)

complies with Hypotheses 7.1, 7.2, 7.3, and 7.4. Thus, Theorems 7.5 and 7.7 are applicable.

7.5 Proof of Theorem 7.5

We split the argument in the following steps.
Step 1. A priori estimates: As in the proof of Theorem 3.5, the starting point for our analysis
is the approximate energy-dissipation balance

E(t, Yτ (t), Zτ (t))+Drate
τ ([s, t])+Dslope

τ ([s, t])
= E(s, Yτ (s), Zτ (s))+

∫ t

s
∂tE(r , Yτ (r), Zτ (r))dr

(7.18)

along all subintervals [s, t] ⊂ [0, T ]. With R j given by (7.1) and R̃ j = 2R j (
1
2 · ), the rate

and slope terms from (3.19) now read

Drate
τ ([0, T ]) :=

∫ T

0

{
χτ (r) R̃y

( 1
2Y

′
τ (r)

)+ (1−χτ (r)) R̃z
( 1
2 Z

′
τ (r)

)}
dr

(5.7a)=
∫ T

0

{
Ry(

1
2T

(1)
τ Y ′τ (r))+Rz(

1
2T

(2)
τ Z ′τ (r))

}
dr ,

(7.19a)

Dslope
τ ([0, T ]) :=

∫ T

0

{
χτ (r) R̃∗

y(−ητ (r))+ (1−χτ (r)) R̃∗
z(−ζτ (r))

}
dr

(5.7b)=
∫ T

0

{
R∗

y(−T
(1)
τ ητ (r))+R∗

z(−T
(2)
τ ζτ (r))

}
dr .

(7.19b)

Then, we canmimic the arguments from fromProposition 5.1 andCorollary 5.2 and derive
the analogues of the a priori estimates therein.
Step 2. Compactness: We may prove the analogue of Corollary 5.3. Namely, there exists
U ∈ AC([0, T ];U), such that, up to a subsequence,

Uτ n (t)⇀U (t) in U for all t ∈ [0, T ], U ′
τ n

⇀U ′ in L1([0, T ];U), (7.20)

whence convergences (7.9a), (7.9b). Furthermore, there exist V and Z such that
{ 1

2T
(1)
τ n

(Y ′τ n
)⇀V in L1([0, T ];Y),

1
2T

(2)
τ n

(Z ′τ n
)⇀W in L1([0, T ];Z).

(7.21)

In order to identify V and W we observe that, since the z (respectively, the y) variable is
frozen in the Cauchy problem (7.6b) ((7.6c), resp.), we have that

T
(1)
τ (U ′

τ n
) =

(
T

(1)
τ (Y ′τ n

)

0

)
and T

(2)
τ (U ′

τ n
) =

(
0

T
(2)
τ (Z ′τ n

)

)
.
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In turn, (7.20) and Lemma 3.1 yield that

1

2

(
T

(1)
τ (U ′

τ n
)+T

(2)
τ (U ′

τ n
)
)

⇀U ′.

Therefore, by (7.21) we find that
(Y ′
Z ′
) = U ′ = (V

0

)+ ( 0
W

)
, whence (7.9c) holds true.

Finally, there exist η ∈ L1([0, T ];Y∗) and ζ ∈ L1([0, T ];Z∗) such that, as n →∞,

T
(1)
τ n

ητ n⇀η in L1([0, T ];Y∗) and T
(2)
τ n

ζτ n⇀ζ in L1([0, T ];Z∗). (7.22)

We now adapt the Young measure argument carried out in Sect. 5.3: up to a (non-relabeled)
subsequence, the sequences (T

(1)
τ n ητ n )n and (T

(2)
τ n ζτ n )n admit two limiting Young measures

(μt )t∈(0,T ) and (νt )t∈(0,T ), with μt ∈ Prob(Y∗) and νt ∈ Prob(Z∗) for a.a. t ∈ (0, T ), such
that

supp(μt ) ⊂ LsweakY∗
({T(1)

τ n
ητ n (t)}n

)
and

supp(νt ) ⊂ LsweakZ∗
({T(2)

τ n
ζτ n (t)}n

)
for a.a. t ∈ (0, T ),

(7.23a)

(see (5.19a) for the definition of the limsup of sets), and the weak limits η and ζ read

η(t) =
∫
Y∗

η̃dμt (η̃), ζ(t) =
∫
Z∗

ζ̃dνt (ζ̃ ) for a.a. t ∈ (0, T ). (7.23b)

Now, arguing in the same way as in Sect. 5.3 and exploiting the closedness property (7.4) we
find for a.a. t ∈ (0, T ) that

LsweakY∗
({T(1)

τ n
ητ n (t)}n

) ⊂ ∂yE(t, Y (t), Z(t)) and LsweakZ∗
({T(2)

τ n
ζτ n (t)}n

) ⊂ ∂zE(t, Y (t), Z(t)).

Since the the subdifferentials are convex, we conclude with (7.23b) that

η(t) ∈ ∂yE(t, Y (t), Z(t)) and ζ(t) ∈ ∂zE(t, Y (t), Z(t)) for a.a. t ∈ (0, T ).

Step 3. Limit passage in (7.18): We take the limit as n →∞ in (7.18) on the interval [0, T ]:
thanks to (7.9a) we have lim infn→∞ E(T , Yτ n (T ), Zτ n (T )) ≥ E(T , Y (T ), Z(T )), while due
to (7.9c) and (7.22) we have

lim inf
n→∞ Drate

τ n
([0, T ]) ≥ lim inf

n→∞

∫ T

0

{Ry(
1
2T

(1)
τ n

Y ′τ n
(r))+Rz(

1
2T

(2)
τ n

Z ′τ n
(r))

}
dr

≥
∫ T

0

{Ry(Y
′(r))+Rz(Z

′(r))
}
dr ,

lim inf
n→∞ Dslope

τ n ([0, T ]) ≥ lim inf
n→∞

∫ T

0

{R∗
y(−T

(1)
τ n

ητ n (r))+R∗
z(−T

(2)
τ n

ζτ n (r))
}
dr

≥
∫ T

0

{R∗
y(−η(r))+R∗

z(−ζ(r))
}
dr .

Relying on convergences (7.9a) we likewise take the limit as n → ∞ in the power terms
of the right-hand side of (7.18). All in all, we conclude that the curve U = (Y , Z) and the
function ξ = (η, ζ ) fulfill the energy-dissipation inequality

E(T , Y (T ), Z(T ))+
∫ T

0

{Ry(Y
′(r))+Rz(Z

′(r))+R∗
y(−η(r))+R∗

z(−ζ(r))
}
dr

≤ E(0, Y (0), Z(0))+
∫ T

0
∂tE(r , Y (r), Z(r))dr .
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Step 4. Energy-dissipation balance and conclusion of the proof:From the above inequality it
immediately follows that the pair (U , ξ) complies with condition (2.8). Hence, byHypothesis
7.4we conclude that t �→ E(t,U (t)) is absolutely continuous and the chain rule (2.3) holds for
(U , ξ). Therefore, Proposition 2.1 allows us to conclude that (U , ξ) solves the subdifferential
inclusion (7.5) (which rephrases as (7.10)), and that it fulfills the energy-dissipation balance
(7.11) for all subintervals [s, t] ⊂ [0, T ].

As in the case of Theorem 3.14, the enhanced convergences (7.12) are a by-product of the
argument for passing to the limit in (7.18); again, we refer to the proof of [26, Thm.4.4] or
[27, Thm.3.11] for all details.

This finishes the proof of Theorem 7.5. ��

A More on the quantitative young estimate

We aim to gain further insight into the connections between the QYE for the dissipation
potentials R1 and R2, (for which we will always assume the validity of condition <R>, cf.
Hypothesis 2.7), and the validity of the same property forReff. In the particular case in which
the norms ‖ · ‖1 and ‖ · ‖2 are indeed equivalent (i.e., ‖ · ‖2,∗ controls ‖ · ‖1,∗), we have the
following result.

Lemma A.1 Suppose that X := X1 = X2 and that

∃CN, C
∗
N > 0 ∀ (v, ξ) ∈ X×X∗ :

{ ‖v‖1 ≤ CN, ‖v‖2,
‖ξ‖1,∗ ≤ C

∗
N‖ξ‖2,∗. (A.1)

LetR j satisfy the <QYE> (2.10)with constants c j ,C j > 0. Then, alsoReff satisfies estimate

(2.10), with respect to the norms ‖ · ‖1 and ‖ · ‖1,∗, with the constants ceff = min
{
c1,

c2
C
∗
NC

∗
N

}
and Ceff = C1 + C2.

Proof For any v ∈ X and any ε > 0 there are v1, v2 ∈ X with v1 + v2 = v such that
Reff(v) ≥ R1(v1)+R2(v2)− ε. Combining <QYE> forR j with (A.1) yields

Reff(v)+R∗
eff(ξ) ≥ R1(v1)+R2(v2)− ε +R∗

1(ξ)+R∗
2(ξ)

≥ c1‖v1‖1‖ξ‖1,∗ + c2‖v2‖2‖ξ‖2,∗ − C1 − C2 − ε

≥ c1‖v1‖1‖ξ‖1,∗ + c2
CNC

∗
N
‖v2‖1‖ξ‖1,∗ − C1 − C2 − ε

≥ min

{
c1,

c2
CNC

∗
N

}
(‖v1‖1 + ‖v2‖1) ‖ξ‖1,∗ − C1 − C2 − ε

≥ min

{
c1,

c2
CNC

∗
N

}
‖v‖1‖ξ‖1,∗ − C1 − C2 − ε .

Since ε > 0 is arbitrary the claim follows. ��
In the general case in which we only have X2 ⊂ X1 (densely and) continuously (cf.

(2.12b)), the next result provides some growth and coercivity conditions on R1 and R2

under which the QYE for R1 guarantees that forReff.

Lemma A.2 Assume there exist positive constants C1, c2, C2 and p, q ∈ (1,∞) with q < p
such that

∀ v ∈ X1 : R1(v) ≤ C1‖v‖q1 + C1 andR2(v) ≥ c2‖v‖p1 − C2. (A.2)
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If additionally R1 satisfies <QYE>, then also Reff complies with <QYE>.

Proof Consider v1, v2 ∈ X1 with v1+ v2 = v andR1(v1)+R2(v2) = Reff(v). Then, using
(A.2) gives

c2‖v2‖p1 − C2 ≤ R2(v2) ≤ R1(v1)+R2(v2) = Reff(v)

(1)≤ R1(v−0)+R2(0) ≤ C1‖v‖q1 + C1,

where
(1)≤ uses the definition ofReff as an inf-convolution. Thus in the optimal decomposition

v = v1 + v2 we have ‖v2‖1 ≤ C‖v‖q/p
1 + C , which implies

‖v1‖1 ≥ ‖v‖1 − ‖v2‖1 ≥ ‖v‖1 − C‖v‖q/p
1 − C ≥ 1

2
‖v‖1 − C∗, (A.3)

where we used q � p.
With this we derive the lower bound

Reff(v)+R∗
eff(ξ) = R1(v1)+R2(v2)+R∗

1(ξ)+R∗
2(ξ) ≥ R1(v1)+R∗

1(ξ)

QYE≥ cQYE1 ‖v1‖1 ‖ξ‖∗ − CQYE (A.3)≥ cQYE1

(1
2
‖v‖1−C∗

) ‖ξ‖∗ − CQYE.

This is almost the desired result, except for the linear term −cQYE1 C∗‖ξ‖∗ on the right-
hand side. However, since (A.2) provides an upper bound onR1, we have a lower bound on
R∗

1 and hence ofR∗
eff, viz.

R∗
eff(ξ) ≥ R∗

1(ξ)
(A.2)≥ c‖ξ‖q∗∗ − C ≥ ε‖ξ‖∗ − Cε for all ε > 0.

Choosing ε > 0 sufficiently small, the linear term can be absorbed into the left-hand side,
and the QYE for Reff on X1 is established. ��

B Proof of Lemma 3.1

It is sufficient to prove only items (3) and (4) of the statement; for convenience, we will show
them for a sequence (gτ n )n , with |τ n | → 0 as n →∞.

Ad (3): To fix ideas, we will show the statement for the operators T
(1)
τ n . Let gτ n → g

in C0([0, T ];Xw), namely limn→∞ supt∈[0,T ] dweak(gτ n (t), g(t)) = 0 (where dweak is the
distance inducing the weak topology on a closed bounded subset of X ). In order to show
that T

(1)
τ n gτ n → g in C0([0, T ];Xw), we observe that

sup
t∈[0,T ]

dweak(T
(1)
τ n

gτ n (t), g(t)) = max
{
Sleft,τ n , Sright,τ n

}

with

⎧⎨
⎩

Sleft,τn = supt∈∪Ik,τnleft
dweak(gτ n (t), g(t)),

Sright,τ n = supt∈∪Ik,τnright
dweak

(
gτ n

(
t− τn(t)

2

)
, g(t)

)
.
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Now, we clearly have Sleft,τn ≤ supt∈[0,T ] dweak(gτ n (t), g(t)) → 0. In turn,

Sright,τ n = sup
t∈∪Ik,τnleft

dweak
(
gτ n (t), g

(
t+ τn(t)

2

))

≤ sup
t∈∪Ik,τnleft

dweak
(
gτ n (t) , g(t)

)+ sup
t∈∪Ik,τnleft

dweak
(
g(t), g

(
t+ τn(t)

2

)) −→ 0

thanks to the fact that g ∈ C0([0, T ];Xw). This concludes the proof of Claim (3).
Ad (4): Let now gτ n⇀g in L1([0, T ];X ): we aim to show that

1

2

(
T

(1)
τ n
+T

(2)
τ n

)
(gτ n )⇀g in L1([0, T ];X ). (B.1)

In what follows, we will use the short-hand T
(0)
τ n := 1

2

(
T

(1)
τ n +T

(2)
τ n

)
.

First, we observe that, by a characterization ofweak compactness in L1([0, T ];X ) known
as the Dunford-Pettis Theorem (see [13, §IV.2, p. 101] for a version in Bochner spaces),
the sequence (gτ n )n is uniformly integrable, i.e. there exists a convex superlinear function
� : [0,∞) → [0,∞) such that

sup
n

∫ T

0
�(‖gτ n (r)‖)dr < ∞.

We will now show that (T
(0)
τ n gτ n )n∈N is also uniformly integrable. Indeed, by the convexity

of � we have

sup
n

∫ T

0
�(‖T(0)

τ n
gτ n (r)‖)dr = sup

n

(∫ T

0

1
2�(‖T(1)

τ n
gτ n (r)‖)dr +

∫ T

0

1
2�(‖T(2)

τ n
gτ n (r)‖)dr

)

(1)= sup
n

∫ T

0
χ(1)

τ n
(r)�(‖gτ n (r)‖)dr + sup

n

∫ T

0
χ(2)

τ n
(r)�(‖gτ n (r)‖)dr ,

where
(1)= follows from direct calculations, cf. (5.6). Therefore, (T

(0)
τ n gτ n )n∈N is uniformly

integrable as well. Hence, again by the Dunford-Pettis criterion, up to a (non-relabeled)
subsequence (T

(0)
τ n gτ n )n∈N weakly converges in L1([0, T ];X ) to some limit g̃. In order to

show that g̃ = g, it will be sufficient to prove that

∫ T

0
〈φ, T

(0)
τ n

gτ n−g〉X dt −→ 0 for all φ ∈ C0([0, T ];X ∗).

In fact, since T
(0)
τ n g → g in L1([0, T ];X ), it will be sufficient to show that

∫ T

0
〈φ, T

(0)
τ n

gτ n−T
(0)
τ n

g〉X dt −→ 0 for all φ ∈ C0([0, T ];X ∗).

With this aim, we compute the adjoint of the operator T
(0)
τ . For f ∈ L1([0, T ],X) and

φ ∈ C0([0, T ],X∗) we have
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∫ T

0
〈φ, T

(0)
τ f 〉X dt =

Nτ∑
k=1

∫
Ik,τleft

〈φ, T
(0)
τ f 〉X dt +

Nτ∑
k=1

∫
Ik,τright

〈φ, T
(0)
τ f 〉X dt

= 1

2

( Nτ∑
k=1

∫
Ik,τleft

〈φ, f 〉X dt +
∫
Ik,τleft

〈φ, f (· + τk/2)〉X dt

+
∫
Ik,τright

〈φ, f (· − τk/2)〉X dt +
∫
Ik,τright

〈φ, f 〉X dt

)

= 1

2

( Nτ∑
k=1

∫
Ik,τleft

〈φ, f 〉X dt +
∫
Ik,τright

〈φ(· − τk/2), f 〉X dt

+
∫
Ik,τleft

〈φ(· + τk/2), f 〉X dt +
∫
Ik,τright

〈φ, f 〉X dt

)

=
∫ T

0
〈T(0)

τ φ, f 〉X dt .

Hence, for every φ ∈ C0([0, T ];X ∗) we have
∫ T

0
〈φ,T(0)

τ n
gτ n−T

(0)
τ n

g〉X dt =
∫ T

0
〈T(0)

τ n
φ, gτ n−g〉X dt −→ 0,

becauseT
(0)
τ n φ → φ strongly in L∞([0, T ];X ∗), since φ ∈ C0([0, T ];X ∗) and gτ n −g⇀0

weakly in L1([0, T ];X). This concludes the proof of item (4) of the statement. ��
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17. Kōmura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19, 493–507 (1967)
18. Mielke, A.: On evolutionary �-convergence for gradient systems (Ch. 3), Macroscopic and Large Scale

Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. In: Muntean, A., Rademacher, J.,
Zagaris, A. (eds) Lecture Notes in Applied Mathematics Mechanics, Vol. 3. Springer, 2016, pp. 187–
249. Proceedings of Summer School in Twente University (2012)

19. Mielke, A.: Relating a rate-independent system and a gradient system for the case of one-homogeneous
potentials. J. Dyn. Differ. Eqns. 34, 3143–3164 (2022)

20. Mielke A.: An introduction to the analysis of gradient systems. Script of a lecture course 100, WIAS
Preprint 3022 (2023). arXiv:2306.05026

21. Mielke, A., Rossi, R.: Balanced-viscosity solutions to infinite-dimensional multi-rate systems. Arch.
Ration. Mech. Anal. 247(53), 1–100 (2023)

22. Mielke, A., Rossi, R.: On De Giorgi’s lemma for variational interpolants in metric and Banach spaces.
WIAS Preprint 3127 (submitted) (2024). arXiv:2409.00976

23. Mielke, A., Montefusco, A., Peletier, M.A.: Exploring families of energy-dissipation landscapes via
tilting: three types of EDP convergence. Contin. Mech. Thermodyn. 33(3), 611–637 (2021)

24. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: basic theory, Grundlehren
der mathematischen Wissenschaften, vol. 330. Springer, Berlin (2006)

25. Mielke, A., Peletier, M.A., Stephan, A.: EDP-convergence for nonlinear fast-slow reaction systems with
detailed balance. Nonlinearity 34(8), 5762–5798 (2021)

26. Mielke, A., Rossi, R., Savaré, G.: Nonsmooth analysis of doubly nonlinear evolution equations. Calc.
Var. Partial Differ. Equ. 46(1–2), 253–310 (2013)

27. Mielke, A., Rossi, R., Savaré, G.: Balanced viscosity (BV) solutions to infinite-dimensional rate-
independent systems. J. Eur. Math. Soc. 18(9), 2107–2165 (2016)

28. Rossi, R., Mielke, A., Savaré, G.: A metric approach to a class of doubly nonlinear evolution equations
and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7(1), 97–169 (2008)

29. Rossi, R., Savaré, G.: Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM
Control Optim. Calc. Var. 12(3), 564–614 (2006)
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