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A B S T R A C T

This study addresses the significant challenges associated with adopting fuel cell powertrains for agricultural
machinery, particularly concerning efficiency and durability due to the demanding operational environment.
A critical factor is the fuel cell’s operational temperature, which can lead to degradation, higher auxiliary
consumption, and larger radiator volumes. To mitigate these problems, the present study introduces a
predictive control approach for thermal management. Specifically, the notable advantages of the non-linear
model predictive controller over classical control approaches can be attributed to the combination of a
control-oriented model and predictions into a real-time optimization problem. This approach stands as an
innovative addition aimed at compensating the inertia of the cooling system while deploying predictions to
improve the control accuracy and concurrently optimize the utilization of actuators. This work is organized
into two principal contributions: the extensive modeling of a fuel cell system and its validation, and the
comprehensive investigation of a model predictive control strategy. The results demonstrate that a predictive
thermal management strategy can significantly diminish auxiliary consumption by up to 30% compared to
classical control strategies across various ambient temperatures without compromising temperature reference
control. In particular, a comparison with a classical control strategy reveals the effective deployment of multiple
actuators and prediction under the prescribed constraints in the proposed control concept. Additionally, the
study quantifies the impact of ambient temperature on auxiliary consumption and identifies operational
scenarios where model predictive control performs optimally. As part of the unique contribution of this work,
the cost function weights, length, and accuracy of the prediction horizon are also analyzed, with findings
showing that a balance between performance and actuator consumption can be achieved.
1. Introduction

The present study proposes a predictive control strategy for fuel
cell thermal management. In response to the adverse consequences
of imbalanced development, the call for sustainable growth has be-
come universal, addressing every sector of human activities [1]. In
connection with this movement, the importance of sustainable farming
practices has risen significantly within a vast majority of our soci-
ety [2]. Consequently, regulatory standards pertaining to emissions
for non-road machinery have been subject to a stringent tightening of
limits [3] and have propelled significant efforts towards the electrifica-
tion of agricultural machinery [4]. Within this context, the integration
of proton-exchange-membrane (PEM) fuel cell powertrains in tractors
has consistently demonstrated advantages across various prototypes,
attributed to their high gravimetric density and rapid refueling capa-
bilities [5]. In recent years, several advancements in materials science
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have been made to increase the thermal stability of fuel cells [6,7]. Nev-
ertheless, the widespread commercialization of fuel cell powertrains in
tractors encounters substantial obstacles. These hurdles are attributable
to shorter component lifespans and elevated fuel expenses [8]. One
critical factor influencing both the degradation and efficiency of a fuel
cell is its operational temperature. The research by [9–11] highlights
key factors influencing fuel cell performance degradation. Elevated
temperatures can degrade the membrane structure and cause plat-
inum dissolution in the catalyst layer. High temperatures may also
reduce relative humidity, promoting radical formation in the mem-
brane, while lower humidity accelerates catalyst layer dissolution and
carbon support corrosion. However, the reduction of the fuel cell
operating temperature can have repercussions on the overall system
performance: the lower temperature difference between ambient and
fuel cell requires an increase of auxiliary power [12]. Achieving a
delicate balance between these two concurring goals is crucial for
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optimal performance and typically, this equilibrium is found within
a temperature range of 60 to 80 ◦C [13]. Managing the operational
temperature stands out as one of the most complex aspects of fuel cell
hermal management strategies (TMSs), given that a substantial portion
f the waste heat must be dissipated through a cooling system [14].

This aspect represents a critical distinction from traditional internal
combustion engines, where higher operating temperatures and larger
quantities of exhaust gas even enable waste heat recovery, thereby
improving efficiency [15]. This is exacerbated by the performance
haracteristics of the fuel cell stack, wherein efficiency decreases with
he load, consequently leading to an increase in waste heat [16].

Meeting the heightened cooling requirements necessitates an expansion
in the radiator surface area and an increase in the air mass flow rate
through the fans in comparison with conventional powertrains [17,18].
As a consequence, the enlarged dimensions contribute to heightened
inertia within the thermal system and introduce delays in the response
of the actuator. This challenge is notably pronounced in tractors, where
the presence of airstream is nearly absent: during farming activities,
tractors often operate at higher loads, maintaining an average speed of
approximately 4 km/h according to [19,20].

1.1. Literature survey

The temperature control of PEM fuel cells has received consid-
rable attention in the last two decades. Initial investigations pri-
arily employed classical control methods, such as the proportional–

ntegral–derivative controller (PID controller) [21,22], rule-based ap-
roaches [23] and state feedback [24]. These investigations revealed
ignificant challenges associated with system dynamics, non-linearity
nd optimal performance of the actuators related to PEM fuel cell
ystems. Consequently, there has been a shift towards more advanced
ontrol strategies, including feedforward techniques [25], fuzzy logic
lgorithms [26–28], and model-reference control [29] to effectively
anage system dynamics and non-linearities. Approximately a decade

ago, model predictive controller (MPC) was already under scrutiny for
olid oxyde fuel cells [30,31], highlighting the advantages of incor-
orating prediction in the control problem, particularly for systems
ith high inertia. Following this, the introduction of model-based

ontrol methods also gained prominence in PEM research. Specifi-
cally, in [32], MPC was applied to control fans, while in [33], it was
employed for pump and bypass valve regulation. Furthermore, Liu
et al. [34] extended MPC to concurrently regulate fans, and bypass
valves. Offline optimization techniques, such as rolling optimization
with model-predictive control [35], have emerged, especially for fan
ontrol. [36] investigated the integration of an MPC controller for the
hermostat with feedforward controllers for the pump and fan on a
estbed. Similarly, [37] developed an MPC framework to control the

fans of a PEM fuel cell. In [38], an MPC framework was implemented
o calculate the setpoint targets for a PID controller. [39] highlighted

the benefits of integrating the pump and fan actuators within the MPC
formulation to regulate temperature during a typical passenger car
cycle. [40] explored similar advantages by combining the fan, pump,
thermostat, and heater in laboratory cycles. Additionally, in [41],
dynamic programming methods have been explored, demonstrating
the advantages of utilizing and optimizing all actuators in the system:
fans, bypass valve, and pump. A summary of the discussed literature is
presented in Table 1.

The current investigation introduces a model predictive controller
s a solution to the challenges outlined earlier. The extensive modeling
f the fuel cell stack and thermal system accentuates the inherent
nertia of the overall system due to the considerable size of actuators
nd components. Furthermore, an analysis is conducted on classical
ontrol approaches, presently representing state-of-the-art implemen-
ations. Limitations in terms of response time and accuracy are evident
n error-value controlled systems, such as PID controllers, when ap-

lied to complex systems with non-linearities or substantial inertia,

2 
such as heavy-duty fuel cell thermal systems. Typically, traditional
ID controllers lack an inherent mechanism for coordinating multiple

actuators simultaneously. Each term in the PID controller contributes
to the control signal, influencing the behavior of the single actua-
tor to which it is assigned. The proposed non-linear MPC addresses
the significant inertia of the heavy-duty fuel cell stack and optimizes
he usage of fans and pumps by integrating a control-oriented model
nd predictions into a real-time optimization problem. A key con-
ribution of this study involves investigating the potential of model
redictive control for a large fuel cell system, considering three duty
ycles to identify optimal controller performance conditions. The study
emonstrates that the proposed controller significantly reduces ac-
uator energy consumption without compromising control accuracy.
oreover, the analysis explores the impact of operating parameters on

he controller’s performance, such as cost function weights, ambient
emperature, prediction horizon and prediction accuracy, highlighting
he controller’s performance under various conditions.

1.2. Contribution

This work makes key contributions by integrating pump and fan
control into a single MPC framework, analyzing the effects of prediction
orizon length, cost function weights, and ambient temperature on
PC performance, and applying MPC to a 132-kW fuel cell system for

ractors, a field not widely explored. In particular, the examination of
xisting literature highlights the unaddressed topics in the field of TMSs
or PEM fuel cells as well as the novelty of this work:

• The characteristics of a real heavy-duty fuel cell system, including
waste heat and actuators, have not been fully analyzed and
modeled in view of TMSs.

• The limited exploration of the combined control of pumps and
fans in fuel cell systems.

• The lack of studies addressing predictive control for heavy-duty
fuel cell systems in agricultural applications.

• The influence of various conditions on MPC, such as load level,
cost function weights, ambient temperature, prediction horizon,
and accuracy, has not been quantified yet for real applications.

In order to bridge the identified research gaps, this study introduces
n MPC designed for the pump and fans within the fuel cell ther-
al system. Specifically, the system model was constructed utilizing

comprehensive testbed measurements and employed to evaluate the
performance of MPC under different loads and ambient temperatures.
The objective of this analysis is to ascertain the optimal operating
conditions wherein MPC demonstrates high efficacy.

The investigations within the current work call attention to four
ain findings:

1. The 132-kW fuel cell unit and its PID controllers are examined
to underscore the challenges of traditional control strategies.
The analysis of the waste heat generated by the fuel cell system
underscores the necessity for the thermal management system
to dissipate approximately 100 kW even under high ambient
temperatures. This entails the use of larger radiators and sub-
stantial fans, which possess significant inertia. Furthermore, con-
temporary controllers, such as PID controllers, mainly rely on
deviations from the prescribed inlet temperature, potentially
leading to delayed controller responses.

2. The integration of both the pump and fans within the model-
based controller highlights the considerable advantages of for-
mulating an optimization problem using two actuators. Through
the strategic allocation of weights in the MPC formulation, po-
tential instabilities in inlet temperature resulting from the si-
multaneous control of the pump and fans are mitigated. Addi-
tionally, the effective synergy between these two actuators leads
to a reduction in auxiliary consumption, an increase of control

accuracy, and a shorter response time.
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Table 1
Summary of relevant TMSs for PEM fuel cell in literature showing the novelty of present work. Abbreviations: not applicable
(NA), proportional controller (P), passenger car (PC), rule-based controller (RB), state-feedback controller (SF), feed-forward
controller (FF), fuzzy-logic controller (FL), model-reference adaptive control (MRAC), model-predictive control (MPC). For
each TMS type, the controlled actuator is specified in brackets.

Ref. Application/Stack power TMS type (actuators) MPC parameters variations

[21] NA/NA P (fan) NA
[22] NA/5 kW PID (pump) NA
[23] PC/30 kW RB (fan, pump) NA

[24] PC/75 W PI (fan),
SF (pump, BPV)

NA

[25] NA/21 kW PID (fan),
FF (pump)

NA

[26] NA/NA FL (pump) NA
[27] PC/30 kW FL-PID (fan, pump) NA
[28] NA/NA FL (fan) NA
[29] PC/45 W MRAC (pump, BPV) Amb. temperature
[32] PC/1 kW MPC (fan) NA

[33] NA/50 kW MPC (pump, BPV) Prediction horizon
Control horizon

[34] PC/60 kW MPC (fan, BPV),
FF (pump)

Prediction horizon

[35] Truck/80 kW MPC (fan) NA

[36] NA/85 kW MPC (BPV),
FF (fan, pump)

Prediction horizon

[37] NA/5 kW MPC (fan) Amb. temperature
[38] NA/5 kW PID (fan, pump) NA
[39] PC/68 kW MPC (fan, pump) NA

[40] Bus/40 kW MPC (pump, BPV, fan) Prediction horizon
Sample time

[41] PC/55 kW DP (fan, pump, BPV) NA

This work Tractor/132 kW MPC (fans, pump) Cost weights
Amb. temperature
Prediction horizon
Prediction accuracy
f

t
b

3. The investigation of predictive TMS for the fuel cell tractor
demonstrates the benefits in mitigating auxiliary consumption.
In agriculture, farm-related tasks are distinguished by a sequence
of high-load phases in the field, followed by lower loads when
the tractor nears a curve at the headland, where land is left
unploughed. The implementation of pattern recognition tech-
niques may even allow for the acquisition of highly precise load
forecasts, which can be deployed by a predictive TMS to reduce
fuel consumption and tackle temperature management at low
speed.

4. The efficacy of the proposed strategy is assessed across di-
verse agricultural duties, cost function weights, ambient temper-
ature conditions, and prediction parameters to comprehensively
demonstrate the potential of MPC in controlling the thermal
systems of fuel cell electric tractors. It is found that the MPC
demonstrates optimal performance under mild ambient temper-
atures and moderate to high workload, as well as effectiveness
even under hot ambient temperatures. The variation in cost
function weights reveals that while the MPC achieves higher
reference-tracking performance, it results in a consistent increase
in auxiliary power consumption. Additionally, the analysis of
prediction horizon length and accuracy reveals variations in con-
troller performance, a limited increase in computational time,
and the necessary accuracy for prediction.

The remainder of this paper is structured as follows. Section 2
describes the fuel cell system on the testbed and the models validated
with the experimental data and the losses analysis of the fuel cell stack.
Section 3 presents the control strategies of the thermal system including
the formulation of the MPC. Section 4 discusses the advantages of
the proposed strategy under various power loads, ambient temperature
onditions, prediction horizon lengths and accuracy. Finally, Section 5
3 
concludes this work and outlines the potential direction of further
research.

2. Fuel cell system testbed set-up and model

In this section, the fuel cell unit was modeled to represent the real
system on the testbed. The testbed setup and models were specifically
developed to validate the proposed control strategies and evaluate their
performance under real-world conditions. Successively, this model is
used as the plant model in this study’s investigations to assess the
performance of the controllers. The fuel cell model was created and
validated through extensive measurements at the testbed. This model
comprises an equivalent electrical circuit for the fuel cell stack and
lump model with four volumes for the thermal system. The validation
of the model is a crucial step for the investigations and comparison of
control strategies of Section 3.

2.1. Fuel cell system set-up on testbed

The fuel cell unit examined in this work has been employed in the
rame of the project ‘‘FCTRAC’’ [18], where a STEYR 4130 Expert CVT,

originally a diesel tractor with a net power-take-off power of 95 kW,
has been retrofitted with a fuel cell powertrain [42]. The project goal is
o power a fuel cell electric tractor using hydrogen produced from local
iomass, thereby promoting a circular economy [43]. The 132-kW stack

nominal power was chosen to enable hydrogen-powered operation
under all conditions while minimizing the high-voltage battery size.
The powertrain of the fuel cell tractor was arranged in a testbed for
hydrogen systems as illustrated in Varlese et al. [44].

A schematic of the fuel cell system testbed set-up and architecture
is depicted in Fig. 1. A summary of the most important specifications
is reported in Table 2. The presented testbed setup replicates the
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Fig. 1. Fuel cell unit testbed set-up (left) and schematic (right).
Table 2
Summary of relevant fuel cell components specifications.

Component Description Specification

Fuel cell stack Nominal power 132 kW (BoL)
Nominal current 360 A
Cells 560
Cell active area 250 cm2

Fuel cell unit Electric net power
(excluding HV thermal system)

112 kW

BoP max. power Compressor 16 kW
Hydrogen recirculation blower 1 kW
Fuel cell
Coolant pump

1.2 kW

Fuel cell radiator fans 3.3 kW
HV components radiator fan 1.1 kW
HV components pump 0.5 kW

Testbed
hydrogen supply

Pressure (8–300) bar

operating conditions of a tractor. The fuel cell varying load is based on
the power demand of the tractor’s electric motor and is replicated by
the battery emulator, which follows the given setpoint of current. The
testbed climatic chamber provides precise control of ambient tempera-
ture between 15 and 35 ◦C, with a constant humidity of 50%, ensuring
test repeatability under various conditions or test under precise condi-
tions. The fuel cell stack is rated with a maximum power of 132 kW
Beginning-of-Life (BoL). The maximum power of the Balance-of-Plant
(BoP) was measured with a constant coolant inlet temperature 60 ◦C
and ambient temperature 20 ◦C at the testbed. The fuel cell unit’s net
power is rated at 112 kW, where the air compressor contributes to
approx. 75% of BoP components consumption. It must be noted the
net power is strictly dependent on the ambient temperature. Therefore,
the power difference between stack and unit does not necessarily
correspond to the sum of the maximum power of the BoP components.
Furthermore, the auxiliaries of the HV components cooling circuits
are not taken into account in this calculation. In comparison to the
power electronics of the entire powertrain, the high-voltage fuel cell
components contribute a negligible amount of waste heat to the overall
cooling circuit, which is, therefore, dominated by the waste heat from
other components.

The following subsections describe the model derived from the
testbed measurements. A schematic of the model is shown in Fig. 2.
Here, it can be seen the model consists of two submodels: the fuel cell
stack electrochemical model and the thermal system lumped model. It
must be stressed the electrochemical model allows an accurate rep-
resentation of the voltage in transient behavior, which is of pivotal
importance for the unsteady characterization of the stack waste heat.
4 
2.2. Fuel cell stack electrochemical model and validation

A single-cell electrochemical model is employed to accurately rep-
resent the steady and transient characteristics of the actual stack waste
heat in the coolant 𝑃𝑐 𝑜𝑜𝑙 and to evaluate the losses in the stack. The
model is based on an equivalent electrical circuit of Wang [45] partially
parametrized with literature data from [46,47]. The fuel cell stack
model is derived from the multiplication of the cell voltage output with
the number of cells in the stack.

The cell voltage 𝑉𝑐 𝑒𝑙 𝑙 is expressed through the equivalent electrical
circuit of Fig. 2 as follows

𝑉𝑐 𝑒𝑙 𝑙 = 𝐸 − 𝑉𝐶 − 𝑅𝑜ℎ𝑚 𝐼𝑓 𝑐 𝑠 (1)

𝐼𝑓 𝑐 𝑠 is the fuel cell current, 𝑉𝐶 is the concentration voltage losses, 𝐸 is
the difference between the open-voltage 𝐸0 and the transient voltage
change due to the delay of fuel and oxidant 𝐸𝑑 :

𝐸 = 𝐸0 − 𝐸𝑑 (2)

The open-voltage 𝐸0 is expressed through the Nernst voltage 𝐸𝑛 as
follows:

𝐸0 = 1.229 − 8.5 × 10−4 (𝑇𝑓 𝑐 𝑠 − 298.15) + 𝐸𝑛 (3)

where 𝑇𝑓 𝑐 𝑠 denotes the temperature of a single cell. As it was not
possible to measure the exact cell temperature on the testbed, this
temperature is assumed equivalent to the coolant inlet temperature
𝑇𝑓 𝑐 𝑠,𝑖𝑛 for the determination of the model. This assumption has a
potential impact on the accuracy of the model, as the temperature is
considered uniform over the cells. The Nernst voltage 𝐸𝑛 is obtained
through the partial pressure of hydrogen at the anode catalyst interface
𝑝𝐴𝐶 𝐿H2

and oxygen at cathode catalyst interface 𝑝𝐴𝐶 𝐿O2
:

𝐸𝑛 =
𝑅 𝑇
2𝐹

𝑙 𝑜𝑔
⎛

⎜

⎜

⎝

1

𝑝𝐴𝐶 𝐿H2
𝑝𝐶 𝐶 𝐿O2

0.5

⎞

⎟

⎟

⎠

(4)

where 𝑅 and 𝐹 are the universal gas constant and the Faraday constant
respectively. 𝑝𝐴𝐶 𝐿H2

is determined as follows:

𝑝𝐴𝐶 𝐿H2
= 0.5 𝑝𝑠𝑎𝑡 (𝑇𝑓 𝑐 𝑠)

⎛

⎜

⎜

⎝

1
𝑥𝐴𝐶 𝐿H2O

− 1
⎞

⎟

⎟

⎠

(5)

where the 𝑝𝑠𝑎𝑡(𝑇𝑓 𝑐 𝑠) is the saturation pressure of water vapor in depen-
dence of fuel cell temperature according to Vetter [47] and 𝑥𝐴𝐶 𝐿H2O

is the
water mole fraction at the anode catalyst interface.

The mole fractions of the reactants involved can be expressed as
in Eqs. (6). These equations describe the water mole fraction from the
anode channel to the catalyst interface anode 𝑥𝐴𝐶 𝐿H2O

, the water mole
fraction in the gas channel of the anode 𝑥𝐴𝐶 𝐻 , the water mole fraction
H2O
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Fig. 2. Fuel cell system model obtained from testbed measurements. The model consists of a fuel cell stack electrochemical model and a thermal system model.
at the catalyst layer of the cathode 𝑥𝐶 𝐶 𝐿N2
, the nitrogen mole fraction in

the gas channel of the cathode 𝑥𝐶 𝐶 𝐻N2
, the water mole fraction in the

gas channel of the cathode 𝑥𝐶 𝐶 𝐻H2O
:

𝑥𝐴𝐶 𝐿H2O
= 𝑥𝐴𝐶 𝐻H2O

𝑒𝑥𝑝
(𝑅 𝑇𝑓 𝑐 𝑠 𝐼𝑓 𝑐 𝑠 𝐿𝐴𝐶 𝐿 𝜏𝐺 𝐷 𝐿 𝐷H2O–H2

(𝑃𝑎, 𝑇𝑓 𝑐 𝑠)
2𝐹 𝑃𝑎 𝜀𝐺 𝐷 𝐿

)

(6a)

𝑥𝐴𝐶 𝐻H2O
= 𝑅𝐻𝑎

𝑝𝑠𝑎𝑡
𝑃𝑎

(6b)

𝑥𝐶 𝐶 𝐿H2O
= 𝑥𝐶 𝐶 𝐻H2O

𝑒𝑥𝑝
(𝑅 𝑇𝑓 𝑐 𝑠 𝐼𝑓 𝑐 𝑠 𝐿𝐶 𝐶 𝐿 𝜏𝐺 𝐷 𝐿 𝐷H2O–N2

(𝑃𝑐 , 𝑇𝑓 𝑐 𝑠)
4𝐹 𝑃𝑐 𝜀𝐺 𝐷 𝐿

)

(6c)

𝑥𝐶 𝐶 𝐿N2
= 𝑥𝐶 𝐶 𝐻N2

𝑒𝑥𝑝
(𝑅 𝑇𝑓 𝑐 𝑠 𝐼𝑓 𝑐 𝑠 𝐿𝐶 𝐶 𝐿 𝜏𝐺 𝐷 𝐿 𝐷N2–O2

(𝑃𝑐 , 𝑇𝑓 𝑐 𝑠)
4𝐹 𝑃𝑐 𝜀𝐺 𝐷 𝐿

)

(6d)

𝑥𝐶 𝐶 𝐻N2
= 0.79 (1 − 𝑥𝐶 𝐶 𝐻H2O

) (6e)

𝑥𝐶 𝐶 𝐻H2O
= 𝑅𝐻𝑐

𝑝𝑠𝑎𝑡
𝑝𝑐

(6f)

where 𝐿𝐴𝐶 𝐿 is the length of the catalyst layer at the anode, 𝐿𝐶 𝐶 𝐿 is the
length of the catalyst layer at the cathode, 𝜏𝐺 𝐷 𝐿 is the diffusion tran-
sient constant in the gas diffusion layer (GDL), 𝜀𝐺 𝐷 𝐿 is the compressed
GDL porosity, 𝑅𝐻𝑐 is the relative humidity at the cathode (assumed
1), 𝑅𝐻𝑎 is the relative humidity at the anode (assumed 0.75), 𝑃𝑐 is the
cathode pressure, 𝑃𝑎 is the anode pressure, 𝐷H2O–H2

is the diffusivity of
water in hydrogen and 𝐷H2O–N2

is the diffusivity of water in nitrogen,
𝐷N2–O2

is the diffusivity of nitrogen in oxygen. The diffusivity equations
are based on the work of Goshtasbi [46].

It is evident from Eqs. (6) that the anode pressure 𝑝𝑎 and the cathode
pressure 𝑝𝑐 are necessary inputs for the model. These pressures are
assumed as the average between inlet and outlet. The cathode outlet
pressures 𝑝𝑐 ,𝑜𝑢𝑡 is assumed constant and equal to the ambient pressure.
The anode outlet pressure 𝑝𝑎,𝑜𝑢𝑡, the anode inlet pressure 𝑝𝑎,𝑖𝑛 and the
cathode outlet pressure 𝑝𝑐 ,𝑜𝑢𝑡 are determined from the measurements
maps of Fig. 3 obtained from the testbed.

The gas dynamics effects on the fuel cell voltage 𝐸𝑑 are modeled
via a transfer function in Laplace domain:

𝐸 (𝑠) = 𝜆 𝐼
𝜏𝑒 𝑠 (7)
𝑑 𝑒 𝑓 𝑐 𝑠 𝜏𝑒 𝑠 + 1

5 
where 𝜆𝑒 is a constant factor expressed in 𝛺 and 𝜏𝑒 is the overflow
delay.

The activation voltage drop is calculated through the empirical
equation of [48]:

𝑉𝑎𝑐 𝑡 = 𝜂0 + 𝑎 𝑇𝑓 𝑐 𝑠 + 𝑇𝑓 𝑐 𝑠 𝑏 𝑙 𝑛(𝐼𝑓 𝑐 𝑠) (8)

where 𝑎 and 𝑏 are coefficients expressed in V/K and 𝜂0 is a constant
term. This equation considers the combination of two terms, where
the first only depends on temperature. The second term is used for the
calculation of equivalent resistance of activation losses as follows and
will be used for the calculation of the double-layer charging effect:

𝑅𝑎𝑐 𝑡 =
(𝑇𝑓 𝑐 𝑠 𝑏 𝑙 𝑛(𝐼𝑓 𝑐 𝑠))

𝐼𝑓 𝑐 𝑠
(9)

For the calculation of the ohmic resistance, the function of temper-
ature and current is used [48]:

𝑅𝑜ℎ𝑚 = 𝑅𝑜ℎ𝑚0 + 𝑘𝑅𝐼 𝐼𝑓 𝑐 𝑠 − 𝑘𝑅𝑇 𝑇𝑓 𝑐 𝑠 (10)

where 𝑅𝑜ℎ𝑚0 is the constant term, 𝑘𝑅𝑇 a coefficient for temperature
dependency, 𝑘𝑅𝐼 for current dependency.

The concentration transport losses due to mass diffusions from the
flow channels to the reaction sites (catalyst surfaces) is expressed based
on Fick’s First Law and Faraday’s Law as:

𝑉𝑐 𝑜𝑛𝑐 = −𝑅 𝑇𝑓 𝑐 𝑠
𝑧 𝐹 𝑙 𝑛

(

1 − 𝐼𝑓 𝑐 𝑠
𝐼𝑓 𝑐 𝑠,𝑙 𝑖𝑚

)

(11)

where 𝑧 is the number of participating electrons and 𝐼𝑓 𝑐 𝑠,𝑙 𝑖𝑚 is the
limitation current assumed to be 450 A (based on the assumption of a
current density of 1.8 A/cm2), as measurements of the system were not
possible due to the implemented controller for currents higher than 360
A. Consequently, the equivalent concentration loss resistance is given
as:

𝑅𝑐 𝑜𝑛𝑐 =
𝑉𝑐 𝑜𝑛𝑐
𝐼𝑓 𝑐 𝑠

(12)

The electrochemical double layer forms at the boundary between
the porous cathode and the membrane in a fuel cell, allowing it to store
electrical energy similarly to a capacitor. This occurs because electrons
flow from the anode to the cathode through an external load, while
protons, separated by the membrane, are drawn towards the cathode.
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Table 3
Summary of fitted coefficient for the electrochemical model.

Symbol Description Value Unit

𝑎 Coefficient for temperature dependency in Eq. (8) −0.0018 V/K
𝜂0 Constant in Eq. (8) 0.0901 V
𝑏 Coefficient for temperature and currentdependency in Eq. (8) 9.16 × 10−5 V/K
𝐼𝑓 𝑐 𝑠,𝑙 𝑖𝑚 Current limitationin Eq. (11) 450 (assumption) A
𝑅𝑜ℎ𝑚0 Constant term of ohmic losses in Eq. (10) 0.00128 Ω
𝑘𝑅𝑇 Temperature-dependent term of ohmic losses in Eq. (10) 3.42 × 10−6 Ω/K
𝑘𝑅𝐼 Current-dependent term of ohmic losses in Eq. (10) 8.3 × 10−9 Ω/A
𝜏𝑒 Overflow delay in Eq. (7) 4.1318 s
𝐶 Equivalent capacitorin Eq. (13) 0.7582 F
𝜆𝑒 Constant in Eq. (7) 1.68 × 10−4 Ω
Fig. 3. Measurements maps obtained at the testbed for the determination of the anode inlet, anode outlet and cathode inlet pressure.
As in [45], the double layer effects are given by:

𝑉𝐶 =
(

𝐼𝑓 𝑐 𝑠 − 𝐶
𝑑 𝑉𝐶
𝑑 𝑡

)

(𝑅𝑎𝑐 𝑡 + 𝑅𝑐 𝑜𝑛𝑐 ) (13)

where 𝐶 is the equivalent capacitor due to the double-layer charging
effect.

From the described equations, it is clear that several coefficients are
unknown and must be defined from measurement results. Experimental
data of the overall cell voltage 𝑉𝑐 𝑒𝑙 𝑙 ,𝑚𝑒𝑎𝑠 from the testbed polariza-
tion curves (calculated from the stack voltage assuming uniformity)
are deployed in a minimization problem in MATLAB [49] through
particle-swarm optimization to find the coefficients that minimize this
expression:

min
(

|

|

𝑉𝑐 𝑒𝑙 𝑙 ,𝑚𝑒𝑎𝑠 − 𝑉cell ||
)

(14)

where the model voltage is dependent on the ten coefficients: 𝑉cell
(

𝑎, 𝜂0, 𝐼𝑓 𝑐 𝑠,𝑙 𝑖𝑚, 𝑏, 𝑅𝑜ℎ𝑚0, 𝑘𝑅𝐼 , 𝑘𝑅𝑇 , 𝜏𝑒, 𝐶 , 𝜆𝑒
)

. The measurements
deployed encompass three polarization curves with constant coolant
inlet temperature (50, 60 and 70 ◦C) and one load step from 30 A
to 300 A. Clearly, the amount of coefficients may result in overfitting
with the given measurements. Hence, the optimization is carried out
with boundaries and successive steps to keep the physical fidelity of
the model. In particular, the minimization was carried out as follows:

1. 𝑎 and 𝜂0: measurement points without load (𝐼𝑓 𝑐 𝑠 equal to 0 A)
2. 𝑏, 𝑅𝑜ℎ𝑚0, 𝑘𝑅𝐼 , 𝑘𝑅𝑇 : polarization curve points with load
3. 𝜏𝑒, 𝐶 and 𝜆𝑒: transient load step

As a summary, the nomenclature, unit, and values of the fitted
coefficients are reported in Table 3.

The accuracy of the electrochemical model is presented in Fig. 4,
where the mean absolute percentage deviation (MAPD) of the voltage
cell is reported to express the model accuracy. In this work, the MAPD
is defined as follows:

MAPD = 1
𝑛
∑

|

|

|

𝑦𝑖 − �̂�𝑖 |
|

|

× 100 (15)

𝑛 𝑖=1 | 𝑦𝑖 |

6 
Fig. 4. Validation of the fuel cell electrochemical model against the testbed results.

where 𝑦𝑖 is the testbed value, �̂�𝑖 is the modeled value, 𝑛 is the total
number of observations.

The left side of the graph illustrates the stationary points of the
polarization curve, where the model exhibited an accuracy with a mean
absolute percentage deviation (MAPD) of less than 1% compared to the
measurements, as shown in the gray bar in the left bottom of Fig. 4. This
accuracy is comparable to or slightly lower than the results obtained
under stationary conditions in previous studies, such as [38,40], and
allows the investigation of the proposed strategy under real-world
conditions. The slight discrepancy may stem from the inherent limita-
tions of the one-dimensional model in capturing the full complexity of
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processes within the fuel cell stack. For instance, the model assumes a
uniform cell temperature equal to the stack inlet temperature, which
cannot account for the complex temperature distribution within the
cell. The right side of the graph depicts a transient measurement
conducted on the testbed during a simulated tractor transport cycle. In
this scenario, the model continued to accurately represent the dynamic
behavior of the fuel cell, achieving a MAPD of 1.2%. The slight increase
in MAPD under transient conditions compared to stationary results can
be attributed to two factors. First, the simplification of gas dynamics,
which are modeled using a transfer function. Second, as shown in the
bottom-right plot of Fig. 4, a consistent deviation is observed at low
load. Since the cycles analyzed in this work primarily involve medium
and high loads, the model accuracy is considered satisfactory. This
result is particularly significant for accurately capturing the transient
behavior of the fuel cell stack waste heat. To meet rapid power de-
mands, the fuel cell draws more current, causing a temporary voltage
undershoot. Consequently, during sudden load changes, the waste heat
increases, as the higher current directly correlates with greater waste
heat generation.

2.3. Fuel cell stack waste heat model and losses analysis

The electrochemical model of the stack is also used to provide
valuable insights into the waste heat generation and power losses
occurring within the stack. The waste heat model is formulated based
on the equations governing the molar masses of hydrogen and air
consumption as dictated by Faraday’s law. In a fuel cell stack, the
hydrogen power input 𝑃H2

is converted into usable electric power 𝑃𝑓 𝑐 𝑠
and waste heat 𝑃𝑤ℎ. The hydrogen power input is equivalent to the
hydrogen consumption �̇�H2

multiplied with the lower heat value (LHV)
of hydrogen 𝐿𝐻 𝑉H2

. The waste heat in a fuel cell comprises heat
removed through the coolant 𝑃𝑐 𝑜𝑜𝑙 and heat expelled with the exhaust
gases 𝑃𝑒𝑥ℎ, where the latent heat of vaporization is neglected:

𝑃H2
= 𝑃𝑓 𝑐 𝑠 + 𝑃𝑤ℎ (16a)

𝑃H2
= 𝐿𝐻 𝑉H2

�̇�H2
(16b)

𝑃𝑤ℎ = 𝑃𝑐 𝑜𝑜𝑙 + 𝑃𝑒𝑥ℎ (16c)

The total waste heat power 𝑃𝑤ℎ is derived from the electric power
𝑃𝑓 𝑐 𝑠 and the consumption map determined from the testbed as in Fig. 5.

The waste heat in the coolant 𝑃𝑐 𝑜𝑜𝑙 is evaluated by subtracting 𝑃𝑒𝑥ℎ
from 𝑃𝑤ℎ. 𝑃𝑒𝑥ℎ is calculated by accounting for the heat required to
raise the reactants from ambient temperature to the fuel cell operating
temperature:

𝑃𝑒𝑥ℎ = (𝑐𝑝,𝑎𝑖𝑟 �̇�𝑎𝑖𝑟 + 𝑐𝑝,H2
�̇�H2

) (𝑇𝑓 𝑐 𝑠 − 𝑇𝑎𝑚𝑏) (17)

where 𝑐𝑝,𝑎𝑖𝑟 is the specific heat capacity of air, assumed 0.00028 kWh/
(kg K), 𝑐𝑝,H2

is the specific heat of hydrogen, equal to 0.004 kWh/(kg K)
and �̇�𝑎𝑖𝑟 is the mass flow of air. This quantity is estimated by consid-
ering the molar mass of oxygen 𝑀O2

, the molar fraction of oxygen 𝑥O2
in air and the air stoichiometry ratio at the fuel cell inlet, 𝜆𝑎𝑖𝑟,𝑖𝑛:

̇ 𝑎𝑖𝑟 =
𝑀O2

𝐼𝑓 𝑐 𝑠 𝜆𝑎𝑖𝑟,𝑖𝑛
4 𝑥O2

𝐹
(18)

𝜆𝑎𝑖𝑟,𝑖𝑛 and �̇�H2
are determined using look-up tables derived from

testbed measurements, as in Fig. 5.
Fig. 6 illustrates the model’s accuracy and the analysis of the

waste heat generated by the fuel cell stack at 70 ◦C. The comparison
with the polarization curve in Fig. 6a highlights the precision of the
waste heat in the coolant 𝑃𝑐 𝑜𝑜𝑙 with a MAPD of approximately 6%.
Fig. 6b and c also depict the distribution of coolant waste heat and
exhaust waste heat relative to the hydrogen power input 𝑃H2

, which are
approximately 40% and 4%, respectively. Fig. 6c clearly illustrates the
7 
Fig. 5. Measurement maps of fuel consumption (a) and air stoichiometry ratio (b).

Fig. 6. Analysis of waste heat and losses of the fuel cell stack in the equivalent electric
model. (a) Validation of coolant waste heat with polarization curve at 70 ◦C. (b) Power
distribution of input hydrogen. (c) Percentage power distribution of input hydrogen.
(d) Sources of losses and waste heat from electrochemical model.

challenges of thermal management in a fuel cell system. At full load,
approximately 100 kW of waste heat (𝑃𝑐 𝑜𝑜𝑙) must be dissipated using
the cooler, fans, and pump. Additionally, the electrochemical model
facilitates the estimation of the sources of waste heat. Fig. 6d highlights
the major source of waste heat and voltage losses is the open voltage
losses 𝑃𝑜𝑣 with approximately 60 kW and the activation losses 𝑃𝑎𝑐 𝑡 with
35 kW, whereas concentration losses a 𝑃𝑐 𝑜𝑛𝑐 and 𝑃𝑜ℎ𝑚 account in total
for 10 kW.

2.4. Thermal system model

A four-volume thermal system model, as illustrated in Fig. 2, is
deployed in this work as a non-linear plant model to accurately depict
the stack inlet and outlet temperature for the given waste heat and
actuator action. The four volumes correspond to the main components
of the thermal system: fuel cell stack, radiator and two pipes in-
between. Moreover, the thermal system is equipped with one three-way
by-pass valve, one coolant pump and six fans on the radiator. This
model is used to estimate the temperature of coolant circuit given
ambient temperature, coolant waste heat, fans and pump setpoints.
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Table 4
Summary of parameters used for the thermal system model.

Component Description Value Unit

Fuel cell stack Weight 77 kg
Specific heat cap. 752.5 J/(kg K)
Convective heat transfer coeff. 1 W/(K m2)
Channels number 80 –
Channel length 300 mm
Channel diameter 0.5 mm

Pump Max. flow 5.2 kg/s
Max. power 1.2 kW

Fans Max. flow 4.8 kg/s
Max. rate 12 %/s
Max. power 3.3 kW

Radiator Channels rows 83 –
Channels layers 4 –
Channel length 1.1 m
Channel width 2 mm
Channel height 20 mm
Convective heat transfer area 19.72 m2

Convective heat transfer coeff. 70 W/(K m2)

Pipe 1 and 2 Diameter 50 mm
Length 2 m
Weight 0.583 kg
Specific heat cap. 1300 J/(kg K)

The model is implemented as a non-linear model through SIMSCAPE in
MATLAB with the relevant parameters shown in Table 4. The thermal
system utilizes approximately 35 l of 50/50 mixture of glycol and
eionized water as the coolant with an electric conductivity lower
han 3 μS/cm. This low value is necessitated by the coolant’s direct
ontact with high voltage within the bipolar plates. The specific heat
apacity of the coolant 𝑐𝑝,𝑐 𝑜𝑜𝑙 at 60 ◦C is approximately 3450 J/(kg K).
he thermal inertia of the coolant significantly impacts the system’s
ynamics, with the coolant being distributed across different volumes
s follows: 13 l in the fuel cell, 6 l in the pipes, and 16 l in the radiator.
t is essential to note that in this study, the HV cooling circuit of the
V BoP components is not modeled, under the assumption that the
perating points of these components, specifically the air compressor
nd hydrogen recirculation blower, remain constant, as the electric
oad of the fuel cell is not varied. Furthermore, the model does not
ncorporate the 3-way bypass valve because its primary function is to
apidly increase temperature during the warm-up phase. This study
ocuses on optimizing the cooling performance of the thermal system
uring medium and high load cycles when the 3-way bypass valve is
ully opened and it is therefore omitted.

The fuel cell stack is modeled as a single coolant channel of the
bipolar plates in order to keep the physical behavior for heat transfer.
The mass flow of the single channel is successively multiplied by the
number of channels in the plate 𝑛𝑐 ℎ𝑎𝑛𝑛, which is assumed to be 80, and
he number of cells equal 𝑛𝑐 𝑒𝑙 𝑙 to 560. The heat transfer in the single

channel is parametrized based on the Dittus-Boelter correlation:

𝑁 𝑢 = 0.1𝑅𝑒0.8 𝑃 𝑟0.4 (19)

The temperature of the fuel cell stack 𝑇𝑓 𝑐 𝑠 is calculated based on the
energy equilibrium of the single channel. Assuming uniform partition
of weight, area and mass flow throughout the channels, the energy
equilibrium of the single channel to the stack energy equilibrium
xpressed as:
𝑚𝑓 𝑐 𝑠 𝑐𝑝,𝑓 𝑐 𝑠 �̇�𝑓 𝑐 𝑠 = �̇�𝑐 𝑜𝑜𝑙 𝑐𝑝,𝑓 𝑐 𝑠 (𝑇𝑓 𝑐 𝑠,𝑜𝑢𝑡 − 𝑇𝑓 𝑐 𝑠,𝑖𝑛)

−𝐾𝑓 𝑐 𝑠 𝐴𝑓 𝑐 𝑠 (𝑇𝑓 𝑐 𝑠 − 𝑇𝑎𝑚𝑏) + 𝑃𝑐 𝑜𝑜𝑙
(20)

where the dry stack weight is 77 kg. The specific heat capacity of the
stack 𝑐𝑝,𝑓 𝑐 𝑠 is a decisive factor for the temperature dynamics and is
considered to be 752.5 J/(kg K) with the assumption of the following
weight distribution [50] and material composition [51] at 60 ◦C: 90%
raphite from the bipolar plates, current collectors and end plates, 5%
8 
tetrafluoroethylene from the membrane, 5% silicone from the sealings.
he convective heat transfer is modeled through the coefficient 𝐾𝑓 𝑐 𝑠,
qual to 1 W/(K m2), and the heat exchange area 𝐴𝑓 𝑐 𝑠, assumed to be
he sum of each channel area with diameter 𝑑𝑐 ℎ𝑎𝑛𝑛 and length 𝑙𝑐 ℎ𝑎𝑛𝑛,
espectively 0.5 mm and 300 mm.

The primary actuators in the thermal system are the pump and
the six radiator fans, and they are driven by the setpoint: Sp𝑝 for
the pump and Sp𝑓 for the fans. These auxiliary components operate
n a coordinated manner to cool the fuel cell stack and are modeled
ased on the curves of Fig. 7a and b. The pump has a maximum
ated mass flow of 5.2 kg/s and a maximum power consumption of

1.2 kW. The power consumption 𝑃𝑝 and mass flow rate curves �̇�𝑝 for
the pump are presented in Fig. 7a. The asterisk points in the graph
ndicate the experimental values measured at the testbed. The six fans

are mounted on the radiator, collectively providing a maximum mass
flow of 4.8 kg/s with a maximum power consumption of 3.3 kW. At the
testbed, a transient characteristic of approximately 8 s was observed for
a setpoint change from 0 to 100%. Hence, a maximum rate of 12%/s
was implemented in the model. The performance curves for the fans
are shown in Fig. 7b. Due to the inability to measure the mass flow
accurately at the testbed, the curve depicts the values provided in the

anufacturer’s datasheet.
The radiator is modeled as a heat exchanger, where the specific

dissipation 𝜉 of Fig. 7c is used to calculate the heat transfer. The radi-
ator’s geometry consists of 83 channel rows arranged over four layers.
Each channel measures approximately 1.1 m in length, 2 mm in width,
and 20 mm in height. This geometry is simplified to a prismatic shape,
resulting in a natural convective heat transfer area 𝐴𝑟 of 19.7 m2. The
total heat exchange area is estimated to be 39.4 m2, assuming the
fin surface area is equal to that of the channels. The convective heat
transfer coefficient ℎ𝑟, estimated from measurements, is 24 W/(K m2).
The specific dissipation 𝜉 is the coefficient that governs the heat transfer
in the model and was determined by fitting experimental results from
the testbed. Specifically, a fitting dataset of 16 operating points at an
ambient temperature of 23 ◦C with various combinations of inputs was
used to fit the resulting temperatures of the model. The fitting process
achieved a mean absolute deviation of 2.3 ◦C for the inlet temperature
and 1.2 ◦C for the outlet temperature with the fitting dataset. The waste
heat that is removed by the radiator 𝑃𝑟 is given by:

𝑃𝑟 = 𝜉 (𝑇𝑟,𝑜𝑢𝑡 − 𝑇𝑟,𝑖𝑛) + ℎ𝑟 𝐴𝑟 (𝑇𝑟 − 𝑇𝑎𝑚𝑏) (21)

where the natural convective heat transfer model is deactivated when
he forced convective heat transfer of the fans is active. The radia-

tor is made of aluminum, with a specific heat capacity at 60 ◦C of
897 J/(kg K) and a mass 𝑚𝑟 of 94 kg.

The two pipes connecting the radiator and fuel cell stack are as-
sumed as entirely made of silicone and modeled as two separate
volumes with a specific heat capacity 𝑐𝑝,𝑝 of 1300 J/(kg K). The length
and diameter of each volume are assumed to be 2 m and 50 mm,
respectively, with a weight 𝑚𝑝 of 0.583 kg.

2.5. Overall model validation

The accuracy of the modeled fuel cell stack temperatures is evalu-
ted by comparing them with experimental results from a validation
ataset, using identical input parameters: fuel cell stack power 𝑃𝑓 𝑐 𝑠,
mbient temperature 𝑇𝑎𝑚𝑏, pump setpoint Sp𝑝, and fan setpoint Sp𝑓 .

This evaluation was conducted under both steady-state and transient
conditions. The steady-state analysis involved 21 operating points with
varying input combinations, including ambient temperatures ranging
from 20 to 40 ◦C, fuel cell stack powers from 50 to 95 kW, and fan
and pump setpoints between 10% and 100%. The comparison yields
an absolute mean deviation of 3.2 ◦C for the inlet temperature and
2.7 ◦C for the outlet temperature in a range of temperatures between
45 ◦C and 75 ◦C. It must be noted the validation dataset presents
a higher deviation from the training dataset mainly because of the
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Fig. 7. Implemented parameters for the thermal system model. Pump mass flow and consumption (a), fans mass flow and consumption (b), and radiator specific dissipation (c).
Fig. 8. Overall validation of the thermal system model. The figure depicts a 50 kW
load step (a) and a 125 kW load step (b) that are carried out in the model with the
same relevant inputs: ambient temperature, fuel cell stack power, and pump and fans
setpoint. The lowest graphs show the resulting temperature of the fuel cell stack against
the experimental values.

larger range of the ambient temperature. Furthermore, the model was
validated using transient measurements conducted with two fuel cell
stack power load steps, as illustrated in Fig. 8. The measured power
load steps of 50 kW and 125 kW, along with the setpoints for the fans
and pump, were used as inputs for the model. The comparison of the
temperatures in Fig. 8 demonstrates the model’s high accuracy under
transient conditions. Specifically, for the 50 kW load step, the mean
absolute deviation of the inlet and outlet temperatures is 0.3 ◦C and
0.7 ◦C, respectively. For the 125 kW load step, these values are 1.1 ◦C
and 1.3 ◦C. The high accuracy under transient conditions supports the
development of advanced control strategies, such as MPC, which can
forecast future behavior and optimize performance in real-time. Lever-
aging the model dynamic predictions, MPC can adjust parameters to
9 
reduce the auxiliaries energy consumption and maintain the reference
setpoints.

It should be noted that the temperature graph in Fig. 8 also under-
scores the high inertia of the cooling circuit. This inertia is attributed to
the substantial mass of the system, particularly the fuel cell stack and
the volume of coolant, as well as the reaction time of the fans, which is
approximately 8 s from 0 to 100%. This significant system inertia can
be effectively compensated by predictive control, as will be discussed
in Section 3.

3. Fuel cell thermal system control

This section presents the strategies investigated for controlling the
thermal system. As a summary, the control goals of the fuel cell stack
thermal system are to maintain a constant coolant inlet temperature
𝑇𝑓 𝑐 𝑠,𝑖𝑛𝑠𝑝 of 60 ◦C and to track a reference coolant temperature difference
between the outlet and inlet 𝛥𝑇𝑓 𝑐 𝑠,𝑠𝑝, which varies between 3 and
12 ◦C based on the drawn current from the stack. The fuel cell system
is cooled using two types of actuators: a coolant pump and six fans
mounted on the radiator, with control variables denoted as Sp𝑝 for the
pump and Sp𝑓 for the fans. In this study, a classical control approach
implemented in the fuel cell system is compared against an MPC
strategy. The objective of the MPC TMS is to deploy information to
optimize control precision and energy consumption. As demonstrated
in Section 4, the MPC approach effectively compensates for the system’s
inherent inertia by utilizing a control model and minimizes power
losses through the solution of a minimization problem. In this study,
the fuel cell system model, measured at the testbed, is used as the plant
model for the simulations.

3.1. Requirements and classical control of thermal system

In the fuel cell thermal system, the pump and fans are employed
to dissipate the waste heat generated by the stack. This requirement is
managed through the control of the stack temperature, a critical factor
that significantly influences both the degradation and efficiency of the
fuel cell. Achieving a delicate balance between these two competing
objectives typically involves measurements specific to the fuel cell
stack, which are then translated into a reference value for the controller
to maintain. Since the stack temperature is not directly measured,
the inlet and outlet temperatures of the fuel cell are used as control
variables. This study considers the reference temperatures that are
already implemented in the controller. The first reference is a constant
coolant inlet temperature 𝑇𝑓 𝑐 𝑠,𝑖𝑛𝑠𝑝 set at 60 ◦C. The second reference
is a dynamic value representing the temperature difference 𝛥𝑇𝑓 𝑐 𝑠,𝑠𝑝,
as illustrated in Fig. 9. This dynamic reference is chosen to limit
temperature gradients within the stack, thereby reducing degradation
at low current levels, while a larger temperature difference at high
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Fig. 9. The fuel cell temperature difference setpoint implemented in the controller and
the corresponding model through a polynomial.

current levels reduces actuator losses by increasing the temperature
differential between the radiator and the ambient air, thus enhancing
heat exchange.

The classical control structure implemented in the thermal system
is depicted in Fig. 10, where a dedicated controller is designed for
ach reference signal. The fan controller outputs the fans setpoint Sp𝑓

and employs a PI-controller with the stack coolant inlet temperature
difference between the setpoint as its input. The integral coefficient,

𝑖,𝑓 , is set to 2 to ensure appropriate convergence behavior. The
roportional coefficient, 𝐾𝑝,𝑓 , is designed to limit overshoot during

transient response to below 70 ◦C and is set to 30 with a model
execution time of 10 ms. The pump controller uses the stack coolant
temperature difference as its input. Given that the pump controller’s
ction is closely linked to the fan controller, its dynamics are deliber-
tely constrained to prevent instabilities. Accordingly, the proportional
nd integral coefficients, 𝐾𝑝,𝑝 and 𝐾𝑖,𝑝, are set to 2 and 4, respectively.
o achieve a responsive dynamic behavior, a feedforward controller
ased on the drawn current 𝐼𝑓 𝑐 𝑠 is incorporated. This addition does
ot introduce instabilities to the fan controller. The parameters for this

controller are derived from experimental results of three current load
steps, as shown in Fig. 11. It is evident from these results that the pump
etpoint Sp𝑝 is closely dependent on the fuel cell stack current 𝐼𝑓 𝑐 𝑠, as
he setpoint in Fig. 11b remains constant when the current in Fig. 11a is

steady. The observed behavior is modeled using a fitted look-up table,
s illustrated in Fig. 11c.

The analysis of the thermal system controller highlights the robust
nd real-time implementation of the fuel cell controller. However, it
s evident the classical control approach has the following drawbacks
hen deployed for thermal management:

1. A separate controller is assigned to each reference signal. Given
the physical coupling between the inlet and outlet temperatures,
controlling these two temperatures simultaneously may lead to
instabilities. Therefore, one of the controllers must be carefully
designed with dynamic limitations, which may result in a less
precise tracking of the reference temperature.

2. No real-time optimization is employed. The traditional thermal
system controller consists of both closed-loop and open-loop
controllers, which are parameterized offline based on specific
measurements and may not generalize various conditions of
 t
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the control problem. Consequently, this approach can lead to
suboptimal use of actuators and an increase in auxiliary power
losses.

3. No predictive strategies are employed. In classical control,
closed-loop controllers determine the appropriate actuator set-
point based solely on the deviation from the given reference.
Due to the high inertia of the thermal system, this deviation may
result in a delayed signal, leading to less precise tracking of the
reference temperatures and potentially compromising the timely
control of the system.

To solve these drawbacks of classical control, an MPC approach
for the fuel cell thermal system is discussed in Section 3.3 and bench-
marked in Section 4. The analysis in 3.2 examines the benchmarking
cycles and explores the potential of utilizing forecast predictions in
agricultural operations.

3.2. Optimizing agricultural duty cycles: leveraging forecast prediction in
arming operations

In this study, the realistic cycles developed by the Deutsche
Landwirtschafts-Gesellschaft (DLG, German Agricultural Society) are
considered, as these cycles serve as the benchmark for tractor perfor-
mance evaluation in German-speaking countries [52]. The individual
test cycles simulate typical scenarios of field and transport applications
at both half load and full load, where the tractor engages in pure draw-
ar work (e.g., cultivating or plowing) as well as mixed work involving
oad from the power-take-off (PTO) and the hydraulic system [53].

To streamline the analysis and focus on key operational scenarios for
tractors, the cycles Z1G, Z5K, and Z7PR are selected due to their distinct
profiles and characteristic loads. A detailed analysis of the electric load
associated with these cycles can be found in [44]. In summary, cycle
1G is characterized by a high load (approximately 85 kW on average),
5K by a low load (approximately 42 kW on average), and Z7PR by
 dynamically varying intermediate load (approximately 70 kW on
verage). The fuel cell power demand in [44], determined by the load-

following energy management strategy, serves as the input for the
fuel cell model in this study. Furthermore, the repetitive nature of
agricultural tasks suggests that future electric loads can be anticipated
based on these recurring patterns. The electric load typically peaks in
the central regions of the field where agricultural tasks are actively
performed, while it decreases at the headlands where the implements
re disengaged. Hence, a model can be implemented to predict the
uture electric load based on the current operational conditions, such as
osition on the field, implements engagement and current power. The
nformation on future load fluctuations can be effectively utilized to
orecast the load of upcoming operational scenarios. As demonstrated
n [19], machine learning techniques for operational pattern recogni-

tion during agricultural cycles have the potential to enhance energy
management strategies for fuel cell electric tractors, enabling near-
optimal solutions to be achieved. Therefore, predictive forecasting can
acilitate the adoption of electrified agricultural machinery by enabling
he implementation of advanced predictive strategies. These control
rameworks can reduce the energy consumption of electrified and sus-
ainable powertrains, enhancing both the economic and environmental
enefits.

3.3. Model predictive control of thermal system

This study proposes a nonlinear MPC to manage the actuators of
the fuel cell thermal system. The detailed formulation of an MPC can
e found in [54–56]. In summary, MPC involves the successive online
ptimization of the input control sequence 𝑢𝑘+1 over a defined control
orizon 𝑁𝑐 within a prediction horizon 𝑁𝑝, while considering the op-

timization criteria and constraints. From this optimized sequence, only
he first input sample 𝑢∗(𝑘) is implemented as the control command.



C. Varlese et al. Applied Thermal Engineering 268 (2025) 125835 
Fig. 10. Structure of classical control implemented in the fuel cell system controller.
Fig. 11. Measured current (a), measured pump setpoint (b), and fitted pump setpoint
(c) for three given load steps.

Fig. 12. Basic principle of MPC.
Source: Adapted from [54].
11 
The basic principle is illustrated in Fig. 12.
The key aspect of non-linear MPC lies in utilizing a non-linear

control-oriented model to optimize the system’s performance based on
predicted disturbances and the reference trajectory to be tracked. The
analysis of the fuel cell system of Section 2 highlights the thermal
system is a nonlinear multi-input multi-output system. To enable fast
real-time optimization, the control-oriented model is further abstracted
by excluding the thermostat and focusing solely on coolant tempera-
tures, as these are the primary variables to be controlled. Additionally,
the transient effects of fuel cell stack waste heat are neglected, with
waste heat instead represented through a look-up table. Given the
simple flow setup, the equations for mass conservation are straightfor-
ward to derive. Starting from the first law of thermodynamics for open
systems, we assume constant volumes with no accumulation of mass or
energy. Additionally, changes in potential and kinetic energy, as well as
internal energy variations due to pressure changes, are neglected, and it
is assumed that no work is being performed. Moreover, each component
temperature is assumed to be equal to the coolant outlet temperature
of the corresponding component, as depicted in Fig. 13. For further
abstraction of the analysis, the temperature dependence of the heat
capacity is disregarded, and the specific heat capacity of the coolant
𝑐𝑝,𝑐 is assumed to be constant. The model parameters are taken from
Section 2. For the sake of simplicity, it is assumed natural convective
heat transfer only takes place in the radiator and the thermal inertia of
the coolant is concentrated in the radiator. The equations for the four
volumes can then be expressed in the following compact and discrete
form:

𝑇𝑝1 (𝑘 + 1) =
𝑐𝑝,𝑐 𝑜𝑜𝑙 �̇�𝑐 𝑜𝑜𝑙(𝑘) (𝑇𝑓 𝑐 𝑠(𝑘) − 𝑇𝑝1 (𝑘))

𝑐𝑝,𝑝 𝑚𝑝 + 0.2 𝑐𝑝,𝑐 𝑜𝑜𝑙 𝑚𝑐 𝑜𝑜𝑙
(22a)

𝑇𝑓 𝑐 𝑠(𝑘 + 1) =
𝑐𝑝,𝑐 𝑜𝑜𝑙 �̇�𝑐 𝑜𝑜𝑙(𝑘) (𝑇𝑝2 (𝑘) − 𝑇𝑓 𝑐 𝑠(𝑘)) + 𝑃𝑐 𝑜𝑜𝑙(𝑘)

𝑐𝑝,𝑓 𝑐 𝑠 𝑚𝑓 𝑐 𝑠 + 0.1 𝑐𝑝,𝑐 𝑜𝑜𝑙 𝑚𝑐 𝑜𝑜𝑙
(22b)

𝑇𝑝2 (𝑘 + 1) =
𝑐𝑝,𝑐 𝑜𝑜𝑙 �̇�𝑐 𝑜𝑜𝑙(𝑘) (𝑇𝑟(𝑘) − 𝑇𝑝2 (𝑘))

𝑐𝑝,𝑝 𝑚𝑝 + 0.2 𝑐𝑝,𝑐 𝑜𝑜𝑙 𝑚𝑐 𝑜𝑜𝑙
(22c)

𝑇𝑟(𝑘 + 1) =
𝑐𝑝,𝑐 𝑜𝑜𝑙 �̇�𝑐 𝑜𝑜𝑙(𝑘) (𝑇𝑝1 (𝑘) − 𝑇𝑟(𝑘)) − 𝑃𝑟(𝑘)

𝑐𝑝,𝑟 𝑚𝑟 + 0.5 𝑐𝑝,𝑐 𝑜𝑜𝑙 𝑚𝑐 𝑜𝑜𝑙
(22d)

In these equations, the selected sample time 𝑇𝑠 of the MPC strategy
is one second, and therefore omitted in the formulation. The waste heat
dissipated by the radiator, 𝑃𝑟, is defined as in Eq. (21). Despite the
simplifications, the model is non-linear. The accuracy of the control-
oriented model is crucial for predicting future states and optimizing
the performance of the MPC. To better align the plant model with
the control-oriented model, the original dissipation factor 𝜉 is modified
accordingly, and the natural convective heat transfer coefficient ℎ𝑟 is
set to 10 W/(K m2). For the load cycles presented in Section 4 at
20 ◦C, the control-oriented model exhibited a mean absolute deviation
of 0.8 ◦C for the fuel cell outlet temperature and 0.7 ◦C for the inlet
temperature compared to the plant model, given the same initial con-
ditions and actuator setpoints over the entire cycle. At 40 ◦C, the mean
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Fig. 13. Structure of the fuel cell thermal system MPC.
absolute deviation is 0.7 ◦C and 0.6 ◦C. It is important to note that this
deviation represents a minimal difference, as the predicted states are
calculated within the limited interval of the prediction horizon, with
the current states being updated based on the actual temperatures of
the plant model. The mathematical model of Eq. (22) can be rewritten
in the general form describing dynamic systems governed by ordinary
differential equations in discrete time:

𝐱(𝑘 + 1) = 𝑓 (𝐱(𝑘),𝐮(𝑘),𝐝(𝑘)) (23a)

𝐲(𝑘) = 𝐱(𝑘) (23b)

𝐱0 = 𝐱(0) (23c)

where f is a non-linear function, 𝐱(𝑘) = [𝑇𝑝1 , 𝑇𝑓 𝑐 𝑠, 𝑇𝑝2 , 𝑇𝑟]𝑇 is the state
vector, 𝐮(𝑘) = [Sp𝑝, Sp𝑓 ]𝑇 is the control vector, and 𝐝(𝑘) = [𝑇𝑎𝑚𝑏, 𝑃𝑓 𝑐 𝑠]𝑇
is the vector of the measured disturbances. The selected sample time 𝑇𝑠
of the MPC strategy is one second, as the system’s dynamics are slow
and do not require a fast sampling rate. Additionally, a longer sample
time helps to prevent strong oscillations. A control horizon 𝑁𝑐 of two
seconds has been chosen. The MPC formulation considers a running
stage cost function to track the given reference:

𝑙(𝐱,𝐮) = ‖𝑥𝑢 − 𝑥𝑟‖2𝑄 + ‖𝑢 − 𝑢𝑟‖2𝑅 (24)

where 𝑥𝑟 = [0, 𝑇𝑓 𝑐 𝑠 + 𝛥𝑇𝑓 𝑐 𝑠,𝑠𝑝, 𝑇𝑓 𝑐 𝑠,𝑖𝑛𝑠𝑝, 0] are the reference setpoints
illustrated in Section 3.1, 𝑥𝑢 is the predicted reference for the given
control inputs, 𝑄 and 𝑅 are respectively the weight matrix for the
reference and control vectors. The weights in the cost function are
selected to achieve a balance between two objectives: tracking accuracy
and actuator cost reduction. These weights are defined as follows:

𝑄 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0 𝑄1 0 0
0 0 𝑄2 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑅 =
(

𝑅1 0
0 𝑅2

)

(25)

It is important to note that in 𝑄, the weights 𝑄1 and 𝑄2 are assigned
based on the specific prediction horizon. Assigning higher values to
the matrix 𝑄 for the reference control compared to the matrix 𝑄 for
the control vector would result in a control strategy that prioritizes
12 
reference tracking performance over the reduction of actuator energy
consumption. The matrix 𝑅 plays a critical role in coordinating the
pump and fan actuation. Specifically, assigning a higher value to the
fan weight 𝑅2 than the pump weight 𝑅1 would lead to a thermal
management control strategy that minimizes fan actuation more. In
this study, given the higher energy consumption of the fans, the fan
weight 𝑅2 is given a higher weight than the pump weight 𝑅1. The
weights are found as a trade-off between reference tracking and energy
consumption under the considered agricultural cycles and their effect
is discussed further in the results of Section 4.4. In addition to the
reference and control input cost functions, there are cost functions to
consider constraints to limit control inputs within feasible values. The
limits of Sp𝑝 and Sp𝑓 are respectively [30, 100]% and [0, 100]% and
the rate limits are [−100, 50]%/s and [−25, 12]%/s. The selection
of weights in an MPC framework is tailored to a specific model and
its corresponding operating conditions. These weights can be thought
of as degrees of freedom for the designer to prioritize the considered
performance criteria and are a critical aspect of tuning MPC to achieve
the desired performance for a given control model and plant model con-
figuration within the prescribed boundary conditions. The performance
of the MPC when applying the same weights to a different model largely
depends on the degree of similarity between the two models and the
context of the application. If the models share comparable dynamic
behaviors, the weights originally designed for one model may yield
satisfactory performance for the other. This is because MPC inherently
performs an online optimization to minimize the specified cost func-
tion, adapting to the system dynamics within the given constraints.
However, significant differences in the dynamics of operating condi-
tions between the models could necessitate the re-tuning of the weights
to maintain optimal performance. These significant differences may
emerge when the model is applied to scenarios that differ substantially
from those for which it was originally developed. To address these
considerations, this work examines various operating conditions and
weight configurations, demonstrating the effectiveness of the proposed
strategy. Furthermore, regularization functions are added to the cost
function to improve system stability when small reference deviations
are present, which are often caused by discrepancies between the con-
trol model and the plant model. This is done by penalizing deviations
from the current actuator setpoint in proportion to the temperature
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Fig. 14. Results of the proposed MPC (red) against classical control (CC) TMS (blue) for cycles Z1G, Z5K, and Z7PR, respectively left, middle, and right column, at the ambient
temperature of 20 ◦C. The considered strategy is denoted with the subscript CC or MPC. The first row from the top reports the fuel cell electric load 𝑃𝑓 𝑐 𝑠. The second row depicts
the fuel cell stack coolant temperature inlet 𝑇𝑓 𝑐 𝑠,𝑖𝑛 and outlet 𝑇𝑓 𝑐 𝑠,𝑖𝑛. The fuel cell stack inlet is shown with 𝑇𝑓 𝑐 𝑠,𝑖𝑛. The third row from the top display the fuel cell stack coolant
difference and its setpoint 𝛥𝑇𝑓 𝑐 𝑠,𝑠𝑝. The fourth row depicts the setpoint of the pump Sp𝑝 and of the fan Sp𝑓 . The bar graphs in the bottom row report the quantification of the
performance with the parameters 𝛿 𝑇𝑓 𝑐 𝑠, representing the sum of the mean absolute deviations between the temperature setpoints at both the stack coolant inlet and outlet and
the actuators consumption 𝐸𝑎𝑢𝑥.
reference deviation, thereby improving tracking for deviations smaller
than the model’s accuracy. Without this adjustment, the original cost
function would cause sudden changes in actuator activity, leading to in-
stabilities and control process discontinuities during minimal reference
deviations.

The optimal control problem consists of finding a minimizing con-
trol sequence 𝑢 for the evaluation of the running costs over the predic-
tion horizon 𝑁𝑝 subject to the constraints:

min
𝑢

𝐽𝑁𝑐
(𝐱,𝐮) =

𝑁𝑝−1
∑

𝑘=0
𝑙(𝐱𝑢(𝑘),𝐮(𝑘)) (26)

s.t. 𝐱𝑢(𝑘 + 1) = 𝐟 (𝐱𝑢(𝑘),𝐮(𝑘),𝐝(𝑘)),
𝐱𝑢(0) = 𝐱0,
𝐮(𝑘) ∈ 𝑈 ,∀𝑘 ∈ [0, 𝑁𝑝],

𝐱𝑢(𝑘) ∈ 𝑋 ,∀𝑘 ∈ [0, 𝑁𝑝]

In this study, the influence of the prediction horizon is examined by
varying it between 5 and 55 s, in increments of 10 s.

The implementation of the MPC controller is conducted using
CasADi [57], an open-source tool designed for nonlinear optimization.
In CasADi, the previous non-linear MPC problem and its corresponding
control-oriented equations are constructed as symbolic expressions with
MATLAB functions. The optimal control problem defined in Eq. (26)
is solved by CasADi using shooting methods and is transcribed into
a nonlinear programming problem with an objective function 𝛷 and
equality constraints 𝑔:

min 𝛷 (27)

𝑤 𝑤
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s.t. 𝑔(𝑤) = 0, 𝑤 ∈ 𝑊

where 𝑤 represents the control variable and 𝑊 denotes the correspond-
ing interval set. In this study, a multiple shooting method was em-
ployed to enhance computational efficiency and mitigate the increase
in computation time as the prediction horizon expands.

4. Results

This section demonstrates the effectiveness of MPC in a model-based
environment, using the complex plant model validated with testbed
measurements as the real system. This approach aims at simulating
potential deviations between the control model and the real plant, as
would occur in the real system. The MPC controller is compared to
classical control (CC) methods of Section 3.1 using realistic cycles at
ambient temperatures of 20 ◦C and 40 ◦C, in order to evaluate the
impact of ambient temperature on both controller performance and
the thermal system’s energy consumption, with a prediction horizon
of 35 s. The selection of this specific prediction horizon is further
justified by an analysis of its influence on controller performance and
computation time across different temperature levels and agricultural
cycles. Furthermore, an analysis of the actuator weights in the cost
function is carried out to highlight the balance between reference
tracking and auxiliary consumption. Following this, the MPC controller
with the 35-s prediction horizon is examined in greater detail to assess
the influence of forecast accuracy on the control performance and to
determine the requirements for an electric load predictor.
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Fig. 15. Results of the proposed MPC TMS (red) against classical control TMS (blue) for cycles Z1G, Z5K, and Z7PR, respectively left, middle, and right column, at the ambient
temperature of 40 ◦C. The considered strategy is denoted with the subscript CC or MPC. The first row from the top reports the fuel cell electric load 𝑃𝑓 𝑐 𝑠. The second row depicts
the fuel cell stack coolant temperature inlet 𝑇𝑓 𝑐 𝑠,𝑖𝑛 and outlet 𝑇𝑓 𝑐 𝑠,𝑖𝑛. The fuel cell stack inlet is shown with 𝑇𝑓 𝑐 𝑠,𝑖𝑛. The third row from the top display the fuel cell stack coolant
difference and its setpoint 𝛥𝑇𝑓 𝑐 𝑠,𝑠𝑝. The fourth row depicts the setpoint of the pump Sp𝑝 and of the fan Sp𝑓 . The bar graphs in the bottom row report the quantification of the
performance with the parameters 𝛿 𝑇𝑓 𝑐 𝑠, representing the sum of the mean absolute deviations between the temperature setpoints at both the stack coolant inlet and outlet and
the actuators consumption 𝐸𝑎𝑢𝑥.
4.1. Comparison of MPC with classical control strategies

The results obtained at an ambient temperature of 20 ◦C and a 35-s
prediction horizon are presented in Fig. 14. The first row shows the fuel
cell stack power 𝑃𝑓 𝑐 𝑠, the second and third rows represent the control
states to be tracked, respectively the stack coolant temperatures 𝑇𝑓 𝑐 𝑠
and the coolant temperature difference 𝛥𝑇𝑓 𝑐 𝑠,𝑠𝑝. The fourth row displays
the control variable of the actuators: the pump setpoint Sp𝑝 and the fans
setpoint Sp𝑓 . The bar plots at the bottom of Fig. 14 visualize the control
performance with the introduction of two parameters: the parameter
𝛿 𝑇𝑓 𝑐 𝑠, representing the sum of the mean absolute deviations between
the temperature setpoints at both the stack coolant inlet and outlet and
the actuators consumption 𝐸𝑎𝑢𝑥. 𝛿 𝑇𝑓 𝑐 𝑠 is calculated as follows:

𝛿 𝑇𝑓 𝑐 𝑠 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝑇 𝑖
𝑓 𝑐 𝑠,𝑖𝑛 − 𝑇 𝑖

𝑓 𝑐 𝑠,𝑖𝑛𝑠𝑝
|

|

|

+ |

|

|

𝛥𝑇 𝑖
𝑓 𝑐 𝑠 − 𝛥𝑇 𝑖

𝑓 𝑐 𝑠,𝑠𝑝
|

|

|

(28)

where 𝑛 is the number of points in the cycle. The percentage variation
of 𝛿 𝑇𝑓 𝑐 𝑠 between MPC and CC is calculated as follows:
𝛿 𝑇𝑓 𝑐 𝑠,𝑚𝑝𝑐 − 𝛿 𝑇𝑓 𝑐 𝑠,𝑐 𝑐

𝛿 𝑇𝑓 𝑐 𝑠,𝑐 𝑐
× 100 (29)

where a negative value indicates a reduction of temperature devia-
tion of MPC compared to CC. Similarly, the percentage deviation of
auxiliary consumption (pump and fans) 𝐸𝑎𝑢𝑥 is indicated as:
𝐸𝑎𝑢𝑥,𝑚𝑝𝑐 − 𝐸𝑎𝑢𝑥,𝑐 𝑐

𝐸𝑎𝑢𝑥,𝑐 𝑐
× 100 (30)

where a negative value indicates a reduction of consumption of MPC
compared to CC.
14 
For the MPC control algorithm, the selected weights, 𝑄1 and 𝑄2,
are 2.25 and 0.975, respectively, prioritizing the tracking of the fuel
cell outlet temperature, 𝑇𝑓 𝑐 𝑠,𝑜𝑢𝑡𝑠𝑝, which serves as a dynamic reference.
The actuator weights 𝑅1 and 𝑅2 are 10−9 and 4 × 10−4 to favor a lower
usage of fans and, therefore, lower auxiliary consumption. In the second
and third row, where the stack temperatures are shown, it is evident
that while the CC method ensures stable but sluggish temperature
tracking during load changes, the proposed MPC TMS delivers a more
responsive performance without major instabilities. In CC TMS, given
that the pump controller’s action is closely linked to the fan controller,
its dynamics are deliberately constrained to prevent instabilities, as
depicted in a stable tracking of the inlet temperature in the second row
and a sluggish tracking of the temperature difference in the third row.
On the contrary, the MPC method favors tracking both setpoints equally
based on the cost function formulation, resulting in a better tracking
𝛥𝑇𝑓 𝑐 𝑠,𝑠𝑝 at the expense of the inlet temperature, 𝑇𝑓 𝑐 𝑠,𝑖𝑛𝑠𝑝, compared to
the traditional control strategy. This effect is particularly pronounced
in the third row of Z7PR cycle, where the MPC successfully tracks the
complex dynamic reference profile under varying loads.

4.2. Performance under different agricultural duty cycles

The advantages of predictive control are notably visible in Fig. 14
during load changes, especially in cycle Z1G, where the pump set-
point is adjusted in advance to address the low temperature difference
𝛥𝑇𝑓 𝑐 𝑠,𝑠𝑝 at the change from high loads to low loads at the middle
(3.2 min) and at the end of the cycle (5.1 min). The excellent tracking
performance of the fuel cell outlet temperature results in a higher
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Fig. 16. Variation of actuator cost weights 𝑅1 and 𝑅2 for the comparison of percentage
deviation of temperature setpoints and auxiliary consumption between the CC TMS and
MPC TMS is compared. A negative percentage deviation represents a lower deviation
nd consumption of MPC compared to CC and a zero percentage deviation depicts the

same performance for both strategies.

temperature at high load, which favors heat exchange with less fan
onsumption. Furthermore, the Z1G cycle provides valuable insights
nto the performance of the MPC controller compared to CC. Analyzing
he sum of the temperature mean absolute deviations, 𝛿 𝑇𝑓 𝑐 𝑠, in Fig. 14

reveals higher reference tracking for MPC, with a value of 1.2 ◦C, com-
ared to 2 ◦C for CC. Since the first half of the Z1G cycle resembles a
oad step, it also offers information about the response time. The results
ndicate that MPC achieves a response time of approximately 1 min,
hereas CC is three times slower. Overall, the MPC approach yields a

ower mean absolute deviation in tracking the reference compared to
C, achieving a significant reduction of 39%, 38%, and 22% for cycles

Z1G, Z5K, and Z7PR, respectively, without a major increase of auxiliary
onsumption 𝐸𝑎𝑢𝑥, which includes the power usage of both the fans and
he pump. In the Z5K cycle, a 30% reduction in auxiliary consumption

is observed. It should be noted that cycle Z7PR exhibits an increase
f 6%, attributed to the dynamic nature of the cycle, which demands
reater control effort for a reduction of the temperature deviation 𝛿 𝑇𝑓 𝑐 𝑠.

The results obtained at an ambient temperature of 40 ◦C and a 35-s
rediction horizon are illustrated in Fig. 15, showing more benefits than
reviously observed at 20 ◦C. Notably, the MPC approach demonstrates
 lower mean absolute deviation in tracking the reference, achieving
ignificant reductions of 7%, 33%, and 9% alongside a decrease in
uxiliary consumption (𝐸𝑎𝑢𝑥) of 6%, 4%, and 7%, for cycles Z1G, Z5K,
nd Z7PR, respectively, compared to CC.

4.3. Impact of ambient temperature on auxiliary consumption

Table 5 reports the consumption for each cycle at 20 ◦C and
0 ◦C. The comparison between MPC and CC at 40 ◦C highlights the

consistently lower auxiliary consumption of MPC across all cycles. For
nstance, in the Z1G cycle, MPC consumes 256 Wh compared to 274 Wh
ith CC. For both controllers, the increase in ambient temperature from
0 ◦C to 40 ◦C leads to an average rise of approximately three times,
eflecting the additional energy demand of the actuators on the fuel cell
ystem from mild to extreme weather conditions.
15 
Table 5
Comparison of the results at 20 ◦C and 40 ◦C.

Cycle/Control 𝐸𝑎𝑢𝑥 at 20 ◦C 𝐸𝑎𝑢𝑥 at 40 ◦C

Z1G/CC 113 Wh 274 Wh
Z1G/MPC 113 Wh 256 Wh
Z5K/CC 25 Wh 51 Wh
Z5K/MPC 18 Wh 49 Wh
Z7PR/CC 103 Wh 482 Wh
Z7PR/MPC 109 Wh 448 Wh
Average 80 Wh 260 Wh

4.4. Variation of actuators cost function weights

The effect of varying the actuator cost function weights is shown
n Fig. 16, where the percentage deviation of temperature setpoints

and auxiliary consumption between the CC TMS and MPC TMS is
compared on the 𝑦-axis. These parameters indicate the performance of
the MPC compared to the traditional strategy. Specifically, a negative
percentage deviation represents a lower deviation and consumption of
MPC compared to CC, and a zero percentage deviation depicts the same
performance for both strategies. The analysis considers the sum of the
weights, with higher values making actuator use more costly, at the
expense of precise temperature control. This is particularly evident in
cycles Z7PR and Z5K, where the smallest temperature deviation occurs
t the lowest weight sum, 𝑅1 + 𝑅2. As the weights increase, actuator
sage becomes more efficient, leading to reduced auxiliary consump-

tion (𝐸𝑎𝑢𝑥). However, temperature control performance deteriorates for
weight sums above 10−3, especially at 40 ◦C ambient temperature,
where actuator use is highest. The optimal weight sum, where per-
formance is minimized for every cycle temperature and consumption
deviation, is around 10−4, and it was used in the analyses in Section 4.1.

4.5. Variation of prediction horizon

The impact of the prediction horizon length is depicted in Fig. 17,
which shows the percentage deviation in temperature setpoint differ-
ences and auxiliary consumption between the CC and MPC approaches.
It must be noted the prediction horizon has a large effect on the cost
function formulation, and therefore, the weights have been modified
to achieve comparable performance. The analysis indicates that tem-
perature deviations mostly reach an optimal solution for prediction
horizons between 15 s and 35 s, with a saturating trend for long
prediction horizons due to the increase of the inaccuracy of the control-
oriented model in the MPC. Auxiliary consumption deviations exhibit
a similar saturating trend, with minima occurring primarily between
45 s and 55 s. The sporadic minima at 5 s suggest that, while auxiliary
consumption is lowest, temperature control performance is poor. The
average prediction horizon at which the minima are achieved is 35 s,
whose results are extensively discussed in Section 4.1.

The length of the prediction horizon is a critical parameter affecting
omputation time, as extending the prediction horizon increases the
ize of the optimization vector. The impact of the prediction horizon on
he simulation time is provided as an indication for assessing the real-
ime capability of the MPC strategy in Fig. 18, where the percentage

simulation time difference between CC and MPC for the cycle Z1G at
0 ◦C for different prediction horizons is depicted. Here, the compu-

tation time is defined as the time to carry out the cycle simulation.
It should be noted that this time is highly dependent on the specific
optimization problem, particularly the solver and its configuration, the
omputational power of the system, and the formulation of the cost
unction. The solver employed is an interior-point filter line-search
lgorithm for large-scale nonlinear programming (‘‘ipopt’’) [58], with

a maximum of 100 iterations. Fig. 18 illustrates that the simulation
time is between 40% and 170% higher than that of the traditional
control strategy, depending on the chosen prediction horizon. The fact
that the MPC’s computation time is only marginally higher suggests
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Fig. 17. Analysis of prediction horizon length variation and its effect on the perfor-
mance of the MPC TMS, showing the percentage deviation in temperature setpoint
ifferences and auxiliary consumption between the CC and MPC approaches. A negative
ercentage deviation represents a lower deviation and consumption of MPC compared
o CC and a zero percentage deviation depicts the same performance for both strategies.

Fig. 18. Analysis of prediction horizon length variation and its effect on simulation
ime of MPC TMS computation in comparison with the CC TMS.

that it can still operate within real-time constraints on suitable hard-
are, demonstrating its potential for deployment in real-world systems

without significant performance degradation.
Table 6 summarizes the results of the prediction horizon variation

or cycle Z1G at 20 ◦C in terms of computation time, temperature vari-
tion, and energy consumption. It is important to note that the values
or the CC strategy remain constant across the prediction horizons, as

the traditional strategy is unaffected by these variations.

4.6. Effect of prediction accuracy

The performance of the MPC TMS is evaluated by introducing
oise into the fuel cell power prediction 𝑃𝑓 𝑐 𝑠, in order to assess the
equirements for an accurate load prediction model. The noise is added

to the measured disturbance vector of fuel cell power prediction and
it is modeled as a combination of exponential magnitude and white
16 
Table 6
Summary of prediction horizon variation for the cycle Z1G at 20 ◦C.

Prediction horizon
(s)

5 15 25 35 45 55

CC,
computation
time
(s)

62 62 62 62 62 62

MPC,
computation
time
(s)

89 106 125 137 151 170

CC, 𝛿 𝑇𝑓 𝑐 𝑠
(◦C)

2.1 2.1 2.1 2.1 2.1 2.1

MPC, 𝛿 𝑇𝑓 𝑐 𝑠
(◦C)

1.6 1.5 1.4 1.3 1.4 1.9

CC, 𝐸𝑎𝑢𝑥
(kW)

0.113 0.113 0.113 0.113 0.113 0.113

MPC, 𝐸𝑎𝑢𝑥
(kW)

0.113 0.118 0.117 0.113 0.113 0.108

Gaussian noise as follows:
𝑃𝑓 𝑐 𝑠,𝑒𝑟𝑟(𝑘, 𝑘 +𝑁𝑝 − 1) = 𝑃𝑓 𝑐 𝑠(𝑘, 𝑘 +𝑁𝑝 − 1)

+ 𝑒𝑥𝑝(𝛼(𝑘, 𝑘 +𝑁𝑝 − 1))𝑁(0, 𝜎2, 𝑘) (31)

The factor 𝛼 is the growth rate of the exponential magnitude and
represents an increase of prediction inaccuracy over the prediction
horizon, which is assumed equal to 1.6. The function N represents a
normally Gaussian distributed time-based variation of accuracy and
is considered equal for the entire exponential vector. The Gaussian
distribution has 0 mean and its variance 𝜎 is varied between 0 and
2 × 106 to represent a less accurate fuel cell power prediction. It must
be noted the noisy fuel cell power prediction is capped between the

inimum and maximum power of the fuel cell stack. The root-mean-
quare error (RMSE) between the noiseless and noisy predictions is used
s the 𝑥-axis in Fig. 19.

The analysis reveals that the load cycles Z7PR and Z1G at 40 ◦C
exhibit greater susceptibility to accuracy variations, as the performance
benefits of the MPC are minimal under these conditions. Specifically,
for cycle Z7PR, MPC performance falls below that of the CC TMS, with
an RMSE of 50 kW observed at 20 ◦C. This decline is evident in the
hird row of the left column, where the temperature deviation between

the CC and MPC increases, indicating less accurate tracking of the
fuel cell coolant temperatures by the MPC. Notably, the performance
degradation of MPC is more pronounced for cycles Z1G and Z7PR at
40 ◦C, with RMSE values around 10 kW. Conversely, the low load
cycle Z5K and the high load cycle Z1G at 20 ◦C show greater resilience
to prediction inaccuracies, with significant performance degradation
occurring only when RMSE exceeds 50 kW. Additionally, the right
column shows a slight increase in auxiliary consumption deviation,
which reflects an overall degradation in MPC controller performance.

verall, this investigation underscores the robustness of the MPC TMS
for every cycle and temperature for RMSE under 10 kW. This points
ut the effectiveness of the proposed strategy even in the presence of
ubstantial prediction inaccuracies, while also highlighting the require-

ments for an effective load prediction model to ensure optimal MPC
performance.

5. Conclusion

This paper introduces a novel predictive thermal management strat-
egy for the fuel cell systems of agricultural tractors. A model predictive
control approach is proposed to tackle the substantial inertia of heavy-
duty fuel cells while optimizing actuator utilization by integrating a
control-oriented model with real-time predictions. The unique contri-
bution is to employ a comprehensive methodology, beginning with

an extensive non-linear model of the 132-kW fuel cell system derived
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Fig. 19. Analysis of prediction horizon accuracy variation and its effect on MPC
erformance. The left column depicts the temperature deviation between CC and MPC,
nd the right column indicates the auxiliary consumption deviation. The analysis is
erformed for cycles Z1G, Z5K, and Z7PR at 20 ◦C and 40 ◦C. A negative percentage
eviation represents a lower deviation and consumption of MPC compared to CC and
 zero percentage deviation depicts the same performance for both strategies.

from experimental measurements that highlight the electrochemical
haracteristics of the stack, substantial thermal system inertia, and
aste heat amount. Cooling is facilitated by larger radiators and fans,
hich exhibit significant inertia. Existing feedback-based controllers

ypically rely on deviations from the prescribed inlet temperature,
otentially resulting in delayed responses.

The proposed model predictive control thermal management strat-
egy demonstrates the advantages of incorporating load change predic-
tions. By effectively combining actuator actions into a single cost func-
ion, the strategy enhances temperature control and reduces auxiliary
onsumption. Specifically, at low loads, reference tracking performance
mproves by up to 38%, while auxiliary consumption decreases by
p to 30% compared to classical control strategies across various
mbient temperatures. As a unique aspect of this study, the broad
nalysis identifies key parameters for optimizing model predictive con-

trol, including cost function weights, prediction horizon, and prediction
ccuracy. The appropriate selection of prediction horizon and cost
eights for actuator actions balances auxiliary consumption and tem-
erature tracking. Furthermore, the evaluation of prediction accuracy
nderscores the robustness of the controller under noisy predictions

and the requirements for an electric load prediction model to ensure
the effective performance of the model predictive control. Overall, the
comprehensive investigation in this study demonstrates the benefits
and robustness of deploying predictive thermal management for heavy-
duty fuel cells, showing reduced auxiliary demands and improved
controller performance compared to state-of-the-art methods through
the inclusion of a model-based optimization problem.

Future research could focus on validating the proposed strategies in
eal-world applications across diverse agricultural scenarios and vary-

ing ambient conditions. Additionally, exploring cost-effective hardware
solutions for real-time implementation of model-predictive control in
agricultural machinery remains a crucial area of interest. A promising
direction would be the development of advanced prediction techniques,
such as machine learning-based load forecasting, specifically tailored
17 
to agricultural tractors. These forecast-driven strategies could further
enhance thermal management control while reducing auxiliary con-
sumption. Furthermore, integrating additional actuators or subsystems,
such as bypass valves, into the model-predictive control framework
represents a valuable avenue for exploration. Finally, integrating ther-
mal management with health-aware energy management strategies is
strongly recommended to minimize overall powertrain consumption
and extend the fuel cell’s operational lifetime.
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