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A B S T R A C T

Direct measurement of elastic constants for thin films is still far from routine and poses significant technical and
analytical challenges compared to bulk materials. Ab initio Density Functional Theory calculations offer theo-
retical input, however, discrepancies between model systems and real-world properties persist, primarily due to a
lack of available experimental data for newly emerging material systems. Moreover, computationally affordable
models are typically limited to defect-free single crystals, omitting microstructural effects that strongly influence
the material’s behavior. This study addresses this gap by proposing a novel experimental approach to measure
direction-dependent elastic constants, combining synchrotron microdiffraction and micropillar compression,
testing a polycrystalline face-centered cubic TiN0.8B0.2 thin film, where linear elastic failure prevails. We have
established an advanced in-situ testing environment to continuously record the load–displacement of the
indenter while simultaneously collecting the material’s deformation response to uniform uniaxial compression.
This dynamic approach allows the evaluation of the orientation-dependent elastic strain components and the
macroscopic uniaxial compressive stresses, each over time, enabling a differential analysis to assess the elastic
and X-ray elastic constants. The excellent agreement between experimental and ab initio data solidifies the here-
proposed robust method for direct elastic constant measurements, which is crucial for advancements in thin film
material testing.

1. Introduction

While searching for new materials drives progress in materials sci-
ence, the journey toward their target application requires careful eval-
uation and testing. In particular, ceramic coatings–fabricated via
Physical Vapor Deposition (PVD) methods–have become a central focus
of modern materials engineering owing to their superior mechanical
properties, e.g., high hardness and wear resistance [1–5]. However, to
optimize their performance and ensure reliability under-
–oftentimes–extreme operating conditions, it is critical to understand
their mechanical behavior [6]. Among the commonly analyzed me-
chanical properties of ceramic thin films such as hardness, H, and
fracture toughness, KIC; Young’s modulus, E, and Poisson’s ratio, ν, serve
as fundamental descriptors of a material’s response to external forces,

where ν quantifies the transverse deformation of a material in response
to axial loading and E reflects the material’s stiffness in resisting such
deformation. In materials engineering, H and KIC are technologically
relevant quantities mainly accessible by experimental approaches,
where H is usually measured using nanoindentation techniques and KIC
can be derived from micromechanical tests (e.g., micro-cantilever
bending tests) [7–12].

However, the complex interplay of various contributing fac-
tors—including point defects and dislocation dynamics—across multiple
length scales makes it difficult to approach these descriptors within the
modeling framework. In ceramic coatings, H is not only determined by
the ease of the dislocation movement (overcoming the Peierls barrier
[13,14]) but also by several hardening mechanisms [15–20] related to
the material’s microstructure and defect density. Contrarily, theoretical
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hardness and fracture toughness formulas typically take single-crystal
elastic constants as the main input [21–23], as these can be quite
straightforwardly evaluated by ab initio methods (using the stress–strain
[24,25] or the energy-strain method [26]) or machine-learned using
suitable ab initio training sets [27–29]. Among the most widely used KIC
approximates is Griffith’s formula [30], completely omitting plastic
deformation [20,31] or any microstructural features that can signifi-
cantly alter resistance to unstable crack propagation. Griffith’s formula
relies on the surface energy and the directional Young’s modulus, hence,
again, elastic constants.

Zero Kelvin ab initio elastic constants calculations, though compu-
tationally expensive for chemically complex materials, can nowadays be
seen as routine and have been employed to screen across many material
systems [32–34]. With the advance of computational power as well as
the rapidly developing field of machine-learning interatomic potentials
for molecular dynamics, also finite-temperature elastic constants are
becoming accessible [35–37]. In a stark contrast, direct elastic constants
measurements for ceramic-type coatings are still far from routine.
Distinct from bulk materials, their inherent characteristic of being thin
films introduces additional complexities that necessitate advanced
testing methodologies. Additionally, the intrinsic elasto-plastic anisot-
ropy of evolved phases, along with prevalent crystallographic (fiber)
textures and distinctive columnar-grained morphologies resulting in
poorly understood grain interactions, induces mechanical anisotropy in
ceramic thin films. Combined with the intricate properties of the
substrate-thin film interface and the size-dependent mechanical prop-
erties of crystallites, this makes computational and experimental
assessment of the overall mechanical properties very challenging.

Nanoindentation, especially when performed according to Fisher-
Cripps [38], provides a convenient approach to determine the reduced
polycrystalline modulus of ceramic hard coatings. Using this method,
the film-only reduced modulus at zero indentation depth can be
extrapolated by fitting a power-law function to the load–displacement
data from multiple indentations of varying depths. If the Poisson ratio of
the material is known, the polycrystalline Young’s modulus can be
further calculated. The implementation of X-ray diffraction-based
techniques can provide access to the X-ray elastic constants (DECs) of
polycrystalline thin films, e.g., by coupling the sin2ψ method with the
substrate curvature technique [39]. The work of Martinschitz et al. [40]
further accounted for the macroscopic elastic anisotropy in textured Cu
and CrN thin films by extrapolating the moduli from the experimentally
determined thin film DECs. In 2020, Alfreider et al. [41] performed
in–situ micro-tensile testing in SEM in combination with a digital image
correlation technique to map the true stress–strain state of a nano-
crystalline high entropy alloy, enabling the evaluation of the poly-
crystalline Poisson’s ratio. Another method that has been introduced in
the last few years is the use of µ-mechanical spectroscopy to determine
the elastic modulus of a material by cantilever bending. Examining the
shape of the first resonance peak of the indentation setup used, it is
possible to detect changes in the damping capability of confined vol-
umes [42,43].

In–situ micromechanical testing methods provide a powerful tool to
study material’s response to various loading conditions, specifically
tailored to investigate small-scale geometries [44]. One such approach
combines micromechanical testing and X-ray diffraction, where syn-
chrotron facilities provide advanced access to probe the crystallographic
structure and lattice strain of thin films under mechanical stress with
exceptional sensitivity [45,46]. Advances in optics and beamline
instrumentation allow for intense and highly collimated X-ray beams of
very small size–while maintaining high brilliance–that facilitate in-situ
measurements of stress–strain distributions in thin films with unprece-
dented spatial resolution and accuracy, even at the nanoscale [47].
However, it is important to acknowledge that the stress state induced by
previously reported in–situ micromechanical testing methods such as
nanoindentation or micro-cantilever bending is inherently complex and
deviates from the ideally simple uniaxial loading conditions typically

assumed in classical mechanics [48–53].
In this study, we present a new methodology designed to accurately

measure the direction dependent elastic constants in thin film ceramic
hard coatings. Using the combined approach of X-ray microdiffraction
and micropillar compression testing, a micropillar fabricated from a 15
µm polycrystalline face centered cubic (fcc) TiN0.8B0.2 hard coating
(prepared by non-reactive DC PVD sputtering) was tested in uniaxial
compression while simultaneously recording its elastic response (to
failure) for the {111}, {200}, and {220} crystallographic plane families
using a high-energy monochromatic synchrotron radiation source and
fast acquisition times (0.55 s). By implementing a high-precision
continuous stiffness measurement (CSM) nanoindentation setup, we
enabled real-time monitoring of indenter displacement and force during
testing. This dynamic approach allowed a differential analysis of the
time-dependent elastic deformation of the material under uniform uni-
axial loading condition, providing accurate experimental values of
elastic and diffraction elastic constants for three independent families of
crystallographic planes for a selected face-centered cubic polycrystalline
ceramic thin film material. Supported by ab initio density functional
calculations, the experimentally determined {hkl}-dependent Poisson’s
ratio, Young’s modulus and X-ray elastic constants (DECs) were further
compared with their theoretically derived values. By bridging experi-
mental observations with theoretical modeling, we aim to make a step
forward in fundamentally understanding mechanical properties of thin
film ceramics, using Ti–B–N as a representative material system.

2. Materials and methods

2.1. Thin film deposition

The TiN0.8B0.2 coating was deposited on single crystal sapphire
(1102) substrates with dimensions of 10 × 10 × 0.53 mm3 using a
modified Leybold Heraeus Z400 deposition system equipped with a 3”
unbalanced magnetron sputtering source holding a TiN + TiB2 + Ti
composite target composed of 80mol.% TiN+ 15mol.% TiB2+ 5 mol.%
Ti with 99.5 % purity from Plansee Composite Materials GmbH. The
substrates were ultrasonically pre-cleaned in acetone and isopropyl
alcohol for 5 min each, then mounted in the 3′’ substrate holder and
loaded into the chamber. The target-to-substrate distance was fixed at
40mm. After reaching the base pressure of≤ 2⋅10− 4 Pa (≤2⋅10− 6 mbar),
the substrates were thermally cleaned at 400 ◦C for 20 min, followed by
Ar ion etching using an Ar pressure (60 sccm Ar flow) of 1.6 Pa and
applying a negative bias voltage of − 150 V (pulsed DC, 150 kHz, 2496 ns
pulse duration). The target was operated at 0.50 A (no substrate bias
applied, floating potential − 24 V) at an Ar pressure of 0.4 Pa (32 sccm Ar
flow) and a substrate temperature of 400 ◦C for 400 min to achieve a
thickness of t ~ 15 µm.

2.2. Thin film characterization

Structural information was obtained by X-ray diffraction (XRD)
analysis using a Malvern PANalytical XPert Pro MPD (θ-θ diffractom-
eter) in Bragg-Brentano geometry equipped with a CuKα radiation
source operating at 45 kV and 40 mA monochromatized with a Malvern
PANalytical BBHD mirror suppressing Kβ. Fracture cross sections were
imaged using a Zeiss SIGMA 500 VP Field Emission Gun-Scanning
Electron Microscope (FEG-SEM) operating at 10 kV.

Hardness, H, and Young’s modulus, E, were determined by instru-
mented nanoindentation using a FemtoTools FT-IO4 Femto-Indenter
system equipped with a diamond Berkovich tip (calibration was per-
formed on a standard fused silica sample) in Continuous Stiffness Mea-
surement (CSM) mode. 25 load–displacement curves were analyzed
according to Oliver and Pharr [54] using a maximum force of 20 mN.
The reduced raw moduli data were fitted with a power law as a function
of the penetration depth, extrapolated to zero indentation depth, and
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corrected according to Fischer-Cripps [38] to yield the film-only
Young’s modulus.

2.3. Combined synchrotron X-ray microdiffraction and micromechanical
testing

A cross-sectional lamella (~100 µm thick in the beam direction) of
the TiN0.8B0.2 thin film was prepared by cutting and mechanically pol-
ishing the coated sapphire substrate. After preparation, the lamella was
securely mounted on a sample holder designed for precise alignment in
the beam direction without affecting the diffracted beam paths during
the experiment. Cylindrical micropillar geometries were fabricated from
the cross-sectional lamella by Focused Ion Beam (FIB) milling using a
ThermoFisher Scios 2 DualBeam system operated at 30 kV. First, a
selected area of the coating material (~120 × 100 × 15 µm3) was
removed with a probe current of 30 nA, except for three free-standing
pillars of ~ 10 µm in diameter. By reducing the milling current step-
wise to 500 pA, the pillar walls were refined to a final pillar diameter of
~ 5 µmwith a height-to-diameter aspect ratio of ~ 3:1 and a taper angle
of less than 2◦. During the in-situ XRD experiment, one micropillar was
compressed using a FemtoTools FT-NMT04 in-situ nanoindentation
system operating in intrinsic displacement-controlled mode at a load
rate of 5 nm⋅s− 1, equipped with a FemtoTools FT-S200′000 diamond flat
punch tip customized to a final diameter of ~ 10 µm using the FIB sys-
tem mentioned above. Force and displacement data were collected
throughout the experiment, including ~ 100 s after failure. The in-situ
micropillar compression testing was conducted at the Nanofocus End-
station of the MiNaXS (P03) beamline at the PETRA III at Deutsches
Elektronen-Synchrotron (DESY). The monochromatic X-ray beam with a
photon energy of 19.7 keV was focused by a KB mirror setup [47] down
to lateral dimensions of 1.5 × 1.5 µm2. The nanoindentation system was
built into the X-ray measurement setup to analyze the micropillar
sample in transmission wide-angle diffraction geometry. Before testing,
the diamond flat punch tip was centered directly over the pillar top
surface to guarantee uniform conditions during loading (see Fig. 1).

In order to center the pillar mid-section to the X-ray beam, the
nanoindentation-sample holder assembly was positioned using a hexa-
pod for tilt and rotational alignment, complemented by a linear nano-
positioning high load stage for x-, y-, and z-alignment. The diffracted
photons were collected using an Eiger X 9 M Hybrid Photon Counting
(HPC) 2D detector, with an acquisition time of 0.55 s per frame,

positioned at a sample-detector distance of 0.236 m to record the full
111, 200, and 220 Debye-Scherrer rings. The exact parameters of the
diffraction geometry were calibrated by measuring a LaB6 standard
reference powder.

2.4. Synchrotron X-ray microdiffraction data analysis

2.4.1. Strain analysis
From the collected Debye-Scherrer ring patterns at the pillar cross-

sectional positions (y, z) the orientation-dependent lattice plane
spacing dhkl

θδ (y, z) can be obtained from its relation to the diffraction
vector Qθδ orientation and the diffraction angle 2θhkl(δ) magnitude ac-
cording to Bragg’s law (Fig. 1),

λ = 2dhkl
θδ (y, z)sinθhkl (1)

whereas λ represents X-ray wavelength.
X-ray elastic strain εhkl

θδ (y, z) has to be calculated from

εhkl
θδ (y, z) =

dhkl
θδ (y, z) − dhkl

0

dhkl
0

(2)

with dhkl
0 as the strain-free lattice plane spacing. Each of the recorded 2D

patterns was subjected to azimuthal integration using the open-source
software package DPDAK [55], where azimuthal angle δ segments of
10 deg–with δ ranging from − 5 to 355◦–were integrated. The lattice
plane spacing dhkl

θδ (y, z) of the {111}, {200}, and {220} peaks was
determined by fitting a pseudo-Voigt peak shape function to the 1D
intensity profiles–obtained for 36 azimuthal angles δ sections as a
function of 2θhkl(δ)–according to Eq. (1). For each of the three crystal-
lographic plane families, we identified the unstrained lattice plane
spacing dhkl

0 from the intersection of the linear fits of the 36 previously
calculated dhkl

θδ (y, z) data points for 62 shots plotted against sin2δ, i.e., 62
collected 2D patterns (up to one recording before failure) were consid-
ered for an initial evaluation of the dhkl

0 value (see Supplementary Ma-
terial). Here, the rationale is that the dhkl

θδ (y, z) which has shown to be
independent on the applied load must be the strain-free value dhkl

0 .
Following the procedure from [51], the measured orientation-

dependent elastic strain εhkl
θδ (y, z) obtained from Eq. (2) can be

expressed as a function of six unknown components of the strain tensor,
εhkl

ij (y, z), given by

Fig. 1. A schematic view of the in-situ X-ray microdiffraction experiment performed in transmission diffraction geometry using a monochromatic X-ray beam with a
spot size of 1.5× 1.5 µm2, centered in the mid-section of the free-cut TiN0.8B0.2 micropillar sample. The micropillar (aspect ratio 3:1) was loaded in z direction using a
diamond flat punch tip with a contact area of ~ 80 µm2, positioned on top of the pillar along the z axis. The force, F, and the indenter displacement, u, were
simultaneously recorded during testing. 2D diffraction data were collected during the experiment using an Eiger X 9 M photon counting detector. The direction of the
strain measurement is identified by the angles θ and δ, where θ is the angle of inclination of the diffraction vector, Qθδ, with respect to the equatorial plane defined by
the incident beam and δ denotes the azimuth angle within this plane.
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εhkl
θδ (y,z)=sin

2θεhkl
xx (y,z)+cos

2θsin2δεhkl
yy (y,z)+cos

2θcos2δεhkl
zz (y,z)

− sin2θcosδεhkl
zx (y,z)+cos2θsin2δεhkl

zy (y,z)− sin2θsinδεhkl
xy (y,z)

(3)

Under uniaxial loading conditions, the pillar experiences compressive
strain, εhkl

zz (y, z), along its longitudinal z-axis. Simultaneously, due to
Poisson’s effect and its cylindrical geometry, the pillar expands uni-
formly in all directions perpendicular to the applied load, resulting in
equibiaxial strain with, εhkl

xx (y, z) = εhkl
yy (y, z), negligible off-axis shear

strain, εhkl
xy (y, z) = 0, and equal but near-zero (but not negligible) on-axis

shear strain components, εhkl
zx (y, z) = εhkl

zy (y, z) ≈ 0. These simplifications
assume an elastic isotropic material behavior, facilitating/reducing the
analysis of the pillar deformation from Eq. (3) to three unknown strain
components

εhkl
θδ (y, z) =εhkl

yy (y, z)
[
sin2θ+ cos2θ sin2δ

]
+ εhkl

zz (y, z)cos
2θ cos2δ

− εhkl
zy (y, z)

[
sin2θcosδ − cos2θsin2δ

] (4)

During the experiment, every 5.55 s a 2D diffractogram was recorded
over a period of ~ 450 s. From a single Debye-Scherer ring, 36 strain
values εhkl

θδ (y, z) were evaluated according to Eq. (2). For each mea-
surement/shot, we calculated the three unknown strain components
εhkl

yy (y, z), εhkl
zz (y, z), and εhkl

zy (y, z) in Eq. (4) by solving the linear equation
system (based on 36 linear equations) using a least-squares refinement
method. Thus, the orientation-dependent Poisson’s ratio, νhkl, can be
extracted from

νhkl = −

d
dt εhkl

yy (y, z)
d
dt εhkl

zz (y, z)
(5)

2.4.2. Poisson’s ratio and unstrained lattice parameter refinement
From uniform unidirectional loading conditions, the Poisson’s ratio

νhkl
d0 (y, z) of an elastic material is related to the ratio of the transverse and
axial strain components, εhkl

yy (y, z) and εhkl
zz (y, z), similar to Eq. (5)

νhkl
d0 (y, z) = −

εhkl
yy (y, z)

εhkl
zz (y, z)

(6)

where νhkl
d0 (y, z) can be calculated for each εhkl

yy (y, z) and εhkl
zz (y, z) value

extracted from the periodic 2D diffraction patterns collected during the
compression test. In particular, when νhkl is obtained from the ratio of
the slope between the calculated εhkl

yy (y, z) and εhkl
zz (y, z) data points (ac-

cording to Eqs. (2), (4), and (5)), νhkl is presumed to be independent of
the precise determination of dhkl

0 from the dhkl
θδ (y, z) vs. sin2δ relation.

Notably, the slope-over-time approach is only valid if the rate of
deformation is constant (as provided by our indentation setup). Using
MATLAB’s “fminsearch” optimization algorithm [56] for data points
between 67 and 333 s we iteratively adjusted dhkl

0 in Eq. (4) to align the
dhkl
0 -dependent νhkl

d0 (y, z) values from Eq. (6) by the method of least-
squares to closely match the Poisson’s ratio from Eq. (5), resulting in a
more precise unstrained lattice plane spacing, dhkl

0,r , for each of the three
reflections. Thus, only refined dhkl

0,r were used for subsequent calculations
including the evaluation of εhkl

ij (y, z), σhkl
zz (y, z), and from there νhkl, Ehkl,

1
2 shkl

2 , and shkl
1 .

2.4.3. Stress analysis
Based on the continuously recorded load–displacement data from the

indenter probe, the indentation stress, σI(y, z), is calculated as the ratio
between the applied force F and the area of the pillar mid-
section,Am(y, z)

σI(y, z) = −
F

Am(y, z)
(7)

Notably, the cross-sectional area of the pillar mid-section irradiated
during loading is used instead of the top surface contact area, to account
for the pillar’s taper.

Considering the basic principle of Hooke’s law, which connects the
induced elastic strain to the applied mechanical stress,

εij = Sijkl⋅σkl (8)

where εij is the strain tensor, Sijkl is the compliance tensor and σkl is the
stress tensor.

Introducing the {hkl}-dependent (X-ray) elastic constants (DECs)
[57],

shkl
1 = −

νhkl

Ehkl (9)

and

1
2
shkl
2 =

1+ νhkl

Ehkl (10)

where the proportionally constants Ehkl and νhkl are the Young’s modulus
and the Poisson ratio, respectively. The uniaxial stress–strain relation is
given by

εhkl
θδ (y, z) = shkl

1 σzz(y, z)+
1
2
shkl
2 cos2θ cos2δ σzz(y, z) (11)

The linear relationship between the measured strain, εhkl
θδ (y, z), and the

only non-zero deviatoric stress component σzz(y, z)– acting under uni-
axial compression testing in z-direction–can be expressed according to
Eq. (9–11) as

εhkl
θδ (y, z) = σhkl

zz (y, z)
(

−
1+ νhkl

Ehkl sin2δcos2θ −
1+ νhkl

Ehkl sin2θ+
1

Ehkl

)

(12)

Given the relatively small elastic anisotropy of the TiN0.8B0.2 coating
material with an ab initio calculated Zener anisotropy ratio of 0.7873
[58] and assuming a uniaxial stress state within the irradiated pillar
mid-section during the experiment [59], we can derive the out-of-plane
stress, σzz(y, z), for each of the three {hkl} reflections following [60]

∂dhkl
θδ (y, z)

∂sin2δ
= − σzz(y, z)

1
2
shkl
2 dhkl

0,rcos
2θ (13)

Using the expression of εhkl
θδ (y, z) from the normalized lattice plane

spacing difference, dhkl
θδ (y, z) − dhkl

0,r , from Eq. (2) and plotting dhkl
θδ (y, z)

against sin2δ, the deviatoric stress, σhkl
zz (y, z), can be determined from the

slope of the curve, where 1
2s
111
2 = 2.9879*10− 3 GPa− 1, 1

2s
200
2 =

2.6400*10− 3 GPa− 1, and 1
2s
220
2 = 2.9010*10− 3 GPa− 1, and, in addition,

the values for shkl
1 are obtained using the ISODEC software package [61]

based on the inverse Kröner model [62,63], considering the values from
the ab initio calculated stiffness tensor for our deposited Ti–B–N mate-
rial system with C11 = 548.29, C12 = 133.15, and C44 = 163.43 (cubic
symmetry).

2.4.4. Elastic modulus and diffraction elastic constants
Theoretically, the obtained deviatoric stresses, σzz(y, z), remain

consistent across different crystallographic planes and correspond to the
{hkl}-independent macro stresses, σI(y, z), derived from the probe-to-
sample response continuously recorded by the nanoindentation system
during loading and calculated according to Eq. (7). By incorporating the
discrete indentation stress values, σI(y, z), into Eq. (13), we accessed
1
2S

hkl
2 directly from the experimental data:
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∂dhkl
θδ (y, z)

∂sin2δ
= − σI(y, z)

(
1
2
Shkl
2

)

dhkl
0,r cos

2θ (14)

To synchronize the continuous σI(y, z) values with the discrete strain,
εhkl

θδ (y, z), and lattice parameter, dhkl
θδ (y, z), data (recorded for 5.00 s

adding 0.55 s acquisition time), we averaged the indenter stresses,
σI(y, z), over 5.55 s time intervals. Combining Eq. (11) and (14) Shkl

1 can
be derived similarly to 1

2S
hkl
2 . Notably, 12S

hkl
2 (and Shkl

1 ) denote the exper-
imentally determined thin film diffraction elastic constants, where 1

2s
hkl
2

(and shkl
1 ) refer to the single-crystal DECs derived from Cijkl. Alterna-

tively, 1
2S

hkl
2 can be replaced in Eq. (14) using Eq. (10) and previously

calculated νhkl to further determine the {hkl}-dependent Young’s
modulus, Ehkl. To ensure the applicability of Eq. (14) we simplified

cos2θ
⃒
⃒
⃒dhkl

θδ (y, z) ≈ cos2θ
⃒
⃒
⃒dhkl

0,r .

Additional information can be gathered by plotting the evaluated
experimental and ab initio DFT simulated DECs against the parameter
3Γ [64], which is defined as follows

3Γ = 3
h2k2 + k2l2 + l2h2
(
h2 + k2 + l2

)2 (15)

where h, k, and l are the Millers indices and 3Γ is a single parameter
expression for the Miller indices in cubic crystal structures. Plotting the
X-ray elastic constants obtained from the single-crystalline ab initio DFT
data using the Reuss [57,65], Voigt [66] and Eshelby/Kröner [67] grain
interaction models against the 3Γ parameter will lead to 3 lines with
different slopes and a single intersection. The calculation of DECs from
the single-crystalline stiffness tensor according to the three models was
taken from literature and is presented in detail in [68]. Since the theo-
retical boundaries of possible X-ray elastic constants are set by (i) the
Reuss and the Voigt grain-interaction models and (ii) at the intersection
these culminate into a single point. In following it will be assumed, that
this specific 3Γ value determined for the ab initio DFT data is also valid
for the experimentally determined DECs, which will be interpolated to
retrieve the experimental polycrystalline {hkl}-independent Young’s
modulus, E, and Poisson’s ratio, ν.

2.5. Density functional theory calculations

The Vienna Ab-initio Simulation Package (VASP) [69,70] imple-
mentation of the Density Functional Theory (DFT) was used to carry out
ab initio calculations. The Perdew-Burke-Ernzerhof generalized gradient
approximation (GGA) [71] and the plane-wave projector augmented
wave (PAW) pseudopotentials [72] were employed. Consistently with
our previous study [6], the plane-wave cutoff energy was set to 600 eV,
and the reciprocal space was sampled with Γ-centred k-point meshes
with a length parameter of 60 Å. All supercells were based on the cubic
rocksalt (Fm3m) TiN structure in which the desired number of B atoms
was distributed on the N sublattice (to model the TiBxN1− x solid solu-
tion) using the Special Quasirandom Structure approach [73]. Three
supercell orientations were considered: (i) x ‖ [100], y ‖ [010], z ‖ [001]
(total of 64 atoms); (ii) x ‖ [110], y ‖ [110], z ‖ [001] (total of 72 atoms);
and (iii) x ‖ [111], y ‖ [110], z ‖ [112] (total of 72 atoms). The supercells
(ii) and (iii), with different numbers of atoms, are visualized in Fig. 1 of
[74]. All supercells were fully optimized by relaxing their volume, cell
shape, and atomic positions.

The fourth-order elasticity tensor, C, was evaluated for the supercell
(i) using the stress–strain approach [24,25] with a strain magnitude of
1.9 %. Applying Voigt’s formalism, the tensor was mapped onto a 6 × 6
matrix, Cij, and subsequently projected onto that of a cubic crystal [75],
yielding three independent elastic constants: C11, C12, and C44. The
polycrystalline Young’s modulus, E, bulk modulus B, and shear modulus
G, were calculated as Hill’s average [76] of the upper bounds according
to Reuss’s approach (subscript “R”) [65] and the lower Voigt’s bounds

(subscript “V”) [66]. The polycrystalline Poisson ratio was calculated
using:

ν =
3B − 2G
6B + 2G

(16)

The directional Young’s modulus, Ehkl, was evaluated following for-
mulas in Nye [77] (p. 143–145). Additionally, we used supercells (ii)
and (iii) to simulate uniaxial [111], [001], and [110] compression tests
with a 1 % strain step, where at each consecutive step the supercell and
the ionic positions were allowed to relax in the directions orthogonal to
the applied strain. The predicted lattice parameter changes along the
main crystallographic directions allowed us to directly evaluate the
(directional) Poisson ratio by calculating the negative first derivative of
the resulting average orthogonal strain over the applied strain.

3. Results and Discussion

3.1. Materials characterization

To provide a suitable base coating for in-situ micropillar compression
testing, we deposited a 15 µm thick polycrystalline TiN0.8B0.2 coating
from a TiN + TiB2 + Ti composite target similar to the 3 µm version
characterized by elastic recoil detection analysis (ERDA) reported in [6].
The XRD pattern, Fig. 2a, reveals three distinctive peaks corresponding
to the crystallographic planes (111), (200), and (220) of fcc-TiN. The
peak shift towards lower 2θ values is mainly due to the incorporation of
B into the fcc TiN lattice, as described in detail in previous studies [6].
We further evaluated the residual compressive stresses in Ti–B–N films
on the order of about 2.5 GPa, accounting for ~ 1 % of the observed
peak shift. Importantly, only the fcc-Ti(N,B) structure is identified,
confirming the absence of any other crystalline phase.

The cross section of the TiN0.8B0.2 coating in Fig. 2b exhibits a
compact, dense growth morphology different from the columnar struc-
ture commonly observed in polycrystalline hard coatings. Instead, a
refined microstructure is present with an average grain size of 18± 7 nm
as determined by transmission electron microscopy in [6], where we

Fig. 2. (a) XRD pattern recorded for TiN0.8B0.2 showing standard peak posi-
tions corresponding to the (111), 2θ = 36.663◦, (200), 2θ = 42.597◦, and (220),
2θ = 61.814◦ crystallographic planes of fcc-TiN (JCPDS No. 00–038–1420)
[78]. (b) Cross section morphology of the deposited TiN0.8B0.2 coating with 15
µm film thickness on α-Al2O3 substrate.
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have recently addressed the effect of B-solubility on the microstructure
and mechanical properties of Ti–B–N thin films, which guided our ma-
terial selection for this experiment.

Micropillars were FIB-milled from the deposited TiN0.8B0.2 thin film
for subsequent compression testing. Fig. 3a shows the micropillar before
testing, with its geometric specifications outlined in white. Our FIB
milling protocol induces a nearly symmetrical taper (αt, left side 1.94◦,
right side 1.81◦) along the pillar, resulting in a slightly non-uniform
cylinder with an aspect ratio hP : dT ≈ 3, proven to be practical and
suitable for compression testing [59]. Notably, the selected sample ge-
ometry should provide a sufficient probe volume (i.e., number of grains)
to interact with the X-ray beam (Abeam = 1.5× 1.5 μm2) in order to
facilitate a comprehensive characterization of the material response to
applied loads (see Fig. 3a). In [59], Cornec and Lilleodon critically
discussed the aspects of determining stress–strain curves from micro-
pillar compression tests. Their computational models verified that a
nearly uniaxial stress state occurs in the center of the micropillar over
hM, see Fig. 3a. However, frictional forces and constrained deformation
along the top (and bottom) surface of the micropillar result in lateral and
shear stresses (i.e., non-uniform stress distributions) due to contact with
the indenter during loading. We therefore chose to irradiate the spec-
imen at its midpoint. Post-testing, the fracture surface of the TiN0.8B0.2
micropillar exhibits characteristic features associated with brittle fail-
ure. The SEM image in Fig. 3b shows a distinct fracture surface
morphology characterized by smooth fracture lines, with the right side
of the pillar separated from the remaining left part. This unilateral
fracture indicates an abrupt and catastrophic failure event that propa-
gated along the vertical axis of the pillar. The absence of significant

plastic deformation features (e.g., distortion or shear bands), further
confirms that the fracture mechanism is predominantly brittle.

3.2. X-ray strain analysis

In-situ compression testing was conducted at a constant loading rate
of 5 nm⋅s− 1 while recording a 2D diffraction pattern at regular intervals
of 5.00 s (adding the acquisition time of the detector of 0.55 s) for a
period of 450 s, ensuring controlled loading conditions for precisely
monitoring the pillar material’s mechanical response throughout the
test. All experimental results were plotted for 400 s, with loading
starting at ~ 42 s and failure occurring at ~ 350 s.

Fig. 4 presents the three resulting strain components εhkl
zz , εhkl

yy , and εhkl
zy

for three crystallographic plane families {hkl}, {111}, {200}, and {220}.
The strain values were determined by 2D X-ray diffraction data analysis
(as detailed in the experimental section) according to Eq. (7). The pre-

Fig. 3. (a) Schematic representation of the micropillar’s geometric parameters.
The actual height of the pillar, hP = 15.01± 0.05 μm, aligns with the film
thickness with a taper angle αt < 2◦ . The top surface diameter, dT , measures
4.57± 0.05 μm, while the bottom diameter, dB, is ≈ 5.5 μm; albeit with a slight
circular foot transition that complicates precise determination. The mid-section
of the pillar, measured at half its height has a diameter of dT = 5.04± 0.05 μm
with a cross-sectional area Am = 19.96 μm2. The central region where the
micropillar experiences a nearly uniaxial stress state is marked as hM =

7.51± 0.05 μm. During the experiment, the center of the pillar was fixed in
transmission geometry perpendicular to the beam direction with a cross-section
diameter Abeam = 1.5× 1.5 μm2. Auxiliary lines were extrapolated to the foot
level to illustrate the complete pillar geometry. (b) Fractured TiN0.8B0.2
micropillar after compression testing, displaying brittle behavior consistent
with the ceramic nature of the material.

Fig. 4. Elastic strain components of TiN0.8B0.2 derived from in-situ uniaxial
pillar compression testing for three distinct crystallographic planes {hkl} are
shown: (a) ε111ij , (b) ε200ij , and (c) ε220ij . Each plot illustrates the calculated strain
data points at load time (i) in the loading direction z, εhkl

zz (indicated by filled
circles,) (ii) in the lateral direction, εhkl

yy = εhkl
xx (filled triangles), and (iii) the

shear strain components, εhkl
zy = εhkl

zx (shown as half-filled diamonds). The strain
values recorded during pre-loading and post-failure of the pillar appear on a
grey background.
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dominant axial strain component, εhkl
zz , corresponds to the loading di-

rection, i.e., the out-of-plane direction of the pillar, reflecting the
compression of the pillar along its z-axis due to the applied load until
failure at ~ 2 % strain; an expected value for ceramic hard coating
materials [50]. Conversely, the Poisson effect implies lateral expansion
in the x and y directions to accommodate the volume change resulting
from the pillar compression in the z direction. Under uniform uniaxial
loading conditions, the lateral strain components for a cylindrical pillar
are equal in magnitude (εhkl

yy = εhkl
xx , i.e., εhkl

xy = εhkl
yx = 0 is valid) and

represent the elastic deformation perpendicular to the direction of
loading. Although the shear strain components (εhkl

zy = εhkl
zx ) are expected

be close to zero, the minimal shear deformations observed do not indi-
cate significant deviation from uniform loading conditions or inelastic
material behavior during the experiment.

The almost linear progression of εhkl
yy and εhkl

zz over the time of applied
load suggests a predominantly linear elastic material behavior that is
relatively consistent across the three crystallographic planes (Fig. 4a-c).
However, we observe a nuanced elastic anisotropy in the material’s
response to uniaxial compression. Specifically, ε111yy and ε111zz propagated
to slightly higher magnitudes compared to the in-plane and out-of-plane
strain components recorded for the {220} and {200} plane families
(compare Fig. 3a-c). Note that in sputtered polycrystalline thin films, the
presence of crystallographic textures can contribute to the macroscopic
anisotropy of the material [40]. The presence of (virtual) residual
strains, particularly notable in the z direction for the {111} peak, ε111zz ,
may also partly stem from lattice defects favoring specific crystallo-
graphic plane families. However, using free-standing pillar geometries
for in–situ mechanical testing offer advantages over previously reported
methods [44,79] in revealing the intrinsic coating material’s mechanical
properties by allowing the material to deform freely under applied load.
Free-cutting a cylindrical shaped pillar out of the deposited coating
material mitigates residual stresses–commonly observed in conventional
sputtered PVD thin films–providing a uniform stress–strain distribution
throughout the specimen and reducing frictional forces during defor-
mation [59]. In combination with synchrotron X-ray microdiffraction
this approach allowed us to collect in–situ the detailed information on
the pillar’s deformation response to uniaxial compression in the lateral
and longitudinal direction for three independent crystallographic plane
families {111}, {200}, and {220}. The so-obtained elastic strain com-
ponents εhkl

ij are essential for accessing the {hkl}-dependent elastic
constants.

The Poisson’s ratio for each crystallographic plane families {111},
{200}, and {220}, as shown in Fig. 5, was determined from the negative
ratio of the slope between the transverse strain components, εhkl

yy , and the
slope of the axial strain components, εhkl

zz , over a period of 61–327 s. Eq.
(5). The νhkl values obtained for ν111 = 0.241, ν200 = 0.199, and ν220 =

0.222 are in the range of 0.2–0.3 commonly observed for ceramic hard
coatings and suggest a moderate level of anisotropy in the coating’s
elastic response. Although {hkl}-dependent Poisson’s ratios for Ti–B–N
coatings have not been studied so far, the values obtained from our
experiment appear reasonable when compared to those reported for fcc-
TiN thin films [80–82]. Complementarily, the {hkl}-dependent Poisson’s
ratios for TiN0.8B0.2 were calculated based on Eq. (6), where the nega-
tive ratio for each transverse and axial strain data point recorded over
the time to failure was derived. However, the resulting 64 νhkl

d0 values for
each crystallographic plane significantly deviated from the one νhkl

value derived from Eq. (5), as clearly shown in Fig. 5a–c. To refine the
determination of νhkl

d0 , we iteratively adjusted the strain-free lattice
parameter, dhkl

0 →dhkl
0,r , to fit the νhkl

d0 values to νhkl by the method of least-
squares, as detailed in the experimental part. The refined values are
denoted as dhkl

0,r and νhkl
d0 .

Accurate determination of dhkl
0 is critical in diffraction-based

stress–strain analyses, often presenting the primary source of uncer-
tainty [83,84]. Even minor alterations in dhkl

0 significantly impact the
calculated parameters. In this study, the uncertainties of νhkl

d0 associated
with dhkl

0 (see Fig. 4a–c) were < 0.1 % underpinning the meticulous
precision required in X-ray strain analysis. Ideally, adjusting dhkl

0 does
not affect the slope of the strain data points (Fig. 3a-c), since the
calculation of νhkl (expressed as in (Eq. (8)), remains invariant to vari-
ations in dhkl

0 . This independence arises from the fundamental nature of
Poisson’s ratio, a material constant that defines the material’s transverse
response under axial loading. Despite many other factors (i.e., instru-
mental limitations, sample preparation, or local changes in micro-
structure and chemical composition) that can complicate the
experimental determination of dhkl

0 , optimizing dhkl
0 to ensure consistency

between the calculated νhkl
d0 →νhkl

d0,r values obtained from Eq. (6) and νhkl

appears to be a valid approach for dhkl
0,r -refinement and to enhance the

precision of our results.

Fig. 5. Poisson’s ratio values of TiN0.8B0.2 obtained for three crystallographic
plane families {111}, {200}, and {220} shown in panels (a) circular symbols,
(b) triangular symbols, and (c) square symbols, respectively. The dashed hori-
zontal line in each panel represents the νhkl value calculated from the negative
ratio of the slope of the lateral and axial strain components, as indicated in the
upper right corner. All framed symbols denote the initial νhkl

d0 values calculated
pointwise from the negative ratio of εhkl

yy and εhkl
zz , while filled symbols show the

least squares fitted νhkl
d0,r values after iterative “fminsearch” (a derivative-free

minimization routine of MATLAB) optimization of the strain-free lattice
parameter from dhkl

0 to dhkl
0,r . Notably, certain initial νhkl

d0 values deviate strongly
from the νhkl target value and appear (not visible) outside the plot.
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3.3. X-ray uniaxial stress analysis

Besides investigating elastic properties elastic properties of the
TiN0.2B0.8 coating, we further analyzed the deviatoric stress components
of the micropillar under uniaxial compression loading along the z-di-
rection. This required the use of Eq. (13), which facilitate the calculation
of σzz based on the pre-determined strain components, εhkl

ij , as described
in the Methodology section.

Our results in Fig. 6 show that the calculated stresses for σzz{200}
and σzz{220} closely match the indenter stress, σI, all in GPa. The de-
viation of σzz{111} from an initial ~ zero stress state presumably prone
to texture effects in {111} plane of the material system. Of particular
interest, however, is the observed linear increase in compressive stress in
the loading direction up to failure. The slope of the three deviatoric
stresses, closely aligns with the macroscopic indenter stresses, suggest-
ing a coherent loading response of the {hkl} crystallographic plane
families inside the probing volume of the pillar. This observation is
consistent with the assumption of uniform uniaxial loading conditions
and suggests a linear elastic response in the micropillar during testing.
Despite the shifted values for {111} lattice plane families observed in the
pre-loading state, as we are interested in how well our calculated 1

2s
hkl
2

and shkl
1 values match with the macroscopic stresses,σI, only the co-

herency of the slopes is relevant. The micropillar failure at 7.5 GPa
(according to σI) adds credibility to the validation of the experiment and
is in good agreement with fracture behavior observed in other ceramic
hard coatings under similar compressive loading scenarios [50].

Since the compressive load is applied uniformly along the z axis, the
resulting stress state is assumed to be homogeneously distributed in the
mid-section of the pillar according to [59]. Therefore, the deviatoric
stress components, σzz, in our experiment are expected–and shown–to be
equal in slope compared to the macroscopic (i.e., {hkl}-independent)
stress response derived from the indenter, σI, allowing the experimental
determination of 1

2S
hkl
2 by differentiating Eq. (14). In detail, we plotted

∂dhkl
θδ

∂sin2δ over σI and calculated 1
2S

hkl
2 from the first derivative of the linear fit.

The polycrystalline directional-dependent X-ray elastic constants link
the macro stresses, σI, with the directional-dependent strains, εhkl

ij ,
caused by them. Therefore, 1

2S
hkl
2 and Shkl

1 can be inferred from the
measured direction-dependent strain changes and the simultaneously
recorded macroscopic stresses generated by compressing the pillar with
a constant loading rate. The recording of data on the elastic behavior of a
material over time allows for the calculation of elastic and diffraction (X-
ray) elastic constants from the slope of underlying equations mentioned
in the methodology section. This differential approach offers a more

precise determination than discrete measurements, as previously
demonstrated in the calculation of the Poisson ratio. Given that Eq. (11)
is in the form of y = k⋅x+ d, where Shkl

1 is included in the in the y-
intercept term, we plotted εhkl

θδ (y, z) atsin
2δ = 0 against σI(y, z). The

elimination of the k • x term allows for the linear fitting of the data
points and to calculate Shkl

1 from the slope of the line (similar to the
procedure for 12S

hkl
2 ). Subsequently, Ehkl values were calculated using the

fundamental relationship between elastic and X-ray elastic constants
(Eqs. (4) and (5)).

3.4. Thin film elastic constants

Following the experimental determination of the direction depen-
dent thin film elastic constants, νhkl and Ehkl, as well as the X-ray elastic
constants 12S

hkl
2 and Shkl

1 , our investigation extends to the derivation of the
polycrystalline thin film elastic constants, ν and E. To interpolate the
polycrystalline values from the single crystal X-ray elastic constants, we
utilized the known coefficients from the stiffness tensor (C11 = 548.29,
C12 = 133.15, and C44 = 163.43) for fcc-TiN0.94B0.06 to calculate 1

2s
hkl
2

and shkl
1 according to each of the three models proposed by Voigt, Reuss,

and Eshelby/Kröner, as described in detail in [62,65–67,83]. Please
note, that we used the stiffness tensor for a fcc-TiN0.94B0.06 crystal to
account for the insufficient B incorporation in our deposited TiN0.8B0.2
coating. The peak shift observed in the XRD pattern in Fig. 2a indicates
that ca. 3 at% B is incorporated in the fcc-TiN lattice with the surplus of
B segregated amorphously at the grain boundaries [6]—only the crystals
contribute to the analysis.

The calculated single-crystal X-ray elastic constants can be repre-
sented by the orientation parameter, 3Γ, which expresses the three
Miller indices h, k, and l as a single parameter and ranges from 0 to 1,
where 3Γ{200} = 0, 3Γ{220} = 0.75, and 3Γ{111} = 1. Specifically for
cubic material systems, the Reuss and Eshelby/Kröner models show a
linear distribution of 12s

hkl
2 and shkl

1 over the parameter 3Γ, whereas Voigt
grain interaction model yields a single set of DECs that are independent
of the {hkl}-plane families (Please note, that generally the Voigt model
assumes all grains are strained identically). The intersection between the
three models in Fig. 7 indicates where the {hkl}-dependent DECs, 12s

hkl
2

and shkl
1 , are assumed to be similar to the {hkl}-independent (macro-

scopic) quasi-isotropic polycrystalline thin film elastic constants, i.e.,
Young’s modulus, E, and Poisson’s ratio, ν. By interpolating the exper-
imentally determined polycrystalline thin film X-ray elastic constants
Shkl
1 (Fig. 7a) and 1

2S
hkl
2 (Fig. 7b) to 3Γ = 0.54–obtained from the inter-

section of the ab initio DFT data–we can determine E = 443GPa and ν =

0.213 according to Eqs. (9) and (10).
The comparison in Fig. 7ab indicates a strong agreement between

experimentally determined thin film X-ray elastic constants, Shkl
1 and

1
2S

hkl
2 , and theoretical predictions, particularly for the Eshelby/Kröner

model. Notably, the slopes of the linear fits match closely, especially for
1
2S

hkl
2 and 1

2s
hkl
2 . This confirms previous findings indicating the improved

performance of the Eshelby/Kröner model in predicting the mechanical
elastic behavior of quasi-isotropic polycrystals [83] and that these pa-
rameters can be used for stress analysis. We further observe that the shkl

1
values derived from the ISODEC software based on the inverse Kröner
model follow those of Eshelby/Kröner. However, in the case of 12s

hkl
2 , the

latter is in better agreement with the experimentally determined 1
2S

hkl
2

values (compare Fig. 7a and 7b). The ab initio DFT data for 12s
hkl
2 shows a

slightly better agreement with the experimental data compared to shkl
1 .

This discrepancy suggests potential opportunities for refinement in the
simulation methodologies, particularly in relation to Poisson’s
contraction, which will be the focus of future research.

Finally, summarized in Table 1, we present the results of our in–situ
experimental approach to determine the {hkl}-dependent as well as the
polycrystalline thin film elastic and X-ray elastic constants for TiN0.8B0.2

Fig. 6. Uniaxial compressive stress analysis of a TiN0.8B0.2 micropillar showing
the stress components evaluated for {111} (circular symbols), {200} (triangular
symbols), and {220} (square symbols) evaluated for the three crystallographic
planes along with the continuous stress measurements from the indenter, σI

(continuous line). The plot illustrates stress evolution over load time to failure
at 350 s and − 7.86 GPa.
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compared to the theoretically predicted single crystal values. Where
possible, the standard error was calculated using Gaussian error prop-
agation. The polycrystalline Young’s modulus, EI, was additionally
extrapolated from nanoindentation measurements of the coating with
EI = 454± 33 GPa (not added to the table) and matches the poly-
crystalline thin film Young’s modulus interpolated from the in-situ pillar

compression experiment (E = 443 GPa) as well as the value obtained
from the DFT calculations based on the Hill grain interaction model (E =

442 GPa), as described in detail in the methodology section.
The residual stresses of the TiN0.8B0.2 coating, measured at 0.6 GPa,

are relatively low compared to EI. Therefore, the EI value can be
considered a valid benchmark for comparison with the other experi-
mental and theoretical results. The measured hardness, H = 32.1 ±

1.9 GPa, also falls within the expected range of 35 GPa, in agreement
with our previous experimental results [6,85]. The values are slightly
higher than those reported for pure TiN in the literature [80–82], indi-
cating a greater compliance for TiN0.8B0.2 compared to TiN. As previ-
ously explained, increasing the B content in fcc-TiN results in a
reduction of E [6]. This decrease in E can be attributed to the increase in
lattice spacing, leading to severe lattice distortions. Furthermore, adding
B introduces lattice defects such as N-vacancies or amorphous B-rich
grain boundary phases. These irregularities disrupt the uniformity of the
fcc-TiN lattice and consequently alter the material’s stiffness.

4. Summary and Conclusion

In this study, we aim to develop a new in-situ test routine to exper-
imentally determine the direction dependent elastic constant of poly-
crystalline thin films using in-situ micro-pillar compression testing
coupled with X-ray strain analysis. To provide a suitable quasi-isotropic
ceramic coating for testing, we deposited a 15 µm TiN0.8B0.2 thin film (H
= 32.1 ± 1.9 GPa, EI = 454 ± 33 GPa), characterized by a dense, small-
grained (non-columnar) microstructural cross section. X-ray diffraction
analysis confirmed the presence of a single-phase crystalline fcc-TiN
structure with peak shifts attributed to 3 at% B incorporation within
the fcc-TiN lattice, while excess B is segregated as amorphous B-rich
grain boundary phases. The micro-pillar (aspect ratio 3:1) fabricated by
a conventional FIB milling process displayed a symmetric taper (α < 2◦)
and was qualified for controlled compression testing. By implementing
an advanced in-situ nanoindentation setup, we subjected the TiN0.8B0.2-
micropillar to uniform uniaxial compression with a constant deforma-
tion rate until failure, while simultaneously performing transmission X-
raymicrodiffraction to detect the {hkl}-dependent deformation response
for the {111}, {200}, and {220} plane families. The experiment directly
obtained the direction-dependent Poisson ratio, νhkl, from the negative

ratio of the slopes of the linear elastic strain response, d
dt εhkl

ij , to the

Fig. 7. 3Γ plot of the single crystal diffraction elastic constants, (a) shkl
1 and (b) 12s

hkl
2 , derived from the models of Voigt (dashed-dotted line), Reuss (dashed-line), and

Eshelby/Kröner (solid line) using the ab into calculated coefficients of the stiffness tensor C11, C12, and C44 for fcc-TiN0.94B0.06. The experimentally determined X-ray
elastic constants (squared symbols) for {111}, {200}, and {220} are predicted to be linear over 3Γ. The hypothetical 3Γ value (0.54) of the unknown quasi-isotropic
polycrystalline thin film elastic constants is estimated to be similar to the calculated single crystal X-ray elastic constants (marked by the vertical small-dashed line).
The circular symbols represent shkl

1 and 1
2s

hkl
2 calculated from ISODEC software (based on the inverse Kröner model) and used for the deviatoric stress analysis.

Table 1
Summary of the experimental values for the {hkl}-dependent and macroscopic

thin film elastic constants νhkl, ν, Ehkl, E, and the X-ray elastic constants
1
2
Shkl
2 and

Shkl
1 for TiN0.8B0.2 compared to the theoretically derived {hkl}-dependent and

macroscopic single–crystal elastic and X-ray elastic constants,
1
2
shkl
2 and shkl

1

(derived from the inverse Kröner model) for fcc-TiN0.94B0.06.
1
2
S2 and S1 corre-

spond to {hkl}-independent experimental thin film X-ray elastic constants

interpolated from the intersection of the 3Γhkl plot in Fig. 7ab, where
1
2
s2 and s1

are the theoretical {hkl}-independent single–crystal X-ray elastic constants from
the Reuss model at the intersection.

Experimentally determined elastic and X-ray elastic constants for TiN0.8B0.2 thin
films

{hkl} {111} {200} {220} macroscopic
νhkl(− ) 0.241 ±

0.004
0.199 ±

0.001
0.222 ±

0.001
ν(− ) 0.213

Ehkl(GPa) 422 ± 2 467 ± 2 446 ± 2 E(GPa) 443
1
2
Shkl
2 (10− 3

GPa− 1)

2.94 ±

0.01
2.57 ±

0.01
2.74 ±

0.01
1
2
S2(10− 3

GPa− 1)

2.74

Shkl
1 (10− 3

GPa− 1)
− 0.57 ±

0.06
− 0.42 ±

0.02
− 0.47 ±

0.02
S1(10− 3

GPa− 1)
− 0.48

Ab inito calculated elastic and X-ray elastic constants for single-crystal fcc-
TiN0.94B0.06

{hkl} {111} {200} {220} macroscopic
νhkl(− ) 0.255 0.189 0.240 ν(− ) 0.229
Ehkl(GPa) 408 496 427 E(GPa) 442
1
2
shkl
2 (10− 3

GPa− 1)

2.9879 2.6400 2.9010 1
2
s2(10− 3

GPa− 1)

2.76

shkl
1 (10− 3

GPa− 1)
− 0.5669 − 0.4556 − 0.5390 s1(10− 3

GPa− 1)
− 0.51
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applied load over time in the transverse and axial directions until the
pillar failed with absence of plastic deformation. Additionally, the
determination of the strain-free lattice spacing, dhkl

0 →dhkl
0,r , was refined by

iteratively adjusting the νhkl
d0 values obtained from the negative strain

ratio −
εhkl
yy

εhkl
zz
to fit the differentially derived Poisson ratio νhkl. Considering

this deviation, we were able to refine dhkl
0 with the required accuracy of

10− 5 nm for X-ray diffraction stress–strain analysis. This experimental
refinement procedure provides a dhkl

0 -accuracy three magnitudes higher
than DFT. The unique capability of the experiment to simultaneously

record deformation changes, ∂dhkl
θδ

∂sin2δ
, and corresponding uniaxial macro-

scopic stresses, σI, allowed to determine the thin film X-ray elastic
constants, 1

2S
hkl
2 , Shkl

1 , followed by the direction-dependent thin film
Young’s modulus Ehkl. The thereby derived elastic constants such as ν111

= 0.241 ± 0.004, ν200 = 0.199 ± 0.001, ν220 = 0.222 ± 0.001, E111 =

422 ± 2 GPa, E200 = 467 ± 2 GPa, and E220 = 446 ± 2 GPa, excellently
agree with DFT-values of ν111 = 0.255, ν200 = 0.189, ν220 = 0.240, E111

= 408 GPa, E001 = 496 GPa, and E101 = 427 GPa.
Having successfully calculated the directional-dependent thin film

elastic constants and X-ray elastic constants from our experiments we
interpolated the polycrystalline (macroscopic) thin film elastic con-
stants, ν and E, from the calculated single-crystal X-ray elastic constants,
1
2s

hkl
2 , shkl

1 , using the theoretical models proposed by Reuss, Voigt, and
Eshelby/Kröner. Particularly, the Eshelby/Kröner model showed the
best alignment with experimental data.
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