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“Every year is getting shorter, never seem to find the time. Plans that
either come to naught or half a page of scribbled lines. Hanging on in
quiet desperation is the English way. The time is gone, the song is over,
thought I’d something more to say .”

- Roger Waters
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Abstract

Optical clocks, with an accuracy of 10−19 level, corresponding to being off by only 1 second
over the universe’s age, are the most precise clocks ever built. Optical clocks promise
a huge impact on the development of quantum technologies like atom interferometry
and quantum metrology with applications in telecommunication, specifically in network
synchronization and accuracy navigation through 5G networks instead of GPS. Other than
this, if optical clocks are operated on satellites then they could be used for gravitational
wave detectors, performing experiments of general relativity. Further applications are in
geology, astronomy, and fundamental physics.

Current optical clocks are passive frequency standards. In these systems, the frequency
of a highly coherent probe laser (local oscillator) is intermittently compared with the
frequency of a narrow and robust clock transition in trapped atoms or ions. This laser
is pre-stabilized by an ultrastable macroscopic cavity (flywheel), keeping the frequency
in between interrogation cycles. Thermal and mechanical fluctuations in the local
oscillator are among the main factors limiting the short-term stability of modern optical
clocks. They entirely determine the overall clock stability on the time less than a single
interrogation cycle and do not utilize the full potential of a clock transition. Finally,
down-conversion of the broad-band laser frequency noise contributes to the measurement
error of the frequency offset, what is known as a Dick effect.

To overcome this problem, one may create an active optical clock based on a superradiant
laser, where the atoms with population inversion on the clock transition are coupled to
a resonator mode in the bad cavity regime. The cavity mode of such a laser is much
broader than its gain profile, and the laser frequency is inherently insensitive to cavity
length fluctuations, in contrast to ordinary good-cavity lasers.

Achieving a Continuous superradiance using a narrow optical transition has the potential
to improve the short-term stability of state-of-the-art optical clocks. Even though
pulsed superradiant emission on a mHz linewidth clock transition has been shown,
true continuous operation, without Fourier limitation, has turned out to be extremely
challenging. This problem is being tackled by the FET-Flag project iqClock and European
Innovative Training Network MoSaiQC, short for “Modular Systems for Advanced
Integrated Quantum Clocks”, and includes a wide range of academic and industrial
institutions. At TU Wien, we, as a theoretical partner, have studied the ultimate
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characteristics of the active optical clocks, and performed simulations to assist our
experimental partners with the design of such a Laser.

We then present two different models for stimulating the generated superradiant field by
taking into account position-dependent shifts, collisional decoherence, light shifts, and
atom loss. Finally, we estimate a laser linewidth of less than 100 mHz, limited by atom
number fluctuations, and resulting in an output power of hundreds of fW .

This thesis is divided into two main sections. The first section introduces the necessary
tools for studying the superradiant laser. We begin by developing an understanding of
quantum optics and open quantum systems. Then, we compare different models for
simulating the superradiant laser and estimate the ultimate stability achievable using an
active optical clock.

The second section of the thesis focuses on the realization of a superradiant laser. Specif-
ically, we performed a feasibility study for the design and simulation of the continuous
high-efficiency cooling, loading, and pumping to the upper lasing state inside the cavity
for the superradiant mHz machine at the University of Amsterdam. The goal is to
combine a high-flux continuous beam of ultra-cold strontium atoms with a bowtie cavity
for the generation of superradiant lasing. This machine operates on forbidden transitions
3P0 to 1S0 in ultracold alkaline-earth atoms confined by a magic optical lattice.

After establishing a method for continuously injecting atoms into the upper state and
ejecting ground state atoms from the bowtie cavity, We introduce two different models for
stimulating the generated superradiant field by taking into account position-dependent
shifts, collisional decoherence, light shifts, and atom loss. Finally, we estimate a laser
linewidth of less than 100 mHz, limited by the fluctuation of the atomic flux, r, leading
to an output power of several hundred fW .



Kurzfassung

Optische Uhren mit einer Genauigkeit auf dem Niveau von 10−19, was einer Abweichung
von nur einer Sekunde über das Alter des Universums entspricht, sind die präzisesten
Uhren, die je gebaut wurden. Optische Uhren versprechen einen enormen Einfluss auf die
Entwicklung von Quantentechnologien wie Atominterferometrie und Quantenmetrologie
mit Anwendungen in der Telekommunikation, insbesondere bei der Netzwerksynchroni-
sation und der präzisen Navigation durch 5G-Netze anstelle von GPS. Darüber hinaus
könnten optische Uhren, die auf Satelliten betrieben werden, als Gravitationswellendetek-
toren genutzt werden und Experimente der Allgemeinen Relativitätstheorie ermöglichen.
Weitere Anwendungen finden sich in der Geologie, Astronomie und der fundamentalen
Physik.

Aktuelle optische Uhren sind passive Frequenzstandards. In diesen Systemen wird die
Frequenz eines hochkohärenten Sondenlasers (Lokaler Oszillator) intermittierend mit
der Frequenz einer schmalen und robusten Uhrenübergangs in gefangenen Atomen oder
Ionen verglichen. Dieser Laser wird durch einen ultrastabilen makroskopischen Hohl-
raum (Schwungrad) vorstabilisiert, der die Frequenz zwischen den Abtastzyklen hält.
Thermische und mechanische Schwankungen im lokalen Oszillator sind unter den Haupt-
faktoren, die die Kurzzeitstabilität moderner optischer Uhren begrenzen. Sie bestimmen
die Gesamtstabilität der Uhr vollständig in der Zeit, die kürzer ist als ein einzelner Ab-
tastzyklus, und nutzen nicht das volle Potenzial eines Uhrenübergangs. Schließlich trägt
die Abwärtskonvertierung des breitbandigen Laserfrequenzrauschens zur Messabweichung
der Frequenzverschiebung bei, was als Dick-Effekt bekannt ist.

Um dieses Problem zu überwinden, könnte eine aktive optische Uhr auf Basis eines
superradianten Lasers geschaffen werden, bei dem die Atome mit Populationsinversion
auf dem Uhrenübergang an eine Resonatormode im bad cavity regime gekoppelt sind. Die
Kavitätsmode eines solchen Lasers ist viel breiter als sein Verstärkungsprofil, und die La-
serfrequenz ist von Natur aus unempfindlich gegenüber Schwankungen der Kavitätslänge,
im Gegensatz zu gewöhnlichen Lasern mit guter Kavität.

Das Erreichen kontinuierlicher Superradianz unter Verwendung eines schmalen optischen
Übergangs hat das Potenzial, die Kurzzeitstabilität der modernsten optischen Uhren zu
verbessern. Obwohl gepulste superradiante Emissionen auf einem mHz-Linienbreiten-
Uhrenübergang gezeigt wurden, hat sich der echte kontinuierliche Betrieb ohne Fourier-
Beschränkung als extrem herausfordernd erwiesen. Dieses Problem wird durch das FET-
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Flaggschiffprojekt iqClock und das europäische Innovative Training Network MoSaiQC,
kurz für „Modular Systems for Advanced Integrated Quantum Clocks“, angegangen, an
dem eine breite Palette akademischer und industrieller Einrichtungen beteiligt ist. An der
TU Wien haben wir als theoretischer Partner die ultimativen Eigenschaften der aktiven
optischen Uhren untersucht und Simulationen durchgeführt, um unsere experimentellen
Partner bei der Entwicklung eines solchen Lasers zu unterstützen.

Wir stellen dann zwei verschiedene Modelle zur Anregung des erzeugten superradian-
ten Feldes vor, indem wir positionsabhängige Verschiebungen, Kollisionsdekoherenz,
Lichtverschiebungen und Atomverluste berücksichtigen. Schließlich schätzen wir eine
Laserlinienbreite von weniger als 100 mHz, begrenzt durch Atomanzahlschwankungen,
was zu einer Ausgangsleistung von mehreren hundert fW führt.

Diese Arbeit ist in zwei Hauptabschnitte unterteilt. Der erste Abschnitt führt die not-
wendigen Werkzeuge zum Studium des superradianten Lasers ein. Wir beginnen mit
der Entwicklung eines Verständnisses der Quantenoptik und offener Quantensysteme.
Anschließend vergleichen wir verschiedene Modelle zur Simulation des superradianten
Lasers und schätzen die ultimative Stabilität ab, die mit einer aktiven optischen Uhr
erreichbar ist.

Der zweite Abschnitt der Arbeit konzentriert sich auf die Realisierung eines superradi-
anten Lasers. Insbesondere haben wir eine Machbarkeitsstudie für die Gestaltung und
Simulation der kontinuierlichen hocheffizienten Kühlung, Beladung und Pumpen in den
oberen Laserszustand innerhalb der Kavität für die superradiante mHz-Maschine an der
Universität Amsterdam durchgeführt. Das Ziel ist es, einen hochflüssigen kontinuierlichen
Strahl ultrakalter Strontiumatome mit einer Bowtie-Kavität für die Erzeugung von super-
radiantem Lasern zu kombinieren. Diese Maschine arbeitet auf verbotenen Übergängen
3P0 zu 1S0 in ultrakalten Alkalien-Erdatomen, die in einem magischen optischen Gitter
eingeschlossen sind.

Nach der Etablierung einer Methode zur kontinuierlichen Injektion von Atomen in den
oberen Zustand und dem Auswerfen von Grundzustandsatomen aus der Bowtie-Kavität
stellen wir zwei verschiedene Modelle zur Anregung des erzeugten superradianten Feldes
vor, indem wir positionsabhängige Verschiebungen, Kollisionsdekoherenz, Lichtverschie-
bungen und Atomverluste berücksichtigen. Schließlich schätzen wir eine Laserlinienbreite
von weniger als 100 mHz, begrenzt durch die Schwankung des Atomflusses r, was zu
einer Ausgangsleistung von mehreren hundert fW führt.
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CHAPTER 1
Introduction

1.1 Background
Some of the most accurate measurements in all of physics are done by measur-
ing frequency. It’s actually a kind of unwritten rule. If you want to measure
something precisely, make sure that you find a way that this quantity can be
measured in a frequency measurement. Because frequencies that’s what we
can measure with synthesizers and clocks. So, therefore, the question, how
precisely can you measure frequency, is a question that is actually relevant
for all precision measurements .

- Prof. Wolfgang Ketterle

In 1945, Rabi, in a public Lecture, discussed the possibility of atomic clocks [1]. By 1955,
an atomic clock based on a microwave transition in cesium was constructed, surpassing
the best quartz clocks of that time in both accuracy and precision [2]. This advancement
led to the redefinition of the second in 1967, based on the frequency between two atomic
levels in cesium [1]. Since then, atomic clocks have significantly advanced in accuracy
and precision. Currently, the optical clocks, with an accuracy of 6.6 × 10−19 level [3],
corresponding to being off by only 1 second over the universe’s age, are the most precise
clocks.

Optical clocks promise a huge impact on the development of quantum technologies like
atom interferometry and quantum metrology, with applications in telecommunication,
specifically in network synchronization and accuracy navigation through 5G networks
and GPS. Other than this, if optical clocks are operated on satellites, then they could be
used for gravitational wave detectors [4], performing experiments of general relativity,
or improving navigation systems. Further applications are in geology, astronomy, and
measurement of fundamental constants [5].
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1. Introduction

Modern-day high-stability optical clocks are passive frequency standards, [3]. In state-of-
the-art optical clock systems, the frequency of a highly coherent probe laser pre-stabilized
to an ultra-stable optical cavity is intermittently compared with the frequency of a narrow
and robust clock transition in a sample of trapped atoms (or ions). The measurement
sequence includes an interrogation time, during which the phase of the laser is imprinted
to the atomic sample, and a dead time used, for example, for preparation of atomic
ensembles, when the laser pre-stabilized to an ultra-stable macroscopic cavity keeps
the frequency, playing the role of a flywheel. Such a clock has demonstrated excellent
stability at the level of 6.6 × 10−19 after 1 hour of averaging [3]; however, on shorter
timescale, this stability is limited by thermal and mechanical fluctuations of the length of
this ultra-stable cavity [6, 7]. They entirely determine the overall clock stability on time
less than a single interrogation cycle, and they limit the interrogation time and inhibit
exploitation of the full potential of a clock transition, given by its natural linewidth.
Finally, down-conversion of the broad-band laser frequency noise contributes to the
measurement error of the frequency offset, what is known as a Dick effect [8].

Figure 1.1: Schemetic diagram of a passive clock

This problem may be overcome with the help of an active optical frequency standard
based on a laser operating deep in the bad-cavity regime [9, 10], where the linewidth of
the cavity is much broader than the linewidth of the gain, see figure 1.3.

The gain of such a laser can be formed by forbidden transitions in alkaline-earth atoms,
the same as used for passive optical lattice clocks. Similar to a hydrogen maser, the
frequency of such a laser is determined by the frequency of lasing transition and is robust
to fluctuations of the cavity length, which improves the stability on shorter timescales.
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1.2. Overview

Figure 1.2: Schemetic diagram of an active optical clock

Figure 1.3: Schematic diagram comparing a good cavity and bad cavity laser

This thesis focuses on realizing such a superradiant laser and is structured in two main
parts. The first part presents the tools required for studying the superradiant laser. It
covers light-atom interaction and open quantum systems, compares models for simulating
ultracold atom dynamics, and estimates the achievable stability of an active optical clock.

The second part addresses the superradiant laser’s realization. It includes a feasibility
study for continuous cooling, loading, and pumping schemes for a superradiant mHz
machine operating on forbidden transitions in ultracold alkaline-earth atoms. Finally,
simulations and optimizations are discussed to refine the continuous superradiant signal,
with a model for the lasing process considering broadening, frequency shifts, and losses.
In the next section, we provide a detailed overview of all the chapters.

1.2 Overview
Chapter 2 provides a comprehensive theoretical framework for understanding the intricate
dynamics of open quantum systems. It begins with exploring classical electromagnetic
fields within a cavity, setting the stage for subsequent discussions on atomic interaction
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1. Introduction

with the classical electromagnetic field and some atomic properties. Further, we describe
the quantization of the electromagnetic field, specifically to understand atomic interactions
with single cavity modes and collective atomic emission (superradiance). The chapter
then delves into the theory of open quantum systems, introducing concepts such as
the Lindbladian form of master equation and the quantum jump approach, employing
Dyson expansion to develop tools such as Quantum Monte Carlo simulations, which
is pivotal for analyzing open quantum systems. Additionally, the application of these
theories is discussed in the context of Doppler cooling, showcasing a semi-classical Monte
Carlo approach to efficiently simulate and understand the cooling mechanisms at play.
This chapter lays a robust theoretical foundation for light-atom interaction, highlighting
foundational principles and advanced computational techniques that we further use to
study superradiant lasers.

In chapter 3, we study the master equation for cavity quantum electrodynamics to study
the evolution of a light-atom system confined by a cavity. This approach is further
extended by incorporating the Langevin equation to describe system dynamics in terms
of drift and noise terms. In order to simplify complex computationally heavy quantum
dynamics to manageable numerical forms, the chapter progresses to explore the c-number
Langevin equation. Additionally, the chapter explores the 2nd order cumulant theory and
uses two-time correlations and quantum regression theorem to calculate the linewidth.
Then, we have discussed the full quantum description for a homogeneous system with
and without adiabatic elimination of the cavity field. We highlight the applicability of
each approach and make a comparative analysis of all the discussed methods for the
simulation of a superradiant laser, offering insights into their respective advantages and
limitations in practical scenarios.

In chapter 4 we investigate which short-term stability of an active optical clock can be
achieved with optimized operational parameters depending on the number of active atoms
and homogeneous and inhomogeneous broadening.[11]. We find that for short averaging
times the stability is limited by photon shot noise from the limited emitted laser power and
at long averaging times by phase diffusion of the laser output. Operational parameters for
best long-term stability were identified. Using realistic numbers for an active clock based
on 87Sr, we find that an optimized stability of σy(τ) ≈ 4 × 10−18/

6
τ [s] is achievable. As

active optical frequency standards are not degraded by the Dick effect associated with
dead time and noises of the local oscillator, they can outperform “traditional” passive
optical frequency standards in stability or can play a role as local oscillators in future
passive optical clocks. Even though their short-term stability is slightly worse than the
quantum projection noise-limited stability of a passive optical clock with a comparable
number of clock atoms, it can still be significantly superior to that of a high-quality
cavity laser pre-stabilized to an ultra-stable cavity, which is employed in modern passive
optical clocks.

Chapter 5 discusses the innovative approach and technological developments associated
with the experimental setup of the superradiant laser machine at the University of
Amsterdam. This chapter begins by detailing the implementation of a narrow linewidth
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1.2. Overview

transition, emphasizing its significance in enhancing the precision of atomic measurements
and control. Then, we proceed with an in-depth examination of the "Architecture of the
Science Chamber," where the design and techniques employed for transporting, cooling,
and loading atoms within the system are discussed. The chapter continues with a detailed
presentation on the simulation of atom cooling processes and the loading of atoms into
a moving optical lattice, highlighting the theoretical and practical considerations for
achieving optimal conditions within the lattice. Lastly, pumping inside the moving optical
lattice is introduced, illustrating the final steps in preparing the atomic ensemble for
experiments. This section consolidates the comprehensive strategies and methodologies
employed in the mHz machine to push the boundaries of what is achievable for realizing
a superradiant signal.

Chapter 6 provides a detailed exploration of simulations related to superradiant signal
in our mHz machine, utilizing the mean field theoretic approaches to understand and
optimize the behavior of 88Sr superradiant laser under various conditions. The section
begins with a simulation of the superradiance signal, analyzing how the output power
and the effect of cavity pulling vary as a function of the optical lattice velocity. This part
of the simulation helps in understanding how the velocity of the optical lattice impacts
the coherence and intensity of the superradiance observed. The chapter addresses the
complexities of simulating lasing in the mHz machine, including factors such as collisional
relaxation and frequency shifts due to high atomic fluxes. These simulations are crucial for
predicting and mitigating potential issues in experimental setups, ensuring the stability
and efficiency of the lasing process under different conditions. The "Results of Simulation"
section consolidates the data obtained from the simulations, providing a detailed analysis
of the outcomes and their implications for the operation of the mHz machine. This
includes discussions on the optimal conditions for achieving stable lasing. Further, the
chapter discusses simulations with full dephasing, where we include the losses due to
collisions in an excited state, thus providing insights into the realistic, steady-state
superradiant regime. Finally, the chapter presents an estimate of linewidth and the
primary factors affecting it.

Finally, chapter 7 will give a conclusion of the presented material.
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CHAPTER 2
Theoretical foundations

This chapter introduces the key principles of quantum optics and open quantum systems,
as well as other essential theoretical concepts necessary for the simulation of superradiant
lasers. In section 2.1, we consider atomic interaction with classical electromagnetic field
and with quantized single-mode cavity field. Additionally, we discuss the theory of
angular moment and derive expressions for atomic polarizability. section 2.2 provides a
brief overview of the superradiance. In section 2.3 we study the theory of open quantum
systems and derive the master equation, exploring the quantum jump approach and
Dyson expansion. As an application, we calculate the force exerted on an atom by a laser,
followed by a discussion of quantum Monte Carlo simulations of Doppler cooling. We
then compare this approach with a more efficient semi-classical Monte Carlo simulation.
Finally, we derive the Heisenberg-Langevin equations.

2.1 Atom-Light Interaction

Developing a bridge between classical electrodynamics and quantum optics is crucial
for better insights. Specifically, we are interested in the interaction of atoms with light,
and depending on what kind of system we are studying, which kind of interaction we
are focused on, and which aspects of atom-field interaction we are interested in, we can
consider the electromagnetic field either as a classical or as a quantized one, as well as
some atomic degrees of freedom we treat as classical, and some as quantum ones [12].

2.1.1 Electromagnetic field in a cavity

Quantization of a field involves identifying the relevant dynamic variables, calculating the
corresponding canonical momenta, and then imposing the commutation rules between

7



2. Theoretical foundations

the two. We begin with Maxwell’s equations in Gaussian units, without sources

∇ · E(r, t) = 0
∇ · B(r, t) = 0

∇ × E(r, t) = −1
c

∂B(r, t)
∂t

∇ × B(r, t) = 1
c

∂E(r, t)
∂t

(2.1)

from the equations (2.1) in Coloumb gauge (∇ · A(r, t) = 0) magnetic and electric fields
can be written as

B(r, t) = ∇ × A(r, t)

E(r, t) = −1
c

∂A(r, t)
∂t

(2.2)

combining equations (2.2) we get the expression for vector potential

∇2A(r, t) = 1
c2

∂2A(r, t)
∂t2 (2.3)

The solution to equation (2.3) corresponding to a periodic boundary condition in a cubic
quantization volume V = L3 can be written as

A(r, t) =
9
k,λ

ek,λ

(
Ak,λei(k·r−ωkt) + A∗

k,λei(k·r−ωkt)
.

, (2.4)

where
k = 2π

L
n , n = (nx, ny, nz) , ni = 0, ±1, ±2, ±3...., (2.5)

ek,λ is a polarization vector of a mode (k, λ), λ = 1, 2 corresponds to one of 2 possible
orientations of ek,λ in the plane orthogonal to k, ωk is the frequency associated with the
kth mode given by ωk = c|k| and c is the speed of light:

The electric and magnetic fields can be expressed from (2.4) and (2.2) as

E(r, t) = i
9
k,λ

ek,λωk

(
Ak,λei(k·r−ωkt) − A∗

k,λei(k·r+ωkt)
.

,

B(r, t) = i
9
k,λ

(k × ek,λ)
(
Ak,λei(k·r−ωkt) − A∗

k,λei(k·r+ωkt)
.

,
(2.6)

The total energy of the electromagnetic field

H = 1
8π

& (
|E(r, t)|2 + |B(r, t)|2

.
dV (2.7)
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2.1. Atom-Light Interaction

using equation (2.6) we can represent this energy in terms of Ak,λ

H = V

4π

9
k,λ

ω2
k

Ak,λA∗
k,λ + A∗

k,λAk,λ

2 , (2.8)

redefining Ak,λ in terms of pk,λ and qk,λ as

Ak,λ = 1
ωk

7
2π

V
(ωkqk,λ + ipk,λ), A∗

k,λ = 1
ωk

7
2π

V
(ωkqk,λ − ipk,λ) (2.9)

we can rewrite the total Hamiltonian as a sum of Hamiltonians of harmonic oscillators with
unit masses and frequencies ωk, described by coordinates qk,λ and associated canonical
momenta pk,λ.

H = 1
2

9
k,λ

(p2
k,λ + ω2

kq2
k,λ). (2.10)

We have recognized the dynamical variable qk,λ and associated canonical momenta pk.
[13]. We can quantize the electromagnetic field by imposing the commutation relation
[q̂k,λ, p̂k′,λ′ ] = iℏδk,k′δλ,λ′ . But let us first consider atomic interaction with a classical
electromagnetic field for a better understanding of the quantum nature of atoms.

2.1.2 Interaction of light with 2-level atom
Here, we consider the interaction of atoms with a classical electromagnetic field. Let’s
start our discussion with a simple model. Consider an atom interacting with a single
monochromatic mode whose frequency ω is close to resonance with a transition between a
pair of atomic states {|e⟩ , |g⟩}. For now, we neglect all the other states. The Hamiltonian
associated with such a system can be represented as

Ĥ = ĤA + ĤAF

= ℏω0 |e⟩ ⟨e| − d̂ · E(r, t)
(2.11)

Figure 2.1: 2 level atom with energy gap ω0 and electromagnetic field frequency ω and the
difference Δω = ω − ω0

9



2. Theoretical foundations

where ĤA and ĤAF are free atomic Hamiltonian and the atomic-field interaction Hamil-
tonian, respectively, d is the atomic dipole operator, and E is the electric field given
by (2.6).

The atomic dipole operator can be written as

d̂ = ⟨g| d̂ |e⟩ (σ̂ge + σ̂eg) = d̂(+) + d̂(−), (2.12)

where operator σ̂ij = |i⟩ ⟨j| for ij ∈ {e, g}, and we used the fact that diagonal matrix
elements ⟨g| d̂ |g⟩ and ⟨e| d̂ |e⟩ are both zero due to parity of the states |g⟩ and |e⟩. From
equation (2.6) the electric field for a single mode can also be separated into two parts,
E(r, t) = E0 cos (ωt)e = E(+)e−iωt + E(−)eiωt, and after substituting this expression and
equation (2.12) into (2.11), the overall Hamiltonian can be written as

Ĥ = ℏω0σ̂ee − (d̂(+) + d̂(−)) · (E(+)e−iωt + E(−)eiωt)
= ℏω0σ̂ee − d̂(+)E(+)e−iωt − d̂(+)E(−)eiωt − d̂(−)E(+)e−iωt − d̂(−)E(−)eiωt

= ℏω0σ̂ee − ℏ(Ω∗
1e−iωt + Ω∗eiωt)σ̂ge − ℏ(Ωe−iωt + Ω1eiωt)σ̂eg

(2.13)

where Ω = ⟨g|e·d̂|e⟩E0
2ℏ is the well-known Rabi frequency and Ω1 = − ⟨g|e∗·d̂|e⟩E0

2ℏ is the
counter rotating frequency. In the interaction picture, our Hamiltonian looks like

ĤI = −ℏ(Ω∗
1e−iΔt + Ω∗ei(ω0+ω)t)σ̂ge − ℏ(Ωe−iΔt + Ω1ei(ω0+ω)t)σ̂eg (2.14)

Assuming near resonance only terms with e−iΔt will contribute this is called Rotating
wave approximation, transforming back to the Schrödinger picture we get

Ĥ = ℏω0σ̂ee − ℏ
*
Ω∗σ̂geeiωt + Ωσ̂ege−iωt0 (2.15)

For a a state |ψ⟩ = cg |g⟩ + ce |e⟩ using the Schrödinger Equation

iℏ∂t |ψ⟩ = Ĥ |ψ⟩ (2.16)

we can calculate how the probability coefficients ce and cg associated with excited and
ground state evolves in time.

∂tcg = iΩ∗ceeiωt ∂tce = −iω0ce + iΩcge−iωt (2.17)

These are the basics of how the internal state of a simple 2-level atom changes when
influenced by a classical electromagnetic field. However, in actuality, we must also account
for the quantum mechanical internal state of the atom, a task we will undertake in the
subsequent section.

2.1.3 Angular moment
Angular moment in quantum mechanics is not just an extension of its classical counterpart
but an intrinsic property of a particle characterized by discrete quantization. angular
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2.1. Atom-Light Interaction

moment follows specific commutation relations, leading to discrete eigenvalues. The
understanding of angular moment is important for description of atomic and molecular
structures, the classification of subatomic particles, and for the principles governing their
interactions and dynamics.

We start our discussion with orbital angular moment defined in units of ℏ, which has a
classical counterpart and is defined by

L̂ = ℏ−1(r̂ × p̂) (2.18)

Where r̂ and p̂ are positions and momentum operators of a particle, and they follow the
commutation relation

[r̂i, p̂j ] = iℏδij (2.19)

Using equations (2.19) and (2.18), we get the commutation relations for the Cartesian
components of the orbital angular moment operator

[L̂i, L̂j ] = i
9
ij,k

εi,j,kL̂k (2.20)

where indices i, j, k ∈ {1, 2, 3} corresponding to x, y, z, and εi,j,k is the Levi-Civita symbol.
The square of orbital angular moment L̂2 = L̂2

x + L̂2
y + L̂2

z commutes with each of its
components, partially,

[L̂2, L̂z] = 0 (2.21)

Therefore, L̂2 and L̂z have common eigenstates, assuming it to be |am⟩ such that

L̂2 |am⟩ = a |am⟩
L̂z |am⟩ = m |am⟩

(2.22)

we can define the ladder operators for angular moment

L̂± = L̂x ± iL̂y (2.23)

the commutation relation between L̂z, L̂2 and L̂± can be easily derived using the
relation 2.20

[L̂z, L̂±] = ±L̂±
[L̂2, L̂±] = 0 (2.24)

Using the above commutation relation one can calculate the eigenvlaues of L̂±

L̂zL̂± |am⟩ = (L̂±L̂z ± L̂±) |am⟩
= (L̂±m ± L̂±) |am⟩
= (m ± 1)L̂± |am⟩

(2.25)
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and
L̂2L̂± |am⟩ = L̂±L̂2 |am⟩ = aL̂± |am⟩ (2.26)

So, we can conclude that the effect of L̂± on state |am⟩ is raising or lowering the eigenvalue
of L̂z, without affecting the eigenvalue of L̂2, and we can write the associated eigenvalue
as a function of a and m

L̂± |am⟩ = c±(a, m) |a, m±⟩ (2.27)

but this suggests that given a state |am⟩, there exist all the states |a, m ± n⟩ for all non
negative integer values of n but there is a bound on n as a ≥ m2 for any value of m. for
the maximum m we have L̂+ |lmmax⟩ = 0 and using L̂−L̂+ = L̂2 − L̂2

z − L̂z, we get

L̂2 − L̂2
z − L̂z |lmmax⟩ = 0

a − m2
max − mmax = 0

a = mmax(mmax + 1)
(2.28)

similarly for mmin, we get a = mmin(mmin −1), comparing it mmax we get mmax = −mmin.
Going from |lmmin⟩ to |ammax⟩ we have total 2l steps of one. We can write a = l(l + 1)
and the eigen value associated with L̂z takes values from −l to l with integer step.

L̂2 |lm⟩ = l(l + 1) |lm⟩
L̂z |lm⟩ = m |lm⟩

(2.29)

Note that the values of l and m must be integer for orbital momentum, whereas for
internal momentum of elementary particles (spin) they may accept also half-integer
values. using equation (2.29), similar to 2 level atom. Now using equation (2.27) we can
write

⟨lm| L̂−L̂+ |lm⟩ = |c+|2
⟨lm| (L̂2 − L̂2

z − L̂z) |lm⟩ = |c+|2
(2.30)

resulting in
L̂± |l, m⟩ =

4
(l ± m + 1)(l ∓ m) |l, m ± 1⟩ (2.31)

The common eigenfunction Yl,m of L̂2 and L̂z, corresponding to quantum numbers l, m
are called spherical harmonics. In polar coordinates they have the form

Yl,m(θ, φ) = (−1)m+|m|il

5
2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimφ, (2.32)

where

P
|m|
l (cos θ) = 1

2ll! sin|m| θ
d|m|+l

(d cos θ)|m|+l
(cos2 θ − 1)l (2.33)
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2.1. Atom-Light Interaction

is the associated Legendre polynomial. Yl,m forms a complete set of basis and follows the
orthonormality relation given by& π

0

& 2π

0
Y ∗

l,m(θ, φ)Yl′,m′(θ, φ) sin θ dθ dφ = δll′δmm′ (2.34)

The orbital angular moment operator concerns the motional degree of freedom of particles
in spherically-symmetric potential, and can be understood as quantized classical angular
moment. Each of the operators defined above corresponds to its classical analog. However,
spin angular moment is a purely quantum mechanical concept without any classical
counterpart, representing an intrinsic form of angular moment possessed by particles.
The theoretical concept of spin originates from two fundamental principles of physics
depending on whether the state of the particle is symmetric or anti-symmetric and its
access to the number of space-time dimensions. This is beyond the scope of our discussion,
but for more details, please refer to [14]

The spin angular moment is designated by S. For spin 1/2 fermions, spin operator
components are defined in terms of Pauli matrices.

σ̂x =
�
0 1
1 0

�
σ̂y =

�
0 −i
i 0

�
σ̂z =

�
1 0
0 −1

�
(2.35)

as Ŝi = 1
2 σ̂i. Pauli matrices also follow the similar commutational rules as orbital angular

moment
[σ̂i, σ̂j ] = 2iℏσ̂k (2.36)

We can define a total angular moment by combining both orbital and spin angular
moment.

Ĵ = L̂ + Ŝ
[Ĵi, Ĵj ] = iℏĴk

(2.37)

where (i, j, k) = (x, y, z) and components of J follows

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z

[Ĵ2, Ĵz] = 0
(2.38)

Again we can define two ladder operators Ĵ± = Ĵx ± Ĵy which follow the commutation
relation

[Ĵ2, Ĵ±] = 0
[Ĵz, Ĵ±] = ±Ĵ±

(2.39)

similar to L̂, we can define simultaneous eigenstates for Ĵ2 and Ĵz

Ĵ2 |j, m⟩ = j(j + 1) |j, m⟩
Ĵz |j, m⟩ = m |j, m⟩

(2.40)
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from there, we can get

Ĵ± |j, m⟩ =
4

(j ± m + 1)(j ∓ m) |j, m ± 1⟩ (2.41)

The total angular moment follows the selection rules for the transitions among quantum
states due to angular moment conservation. However, as we increase the number of
particles in our system, the complexity associated with total angular moment increases
because of degeneracy and whatnot. To find the eigenstates of the sum of two angular
momenta in terms of products of the individual angular moment eigenstates, we will use
Clebsch-Gordan Coefficients. Consider a system which consist of 2 subsystems with
angular momenta j1 and j2. The total angular moment of the system can

|j, m⟩ =
9

m1,m2

C(j1, j2, j; m1, m2, m) |j1, m1⟩ |j2, m2⟩ (2.42)

The coefficient C(j1, j2, j; m1, m2, m) are called Clebsch-Gordan Coefficients, and they
follow the orthogonality condition given by9

m1,m2

C(j1, j2, j′; m1, m2, m′)C(j1, j2, j; m1, m2, m) = δjj′δmm′ (2.43)

Some properties of Clebsch-Gordan Coefficients that we will be using for further analysis

C(j1, j2, j; −m1, −m2, −m) = (−1)j1+j2−jC(j1, j2, j; m1, m2, m)

C(j1, j, j2; m1, −m, −m2) = (−1)j1−m1 2j2 + 1
2j + 1 C(j1, j2, j; m1, m2, m)

C(j1, j2, j1 + j2; m1, m2, m1 + m2) =5
(2j1)!(2j2)!(j1 + j2 + m1 + m2)!(j1 + j2 − m1 − m2)!
(2j1 + 2j2)!(j2 + m2)!(j1 − m1)!(j1 + m1)!(j2 − m2)!

C(j1, j2, j; j1, m − j1, m) =5
(2j + 1)!(2j1)!(j2 − j1 + j)!(j1 + j2 − m)!(j + m)!

(j1 + j2 − j)!(j1 − j2 + j)!(j1 + j2 + j + 1)!(j2 − j1 + m)!(j − m)!

(2.44)

For more rules and properties associated with Clebsch-Gordan Coefficients, please refer
to [12].

Another way of defining Clebsch-Gordan Coefficients is the Wigner 3j Symbols. Instead
of representing the addition of two angular momenta in terms of a third, the 3-j symbols
are the coefficients associated with three angular momenta, which add up to zero resultant.

j19
m1=−j1

j29
m2=−j2

j39
m3=−j3

|j1, m1⟩ |j2, m2⟩ |j3, m3⟩
)

j1 j2 j3
m1 m2 m3

/
= |0, 0⟩ (2.45)
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The relation between Clebsch-Gordan Coefficients and the 3j symbol looks like)
j1 j2 j3
m1 m2 m3

/
= (−1)j1−j2−m3

√
2j3 + 1 C(j1, j2, j3; m1, m2, −m3) (2.46)

For more symmetry properties, consider reference [12]. Matrix elements of irreducible
tensor operators between angular moment states can be evaluated using the Wigner-
Eckart theorem

⟨j1, m1| T̂ k
q |j2, m2⟩ = (−1)j1−m1

)
j1 j2 k
m1 m2 q

/
⟨j1| |T̂ k| |j2⟩ (2.47)

where T k
q is the irreducible tensor operator of rank k and ⟨j1| |T̂ k| |j2⟩ is called reduced

matrix element. Specifically, we are interested in the matrix elements of the irreducible
operator, which will be used to calculate polarizability.

Ck
q =

5
4π

2k + 1Yk,q(θ, φ) (2.48)

represented by

⟨l1| |Ĉk| |l2⟩ = (−1)l1
4

(2l1 + 1)(2l2 + 1)
)

l1 k l2
0 0 0

/
(2.49)

For detailed derivation, refer to [12].

2.1.4 Polarizability
In section 2.1.2, we have considered a 2-level atom interacting with a classical elec-
tromagnetic field. Now, let’s consider the interaction of an N-level with the classical
electromagnetic field. When an external electric field is applied, it perturbs the system’s
Hamiltonian, leading to shifts in the energy levels and modifications of the wave functions.
These shifts can be calculated using the perturbation theory [15]. The first and the
second order shift in the energy levels because of −d̂ · E for the i’th level looks like

Δ(1)
i = − ⟨i| d̂ · E |i⟩ = 0 (2.50)

Δ(2)
i = − E2

0
4ℏ2

9
j

+ | ⟨i| e · d̂ |j⟩ |2
ωj + ωi

+ | ⟨j| e∗ · d̂ |j⟩ |2
ωj − ωi

1
(2.51)

Δi = Δ(1)
i + Δ(2)

i = −αi
E2

0
4ℏ (2.52)

where α being polarizability

αi = 1
ℏ

9
j

+ | ⟨i| e · d̂ |j⟩ |2
ωj + ωi

+ | ⟨j| e∗ · d̂ |j⟩ |2
ωj − ωi

1
(2.53)

15



2. Theoretical foundations

Before we proceed with calculation of polarizibility it’s convenient to define cyclic co-
ordinates which we will use to represent the electric field.

e1 = −ex + iey√
2

, e0 = ez, e−1 = ex − iey√
2

(2.54)

with e0 being the propagation direction of the electromagnetic field and e1 and e−1
being representing the right circularly and left circularly polarized light. The associated
contra-varient vectors look like

e1 = −ex − iey√
2

, e0 = ez, e−1 = ex + iey√
2

(2.55)

Any unit vector in terms of these cyclic vectors will look like

e =
7

4π

3

19
µ=−1

Y ∗
1,µ(θ, φ)eµ (2.56)

To calculate the polarizability and shifts associated with different transitions, first we
need to calculate the matrix element | ⟨i| e · d̂ |k⟩. Lets assume states |i⟩ = |nLSJFm⟩.
Where ñ = n, S, J, L, n are atomic quantum numbers, S is spin angular moment, L
is orbital angular moment, J is total angular moment, I is the total momentum of
the nucleus, F is total momentum and m is the projection of total momentum along
quantization axis. Decay rate in terms of matrix elements

γfi = 4ω3

3ℏc3 |d̂fi|2

d̂fi =
9

q

eq ⟨f | d̂1
q |i⟩

(2.57)

and |i⟩ = |n′L′S′J ′F ′m′⟩. Using the Wigner-Eckart theorem, we can write

⟨f | d̂1
q |i⟩ = ⟨n′L′J ′I ′F ′m′| d̂1

q |nLJIFm⟩

= (−1)F ′+J+I−1√
2F ′ + 1C(1, F ′, F ; q, m′, m)

)
J ′ I F ′

F I J

/
⟨n′L′J ′| |d̂1| |nLJ⟩

(2.58)

Now let us express ⟨n′L′J ′I ′F ′m′| d̂1
q |nLJIFm⟩ via decay rate of ith state to all the

hyperfine sublevels of some state with given n′, J ′, L′.

γall{nf} = 4ω3

3ℏc3
9

f

|d̂fi|2 = 4ω3

3ℏc3
9

q,m,F

| ⟨n′L′J ′I ′F ′m′| d̂1
q |nLJIFm⟩ |2

= 4ω3

3ℏc3
9

q,m,F

(2F ′ + 1)C(1, F ′, F ; q, m′, m)2
)

J ′ I F ′

F I J

/2

| ⟨n′L′J ′| |d̂1| |nLJ⟩ |2

(2.59)
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2.1. Atom-Light Interaction

using the identities

9
q,m

C(1, F ′, F ; q, m′, m)2 = 2F + 1
2F ′ + 1 ,

9
F

(2F + 1)
)

J ′ I F ′

F I J

/2

= 1
2J ′ + 1 (2.60)

we get

γall{nf} = 4ω3

3ℏc3
⟨n′L′J ′| |d̂1| |nLJ⟩ |2

2J ′ + 1 (2.61)

where

⟨n′L′J ′| |d̂1| |nLJ⟩ |2 =
5

3ℏc3γall{fi}(2J + 1)
4|ωki|3 (2.62)

Now polarizability associated with E1 transition for n, L, J, I, F, m hyperfine state is
given by

αE1
i = −1

ℏ
9

k

+:
F ′,m′ | ⟨n′L′J ′I ′F ′m′| e · d̂ |nLJIFm⟩ |2

ωk + ωi

+
:

F ′,m′ | ⟨n′L′J ′I ′F ′m′| e∗ · d̂ |nLJIFm⟩ |2
ωk − ωi

1 (2.63)

αE1
i = −1

ℏ
9
µν

ϵµϵν∗ 9
k

+⟨i| d̂1
µ |k⟩ ⟨k| d̂1

ν |i⟩
ωk + ωi

+
⟨i| d̂1

ν |k⟩ ⟨k| d̂1
µ |i⟩

ωk − ωi

1
(2.64)

where states i and k are |i⟩ = |nSLJFm⟩ = |nFm⟩ and |k⟩ = |n′S′L′J ′F ′m′⟩ = |n′F ′m′⟩
with n = n, S, J, L. Now we are in a position to define polarizability tensor

Tµν =
9
m′

⟨nFm| d̂1
µ |n′F ′m′⟩ ⟨n′F ′m′| d̂1

ν |nFm⟩ (2.65)

defining TJq = :
µ,ν C(1, µ, J ; 1, ν, q)Tµν and ϵJq = :

µ,ν C(1, µ, J ; 1, ν, q)ϵµϵν∗ and using
the Clebash Gordan identity C(1, µ, J ; 1, ν, q) = (−1)−JC(1, ν, J ; 1, µ, q) we get

ϵµϵν∗Tµν =
9
J,q

(−1)qTJqϵJ,−q (2.66)

Polarizability in terms of polarizability tensor

αE1
i = −1

ℏ
9
n′F′

9
Jq

+
ϵJqTJ−q(−1)q

ωk + ωi
+ ϵJqTJ−q(−1)J−q

ωk − ωi

1
(2.67)

For electronic transition TJq ̸= 0 and q = 0 we get

αE1
i = −1

ℏ
9
n′F′

9
J

ϵJ0TJ0

+
ωk − ωi + (−1)J(ωk + ωi)

ω2
k − ω2

i

1
(2.68)
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2. Theoretical foundations

ϵ00 = − 1√
3

, ϵ10 = − i(ϵ∗ × ϵ)z√
2

, ϵ20 = −(3ϵ∗
zϵz − 1)√

6
(2.69)

Now, the polarizability can be written in terms of 3 tensor components

αE1
i = α

(0)
i + im(ϵ∗ × ϵ)z√

F
· α

(1)
i + (3ϵ∗

zϵz − 1)(3m2 − F (F + 1))6
2F (2F − 1)

α
(2)
i (2.70)

where scalar, vector, and tensor polarizabilities are given by

α
(0)
i = β0

9
n′F′

| ⟨nFm| |d̂| |n′F ′m′⟩ |2 2ωn′F ′,i

ω2
n′F ′,i − ω2

α
(1)
i = β1

9
n′F′

| ⟨nFm| |d̂| |n′F ′m′⟩ |2 ω

ω2
n′F ′,i − ω2 (−1)F +F ′

)
1 1 1
F F F ′

/

α
(2)
i = β2

9
n′F′

| ⟨nFm| |d̂1| |n′F ′m′⟩ |2 ωn′F ′,i

ω2
n′F ′,i − ω2 (−1)F +F ′

)
1 1 2
F F F ′

/ (2.71)

with

β0 = 1
3ℏ(2F + 1) , β1 =

√
6F

ℏ
6

(2F + 1)(F + 1)
, β2 = 1

ℏ

5
40F (2F − 1)

(2F + 3)(2F + 1)(F + 1)
(2.72)

when we take the sum over F ′, we get

α
(0)
i = β0

9
n′L′J ′

| ⟨nLJ | |d̂| |n′L′J ′⟩ |2 2ωn′J ′,i

ω2
n′J ′,i − ω2 G(0)(IJ ′; JF )

α
(1)
i = β1

9
n′L′J ′

| ⟨nLJ | |d̂| |n′L′J ′⟩ |2 ω

ω2
n′J ′,i − ω2 G(1)(IJ ′; JF )

α
(2)
i = β2

9
n′L′J ′

| ⟨nLJ | |d̂1| |n′L′J ′⟩ |2 ωn′J ′,i

ω2
n′J ′,i − ω2 G(2)(IJ ′; JF )

(2.73)

where

G(0)(IJ ′; JF ) = (2F + 1)
J ′+I9

F ′=|J ′−I|
(2F ′ + 1)

)
J I F
F ′ 1 J ′

/2

G(1)(IJ ′; JF ) = (2F + 1)
J ′+I9

F ′=|J ′−I|
(2F ′ + 1)

)
J I F
F ′ 1 J ′

/2

(−1)F +F ′+1
)

1 1 1
F F F ′

/

G(2)(IJ ′; JF ) = (2F + 1)
J ′+I9

F ′=|J ′−I|
(2F ′ + 1)

)
J I F
F ′ 1 J ′

/2

(−1)F +F ′
)

1 1 2
F F F ′

/
(2.74)

we will use the above expression in further chapters to calculate polarizability and shifts
associated with different electronic transitions.
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2.1. Atom-Light Interaction

2.1.5 Quantization of Electromagnetic field
To treat light-atom interaction fully quantum mechanically, we will now quantize the
electromagnetic field. We start with the canonical form of the electromagnetic field as
defined in (2.11), and we will replace classical canonical variables with an analogous
quantum mechanical operator as described in section 2.1.1.

The Hamiltonian for the quantum electromagnetic field will look like

ĤF = 1
2

9
k,λ

(p̂2
k,λ + ωk, q̂2

k,λ) (2.75)

These p̂k,λ and q̂k,λ follows commutation relation

[q̂k,λ, p̂k′,λ′ ] = iℏδkk′δλλ′ (2.76)

Key to this quantization is the concept of the harmonic oscillator. It is convenient to use
the creation and annihilation operator, also called the field operator

âk,λ = 1√
ℏωk

(ωkq̂k,λ + ip̂k,λ) (2.77)

â†
k,λ = 1√

ℏωk
(ωkq̂k,λ − ip̂k,λ) (2.78)

The field operator follows the commutation relation

[âk,λ, â†
k,λ] = δkk′δλλ′ (2.79)

Using the commutation relation, we can write the Hamiltonian in Eq.2.20 as

ĤF =
9
k,λ

ℏωk
*
â†

k,λâk,λ + 1
2

0
(2.80)

Figure 2.2: Energy description of a Harmonic oscillator.
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2. Theoretical foundations

The most convenient way to define the quantum mechanical state of an electromagnetic
field is by using the eigenstate of ĤF , also called the Fock state.

â†
k,λâk,λ |nk,λ⟩ = nk,λ |nk, λ⟩ (2.81)

and

âk,λ |nk, λ⟩ = √
nk |nk,λ − 1⟩

â†
k,λ |nk⟩ =

4
nk,λ + 1 |nk,λ + 1⟩ (2.82)

where nk,λ represents the energy level or number of photons in k, λ mode. These states
form the basis for describing electromagnetic interactions in terms of quantum processes,
such as the emission or absorption of photons by atoms. In the subsequent section, we
will study the complete quantum mechanical description of light atom interaction.

2.1.6 2-level interaction with single cavity mode
The quantum mechanical Hamiltonian for 2-level single atom and single mode is given by

Ĥ0 = ĤA + ĤF = ℏω0 |e⟩ ⟨e| + ℏω

+
â†â + 1

2

1
(2.83)

Figure 2.3: Schematic diagram of an atom-light interaction confined by a cavity.

Here we are talking about single mode so we have replaced âk,λ → â. The atom-field
interaction Hamiltonian looks like

ĤAF = −d̂ · Ê (2.84)

and atomic dipole operator, as mentioned in section 2.1.2 is

d̂ = dge(σ̂ge + σ̂eg) (2.85)

Now because we are treating electromagnetic field quantum mechanically, we define an
electric field operator analogues to its classical counterpart (2.6) but only for a standing
wave single mode oriented in z direction.

Ê(z, t) =
5

2πℏω

V
[f(z)âe−iωt + f∗(z)â†eiωt] (2.86)
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2.1. Atom-Light Interaction

where f(z) = cos (k · z) e Combing equation (2.84), (2.85) and (2.86) we get

ĤAF = −
5

2πℏω

V
(σ̂ge + σ̂eg)dge · [f(z)â(t) + f∗(z)â†(t)] (2.87)

Now, we can define the atom field coupling strength as

ℏg(z) = −
5

2πℏω

V
dge · f(z) (2.88)

In terms of g(z) the interaction hamiltonian (2.87) looks like

ĤAF = ℏ(σ̂ge + σ̂eg)[g(z)â + g∗(z)â†] (2.89)

if the mode is uniform over an optical cavity of volume V

g0 = −e · dge

7
2πω

ℏV
(2.90)

The spatial dependence can be included as g(z) = g0f(z)

Combing equation (2.83), (2.89) , and using Rotating wave aproximation we get the
Jaynes-Cummings Hamiltonian

ĤJ = ĤA + ĤAF + ĤAF = ℏω0σ̂ee + ℏωâ†â + ℏg(z)(σ̂egâ + σ̂geâ†) (2.91)

Using the Jaynes-Cummings Hamiltonian, we can study how light atom interaction
evolves completely quantum mechanically in a confined cavity, without including cavity
decay and atomic spontaneous emission

2.1.7 Rabi flopping
The combined wave function associated with Jaynes-Cummings Hamiltonian looks like

|ψ(t)⟩ = ce,n(t) |e⟩ |n⟩ + cg,n+1(t) |g⟩ |n + 1⟩ (2.92)

In the interaction picture, the Jaynes-Cummings Hamiltonian looks like

ĤI = eiĤ0t/ℏĤAF e−iĤ0t/ℏ

= ℏg(σ̂egâeiΔt + σ̂geâ†e−iΔt)
(2.93)

where Δ = ωa − ωc Using the Schrödinger equation and the Interaction Hamiltonian, we
get the equation of motion associated with probability coefficients of excited and ground
state

i
d

dt
ce,n(t) = g

√
n + 1cg,n+1(t)

i
d

dt
cg,n+1(t) = g

√
n + 1ce,n(t)

(2.94)
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2. Theoretical foundations

Similar to semiclassical treatment these equations can be solved assuming cg,n+1(0) = 0

ce,n(t) =
+

ce,n(0)
+

cos Ωt

2 − iΔ
Ω sin Ωt

2

1
− 2ig

√
n + 1

Ω cg,n+1(0) sin Ωt

2

1
eiΔt/2

cg,n+1(t) =
+

cg,n+1(0)
+

cos Ωt

2 + iΔ
Ω sin Ωt

2

1
− 2ig

√
n + 1

Ω ce,n(0) sin Ωt

2

1
e−iΔt/2

(2.95)

where the Rabi frequency is Ω2 = Δ2 + 4g2(n + 1) = Δ2 + Ω2
0, assuming cg,n+1(0) = 0 we

get

ce,n(t) = ce,n(0)
+

cos Ωt

2 − iΔ
Ω sin Ωt

2

1
eiΔt/2

cg,n+1(t) = −2ig
√

n + 1
Ω ce,n(0) sin Ωt

2 e−iΔt/2
(2.96)

Figure 2.4: Rabi flopping for different detuning.

Now lets consider an atom in excited state and fields as a linear combination of number
states.

|ψ(0)⟩ =
∞9

n=0
cn(0) |e, n⟩ (2.97)

Using the Schrödinger equation and the Interaction Hamiltonian (2.93), for Δ = 0 we get

ce,n(t) = cn(0) cos (gt
√

n + 1)
cg,n+1(t) = −icn(0) sin (gt

√
n + 1)

(2.98)
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2.2. Spontaneous vs superradiance emmision

which means in absence of any field the atoms will go back and forth in upper and lower
state.

2.2 Spontaneous vs superradiance emmision
Instead of single mode if we include all the modesn then the interaction hamiltonian will
change to

ĤI = ℏ
9

k
(gk(r0)∗σ̂egâkei(ω−ωk)t + gk(r0)σ̂geâ†

ke−i(ω−ωk)t) (2.99)

Where gk(r0) = gke(−ik·r0). Here to make notation shorter we are using k instead of k, λ
If we assume no field initially and atom in excited state, the state vector at time t will
look like

|ψ(t)⟩ = ce,0(t) |e, 0⟩ +
9

k
cg,k(t) |g, 1k⟩ (2.100)

with ce,0(0) = 1 cg,k(0) = 0 Using the Schrödinger equation and the Interaction Hamilto-
nian (2.99) we get

ċe,0(t) = −
9

k
|gk(r0)|2

& t

0
dt′ei(ω−ωk)(t−t′)ce,0(t′) (2.101)

Assuming that the modes of the field are closely spaced in frequency, we can replace the
summation over k by an integeral and substituting the value of gk(r0) from equation
2.90, we get

ċe,0(t) = − 4|dge|2
(2π)6ℏc3

& ∞

0
dωkω3

k

& t

0
dt′ei(ω−ωk)(t−t′)ce,0(t′) (2.102)

The time derivative will only contribute significantly near ωk = ω so we can replace ω3
k

by ω3 and using the property of delta function, we can replace& ∞

−∞
dωkei(ω−ωk)(t−t′) = 2πδ(t − t′) (2.103)

resulting in
ċe,0(t) = −γ

2 ce,0(t) (2.104)

where the decay coefficient γ = 4ω3|dge|2
3ℏc3 i.e. an atom in excited state will decay

exponentially in time as |ce,0(t)|2 = e(−γt). This is called spontaneous emission.

Consider a dilute gas of atoms initially prepared in the upper state of an electronic tran-
sition in presence of a magnetic field. The atoms will spontaneously emit independently
via a magnetic dipole transition, and their excited states will decay through spontaneous
emission. However, when the distance between the atoms’ is much smaller than the
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2. Theoretical foundations

radiation wavelength and much larger than the de Broglie wavelength, they begin to
behave collectively. This results in a much faster and more intense emission of radiation.
This collective behavior is known as superradiance. [16].

Figure 2.5: (a) Spontaneous emission with exponantially decaying intensity with decay rate (γ)
while (b) Superradiant emission occurring as a brief burst of radiation (≈ γ

N ).

To understand it better, let’s assume we start with an ensemble with all atoms in
the excited states. We assume the atoms are indiscernible for the photon emission or
absorption process in the subsequent evolution. Therefore, the system must remain in a
Hilbert subspace invariant to atomic permutations.

First, we introduce a collective operator in terms of ladder operators as defined in
section 2.1.3.

Ĵ± =
N9

j=1
ŝ±

j (2.105)

Figure 2.6: Superradiant ladder and state symmetry. S denotes symmetrization over atoms.
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2.3. Theory of open quantum systems

Under the condition of Dicke superradiance, N atoms behave as a collective dipole,
resulting from the sum of all N individual dipoles.

D̂ =
N9

j=1
D̂j = (Ĵ+ + Ĵ−)Dϵ̂ (2.106)

Rate of emission of photon is proportional to ⟨ŝ+ŝ−⟩, similarly for collective emission
⟨Ĵ+Ĵ−⟩ For the Dicke state |J, m⟩ we get (J + m)(J − m + 1) by applying Ĵ− on the
state |J = N/2, m = N/2⟩, we can see that the emission rate is maximum at m=0; that’s
why we see a peak in the plot.

⟨Ĵ+Ĵ−⟩ =
� N9

j=1
ŝ+

j

N9
i=1

ŝ−
i

�
= N⟨ŝ+

i ŝ−
i ⟩ + N(N − 1)⟨ŝ+

j ŝ−
i ⟩ (2.107)

The term ⟨ŝ+
j ŝ−

i ⟩ represents the atomic corelation. For the superradiance to manifest,
the atom-atom correlation should be nonzero.

⟨J, m| ŝ+
j ŝ−

i |J, m⟩ = J2 − m2

N(N − 1) (2.108)

Therefore, the atomic correlation increases from 0 to a maximum of 1/4 when m goes
from N/2 to 0 and decreases to 0 when the value of m goes to N/2.

Now, to study continuous superradiance, we need to study some of the fundamentals of
the theory of an open quantum system.

2.3 Theory of open quantum systems

Figure 2.7: Schematic picture of an open quantum system.

In the study of nature, it can be said that there are two types of randomness, one because
of lack of information and another that is intrinsic in nature. Wave function formalism
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2. Theoretical foundations

can only cater to the second one, also known as pure state; to include both, we need the
density operator formalism that incorporates both mixed and pure states. Let us consider
some combined “total” system, consisting of a quantum system S and a reservoir, or
bath B, see Figure 2.7. We assume that the combined system is closed, and is governed
by the Schrödinger equation. However, for the sake of generality, we suppose there is
a lack of complete information on the state of the combined system. Instead, the total
system can be found in one of the quantum pure states |ψα⟩ with probabilities Pα (in
other words, we can say that we consider a statistical ensemble of pure states of the total
system). Let us introduce the density operator ρ̂SB of such a combined system as

ρ̂SB(t) =
9

α

Pα |ψα(t)⟩ ⟨ψα(t)| (2.109)

Consider first some operator ÂSB corresponding to the total system. The expectation
value of such an operator is given by

⟨ÂSB⟩ =
9

α

Pα ⟨ψα(t)| ÂSB |ψα(t)⟩

= Tr [
9

α

Pα |ψα(t)⟩ ⟨ψα(t)| ÂSB] = Tr [ρ̂SB(t)ÂSB]
(2.110)

Now consider some operator ÂS associated only with the system S, but not with the
bath. Then we can introduce complete sets of eigenstates {|s⟩} and {|b⟩} of the system
and the bath, and write

⟨ÂS⟩ = TrS,B

ρ̂SB

9
s,b,s′,b′

|b⟩ |s⟩ ⟨s| ⟨b| ÂS |b′⟩ |s′⟩ ⟨b′| ⟨s′|


= TrS,B

ρ̂SB

9
b,b′

|b⟩ ⟨b| |b′⟩
 	� �
δbb′

⟨b′|
9
s,s′

|s⟩ ⟨s| ÂS |s′⟩ ⟨s′|

 	� �

ÂS

 = TrS

�9
b

⟨b| ρ̂SB |b⟩ ÂS

�

(2.111)

It is convenient to introduce density operator ρ̂S , representing the state of the system, as

ρ̂S(t) =
9

b

⟨b| ρ̂SB(t) |b⟩ = TrB[ρ̂SB(t)] (2.112)

2.3.1 Master equation
Now we derive the quantum master equation governing ρ̂S . This equation is fundamental
in the study of open quantum systems, i.e., the system interacting with an external
environment. This interaction leads to phenomena such as decoherence and dissipation,
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2.3. Theory of open quantum systems

which are crucial for the dynamics of open quantum systems. The most commonly used
form of the quantum master equation is the Lindblad form, which is an extension of the
Schrödinger equation, including dissipation. The derivation that we present here follows
primarily the logic of the book [17], although we altered some notations for the sake
of consistency within the thesis. We start from the Schrödinger equation for the total
density operator

d

dt
ρ̂0

SB(t) = 1
iℏ

[Ĥ0, ρ̂0
SB(t)], (2.113)

where the index “0” indicates the Schrödinger picture. The Hamiltonian Ĥ0 can be
represented as

Ĥ0 = ĤS + ĤB + Ĥ0
SB, (2.114)

Here ĤS is the Hamiltonian of the system, ĤB is the Hamiltonian of the bath, and Ĥ0
SB

describes the interaction between the system and the bath. Hamiltonian and the density
operator in the interaction picture are

Ĥ(t) = e
i
ℏ (ĤS+ĤB)tĤ0

SBe− i
ℏ (ĤS+ĤB)t, (2.115)

ρ̂(t) = e
i
ℏ (ĤS+ĤB)tρ̂0

SB(t)e− i
ℏ (ĤS+ĤB)t. (2.116)

The Liouville-von Neumann equation in the interaction picture looks like

d

dt
ρ̂(t) = 1

iℏ
[Ĥ(t), ρ̂(t)]. (2.117)

Substituting its formal solution ρ(t) = ρ(0) − i
ℏ

' t
0 [Ĥ(t′), ρ̂(t′)]dt′ again into (2.117), we

obtain
dρ̂(t)

dt
= − i

ℏ
[Ĥ(t), ρ̂(0)] − 1

ℏ2

& t

0

�
Ĥ(t), [Ĥ(t′, ρ̂(t′))]

�
dt′. (2.118)

Let us represent the system-bath interaction in the form

Ĥ0
SB =

9
α

Ĉ0
αB̂0

α, (2.119)

where Ĉ0
α and B̂0

α are Hermitian operators of the system and the bath, respectively.
Operator Ĉ0

α can be represented as

Ĉ0
α =

9
n,m

|n⟩ C0
α,nm ⟨m| , (2.120)

where |n⟩, |m⟩ are the eigenstates of ĤS

ĤS |m⟩ = ES
m |m⟩ , ĤS |n⟩ = ES

n |n⟩ . (2.121)
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Then we can group elements with the same transition frequencies in expression (2.120) as

Ĉα(ω) =
9

n,m|ES
m−ES

n =ℏω

|n⟩ C0
α,nm ⟨m| . (2.122)

Note that
Ĉ0

α =
9
ω

Ĉα(ω), and Ĉ†
α(ω) = Ĉα(−ω). (2.123)

Now we substitute (2.122) and (2.119) into (2.115) to get

Ĥ(t) =
9
α,ω

e
i
ℏ (ĤS+ĤB)tĈα(ω)B̂0

αe− i
ℏ (ĤS+ĤB)t =

9
α,ω

e−iωtĈα(ω)B̂α(t), (2.124)

where we have introduced
B̂α(t) = e

i
ℏ ĤBtB̂0

αe− i
ℏ ĤBt. (2.125)

Note that B̂†
α(t) = B̂α(t).

Now we should substitute (2.124) into (2.118), and take a trace over bath variables.
Let us make some reasonable approximations, which significantly simplify the further
analysis. The first one, the Born approximation, consists in the supposition that the
coupling between the bath and the system is weak, and the bath has a huge amount of
degrees of freedom, therefore, the influence of the system on any degree of freedom of the
bath is negligibly small, and we can approximately separate the system and bath degrees
of freedom as

ρ(t′) ≈ ρS(t′) ⊗ ρB, (2.126)

where we assumed that the bath is in the thermal equilibrium, and its density matrix
ρB does not depend on time. Second, we introduce the Markov approximation, which
suggests that any temporal correlations of the bath decays much faster than the system
evolves changes its internal state. It allows replacing ρ(t′) by ρS(t) ⊗ ρB in equation
(2.118) and shift the lower limit of the integrals in the second term of this equation from
0 to −∞. Also, we assume that

TrB[Ĥ(t), ρ̂(0)] = 0, (2.127)

which is valid, for example, if the bath is thermal, and the operators B̂α do not have
any non-zero diagonal matrix elements in the basis of eigenstates of the operator ĤB.
Finally, we use the secular, or the rotating wave approximation, where we suppose that
the different frequencies ω, ω′ in (2.122) are “well separated” in the sense that the typical
time scale of evolution of the system S is much longer than 1/|ω − ω′|.
Substituting (2.124) into (2.118), taking trace over bath variables, using the Born-Markov
approximation, the assumption (2.127) and the fact that B̂α(t) as well as Ĥ(t) are
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Hermitian, we can write

dρ̂S(t)
dt

= − 1
ℏ2

t&
−∞

9
α,α′

9
ω,ω′

ei(ωt−ω′t′)TrB

�
Ĉ†

α(ω)B̂α(t), [Ĉα′(ω′)B̂α′(t′), ρ̂S(t) ⊗ ρ̂B]
�

dt

= − 1
ℏ2

9
α,α′

9
ω,ω′

ei(ω−ω′)t
t&

−∞
eiω′(t−t′)

×
��

Ĉ†
α(ω)Ĉα′(ω′)ρ̂S(t) − Ĉα′(ω′)ρ̂S(t)Ĉ†

α(ω)
�

⟨B̂α(t)B̂α′(t′)⟩
+

�
ρ̂S(t)Ĉα′(ω′)Ĉ†

α(ω) − Ĉ†
α(ω)ρ̂S(t)Ĉα′(ω′)

�
⟨B̂α′(t′)B̂α(t)⟩

�
dt.

(2.128)

Let us introduce the one-sided Fourier transform Γαα′(ω) of the reservoir correlation
function ⟨B̂α(t)B̂α′(t′)⟩ as

Γαα′(ω′) =
t&

−∞
eiω′(t−t′)⟨B̂α(t)B̂α′(t′)⟩dt′ =

∞&
0

eiω′s⟨B̂α(t)B̂α′(t − s)⟩ds, (2.129)

which does not depend on t for stationary state of the reservoir. Also,
t&

−∞
eiω′(t−t′)⟨B̂α′(t′)B̂α(t)⟩dt′ = Γ∗

αα′(−ω′). (2.130)

Now we substitute (2.129) and (2.130) into (2.128), use the rotating wave approximation
(i.e., neglect all the fast oscillating terms proportional to ei(ω′−ω)t for ω ̸= ω′). Also, in
the last square brackets in (2.128) we replace ω by −ω, switch α and α′ , and use the
property Ĉ†

α(ω) = Ĉα(−ω). It gives
dρ̂S(t)

dt
= 1
ℏ2

9
α,α′,ω

��
Ĉα′(ω)ρ̂S(t)Ĉ†

α(ω) − Ĉ†
α(ω)Ĉα′(ω)ρ̂S(t)

�
Γαα′(ω)

+
�
Ĉα′(ω)ρ̂S(t)Ĉ†

α(ω) − ρ̂S(t)Ĉ†
α(ω)Ĉα′(ω)

�
Γ∗

α′α(ω)
�

.

(2.131)

For further simplification we introduce matrices

γαα′(ω) = Γαα′(ω) + Γ∗
α′α(ω). (2.132)

Sαα′(ω) = 1
2i

(Γαα′(ω) − Γ∗
α′α(ω)) . (2.133)

which allows us to separate the Hamiltonian contribution (often called Lamb shift) and
the dissipative term, and rewrite the master equation as

dρ̂S(t)
dt

= − i

ℏ

�
ĤLS , ρ̂S(t)

�
+ 1

ℏ2
9

α,α′,ω

γα,α′(ω)
2

�
2Ĉα′(ω)ρ̂S(t)Ĉ†

α(ω)

− Ĉ†
α(ω)Ĉα′(ω)ρ̂S(t) − ρ̂S(t)Ĉ†

α(ω)Ĉα′(ω)
�

,

(2.134)
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where
ĤLS = 1

ℏ
9

α,α′,ω
Sα,α′(ω)Ĉ†

α(ω)Ĉα′(ω). (2.135)

Finally, from (2.132) follows that γαα′(ω) = γ∗
α′α(ω), i.e., γαα′(ω) can be considered as a

Hermitian matrix with respect to indices α, α′, and can be diagonalized. Then we can
write the master equation in Lindblad form as

dρ̂S(t)
dt

= − i

ℏ

�
ĤLS , ρ̂S(t)

�
+

9
k

γk
ˆ̂
D′[Ĵk]ρ̂S(t), where (2.136)

ˆ̂
D′[Ĵ ]ρ̂ = Ĵ ρ̂Ĵ† − 1

2(Ĵ†Ĵ ρ̂ + ρ̂Ĵ†Ĵ). (2.137)

Here the coefficients γk are often chosen to have a dimension of frequency and are called
rates, Ĵk are called jump operators, and the superoperator ˆ̂

D′[Ĵ ]ρ̂ is called Lindbladian
superoperator.

2.3.2 Monte-Carlo wave function method
In the previous section, we derived the master equation governing the evolution of a
density matrix describing a statistical ensemble of open quantum systems. If such a
quantum system has N quantum states, the density matrix has N2 complex matrix
elements. Even for a moderate-size system, a direct numerical solution of the master
equation may be hindered or even impossible due to the large amount of memory required
to store the matrices. One efficient method to reduce the amount of required memory
would be to use a wave function instead of the density matrix: such a function can be
stored as a vector with only N complex elements. For closed systems, the wave function
follows the Schrödinger equation, which has no direct equivalent for an open quantum
system because, even being initially prepared in a pure quantum state, such a system
becomes mixed due to interaction with the bath and can not be correctly described
by wave functions. However, statistical ensemble of individual open quantum systems
can be approximated by ensemble of individual quantum trajectories calculated with
the so-called quantum jump approach, or the Monte-Carlo wave function method [18,
19], where the deterministic evolution of the wave function governed by Schrödinger-like
equation is interrupted in randomly chosen instants, when the state of the system expects
quantum jumps, i.e., instant change of internal state. Averaging over many of such
individual stories, also called quantum trajectores, gives a more or less complete picture
of the evolution of the statistical ensemble of quantum states.

2.3.2.1 Dyson Expansion

We start our consideration from the master equation in Lindblad form (2.136), where we
also suppose the presence of some extra Hamiltonian part Ĥ, which is not necessarily
associated only with the interaction between the system and the bath but describes some
extra interaction of the system. For the sake of brevity, we consider here the situation
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2.3. Theory of open quantum systems

when we have only a single dissipation channel with rate γ and the jump operator Ĵ ;
the generalization for the multi-channel dissipation process is straightforward. Also, we
introduce new jump operator Â = √

γĴ incorporating the rate, and omit index S of ρ̂.
Then the master equation can be written as

d

dt
ρ̂(t) = 1

iℏ
[Ĥ, ρ̂(t)] + Âρ̂(t)Â† − 1

2
*
Â†Âρ(t) + ρ̂(t)Â†Â

0
= 1

iℏ

�
Ĥeff ρ̂(t) − ρ̂(t)Ĥ†

eff

�
+ Âρ̂(t)Â†,

(2.138)

where we introduced the effective non-Hermitian Hamiltonian Ĥeff = Ĥ − iℏ
2 Â†Â. We

can rewrite this equation as

d

dt
ρ̂(t) = ˆ̂Lρ̂(t) = ˆ̂L0ρ̂(t) + ˆ̂LJ ρ̂(t) (2.139)

with

ˆ̂L0ρ̂(t) = 1
iℏ

�
Ĥeff ρ̂(t) − ρ̂(t)Ĥ†

eff

�
,

ˆ̂LJ ρ̂(t) = Âρ̂(t)Â†.
(2.140)

Let us introduce
˜̂ρ(t) = e

i
ℏ Ĥefftρ̂(t)e− i

ℏ Ĥ†
efft = e− ˆ̂L0tρ̂(t), (2.141)

which follows the equation

d

dt
˜̂ρ(t) = e− ˆ̂L0t ˆ̂LJe

ˆ̂L0t ˜̂ρ(t). (2.142)

by integrating this equation, we get the solution in the form of an integral equation

˜̂ρ(t) = ˜̂ρ(0) +
& t

0
dt1e− ˆ̂L0t1 ˆ̂LJe

ˆ̂L0t1 ˜̂ρ(t1). (2.143)

Now we can substitute ˜̂ρ(t1) given by (2.143) in the integral of (2.143), and repeat this
process infinitely. Then we obtain the Dyson expansion of the solution in the form

˜̂ρ(t) = ˜̂ρ(0) +
& t

0
dt1e− ˆ̂L0t1 ˆ̂LJe

ˆ̂L0t1 ˜̂ρ(0) +
& t

0
dt2

& t2

0
dt1e− ˆ̂L0t2 ˆ̂LJe

ˆ̂L0(t2−t1) ˆ̂LJe
ˆ̂L0t1 ˜̂ρ(0)

+
& t

0
dt3

& t3

0
dt2

& t2

0
dt1e− ˆ̂L0t3 ˆ̂LJe

ˆ̂L0(t3−t2) ˆ̂LJe
ˆ̂L0(t2−t1) ˆ̂LJe

ˆ̂L0t1 ˜̂ρ(0) + ...

= ˜̂ρ(0) +
∞9

n=1

& t

0
dtn

& tn

0
dtn−1.....

& t3

0
dt2

& t2

0
dt1

× e− ˆ̂L0tn ˆ̂LJe
ˆ̂L0(tn−tn−1) ˆ̂LJ .....

ˆ̂LJe
ˆ̂L0(t2−t1) ˆ̂LJe

ˆ̂L0t1 ˜̂ρ(0).
(2.144)
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Using ˜̂ρ(t) = e
ˆ̂L0tρ̂(t), we get

ρ̂(t) = e
ˆ̂L0tρ̂(0) +

∞9
n=1

& t

0
dtn

& tn

0
dtn−1.....

& t3

0
dt2

& t2

0
dt1

× e
ˆ̂L0(t−tn) ˆ̂LJe

ˆ̂L0(tn−tn−1) ˆ̂LJ .....e
ˆ̂L0(t2−t1) ˆ̂LJe

ˆ̂L0t1 ρ̂(0)

(2.145)

This solution can be represented as a sum of terms which can be interpreted as individual
quantum trajectories. Any of these trajectories consists on (n + 1) intervals (0, t1),
(t1, t2),...,(tn−1, tn), (tn, t). Within each of such intervals, the system follows the von
Neumann equation with a non-Hermitian Hamiltonian Ĥeff , and between these intervals,
the system expects quantum jumps described by the superoperator ˆ̂LJ . The evolution
of the density matrix describing the whole statistical ensembles can be represented as a
sum of integrals over possible instants t1, ...tn of quantum jumps, which sum is taken
over the number n of such individual quantum jumps.

If the initial state ρ̂(0) is a pure quantum state, i.e., ρ̂(0) = |ψ(0)⟩ ⟨ψ(0)|, we can rewrite
the Dyson expansion (2.145) as

ρ̂(t) =
∞9

n=0

& t

0
dtn

& tn

0
dtn−1...

& t3

0
dt2

& t2

0
dt1 |ψ(t|t1, t2, ..., tn)⟩ ⟨ψ(t|t1, t2, ..., tn)| ,

(2.146)
where

|ψ(t|t1, t2, ..., tn)⟩ =e− i
ℏ Ĥeff(t−tn)Âe− i

ℏ Ĥeff(tn−tn−1)Â...

...e− i
ℏ Ĥeff(t2−t1)Âe− i

ℏ Ĥefft1 |ψ(0)⟩ .
(2.147)

Note that the evolution of the wave function along a single quantum trajectory is not
unitary because the effective Hamiltonian Ĥeff is not Hermitian, and the jump operator
Â also does not preserve the norm.

Finally, let us generalise the expressions (2.146) and (2.147) on the case of multiple jump
operators Â1, ..., ÂN . Then the master equation, instead of (2.139), can be represented as

d

dt
ρ̂(t) = ˆ̂L0ρ̂(t) +

N9
j=1

ˆ̂Lj ρ̂(t), where (2.148)

ˆ̂L0ρ̂(t) = 1
iℏ

�
Ĥeff ρ̂(t) − ρ̂(t)Ĥ†

eff

�
, (2.149)

ˆ̂Lj ρ̂(t) = Âj ρ̂(t)Â†
j , (2.150)

Ĥeff = Ĥ − iℏ
2

9
j

Â†
jÂj . (2.151)

Then the Dyson expansion (2.146) will look like
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ρ̂(t) =
∞9

n=0

N9
j1=1

...
N9

jn=1

& t

0
dtn

& tn

0
dtn−1...

...

& t3

0
dt2

& t2

0
dt1 |ψ(t|t1, ..., tn; j1, ..., jn)⟩ ⟨ψ(t|t1, ..., tn; j1, ..., jn)| , (2.152)

and the individual wave functions look like

|ψ(t|t1, ..., tn; j1, ..., jn)⟩ =e− i
ℏ Ĥeff(t−tn)Âjne− i

ℏ Ĥeff(tn−tn−1)Âjn−1 ...

...e− i
ℏ Ĥeff(t2−t1)Âj1e− i

ℏ Ĥefft1 |ψ(0)⟩ .
(2.153)

2.3.2.2 Quantum jump algorithm

The Monte-Carlo wave function (MCWF) method consists of the simulation of the
evolution of the system along individual quantum trajectories and subsequent averaging
of the final result over these trajectories. Let at time ti the system is in a state with
normalized wave function |ψ(ti)⟩. The standard procedure consists of the following steps
[19]:

1. We define a time step δt, much smaller than the typical relaxation time within
the system. Such a time step can be either fixed for the whole simulation or be
redefined for any steps if we want to avoid computational artifacts associated with
periodicity (for example, when we are interested in spectral characteristics). Also
we denote ti+1 = ti + δt

2. calculate the wave function |ψ′⟩ (ti+1) = e− i
ℏ Ĥeffδt |ψ(ti)⟩. This wave function is

not normalized, because Ĥeff is not Hermitian, and if δt is small enough, p0 =
⟨ψ′(ti+1)|ψ′(ti+1)⟩ ≈ 1−δt ⟨ψ(ti)| :

j Â†
jÂj |ψ(ti)⟩. This squared norm is interpreted

as a probability of not performing a quantum jump on this step.

3. generate a random number r, uniformly distributed between 0 and 1, and compare
it with p0.

4. If r < p0, there is no quantum jump on this step, and the wave function must be
renormalized according to |ψ(ti+1)⟩ = |ψ′(ti+1⟩ /

√
p0

5. If r > p0, we perform a quantum jump according to the following routine:

• calculate conditional probabilities pj of quantum jumps as
pj = δt ⟨ψ(ti)| Â†

jÂj |ψ(ti)⟩ /(1 − p0)
• generate a random number r uniformly distributed between 0 and 1, and select

the specific jump operator Âj such that :j−1
k=1 pk < r <

:j
k=1 pk

• perform a jump: set |ψ(ti+1)⟩ = Âj |ψ(ti)⟩4
⟨ψ(ti)|Â†

jÂj |ψ(ti)⟩
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6. Put i ← i + 1 and repeat

This method allows some modifications. For example, instead of generating random
number r and renormalizing the wave function |ψ⟩ on each step, one may generate r
once just after the jump, then let |ψ(t)⟩ evolve under the action of the non-Hermitian
Hamiltonian Ĥeff while ⟨ψ(t)|ψ(t)⟩ > r, and when the squared norm becomes equal to
r, select a jump operator Âj with probability proportional to ⟨ψ(t)| Â†Â |ψ(t)⟩, perform
the jump and renormalize the wave function.

2.3.3 Forces on Atom

As an example, we derive a radiative force acting on a 2-level atom in the field of two
counter-propagating lasers. In this analysis, we will treat the atom’s internal state
quantum mechanically while assuming kinematics changes to be slow relative to the
change of the atoms’ internal state.

Figure 2.8: Schematics of Doppler Cooling.

We first derive the force by a single laser. The dynamics of its internal state in the
electric field of the laser E(r) = E0

2 (ei(k·r−ωLt) + e−i(k·r−ωLt)) = E0 cos (ωLt + φL)r/|r|
for a fixed position of the atom is governed by the master equation:

d

dt
ρ̂ = 1

iℏ
[Ĥ, ρ̂] + γs

2
ˆ̂L[ρ̂], (2.154)

where the Hamiltonian and the Lindbladian term are given by

Ĥ = Ĥat + Ĥint = p̂2

2m
− ℏδσ̂ee + ℏ

2(Ω∗σ̂ge + Ωσ̂eg),
ˆ̂L[σ̂ge]ρ̂ = (2σ̂geρ̂σ̂eg − σ̂eeρ̂ − ρ̂σ̂ee).

(2.155)
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Where the Ĥint = ℏ
2(Ω∗σ̂ge + Ωσ̂eg). The complete set of equations associated with the

internal state of the atom are
dρgg

dt
= i

2(Ωρge − Ω∗ρeg) + γsρee

dρee

dt
= − i

2(Ωρge − Ω∗ρeg) − γsρee

dρge

dt
= i

2Ω∗(ρgg − ρee) −
+

γs

2 + iδ

1
ρge

dρeg

dt
= i

2Ω(ρee − ρgg) −
+

γs

2 − iδ

1
ρeg

(2.156)

With ρij representing the matrix elements |i⟩ ⟨j| for i, j belongs to e, g. These are called
the optical Bloch equations where Ω = −eE0

ℏ eiφL ∝ e−k·r is the Rabi Frequency, and γs

denotes the decay rate constant derived in 2.2

γs = 4ω3|dge|2
3ℏc3 (2.157)

We define the population difference as w = ρgg − ρee and for steady state i.e. dw
dt = 0 we

get
w = 1

1 + s
, ρeg = iΩ

2(γs/2 − iδ)(1 + s) , ρee = s

1 + s
(2.158)

with the saturation parameter s and on-resonance saturation parameter s0 given by

s = s0
1 + (2δ/γs)2 , s0 = 2|Ω|2

γ2
s

= I

Is
, Is = πℏγsc

3λ3 , (2.159)

where Is is the saturation intensity. The photon scattering rate is then calculated as:

Γp = γsρee = γs

2

+
s

1 + s

1+ 1
1 + (2δ/γ′

s)2

1
(2.160)

where γ′
s = γs

√
1 + s0 represents the power broadened linewidth.

To calculate the force on a stationary atom via a single laser beam we use the Ehrenfest
theorem for the momentum operator. The kinematic part of the Hamiltonian commutes
with the p̂. We assume that the expected contribution of spontaneous emission is zero
because of the same likelihood in all the direction

F = d

dt
⟨p̂⟩ = −⟨∇Ĥint⟩ (2.161)

In rotating frame with rotating wave approximation, defining operator Ω̂ = Ω |e⟩ ⟨g| +
Ω∗ |g⟩ ⟨e|, we end up with the force expression

F = ⟨∇Ω̂⟩ = ℏ
2Tr{ρ̂(∇Ω̂)}

= ℏs

1 + s

+
− δ

∇|Ω|
|Ω| + γs∇φL

2

1
= γs

2
ℏks

1 + s

(2.162)
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The force on a moving atom can be calculated by simply introducing the shift by the
Doppler effect in the previous equation via a single laser beam. Note that the laser
always accelerates the atom in the direction of the laser.

F = γs

2
ℏks(v)

1 + s(v) , s(v) = s0
1 + (2δ − kL · v/γs)2 (2.163)

Instead of one laser, if we use two counter-propagating lasers, we can cool the atom. For
low intensity, we can take F = γs

2 ℏks(v). For simplicity, in the case of one dimension,
the force exerted on an atom via these two lasers can be expressed as.

F = ℏk
γs

2 (s+(v) − s−(v)), s±(v) = s0
1 + (2δ ∓ kL · v/γs)2 (2.164)

Figure 2.9: Strong damping forces for optimal detuning of δ = γs/2.

This is called Doppler cooling, illustrated with the help of figure 2.8.

2.3.3.1 Quantum jump approach for Doppler Cooling

In the previous section, we have considered a qualitative model, but this model does not
take into account recoils and can not be used for simulation of individual trajectories
necessary to predict velocity distribution. For that, we need to use the Monte Carlo wave
function method (MCWF) as described in section 2.3.2.2. Instead of the previous simpler
description with the expected value, we will include the individual momentum kicks via
spontaneous emission, and we will treat the motion of the atom classically coupled to a
standing wave. We start our discussion by considering the Doppler cooling example from
the documentation of [20]. The Hamiltonian of this system looks like

Ĥ = −ℏΔσ̂ee + ℏ cos(kx)(σ̂eg + σ̂ge) (2.165)
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Here, Δ = ωl − ωa is the detuning between the standing wave of frequency ωL and the
atomic transition frequency ωa. The standing wave has an amplitude Ω. As mentioned
in the previous section, the spontaneous emission of the atom occurs at a rate γs and is
taken into account with

ˆ̂L[ρ̂] = γs

2 (2σ̂geρ̂σ̂eg − σ̂eeρ̂ − ρ̂σ̂ee) (2.166)

As described in [20], the classical equations of motion for the atomic position x and its
momentum p are given by

d

dt
x = p

m
d

dt
p = 2kΩR{σ̂ge}

(2.167)

In order to include the momentum kicks the atom experiences when spontaneously
emitting a photon, we consider semi-classical MCWF approach where momentum kicks
are added via a classical jump. The quantum mechanical states of an atom in the excited
state with momentum p0 is given by |ψ⟩ = |e⟩⊗|p0⟩. Now, after the spontaneous emission
event a jump maps to the atomic internal state of |g⟩ ⊗ |p0 − ℏk⟩. Thus, the momentum
expectation value changes when a jump occurs by

p = ⟨ψ| p̂ |ψ⟩ = p0 → p0 + ℏk (2.168)

Figure 2.10: The Blue plot represents the solution of the equation of motion via the master
equation (ME) without quantum jumps, and the orange plot represents an average of 100
trajectories, including the recoil from spontaneous emission. Note that the atoms are cooled until
it is trapped around a field-antinode.

2.3.3.2 Semi Classical Monte Carlo

Another method to simulate individual trajectories is Semi Classical Monte Carlo (SCMC),
which is the intermediate method between semi-classical force and semi-classical MCWF.
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As defined in section 2.3.3.1, we use the position and velocity-dependent scattering rate
Γp(2.160) to model jumps. For the system in consideration

Γp = 1
2

γss(x, v)
(1 + s(x, v))

+
1 + 4

+ Δ − kv

γs

6
1 + s(x, v)

121−1
(2.169)

where
s(x, v) = 2Ω2 cos(x)2

γ2
s

+
1 +

+
2(Δ−kv)

γs

121 (2.170)

The procedure consists of the following steps:

• Starting with an initial state (xi, pi) at time ti we evolve the equation of motion
(x,p) and the scattering rate Γp(x, v) till ti+1 = ti + dt.

• Generate a random number r1 and r2 in the interval [0,1] and [-1 or 1] respectively.

• If r1 > e−Γp(x,v)ti set pi+1 = pi − ℏk + r2ℏk otherwise witout changing anything
take another step.

• Repeat the above three steps until we reach the desired evolution time.

Figure 2.11: (a) shows 100 trajectories generated by SCMC and (b) presents a comparison between
3 methods ME, MCWF, SCMC with average of 100 trajectories.

In the case Γp ≪ γs we can assume that the instant atom absorbs a photon it spontaneously
emits it. The figure 2.11 shows that the semi-classical Monte Carlo method gives more
or less the same results as the semi-classical MCWF for maxima of Γp corresponding to
0.1γs. However, it’s more efficient in calculating multiple trajectories than semi-classical
MCWF because we don’t have to evolve the wave function, especially in the case of a
complex system with many variables, as we will see in chapter 5.
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2.3. Theory of open quantum systems

2.3.4 Heisenberg-Langevin equations
Up to now we have considered equations for the density matrix, i.e., for the evolution of
state, which corresponds to the Schrödinger picture. An alternative approach corresponds
to the Heisenberg picture, where the operators are time-dependent. Equations for
operators of the open quantum system are called Heisenberg-Langevin equations. Although
these equations are operator equations and they are not convenient for direct numerical
simulations, they can be used as a starting point for derivation of various approximate
methods, such as c-number Langevin equations, semiclassical equations and cumulant
expansion. In this section we derive the Heisenberg-Langevin equations primarily following
the logic of the book [21] (ch. 9 - 11), the book [22] (ch. 9) and the paper [23].

First, let us specify the physical model. In contrast to the derivation of the master
equation in section 2.3.1, we specify here a bit more details about the system and the
bath; this is necessary to derive proper relations between different regular and stochastic
terms in the Heisenberg-Langevin equations. As before, we consider a system (S) weakly
coupled to the bath (B), and the whole Hamiltonian can be written as

Ĥ = ĤS + ĤB + ĤSB. (2.171)

The Hamiltonian ĤS of the system can be represented as

ĤS = ĤS,0 + ĤS,1, (2.172)

where ĤS,0 is the zero-order Hamiltonian of the system, whose eigenstates and eigenener-
gies are known, and ĤS,1 which describes some non-trivial dynamics (like, for example,
interaction with driving fields, or coupling between the atoms and the cavity mode).

The Hamiltonian ĤB describes the bath. Here we suppose that the bath consists of a
huge amount of bosonic modes weakly coupled to the system

ĤB = ℏ
9

n

ωnb̂†
nb̂n, [b̂n, b̂†

m] = δnm. (2.173)

Here b̂†
n, b̂n are bosonic creation and annihilation operators.

The Hamiltonian ĤSB represents the interaction between the system and the bath. For
the sake of simplicity, we consider here a case where the system has only a single channel
of dissipation, i.e., the coupling of the system to the bath can be expressed as

ĤSB = iℏ
9

n

κn[b̂†
nĈ − Ĉ†b̂n], (2.174)

where Ĉ is a system operator that satisfies the commutation relation

[ĤS,0, Ĉ] = −ℏω0Ĉ. (2.175)

The generalization of the derivation below to the case of several dissipative channels,
where the system is coupled to the bath via several operators Ĉα, is straightforward if
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2. Theoretical foundations

these operators are well separated in frequency. The situation where these operators
have close frequencies, and some of them can be coupled to the same bath modes is more
cumbersome, and consideration of such systems lies beyond the scope of this thesis.

In this section, we consider the coarse-graining in time. It means that the minimal time
scale Δt that we consider here is much less than the time necessary for a significant
evolution of the system due to interaction with the bath and the “non-trivial” part ĤS,1 of
the system Hamiltonian, but is still much bigger than the typical inverse eigenfrequencies
of the Hamiltonian ĤS,0, particularly than 1/ω0. It allows us to specify the frequency
range ϑ around the transition frequency ω0, which we call the coupling bandwidth. This
bandwidth must fulfill two conditions. First, it should be small enough that the coupling
κn between the bath modes and the system, as well as the density g(ω) of the bath modes,
vary slightly and smoothly within this range. Second, it should be big enough, such that
interaction of the system with the bath modes outside of this coupling bandwidth leads
to very fast oscillations and vanishes in averaging over our coarse-grained time scale Δt.
Usually, these conditions are fulfilled, if

1
Δt

≪ ϑ ≪ ω0. (2.176)

It allows us to restrict the interaction between the system and the bath only to the bath
modes within the coupling bandwidth:

ĤSB = iℏ
9

n:|ωn−ω0|<ϑ

κ(ωn)[b̂†
nĴ − Ĵ†b̂n]. (2.177)

Further, in this section, we consider only summation over the coupling bandwidth, and
we will omit the condition n : |ωn − ω0| < ϑ for the indices of summation for the sake of
brevity.

Substituting (2.177) into the Heisenberg equation for some system operator Â gives

dÂ

dt
= i

ℏ
[Ĥ, Â] = i

ℏ

�
ĤS , Â

�
−

9
n

κ(ωn)[b̂†
n[Ĵ , Â] − [Ĵ†, Â]b̂n]. (2.178)

Similarly, the Heisenberg equations for bath operators b̂n, b̂†
n can be written as

db̂n

dt
= − iωnb̂n + κ(ωn)Ĵ ,

db̂†
n

dt
= iωnb̂†

n + κ(ωn)Ĵ†,
(2.179)

and their solutions can be written as

b̂n(t) =e−iωn(t−t0)b̂n(t0) + κ(ωn)
& t

t0
e−iωn(t−t′)Ĵ(t′)dt′,

b̂†
n(t) =eiωn(t−t0)b̂†

n(t0) + κ(ωn)
& t

t0
eiωn(t−t′)Ĵ†(t′)dt′.

(2.180)
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2.3. Theory of open quantum systems

Substituting (2.180) into (2.178), we get

dÂ(t)
dt

= i

ℏ

�
ĤS(t), Â(t)

�
+ ξ̂†(t)[Â(t), Ĵ(t)] + [Ĵ†(t), Â(t)]ξ̂(t)

+
9

n

κ2(ωn)
+& t

t0
eiωn(t−t′)Ĵ†(t′)dt′[Â(t), Ĵ(t)]

+ [Ĵ†(t), A(t)]
& t

t0
e−iωn(t−t′)Ĵ(t′)dt′

1
,

(2.181)

where we have introduced the basic Langevin forces

ξ̂(t) =
9

n

κ(ωn)e−iωn(t−t0)b̂n(t0),

ξ̂†(t) =
9

n

κ(ωn)eiωn(t−t0)b̂†
n(t0).

(2.182)

It is convenient to choose time t0 such that, on the one hand, |t − t0|ϑ ≫ 1 and, on
the other hand, the evolution of the system on the timescale of |t − t0| is determined
primarily by the operator ĤS,0, therefore, in the integrands of (2.181) one may take

Ĵ(t′) ≈ Ĵ(t)eiω0(t−t′),

Ĵ†(t′) ≈ Ĵ†(t)e−iω0(t−t′),
(2.183)

that corresponds to the Markov approximation which we discussed in section 2.3.1.
Approximation (2.183) allows to rewrite (2.181) as

dÂ(t)
dt

= i

ℏ

�
ĤS(t), Â(t)

�
+ ξ̂†(t)[Â(t), Ĵ(t)] + [Ĵ†(t), Â(t)]ξ̂(t)

+ Ĵ†(t)[Â(t), Ĵ(t)]J + [Ĵ†(t), A(t)]Ĵ(t)J∗,

(2.184)

where
J =

9
n

κ2(ωn)
& t

t0
ei(ωn−ω0)(t−t′)dt′. (2.185)

To calculate J, we replace summation over the bath modes by integral and put the lower
limit t0 = t − T in integral over t to −∞ formally. Then we can write

J = lim
T →∞

& ω0+ϑ

ω0−ϑ
κ2(ω)g(ω)

& t

t−T
ei(ω−ω0)(t−t′)dt′dω, (2.186)

where g(ω) is the density of states, which we suppose to be smooth and slightly varying
in the interval ω0 − ϑ < ω < ω0 − ϑ, as well as κ2(ω). Then we can introduce f(ω) =
g(ω)κ2(ω) for the sake of brevity, and write

J = lim
T →∞

ω0+ϑ&
ω0−ϑ

1 − e−i(ω−ω0)T

i(ω − ω0) f(ω)dω

= lim
T →∞

ω0+ϑ&
ω0−ϑ

1 − cos((ω − ω0)T )
i(ω − ω0) f(ω)dω + lim

T →∞

ω0+ϑ&
ω0−ϑ

sin((ω − ω0)T )
ω − ω0

f(ω)dω.

(2.187)
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In the first integral in (2.187) we can omit cos((ω − ω0)T ), because the function f(ω) can
be represented as f(ω) = f(ω0) + (f(ω) − f(ω0)), and the integral with f(ω0) vanishes
because the expression under the integral is odd with respect to the center of the interval,
and the term (f(ω) − f(ω0))/(ω − ω0) is limited; therefore, the oscillating term vanishes
at T → ∞ due to the Riemann-Lesbegue lemma. In the second integral, one may also
represent f(ω) = f(ω0) + (f(ω) − f(ω0)), and again, the integral with f(ω) − f(ω0)
vanishes due to the Riemann-Lesbegue lemma, whereas the integral with f(ω0)) becomes
the (doubled) Dirichlet integral. Therefore, one can write

J = πκ2(ω0)g(ω0) − i v.p.

ω0+ϑ&
ω0−ϑ

κ2(ω)g(ω)
ω − ω0

dω, (2.188)

where v.p. stands for Cauchy principal value. Substituting (2.188) into (2.184), we get to

dÂ

dt
= i

ℏ

�
ĤS + ĤLS , Â

�
+ ξ̂†[Â, Ĵ ] + [Ĵ†, Â]ξ̂

+ γ

2
(
2Ĵ†ÂĴ − ÂĴ†Ĵ − Ĵ†ĴÂ

.
,

(2.189)

where all the operators are taken at t, and we introduced the relaxation rate γ as

γ = 2πκ2(ω0)g(ω0) (2.190)

Lamb shift Hamiltonian ĤLS as

ĤLS = ℏĴ†Ĵ v.p.

ω0+ϑ&
ω0−ϑ

κ2(ω)g(ω)
ω − ω0

dω. (2.191)

One may show that the Hamiltonian (2.191) corresponds to the Hamiltonian (2.135), if
the interaction between the bath and the system is specified as here. Further, we are not
interested in ĤSL, supposing that it is added into ĤS .

Let us consider basic Langevin forces (2.182). Using the same approach as in the
derivation (2.186) – (2.188), we can show that

[ξ̂(t), ξ̂†(t′)] = γδ(t − t′),
⟨ξ̂(t)ξ̂†(t′)⟩ = (NT + 1)γδ(t − t′),
⟨ξ̂†(t)ξ̂(t′)⟩ = NT γδ(t − t′),

(2.192)

where NT is the average occupation number of the bath mode with frequency ω0 (we
suppose the thermal bath), and the time t is considered as coarse-grained, i.e., if t ̸= t′,
then |t − t′|ϑ ≫ 1.

Now we consider the commutation relation between the system operator Â(t) and the
basic Langevin force ξ(t′). Using (2.182), and expressing b̂n(t0) via b̂n(t) with the help of
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(2.180) and bosonic commutation relations (2.173), we can write

[Â(t), ξ̂(t′)] =
9

n

κ(ωn)e−iωn(t′−t0)[Â(t), b̂n(t0)] =
9

n

κ(ωn)e−iωn(t′−t0)

=
�
Â(t),

+
b̂n(t) − κ(ωn)

& t

t0
e−iωn(t−t′′)Ĵ(t′′)dt′′

1
eiωn(t′−t0)

!
.

(2.193)

Using the Markov approximation Ĵ(t′′) ≈ Ĵ(t′)eiω0(t′−t′′) and replacing summation over
modes by integration, we get

[Â(t), ξ̂(t′)] = − [Â(t), Ĵ(t′)]
& ω0+ϑ

ω0−ϑ
f(ω)

& t

t0
ei(ω0−ω)(t′−t′′)dt′′dω

= − [Â(t), Ĵ(t′)]
& ϑ

−ϑ
f(ω0 + ϑ)eiΩ(t−t′) − e−iΩ(t′−t0)

iΩ dΩ,

(2.194)

where, as before, f(ω) = κ2(ω) + g(ω). Neglecting the variation of f(ω) on the interval
ω0 − ϑ < ω < ω0 + ϑ, we replace f(ω) by f(ω0) = γ/(2π). Then, using the symmetry
properties of the integrand in (2.194), we can write

[Â(t), ξ̂(t′)] = −[Â(t), Ĵ(t′)] γ

2π

×
�& ϑ

−ϑ

sin(Ω(t − t′))
Ω dΩ +

& ϑ

−ϑ

sin(Ω(t′ − t0))
Ω dΩ

�
. (2.195)

In the coarse-grained time resolution, we can replace the limits of the integration from
[−θ, θ] to (−∞, ∞). Then the integrals in the square brackets become doubled Dirichlet
integrals, and we can write

[Â(t), ξ̂(t′)] = − π[Â(t), Ĵ(t′)] γ

2π
(sign(t − t′) + sign(t′ − t0)).

= − γ[Â(t), Ĵ(t′)]u(t − t′),
(2.196)

where

u(τ) =

��
1, τ > 0
1
2 , τ = 0
0, τ < 0

(2.197)

This result may be interpreted as the causality, i.e., the influence of the quantum noise
terms in preceding instants of time on the system in the subsequent instants of time.
However, there is a non-zero commutator at t = t′. This is because the equation (2.189)
are the quantum stochastic equations in Stratonovich form. It is more convenient to
go from the Stratonovich to the Itô form, where the noise terms ξ̂(t), ξ̂†(t) should be
taken not “simultaneously”, but “a little bit after” the instant t, then the commutator
[Â(t), ξ̂(t)] = 0. One may show [23], that such a transition leads to modification of the
regular part in the equation (2.189), and it transforms to

I dÂ

dt
= i

ℏ

�
ĤS , Â

�
+ ξ̂†[Â, Ĵ ] + [Ĵ†, Â]ξ̂ + γ

2
�
NT

(
2ĴÂĴ† − ÂĴ Ĵ† − Ĵ Ĵ†Â

.
+(NT + 1)

(
2Ĵ†ÂĴ − ÂĴ†Ĵ − Ĵ†ĴÂ

.�
,

(2.198)
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where I stands for Itô form, [Â(t), ξ̂(t)] = [Â(t), ξ̂†(t)] = 0, and we have included ĤLS in
ĤS . Interestingly, at NT = 0 both the Stratonovic (2.189) and the Itô (2.198) forms of
the Langevin equation coincide.

Finally, we should note that moving from the Heisenberg to the Schrödinger picture and
performing averaging over the bath degrees of freedom (which are independent of the
system operators), we can obtain the master equation corresponding to (2.198) in the
form

dρ̂

dt
= − i

ℏ

�
ĤS , ρ̂

�
+ γ

2
�
NT

(
2Ĵ†ρ̂Ĵ − ρ̂Ĵ Ĵ† − Ĵ Ĵ†ρ̂

.
+(NT + 1)

(
2Ĵ ρ̂Ĵ† − ρ̂Ĵ†Ĵ − Ĵ†Ĵ ρ̂

.�
.

(2.199)

If kBT ≪ ℏω0, we can put NT = 0, and obtain the master equation similar to (2.138).
This is the most relevant case for the thesis, and further, we put NT = 0.

Generalizing the equation (2.198) to the case of multiple independent dissipation processes
with jump operators Ĵk and rates γk, we get the Heisenberg-Langevin equations in the
form

dÂ

dt
= i

ℏ

�
ĤS , Â

�
+ F̂A +

9
k

γk
ˆ̂
D[Ĵk]Â, (2.200)

where the Langevin force F̂A corresponding to operator Â is expressed via the basic
Langevin forces ξ̂, ξ̂† as

F̂A =
9

k

(
ξ̂†

k[Â, Ĵk] + [Ĵ†
k, Â]ξ̂k

.
, (2.201)

the superoperator ˆ̂
D and the commutation relations are

ˆ̂
D[Ĵ ]Â = Ĵ†ÂĴ − 1

2(Ĵ†ĴÂ + ÂĴ†Ĵ), (2.202)

[ξ̂k(t), ξ̂†
j (t′)] = γkδkjδ(t − t′), [ξ̂k, ξ̂j ] = [ξ̂†

k, ξ̂†
j ] = [ξ̂†

k, ξ̂j ] = 0, (2.203)

and [Â(t), ξ̂k(t)] = 0. Now, consider another operator B̂. The associated Langevin force
will look like

F̂B =
9

k

(
ξ̂†

k[B̂, Ĵk] + [Ĵ†
k, B̂]ξ̂k

.
, (2.204)

Using the commutation relations given in (2.192) and (2.203) and taking occupation
numbers of the respective cavity modes NT,k = 0, one can calculate the correlation
between these two forces as

⟨F̂B(t)F̂A(t′)⟩ =
9

k

γk⟨[Ĵ†
k, B̂][Â, Ĵk]⟩δ(t − t′) = 2DABδ(t − t′) (2.205)
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Where DAB = :
k γk⟨[Ĵ†

k, B̂][Â, Ĵk]⟩/2 is the diffusion matrix.

Similarly, the master equation (2.199) can be generalized to the case of multiple dissipation
processes at NT = 0 as

dρ̂

dt
= − i

ℏ

�
ĤS , ρ̂

�
+

9
k

γk
ˆ̂
D′[Ĵk]ρ̂, (2.206)

where the superoperator ˆ̂
D′ is defined in (2.137).

Finally, we should note that the relaxation terms are invariant to unitary transformations.
This concludes all the basic tools we need to perform quantitative modeling of a continuous
superradiant laser. In the next chapter we will discuss different methods to perform
simulation for a superradiant signal.
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CHAPTER 3
Methods of simulation of

superradiant lasers

Active optical clocks are based on a bad-cavity laser operating in the bad-cavity regime,
often called also superradiant laser. Development of such clocks requires an understanding
of different processes in the laser, simulation of its parameters, and optimization of physical
parameters of the laser in order to achieve the best characteristics of the output radiation,
such as satisfactory output power, minimal linewidth, robustness to fluctuations of
environmental parameters, etc. However, a direct solution of the master equation for
a laser containing about 104 – 108 atoms interacting with the cavity mode seems to be
impossible because of the exponential growth of the respective Hilbert space. Therefore,
one has to use approximate methods.

In this chapter, we consider and compare various approximate methods for the simulation
of the output field of the superradiant lasers. The simplest and probably the most
straightforward method is the semiclassical, or the mean-field approach, where the
correlations between individual atoms are neglected, and the density matrix is supposed
to be separable, i.e., representable as a product of density matrices of individual atoms
and the field. This method allows us to calculate the number of intracavity photons,
the intensity of the output field, the sensitivity of this field to variation of different
environmental parameters, and the cavity pulling coefficient. However, this method
does not allow the calculation of the linewidth of the output radiation and, therefore,
the stability of the active optical clock. Another method is based on the c-number
Langevin equations. Here, the mean-field equations are modified by adding of stochastic
components, the so-called Langevin forces, to account for the quantum noise. The third
method that we consider here is the second-order cumulant expansion approach, where
pair correlations between individual atoms are also taken into account. Finally, we
describe a method of explicit solution of the master equation for a homogeneous ensemble
of a relatively small (several tens) number of 2-level atoms interacting with the cavity
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3. Methods of simulation of superradiant lasers

mode. In this case, due to the symmetry of the system, the size of the Hilbert space
grows not exponentially but polynomially with the number N of the atoms.

This chapter consists of 7 sections. In section 3.1, we introduce the quantum master
equation for a homogeneous ensemble of N 2-level atoms interacting with a single-mode
cavity field, a system that will be used to test different simulation methods. In section 3.2,
we discuss how to calculate the linewidth of the output radiation of the superradiance
laser. In section 3.3, we derive the quantum Langevin equations. In sections 3.4 and 3.5,
we utilize these equations to derive the c-number Langevin equations and the mean-field
equations, respectively. In section 3.6, we introduce the second-order Cumulant theory.
section 3.7 covers the complete quantum description of a homogeneous system, and finally,
in section 3.8, we compare these different methods.

3.1 Master equation of a bad-cavity Laser
We start our discussion from the Master equation for an ensemble of N two-level atoms
confined in space and homogeneously coupled to a single cavity mode:

d

dt
ρ̂ = 1

iℏ
[Ĥ, ρ̂] + ˆ̂L[ρ̂]. (3.1)

The Hamiltonian Ĥ of our system in the rotating frame is given by

Ĥ = ℏΔa

N9
j=1

σ̂j
ee + ℏδcâ

†â + ℏg
N9

j=1

+
â†σ̂j

ge + âσ̂j
eg

1
, (3.2)

where â† and â are the cavity field creation and annihilation operators, index j runs over
the atoms, σ̂j

αβ = |αj⟩⟨βj | %
k ̸=j Îk are single-atom transition (for α ̸= β) or projection

(for α = β) operators, |αj⟩ and |βj⟩ run over ground (|gj⟩) and excited (|ej⟩) states of
jth atom, g is the coupling strength between the atoms and the field, Δa = ωa − ω is the
shift of the atomic transition frequency ωa from the frequency ω of our rotating frame,
and δc = ωc − ω is the respective shift of the cavity resonance frequency ωc from ω.

The dissipative processes are described by the Liouvillian term

ˆ̂Lρ̂ = κ
ˆ̂
D′[â]ρ̂ +

N9
j=1

+
γs

ˆ̂
D′[σ̂j

ge]ρ̂ + ν
ˆ̂
D′[σ̂j

ee]ρ̂ + R
ˆ̂
D′[σ̂j

eg]ρ̂
1

, (3.3)

where ˆ̂
D′[Ô]ρ̂ = Ôρ̂Ô† − 1

2(Ô†Ôρ̂ + ρ̂Ô†Ô) is the Lindbladian superoperator (2.137), κ is
the decay rate of the energy of the cavity field, γs is the spontaneous emission rate, R is
the rate of incoherent repumping of the atoms from the ground into the excited state
(modeled by an “inverse spontaneous decay decay”), ν is the rate of additional dephasing
process of the atomic dipole.
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3.2 Spectrum and linewidth

3.2.1 Filter cavity and power spectral density
One of the most important properties of laser radiation is its spectrum. Following [24],
the spectrum of some field â can be determined with the help of an additional filter cavity
weakly coupled to this field. The resonant frequency of the filter cavity can be scanned
near the central frequency of the field, and the number of photons in the filter cavity will
represent the spectrum of the field.

The Hamiltonian of the filter cavity coupled to the field of the “main” laser cavity (in
frame co-rotating with the rotating frame of the superradiant laser output, or some other
rotating frame) is

Ĥf = ℏ(δf b̂†b̂ + G(â+b̂ + âb̂†)), (3.4)

where δf = ωf − ω is the detuning of the filter cavity, and G is the coupling strength
between the filter cavity and the main cavity. There is also an additional relaxation term

ˆ̂Lf [ρ̂] = −β

2
(
b̂†b̂ρ̂ + ρ̂b̂†b̂ − 2b̂ρ̂b̂†.

. (3.5)

The coupling strength G and the decay rate β are supposed to be extremely small. Then
the equations for the operators b̂ and b̂† are:

db̂

dt
= i

ℏ
[Ĥf , b̂] − β

2
(
b̂†b̂b̂ + b̂b̂†b̂ − 2b̂†b̂b̂

.
+ F̂f

= − iδf b̂ − iGâ − β

2 b̂ + F̂f , (3.6)

db̂†

dt
=iδf b̂† + iGâ+ − β

2 b̂† + F̂f+ . (3.7)

We can write the solutions of these equations as

b̂(t) =
t&

−∞
e−( β

2 +iδf )(t−t′)
(
−iGâ(t′) + F̂f (t′)

.
dt′ (3.8)

b̂†(t) =
t&

−∞
e−( β

2 −iδf )(t−t′′)
(
iGâ+(t′′) + F̂f+(t′′)

.
dt′′ (3.9)

therefore, the average number of photons in the filter cavity is

⟨b̂†(t)b̂(t)⟩ =
t&

−∞

t&
−∞

e− β
2 (2t−t′−t′′)eiδf (t′−t′′)

(
G2⟨â+(t′′)â(t′)⟩ + ⟨F̂f+(t′′)F̂f (t′)⟩

.
dt′dt′′

(3.10)
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Note that in low temperature limit ⟨F̂f+(t′′)F̂f (t′)⟩ = 0. In a stationary regime one may
take t = 0, and introduce

R(τ) =⟨â+(t + τ)â(t)⟩ τ =t′′ − t′ T = − t′ + t′′

2 (3.11)

Using the following transformation of a double integral

0&
−∞

0&
−∞

f(t′, t′′)dt′dt′′ =
∞&

0

2T&
−2T

f

+
−T + τ

2 , −T − τ

2

1
dτ dT

=
∞&

−∞

∞&
|τ |/2

f

+
−T + τ

2 , −T − τ

2

1
dT dτ, (3.12)

the fact that β is small (in comparison with the decay rate of 2-time correlation function
R(τ)), and using R(τ) = R∗(−τ), we can rewrite (3.10) as

⟨b̂†(0)b̂(0)⟩ =
∞&

−∞

∞&
|τ |/2

e−βT dTe−iδf τ G2R(τ)dτ =
∞&

−∞

exp[−β|τ |/2]
β

e−iδf τ G2R(τ)dτ

≈G2

β

∞&
−∞

e−iδf τ R(τ)dτ = G2

β

∞&
0

R(τ)e−iδf τ dτ + G2

β

∞&
0

R∗(τ)eiδf τ dτ

=2G2

β
Re


∞&

0

R(τ)e−iδf τ dτ

 (3.13)

This expression coincides, up to a constant factor, with the 2-sided the power spectral
density SE(f + δf /(2π)), (where f = ω/(2π)) expressed via the 2-times correlation
function according to the Wiener-Khintchine theorem (see, for example, [25], section 3.1):

SE(f + δf /(2π)) =
& ∞

−∞
R(τ)e−iδf τ dτ =

& 0

−∞
R(τ)e−iδf τ dτ +

& ∞

0
R(τ)e−iδf τ dτ

=
& ∞

0
R(−τ)eiδf τ dτ +

& ∞

0
R(τ)e−iδf τ dτ = 2Re

& ∞

0
R(τ)e−iδf τ dτ,

(3.14)

(note that in our case R(τ) is calculated in the rotating frame, in contrast to [25]).

Consider a simple but very important case of exponentially decaying 2-time correlation
function in the form

R(τ) = R0e−(λ−iδ0)τ (3.15)

Then the number of photons in the filter cavity is proportional to

SE(f + δf /(2π)) ∝ Re
& ∞

0
e−(λ+i(δf −δ0))τ dτ = λ

λ2 + (δf − δ0)2 . (3.16)
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3.3. Quantum Langevin equations

This corresponds to the Lorentzian spectrum with full-width half-maximum (FWHM)
equal to 2λ and the center of the line shifted to δ0 from the frequency ω of our rotating
frame. In other words, in a laser with Lorentzian spectrum, the 2-times correlation
function R(τ) decays as

|R(τ)| = R(0)e− FWHM
2 τ . (3.17)

3.2.2 Quantum regression theorem

Here we will state a useful theorem named the Onsager-Lax, or Quantum Regression
Theorem. Consider, for the sake of simplicity, some closed quantum system without
dissipations. Then the two-time correlation function between two operators, say Â1 and
Â2, can be calculated as

⟨Â1(t + τ)Â2(t)⟩ = Tr{e
i
ℏ Ĥτ Â1(t)e− i

ℏ Ĥτ Â2(t)ρ̂}
= Tr{e− i

ℏ Ĥτ Â2(t)ρ̂e
i
ℏ Ĥτ Â1(t)}

= Tr{Ŝ(τ)Â1(t)},

(3.18)

Where we introduced a “fictional” density matrix

Ŝ(τ) = e− i
ℏ Ĥτ Â2(t)ρ̂e

i
ℏ Ĥτ . (3.19)

Then the evolution of 2-time correlation function ⟨Â1(t + τ)Â2(t)⟩ is equivalent to
evolution of the mean value of operator Â1 in fictional “ensemble of systems” described
by the “fictional” density matrix Ŝ(t) such that

Ŝ(0) = Â2(t)ρ(t), (3.20)

and governed by the same master equation, as the “true” density matrix ρ:

d

dτ
⟨Â1(t + τ)Â2(t)⟩ = Tr

�+
d

dτ
Ŝ(τ)

1
Â1(t)

�
. (3.21)

It is easy to see that the consideration presented above remains valid if the master
equation governing the system also contains dissipative terms.

3.3 Quantum Langevin equations
The quantum Langevin equations are the equations for operators of the system in the
Heisenberg picture. The overview of these equations was given in the section 2.3.4. Now
we are interested in the following operators describing the ensemble of N 2-levels atoms
coupled to the cavity: cavity field annihilation and creation operators â and â†, atomic
polarizations J− = 1

N

:N
j=1 σ̂j

ge, J+ = 1
N

:N
j=1 σ̂j

eg and inversion Jz = 1
N

:N
j=1 σ̂j

z, where
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3. Methods of simulation of superradiant lasers

σ̂j
z = σ̂j

ee − σ̂j
gg. The Heisenberg-Langevin equations for these operators are given by

d

dt
â = −1

2(κ + 2iδc)â − iNgĴ− + F̂a, (3.22)
d

dt
â† = −1

2(κ − 2iδc)â† + iNgĴ+ + F̂a†, (3.23)
d

dt
Ĵ− = −1

2(Γ + 2iΔa)Ĵ− + igâĴz + F̂−, (3.24)
d

dt
Ĵ+ = −1

2(Γ − 2iΔa)Ĵ+ − igâ†Ĵz + F̂+, (3.25)
d

dt
Ĵz = −(R + γs)(Ĵz − d0) + i2g(â†Ĵ− − âĴ+) + F̂z. (3.26)

Where d0 = R−γs

R+γs
and Γ = R + γs + ν. Here we also introduced Langevin forces which

can be expressed via the basic Langevin forces ξ̂α as (2.200) For our system, the non-zero
elements of the diffusion matrix can be easily calculated using (2.205):

2Dââ† = κ, 2D+− = 1
N

+
R + ν

2 (1 + ⟨Ĵz⟩)
1

, 2D−+ = 1
N

+
γs + ν

2 (1 − ⟨Ĵz⟩)
1

,

2D+z = −2R

N
⟨Ĵ+⟩, 2Dz− = −2R

N
⟨Ĵ−⟩, 2D−z = 2γs

N
⟨Ĵ−⟩, 2Dz+ = 2γs

N
⟨Ĵ+⟩,

2Dzz = 2γs

N
(1 + ⟨Ĵz⟩) + 2R

N
(1 − ⟨Ĵz⟩).

(3.27)

3.3.1 Adiabatic elimination of the cavity field
We are interested in the “deep bad cavity regime”, where the cavity decay rate κ is much
bigger than any other rates associated with different processes involved. In this case the
cavity mode follows adiabatically the state of the atoms, and equations for this mode
can be eliminated.

By integrating the cavity field variable from equation (3.22) we get

â(t) = −iNg

& t

−∞
e− (κ+2iδc)(t−t′)

2 Ĵ−(t′)dt′ + I
& t

−∞
e− (κ+2iδc)(t−t′)

2 F̂a(t′)dt′. (3.28)

Using partial integration, we can expand the integral in the first term of (3.28) as

& t

0
e− (κ+2iδc)(t−t′)

2 Ĵ−(t′)dt′ = 2
κ + 2iδc

Ĵ−(t) −
+ 2

κ + 2iδc

12 d

dt
Ĵ−(t) + ... (3.29)

If the condition
|Ĵ−| ≫

;;;; 2
(κ + 2iδc)

d

dt
Ĵ−

;;;; (3.30)
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3.3. Quantum Langevin equations

is satisfied, we can keep only the first term in this expansion, and approximate the
first term in (3.28) by −2iNg

(κ+2iδc) Ĵ−. Substituting the equation of motion for Ĵ−(3.23) to
condition (3.30) and estimating |Ĵz| ≈ 1, we get our adiabatic condition to be

κ ≫ 4Ng2

κ
= NCγs, (3.31)

where C = 4g2

κγs
is a single atom coperativity. So if the adiabatic conditions (3.31) are

satisfied we can set â as

â = − 2iNg

(κ + 2iδc)
Ĵ− + Ĝ(t) (3.32)

where
Ĝ(t) = I

& t

−∞
dt′e− (κ+2iδc)(t−t′)

2 F̂a(t′)

Therefore, the Heisenberg equation for some arbitrary atomic operator Ĉ can be written
as

dĈ

dt
= i

ℏ
[Ĥat, Ĉ] +

N9
j=1

+
γs

ˆ̂
D[σ̂j

ge]Ĉ + ν
ˆ̂
D[σ̂j

ee]Ĉ + R
ˆ̂
D[σ̂j

eg]Ĉ
1

+ igN
�
â†[Ĵ−, Ĉ] + [Ĵ+, Ĉ]â

�
+ F̂c

= i

ℏ
[Ĥat, Ĉ] +

N9
j=1

+
γs

ˆ̂
D[σ̂j

ge]Ĉ + ν
ˆ̂
D[σ̂j

ee]Ĉ + R
ˆ̂
D[σ̂j

eg]Ĉ
1

− gN

�
2gNĴ+

κ − 2iδc
[Ĵ−, Ĉ] + [Ĵ+, Ĉ]−2gNĴ−

κ + 2iδc

�
+ F̂c + igN

�
Ĝ†(t)[Ĵ−, Ĉ] + [Ĵ+, Ĉ]Ĝ(t)

�
,

(3.33)

where Ĥat is the atomic part of the Hamiltonian. The last line in this expression represents
the corrected Langevin force (we denote it F̂ ′). The previous line can be represented as
a sum of dissipative and Hamiltonian parts:

−gN

�
2gNĴ+

κ − 2iδc
[Ĵ−, Ĉ] + [Ĵ+, Ĉ]−2gNĴ−

κ + 2iδc

�
= 4g2N2κ

κ2 + 4δ2
c

ˆ̂
D[Ĵ−]Ĉ + i

ℏ
[Ĥeff , Ĉ], (3.34)

where the Hamiltonian term is equal to

Ĥeff = −4ℏg2N2δc

κ2 + 4C2 Ĵ+Ĵ−. (3.35)

Therefore, the equation for some atomic operator Ĉ can be written as

dĈ

dt
= i

ℏ
[Ĥat + Ĥeff , Ĉ] +

N9
j=1

+
γs

ˆ̂
D[σ̂j

ge]Ĉ + ν
ˆ̂
D[σ̂j

ee]Ĉ + R
ˆ̂
D[σ̂j

eg]Ĉ
1

+ 4g2N2κ

κ2 + 4δ2
c

ˆ̂
D[Ĵ−]Ĉ + F̂ ′,

(3.36)
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and the respective master equation can be written as

d

dt
ρ̂ = − i

ℏ

�
Ĥat + Ĥeff , ρ̂

!
+ 4N2g2κ

κ2 + 4δ2
c

ˆ̂
D′[Ĵ−]ρ̂

+
N9

j=1

+
γs

ˆ̂
D′[σ̂j

ge]ρ̂ + ν
ˆ̂
D′[σ̂j

z]ρ̂ + R
ˆ̂
D′[σ̂j

eg]ρ̂
1

.

(3.37)

Such an equation has a term corresponding to a dissipation via the collective atomic
operator NĴ− = :N

j=1 σ̂j
ge. A similar situation arises in the case of the Dicke superra-

diance, where different atoms are collectively coupled to the same bath modes. In our
situation, the atoms are coupled collectively only to one mode, the cavity mode, which
can be eliminated from the master equation, like the modes of the bath, see section 2.3.1.
Therefore, the regime of operation of the bad-cavity laser where the condition (3.31) is
fulfilled, and such an adiabatic elimination becomes possible, can be called superradiant
regime.

Adiabatic elimination of the cavity field is useful for numerical calculation because it
allows not only to reduce the number of equations but also to increase the integration
time step because of the elimination of fast variables.

3.4 C-number Langevin equations
The quantum Langevin equations are operator-valued stochastic differential equations.
As such, they are not suited for practical computations. To obtain practical equations, we
use the by c-numbers Langevin equations, where the operator-valued (q-number) variables
are replaced by respective equivalent classical (c-number) variables [22]. To establish a
correspondence between the operators and the c-number variables, we need to choose
some specific ordering of operators such that the product of c-number variables should
correspond to the product of operators taken in this order, and the equations for the first
and second moments of c-number variables should be identical to corresponding equations
of properly ordered operator variables. In [26] the “normal ordering” (â†, Ĵ+, Ĵz, Ĵ−, â)
of operators was chosen. However, this can lead to certain difficulties for numerical
simulation, particularly, the diffusion matrix of classical Langevin forces calculated for
respective real c-number variables may have negative eigenvalues, which would lead to
imaginary noises [27]. Instead, we use a symmetric ordering of the operators, following
[28], where the products of c-number variables should correspond to the symmetrized
product of the respective operators. Then the set of c-number Langevin equations looks
like:

d

dt
a = −1

2(κ + 2iδc)a − iNgJ− + Fa,

d

dt
J− = −1

2(Γ + 2iΔa)J− + igaJz + F−,

d

dt
Jz = −(R + γs)(Jz − d0) + 2ig(a†J− − aJ+) + Fz.

(3.38)
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3.4. C-number Langevin equations

For the sake of simplicity, we, following [28], introduce real-valued c-number variables as

q̂ = 1
2(â† + â), p̂ = 1

2i
(â† − â),

Ĵx = 1
2(Ĵ+ + Ĵ−), Ĵy = 1

2i
(Ĵ+ − Ĵ−).

(3.39)

The associated c-number equations are

d

dt
q = −1

2κq + δcp − NgJy + Fq,

d

dt
p = −1

2κp − δcq + NgJx + Fq,

d

dt
Jx = −1

2ΓJx − ΔaJy + gpJz + Fx,

d

dt
Jy = −1

2ΓJy + ΔaJx − gqJz + Fx,

d

dt
Jz = −(R + γs)(Jz − d0) + 2g(qJy − pJx) + Fz.

(3.40)

Similarly, the corresponding noise operators are

F̂q = 1
2(F̂â† + F̂â), F̂p = 1

2i
(F̂â† − F̂â).

F̂x = 1
2(F̂+ + F̂−), F̂y = 1

2i
(F̂+ − F̂−).

(3.41)

The diffusion matrix in this real space will look like

2Dqq = κ/2, 2Dpp = κ/2, 2Dxx = Γ
2N

, 2Dyy = Γ
2N

,

2Dxz = 2Dzx = 2(−R + γs)
N

⟨Ĵx⟩, 2Dyz = 2Dyx = 2(−R + γs)
N

⟨Ĵy⟩,

2Dzz = 2
N

((R + γs) + (−R + γs)⟨Ĵz⟩)

(3.42)

For the simulation, the noises Fµ can be calculated using the diffusion matrix

Fµ =
9

ν

6
λνMT

µνFν (3.43)

where the Mµν is the transformation matrix which digonalizes the diffusion matrix, λν

are the associated eigenvalues and Fν are independent Wiener processes as described in
[29]. For a good set of parameters in bad cavity regime we can adiabatically eliminate
c-number a as

a = − i2Ng

(κ + 2iδc)
J− (3.44)
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resulting in elimination of p and q

q = 4δcNgJx − 2NgκJy

(κ2 + 4δ2
c ) .

p = −8δ2
c NgJx + 4δcNgκJy + 2Ngκ(κ2 + 4δ2

c )Jx

κ(κ2 + 4δ2
c ) .

(3.45)

3.5 Mean field equations
In the mean-field approximations we neglect the correlations between the dynamical
variables. By taking the expectation of equations (3.22) – (3.26), we get the set of
mean-field equations for this system

d

dt
⟨â⟩ = − 1

2(κ + 2iδc)⟨â⟩ − iNg⟨Ĵ−⟩, (3.46)
d

dt
⟨â†⟩ = − 1

2(κ − 2iδc)⟨â†⟩ + iNg⟨Ĵ+⟩, (3.47)
d

dt
⟨Ĵ−⟩ = − 1

2(Γ + 2iΔa)⟨Ĵ−⟩ + ig⟨â⟩⟨Ĵz⟩, (3.48)
d

dt
⟨Ĵ+⟩ = − 1

2(Γ − 2iΔa)⟨Ĵ+⟩ − ig⟨â†⟩⟨Ĵz⟩, (3.49)
d

dt
⟨Ĵz⟩ = − (R + γs)(⟨Ĵz⟩ − d0) + 2ig(⟨â†⟩⟨Ĵ−⟩ − ⟨â⟩⟨Ĵ+⟩). (3.50)

The noise terms drop out because they have zero mean. The mean field equations capture
many of the most important features of the physical system because the noise terms
scale as

√
N while expectation values scale as N. However, the information about the

linewidth is lost.

Using the mean-field equations, one can calculate the steady-state population inversion
and the cavity photon number as

⟨Ĵz⟩ = d0

1 + 4g2⟨â†â⟩
R+γs

2Γ
Γ2+4(Δa)2

,

⟨â†â⟩ = ⟨â†⟩⟨â⟩ = R + γs

4g2
Γ2 + 4(Δa)2

2Γ

+
d0N4g2

(κ + 2i(δc))(Γ + 2i(Δa)) − 1
1

.

(3.51)

Note that we need to have κΔa + Γδc = 0 for ⟨â†â⟩ to be real. In other words, a rotating
frame where the steady-state solution becomes possible should rotate with a frequency

ω = κωa + Γωc

κ + Γ , (3.52)

which is also the frequency of the output radiation. If κ ≫ γ, the frequency ω will
be determined primarily by the frequency ωa of the atoms, and just slightly shifted
towards the detuned cavity frequency (this effect is called cavity pulling), being robust to
fluctuations of the frequency of the cavity mode.
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3.6. Second-order cumulant theory

3.6 Second-order cumulant theory
To include the higher order effect, one can use the cumulant expansion [9] of the correlators
between different operator variables and truncate cumulants higher than some specific
order. As Theorem 1 in Ref [30] states, the joint cumulant of a set of operators is zero,
if some subset of them is statistically independent of the others. Neglecting higher-
order cumulants is equivalent to neglecting higher-order correlations between different
operators.

The mean-field equations considered above correspond to “first-order cumulant theory”,
where even the second-order cumulants were not kept, and the second-order correlators
were approximated by ⟨ÂB̂⟩ ≈ ⟨Â⟩⟨B̂⟩. In 2nd-order cumulant theory, the second-order
correlators are kept, whereas the third-order correlators are approximated by

⟨ÂB̂Ĉ⟩ ≈ ⟨Â⟩⟨B̂Ĉ⟩ + ⟨B̂⟩⟨ÂĈ⟩ + ⟨Ĉ⟩⟨ÂB̂⟩ − 2⟨Â⟩⟨B̂⟩⟨Ĉ⟩. (3.53)

Also, for the second-order cumulant theory, one may suppose that the phase invariance is
not broken, i.e., we consider an ensemble of identical systems initially prepared in states
with different phases of the cavity field and the atomic ensemble. Then ⟨â⟩ = ⟨σ̂ge⟩ = 0,
what significantly simplifies the task.

Let us construct the set of equations describing the bad-cavity laser in the second-order
cumulant approximation. From equation (3.26), we get the equation for a single atomic
inversion

d

dt
⟨σ̂1

z⟩ = −(R + γs)(⟨σ̂1
z⟩ − d0) + 2ig(⟨â†σ̂1

ge⟩ − ⟨âσ̂1
eg⟩). (3.54)

Since ⟨â†σ̂1
ge⟩ couples into (3.54), its evolution equation must also be calculated:

d

dt
⟨â†σ̂1

ge⟩ = −1
2(κ + R + γs + ν − 2iδ)⟨â†σ̂1

ge⟩

+ ig(⟨â†âσ̂1
z⟩ + 1

2(1 + ⟨σ̂1
z⟩) + ig(N − 1)⟨σ̂1

egσ̂2
ge⟩,

(3.55)

where δ = ωc − ωa Here we have a third-order correlation, which we can expand using
(3.53) as

⟨â†âσ̂1
z⟩ = ⟨â†â⟩⟨σ̂1

z⟩ + ⟨â†σ̂1
z⟩⟨â⟩ + ⟨âσ̂1

z⟩⟨â†⟩ − 2⟨â†⟩⟨â⟩⟨σ̂1
z⟩

= ⟨â†â⟩⟨σ̂1
z⟩, (3.56)

where we have taken ⟨â⟩ = ⟨â†⟩ = 0 because of the phase invariance. Then the equa-
tion (3.55) can be written as

d

dt
⟨â†σ̂1

ge⟩ = −1
2(κ + R + γs + ν − 2iδ)⟨â†σ̂1

ge⟩

+ ig(⟨â†â⟩⟨σ̂1
z⟩ + 1

2(1 + ⟨σ̂1
z⟩) + ig(N − 1)⟨σ̂1

egσ̂−
2 ⟩.

(3.57)
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To get a complete set, we need also equations for ⟨σ̂1
egσ̂2

ge⟩ and ⟨â†â⟩:

d

dt
⟨σ̂1

egσ̂2
ge⟩ = −

+
R + γs + ν

1
⟨σ̂1

egσ̂2
ge⟩ − ig⟨σ̂z

1⟩(⟨â†σ̂1
ge⟩ − ⟨âσ̂1

eg⟩),
d

dt
⟨â†â⟩ = −κ⟨â†â⟩ − iNg(⟨â†σ̂1

ge⟩ − ⟨âσ̂1
eg⟩).

(3.58)

In chapter 4, we will get second-order cumulant equations for an inhomogeneous sys-
tem. Also, the higher-order cumulant equations can be calculated using the package
QuantumCumulants.jl [31].

3.6.1 Linewidth
Now, using the two-time expectation value of the cavity operator, cumulant expansion,
and the quantum regression theorem, we can calculate the spectral linewidth of the
emitted cavity field. As it was shown in section 3.2.1, the spectrum is related to the 2-time
correlation function ⟨â†(t + τ)â(t)⟩. To get the equation for this function, one can fix t,
multiply the equation for dâ†(t + τ)/dτ (3.23) by â(t) from right, and perform ensemble
averaging keeping in mind that quantum noise terms taken after do not correlate with
system operators taken before (causality). We get

d

dτ
⟨â†(t + τ)â(t)⟩ =

+
iδc − κ

2

1
⟨â†(t + τ)â(t)⟩ + iNg⟨σ̂1

eg(t + τ)â(t)⟩. (3.59)

Similarly, from the equation (3.25) we derive

d

dt
⟨σ̂1

eg(t + τ)â(t)⟩ =
+

iΔa − Γ
2

1
⟨σ̂1

eg(t + τ)â(t)⟩ − ig⟨â†(t + τ)σ̂1
z(t + τ)â(t)⟩, (3.60)

where Γ = R + γs + ν, and ⟨â†(t + τ)σ̂1
z(t + τ)â(t)⟩ can be decomposed to ⟨σ̂1

z(t +
τ)⟩⟨â†(t + τ)â(t)⟩ using cumulant expansion. In the steady-state regime we can also
replace ⟨σ̂1

z(t + τ)⟩ by its steady-state value ⟨σ̂z⟩.
Consider the resonant case δc = Δa = 0. We have

d

dt
⟨â†(t + τ)â(t)⟩ = −κ

2 ⟨â†(t + τ)â(t)⟩ + iNg⟨σ̂1
eg(t + τ)â(t)⟩,

d

dt
⟨σ̂1

eg(t + τ)â(t)⟩ = −ig⟨σ̂z⟩⟨â†(t + τ)â(t)⟩ − Γ
2 ⟨σ̂1

eg(t + τ)â(t)⟩.
(3.61)

This is a set of linear differential equations for ⟨â†(t+τ)â(t)⟩ = C(τ) and ⟨σ̂1
eg(t+τ)â(t)⟩ =

A(τ), which has a form

d

dτ
C(τ) = c1C(τ) + c2A(τ),

d

dτ
A(τ) = c3C(τ) + c4A(τ).

(3.62)
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3.6. Second-order cumulant theory

Applying Laplace transformation to both sides, one can write

−C(0) + sC(s) = c1C(s) + c2A(s),
−A(0) + sA(s) = c3C(s) + c4A(s),

(3.63)

where

C(s) =
& ∞

0
e−sτ C(τ)dτ,

A(s) =
& ∞

0
e−sτ A(τ)dτ.

(3.64)

from equation (3.63), we can write

C(s) = (s − c4)C(0) + c2A(0)
(s − c1)(s − c4) − c2c3

= X*
s − Δν+

2
0 + Y*

s − Δν−
2

0 (3.65)

where

Δν± = −(c1 + c4) ∓
4

(c1 + c4)2 − 4(c1c4 − c2c3)

= κ + Γ
2 ∓ 1

2

4
(κ − Γ)2 + 4Ng2⟨σ̂1

z⟩
(3.66)

Using inverse Laplace transformation, we get

⟨â†(τ + t)â(t)⟩ = C(τ) = X e− δν+τ

2 + Ye− δν−τ

2 (3.67)

Since Δν+ ≪ Δν−, the second term (which corresponds to fast relaxation of the cavity
field towards the quasi-equilibrium with “slow” atomic variables) decays fast to zero, so
the first term dominates. Then, since the Fourier transform of an exponential with decay
rate Δν is a Lorentzian with a full-width half-maximum linewidth Δν, the steady state
linewidth Δν of our system is described by (see equations (3.15) and (3.16))

Δν = κ + Γ
2 − 1

2

4
(κ − Γ)2 + 4Ng2⟨σ̂1

z⟩ (3.68)

This is an example of a simple homogeneous system, where the linewidth can be found
analytically. For more complex systems, such as inhomogeneous systems considered in
chapter 4, or solvable homogenous system, as we will see in chapter 4 and chapter 6 for a
relatively more complex set of equations, including inhomogeneity, to find the linewidth,
we use other methods based on the Wiener-Khintchine theorem (3.14).
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3. Methods of simulation of superradiant lasers

3.7 Full quantum description for homogeneous system
The bulk of this section has been presented as part of [32]
As we mentioned above, the density matrix describing a system of N 2-level atoms
has 4N elements. This makes the full quantum description of even relatively small
systems, with few tens of atoms, computationally intractable. However, for homogeneous
systems of identical atoms, not all the elements of the density matrix are independent.
In [33] evolution operators such as (3.1) – (3.3) were shown to be invariant under SU(4)
transformations, and the master equation can be solved for intermediate-size systems
with up to a few hundred atoms [28]. In the present section, we describe the method of
calculation of the master equation for a bad cavity laser with a homogeneous ensemble of
2-level atoms, based on the symmetry between the atoms. However, instead of expressing
the superoperators via the elements of the respective representations of the SU(4) group,
as in [33], we build the respective matrix elements explicitly. The method described in
this section has been presented in the results of the EU project FET-Flag No. 820404
“iqClock”, Deliverable D6.2 [32]
We consider N 2-level atoms homogeneously coupled to the bath and (optionally) to
another part of the system. If the atoms were initially prepared in some symmetric state,
then, in the absence of relaxations, their state remains symmetric in all the subsequent
instants of time. So, in the absence of relaxations the system of such atoms can be
described as an effective “particle” with total pseudospin equal to N/2 (for composite
system consisting of such atoms plus some other quantum system, the state Ψ of the
whole system may be decomposed into |Ψ⟩ = :

m,k cmk|ψm⟩ ⊗ |φk⟩, where {|ψm⟩} are
symmetric pure states of the atoms (say, m is a z-projection of the pseudospin), and
{|φm⟩} are some basis states describing another part of the system). For our analysis, we
will consider a system consisting of atoms only, because generalization to the composite
system is straightforward, and, on top of that, we are interested in that parameter regime
of bad-cavity laser where we can adiabatically eliminate cavity field that is condition (3.31)
is satisfied.
In the presence of dissipation, the density matrix describing these atoms cannot be
decomposed into :

m,k |ψm⟩⟨ψk| [33]. However, the density matrix itself keeps the
permutation symmetry.
Let us introduce a short notation for single-atom operators

ûi = σ̂i
ee, d̂i = σ̂i

gg, ŝi = σ̂i
eg, ĉi = σ̂i

ge. (3.69)

We suppose that the atoms are initially in the fully symmetric state, which will later lead
to a fully symmetric density matrix which can be represented as

ρ̂ =
9

αβγδ

ραβγδP̂αβγδ, (3.70)

where
P̂αβγδ = S(ûαd̂β ŝγ ĉδ) ≡ 1

Cαβγδ

9
p

Ô1
p1 ⊗ ... ⊗ ÔN

pN
. (3.71)
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3.7. Full quantum description for homogeneous system

Here S means symmetrization, p = {p1, ..., pN } is an ordered set of indices 1, 2, 3 and
4 such that each of indices 1, 2, 3 and 4 appears α, β, γ and δ times respectively;
Ôi

pi
= ûi, d̂i, ŝi or ĉi at pi = 1, 2, 3 or 4 respectively (here Ôi acts on the state of ith

atom), and
Cαβγδ = (α + β + γ + δ)!

α! · β! · γ! · δ! (3.72)

is a number of the summands (this is a straightforward generalization of the binomial
coefficient).

3.7.1 Master equation with adiabatic elimination
We start from the master equation (3.37) for the bad-cavity laser with N identical 2-level
atoms with incoherent pumping, where we performed adiabatic elimination of the cavity
field. For the sake of simplicity, we take the frequency ω of our rotating frame equal to
the resonant frequency ωc of the cavity mode. Then, introducing operators

Ê =
N9

j=1
σ̂j

ee, Ĝ =
N9

j=1
σ̂j

gg, X̂ =
N9

j=1
σ̂j

ge (3.73)

we can write the master equation as
dρ̂

dt
= −iΔa

�
Êρ̂ − ρ̂Ê

�
+

9
j

�
γs

ˆ̂
D[σ̂j

ge]ρ̂ + R
ˆ̂
D[σ̂j

eg]ρ̂ + ν
ˆ̂
D[σ̂j

ee]ρ̂
!

+ 4g2

κ
ˆ̂
D[X̂]ρ̂. (3.74)

where Δa is the detuning of the atomic transition from the cavity resonant frequency.
It is convenient to introduce superoperators

ˆ̂
ELρ̂ = Êρ̂,

ˆ̂
ERρ̂ = ρ̂Ê,

ˆ̂
ELRρ̂ =

N9
j=1

σ̂j
eeρ̂σ̂j

ee

ˆ̂
GLρ̂ = Ĝρ̂,

ˆ̂
GRρ̂ = ρ̂Ĝ, B̂ρ̂ =

N9
j=1

σ̂j
geρ̂σ̂j

eg,

ˆ̂
XLρ̂ = X̂ρ̂,

ˆ̂
X+

L ρ̂ = X̂+ρ̂
ˆ̂
T ρ̂ =

N9
j=1

σ̂j
egρ̂σ̂j

ge,

ˆ̂
XRρ̂ = ρ̂X̂,

ˆ̂
X+

R ρ̂ = ρ̂X̂+.

(3.75)

Using these superoperators, one can rewrite the master equation (3.74) as
dρ̂

dt
= ˆ̂

Aρ̂, (3.76)

where
ˆ̂
A = − iΔa

�
ˆ̂
EL − ˆ̂

ER

!
− γs

2

�
ˆ̂
EL + ˆ̂

ER − 2B̂

!
− R

2

�
ˆ̂
GL + ˆ̂

GR − 2 ˆ̂
T

!
− ν

2

�
ˆ̂
EL + ˆ̂

ER − 2 ˆ̂
ELR

!
− 2g2

κ

�
ˆ̂

X+
L

ˆ̂
XL + ˆ̂

XR
ˆ̂

X+
R − 2 ˆ̂

X+
R

ˆ̂
XL

!
.

(3.77)
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3.7.2 Matrix elements of superoperators
The density matrix ρ̂ is expanded into elementary matrices P̂αβγδ with coefficients
ραβγδ. To calculate matrix elements of superoperators (3.75), one has to find how these
superoperators act on P̂αβγδ. Consider, for example, ˆ̂

XLP̂αβγδ:

ˆ̂
XLP̂αβγδ = X̂P̂αβγδ =

N9
j=1

σ̂j
geP̂αβγδ

=
N9

j=1
1̂1 ⊗ .... ⊗ ĉj ⊗ 1̂j+1 ⊗ .... ⊗ 1̂j+1 · 1

Cαβγδ

9
p

(
...Ôj

p...
.

.

(3.78)

The specific term in this double sum corresponding to jth atom and some ordered set p
of indices 1, 2, 3 and 4 appearing α, β, γ and δ times respectively contains ĉj · Ôj

p, where
Ôj

p ∈ {ûj , d̂j , ĉj , ŝj}.

Using ĉû = ĉ, ĉd̂ = 0, ĉŝ = d̂ and ĉĉ = 0, we can write
ˆ̂

XLP̂αβγδ = C1P̂α−1,β,γ,δ+1 + C2P̂α,β+1,γ−1,δ,

where the coefficients C1 and C2 are the number of terms with Ô = û and Ô = ŝ
respectively divided by Ĉαβγδ.

Another important result is C1 = Cα−1,β,γ,δ × N/Cαβγδ, where Cα−1,β,γ,δ is a number of
sets p with Ôj

p = û, and N comes from summation over j. such terms at any fixed j, and
summation over j gives another factor N . Therefore, C1 = α. Similarly, C2 = γ, and

ˆ̂
XLP̂αβγδ = α · P̂α−1,β,γ,δ+1 + γ · P̂α,β+1,γ−1,δ. (3.79)

The action of other superoperators (3.75) on P̂αβγδ can be found in the same manner. It
gives

ˆ̂
ELP̂αβγδ = (α + γ)P̂αβγδ,

ˆ̂
GLP̂αβγδ = (β + δ)P̂αβγδ,

ˆ̂
T P̂αβγδ = βP̂α+1,β−1,γ,δ,

ˆ̂
ERP̂αβγδ = (α + δ)P̂αβγδ,

ˆ̂
GRP̂αβγδ = (β + γ)P̂αβγδ, B̂P̂αβγδ = αP̂α−1,β+1,γ,δ

ˆ̂
XLP̂αβγδ = αP̂α−1,β,γ,δ+1 + γP̂α,β+1,γ−1,δ

ˆ̂
XRP̂αβγδ = βP̂α,β−1,γ,δ+1 + γP̂α+1,β,γ−1,δ

ˆ̂
X+

L P̂αβγδ = βP̂α,β−1,γ+1,δ + δP̂α+1,β,γ,δ−1,

ˆ̂
X+

R P̂αβγδ = αP̂α−1,β,γ+1,δ + δP̂α,β+1,γ,δ−1,

ˆ̂
ELRP̂αβγδ = αP̂αβγδ.

(3.80)

From (3.80) one can easily get matrix elements of all the superoperators necessary to
generate the evolution matrix of superoperator ˆ̂

A (3.77). The spectrum of the bad-cavity
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laser can be found using the Fourier transform of real part of the two-time correlation
function ⟨â†(t)â(0)⟩, where

â = −2ig

κ
X̂. (3.81)

what, in turn, can be calculated with the help of the quantum regression theorem, see
section 3.2.2. For Δa = 0, one can approximate ⟨â†(t)â(0)⟩ by n exp(−λt), and estimate
the spectral linewidth Δω as Δω ≈ 2λ, according to (3.17) .

We should note that the set of equations for non-zero elements ραβγδ of the density matrix
is linear, which allows us to use the methods of linear algebra to find the steady-state
density matrix.

3.7.3 Model without adiabatic elimination of the cavity field
In this thesis, we consider bad-cavity lasers operating in a superradiant regime, where
the condition (3.31) is fulfilled, and adiabatic elimination of the cavity field is allowed.
However, for the sake of completeness, we also present equations without adiabatic
elimination. In this case, one can use a truncated Fock state to describe cavity degrees
of freedom. Then the density matrix can be represented as

ρ̂ =
9
m,n

9
αβγδ

ραβγδ,nmP̂αβγδ ⊗ |n⟩ ⟨m| , (3.82)

where |m⟩ and |n⟩ are the Fock states of the cavity field. The master equation has the
form (3.76) with

ˆ̂
A = −iΔa

�
ˆ̂
EL − ˆ̂

ER

!
− ig

+
ˆ̂a†

L
ˆ̂

XL − ˆ̂
XR

ˆ̂a†
R + ˆ̂

X+
L

ˆ̂aL − ˆ̂aR
ˆ̂

X+
R

1
− γs

2

�
ˆ̂
EL + ˆ̂

ER − 2B̂

!
− R

2

�
ˆ̂
GL + ˆ̂

GR − 2 ˆ̂
T

!
− ν

2

�
ˆ̂
EL + ˆ̂

ER − 2 ˆ̂
ELR

!
− κ

2
(
ˆ̂a†

L
ˆ̂aL + ˆ̂aR

ˆ̂a†
R − 2ˆ̂aL

ˆ̂a†
R

.
,

(3.83)

where ˆ̂aLρ̂ = âρ̂, ˆ̂aRρ̂ = ρ̂â, ˆ̂a†
Lρ̂ = â†ρ̂, ˆ̂a†

Rρ̂ = ρ̂â†, and other superoperators are defined
using (3.80).

3.8 Comparison of different methods of simulation
As the Hilbert space describing such a system grows exponentially with the number of
atoms N , it is necessary to apply approximations to reduce the problem’s complexity.
We can’t use the full quantum solution for an arbitrarily large number of atoms, so we
need to choose the approximate method for the treatment of our system.

In this section, we compare different methods of calculation of parameters of the su-
perradiant laser on a homogeneous ensemble of 2-level atoms with incoherent pumping,
namely, the steady-state intracavity photon number n, the inversion Jz of the atoms,
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3. Methods of simulation of superradiant lasers

and the linewidth Δν of the output radiation. The methods we exploited here are the
mean-field approximation (only for n and Jz), the second-order cumulant theory, the
simulation of stochastic c-number Langevin equations (averaging over 1000 trajectories),
and the full quantum approach. We perform calculations for a relatively small ensemble
of atoms (N = 40 or N = 100).

To find the linewidth within the full quantum approach, we first found the steady-state
density matrix using the methods of linear algebra, and then we performed numerical
simulation of 2-time correlation function R(τ) = ⟨â†(t + τ)â(t)⟩ using the quantum
regression theorem, see equations (3.20) - (3.21). Then we approximated R(τ) by an
exponentially decaying function and found the linewidth using (3.17). To check this
method, we also employed another method based on Laplace transform (similar to the
one described in section (4.1.1.1) for the inhomogeneous system in the second-order
cumulant approximation) for several selected points. The results match at least in the
first 2 digits.

While the analysis closely follows that of [29], we investigate the set of parameters more
relevant for the bad-cavity lasers in the superradiant regime, where the condition (3.31)
is satisfied, and we can perform adiabatic elimination of the cavity field. Namely, we set
κ = 1 and γs = 10−6κ, assuming no dephasing (ν = 0) and no shift (Δa = δc = 0). We
performed our simulation for different values of CN = 4Ng2

κγ , and for different pumping
rates R between Rmin and Rmax, calculated according to expressions (4.19), chapter 4).

Figure 3.1: Characteristics of superradiant laser for N = 40 atoms, CN = 4000, (a): inversion,
(b): number of intracavity photons, (c): linewidth (right) calculated using different methods:
mean-field theory (orange solid curve), second-order cumulant theory (blue dashed curve), c-
number Langevin equations (black triangles) and full quantum approach (red circles).

In figure 3.1, we present the results of the calculation for N = 40 atoms, CN = 4000.
We can see that all the methods give quite similar results for the photon number and
inversion, but different methods predict different linewidths, and the positions of the
minimum also differs up to a factor of about 3. The stochastic c-number method predicts
the dependence of the linewidth on the pumping rate slightly better, at least qualitatively.
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3.8. Comparison of different methods of simulation

Figure 3.2: Characteristics of superradiant laser for N = 40 atoms at CN = 16: (a): inversion,
(b): number of intracavity photons, (c): linewidth (right) calculated using different methods
(same style-color encoding as in figure 3.1).

Next, we consider a deeper bad cavity regime with CN = 16, while keeping all other
parameters unchanged. This regime, as will be shown in the next chapter, is more relevant
to attaining the ultimately small linewidth of the bad cavity laser. Then the simulation
of c-number Langevin equations matches the full quantum solution for both inversion and
photon number, but the mean-field and the second-order cumulant methods underestimate
and overestimate these quantities, respectively, see Figure 3.2. The linewidth minimized
with respect to the pumping rate R occurs to be underestimated when using the Langevin
c-number and the second-order cumulant expansion methods, in comparison to the full
quantum solution, however, the second-order cumulant performs better.

Figure 3.3: Characteristics of superradiant laser for N = 100 atoms at CN = 16: (a): inversion,
(b): number of intracavity photons, (c): linewidth (right) calculated using different methods
(same style-color encoding as in figure 3.1).

In Figure 3.3, we present the results for N = 100 atoms and CN = 16. We see that
the agreement of the inversion and the intracavity photon number between all the

65



3. Methods of simulation of superradiant lasers

methods becomes much better than for 40 atoms (although the mean-field approach still
underestimates the intracavity photon number near the lower lasing threshold). It is
remarkable, that the results for the linewidth calculated with the help of the second-order
cumulant approach get significantly closer to the prediction of the full quantum theory.

Now, let us summarize the results. First, the mean-field approach allows us to calculate
the inversion and the intracavity photon number with a precision of about a few tens
percent or below, which makes this method suitable for such calculations, where we are
not interested in the linewidth. The second-order cumulant expansion method seems
to be well-suitable for situations where we need to calculate the linewidth, and we can
expect that the accuracy of this method increases with the number of atoms in the system.
We should note that for an inhomogeneously broadened ensemble, the atoms should be
divided into M clusters, and the number of equations in the mean-field approach scales
as M , whereas in the second-order cumulant approach as M2, what makes this method
more computationally expensive. The c-number Langevin approach seems to be not
so promising. First, it is quite expensive computationally (despite the linear scaling of
the number of equation with number M of clusters), because it requires simulation of
many trajectories and averaging over them. Second, we haven’t observed any significant
improvement in its precision for the calculation of the linewidth with an increase in the
number of atoms, in contrast to the second-order cumulant approach.

So, we can conclude that the most relevant methods are the mean-field approximation
or, if we are interested in the linewidth, the second-order cumulant approach. These
methods will be used in the subsequent chapters.
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CHAPTER 4
Ultimate stability of active optical

frequency standards

The bulk of this chapter is published in Physical Review A [11]

In this chapter, we study the ultimate stability that can be attained with a superradiant
laser and compare it with that of a passive optical clock based on an atomic ensemble
with similar characteristics. For the sake of definiteness, we consider the model of two-
level laser with continuous incoherent repumping [9], similar to the one considered in
chapter 3, but here we consider not only homogeneous but also inhomogeneous atomic
ensembles. Bad-cavity lasers based on other schemes, such as atomic beam lasers [10],
optical conveyor lasers [34], and lasers with sequential coupling of atomic ensembles
[27] should have similar ultimate characteristics, up to some numerical factors. Such a
two-level model can correctly represent the dynamic of a real multilevel superradiant laser
with continuous repumping and single lasing transition, if the lifetimes of the intermediate
levels are much shorter than any other timescale in the system except, may be, the
decay rate of the cavity field [35]. In this chapter, following [9] and [36], we will use
second-order cumulant theory which allows calculating both output power and spectrum
of the superradiant laser.

In section 4.1 we begin by providing an overview of the model and highlighting the
key aspects of the calculations. We then consider the case of a homogeneous system,
in this simplified scenario, we derive analytical expressions for the output power and
linewidth and analyze their dependencies qualitatively. Finally, we study the linewidth
quantitatively, both for the simple homogeneous model and for a more realistic model with
inhomogeneous coupling of the atoms to the cavity field and inhomogeneous broadening
of the lasing transition. We optimize the cooperativity as well as the rate of incoherent
pumping to attain a minimum linewidth at a given atomic number and cavity finesse. We
express these optimized parameters as well as the linewidth and the respective number
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of intracavity photons via characteristic properties of the atomic ensemble. In section 4.2
we present general expressions for the short-term stability of a secondary laser phase
locked to a low-power narrow-line continuous-wave bad-cavity laser. In section 4.3 we
estimate the achievable performance for ensembles of atoms trapped in an optical lattice
potential and compare the respective frequency stabilities that can be obtained with the
help of active and passive frequency standards based on such ensembles.

In the following section, we present a generic model of a two-level bad cavity laser
(superradiant laser) with incoherent pumping and derive general expressions for the
minimum linewidth Δω and the necessary set of optimized parameters.

4.1 Linewidth of a bad cavity laser

In this section, we provide an overview of how the linewidth is influenced by the character-
istics of a bad-cavity superradiant laser operating with continuous incoherent repumping,
and we estimate the minimum achievable linewidth for such a laser. We begin by con-
sidering a two-level bad-cavity laser model with incoherent pumping, as analyzed in
[9]. This type of laser operates between two lasing thresholds, Rmin and Rmax. If the
pumping rate is below Rmin, the population inversion required for lasing is not achieved.
Conversely, if the pumping rate exceeds Rmax, the coherence is destroyed, preventing
coherent light emission.

For a homogeneous system (see section 3.1), where each atom contributing to the gain has
identical parameters such as coupling strength with the cavity field, transition frequency,
and dephasing rate, and assuming the laser operates well within the range of the lower and
upper lasing thresholds, the minimum linewidth Δωmin of this laser can be approximated
as described in [9].

Δωmin ≈ Cγs = 4g2/κ. (4.1)

It may initially appear that reducing the cooperativity C as much as possible would
minimize the linewidth. However, the expression (4.1) is only valid when the pumping rate
R is much greater than the lower lasing threshold Rmin and much smaller than the upper
lasing threshold Rmax. Accurate expressions for these thresholds in the homogeneous
case will be derived in section 4.1.2. From expressions (4.19) and (4.20), it can be seen
that both lasing thresholds approach each other as cooperativity C decreases for a given
number N of atoms. As a result, the minimum linewidth is reached in a parameter range
where the condition Rmin ≪ R ≪ Rmax is no longer satisfied, and the estimate (4.1)
becomes invalid. Therefore, a more accurate estimate for Δωmin is required.

As discussed in section 3.2.2, the spectral properties of a continuous-wave laser can be
derived from the two-time correlation function of its output field, ⟨â†(t0 + τ)â(t0)⟩. In
the bad-cavity regime, this correlation is directly proportional to the atomic coherence
correlation [9], since the cavity field can be adiabatically eliminated (3.31).
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4.1.1 Inhomogeneous system: description of the model and equations

We consider an ensemble of N two-level atoms confined in space (for instance, using
an optical lattice potential) and interacting with a single cavity mode. Dipole-dipole
interactions between atoms and the collective coupling of the atoms to the bath are
neglected. The master equation governing this system can be written as

dρ̂

dt
= i

ℏ
[Ĥ, ρ̂] + κ

ˆ̂
D′[â]ρ̂ + ξ

ˆ̂
D′[â†â]ρ̂ +

N9
j=1

�
γs

ˆ̂
D′[σ̂j

ge]ρ̂ + wj
ˆ̂
D′[σ̂j

eg]ρ̂ + νj
ˆ̂
D′[σ̂j

ee]ρ̂
!

(4.2)

The Hamiltonian Ĥ in the rotating frame can be written as

Ĥ = ℏ

δcâ
†â +

N9
j=1

gj(σ̂j
egâ + â†σ̂j

ge) +
9

j

Δj σ̂j
ee

 , (4.3)

Here, γs represents the spontaneous decay rate of the upper lasing state, ξ is the dephasing
rate of the cavity field, and Rj and νj denote the incoherent pumping and dephasing
rates of the jth atom, respectively. A closed set of differential equations for the stochastic
means of the system operators can be derived using a second-order cumulant expansion
and the phase invariance, as described in section 3.6.

d

dt
⟨â†â⟩ = −κ⟨â†â⟩ + i

N9
j=1

gj(⟨σ̂j
egâ⟩ − ⟨â†σ̂j

ge⟩)

d

dt
⟨σ̂k

egâ⟩ = −
�

κ′
k

2 + iδ′
k

!
σ̂k

eg + igk

�
⟨â†â⟩(1 − 2⟨σ̂k

ee⟩) − ⟨σ̂k
ee⟩

�
− i

9
j ̸=k

gj⟨σ̂k
egσ̂j

ge⟩

d

dt
⟨σ̂k

ee⟩ = igk

�
⟨â†σ̂k

ge⟩ − ⟨σ̂k
egâ⟩

�
− (γs + Rk)⟨σ̂k

ee⟩ + Rk

d

dt
⟨σ̂k

egσ̂l
ge⟩ = − �

Γ′
kl + iΔlk

 ⟨σ̂k
egσ̂l

ge⟩ − igk⟨â†σ̂l
ge⟩(2⟨σ̂k

ee⟩ − 1) + igl⟨σ̂k
egâ⟩(2⟨σ̂l

ee⟩ − 1)
(4.4)

Here, κ′
k = κ + ξ + Rk + νk + γs, δ′

k = δc − Δk, Γ′
kl = γs + (Rk + Rl + νk + νl)/2, and

Δlk = Δl − Δk. As can be observed from equations (4.4), the number of equations scales
quadratically with the number of atoms. For practical simulations involving ensembles of
tens of thousands of atoms, it is necessary to group the atoms into M clusters, where all
Nk atoms in the kth cluster are treated as identical. This clustering approach will be
utilized in chapter 6 for modeling our mHz laser, discussed in chapter 5.

If the condition (3.31) is satisfied then it is advantageous to perform an adiabatic
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elimination of the fast variables ⟨â†â⟩, ⟨â†σ̂ge⟩, and ⟨σ̂egâ⟩. Then, one can express

⟨â†â⟩ =
�
κ −

9
k

4Nkg2
kκ′

k

κ′2
k + 4δ′2

k

[2⟨σ̂k
ee⟩ − 1]

!−1

×
9

k

4gkNk

κ′2
k + 4δ′2

k

�
κ′

k

+
gk⟨σ̂k

ee⟩ +
9

j

N ′
j,kgjRe(⟨σ̂k

egσ̂j
ge⟩)

1

+ 2δ′
k

+ 9
j

N ′
j,kgjIm(⟨σ̂k

egσ̂j
ge⟩)

1! (4.5)

and

⟨σ̂k
egâ⟩ = 2

κ′
k + 2iδ′

k

igk

�
⟨â†â⟩(1 − 2⟨σ̂k

ee⟩) − ⟨σ̂k
ee⟩

�
− i

9
j

N ′
j,kgj⟨σ̂k

egσ̂j
ge⟩

 . (4.6)

Here, the sums are taken over clusters instead of atoms, Nk is the number of atoms in
the kth cluster, and

N ′
j,k =



Nj , j ̸= k
max(0, Nk − 1), j = k

(4.7)

Substituting expressions (4.5) and (4.6) into equations (4.4), and resolving them, one
can find the steady-state values of ⟨σ̂j

egâ⟩ and ⟨σ̂j
ee⟩, assuming the atomic dipoles get

synchronized. Then one can express the steady-state values of ⟨â†â⟩, ⟨σ̂j
egâ⟩ and ⟨â†σ̂j

ge⟩
with the help of equations (4.5) and (4.6). The output power P of the laser is equal to

P = ηℏωκ⟨â†â⟩, (4.8)

where η is the efficiency of the outcoupling mirror, and ω is the frequency of the laser
radiation.

4.1.1.1 Spectrum of the superradiant laser

Similar to section 3.2, using the Wiener-Khintchine theorem (3.14), the spectral density
SE(ω) of the signal can be obtained as a real part of the Fourier transform of the 2-time
correlation function :

SE(ω) ∝ Re
∞&

0

⟨â†(t0 + τ)â(t0)⟩e−iωτ dτ. (4.9)

In established steady-state regime ⟨â†(t0 + τ)â(t0)⟩ = ⟨â†(τ)â(0)⟩ ≡ ⟨â†â0⟩, where
â† = â†(t), and â0 = â(0). To find this function, one needs to solve the set of equations
obtained with the help of the quantum regression theorem, see section 3.2.2:

d

dt
⟨â†â0⟩ = −

�
κ + ξ

2 − iδc

!
⟨â†â0⟩ + i

9
k

Nkgk

�
σ̂k

egâ0
�

, (4.10)
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d

dt
⟨σ̂k

egâ0⟩ = −
�

γs + Rk + νk

2 − iΔk

!
⟨σ̂k

egâ0⟩ − igk

�
σ̂k

z

�
⟨â†â0⟩. (4.11)

where
�
σ̂k

z

�
=

�
σ̂k

ee

�
−

�
σ̂k

gg

�
. Substituting here the steady state values of ⟨σ̂k

z ⟩ into (4.11)
and (4.10) and performing Laplace transform, one gets the set of linear equations of the
form (A + I s) · X = B̂, where I is identity matrix,

A =


κ+ξ

2 − iδc −iN1g1 · · · · · · −iNM gM

ig1
�
σ1

z

� γs+R1+ν1
2 − iΔ1 · · · 0 · · · 0

...
... . . . ...

igM

�
σM

z

�
0 · · · 0 · · · γs+RM +νM

2 − iΔM

 ,

B̂ =


⟨â†â⟩s

⟨σ̂1
egâ⟩s
...

⟨σ̂1
egâ⟩s

 , X =


L{⟨â†â⟩}(s)
L{⟨σ̂1

egâ⟩}(s)
...

L{⟨σ̂1
egâ⟩}(s)


(4.12)

L{f}(s) =
' ∞

0 f(t)e−stdt is a Laplace transform, and index s denotes “steady-state”.
Using the connection between the Laplace and Fourier transforms, the spectral density

S(ω) ∝ Re
�
L{⟨â†â⟩}(iω)

�
. (4.13)

can be found with the help of (4.12) and (4.13), and one can calculate its full linewidth
at half maximum Δω.

4.1.2 Homogeneous case: analytic expressions and qualitative
considerations

In this section, we examine the simplest case of a bad-cavity laser with homogeneous
gain, where all atoms have identical transition frequencies ωa, pumping and dephasing
rates R and ν, and coupling strengths g to the cavity field. The steady-state solution and
linewidth for this simplified system, within the second-order cumulant approximation,
can be determined analytically or semi-analytically. This analysis has been partially
conducted in [9], and here we provide an overview of the main results and derive a few
additional useful relations.

First, from equations (4.4) one can easily describe the homogeneous case

⟨â†â⟩s = N(γs + R)
2κ

+
R − γs

R + γs
− ⟨σ̂z⟩s

1
⟨σ̂1

egσ̂2
ge⟩s = ⟨σ̂z⟩s(γs + R)

2Γ′

+
R − γs

R + γs
− ⟨σ̂z⟩z

1 (4.14)
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where Γ′ = γs + R + ν, κ′ = κ + ξ + Γ′. Substituting these expressions into equation
(4.4), one can obtain, after simplification, the following quadratic equation for ⟨σ̂z⟩s:

⟨σ̂z⟩2
s

+
N(γs + R)

2κ
+ (N − 1)(γs + R)

2Γ′

1
+ (R − γs)(κ′2 + 4(δc − Δ)2)

8g2κ′ − 1
2

−⟨σ̂z⟩s

�
(R + γs)(κ′2 + 4(δc − Δ)2)

8g2κ′ + 1
2 + (R − γs)

2

+
N

κ
+ N − 1

Γ′

1�
= 0 (4.15)

Solving this equation, one can get the steady-state values ⟨σ̂z⟩s, as well as ⟨â†â⟩s and
⟨σ̂1

egσ̂2
ge⟩s with the help of (4.5) and (4.6).

For the sake of simplicity, we assume that all the atoms are in resonance with the cavity
(δc = Δ = 0), and the cavity dephasing ξ is negligible (ξ = 0). Then the equation (4.15)
simplifies to

⟨σ̂z⟩2
s

+
N(γs + R)

2κ
+ (N − 1)(γs + R)

2Γ′

1
+ (R − γs)κ′

8g2 − 1
2

−⟨σ̂z⟩s

�(R + γs)κ′

8g2 + 1
2 + (R − γs)

2

+
N

κ
+ N − 1

Γ′

1!
= 0. (4.16)

Consider the equation (4.16), taking first N − 1 ≈ N and neglecting γs, R and g in
comparison with κ, one can find the approximate solutions as

⟨σ̂z⟩s,1 ≈ κΓ′

4g2N
. ⟨σ̂z⟩s,2 ≈ R − γs

R + γs
, (4.17)

From the above solution, it is evident that only the first solution yields ⟨â†â⟩s ̸= 0. This
solution enables us to estimate the lasing thresholds. By substituting (4.17) into (4.14),
we can determine that lasing is possible, i.e., ⟨â†â⟩s > 0, only if

R − γs

R + γs
>

κ(γs + R + ν)
4g2N

= γs + R + ν

NCγs
, (4.18)

is satisfied, resulting in the limits of the pumping rate R:

Rmin = NCγs − ν − 6
(NCγs − ν)2 − 8γ2

s NC

2 − γs,

Rmax = NCγs − ν +
6

(NCγs − ν)2 − 8γ2
s NC

2 − γs.

(4.19)

With γs, ν ≪ NCγs it gives

Rmin ≈ γs
NCγs + ν

NCγs − ν
,

Rmax ≈ NCγs − ν,

(4.20)

In accordance with [37], the spectrum for the homogeneous system can be obtained from
the set of linear equations derived from (4.13) and (4.12). Instead of performing a Laplace
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4.1. Linewidth of a bad cavity laser

transform, we can calculate the full width at half maximum (FWHM) Δω as Δω = 2|λ|,
where λ is the smallest in absolute value eigenvalue of the matrix for this system. This
can be demonstrated by performing a Fourier transform of the exponentially decaying
term in ⟨â†â0⟩. Assuming κ ≫ |λ|, the linewidth can be expressed as

Δω = Γ′ − 4g2N⟨σ̂z⟩s

κ
. (4.21)

In fact, substituting ⟨σ̂z⟩s from (4.17) into (4.21) results in Δω = 0, so to calculate the
linewidth we need to go beyond the approximation that we have used to derive (4.17). A
direct approach to determine Δω would involve solving the quadratic equation (4.16)
exactly; however, the resulting expression is too complex for a straightforward qualitative
analysis. Instead, we can calculate a correction to the approximate solution (4.17) by
expanding the coefficients of the equation (4.21) into a Fourier series.

Δω ≈ Γ′(Γ′ + NCγs)
2⟨â†â⟩s

− Γ′

N
. (4.22)

In the limit where γs, ν ≪ R ≪ NCγs, the linewidth approximates to Δω ≈ Cγs.
This result, reported in [9], represents the minimum attainable linewidth for a given
cooperativity C. However, C cannot be arbitrarily small, as this would lead to a situation
where Rmin > Rmax, making lasing impossible. The minimum value of C, above which
lasing remains feasible, can be determined by setting Rmin equal to Rmax in (4.19), which
yields

(NCminγs − ν)2 = 8NCminγ2
s . (4.23)

For ν = 0, the minimum value of C is Cmin = 8/N . Furthermore, at very small C, the
condition γs, ν ≪ R ≪ NCγs cannot be satisfied, and thus the optimal value of C, where
the minimum linewidth is achieved, is larger than but proportional to Cmin.

We can conclude that the minimum attainable linewidth Δωmin is proportional to
γs/N . Therefore, it is convenient to express Δω in units of γs/N as a function of CN .
Additionally, from expressions (4.14) and (4.17), we observe that the dimensionless value
⟨â†â⟩κ/(Nγs) is independent of κ and N for given values of CN , R/γs, and ν/γs.

4.1.3 Minimized Linewidth
In this subsection, we investigate in more detail the dependence of the optimized spectral
linewidth Δω on various parameters of the superradiance laser. First, we consider the
homogeneous case. In Figure 4.1, we present the linewidth Δω for different values of
CN as a function of incoherent repumping rate R, calculated according to the method
described in subsection 4.1.2. One can see that, being expressed in units of γs/N , all
the linewidths show quite similar behavior, except near the lower and the upper lasing
thresholds.

For each curve, similar to those shown in Figure 4.2, we can determine the minimum
linewidth Δωmin, which is achieved at some optimal repumping rate Ropt. Figure 4.2
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4. Ultimate stability of active optical frequency standards

Figure 4.1: Dependency of linewidth Δω on repumping rate R for a homogeneous system at
different values of CN for different values of number N of atoms and finesse F of the cavity. (a):
N = 104, F = 104. (b): N = 105, F = 105. In both cases the atomic dephasing rate is ν = 0.1 s−1

and the cavity length is lcav = 10 cm, which corresponds to κ = πc/(F lcav) ≈ 9.4 × 105 s−1 and
κ ≈ 9.4 × 104 s−1 respectively.

presents the dependence of these minimized linewidths on CN for different values of
the atomic dephasing rate ν, the number of atoms N , and the cavity finesse F . It is
noteworthy that the value of Δωmin, when expressed in units of γs/N , as well as the
optimal repumping rate Ropt, do not depend on N (i.e., the optimized linewidth Δωmin
is inversely proportional to N at a given value of CN). Similarly, the ratio of ⟨â†â⟩ · κ to
Nγs corresponding to the minimized linewidth, as well as the optimal repumping rate
Ropt, depending on the atomic dephasing rate ν but not on F or N . In this example,
the cavity length lcav is set to lcav = 10 cm; however, the results are not sensitive to
variations in the cavity length as long as the laser operates in the bad-cavity regime, as
discussed in section 4.3.

It is also important to note that the quantity ⟨â†â⟩ · κ/(Nγs) has a straightforward
physical interpretation: it represents the ratio of the number of photons emitted from the
cavity mode (assuming perfect outcoupling with η = 1) to the single-atom spontaneous
emission rate γs multiplied by the number of atoms. Near the maximum of the output
power, this ratio is proportional to N . However, near the minimum of the linewidth, it is
independent of N . In the absence of atomic dephasing, the minimum attainable linewidth
(optimized by both the repumping rate R and the cooperativity C) is approximately
Δopt ≈ 64γs/N .

Up to now, we calculated the line widths for a fully homogeneous model. However, in
real systems, different atoms may experience varying level shifts, dephasing rates due
to interactions with the environment, and pumping rates. Furthermore, atoms may be
coupled differently to the superradiant cavity field. This is particularly evident when
atoms trapped within a magic optical lattice inside the superradiant cavity are coupled
to the standing-wave mode of the cavity. This coupling discrepancy arises due to the
mismatch between the magic wavelength that traps the atoms and the wavelength of the
superradiant mode, as detailed in expression 4.38 in section 4.3. The spectral linewidth

74



4.1. Linewidth of a bad cavity laser

Figure 4.2: Dependency of minimum attainable linewidth Δωmin, the optimal repumping rate
Ropt in units of γs ((c),(d)), and the respective intracavity photon number ⟨â†â⟩opt multiplied by
κ/(Nγs) ((e),(f))) on the parameter CN for different values of atomic dephasing ν. The graphs
are for different values of number N of atoms and finesse F of the cavity: (a, c, e): N = 104,
F = 104. (b, d, f): N = 105, F = 105. In (a) and (b), the asymptotic CN behavior is indicated
by a black line.

of the output radiation can be computed using the method outlined in subsection 4.1.1.
In Figure 4.3, we present the dependencies of the minimum attainable linewidth Δωmin
and the intracavity photon number ⟨â†â⟩ on cooperativity CN , calculated for repumping
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4. Ultimate stability of active optical frequency standards

Figure 4.3: Dependency of minimum attainable linewidth Δωmin in units of γs/N (a), and the
respective intracavity photon number ⟨â†â⟩opt multiplied by κ/(Nγs) (b) on the parameter CN
for a system with inhomogeneous cosine-modulated coupling (thick curves) system for different
values of atomic dephasing rate ν at N = 105, F = 105. The cavity length is lcav = 10 cm. Thin
curves represent the linewidths and the intracavity photon numbers calculated according to the
homogeneous model, the same colour and style corresponds to the same value of ν.

rates Ropt that minimize the linewidth. The atoms were grouped into M = 21 clusters,
each containing an equal number of atoms. The coupling strengthes gj for the jth cluster
were chosen to be proportional to cos

(
π(j−0.5)

2M

.
; all other parameters were kept the same

across clusters, and Δj = δc = ξ = 0. The single-atom cooperativity C is redefined
according to

CN =
9

j

4g2
j

κγs
. (4.24)

For comparison, we present the dependencies of Δmin and ⟨â†â⟩opt calculated using
the homogeneous model. It can be observed that the homogeneous model slightly
underestimates the attainable linewidth and overestimates the intracavity photon number,
both by a factor of approximately 1.4 near the optimally chosen CN . Specifically, at
ν = 12γs, the minimum linewidth is Δω ≈ 4.3 × 102γs/N for inhomogeneous coupling,
whereas it is Δω ≈ 3.1 × 102γs/N for homogeneous coupling.

Figure 4.4 illustrates the minimized linewidth Δmin for a system where both the coupling
of the atoms to the cavity mode is inhomogeneous, and the lasing transitions in different
atoms experience different shifts Δj . These shifts can arise from variations in environmen-
tal parameters across the atomic ensemble. In this scenario, we considered the simplest
case where the atomic detunings Δj are uniformly distributed over 11 clusters within
±Δ0, and the couplings are distributed over 7 clusters, resulting in a total of 77 clusters.
At ν = Δ0 = 12γs, the minimum attainable linewidth is Δωmin ≈ 7 × 102 γs/N , whereas
increasing Δ0 to 120 γs raises the linewidth to approximately Δωmin ≈ 4.65 × 103 γs/N .

Finally, it is useful to consider the dependence of the linewidth Δωopt, which is doubly
minimized with respect to both R and CN , on the dephasing rate ν and the inhomogeneous
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Figure 4.4: Dependency of minimum attainable linewidth Δωmin in units of γs/N (a), and the
respective intracavity photon number ⟨â†â⟩opt multiplied by κ/(Nγs) (b) on the parameter CN
for a system with inhomogeneous cosine-modulated coupling for different values of broadening
Δ0 at N = 105, F = 105. The atomic dephasing rate is ν = 0 (thick curves), and ν = 12γs (thin
curves; only for Δ0 = 12γs and Δ0 = 120γs, the same color-style encoding corresponds to the
same values of Δ0). The cavity length is lcav = 10 cm.

broadening Δ0. By fitting the results of the simulations, we obtain the estimated linewidth
in the following form:

Δωopt ≈ (90γs + 30ν + 35Δ0)/N. (4.25)

Expressing the linewidth via the more useful dispersion of the shifts Δ′
0 = Δ0/

√
3 for the

flat distribution assumed in the simulations, gives approximately

Δωopt ≈ (90γs + 30ν + 60Δ′
0)/N (4.26)

Similarly, one can find approximate expressions for the optimal pumping rate Ropt, for
the collective cooperativity CNopt, and for the intracavity photon number, where the
smallest linewidth Δopt is achieved:

Ropt ≈ 5γs + 1.13ν + 1.5Δ′
0 (4.27)

CNopt ≈ 25 + 5.5 ν

γs
+ 20Δ′

0
γs

(4.28)

⟨â†â⟩opt ≈ N

κ

*
0.9γs + 0.25ν + 1.45Δ′

0
0

(4.29)

4.2 Active optical frequency standard and its stability
The spectral characteristics of the output field E of a bad cavity laser can be described
by its power spectral density SE(f). This can be derived from the two-time correlation
function ⟨â†(t0 + τ)â(t0)⟩ using the Wiener-Khintchine theorem, see equation (3.14), and
[24, 25]. To a first approximation, ⟨â†(t0 +τ)â(t0)⟩ can be represented by an exponentially
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decaying function, which corresponds to a Lorentzian lineshape for SE(f) centered at
the ordinary frequency f0 = ω0/(2π) with a half-width of Δf = Δω/(2π). This type of
signal exhibits white frequency noise, with a single-sided spectral power density Sy(f) of
fractional frequency fluctuations y = Δω/ω0, given by

Sy(f) = Δf

πf2
0

= 2Δω

ω2
0

, (4.30)

corresponding to a spectral power density Sφ(f) of phase fluctuations

Sφ(f) = Δf

πf2 = 2Δωf2, (4.31)

and Allan deviation

σ′
y(τ) =

5
Δω

ω2
0τ

. (4.32)

Furthermore, due to the finite rate of emitted photons, the field with power P exhibits
quantum fluctuations, which result in a limited signal-to-noise ratio (SNR) given by the
ratio of signal power to the noise power per unit bandwidth, expressed as SNR = P/(ℏω0)
[38]. These fluctuations manifest as white amplitude and phase noise in the signal.
When the active-laser output is heterodyned with an ideal, powerful, and perfectly stable
continuous-wave (cw) laser, the amplitude noise generally does not significantly affect
frequency stability. In this case, the power spectral density of the white phase noise Sφ

is given by
Sφ(f) = SNR−1 = ℏω0

P
, (4.33)

with the corresponding Allan deviation [39, 40]

σ′′
y (τ) = 1

τ

5
3ℏfh

ω0P
. (4.34)

As the Allan deviation would diverge for white phase noise with unlimited bandwidth,
the noise is set to zero for frequencies above a cut-off frequency fh (in ordinary frequency
units) to obtain a finite value. In practice, this low-pass behavior can appear from the
bandwidth of a phase-locked loop using the heterodyne signal.

To avoid the dependence on the arbitrary cut-off frequency, in this case, the modified
Allan deviation is often used:

mod σ′′
y (τ) = 1

τ3/2

5
3ℏ

2ω0P
. (4.35)

Adding the random walk noise of the phase associated with damping of the two-time
correlation of the cavity field and the white phase noise associated with shot noise in the
number of emitted photons results in the overall Allan deviation

σy(τ) =
4

(σ′
y(τ))2 + (σ′′

y (τ))2 =
5

Δω

ω2
0τ

+ 3ℏfh

ω0Pτ2 . (4.36)
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and the overall modified Allan deviation

mod σy(τ) =
4

mod σ′
y(τ)2 + mod σ′′

y (τ)2 =
5

Δω

2ω2
0τ

+ 3ℏ
2ω0Pτ3 . (4.37)

At short averaging times τ it is determined by the bad-cavity laser’s output power P
and at long times by its linewidth Δω.

The contribution σ′′
y (τ) (4.34) to the total instability σy(τ) is associated with photon shot

noise. Its impact depends on the bandwidth of the feedback loop used to phase-lock a
secondary laser with good short-term stability to the bad cavity laser (see the discussion
in section 4.3). On the other hand, the contribution σ′

y(τ) (4.32) is more fundamental,
as it does not depend on the characteristics of the secondary laser and determines the
stability limit over longer timescales.

4.3 Estimation of attainable stability
To perform quantitative estimations, we need to consider realistic parameters of the
atomic ensemble. The double forbidden 1S0 ↔ 3P0 transition (clock transition) in
fermionic isotopes of alkaline-earth-like atoms (Be, Mg, Ca, Sr, Zn, Cd, Hg, and Yb)
seems to be a good choice for optical clocks with neutral atoms. This transition is totally
forbidden in bosonic isotopes and becomes slightly allowed in fermionic isotopes due to
hyperfine mixing. These atoms can be trapped in a magic-wavelength optical lattice
potential and pumped into the upper 3P0 lasing state.

In an active optical clock, the clock transition should be coupled to a high-finesse cavity
in the strong cooperative coupling regime, which is problematic for wavelengths around
458 nm (corresponding to the clock transition in Mg) and shorter. Therefore, Ca, Sr,
and Yb, with clock transition wavelengths λ of 660, 698, and 578 nm, respectively, are
the most feasible candidates for the role of gain atoms in active optical clocks.

We will primarily perform our estimations for the 87Sr isotope because, first, this element
is the most used one in modern optical clocks with neutral atoms, and its relevant
characteristics are the most studied among all the alkaline-earth-like atoms. Secondly,
the natural linewidth of the clock transition in 87Sr (γs = 8.48×10−3 s−1 [41]) lies between
the linewidths of 43Ca (2.2 × 10−3 s−1) and Yb (43.5 × 10−3 s−1 and 38.5 × 10−3 s−1 for
171Yb and 173Yb, respectively) [42].

The finesse F of the best cavities at a wavelength of 698 nm can reach values of up to
106. However, it is quite difficult to build such a cavity. More feasible finesse values
would range from tens to hundreds of thousands. For the sake of definiteness, we take
F = 105 as a typical parameter.

The coupling strengths gj between the lasing transition in the jth atom and the cavity
field can be estimated as

gj ≈ 1
wc

5
6c3γs

lcavω2
0

cos(k0zj), (4.38)
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where k0 = ω0/c is the wave number of the cavity mode, wc is the cavity waist radius,
and zj is the z-coordinate of the jth atom along the cavity axis [43]. For the sake of
simplicity, here we neglect the dependency of the coupling strength g on the distance
from the atom to the cavity axis, which is proportional to exp(−(x2

j + y2
j )/w2

c ) (this
dependency can be relevant for atoms trapped in 2D or 3D optical lattices as well as for
relatively hot atomic ensembles in a shallow 1D optical lattice).

Note that the cooperativity C = 4 :
j g2

j /(Nκγs) does not depend on the length of the
cavity lcav but only on the cavity finesse F and the cavity mode waist wc, because
both g2

j and κ are inversely proportional to lcav. Therefore, the cavity length lcav is not
a very important parameter, as long as the energy decay rate κ = πc/(lcavF) of the
cavity mode is much larger than the linewidth of the laser gain. For the calculations
performed in section 4.1.3, we take lcav = 10 cm, which corresponds to a decay rate
κ = 9.42 × 104 s−1 ≈ 2π × 15 Hz at F = 105.

Let us first compare the ultimate stability of an incoherently pumped active optical
frequency standard with the stability of a quantum projection noise (QPN) limited passive
frequency standard, assuming the same number of trapped atoms in both standards and
no inhomogeneous broadening or decoherence. The fundamental limit of the superradiant
laser linewidth is then Δω ≈ 90 γs/N , as follows from expression (4.26). This corresponds
to a short-term stability

σy,lim(τ) ≈ 1
ω

7
90γs

Nτ
≈ 9.5

ω

7
γs

Nτ
. (4.39)

For passive optical clocks, the quantum projection noise limited stability σy,QPN,Rams and
σy,QPN,Rabi for Ramsey and Rabi interrogation schemes respectively can be estimated as
[3, 44]

σy,QPN,Rams(τ) = 1
ω

6
NTpτ

, (4.40)

σy,QPN,Rabi(τ) ≈ 1.69
ω

6
NTpτ

, (4.41)

If the total Rabi or Ramsey interrogation time Tp is much longer than all the other
durations required for state preparation and measurement, and if it is much shorter
than the excited state lifetime 1/γs, then comparing equations (4.39) with (4.40) and
(4.41), one can see that the ultimate stability (4.39) attainable with an active optical
clock with incoherent pumping can be matched by the QPN limited stability of a
passive clock, at interrogation times of Tp = 1/(90 γs) ≈ 0.011/γs for Ramsey, and at
Tp = 1.692/(90 γs) ≈ 0.032/γs for Rabi interrogation. For clocks using 87Sr, these times
are Tp = 1.31 s for Ramsey, and Tp = 3.74 s for Rabi interrogation. For the 1S0 ↔ 3P0
transition in 173Yb, the corresponding times are 0.25 s and 0.72 s respectively, and for
43Ca 5.05 s and 14.4 s.

A more realistic comparison between the achievable stability of active and passive optical
frequency standards must additionally account for the dephasing of the atomic transition,

80



4.3. Estimation of attainable stability

as well as imperfections of the local oscillator in a passive clock. The transverse dephasing
rate ν = 2/T2 of the atomic transition is limited by Raman scattering of photons from
the optical lattice potential [45] and by site-to-site tunneling of the atoms [46].

In a shallow cubic 3D optical lattice with 87Sr [47], an optimized coherence time T2 ≈ 10 s
was achieved, corresponding to ν ≈ 0.2 s−1. This decoherence time may be further
reduced using more technically challenging setups, such as optical lattices with increased
lattice constants formed by interfering laser beams at different angles or by optical tweezer
arrays [47].

Moreover, collisions with residual background gas also destroy the coherence and reduce
the trap lifetime. From this point of view, ν = 0.2 s−1 seems to be a good estimate
for the minimum atomic decoherence rate that can be achieved without extraordinary
efforts. Assuming an inhomogeneous broadening Δ0 of the atomic ensemble of Δ0 ≈ 2π ×
15 mHz ≈ 0.09 s−1, one can estimate the optimized linewidth Δωopt of the superradiance
laser as Δωopt ≈ 10

N s−1, corresponding to a stability of a 87Sr active clock.

σ′
y(τ) = 1

ω

5
Δω

τ
≈ 1.17 × 10−15

√
N τ

. (4.42)

For N = 104 it results in an instability of 10−17 at 1 s of averaging, and of 10−18 after
100 seconds, whereas a bad-cavity laser with N = 105 atoms would provide an instability
of σ′

y(τ) ≈ 3.7 × 10−18/
6

τ [s].

Let us now compare this stability with the one that can be attained in a passive clock with
the same number of atoms. An ideal quantum projection noise-limited, zero dead time,
passive 87Sr optical clock can attain such stability at interrogation times of Tp = 0.1 s
for Ramsey, and Tp = 0.29 s for Rabi interrogation, as follows from equations (4.40)
and (4.41). These interrogation times are short compared to the inverse inhomogeneous
broadening and to the decoherence time of the atomic ensemble as estimated above, thus,
these effects would not yet limit the passive clock. However, in a passive optical clock
based on the sequential discontinuous interrogation of the clock transition in single atomic
ensembles, the frequency fluctuations of the local oscillator contribute substantially to
the instability due to the Dick effect [8].

For example, in [3] the contribution to instability σy,Dick from the Dick effect was on
the level of σy,Dick ≈ 3.8 × 10−17/

6
τ [s] (see Fig. 4.5). Such a level of stability has been

obtained with a local oscillator laser pre-stabilized to an elaborate 21 cm cryogenic silicon
resonator at 124 K. The bad cavity laser can provide similar stability at a linewidth
Δω ≈ 0.01 s−1, that can be attained with N = 104 atoms and a dephasing rate ν ≈ 1.5 s−1,
or with N = 105, ν ≈ 5 s−1 (T2 = 2/ν = 0.4 s), if the inhomogeneous broadening Δ′

0
is much less than the dephasing rate. Therefore, the short-term stability of an active
optical frequency standard may match and even significantly exceed the stability of
passive clocks limited to the noise of the local oscillator via the Dick effect. On the other
hand, the quantum projection noise-limited stability of a passive clock based on a similar
atomic ensemble can still be better than the one of the passive standard.
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4. Ultimate stability of active optical frequency standards

We should note that the Dick effect in passive optical clocks can be avoided (or at
least significantly suppressed down to contributions of finite-length π/2 pulses) by an
interleaved, zero dead time operation of two clocks [48]. When comparing two clocks using
the same atomic transition, the Dick effect can also be eliminated, and the interrogation
time extended beyond the coherence time of the laser by using synchronous interrogation
[3, 48, 49] of the two atomic ensembles. In the extreme case, comparing different parts
of the same cloud, a fractional instability of σy ≈ 4 × 10−18/

6
τ [s] could be achieved

[50]. Similarly, comparing clocks operating on different atomic transitions, differential
spectroscopy [51] or dynamical decoupling methods [52] can be employed.

At the optimum stability, the output power P of the bad cavity laser amounts to a photon
flux of P/ℏω0 = ηκ⟨â†â⟩ ≈ ηN(0.9γs + 0.25ν + 1.45Δ′

0), see expressions (4.8) and (4.29).
Taking η = 0.5 and parameters of the atomic ensemble listed above (γs = 8.48×10−3 s=1,
ν = 0.2 s=1 and Δ′

0 = Δ0/
√

3 ≈ 0.054 s−1), the photon flux at the optimized cooperativity
and pumping rate will be about 680 s−1 for N = 104 and 6800 s−1 for N = 105.

The output power of the active clock is usually too small for practical application, thus
a suitable secondary laser needs to be phase-locked to the weak output to boost the
available power. The bandwidth of this phase-lock depends on the stability of the (shot
noise limited) active clock and the stability of the free-running secondary laser.

The Allan deviations for the superradiant laser output are shown in Fig. 4.5. Including
the phase-locked laser would only cap the strong increase in stability towards short
averaging times and limit the instability to values of 10−15 below 0.1 s.

Besides the fundamental limit to the stability from the superradiant laser’s linewidth, the
stability of the active clock may also degrade due to drifts or fluctuations in environmental
parameters, such as the bias magnetic field. For example, the Zeeman shift of the π-
transition |3P0, m⟩ → |1S0, m⟩ in 87Sr amounts to about Δω/B = 2π · 1.10 Hz/µT · mF

[53], resulting in a shift of about 2π × 4.95 Hz/µT for the transition between the two
stretched states |3P0, m = 9/2⟩ and |1S0, m = 9/2⟩. To attain a 10−18 level of relative
uncertainty of the clock transition frequency, one must reduce the uncertainty of the bias
magnetic field to below 87 pT.

In passive clocks, the linear Zeeman effect is typically canceled by averaging Zeeman
transitions with opposite shifts, alternating from one interrogation cycle to the next. This
method eliminates drifts and slow fluctuations of the bias magnetic field but cannot cancel
fluctuations on timescales shorter than the duration of a single interrogation cycle. In
contrast, active clocks can operate on two Zeeman transitions simultaneously, generating
two-frequency laser radiation from both π-transitions between pairs of stretched states
|3P0, m = 9/2⟩ → |1S0, m = 9/2⟩ and |3P0, m = −9/2⟩ → |1S0, m = −9/2⟩. The
arithmetic mean of both these frequencies will be robust to fluctuations of the first-order
Zeeman shift, as well as to vector light shifts from the lattice field. Both transitions can
independently contribute to lasing if they interact with the same mode of the cavity and
are detuned from each other far enough so that they neither synchronize nor significantly
affect each other. This condition can be easily met under realistic conditions: for
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Figure 4.5: Stability of the 87Sr active clock output expressed as Allan deviation σy with fh = 10 Hz
for N = 104 (blue solid line) and N = 105 (red dash-dotteded line). The corresponding modified
Allan deviation mod σy is shown by the cyan dotted line and the yellow dotted line. The different
slopes are due to contributions from photon shot noise and atomic phase diffusion. For comparison,
the stability of a Dick effect limited passive clock, as discussed in the text, is shown as a green
dash-dot-dot line.

instance, a bias magnetic field B = 1 G = 0.1 mT splits these two transitions by about
2π × 1 kHz. This splitting is less than the linewidth κ of the cavity (estimated above
as κ ≈ 2π × 15 kHz at lcav = 10 cm and F = 105), but much larger than the optimized
pumping rate Ropt ≈ 0.35 s−1 [37, 54], as estimated from equation (4.27).

This concludes our study of the ultimate frequency stability that can be obtained
with active optical frequency standards. We have demonstrated that these standards
can outperform traditional passive optical frequency standards in terms of stability.
Additionally, active optical frequency standards may serve as local oscillators in future
passive optical clocks. Even if their short-term stability is slightly poorer than the
quantum projection noise-limited stability of a passive optical clock with a similar
number of clock atoms, the stability of active optical frequency standards can still be
significantly better than that of a good-cavity laser pre-stabilized to an ultra-stable cavity,
as used in modern passive optical clocks.

In the next chapter, we will discuss the superradiant laser setup at the University
of Amsterdam-mHz machine, which has the potential to be used as an active optical
frequency standard.
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CHAPTER 5
Modeling towards continuous

loading in optical conveyor

The bulk of this chapter has been submitted to Physical Review Research
[55]

As mentioned in the previous chapter, superradiant lasing on an extremely narrow
optical clock transition in neutral atoms has been proposed as a promising candidate to
increase the short-term stability of state-of-the-art atomic clocks [9, 56]. The first steps
towards this goal have already been taken, with pulsed superradiant lasing utilizing the
1S0 → 3P0 transition observed in 87Sr atoms [57, 58] and quasi-continuous operation on
the 1S0 → 3P1 transition in 88Sr [59, 60].

With the pulsed operation, the linewidth of the superradiant emission is Fourier-limited.
To overcome this limit and achieve the superradiant emission with a linewidth at the
level of or below the natural linewidth of the lasing transition, we must have a truly
continuous operation, where the active atoms leaving the cavity will be replenished by
the fresh ones and the inversion will be maintained. This can be achieved with the help
of a continuous delivery of the atoms into the cavity, either prepared in the excited state
before entering the cavity or pumped in the cavity.

In this chapter, we discuss the simulations of the continuous loading of 88Sr atoms into a
ring cavity, the pumping process into the upper lasing state to create a continuous inverted
gain medium. All the simulation parameters are based on the apparatus constructed at
the University of Amsterdam, which is based on their previously built quantum hardware
to generate a high flux of ultra-cold Sr atoms[61, 62].

In section 5.1, we discuss the motivation behind the development of the Amsterdam
machine and the reasons for using 88Sr. section 5.2 covers the architecture and key
parameters of the machine. In section 5.3, we focus on the simulation and optimization
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5. Modeling towards continuous loading in optical conveyor

of the transport and cooling processes of 88Sr atoms into the science chamber, followed
by their loading into a moving optical lattice. In section 5.4, we propose a scheme for
incoherently pumping these loaded atoms into the upper lasing clock state and perform
simulations to optimize the relevant parameters.

5.1 Bad cavity laser on optical conveyor: basic ideas

Strontium is an alkaline earth element with 2 valence electrons whose spins can be
either parallel (triplet states, S = 1) or antiparallel (singlet states, S = 0). Its levels
relevant for cooling and pumping are presented in figure 5.1. The lower singlet state
is the ground state which in the Russel-Saunders notation (2S+1LJ , where S is spin, L
is orbital quantum number in the spectroscopic notation, and J is the total angular
momentum quantum number) is written as 1S0. The second singlet state, 1D2 state
(not shown in figure 5.1), lies about 2.5 eV above. However, this state is very weakly
coupled to the ground state, because the transition is forbidden in dipole approximation,
in contrast to the next state, the 1P1 state with energy of about 2.69 eV above the ground
state. The 1P1 →1 S0 “blue” transition with λ ≈ 461 nm is quite strong, with natural
linewidth γ1P1→1S0 ≈ 2π × 30 MHz, what corresponds to the Doppler limit for laser
cooling TDoppler = ℏγ1P1→1S0/kB ≈ 0.73 mK. This transition is suitable for deceleration
of hot Sr beams in Zeeman slowers, and for preliminary cooling in magneto-optical
traps (MOT). The lowest triplet states are 3PJ states with J = 0, 1 and 2. The 698 nm
1S0 → 3P0 “clock” transition, totally forbidden in bosonic but slightly allowed in fermionic
isotopes, is quite robust to fluctuations of external magnetic field and polarization of the
auxiliary laser fields, because the electrons in this state has zero total angular moment.
This is why this transition is used as clock transition in optical frequency standards. The
689 nm 1S0 →3 P1 “red” transition with natural linewidth of about 2π × 7.4 kHz, what

Figure 5.1: Levels of neutral strontium atom relevant for trapping, cooling, pumping and lasing.
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corresponds to TDoppler ≈ 0.18 µK is well suitable for the second stage of cooling of cold
strontium atoms pre-cooled in the “blue” MOT. Also, we should mention the 3S1 state
with energy of about 3.6 eV above the ground state. This state together with 3P1 state
can be used for pumping the atoms into the 3P0 state, in order to create inversion. We
should note that other alkaline-earth elements, such as Be, Mg, Ca, as well as some other
“alkaline-earth-like” elements (Yb, Hg, Cd and Zn), have similar structures of levels.

Continuous operation of the superradiant laser requires continuous replenishing of the
atoms and maintatining the population inversion. It can be realized with the help of a
magic-wavelength moving optical lattice, or the optical conveyor, which confines the atoms
and drags them controllably through the active zone, where the atoms will be coupled to
the superradiant cavity mode. Practical implementation of this scheme becomes possible
with the creation of a continuous source of guided ultracold Sr atoms.

Such a source, able to deliver several tens of millions of 88Sr, or several millions of 87Sr
atoms per second, was created in the University of Amsterdam [61, 62].

The second crucial point of the design is the choice of the way how the optical conveyor
drags the atoms through the cavity. First, the atoms should be pulled through the cavity
relatively slowly, to have enough time for coherent interaction with the cavity mode.
Second, the density of the atoms should not be too high, to avoid undesirable collisional
effects, although the overall number of the atoms must be high enough to initiate the
lasing. And, third, the atoms should be delivered fast enough from the source into the
cavity, not to get lost due to collisions with each other and with the backgound gas on
the way to the cavity, as well as due to off-resonance scattering of the far-detuned light
of the optical conveyor. A possible and very promising scheme is based on a ring-cavity
playing the role of the superradiant cavity, where also the magic-wavelength optical
conveyor is created by injection of two counter-propagating magic-wavelength laser modes
with slightly different frequencies. similar design was proposed [63] and used [64, 65]
in Thompson group for active optical clocks, as well as in Katori group for passive
continuously-operating optical clock with Ramsey interrogation scheme [66, 67]. They
demonstrated continuous transfer of atomic fluxes at the level of 107 from the Red MOT
into a moving optical lattice within a ring cavity.

5.1.1 Lasing transistion
The transition we want to use for our superradiant laser is 1S0 → 3P0 transition in a
bosonic isotope of Sr, namely, 88Sr. This isotoipe is the most abundant (83%, more than
10 times the abundance of 87Sr), and it has zero nuclear magnetic momentum and no
hyperfine structure, therefore, one can use more simple laser systems for cooling and
pumping of the atoms. However, the 3P0 →1 S0 transition in the bosonic isotopes is
completely forbidden in free space. To make it slightly allowed, one can apply a DC
magnetic field mixing the 3P0 and 3P1, m = 0 states [68].
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Figure 5.2: Partial level scheme of 88Sr relevant for magnetic-induced 1S0 → 3P0 transition.

Consider an atom of 88Sr placed in external DC magnetic field B. We can restrict our
consideration to 3 states |1⟩ = |1S0⟩, |2⟩ = |3P0⟩ and |3⟩ = |3P1, m = 0⟩, see figure 5.2.
The Hamiltonian corresponding to these states can be written as

Ĥ = ℏ [ω2 |2⟩ ⟨2| + ω3 |3⟩ ⟨3| + ΩB(|3⟩ ⟨2| + |2⟩ ⟨3|)] , (5.1)

where we took the energy of the state |1⟩ as zero level. Let us take the z-axis along the
magnetic field. Then the z-projection of the atomic magnetic moment operator can be
written as µ̂z = −µB(2Ŝz + L̂z), where µB is the Bohr magneton, Sz and Lz are the
z-projections of spin and orbital angular momenta of the atomic electrons respectively.
Then we can write the matrix element ΩB as

ΩB = −1
ℏ

⟨2| B · µ̂z |3⟩ = µBB

ℏ
⟨2| 2Ŝz + L̂z |3⟩ . (5.2)

To find its value, we can expand the states |2⟩ and |3⟩ with defined J and m quantum
numbers corresponding to total angular momentum and its projection respectively via
the states with defined Sz and Lz quantum numbers as

|2⟩ = |L = 1, S = 1, J = 0, m = 0⟩
=

9
q

C(1, 1, 0; q, −q, 0) |L = 1, S = 1, ml = q, ms = −q⟩ ,

|3⟩ = |L = 1, S = 1, J = 1, m = 0⟩
=

9
m

C(1, 1, 1; m, −m, 0) |L = 1, S = 1, ms = m, ml = −m⟩ ,

(5.3)

where C(1, 1, J ; m, −m, 0) are the Clebsch-Gordan coefficients. Using the values of the
Clebsch-Gordan coefficients, we can find

ΩB = −|B|µB

ℏ

7
2
3 . (5.4)
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Diagonalizing the Hamiltonian at ΩB ≪ Δ32 we find the eigenstate |2′⟩ and the associated
eigenvalue are

|2′⟩ = |2⟩ − ΩB

Δ32
|3⟩ ; ω′

2 = ω2 − Ω2
B

Δ32
. (5.5)

State |2′⟩ is a 3P0 state dressed by the magnetic field B. Presence of the pure state |3⟩
in |2′⟩ allows the spontaneous decay of |2′⟩ into the state |1⟩ = |1S0⟩. The rate γt of this
decay and the frequency shift Δ2 is given by

γt = γ31
Ω2

B

Δ2
32

, Δ2 = Ω2
B

Δ32
. (5.6)

Taking the values of γ31 = 4.69 × 104s−1, and Δ32 = 2π × 5.6 × 1012 Hz [69], we can
express γt and Δ2 via magnetic fields as

γt ≈ 1.95 × 10−9 s−1 ×
+

B

1 G

12
, Δ2 ≈ −1.465 s−1 ×

+
B

1 G

12
, (5.7)

which gives the following relation between the shift and the magnetic-induced spontaneous
decay rate: ;;;;Δ2

γt

;;;; = Δ32
γ31

≈ 7.5 × 108. (5.8)

5.2 Design of the setup
The experimental setup is based on a steady-state narrow-line magneto-optical trap
(MOT) operating on the 1S0 → 3P1 transition to create a continuous µK-temperature
source of strontium. In this design the cooling and trapping stages are separated in space
rather than in time in order to provide continuous operation. For different steps the
setup has different chambers.

First, hot strontium atoms exiting the oven are slowed by a Zeeman slower resonant with
the 460 nm 1S0 → 1P1 “blue” transition, see figure 5.3. Then they are trapped by a 2D
“blue” magneto-optical trap (MOT) operating on the same transition, where they are
cooled down to millikelvin temperatures. The lack of confinement in vertical direction of
the 2D Blue MOT allows the atoms to drop down into a second chamber, where they
are trapped in a narrow-line “red” MOT operating on the 689 nm 1S0 → 3P1 transition,
where they are cooled to a microkelvin temperatures. Then the atoms must be guided
into the so-called “science chamber”, where they get loaded into the optical conveyor,
pumped and dragged through the superradiant laser cavity.

To realize a continuous laser operation, we use a high-finesse ring cavity in bow-tie
configuration, where not only the superradiant laser mode is excited, but also the magic-
wavelength optical conveyor dragging the atoms along the cavity is created, see Fig 5.4.
This conveyor supports the atoms against gravity and pulls them through the pumping
zone, where they are pumped, through the emission zone, where they contribute to the
cavity field, towards the ejection zone, where they are ejected from the conveyor by a
dedicated “blue” push beam, in order to prevent coating of the cavity mirrors.
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Figure 5.3: The schematic diagram of Guided Strontium atomic beam source.

The ring cavity in bow-tie configuration is housed in a separate science chamber. This
chamber is isolated from stray optical and magnetic fields originated from the Zeeman
slower, blue- and Red MOTs, as well as from the outside. The 20 cm length differential
pumping tube, which connects the MOT and the science chamber with each other, ensures
optical isolation from stray 461 nm and 689 nm photons, and the magnetic shielding of
the science chamber provide magnetic isolation .

The atoms will be transported between the Red MOT and the science chamber using a
combination of a dipole guide beam and a Bloch accelerator. The Bloch accelerator [70,
71], created by a shallow angle lattice [72] overlapped with the Red MOT chamber, as it
is shown in figure 5.4, is designed to accelerate the atoms to a speed of up to 50 cm/s.
Then the atoms will be guided and held against gravity by a 200 W, 150 µm waist
dipole guide, created by 1070 nm single mode laser. As the atoms arrive in the science
chamber, they will be decelerated with the first molasses beam and cooled into a dipole
trap reservoir overlapping with the cavity mode using two extra red molasses beams.

The dipole guide and the reservoir beams induce an AC differential light shift for the
1S0 → 3P0 transition, which is enough to decouple the atoms in the reservoir from
resonance with the atoms in the emission zone, thus reducing the influence on the lasing
process.

The atoms collected in the reservoir will then be loaded into a vertical, magic-wavelength
moving optical lattice created inside the same bow-tie cavity, which pulls the atoms
upward through the pumping, emission, and ejection zones. The lattice is sufficiently
deep to confine the atoms even if they are heated during the pumping. Because the
atoms are distributed along the cavity mode, we can store large amount of atoms at
relatively low density.
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The number of atoms simultaneously coupled to the cavity mode and the time of
interaction can also be adjusted by tuning the speed of the magic moving lattice.

Figure 5.4: Schematics of the science chamber. Atoms falling down from a 2D Blue MOT (not
shown here, see figure 5.3) are continuously collected and cooled in a Red MOT. From there, they
are loaded into a dipole guide beam formed by a single-pass 1070-nm beam. The guide beam is
overlapped with a shallow-angle lattice, which can be used as a Bloch accelerator. The atoms
are transported over 20 cm from the Red MOT chamber to the science chamber. In the science
chamber, the atoms are collected in the reservoir (denoted by blue dashed oval, formed by crossing
of the guide beam with an extra 1070-nm beam propagating into the (x, z)-plane and tilted by 5◦

with respect to the z-axis), and loaded into the magic wavelength optical conveyor lattice. The
optical conveyor moves upwards through a pumping zone, where atoms are pumped to the excited
3P0 state. After that, they are drawn through a well-controlled emission zone, where superradiant
emission into the cavity mode can occur. After the emission zone, atoms are ejected by a push
beam to avoid coating the surface of the cavity mirrors. The atoms are decelerated with the first
set of red molasses beams (M1) and then further cooled into the reservoir dipole trap by the
second (M2) and third (M3) set of red molasses beams. (M3) is orthogonal to the (y, z)-plane.

The dimensions of the compact bowtie cavity are 50 x 13 mm. It is comprised of two
flat mirrors and two curved mirrors coated for both the clock transition and magic
wavelengths. The total roundtrip length lcav along the cavity is about 20 cm, what
corresponds to a free spectral range of about 1.5 GHz.

The cavity is designed to have a finesse of about 50 000 at 698 nm and 2000 at 813 nm.
In the emission zone of the moving lattice, the minimum waist of the 698 nm cavity mode
will be around 130 µm. The round-trip length of the cavity is finely tuneable using a
piezo stack attached to one of the flat mirrors in order to create a resonant cavity mode
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with the 1S0 → 3P0 transition.

Because of the shielded science chamber our apparatus can accommodate experiments
with both 87Sr and 88Sr. In order to open the completely forbidden clock transition in the
bosonic isotope and benefit from the high natural abundance and relatively simple level
structure, we need to apply a relatively strong bias magnetic field (few hundred Gauss),
as it has been described in section 5.1.1. On the top of this, the magnetic field must be
highly homogeneous in the emission zone in order to minimize position dependence of
the second-order Zeeman shift.

Table 5.1: Parameters for different beams.

Beam Type Dipole
guide

Reservoir Lattice

Polarization along x-y π along x-z
U0(1S0), µK −166 −50 −32
U0(3P1, m = 0), µk −60 −14.6 −10.6
Waist, µm (200, 200) (400, 100) 140
Wavelength, nm 1070 1070 813
Propagation along z-axis x-y plane 5◦ from z y-axis

This concludes our discussion of the design of the science chamber, in the subsequent
section we will discuss the simulation associated with the transport and cooling of the
atoms.

5.3 Transport and cooling of atoms
The atoms in the Red MOT are pushed by the Bloch accelerator [71], [73] via the dipole
guide beam towards the science chamber, where they are stopped, cooled down and
loaded into the moving optical lattice. In this section we consider these processes in more
details.

5.3.1 Deceleration of atoms

The guided atoms leaving the Bloch accelerator overlapped with the Red MOT can have
the speed up to 50 cm/s towards the science chamber, where we must slow them down.
We can’t use just a Bloch decelerator because it will not cool the atoms. Initially we
considered pumping atom to 3P0, slowing them using a potential hill for the 3P0 state
and transferring them to 1S0 at the hill’s peak, but our simulations indicated issues with
non-uniform potential effects due to the possible hill’s alignment could leading to a broad
velocity spread and hinder effective trapping.
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Figure 5.5: Schemetic digram of potential hill.

Another method for cooling of atoms that we have considered is SWAP. The main
mechanism for momentum removal in SWAP cooling is the coherent transfer of a particle
toward zero momentum via adiabatic passage. Momentum is removed by time ordered
stimulated absorption and emission of photons caused by interaction with a standing
wave formed by counter propagating laser beams similar to Bloch accelerator.

To achieve SWAP cooling without heating the system we have to staisfy the following
conditions as given in [70]-

• Low probability of Spontaneous emmision when atom in excited state.

τe = 2kv − 4ωr

α
+ 2Ω0

α
≪ 1

Γ (5.9)

• High velocity regieme that is two resonant phenoemna must be seperated

τres > τjump = |kv − 2ωr| > Ω0 (5.10)

• Adiabaticity condition that is to have a substantial probability for an adiabatic
transition at each resonance

Ω2
0 > α (5.11)

• Sweep range should be large enough to have both lasers in resonance.

Δs > |4kv| (5.12)

To model this for our system we define 3 numbers a1, a2, a3 associated with relvent
paramters described in terms of recoil frequency ωr = ℏk2

2m

Ω0 = a1ωr, α = (a2ωr)2, Ts = a3/ωr, (5.13)
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5. Modeling towards continuous loading in optical conveyor

Figure 5.6: Schemetic digram of SWAP cycle.

Figure 5.7: Blue part shows the region of parameter a1 and a2 satisfying 1st condition and yellow
part shows the region with the 3rd condition and the overlap shown by green represents parameter
with both conditions satisfied. In plot(a) we see that the allowed set of parameters for atoms
coming out with 50cm/s velocity can be cooled to 10cm/s but in plot (b) we don’t see any overlap
for 10cm/s incoming velocity.

94



5.3. Transport and cooling of atoms

and translate the above conditions in terms of a1, a2, a3+2kvi

ωr
− 4 + 2a1

1
≪ a2

2ωr

Γ ,

a1 <

;;;;kv0
ωr

− 2
;;;;, a1 > a2, a2

2a3 > |4kvi

ωr
|

(5.14)

For our system we need to slow the atoms to 1cm/s or lower, and for that we were not
able to find a good set of parameters that satisfied all the above conditions as shown in
figure 5.7 Finally, another method that we have considered is simply using the molasses
beams and scanning the frequency over a large set of capture velocity. In the next section
we discussed this in detail.

5.3.2 Molasses beam
As described in figure 5.4, before the loading of atoms into the moving optical lattice, we
implement 3 molasses beams, 2 of them running on 1S0 → 3P1, m = 0 transition and the
third one running on 1S0 → 3P1, m = 1 transition. The first molasses beam is used to
cool atoms coming with high velocities accelerated by a Bloch accelerator before they
enter the reservoir, while the other two beams are positioned close to the loading point
inside the reservoir, aiming to lower the temperature of the atoms sufficiently, to prepare
them for transfer onto the moving optical conveyor.

Figure 5.8: The first molasses beam is outside the science chamber, and the second and third
molasses beam are centered at the loading point. All the molasses beams contain multiple
frequencies to have large capture velocities.

As the dipole potentials of the guide beam, reservoir, and the optical lattice for 1S0,
3P1, m = 0 states are different, there will be significant position-dependent light shifts on
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5. Modeling towards continuous loading in optical conveyor

the cooling transitions. We calculate these shifts using the expression for polarizability
given in chapter 2, section 2.1.4, and we used the data presented in [74].

5.3.3 Simulation of cooling of atoms
For simulation of the molasses, it’s important to know how many photons are scattered
per atom to predict the average energy of an atomic cloud; using the dipole force, we will
not get that information, and applying MCWF is not feasible, so instead, we employ the
SCMC method as described in 2, section 2.3.3.2 but now in 3 dimensions. We suppose
that the atom will not change significantly its position during the typical evolution time
of its internal state. Further, instead of modulating frequency in time, we take into
account multiple frequencies simultaneously.

We start our discussion with the Hamiltonian

Ĥ = −ℏ
39

i=1
δiσ̂ii +

9
ik

Ωik

2 (σ̂i0 + σ̂0i) (5.15)

where i represents the substates 3P1, m = {−1, 0, 1} corrsponding to i = {1, 2, 3} respec-
tively and k is associated with different frequencies consecutively, the Bloch equations
look like

dρii

dt
= −

9
k

iΩik

2 (ρ0i − ρeg) − γsρii

dρ0i

dt
= −iδiρ0i +

9
k

iΩik

2 (ρ00 − ρii) − γs

2 ρ0i −
9

i ̸=j,k

iΩjk

2 ρji

dρji

dt
= i(δj − δ − i)ρ0i +

9
k

iΩik

2 ρj0 −
9

k

iΩjk

2 ρ0i − γsρji

(5.16)

For 88Sr in relatively strong magnetic field ρij
i ̸=j−→ 0

ρ00 =
+

1 +
9
ik

sik

2 + sik

1−1
, ρii =

9
k

sik

2 + sik
ρ00 (5.17)

sik = s0
ik

+
1 + 4δ2

ik

γ2
s

1−1
, s0

ik = 2Ω2
ik

γ2
s

(5.18)

Ωik =
5

Ii
k(r)

2Ii
sat

γs. (5.19)

where the sik is the saturation parameter associated with ith transition and kth frequency
as defined by 5.19. In terms of individual intensities of lasers, the saturation rate and
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5.3. Transport and cooling of atoms

the detuning looks like

sik(r, v) = Ii
k(r)
Ii

sat

+
1 +

+2δik(r, v)
γs

121−1

δik(r, v) = δ′
ik − ΔD

i (r) − Δ(R)
i (r) + k⃗ik · v⃗ , Isat = 2π2ℏcγs

3λ3

δ′
ik = Δband(2k − Nf − 1)

2(Nf − 1) + δc
i

(5.20)

Δband is the bandwidth, δc
i is the the central frequency and Nf is the total number of

frequency. For ith transition the differential light shifts associated with dipole beam
(ΔD), and reservoir (ΔR) are given by

Δ{D,R}
i (r) = −1

ℏ

+
α1S0 − αi

α1S0

1
U

1S0
{D,R}(r) (5.21)

Resulting in a scattering rate

Γi(r, v) =
9

k

+
γssik(r, v)

2 + sik(r, v)

1+
1 +

9
i,j

si,j(r, v)
2 + si,j(r, v)

1−1
(5.22)

We use this position-dependent scattering rate to generate random numbers, and ac-
cordingly, we artificially model the absorption and emission of photons by evolving the
scattering rate (5.22) along the trajectory of atoms. We have performed the simulation
by following the steps mentioned below-

• Starting with an initial state (x⃗j , p⃗j) at time tj we evolve the equation of motion
( ˙⃗xj , ˙⃗pj) and the scattering rate Γm(x, v) till ti+1 = tj + dt.

• Generate a vector v⃗s = (sin θ cos φ, sin θ sin φ, cos θ) with θ and φ randomly gen-
erated numbers and a random number r1 in the interval [0, π], [0, 2π] and [0, 1]
respectively.

• If r1 > e
−

' ti+1
tj

Γm(x⃗j ,v⃗j)dt
set p⃗i+1 = p⃗j − ℏk⃗ + v⃗sℏk and regenerate {r1, θ, φ} or else

without changing anything take another step.

• Repeat the above three steps until we reach the desired evolution time.

In our system, we utilize a broad spectrum of frequencies to accommodate a wide
range of capture velocities. The maximum scattering rate is significantly lower than the
spontaneous emission rate, allowing us to assume that an atom instantaneously emits a
photon after absorbing it.

As mentioned before, the role of the first molasses beam is to cool down atoms that are
coming with a high velocity from the Bloch accelerator along the dipole beam in the
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5. Modeling towards continuous loading in optical conveyor

Figure 5.9: (a) Potential of reservoir and dipole guide in (y, z)-plane. The inset shows the
differential light shift in the reservoir, along the z-axis, for the 1S0 − 3P1 molasses cooling
transition. (b) Cooling dynamics of atoms with an incoming velocity of 10 cm/s, where the time
that atoms interact with a specific molasses beam is marked by the red or orange shading. The
first molasses beam (M1, red shading), slows atoms to 1 cm/s. Shortly afterwards, the atoms
enter the reservoir region, where further molassess beams (M2 & M3, orange shading) slow and
trap them inside the reservoir, and finally cool them to µK-temperatures. The inset shows how
the capture velocity changes with position. To avoid heating the frequencies of M2 and M3 are
chosen such that there is no interaction before the atoms reach the center of the reservoir.

z direction. For this beam, the potential gradient only affects the (x, y)-plane, as the
light shift is essentially constant along the z-axis. If we choose the frequencies of the
first molasses beam matching the maximal light shift, the atoms close to the center will
consistently achieve resonance and scatter photons.

However, as the atoms approach the reservoir, the change in light shift along the ẑ
direction becomes significant, as the reservoir beam propagates 5◦ from the ẑ-direction
in the (x, z)-plane. This makes the capture velocity position dependent also along ẑ, as
shown in Fig. 5.9. This dependence must be considered when choosing the frequencies of
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5.3. Transport and cooling of atoms

Table 5.2: Parameters of molasses beams

Molasses Beam M1 M2 M3
Intensity (total) 2 Isat Isat Isat
Δband 0.01(2π)µs−1 0.01(2π)µs−1 0.01(2π)µs−1

Nf 12 4 5
δc

i −45Γ
2 + Δmax

D −15Γ
2 + Δmax

D+R −15Γ
2 + Δmax

D+R
Waist, µm (200,200) (200,200) (200,200)
λ, nm 689 689 689
center, (mm) (0,0, -5) (0, 0, 0) (0, 0, 0)
Polarization in (y, z)-plane along x in (y, z)-plane
Propagation in (y, z)-plane, 7◦

from z
along x in (y, z)-plane, 7◦

from z

the second and third optical molasses beams, as they interact with atoms in the reservoir.
There is no overlap between red and blue scattering rate before z = 0 (otherwise the
system will heat ), we can trap large number of atoms in the reservoir.

For different set of incoming velocities if we choose the frequencies correctly, the energy
distribution of atoms post-reservoir remains relatively consistent. Without the optical
lattice within the reservoir, the thermal equilibrium average energy achievable is ap-
proximatly 12µk. However, as we shall explore in the subsequent section, In presence of
moving optical lattice this scenario poses a challenge when atoms approach the proximity
of the optical lattice.

5.3.4 Loading into moving Optical lattice
To simulate loading into the moving optical lattice, we must also consider the differential
light shift caused by the substantial depth of the lattice resulting in a significant change
in the capture velocities we previously calculated. Because we are using a moving optical
lattice, the capture velocity range for the second and third optical molasses beams will
oscillate with the motion of the optical lattice. Consequently, scattering events will
decrease as atoms move toward the optical lattice since the laser frequencies align only
around the maximum value of the light shift.(Figure 5.10). Again using SCMC, but now
including the time-dependent optical lattice light shift, the scattering rate is explicitly
time-dependent, given by-

Γi(r, v) =
9

l

+
γssik(r, v, t)

2 + sik(r, v, t)

1+
1 +

9
i,j

si,j(r, v, t)
2 + si,j(r, v, t)

1−1
(5.23)

where the saturation parameter s(r, v, t) is

sik(r, v) = I(r)
Isat

+
1 +

+
2δik − Δ(D)

i (r) − Δ(R)
i (r) − Δ(ol)

i (r, t) + k⃗ik · v⃗

γs

121−1
(5.24)
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and the light shifts Δol being

Δ(ol)
i (r, t) = −1

ℏ

+
α1S0 − αi

α1S0

1
U

1S0
0 cos(k(y − volt)) exp

+
− 2(x2 + y2)

w2
0

1
(5.25)

Figure 5.10: (a) The time-dependent oscillation of the capture velocity range as seen by atoms at
a fixed position (z = 10µm) because of the optical lattice moving with a velocity of 1 cm/s.(b)
Polarizability of the atoms as a function of the angle between the bias magnetic field B⃗ and the
optical lattice polarization. At an angle of ≈ 74◦ between the optical lattice polarization, the
3P1, m = 0 → 1S0-transition becomes magic due to the tuned tensor polarizability term.

Upon entering the radially symmetric optical lattice potential, atoms must scatter photons
from the second and third molasses beams to stay trapped. Due to the oscillation of the
capture velocity range caused by the moving lattice, there is an increase in the average
energy distribution of the atoms, which reaches a value of approximately 20 µK. To avoid
this and to achieve a low mean energy we can tune the Tensor polarizability term of the
the transition (1S0 → 3P1, m = 1) to a magic polarization(Figure 5.10, which minimizes
the increase in the average energy of the atomic sample.

We find that efficient loading into the optical conveyor moving with a speed of ≈1 cm/s
is possible. This is illustrated by the simulated trajectories shown in Figure 5.11(a).
However, as we increase the velocity of the conveyor, the average energy of the trapped
cloud increases and the percentage of trapped atoms decreases, as shown in Figure 5.11b.
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5.3. Transport and cooling of atoms

Figure 5.11: (a) Density of 100 trajectories of atoms as they travel along the moving optical
lattice (velocity of optical lattice = 1 cm/s and potential depth = 32 µK). A typical trajectory is
shown by the red trace. The outline of the optical lattice is indicated by the white dashed lines.
(b) Average energy in µK (brown circles) and percentage of atoms trapped (blue triangles) as a
function of the optical lattice velocity are represented. The blue and brown lines connecting the
points are added to guide the eye.

The advantage of this design is that the atom number in the cavity mode is adjustable
by tuning the speed of the magic moving lattice. By slowing the speed, the superradiant
lasing threshold and a detectable signal can be reached with loading fluxes approaching
two orders of magnitude smaller than the design values. Decreasing lattice speeds can
compensate for other potential construction defects, such as low cavity finesse. Similarly,
increasing the conveyor speed or moving the ejection beam lower to reduce the active
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5. Modeling towards continuous loading in optical conveyor

cavity length can reduce the cavity atom number and eliminate pulsing, while at the
same time, it will increase the capture velocity oscillation, leading to less scattering and
higher energies of loaded atoms. This flexibility is critical to cope with the enormous
unknowns in achieving our goal.

5.4 Pumping inside moving optical lattice
After loading atoms into the optical lattice, we must pump them into the 3P0-state.
Figure 5.12 shows a possible pumping scheme [35] that is compatible with our experiment.

Figure 5.12: Possible pumping scheme with relevant matrix elements Ωj and frequency detunings
Δj . Laser-induced transitions are shown by solid red, and spontaneous decays by dashed blue
arrows. The levels which do not participate in the repumping process are shown by pale gray. .
Note that transition 3S1, m = 0 → 3P1, m = 0 is forbidden in E1 approximation.

In the presence of the strong magnetic field required to open the clock transition in 88Sr,
the Zeeman sublevels of the excited states will split, allowing them to be independently
addressed. To substantially populate 3P0, we first pump atoms to the 3S1 state. From
there, atoms can decay to 3P0, but most likely will decay to the unwanted states,
3P1, mJ = ±1 and 3P2, mJ = −1, 0, 1 (but not into 3P1, mJ = 0 as this decay is
prohibited by angular moment selection rules). We must repump atoms out of these
unwanted states, particularly the 3P2-states, as they do not quickly decay to the ground
state (lifetime of ≈110 min, compared to 22 µs for the 3P1-states) [75]. The pumping
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5.4. Pumping inside moving optical lattice

beam has a waist of 250 µm and is aligned along the z-axis, with its center positioned 2 mm
away from the reservoir along the y-axis. With vconv = 1 cm/s, we have an interaction
time of about 5 ms. In order to decrease the heating all the pumping lasers are applied
from both the opposite directions.

To find out realistic parameters for our multilevel pumping scheme and we solve the time
dependent master equation for our scheme. Here we neglect all the collision-induced
processes, because the pumping occurs in a very narrow zone with 250 nm waist, and
these process does not affect significantly the internal state of the atoms. Therefore, we
consider isolated atom interacting with pumping fields. The multilevel pumping scheme
is presented in Figure 5.12.

Ĥ0

ℏ
=

89
j=g

ωj σ̂jj + Ω1
�
σ̂g3ei(ωL

3gt+φ1) + σ̂3ge−i(ωL
3gt+φ1)

�

+
79

j=3
Ωj

�
σ̂j8ei(ωL

8jt+φj) + σ̂8je−i(ωL
8jt+φj)

�
, (5.26)

Here σ̂ij = |i⟩ ⟨j|, Ωj are transition matrix elements which can be expressed via intensities
Ij of the respective laser fields as seen by atoms, saturation intensities Ij

sat and the
respective spontaneous transition rates Γkj as

Ωj =
5

Ij

8Ij
sat

Γkj . (5.27)

In turn, ωL
ij is the frequency of the laser acting on the |j⟩ → |i⟩-transition, and φi is the

time-dependent random phase of a laser applied to |g⟩ → |3⟩ transition at i = 1, and to
|i⟩ → |8⟩ transition at i = 3 to 7. Here we suppose that all the lasers are independent,
and their fluctuations corresponds to a white frequency noise, namely

⟨φ̇i(t)φ̇j(t′)⟩ = ΓL
i δijδ(t − t′), (5.28)

where ΓL
i is the linewidth of the laser acting on |i⟩ → |j⟩-transition. As a next step we,

following the approach used in [76], switch into the instantaneous rotating frame with
the unitary transformation

Û = exp
�

− i
(
σ̂gg ωgt + σ̂ee ωet + σ̂33 [(ωg + ωL

3g)t + φ1]

+σ̂88[(ωg + ωL
3g + ωL

83)t + φ13 + φ3]

+
79

i=4
σ̂ii[(ω1 + ωL

31 + ωL
83 − ωL

84)t + φ1 + φ3 − φi]
.�

.

(5.29)

It is convenient to introduce “new” fluctuating phases

ϕ1 = −φ1, ϕ3 = −φ3

ϕj = φj , j ∈ {4, 5, 6, 7},
(5.30)
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whose fluctuations also corresponds the white frequency noise (5.28). Then the new
Hamiltonian

Ĥ = Û †Ĥ0Û − iℏÛ † ∂Û

∂t
= ĤD +

9
j

ĤS
j ϕ̇j (5.31)

can be represented as a sum of deterministic part ĤD and a series of stochastic parts
ĤS

i ϕ̇i. The deterministic part can be written as

ĤD

ℏ
=

89
j=3

Δj σ̂jj + Ω1(σ̂g3 + σ̂3g) +
79

j=3
Ωj(σ̂j8 + σ̂8j), (5.32)

where

Δ3 = ω3 − ωg − ωL
3g,

Δ4 = ω4 − ωg − ωL
3g − ωL

83 + ωL
84,

Δ5 = ω5 − ωg − ωL
3g − ωL

83 + ωL
85,

Δ6 = ω5 − ωg − ωL
3g − ωL

83 + ωL
86,

Δ7 = ω5 − ωg − ωL
3g − ωL

83 + ωL
87,

Δ8 = ω8 − ωg − ωL
3g − ωL

83.

(5.33)

In turn, stochastic parts has the form

ĤS
1
ℏ

=
89

j=3
σ̂jj ,

ĤS
3
ℏ

=
89

j=4
σ̂jj ,

ĤS
4
ℏ

= σ̂44,
ĤS

5
ℏ

= σ̂55,

ĤS
6
ℏ

= σ̂66,
ĤS

7
ℏ

= σ̂77.

(5.34)

Evolution of some system operator Ô follows the Langevin-Heisenberg equation

(S)dÔ

dt
= i

ℏ

�
ĤD, Ô

�
+ ˆ̂LdecÔ +

9
k,l

F̂dec,kl +
9

j

i

ℏ

�
ĤS

j , Ô
�

ϕ̇j , (5.35)

which needs to be interpreted as a Stratonovic stochastic differential equation (indicated
by (S)). Here ˆ̂LdecÔ is a Liouvillian term describing spontaneous transitions between
atomic levels

ˆ̂LdecÔ =
9
k,l

Γkl

2
(
2σ̂klÔσ̂lk − σ̂kkÔ − Ôσ̂kk

.
=

9
k,l

Γkl
ˆ̂
D[σ̂lk]Ô, (5.36)

where Γkl is the rate of spontaneous transition |k⟩ → |l⟩, and F̂dec,kl is the Langevin force
associated with this transition.
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To derive the Itô equation corresponding to the Stratonovic equation (5.35), consider the
contribution into the differential dÔ of some operator Ô, corresponding to fluctuation of
the phase ϕj :

(S) i

ℏ

�
ĤS

j , Ô
�

ϕ̇jdt ≡ i

ℏ

�
ĤS

j , Ô(t + 0.5dt)
�

ϕ̇j dt

= i
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ĤS
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9
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 dt +
9

k

i

ℏ
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ĤS
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dϕk
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ĤS

j , Ô
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j

2ℏ2

�
ĤS

j ,
�
ĤS

j , Ô(t)
��

dt, (5.37)

where we neglected high-order terms proportional to dϕjdt, dt2 etc., replaced dϕjdϕk by
δjkΓL

j dt according to the Itô rule [77], and used the fact that the Langevin forces F̂dec,kl

associated with spontaneous decays are not correlated with fluctuations of the phases.
So, we can transform the equation (5.35) into Itô form as

(I)dÔ

dt
= i

ℏ

�
ĤD, Ô

�
+ ˆ̂LdecÔ +

9
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+
9

j

i

ℏ

�
ĤS
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j

2ℏ2
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2ĤS

j ÔĤS
j − ℏĤS

j Ô − ℏÔĤS
j

.
,

(5.38)

similar to how it has been done in [76]. Here we supposed that the temperature is low
(i.e., that the bath modes resonant to the frequencies of spontaneous transitions are not
occupied), and used ĤS†

j = ĤS
j = ĤS 2

j /ℏ. By averaging this equation the stochastic part
vanishes, and we get

d

dt
⟨Ô⟩ = i

ℏ

��
ĤD, Ô

��
+ ⟨ ˆ̂LÔ⟩. (5.39)

The dissipative processes are described by the Liouvillian part

ˆ̂LÔ = ˆ̂LdecÔ +
9

j

ΓL
j

2ℏ2

(
2ĤS

j ÔĤS
j − ĤS

j Ô − ÔĤS
j

.
(5.40)

which can be represented as

ˆ̂LÔ =
9

j

Rj

2
(
2Ĵ†

j ÔĴj − Ĵ†
j ĴjÔ − ÔĴ†

j Ĵj

.
=

9
j

Rj
ˆ̂
D[Ĵj ]Ô, (5.41)

where Ĵj are the jump operatos with corresponding rates Rj , see section 2.3.1. The
list of jump operators and rates for the full 8-level system is presented in Table 5.3. In
figure 5.13 and 5.14, we have presented how the population densities of different states
changes during the pumping cycle for different sets of parameters.
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Table 5.3: Dissipative processes in the 8-level pumping scheme. Decay rates were cal-
culated as Γ|n′L′J ′m′⟩→|nLJm⟩ = Γ|n′L′J ′⟩→|nLJ⟩C(J, 1, J ′; m, m′ − m, m′)2, where the decay
rates Γ|n′L′J ′⟩→|nLJ⟩ between fine-structure levels |n′L′J ′⟩ and |nLJ⟩ were taken from [69],
C(J, 1, J ′; m, m′ − m, m′)2 are the Clebsch-Gordan coefficients, and J ′, m′ (J, m) are the angular
moment and its projection associated with the upper (lower) state.

j Ĵj Rj value (order of
magnitude)

description

1 σ̂58 Γ85 1.26 × 107 s−1 decay from |8⟩ to |5⟩
2 σ̂68 Γ86 1.68 × 107 s−1 decay from |8⟩ to |6⟩
3 σ̂68 Γ87 1.26 × 107 s−1 decay from |8⟩ to |6⟩
4 σ̂48 Γ84 1.35 × 107 s−1 decay from |8⟩ to |4⟩
5 σ̂38 Γ83 1.35 × 107 s−1 decay from |8⟩ to |3⟩
6 σ̂e8 Γ8e 8.9 × 106 s−1 decay from |8⟩ to |e⟩
7 σ̂g4 Γ4g 4.69 × 107 s−1 decay from |4⟩ to |g⟩
8 σ̂g3 Γ3g 4.69 × 107 s−1 decay from |3⟩ to |g⟩
9 σ̂ge Γeg γ decay from |e⟩ to |g⟩
10 :8

k=3 σ̂kk ΓL
1 about kHz Fluctuations of laser acting on |g⟩ → |3⟩

11 :8
k=4 σ̂kk ΓL

3 about MHz Fluctuations of laser acting on |3⟩ → |8⟩
12 σ̂44 ΓL

4 about MHz Fluctuations of laser acting on |4⟩ → |8⟩
13 σ̂55 ΓL

5 about MHz Fluctuations of laser acting on |5⟩ → |8⟩
14 σ̂66 ΓL

6 about MHz Fluctuations of laser acting on |6⟩ → |8⟩
15 σ̂77 ΓL

7 about MHz Fluctuations of laser acting on |7⟩ → |8⟩

We identified a set of detunings where the trapping of population into the dark states
doesn’t play a significant role. Leveraging this carefully selected set of parameters, as
described in 5.4, we found that the population densities of atoms in states 3P1, 3P2, and
3S1 remain low. The intensity of the laser for the transition |3⟩ → |8⟩ is chosen such
that ΓP

38 ≫ Γ decay
31 , thereby preventing excessive scattered photons from the |1⟩ ↔ |3⟩

transition, which would otherwise cause heating, see figure 5.14.

Under conditions of far-detuned lasers, the intensities given in 5.4, and the fact that the
motion of these atoms does not significantly change during the pumping cycle, we can
assume that only the effect of individual lasers acting on two levels at a time needs to
be considered. To estimate the pumping efficiency and the heating of atoms within the
moving optical lattice, we apply the SCMC method described earlier.
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5.4. Pumping inside moving optical lattice

Figure 5.13: Population density profile for parameters given in table 5.4 except with I38 = 0.02Isat.
Here we can see that at the end of the pumping cycle all the population ends up in the state
|2⟩ but the total number of scattered photons is approximatly 39.37 with total photons emitted
from state |8⟩ is 8.699 and from the cycle |1⟩ ↔ |3⟩ transition is 29.401. To accomodate this
large number of photons we need too deep optical lattice and this will cause huge heating in our
system.

Figure 5.14: Population density profile for parameters given in table 5.4. To prevent excessive
scattered photons from the |1⟩ ↔ |3⟩ transition, the intensity of the laser for the transition
|3⟩ → |8⟩ (I38 = 0.5Isat) is made stronger leading to total number of scattered photons to be 12.3,
with 8.05 photons scatted from |8⟩ and 2.16 from the cycle |1⟩ ↔ |3⟩ transition

The pumping rate associated with each individual two-level system is calculated using:

Γp
mj(r⃗, v⃗) =

9
l

+
γmjsp

mj(r⃗, v⃗)
2 + sp

mj(r⃗, v⃗)

1+
1 +

sp
mj(r⃗, v⃗)

2 + sp
mj(r⃗, v⃗)

1−1
, (5.42)

where

sp
mj(r⃗, v⃗) = I(r)

Isat

+
1 + 2

+
δmj(r⃗, v⃗)

Γmj

121−1
(5.43)

The spontaneous decay from 3S1 is modeled by generating a random number based on the
relative decay rates for different transitions. Momentum kicks are applied similarly to the
molasses simulation, as the decay rate from 3S1 is 100 times higher than any other process.
For the 3P1, m = −1 state, which has a smaller decay rate, the momentum kicks are
modeled using Einstein’s rate equation. Three Random numbers are generated in the
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5. Modeling towards continuous loading in optical conveyor

Table 5.4: Parameters of pumping beams. Here P-1 acts on the |1S0⟩ → |3P1, m = −1⟩ transition.
Similarly, P-2 and P-3 acts on the |1S0⟩ → |3P1, m = ±1⟩ transitions, whereas P-4, P-5, and P-6
pump atoms from the |3P2, m = −1⟩, |3P2, m = 0⟩ and |3P2, m = 1⟩-states to the |3S1, m = 0⟩-
state, respectively. The partial deacay rates Γ associated with the corresponding transitions are
Γtotal for P-1, 0.5 Γtotal for P-2,3, 0.3 Γtotal for P-4,6, and 0.4 Γtotal for P-5 respectively. The
Intensities mentioned in the table corresponds to the circular polarized field component.

Pumping Beam P-1 P-{2,3} P-{4,5,6}
Intensity 0.32 Isat {0.5, 0.02} Isat 0.02 Isat
Γtotal, µs−1 4.69 × 10−2 27.0 42.0
Waist, µm (250,250) (250,250) (250,250)
λ, nm 689 688 707
center, mm (0,2,0) (0,2,0) (0,2,0)
Polarization along x-axis along x-axis along {x,z,x}-axis
Propagation along z-axis along z-axis along z-axis
Δ/(2π) −1 kHz {0, −2} MHz {−19.9, 0.1, 20.1} MHz

interval [0, 1] and compared with the probabilities associated with different channels.
Pumping from all other 3P2 states is considered as individual 2 level systems.

• Starting with an initial state (x⃗i, p⃗i) and state |1⟩ at time ti we evolve the equation
of motion ( ˙⃗xi, ˙⃗pi) and all the scattering rate associated with pumping.

• Generate a vector v⃗s = (sin θ cos φ, sin θ sin φ, cos θ) to model spontaneous emmision
kicks with θ and φ randomly generated numbers and nine random number {ri, i ∈
1 to 9} in the interval [0, π], [0, 2π] and [0, 1] respectively.

• If the system is in state |1⟩ and r1 > e
−

' ti+1
ti

Γp
13(x,v)dt, the state is set to |3⟩.

• Then, depending on whether r2 > e
−

' ti+1
ti

Γp
38(x,v)dt or r3 > e

−
' ti+1

ti
Γdecay

31 dt, the
state is either changed to |8⟩ or returned to |1⟩, with corresponding momentum
kicks applied and we reset all the random numbers. Otherwise without changing
anything we take another step.

• if the state is |8⟩, the spontaneous decay from 3S1 is modeled by generating a
random number rs based on the relative decay rates for different transitions and
accordingly the state is set to |j⟩ where j belongs to {2, 3, 4, 5, 6, 7} .

• Now if the the state |j⟩ for j in {5, 6, 7} the atoms are pumped back to |8⟩ depending

on the condition rj > e
−

' ti+1
ti

Γp
j (x,v)dt if the state is |3⟩ or |4⟩ we repeat the step 4.

Otherwise without changing anything take another step

• Repeat the above steps until we reach the desired evolution time that is atoms are
no longer in pumping region.
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5.4. Pumping inside moving optical lattice

Figure 5.15: The change in the individual energy of the atoms before and after pumping. Before
pumping the average energy of trapped atoms was around 12.32µk after pumping around 8% of
the atoms are lost and the average energy of the trapped atoms goes to 16.11µk.

Atoms will undergo an average of 12 photon recoils throughout the pumping process,
leading to heating. To keep the atoms in the optical lattice, its depth must account for
this heating as shown in 5.15. Too shallow a lattice could lead to atoms getting lost
before they can contribute to superradiant emission.

An optical lattice depth of 32 µK will be sufficient, as the average energy of the pumped
atoms is approximately 16 µK for an optical lattice velocity of 1 cm/s, see figure 5.16.
Elastic collisions, which could create higher energy atoms, are negligible under our
conditions. Using this scheme, a pumping efficiency of 83% can be achieved.

This concludes our discussion on the design of a continuously-operating superradiant
laser on the 1S0 → 3P0 transition in 88Sr. We discussed the mechanism by which we will
continuously load atoms from the dipole trap into a magic wavelength optical conveyor
lattice generated inside a bow-tie cavity. This bow-tie cavity creates the strong collective
coupling between atoms that should enable superradiant emission which we will discuss
in the next chapter.

109



5. Modeling towards continuous loading in optical conveyor

Figure 5.16: The marked yellow trajectory shows the atom which after pumping escaped the
optical lattice while the yellow one shows an atom which stayed trapped in the optical lattice
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CHAPTER 6
Simulation of the optical conveyor

laser

The bulk of this chapter has been submitted to Physical Review Research
[55]

The design of the mHz setup as well as the simulation of cooling and pumping processes
have been presented in chapter 5. In this chapter we present the results of simulation of
the superradiant laser output which can be achieved in such a machine.

In section 6.1 we discuss the position-dependent shift caused by inhomogenity of the
magnetic field. In section 6.2 we reduce the real pumping scheme discussed in section 5.4 to
an equivalent two-level one using the method derived in [35]. In sections 6.3 and 6.3.1, we
construct the mean-field model which includes collisional effects and perform simulations
and analyses for various sets of parameters. In this model the elastic collisions between
the atoms in the ground state leads to dephasing, according to [78]. In section 6.4, we
modify this model in order to improve estimations by taking into account the possible
dephasing due to elastic collisions in the excited state.

6.1 Magnetic-induced shifts
As mentioned in chapter 5, single-photon 3P0 → 1S0 transitions in isolated bosonic
strontium are forbidden to all orders of multipole expansion. This transition might be
made slightly allowed in the presence of an external field, for example, a static magnetic
field B [68], mixing the |3P0⟩ and |3P1, m = 0⟩ states. Such a field not only opens this
transition but also shifts the position of the dressed 3P0 state by a second-order Zeeman
shift δω3P0−1S0 related to the induced E1 transition rate γs = γ3P0−1S0 as

δω3P0−1S0 = Δ0 + Δmg = γs
ω3P1−3P0
γ3P1→1S0

= βB2 (6.1)
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6. Simulation of the optical conveyor laser

Figure 6.1: Spatial inhomogeneity of magnetic field and the resulting clock transition frequency
change. (a) Magnetic field magnitude B along the direction of the optical conveyor and (b)
corresponding second-order Zeeman shift, referenced to their values for the offset field B0 = 230 G,
which corresponds to a frequency shift Δ0 ≈ −2π × 12.3 kHz. The curves are rendered solid in
the emission zone. The black curve corresponds to the simulated magnetic field of the Helmholtz
coil pair. The colored curves correspond to the presence of an additional magnetic field gradient.
The resulting position-dependent frequency shift is shown in (b) with the same color encoding
(see legend in (b) for the values).

where β ≈ −1.465 s−1/G2 ≈ −2π × 23.3 MHz/T2, see expressions (5.7) in section 5.1.1.
The sensitivity of this narrow transition frequency to variations δB in the bias field B thus
scales as B. This leads to considerable sensitivity in the narrow transition to magnetic
field fluctuations for practical bias field strengths. For an external bias field B = 200 G
corresponding to a transition linewidth γs ≈ 2π × 12 µHz, the second order differential
Zeeman shift Δmg ≈ Δ0−2π×93 mHz/mG×(B−B0) where Δ0 = βB0 ≈ −2π×9.33 kHz.
The superradiance chamber of our setup is isolated by magnetic shielding. In order to
allow the 1S0 ↔ 3P0 transition, we apply a fairly strong and homogeneous bias magnetic
field B ≈ B0 = 200 G created by a set of Helmholtz coils. This magnetic field is
orthogonal to the axis of the optical conveyor as well as the axis of the transfer beam,
and the superradiance mode is polarized along its direction, see figure 5.4.

In order to evaluate the dependence of the second-order Zeeman shift Δmg on the position
along the conveyor, the distribution of the magnetic field strength B was calculated in
University of Amsterdam with COMSOL. the results are shown by the black curve in
Figure 6.1.

Another issue is related to the density. The identical bosons interact with each other via
s-wave collisions. This leads to potentially large shifts and decoherences.

The bias magnetic field inhomogeneity in the centre of the emission zone is mostly due
to the incompletely closed magnetic shielding, where the holes are required for optical
access and connection to the rest of the vacuum system. Because of spatial constraints,
we have not considered placing curvature coils in the science chamber to compensate this
inhomogeneity’s. The simulated imperfections will lead to a position-dependent shift
Δmg(y), and this frequency shift only becomes more significant, if the field strength is
increased further. To counteract this problem, we consider the possibility of adding an
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6.2. Reduction of multilevel pumping scheme to an equivalent 2-level scheme

extra gradient GB to the bias field B, which will add an additional position-dependent
shift Δa(2y/ℓconv −1). Therefore, the overall position-dependent shift caused by magnetic
field has the form

Δ(y) = Δmg(y) + Δa(2y/ℓconv − 1). (6.2)

In this expression, the amplitude Δa of the extra position-dependent shift can be calculated
from the magnetic field gradient GB as

Δa = βB0GBℓconv.. (6.3)

This position-dependent shift can help us partially compensate irregularities in Δmg in
parts of the emission region. Interestingly, it also allows to compensate the collisional shifts
(6.20), which depend on the densities of the atoms in the ground and the excited states.
The total shift varies as the atoms move along the conveyor, as shown in Figure 6.3 (g).

6.2 Reduction of multilevel pumping scheme to an
equivalent 2-level scheme

The atoms are loaded into the optical conveyor from the dipole guide in the 1S0 state,
and they get pumped into the upper lasing state about 2 mm after the point where they
are loaded. Therefore, the atoms during the pumping process are coupled to the cavity
field. This pumping can lead to dephasing and cause light shifts on the atomic transition,
and may affect the frequency of the superradiant laser output. In order to include these
pumping-induced effects into the model without adding all the equations for complete
set of the atomic levels participating in the repumping process and coherences between
these levels, we can map the real multilevel systems into an equivalent 2-level one with
incoherent pumping, using the method developed in [35]. This section is dedicated to
such a mapping.

We neglect here all the collision-induced processes, because the pumping occurs in a very
narrow zone (250 µm waist), and these process will not significantly affect the internal
state of the atoms during the repumping process. Therefore, we consider isolated atoms
interacting with the pumping fields. The 8-level realistic pumping scheme is presented in
Figure 5.12.

The evolution of some deterministic part ĤD of the Hamiltonian describing this system
is given by equations (5.38) – (5.41), corresponing to the master equation

dρ̂

dt
= − i

ℏ

�
ĤD, ρ̂

�
+

9
j

ˆ̂
D′[Jj ]ρ̂, (6.4)

where the (deterministic) Hamiltonian ĤD is given by equation 5.32:

ĤD

ℏ
=

89
j=3

Δj σ̂jj + Ω1(σ̂g3 + σ̂3g) +
79

j=3
Ωj(σ̂j8 + σ̂8j), (6.5)
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6. Simulation of the optical conveyor laser

and the rates Rj and the jump operators Ĵj corresponding to various dissipative processes
are listed in table 5.3.

Table 6.1: Dissipative processes in the equivalent 2-level scheme with incoherent pumping.

j Ĵj Rj description
1 σ̂ge γs decay from |e⟩ to |g⟩
2 σ̂eg w incoherent pumping from |g⟩ to |e⟩
3 σ̂gg νg dephasing on |g⟩
4 σ̂ee νe dephasing on |e⟩

We want to map this multilevel scheme to an equivalent 2-level one, where the density
matrix describing the states |g⟩ and |e⟩ follows the master equation with an effective
2-level Hamiltonian

ĤD
2−level = ℏ(δgσ̂gg + δeσ̂ee), (6.6)

and the dissipative processes are listed in Table 6.1.

The procedure of mapping of multilevel pumping scheme to an equivalent 2-level scheme
with incoherent pumping is described in detail in [35]. In brief, as a first step one has to
find the steady-state values of ρee and ρgg, solving the master equation (6.4). Then the
equivalent incoherent pumping rate is

w = Γeg
ρee

ρgg
. (6.7)

Second, one has to diagonalise the effective non-hermitian Hamiltonian which is expressed
here:

Ĥnh
eff = ĤD − iℏ

2
9

j

Rj Ĵ+
j Ĵj (6.8)

to get the complex eigenvalues Eg and Ee, corresponding to the eigenstates with the
highest overlap with the unperturbed “clock” states |g⟩ and |e⟩. Then one can extract
the effective frequency shifts

δe,g = Re(Ee,g) (6.9)

and dephasing rates

νg = −2Im(Eg) − Γeg; νe = −2Im(Ee) − w. (6.10)

In the Table 6.2 we present four examples of mapping the realistic 8-level pumping
scheme into the effective 2-level scheme using incoherent pumping. For all 4 sets of
parameters we have taken: I = 0.32Isat is the laser acting on |g⟩ → |3⟩ transition that
gives Ω1 = 9.38 × 103 s−1), I = 0.5Isat for laser acting on |3⟩ → |8⟩ transition, what
gives Ω3 = 3.375 × 106 s−1 and I = 0.02Isat for all other lasers, that gives Ω3 = Ω4 =
6.75 × 105 s−1, Ω5 = Ω7 = 6.3 × 105 s−1, Ω6 = 8.4 × 105 s−1, according to expression
(5.19).
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6.3. Mean-field model of the optical conveyor laser

Table 6.2: Examples of correspondence between pumping parameters of the realistic 8-level
scheme and equivalent 2-level scheme. Here we introduced Δωkl = ωL

kl − ωk + ωl and supposed
that all the lasers except the one acting on |g⟩ → |e⟩ transition have the same linewidth. Here
ν = νg + νe, and δp = δe − δg. Intensities of the pumping lasers are specified in the text.

Parameters 1st Set 2nd Set 3rd Set 4th Set

8-
le

ve
ls

ch
em

e

Δω3g/(2π) 20 Hz −100 Hz 50 Hz 500 Hz
Δω83/(2π) −1 MHz −2.0 MHz 0 0
Δω84/(2π) 1 MHz 0 2 MHz 2 MHz
Δω85/(2π) −20 MHz −19.9 MHz −20 MHz −17 MHz
Δω86/(2π) 0 −100 kHz 0 −3 MHz
Δω87/(2π) 20 MHz 20.1 MHz 20 MHz −23 MHz
ΓL

1 /(2π) 1 kHz 1 kHz 1 kHz 2 kHz
ΓL

j /(2π), j = 3 to 8 3 MHz 3 MHz 1 MHz 1 MHz

2-
le

ve
l w 272.6 s−1 272.8 s−1 248.0 s−1 246 s−1

ν = νg + νe 401 s−1 404 s−1 346 s−1 341 s−1

δp/(2π) 6.26 Hz 12.4 Hz 0.02 Hz 0.42 Hz

6.3 Mean-field model of the optical conveyor laser

Figure 6.2: Scheme of the optical con-
veyor carrying the atoms along the su-
perradiance cavity.

In this section we construct the model of the super-
radiant laser on the optical conveyor schematically
presented in figure 6.2. We use mean-field equations,
in which we neglect quantum correlations between
different atoms, and where we suppose that each
atom interacts with the cavity field created by all
the atoms. This model allows us to analyse the
impact of systematic effect, particularly collisional
decoherences, losses and shifts, as well as inhomo-
geneity of the external magnetic field. We consider
the ring cavity in bow-tie configuration with total
length lcav = 20 cm. We suppose that the atoms
interact only with the running-wave cavity mode
co-propagating (or counter-propagating) with the
optical conveyor, which is resonant with the atomic
transition in the rest frame of the conveyor: this
is because the other running-wave mode, counter-
propagating (or co-propagating) with the optical
conveyor will be detuned by ΔDoppler = 2ωvconv/c ≈
2π × 28.6 kHz at vconv = 1 cm/s, and the atoms
which are synchronized with, say, the co-propagating mode can not collectively interact
with the counter-propagating one due to the mismatch of the relative phases.

To include the collisional effetcs, consider first the the atoms inside the single lattice site.
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6. Simulation of the optical conveyor laser

The periods of the atom radial and axial motion in a single lattice site (of order of 0.01 s
and 10−5 s, respectively) are much shorter than the interaction time between the atom
and the field (around 1 s). Therefore, we can average the position-dependent effects as
well as the spatial distribution of the atoms over the single lattice site. To perform this
averaging, we use a harmonic oscillator approximation for the dipole potential of the
lattice site and a Maxwell-Boltzmann spatial distribution of the atoms:

p(x′, y′, z′) = 23/2

π3/2W 2
r Wy

exp
)

−2x′2 + z′2

W 2
r

− 2 y′2

W 2
y

/
, (6.11)

where x′, y′ and z′ are the distances from the center of the lattice site. The 1/e2 radii
Wr and Wy of the atomic cloud in the radial and axial directions are calculated as

Wr = Wconv
4

T/Uconv, (6.12)

Wy = 1
k

5
2(T θ + (UconvER)θ/2)1/θ

Uconv
, (6.13)

where T is the temperature of the atomic ensemble which is set to T = 10 µK. Next,
Uconv = 30 µK is the depth, and ER = k2ℏ2/(2mSrkB) ≈ 0.165 µK is the recoil energy
of the moving optical lattice potential in units of temperature. The phenomenological
parameter θ = 2.5 is chosen such that eq. (6.11) well reproduces the probability density of
the atom in the harmonic potential in the cross-over between the “classical thermal limit”
(kBT ≫ ℏωy = 2

√
ERUconv) and the “frozen quantum” limit (kBT ≪ ℏωy). Here we

consider the possibility that higher vibrational states along the y-axis can be occupied.

The number density nj averaged over the atomic motion can be represented as

nj = N

&
p2(x′, y′, z′)dx′dy′dz′ = Nlc

Veff
, (6.14)

where Nlc = N jλconv/(2ℓc) is the number of atoms in a single lattice site and

Veff = W 2
r Wyπ3/2 (6.15)

is the effective volume of a single lattice site.

The atom-cavity coupling strength is then can be calculated as

g =
exp

+
−k2W 2

y

8

1
1 + W 2

r

2W 2
0

5
3c3γs

lcavω2W 2
0

, (6.16)

where the prefactor before the square root describes the averaging over the spatial
distribution of the atoms over one lattice site, and k = 2π/λconv is the wave number of
the conveyor lattice.
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6.3. Mean-field model of the optical conveyor laser

The mean-field equations for the cavity field ⟨â⟩ looks like

d⟨â⟩
dt

= −
�

κ

2 + iδa

!
⟨â⟩ − i

9
j

g(yj)⟨σ̂j
ge⟩ (6.17)

where δa = δc − k0/vconv, δc is the detuning of the cavity field from the rotating frame
where we consider the system, vconv is the speed of conveyor, and k0 is the wave number
of the cavity mode. The sum is taken only over the atoms within the optical conveyor.
Because the conditions (3.31) is satisfied, the field ⟨â⟩ gets fast into equilibrium with
atomic degrees of freedom and can be adiabatically eliminated:

⟨â⟩ = −2i

κ + 2iδa

9
j

g(yj)⟨σ̂j
ge⟩N j (6.18)

To reduce the computational cost we, similar to how it has been done in chapter 4, group
the atoms into M clusters distributed along the optical conveyor, with all the atoms of the
same cluster having the same internal states as suggested in section 4.1.1. Each cluster
occupies a segment of length ℓc = ℓconv/(M −1) centered at position yj along the conveyor.
In order to simulate smooth introduction and removal of the atoms, the clusters are
initialized at position yj,0 = −ℓc/2, and the atoms get removed only when they reach the
position yj,f = ℓconv + ℓc/2. When −ℓc/2 < yj < ℓc/2 or ℓconv − ℓc/2 < yj < ℓconv + ℓc/2,
the coupling strength g between the atoms and the cavity field is multiplied by the
fraction of atoms in the cluster inside the active part of the conveyor. The number N j

of the atoms in jth cluster is randomly distributed around Φℓc/vconv where we used
Poissonian distribution.

In turn, the equations for atomic coherence ⟨σj
ab⟩ = |aj⟩⟨bj | of individual atoms are

d⟨σ̂j
ge⟩

dt
= −

�
γs + γe + γg + w(yj)

2 + γR + νp(yj) + Γj
coll + i

(
Δ(yj) + Δj

coll + δp(yj)
.!

⟨σ̂j
ge⟩

+ ig(yj)⟨â⟩(⟨σ̂j
ee⟩ − ⟨σ̂j

gg⟩),
d⟨σ̂j

ee⟩
dt

= ig(yj)
�
⟨â†⟩⟨σ̂j

ge⟩ − ⟨â⟩⟨σ̂j
eg⟩

�
− (γe + γs)⟨σ̂j

ee⟩ + nj(γee⟨σ̂j
ee⟩ + γeg⟨σ̂j

gg⟩)⟨σ̂j
ee⟩

+ w(yj)⟨σ̂j
gg⟩,

d⟨σ̂j
gg⟩

dt
= −ig(yj)

�
⟨â†⟩⟨σ̂j

ge⟩ − ⟨â⟩⟨σ̂j
eg⟩

�
+ γs⟨σ̂j

gg⟩ −
�
γg + w(yj) + njγge⟨σ̂j

ee⟩
�

⟨σ̂j
gg⟩

(6.19)

where Δ(y) is the position-dependent magnetic shift (6.2), γs is the spontaneous transition
rate (γs = 7.8 × 10−5 s−1 at B0 = 230 G), γe and γg are density-independent inverse
lattice lifetimes for the ground and the excited states. Here, we take γe = γg = 0.33 s−1

as a conservative estimation, which corresponds to 3 s of lattice lifetime. The effective
position-dependent pumping rate is denoted by w(y), and the shift and dephasing rates
in the pumping zone by δp(y) and νp(y), respectively
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6. Simulation of the optical conveyor laser

The extra density-independent dephasing rate caused by elastic collisions with a back-
ground gas and Raman scattering of photons from the optical lattice potential is denoted
by γR [79]. We have taken γR = 0.3 s−1 and define the total rate of collision decoherence
as

Γj
coll = nj

�⟨σ̂j
ee⟩γee + [⟨σ̂j

gg⟩ + ⟨σ̂j
ee⟩]γge

2 + γdep⟨σ̂j
gg⟩

�
(6.20)

and the collisional shift as

Δj
coll = nj [µ(⟨σ̂j

ee⟩ + ⟨σ̂j
gg⟩) + ϵ(⟨σ̂j

ee⟩ − ⟨σ̂j
gg⟩)] (6.21)

Here, we define the loss, dephasing, and shift coefficients as follows: γee = (4 ± 2.5) ×
10−12 cm3/s, γge = (5.3 ± 1.9) × 10−13 cm3/s, γdep = (3.2 ± 1.0) × 10−10 cm3/s, µ =
2π × 8.2 · 10−11 cm3 · Hz, and ϵ = 0.33µ [78]. The coefficients µ and ϵ were extracted from
[78], where the collisional shift coefficient was measured as (7.2 ± 2.0) × 10−17 Hz × m3

for 35% of excited atom in the end of the Rabi pulse, what corresponds to about 31.75%
of excited atoms in average over the pulse. Also, it was observed a relative influence of
about (2.9 ± 4.5) × 10−3 per percent excitation probability, i.e., per percent of excited
atoms after the pulse.

6.3.1 Results of the simulation for the “basic” model
In this section, we present the results of numerical simulations of the superradiant laser
output using the semiclassical model described above and with the collisional dephasing
rate given by Eq. (6.20) for mHz machine where atoms are traveling in an optical conveyor
along a running-wave optical cavity. We assume a total roundtrip length lcav = 20 cm
and cavity finesse F = 5 × 104, which gives the decay rate κ of the cavity field energy
equal to

κ = 2πc

F lcav
≈ 1.88 × 105 s−1 (6.22)

The output laser power per single intracavity photon can be estimated as κℏωη ≈
1.34 × 10−14 W, where ω ≈ 2π × 429 THz is the frequency of the 1S0 → 3P0 transition
and η is the fraction of output power emitted through the outcoupling mirror. We assume
all four mirrors have equal transparency, which leads to η = 0.25. The waist W0 of the
superradiant cavity mode is taken as

W0 = Wconv

5
λ

λconv
≈ 130 µm, (6.23)

where Wconv = 140 µm is the waist of the moving optical lattice, λconv = 813 nm is
the magic wavelength, and λ = 698 nm is the wavelength of the superradiant mode.
The coupling strength g between the atomic transition and the running-wave cavity
mode is calculated according to (6.16). With conservative estimation T = 10 µK of the
temperature of the atomic ensemble, and taking the depth Uconv of the optical lattice as
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6.3. Mean-field model of the optical conveyor laser

Uconv = 32 µK and the spontaneous transition rate γs = 7.8 × 10−5 s−1 corresponding to
B0 = 230 G (the value of averaged magnetic field which we have taken for simulation
presented in this section), we estimate g = 0.443 s−1.

The atoms are loaded into the conveyor in the 1S0 state and get pumped into the upper
lasing state, as described in section 5.4. The pumping process was simulated using
the following position-dependent incoherent pumping rate w(y) = w0p(y), as well as
pumping-related dephasing rate ν(y) = ν0p(y) and light shift δp(y) = δ0

pp(y), where

p(y) = exp
)

−2(y − yp)2

W 2
p

/
, (6.24)

yp = 2 mm, and Wp = 250 µm. We take w0 = 270 s−1 and ν0 = 400 s−1 as a typical
values, see Table in section 6.2. At this point, we set the pumping-induced light shift,
δ0

p = 0. Later, however, we check that reasonable values of pumping-induced light shift
will have only a minor influence on the amplitude and frequency of the output laser
field. Using these parameters, we perform a series of simulations of the superradiant
laser output for different atomic fluxes Φ. Note that the mean-field equations (6.19)
are invariant to a common phase shift of atomic coherence σj

ge = ⟨σ̂j
ge⟩ and cavity field

a = ⟨â⟩. To break this phase symmetry and initiate the lasing process, we assume that,
at the beginning of the simulation, the atomic ensembles in the cavity have some small
“seed” coherence: σj

ee = (1 − cos(θ0))/2, σj
gg = (1 + cos(θ0))/2, σj

ge = sin(θ0) exp(iφj
0),

where θ0 = 0.07 rad and φj
0 are randomly distributed between 0 and 2π. Here and below

we, for the sake of brevity, introduce the short notation o = ⟨Ô⟩ for mean values of
operators. All the atomic ensembles loaded into the conveyor after that are fully in the
upper lasing state, without any “seed” coherence.

In Figure 6.3 (a,b) we present results of simulations of the intracavity photon number n
in steady-state and the shift Δout of the output radiation frequency (with respect to the
frequency of 1S0 → 3P0 transition at B = B0) for different values of the atomic flux Φ
and magnetic field gradient GB, see section 6.1, expression (6.3). For the calculations,
we vary the atomic flux Φ and the magnetic field gradient GB . We choose Φ in the range
2.4 × 105 s−1 ≤ Φ ≤ 8 × 106 s−1, which corresponds to the values of parameter A defined
in Appendix A, equation (A.18) in the range 0.173 < A < 1 and should produce stable
nonzero solutions. We fixed the number of clusters M = 51.

The full simulated time is 40 s, but we truncate the first 20 s and use the last 20 s to
calculate the characteristics of the signal once stabilized. Only stable solutions, where
the variations of the amplitude of the intracavity field over the last half of the simulation
period were less than 10 % of the mean, are presented in Fig. 6.3. We can see that
for some combinations of (Φ, GB), the solutions are unstable. Notably, we see no laser
output for Φ < 2 × 106 s−1 , which corresponds to A > 0.346. Such an increase of the
threshold atomic flux for superradiant emission in comparison with the idealized model is
associated with atomic losses and dephasings, as well as position-dependent shifts, which
hinder lasing.
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6. Simulation of the optical conveyor laser

Figure 6.3: Results of superradiant lasing simulation. (a) Simulated intracavity photon numbers,
(b) Frequency shifts of the output field, relative to the atomic transition, versus gradient GB of
the magnetic field for different atomic fluxes Φ (see legend; same color code for (a) and (b)). Here
we use B0 = 230 G and F = 50000. Circled points correspond to stable solutions investigated
in detail in (c) – (g). (c) Examples of intracavity photon number over time for Φ = 7 × 106 s−1

and three different values of the magnetic field gradient GB . (d) Distributions of populations σee

(solid) and σgg (dashed) along the conveyor. (e) Distribution of atomic yield to the cavity field a
defined as the imaginary part of σge exp[−iarg(a)]. (f) Distribution of collision-induced dephasing.
(g) Total (magnetic plus collision-induced) shift Δtot = Δ(y) + Δcoll along the conveyor. The
color code for (c) – (g) is shown in (c).

To further investigate the lasing process, we perform simulations for Φ = 7 × 106 s−1 at
three different values of magnetic field gradient: GB = −47 mG, −93 mG, and 0 mG.
The simulated time-dependent intracavity photon numbers for these cases are shown in
Figure 6.3(c). It is evident that the solutions are stable for GB = 0 mG and −93 mG,
while for GB = −47 mG, the intracavity field becomes unstable, exhibiting irregular
superradiant pulsations. In Figure 6.3(d), we present the spatial distribution of the
ground state (σj

gg) and excited state (σj
ee) populations in the emission region at the end

of the simulation (t = 40 s) for the same parameters. Note that σee + σgg < 1 due to
atom loss from the conveyor, as described by equations (6.19). The results indicate that
for GB = 0 mG/cm (black curves), atoms return to the ground state more quickly than
for GB = −47 mG/cm and GB = −93 mG/cm (gray and red curves, respectively).

This is because, for GB = 0 mG/cm, the atoms are coherently coupled to the cavity
field primarily in the first half of the optical conveyor, whereas for GB = −93 mG/cm,
they couple in the second half. This behavior aligns with the atomic contribution to the
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6.3. Mean-field model of the optical conveyor laser

intracavity field shown in Fig. 6.3(e). In the case of GB = −47 mG/cm (unstable regime),
we observe oscillations between the ground and excited states, along with corresponding
oscillations in the intracavity field. At the end of the emission zone, it is also evident
that σee remains larger than σgg for all three cases, indicating that less than half of the
energy stored in the 1S0 → 3P0 transition is converted into the cavity field’s energy.

We define the contribution of single-atom coherence to the intracavity field as
Im(σge exp(−i arg(a))), consistent with Eq. (6.18). Upon closer inspection of the position
dependence of this quantity in Fig. 6.3(e), we observe that it aligns with regions where
the variation in the overall shift (magnetic plus collision) is minimal. For instance, when
GB = 0 mG/cm, the main contribution to the intracavity field comes from atoms in the
first half of the emission zone, corresponding to a plateau in the overall shift shown in
Fig. 6.3(g). Similarly, for GB = −93 mG/cm, the primary contribution arises from the
second half of the emission zone, but since a significant fraction of the atoms have been
lost from the conveyor by this point, the signal’s amplitude is reduced. In the unstable
regime, where GB = −47 mG/cm, we observe random absorption and emission events
between the atoms and the cavity field. These energy oscillations lead to chaotic behavior
in the out-coupled laser field.

In Fig. 6.3(f,g), we present the position-dependent collisional dephasing rates Γcoll and
the total frequency shifts (magnetic and collision-induced) along the length of the optical
conveyor. For all three values of GB, the collisional dephasing rate is highest at the
beginning of the emission zone, when the atoms are still in the ground state, but it
sharply decreases at y = 0.2 cm, as the atoms are pumped into the 3P0 state. The
dephasing rate then increases again as the atoms emit and transfered from the excited
state back to the ground state. This behavior is consistent with our model, where the
dominant source of dephasing is ground state collisions (6.20). Eventually, the dephasing
decreases again as the total atomic density decreases due to losses.

Finally, we compare the total position-dependent shift shown in Fig. 6.3(g) with the
magnetic shift presented in Fig. 6.1(b) for the same magnetic field gradient to assess the
impact of the collision shift on the total shift. The variation of the collision shift along
the emission zone is dynamic: it decreases as atoms are lost from the optical conveyor
but increases as atoms transition from the excited state back to the ground state. A
qualitative comparison of the two plots indicates that the magnetic shift dominates
throughout the emission zone, and the variation in collision shift has a minimal effect on
the total shift.

We can now estimate the fraction of atoms contributing to the intracavity field and the
expected output lasing power for such an experiment. With a flux of 7 × 106 s−1, the
maximum power that could, in principle, be emitted into the cavity mode is ℏωΦ ≈ 2 pW.
We calculate the actual power emitted into the cavity field as Pfield = ℏωκn. For GB = 0
and n ≈ 11.9, this results in Pfield = 0.64 pW. Thus, approximately 32% of the atoms
pumped to the excited state contribute to the intracavity field. This can be attributed
to the loss of excited-state atoms from the optical conveyor and partial transfers between

121



6. Simulation of the optical conveyor laser

the excited and ground states. Consequently, the expected output lasing power on the
clock transition under optimal conditions is Pout = ηPfield = 0.16 pW, assuming η = 0.25.

To assess the sensitivity of the laser output to the pumping-induced light shift δp, we
conduct additional simulations for δ0

p = 2π × 25 Hz, which is a typical estimate of the
effective light shift, and δ0

p = 2π × 500 Hz, representing a more conservative upper
bound. These simulations correspond to the marked points in Fig. 6.3(a,b) (Table 6.2).
We find that the stability of solutions with the same Φ and GB is independent of δ0

p.
For stable regimes, the difference in the amplitude of the intracavity field between
solutions with identical Φ and GB but varying δ0

p is less than a few percent. Additionally,
the frequency shift of the output field varies by less than 50 mHz when δ0

p changes
from 0 to 500 Hz, which is near the Fourier-limited resolution of our simulation. This
robustness can be attributed to the fact that atoms do not contribute significantly to
the intracavity field while being affected by the pumping-induced light shift δp, as the
pumping zone is approximately 20 times smaller than the emission zone. Moreover, the
large dephasing associated with this pumping further mitigates its impact on the output
of the superradiant laser.

The quantum noise-limited linewidth of the superradiant output can be estimated using
the second-order cumulant expansion [11, 36]. This approach involves clustering the
atomic ensemble based on their positions in the optical conveyor and treating the
collision-induced shifts, along with loss and dephasing rates, as external parameters.
These parameters are pre-calculated using the semiclassical model described earlier. For
a flux of Φ = 7 × 106 atoms/s, the quantum noise-limited linewidths are approximately
5 µHz for GB = 0 and 7 µHz for GB = −93 mG/cm. It is important to note that this
sub-natural linewidth is achievable only due to the collective superradiant nature of the
system and persists despite the inhomogeneous broadening on the Hz level, as shown in
Fig. 6.3(g). This noise suppression, on the order of one million, can only be realized in a
truly continuous system without any Fourier limitations.

Examining the sensitivity of the output frequency to variations in atomic flux Φ in
Fig. 6.3(b), we observe that this sensitivity is minimized for negative values of GB

between −120 mG/cm and −90 mG/cm. Within this range, the shift sensitivity is
approximately 2π × 0.3 Hz per 106 atoms/s. Consequently, a mean atomic flux of
Φ = 7 × 106 s−1 with a 5% fluctuation in atom number would result in an output
frequency linewidth broadened by about 100 µHz. These fluctuations appear to be the
primary factor limiting the short-term frequency stability of the output laser signal.

6.4 Simulation with full dephasing
Our simulations thus far are based on the model presented in [78], where it is assumed
that the primary source of dephasing is elastic collisions with atoms in the 1S0 ground
state. According to this model, the ground state dephasing coefficient due to elastic
collisions, γdep, is significantly larger than the loss coefficients associated with inelastic
collisions between atoms in the excited state (γee) and between ground and excited state
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atoms (γge), by factors of approximately 100 and 1000, respectively (see section 6.3).
Consequently, the impact of dephasing due to elastic collisions with excited state atoms
has not been taken into account.

Strictly speaking, such an approximation is acceptable in situation considered in [78],
where the fraction of the atoms in the excited state never exceed one third of the total
amount of the atoms. However, in our case the atomic sample is fully inverted after
the pumping zone, and in the emission zone the fraction of inverted atoms is almost
always larger than the fraction of atoms atoms in the ground state, as illustrated in
Figure 6.3(d). Therefore, dephasing due to elastic collisions in the excited state cannot be
overlooked in our case. In this section, we explore the feasibility of the bad cavity laser
using an “extended” dephasing model that includes dephasing due to elastic collisions in
the excited state. In the absence of experimental data, we set the dephasing coefficient
for the excited state, γdep = 3.2 × 10−10 cm3/s, equal to the dephasing coefficient in the
ground state. Accurate determination of this coefficient will be in the focus of future
experimental studies. It should be noted that dephasing due to elastic collisions between
excited and ground-state atoms is still not considered in this model.

To now account for the additional two-body collision dephasing effects, we, instead of
(6.20), use the following expression for the collisional dephasing rate:

Γj
coll = nj

�⟨σ̂j
ee⟩γee + [⟨σ̂j

gg⟩ + ⟨σ̂j
ee⟩]γge

2 + γdep(⟨σ̂j
gg⟩ + ⟨σ̂j

ee⟩)
�

. (6.25)

With this new dephasing rate, we find that we must increase the bias magnetic field in
order to achieve a larger atom-field coupling to obtain steady-state superradiant emission.
Here, we choose B0 = 574 G, which is 2.5 times stronger than before. Calculations
with COMSOL show almost perfectly proportional scaling of magnetic field deviations
B(y)−B0, within 1%. This field corresponds to γ3P0→1S0 = 6.43×10−4 s−1 = 2π×102 µHz,
what, in turn, gives the coupling strength g = 1.1 s−1 between the atomic transition and
the cavity field.

The dependencies of the intracavity photon number and the shift of the output radiation
on GB for stable solutions are shown in Figure 6.4(a,b). In contrast to the dependence
depicted in Figure 6.3(a), the intracavity photon number as a function of GB exhibits two
maxima and a broad dip in the range −180 < GB < 50. This behavior is attributed to
the proportionally stronger variation in the magnetic shift along the optical conveyor. In
Figure 6.4(c-g), we present results of simulations for Φ = 4 × 106 s−1 and three different
values of the magnetic field gradient, similar to the method used for Figure 6.3. We use a
smaller atomic flux than was used in the basic dephasing model, since no stable solutions
are obtained for higher values of flux with the extended model. Again, we present two
stable (violet and light blue curves) solutions and one unstable (yellow curve) solution.
The variation of the position-dependent shift presented in Figure 6.4(g) is much larger
than in Figure 6.3(d) due to the proportionally larger inhomogeneity of the magnetic
field along the optical conveyor. The maximum steady-state intracavity photon number
is n ≈ 6.62 in Figure 6.4(c), which is 45% lower than the value presented in Figure 6.3(c).
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Figure 6.4: Simulation for the full dephasing model. (a) Intracavity photon numbers and (b)
frequency shifts of the output field (relative to the atomic transition) depending on magnetic field
gradient GB and atomic flux Φ (see legend). Inset: magnetic field gradient range in which output
frequency is least sensitive to flux. Circled points correspond to stable solutions investigated in
detail in (c) – (g). (c) Examples of intracavity photon number over time for Φ = 4 × 106 s−1 and
three different values of the magnetic field gradient GB. (d) Distributions of populations σee

(solid) and σgg (dashed) along the conveyor. (e) Atomic yield to the cavity field a defined as the
imaginary part of σge exp[−iarg(a)]. (f) Distribution of collision-induced dephasing. (g) Total
(magnetic plus collision-induced) shift Δtot = Δ(y) + Δcoll along the conveyor. The color code for
(c) – (g) is shown in (c). The magnetic field B0 = 574 G and all other parameters are the same
as in Figure (6.3)

This reduction can be partially explained by the 40% lower atomic flux. For such a
flux, the maximum power that can be emitted into the cavity mode is ℏωΦ ≈ 1.14 pW,
whereas the power transferred into the cavity field is about Pfield = 350 fW for GB =
142 mG/cm, corresponding to a 31% transfer efficiency. As a result, the output laser
power Pout = ηPfield can be estimated as about 90 fW, assuming all mirrors of the cavity
have the same reflectivity.

In contrast to the situation presented in Figure 6.3(c), the unstable solution produces
relatively regular pulses, rather than a chaotic regime. The dynamics of intracavity
populations shown in Figure 6.4(d) demonstrate nearly the same population transfer
efficiency for Φ = 4.0 × 106 s−1, GB = 142 mG/cm (light blue curves) as for Φ =
7.0 × 106 s−1, GB = 0 in the basic model (black curves in Figure 6.3(d)). The smaller
atomic number density and relatively lower collision losses used in the extended dephasing
model lead to the same transfer efficiency, even though the total shift in the emission
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zone is larger. The atomic contribution to the intracavity field for the unstable solution
(yellow curve in Figure 6.4(e)) shows two strong peaks corresponding to simultaneous
lasing at two slightly different frequencies, resulting in pulses. The collision-induced
dephasing rate presented in Figure 6.4(f) is nearly proportional to the total population
change, whereas in the basic model it is primarily determined by the population of the
ground state.

The simulations presented in Figure 6.4 were performed for a pumping-induced light
shift δp of zero. To test the robustness of the output laser signal against a non-zero shift,
we performed simulations for δ0

p = 2π × 25 Hz and δ0
p = 2π × 500 Hz. Using these two

values for the pumping-induced light shift to simulate the generated field for the two
marked solutions in Figure 6.4(c), we obtained a stable solution in all four cases. In these
cases, the variation in the number n of intracavity photons was less than 1%, and the
constant output frequency shift Δout was smaller than 2π × 50 mHz. This leads us to
the assumption that the pumping zone has a very small influence on the performance of
the superradiant laser.

The minimum achievable linewidth of the output radiation at two selected points cor-
responding to a stable solution for Φ = 4 × 106 s−1 and GB = 142 mG/cm is on the
order of 2π × 120 µHz, and for Φ = 4 × 106 s−1 and GB = −217 mG/cm, it is on the
order of 2π × 50 µHz. The larger linewidth values compared to those presented in the
previous section are due to the greater variations in the position-dependent shift along
the optical conveyor. In this case, the collective nature of superradiance again suppresses
the inhomogeneous broadening effects in our system by approximately six orders of
magnitude, resulting in a linewidth comparable to the natural linewidth, even at this
level of inhomogeneity of the bias magnetic field B.

For GB lying between approximately −230 mG/cm and −210 mG/cm, as shown in
Figure 6.4(b), we observe that the output frequency is more robust against variations in
the atomic flux Φ than in the case considered in section 6.3.1. Five percent fluctuations
in the atom number around Φ = 4 × 106 s−1 result in a broadening of approximately
50 mHz, which corresponds to a broadening by a factor of about one thousand compared
to the minimum achievable linewidth. From this, we can conclude that in our simulations,
fluctuations in the atom number remain the main source of instability for the superradiant
laser.

This concludes our discussion on the simulation of the superradiant signal for the mHz
machine.

6.5 Outlook
In this chapter, we have focused on the 88Sr isotope due to its high natural abundance
and relatively simple internal structure. However, it requires a strong external magnetic
field to partially enable the 1S0 → 3P0 transition, which leads to unavoidable position-
dependent shifts caused by imperfections in the applied magnetic field. Additionally,
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significant dephasing and frequency shifts arise from strong s-wave collisions between
bosonic atoms. As demonstrated, atom number fluctuations are the primary source of
linewidth broadening in our system. Therefore, minimizing these fluctuations is the most
straightforward approach to enhancing the frequency stability of the superradiant laser.
Improved experimental measurements of dephasing and loss coefficients in both the ground
and excited states, as well as collisional-induced shifts, could deepen our understanding
and facilitate a more precise numerical optimization of parameters to minimize linewidth
broadening effects. Furthermore, reducing magnetic field curvature by balancing opposing
curvatures from two coil pairs can help lower the overall position-dependent shift.

Our simulations also suggest that light shifts associated with pumping have minimal
impact on the output frequency, as strongly dephased atoms do not contribute to the
cavity field during pumping. Therefore, adding an additional repumping zone within the
optical conveyor to repopulate the excited state could potentially increase the emitted
power.

Alternatively, we could investigate using fermionic 87Sr on the 1S0, F = 9/2, mF = ±9/2
→ 3P0, F = 9/2, mF = ±9/2 transition in our system (see appendix B for details). Al-
though the more complex internal structure, including hyperfine and Zeeman splitting,
would require more sophisticated cooling and pumping schemes, the non-zero clock
transition rate and stronger coupling to the cavity, even at zero magnetic field, would
reduce the collective atomic number threshold for superradiant emission. Additionally,
the suppression of s-wave collisions due to the Pauli exclusion principle could enhance
the robustness of the output laser field against fluctuations in atomic flux. This direction
remains promising for future theoretical and experimental investigations.

126



CHAPTER 7
Conclusion

In this thesis we performed a series of calculations towards practical implementation of
continuously-operating superradiant laser on 1S0 → 3P0 transition in neutral strontium.
In the beginning we lay out the theoretical foundations necessary for description of open
quantum systems, such as atoms interacting with cooling and pumping fields, atomic
ensembles collectively coupled to bath modes, and lasers, particularly the bad-cavity
lasers. We start from the description of electromagnetic field in the cavity and its
quantization and interaction between the field and a 2-level atom. Then we consider
spontaneous transition in the atom due to interaction with modes of thermal bath, as
well as Dicke superradiance. The superradiant emission from the ensemble of atoms is
faster than the emission of a single atom, because of constructive interference between
decay channels of different atoms collectively coupled to the same bath modes. The idea
of superradiant laser also can be described as a collective coupling of the atoms to a
single mode with the help of the optical cavity. Next, we consider open quantum systems,
and introduce the density matrix, master equation, Langevin-Heisenberg equations, as
well as some calculation technics such as the Monte-Carlo wavefunction method and
semiclassical Monte-Carlo method for simulation of cooling of the atoms.

Further we introduce the most important approximate numerical methods of simulation
of the superradiant laser, namely the mean-field approach, the c-number Langevin
equations, the cumulant expansion to the second order, and compare these methods
with each other as well as with the “full” quantum solution, using quite a simple model
of bad-cavity laser with incoherent pumping without inhomogeneous effects. Such a
system allows the full quantum treatment for moderate number of atoms (of about
100). We calculated characteristics of the superradiant laser output using these methods,
and we concluded that the mean-field approach is an effective approximate method
for calculation of the atomic inversion and the intracavity photon number, whereas for
calculation of the linewidth the second-order cumulant approach is the better option than
c-number Langevin equations. The 2nd-order cumulant approach is more accurate than

127



7. Conclusion

the method based on c-number Langevin equations, and it does not require averaging over
many trajectories obtained from numerical simulation of stochastic differential equations.
However, for inhomogeneous systems divided into M clusters the number of equations is
proportional to M2 for the second-order cumulant approach, and to M in the c-number
Langevin approach.

Then, using the 2nd-order cumulant approach we calculated ultimate frequency stability
achievable with active optical frequency standards. We analyzed the dependence of the
linewidth of a bad-cavity laser with incoherent pumping on its parameters and deter-
mined an estimated minimum linewidth and optimal operational parameters for different
situations (homogeneous system, system with inhomogeneous atom-cavity coupling, and
with inhomogeneous coupling and broadening). We demonstrated that the instability
σy,Dick ≈ 3.8 × 10−17/

6
τ [s] associated with the Dick effect in a passive optical frequency

standard, which uses one of the best local oscillators pre-stabilized to a cryogenic Si cavity
[3], can be matched by a bad-cavity laser with N = 105 87Sr atoms and a coherence time
of T2 ≈ 0.4 s.

Further we discussed the design of a continuously operating superradiant laser on the
1S0 → 3P0 transition in 88Sr at the University of Amsterdam, which could serve as a
future active optical frequency standard. We discussed the mechanism of continuously
cooling, loading and pumping of atoms from a dipole trap into a moving magic wavelength
optical conveyor lattice inside a bow-tie cavity, which establishes strong collective coupling
between atoms and enables superradiant emission. Simulations indicated highly efficient
atom loading for a moving optical lattice at a speed of a few cm per second, with up to
83% of atoms being trapped and pumped into the optical lattice with an average energy
slightly above 16 µK.

We then numerically simulated the output of a continuous superradiant laser, considering
factors like inhomogenity of magnetic field applied to open the 1S0 → 3P0 transition in
88Sr, collisional dephasing, shifts and losses, and pumping-induced effects. Two models
for collisional decoherence were considered. In the first, based on [78], we assumed that
ground state collisions were the primary source of decoherence. Under experimentally
realistic conditions, we showed the feasibility of creation of the superradiant laser with
an output power of approximately 160 fW and a quantum fluctuation-limited linewidth
of a few µHz. The primary limitation on linewidth was broadening due to atomic flux
fluctuations, influenced by the collisional shift and redistribution of atomic coherence
across emission zones. A five percent fluctuation in atomic number would broaden the
linewidth to about 100 mHz. The second model supposes that elastic collisions with the
atoms in the excited state also contribute into the dephasing. We showed that stable
superradiant lasing requires stronger magnetic field (574 G instead of 230 G), which
leads to proportionally stronger variations of the magnetic field and, as a result, to
stronger position-dependent shifts. These shifts can be partially mitigated with the help
of an extra magnetic field gradient. Interestingly, light shift effects caused by pumping
fields were found to be negligible due to strong dephasing of pumped atoms, which
disrupts correlations between ground and excited states and shields the cavity field from
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interacting with these atoms.

In conclusion, this study shows that creation of continuously-operating superradiant
laser on 1S0 → 3P0 transition in strontium is technically feasible, and that active optical
frequency standard based on such laser could be competitive in short-term stability with
current state-of-the-art passive frequency references.
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APPENDIX A
Bad cavity laser on optical

conveyor: a simple analytical
model

Here we discuss a simple analytical model of the superradiant laser based on the optical
conveyor. An extended version of this model, including stochastic terms (c-number
Langevin equations) has been proposed in [80] for description of the “atomic beam laser”,
where the flying atoms prepumped into the upper lasing state crosses the cavity. Similar
technics for related tasks was also used in earlier papers [81] and [26]. Although this
method do not incorporate position-dependent shifts, collisional dephasing, losses and
other important real-life effect, it can give us simple expressions for estimation of the
atomic flux necessary to initiate the lasing.

First, we consider the atoms interacting with only one cavity mode (co- or counter-
propagating with the direction where the atoms are drawn), and jth atom enters the
cavity at time tj in the upper lasing state, and leaves it after time τ . Then the Hamitonian
describing such a system can be written, in the properly chosen rotating frame, as

Ĥ = ℏ

Δa

N9
j=1

σ̂egσ̂ge + δcâ
†â + g

N9
j=1

Γj(t)
+

â†σ̂ge + âσ̂eg

1 (A.1)

where g is the coupling strength between the cavity mode and the atomic transition, and
the function Γj(t) describes the introduction and ejection the atoms from the cavity

Γj(t) = Θ(t − tj) − Θ(t − tj − τ). (A.2)

Here τ is the total time the atom spends in the cavity. If we assume that the typical
relaxation of the atom is much less than 1/τ , we can neglect these rates and only keep
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the cavity field decay rate κ/2. Then the mean-field equations will take the following
form:

d

dt
⟨â⟩ = − 1

2(κ + 2iδc)⟨â⟩ − ig
N9

j=1
⟨σ̂j

ge⟩Γj(t)

d

dt
⟨σ̂j

ge⟩ = − iΔa⟨σ̂j
ge⟩ + ig⟨â⟩⟨σ̂j

ee − σ̂j
gg⟩Γj(t)

d

dt
⟨σ̂j

ge⟩ =ig(⟨â†⟩⟨σ̂j
ge⟩ − ⟨â⟩⟨σ̂j

eg⟩)Γj(t)

(A.3)

Instead of treating atoms in the cavity individually, it would be better to introduce
macroscopic variables, as we have assumed homogeneity throughout the cavity

E = ⟨â⟩
M = −i

9
j

Γj(t)⟨σ̂j
ge(t)⟩

Ne =
9

j

Γj(t)⟨σ̂j
gg(t)⟩

Ng =
9

j

Γj(t)⟨σ̂j
ee(t)⟩

(A.4)

Then, using the expression (A.2) If the interval between times tj of subsequent incomes
of atoms is much less than the typical evolution time of the system. and supposing that
the atoms enter the cavity in the upper lasing state, we can rewrite the equations (A.3)
in terms of these macroscopic variables as

dE
dt

= − (κ/2 + iδc) E + gM
dM
dt

= i
9

j

Δ(t − tj − τ)⟨σ̂j
ge(tj + τ)⟩ − iΔaM + g(Ne − Ng)E

dNe

dt
=

9
j

Δ(t − tj) −
9

j

Δ(t − tj − τ)⟨σ̂j
ee(tj + τ)⟩ − g(ME∗ + M∗E)

dNg

dt
= −

9
j

Δ(t − tj − τ)⟨σ̂j
gg(tj + τ)⟩ + g(ME∗ + M∗E)

(A.5)

Now, to find the steady-state solution for the constant flux Φ of the atoms, we will
set E = constant, and assuming that the flux is constant and the intervals between times
tj of subsequent incomes of atoms is much less than τ . Then we can replace

9
j

Δ(t − tj − τ) ≈
9

j

Δ(t − tj) ≈ Φ. (A.6)
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Then the atoms will expect Rabi oscillations as shown in section 2.1.7, and their states
after time τ in the cavity will look like

σ̂j
ee(tj + τ) ≡ A(E , Δa) = cos2 Ωτ

2 + Δ2
a

Ω2 sin2 Ωτ

2

σ̂j
gg(tj + τ) ≡ B(E , Δa) = 1 − A(E , Δa) = 4g2E2

Ω2 sin2 Ωτ

2
σ̂j

ge(tj + τ) ≡ C(E , Δa) = 2gEΔa

Ω2 sin2 Ωτ

2 + i
2gE
Ω sin Ωτ

2 cos Ωτ

2

(A.7)

where Ω =
6

Δ2
a + 4g2E2. We suppose that E is real non-negative. Then the set equations

(A.5) for the steady-state solution of the macroscopic variables can be rewritten as

dE
dt

= 0 = − (κ/2 + iδc) E + gM
dM
dt

= 0 = iΦC(E , Δa) − iΔaM + g(Ne − Ng)E
dNe

dt
= 0 = ΦB(E , Δa) − g(ME∗ + M∗E) = −dNg

dt

(A.8)

From the first of equations (A.8) follows

M = κ + 2iδc

2g
E ⇒ M + M∗ = Eκ

g
⇒ ΦB = E2κ, (A.9)

or
4Φg2

Ω2 sin2 Ωτ

2 = κ. (A.10)

Introducing χ = Ωτ/2, we obtain an equation

sin2 χ = χ2κ

Φg2τ2 , or χ ±
5

Φg2τ2

κ
sin χ = 0. (A.11)

Equation (A.11) may have different number of solutions depending on Φg2τ2/κ. Partic-
ularly, if Φg2τ2 < κ, non-zero solutions do not exist. In turn, a single solution exists
if

1 <
Φg2τ2

κ
< 21.19072856... (A.12)

To find Ω at given Φ, g and τ , one need to solve equation (A.11) numerically with respect
to χ, and then calculate Ω as 2χ/τ . Then it is straightforward to calculate A, B, and C.

To calculate E , it is necessary to find also Δa, so we take the imaginary part of the 2nd
equation from (A.8):

Φ · Im(C) = ΔaIm(M) + gE(Ne − Ng). (A.13)
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A. Bad cavity laser on optical conveyor: a simple analytical model

Then, using (A.9), we get, after some algebra

Δaδc = Φg2
�
Ng − Ne + Φ

Ω sin(Ωτ)
!
. (A.14)

For Rabi oscillations we have

Ng − Ne = Φ
τ&

0

(2σ̂gg(t) − 1)dt

= Φ
τ&

0

)
8g2E2

Ω2 sin2 Ωt

2 − 1
/

dt = −Φ
�

Δ2
aτ

Ω2 + 4g2E2

Ω3 sin(Ωτ)
�

. (A.15)

Then we express Ng −Ne from (A.14), substitute it into (A.15). Then, using the definition
of Ω we arrive, after some algebra, to the equation for δc:

δc = g2ΦΔa

Ω2

+sin(Ωτ)
Ω − τ

1
. (A.16)

Introducing the detuning Δ0 of the cavity from the atomic transition Δ0 = δc − Δa, we
get

Δa = − Δ0

1 + g2Φ
Ω2

(
τ − sin(Ωτ)

Ω

. . (A.17)

Therefore, to find the steady-state cavity field, one need, first, find Ω = 2χ/τ from the
equation (A.11), then find Δa using (A.17) and, finally, find the steady-state cavity field
as E =

6
Ω2 − Δ2

a/(2g). If |Δa| ≥ Ω, there are no non-zero steady-state solutions.

For convenient estimation of the number of possible steady-state solutions in the resonant
or near-resonant case (i.e., when |Δa − δc| ≪ κ), we define a parameter called A as

A =
7

κ

Φg2τ2 (A.18)

One can easily see that the number of solutions of equation (A.11) is determined by the
value of A. Particularly, one can find that for

1 < A : 0 solutions,
0.21723 < A < 1 : 1 solution,

0.12837 < A < 0.21723 : 2 solutions,
0.091325 < A < 0.12837 : 3 solutions,

etc.

(A.19)
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APPENDIX B
Mean-field model of optical

conveyor laser on Sr-87

The bulk of this appendix has been presented as part of [32]

The nucleus of 87Sr has a non-zero magnetic moment and a total spin I = 9/2. The
hyperfine interaction between the nuclear and electronic moments leads to a mixing of
the 3P0 and 3P1 states. Consequently, single-photon transitions are slightly allowed in
fermionic 87Sr, eliminating the need for a strong external magnetic field. A weak magnetic
field of about 1 G is employed to lift the degeneracy, thereby preventing undesirable
coherent effects between different Zeeman substates of the upper and lower lasing states.

The differential Zeeman shift between Zeeman sublevels of the 3P0 and 1S0 states
with equal projection m of the total momentum onto the quantization axis is given by
2π × 108.4 Hz/G × m × B [82]. The atoms can be pumped into the stretched states with
m = ±9/2. The bad-cavity laser can operate simultaneously on both of these transitions.

The mean-field equation for the cavity field a (co-propagating with the optical conveyor)
is

da

dt
= −

�
κ

2 + iδ

!
a − ig

9
j

(σ−,j
ge + σ+,j

ge ), (B.1)

where δ is the detuning of the running-wave cavity mode from the resonance with
(unperturbed) 1S0 → 3P0 transition in 87Sr atom (including the Doppler shift), and the
sum is taken over all the atoms within the conveyor. We neglect the counter-propagating
field because it will be out of resonance due to the first-order Doppler shift, and the
atoms will get synchronized in favor of coherent interaction with the co-propagating mode.
Additionally, we assume that the cavity field is linearly polarized and collinear with the
external magnetic field (in π-polarization) and that there is no field with orthogonal
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B. Mean-field model of optical conveyor laser on Sr-87

polarization. Such a field can be neglected if, for example, it is out of resonance due to
the polarization-dependent effective cavity length.

This setup, combined with the preparation of the atoms initially in two stretched states
mf = ±1/2, allows us to reduce the effective model of the atom to four levels |e±⟩, |g±⟩ if
spin-exchange processes are also neglected. We use the standard notation σ±

xy = |x±⟩ ⟨y±|.
Similiar to how it has been done in section 6.18, one can perform adiabatic elimination
of the cavity field

a = −2ig

κ + 2iδ

9
j

(σ−,j
ge + σ+,j

ge )N j (B.2)

Where N j is a number of the atoms in the jth cluster. Equations for coherences
σ±,j

xy = ⟨σ±,j
xy ⟩ of individual atoms are

dσ±,j
ge

dt
= −

�
R + γs + Γe + Γg + Γ±,j

e,scat

2 + γR + iΔ±,j
!
σ±,j

ge

+ iga

+
σ±,j

ee − σ±,j
gg

1
dσ±,j

ee

dt
= −ig

�
aσ±,j

eg − a∗σ±,j
ge

!
− (γe + Γ±,j

e,scat + γs)σ±,j
ee ,

dσ±,j
gg

dt
= ig

�
aσ±,j

eg − a∗σ±,j
ge

!
+ γsσ±,j

ee − Γgσ±,j
gg

(B.3)

Collisional shifts Δ±,j and decay rates Γj,±
e have been extracted from [83–85]

Δ±,j = Δ±,j
scat ± 2π · 9

2 · 108.4 Hz · B[G];

Δ±,j
scat = (C(σj,±

ee + σj,±
gg ) + χ(σj,±

ee − σj,±
gg )

+ Λσj,∓
gg + Mσj,∓

ee )N j

N j
s

(B.4)

where N j is the number of atoms in jth group, N j
s is the number of optical lattice

antinodes in this group (number of sites), and coefficients

C =
b3

ee − b3
gg

2 ⟨P ⟩, χ =
b3

ee + b3
gg − 2b+

eg
3

2 ⟨P ⟩,

Λ =
a+

eg + a−
eg − 2agg

4 ⟨S⟩ +
b+

eg
3 + b−

eg
3 − 2bgg

3

4 ⟨P ⟩,

M =
2aee − a+

eg − a−
eg

4 ⟨S⟩ +
2bee

3 − b+
eg

3 + b−
eg

3

4 ⟨P ⟩.

(B.5)

Here a is s-scattering length; b3 is p-scattering volume, coefficients ⟨S⟩ and ⟨P ⟩ are s−
and p-wave matrix elements averaged over thermal distribution. We have recalculated
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these dependencies on temperature and parameters of the lattice potential from [83],
supposing that the atoms are in the lowest vibrational state in the axial direction:

a3
0⟨P ⟩ = 3.35 × 107 s−1

+
ωR

2π × 600 Hz

127
ωz

2π × 8 × 104 Hz ,

a3
0⟨S⟩ = 0.08 s−1

T [µK]

+
ωR

2π × 600 Hz

127
ωz

2π × 8 × 104 Hz .

(B.6)

Here ωR and ωz are radial and axial oscillation frequencies of the Sr atom in the trap
site, and a0 is the Bohr radius.

Also, we extracted collision-induced loss rate from [86]

Γ±,j
e,scat = N j

VeffN j
s

+
γeeσ±,j

ee + Keeσ∓,j
ee

1
, (B.7)

where the effective volume Veff can be calculated using (6.15).

It is important to note that atoms can occupy higher-lying vibrational states. Our
model considers only averaged shifts, whereas, in reality, different atoms will experience
different collisional shifts depending on their oscillatory states; see more details in [83,
84]. However, since these shifts are relatively small compared to the lifetime of the atoms
in the trap, it is expected that this inhomogeneous broadening will not significantly affect
the lasing process, and only the averaged shift may play a role.

This model is instrumental in understanding the macroscopic properties of the atomic
ensemble and serves as a foundational tool for further theoretical and experimental
investigations into superradiant systems with 87Sr.
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APPENDIX C
Experimental update

Currently, our collaborators at university of Amsterdam have assembled the whole setup
of mHz machine and they have succesfully demonstrated a flux of approximatly 108

atoms in the 3-D Red MOT and they are planning to implement the bloch accelerator
for the transport of atoms to the Science Chamber. Next step is to setup the molasses
beams for cooling. Below I present some of there results

Figure C.1: The architecture of the apparatus. In the Red MOT chamber, the atoms falling down
from Blue MOT are continuously collected and cooled. From there, they are loaded into a dipole
guide beam formed by a single pass 1070 nm beam.
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C. Experimental update

Figure C.2: Trapped cloud in 2-D Blue MOT.

Absorption pictures are taken by switching off the trap rapidly and let the cloud fall
under the influence of gravity at different t from this the change in width is extracted.
Value of temperature is extracted via

σ(t) =
4

σ2
0 + kBTt2/m (C.1)

Where σ is the phase space density, for details of 2-D Blue MOT see[87] and [88] .

For the 3-D Red MOT we have a double Red MOT with a single frequency Red MOT
(700 KHz 700 KHz red detuned to the spectrum.) above the broad modulated multi
frequency (modulated for all the beams with 0.9-2.5 MHz red detuned, modulation 50kHz)
one constructed with two set of retro reflected beams in the horizontal direction and one
beam shooting upwards against gravity. Because of the detuning of the frequency Red
MOT, the atoms balance at different location, where the light-induced force equals with
gravity. The location depends on resonance with the vertical Red MOT beam and the
position of the zero position of the quadrupole field.

MOT loading time is given by

NMOT (t) = (1 − e−t/τ )Lτ (C.2)
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Figure C.3: Pulsed 3-D single frequency Red MOT.

Figure C.4: Trapped cloud in continuous 3-D broadband Red MOT.
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C. Experimental update

Figure C.5: Characterization of broadband Red MOT.

Figure C.6: Characterization of single frequency Red MOT
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Figure C.7: Single and broadband MOT at the same time but spaced apart

Figure C.8: MOT loading time for different isotopes.
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