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Kurzfassung

Anwendungen, welche auf Nutzergeräten ausgeführt werden, können proprietäre Algo-
rithmen oder vertrauliche Daten enthalten. Es ist böswilligen Akteuren möglich, diese
Anwendungen zu analysieren, um an dieses geistige Eigentum zu gelangen, da sie Zugriff
auf diese Anwendungen haben. Code-Obfuskation ist eine gängige Technik um Anwen-
dungen gegen solche Analyseangriffe zu schützen. Diese Technik erschwert es Angreifern,
die Anwendung zu verstehen. Einer der effektivsten Methoden der Code-Obfuskation ist
die Verwendung einer virtuellen Maschine (VM), welche den Anwendungscode in ihrer
speziellen Instruktionssprache in Prozessorinstruktionen übersetzt. Angreifer müssen
zuerst die VM und die spezielle Instruktionssprache analysieren und verstehen bevor sie
den Anwendungscode analysieren können. Trotz des erhöhten Aufwands für Angreifer,
ist die VM selbst anfällig für Analyseangriffe, weil Angreifer durch den Zugriff auf die
VM diese auch analysieren können.

Durch die Ausführung der VM in einer einer vertrauenswürdigen Ausführungsumgebung
(engl. TEE) wie der Arm TrustZone, wird die VM vor Analyseangriffen geschützt. Die
TrustZone ist eine Hardware-basierte Sicherheitstechnologie, die eine sichere Ausführungs-
umgebung, sog. „secure world”, innerhalb der weit verbreiteten Arm Systeme schafft.
Hoch-privilegierte Angreifer, welche die sog. „normal world” vollständig kompromittiert
haben, erhalten keinen Einblick in die „secure world”. Unseres Wissens nach wurden
bisher keine Untersuchungen zu dieser Methodik zum Schutz der VM durchgeführt.

Im Rahmen dieser Arbeit werden durch Design und Prototyping eine VM (ArmorVM)
und Hilfsmittel (ForgeLang) entwickelt, um die Umsetzbarkeit und Wirksamkeit einer
TrustZone-basierten VM zur Obfuskation zu untersuchen. Resultate der Evaluierung zei-
gen, dass die TrustZone-basierte VM die Stärken der VM-basierten Obfuskationmethode
effektiv nutzt und durch den zusätzlichen Schutz der TrustZone vor Analyseangriffen die
Sicherheit der darin ausgeführten Anwendung erhöht. Jedoch zeigen Ergebnisse auch,
dass dieser zusätzlich Schutz zu einem erhöhtem Leistungsverlust führt. Die Integration
der VM in bestehende Entwicklungsumgebungen wurde ebenfalls untersucht. Ergeb-
nisse zeigen, dass die Entwicklung für Programme und der VM nahtlos in bestehende
Entwicklungsumgebungen integriert werden kann.

Keywords: Code-Obfuskation, virtuelle Maschine, Arm, TrustZone, Sicherheit, Softwa-
reentwicklung, Virtualisierungs-basierte Obfuskation
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Abstract

Applications that run on user devices can contain proprietary algorithms or confidential
data. Malicious actors may attempt to analyze these applications to gain access to this
intellectual property (IP), as they have access to them. Code obfuscation is a common
technique to protect applications against such analysis attacks. This technique makes it
more difficult for attackers to analyze the application. One of the most effective methods
of code obfuscation is using a virtual machine (VM) that translates the application
code from its custom instruction form into processor instructions. Attackers must first
analyze and understand the VM and the custom instruction language before analyzing
the application code. Despite the increased effort for attackers, the VM itself is vulnerable
to analysis attacks because attackers can analyze it by accessing the VM.

Executing the VM in a trusted execution environment (TEE), such as the Arm TrustZone,
helps avoid analysis attacks. The TrustZone is a hardware-based security technology
that creates a secure execution environment, the so-called “secure world”, within widely
used Arm system. Even highly privileged attackers within the “normal world” cannot
gain insight into the “secure world”. To the best of our knowledge, studies have yet to be
conducted on the methodology to protect the VM utilizing the Arm TrustZone.

In this work, we present a VM (ArmorVM) and supporting development framework
(ForgeLang). Through design and prototyping we investigate the feasibility and effec-
tiveness of a TrustZone-based VM for obfuscation. Evaluation results show that the
TrustZone-based VM effectively leverages the strengths of the VM-based obfuscation
method and increases the security of the application executed therein by providing
additional protection against VM analysis attacks. However, results also show that this
additional protection increases performance loss. We additionally investigate the VM
integration into existing development environments. Results show that program and
VM development can be seamlessly integrated into existing development environments,
displaying the practicality of the proof of concept.

Keywords: code obfuscation, virtual machine, Arm, TrustZone, security, software
development, virtualization-based obfuscation
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CHAPTER 1
Introduction

This chapter serves as an introduction to the presented work, outlining its context,
objectives, and scientific approach.

1.1 Problem Statement
As our society becomes increasingly reliant on technology, ensuring the security of these
technologies is becoming increasingly important. Algorithms that process confidential
information or are proprietary and subject to copyright may require code protection.
According to Collberg et al. [1], code without appropriate protection mechanisms is
vulnerable to reverse engineering. Unprotected software allows Man-at-the-End (MATE)
attackers to reconstruct, understand, and modify the code, potentially enabling further
attacks on an application or leading to significant financial losses due to Intellectual
Property (IP) theft.

1.2 Motivation
Code obfuscation is a technique commonly used to safeguard code from unauthorized
access or tampering (see Collberg et al. [1]–[3] and Balakrishnan et al. [4]). Ge et al. [5]
define obfuscation as transforming a program into a semantically equivalent version
to the original but more challenging to reverse engineer. In essence, obfuscation is a
technique that makes it more difficult for attackers to understand and modify a program.
Because of this property, obfuscation frequently appears in Digital Rights Management
(DRM), malicious software, and situations where IP protection is needed. Video games
present an everyday use case, relying on code obfuscation to prevent attackers from
distributing illicit copies or cheating [6], [7]. Ready-to-use obfuscators such as ReWolf-x86-
Virtualizer [123], Code Virtualizer [124], Themida [125], or VMProtect [126] use a Virtual
Machine (VM) to translate the source assembler instructions into a custom Instruction
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1. Introduction

Set (IS), as described by Collberg et al. [2] with the “Table Interpretation”. Attackers
must first reverse engineer the VM and its custom IS to understand the code. As Xu
et al. [8] have demonstrated, incorporating additional obfuscation techniques can make
this process of reverse engineering lengthy and tedious. Hardware-based security features
such as the TrustZone (TZ) [127] can protect the VM from reverse engineering attempts
and provide an additional layer of defense against attackers. The TZ is a hardware-
based security technology used in various Arm-based systems, including smartphones,
tablets, and Internet of Things (IoT) devices. It establishes a secure environment by
creating a separate execution space within an Arm-based system known as the Secure
World (SW). This space is isolated from the Normal World (NW), such as Android or
GNU/Linux, and is used exclusively for Trusted Applications (TAs) and processes. Due
to its strict hardware-based separation, TZ protects confidential information such as
passwords, biometric data, and cryptographic keys from attackers, even if they have fully
compromised the NW. Secure execution of code in a separate environment lends itself
well to the use case of code obfuscation. As the Arm architecture and its Arm TZ become
increasingly prevalent across devices from smartphones to notebooks and servers [128],
[129], it presents itself as a strong candidate for our purposes of protecting software on
this ubiquitous platform.

1.3 Objective
The primary objective of the thesis is to devise and assess a robust proof-of-concept
approach for code obfuscation that capitalizes on the TZ framework, encompassing an
analysis of requirements. This proposed code obfuscation method fulfills security criteria
such as code confidentiality at rest and runtime against highly privileged attackers acting
within the NW. Another goal is designing and evaluating the practicality for software
engineers using a proof-of-concept VM during development.

A significant challenge of this thesis stems from the fact that the TZ is a restricted envi-
ronment that complicates development and evaluation. Some exemplary characteristics
of the TZ are less tooling, unusual development environments, special Operating Systems
(OSs), and restricted execution environments.

1.3.1 Features
The proposed VM should include the following features:

• Support for diverse computations, including secure random number generation and
floating point operations

• Dynamic mapping of the IS

• An ANTLR4-based transpiler for the VM

2



1.4. Expected Results

1.3.2 Research Questions
The following specific research questions are of interest for this thesis:

• RQ1 — How are highly privileged attackers and threat models defined and charac-
terized within the study’s context?

• RQ2 — Given the established definitions, how effectively does the VM protect code
at rest and during runtime within the TZ?

• RQ3a — How seamlessly can the VM be integrated into established development
environments, especially considering the defined threat scenarios?

• RQ3b — What challenges arise when implementing the VM within the TZ, and
what are its potential limitations in the face of the defined threat models?

1.4 Expected Results
Based on of the research questions, the expected results of this thesis are as follows:

• An analysis of the threat models and highly privileged attackers in the context of
the study

• A comprehensive understanding of the feasibility and practicality of an Arm TZ-
based VM for code obfuscation against the defined threat model

• A practical proof-of-concept VM and development framework that leverages the
Arm TZ technology

• A qualitative evaluation of the proof-of-concept Arm TZ-based VM’s obfuscation
efficiency and its practicality during development

Using the TZ to protect a VM from attackers is a promising approach that, to our
knowledge, has yet to be extensively explored in current research. By running the VM as
a TA within the TZ, companies can further protect their IP from even highly privileged
attackers who have gained root access and have compromised the NW. This thesis aims to
explore the feasibility of this approach and implement a proof-of-concept code obfuscator
that uses the TZ to protect the VM from attackers.

1.5 Methodology
The proposed work will involve both theoretical and practical analyses. On the theoretical
side, literature research and analysis are the primary tools to investigate the current
state of research, with a focus on obfuscation utilizing VM-based methods. However,
relevant topics such as other obfuscation techniques and deobfuscation methods may also

3



1. Introduction

be interesting. Further, using the literature’s threat models and attack scenarios, we will
define and outline a threat model for this thesis.

The VM’s design, development, and evaluation will occur on the practical side. Method-
ologies employed include prototyping to create and test a proof-of-concept VM. Applying
the defined threat model enables a practical evaluation of the VM’s functionality and
effectiveness. The practical part of the work is divided further into two parts. A VM
is designed and developed in the first part. In the second part, the evaluation of the
VM focuses on its effectiveness against various attack methods within the defined threat
model and general practicality during development.

The methodical procedure of the practical part will follow these steps:

1. Identification of threat scenario and definition of the threat model

2. Identification of weaknesses and potential for improvement of existing solutions

3. Planning and design for development

4. Implementation and functional testing of the VM in the TZ

5. Evaluation of the VM’s effectiveness within the defined threat model and practicality
of the proposed proof of concept

Both theoretical and practical analyses assess the effectiveness and practicality of the VM.
The concrete research questions proposed in the previous section drive the theoretical
analysis. The VM is implemented and tested within the TZ for practical analysis using a
range of potential real-world scenarios. This comprehensive approach ensures a thorough
evaluation of the VM.

Along with developing and evaluating the TZ-based VM, a comparison will be conducted
with existing code obfuscation solutions to demonstrate the potential advantages of the
proposed approach. This evaluation will assess the security and practicality of the TZ-
based VM in relation to other well-established methods. Security comparisons will rely on
characteristics such as the resistance of each solution to various types of attacks and the
level of protection offered against highly privileged attackers. Practicality comparisons
will focus on the ease of integration with existing development environments and the
overall impact on the software development lifecycle. This comparative analysis will
help to highlight the TZ-based VM’s strengths and potential areas for improvement, in
addition to its contributions to the field of code obfuscation.

1.6 Structure
Each chapter of this thesis serves a particular purpose in explaining the thesis method-
ology, research, results, and significance. Chapter 2 explores fundamental principles in

4
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Information Technology (IT) security, providing the necessary background for under-
standing the terms used in this work. Following this, Chapter 3 discusses the theoretical
foundations of the Arm TZ technology and its application for code obfuscation. Chapter 4
thoroughly examines the VM’s design, development, and integration into the Arm TZ
system. Chapter 5 offers a technical explanation of the development framework and the
VM’s architecture, while Chapter 6 examines its effectiveness for code obfuscation and
practicality. Chapter 7 places the thesis within a broader context of existing literature and
research. Chapter 8 outlines future research directions. Finally, Chapter 9 summarizes
the findings.

5





CHAPTER 2
Information Technology Security

Basics

Information technology security is crucial in our daily lives because of the widespread use
of computing technology in the digital age. We rely on computers for work, entertainment,
education, commerce, and personal management, which, while enhancing productivity
and convenience, introduces significant security risks. The exposure of sensitive data
can lead to severe financial and reputational damage for individuals and organizations, a
concern highlighted by frequent media reports of security breaches. [9]

At its core, information technology security protects information and systems from any
threats. This protection includes safeguarding hardware, software, data, and the human
elements involved in system operation. Security strategies must balance robust protection
and functional accessibility, as overly restrictive measures can impede productivity. The
asset’s value dictates the appropriate level of security, ensuring that the cost of protection
does not exceed the asset’s worth. [9]

2.1 Security Models
Defining when something is “secure” is complex and not always straightforward. Although
standards such as the Payment Card Industry Data Security Standard (PCI DSS) [130]
and the Health Insurance Portability and Accountability Act (HIPAA) [131] provide
guidelines for their respective industries, they are limited in scope. To discuss a system’s
security, we need frameworks that are more universally applicable. To this end, so-called
security models have been developed or agreed upon by the security community to provide
a more general understanding of the notion of security and to be helpful when discussing
security. Security models, such as the Confidentiality, Integrity, and Availability (CIA)
model, establish a framework for analyzing system security. [9]

7



2. Information Technology Security Basics

The CIA model is a commonly known security model [9]. Its history dates back to the
1970s when the U.S. Department of Defense introduced it [10]. Using this model, one can
discuss the security of a system in terms of the three aspects it denotes. Confidentiality
protects information from unauthorized access, ensuring only authorized users can access
the data. Integrity ensures that the data is accurate and unaltered. Availability ensures
that the data is available when needed and that the system is operational [9]. The CIA
model typically applies to the security of a system but can also be used for any asset,
such as a network or software.

The model typically appears as a triangle or a Venn diagram, with the three aspects
forming the three corners of the triangle or the three circles of the Venn diagram, as seen
in Figure 2.1a.

Parker [11] introduced the Parkerian Hexad model in 1998 as an extension of the CIA
model. This model extends the CIA model by adding three additional aspects: Possession
or Control, Authenticity, and Utility. Possession or Control refers to the ownership of the
data and the ability to control access to it. Authenticity ensures that the data is genuine
and remains unfalsified. Utility refers to the usefulness of the data and the system. [9],
[12]

Figure 2.1b shows the Parkerian Hexad model with circles, analogous to the CIA model.
A hexagon can also depict the Parkerian Hexad, with each aspect forming one of its sides.
The commonalities of the Parkerian Hexad with the CIA model are visible in the models
shown in Figure 2.1b.

With these models, we can discuss security in a structured way. By considering the
different aspects of security, it is possible to identify potential weaknesses and develop
appropriate countermeasures and controls to protect against threats and thus minimize
risk. However, if there is a reason an asset does not need protection, we do not need
to discuss its security. Only some assets are worth protecting, especially since security
comes at a cost. For example, if the asset only contains public data, we do not need to
consider its confidentiality. [9]

2.2 Attacks, Threats, Vulnerabilities, Risk and Impact
In the context of information security, it is essential to understand the concepts of attacks,
threats, vulnerabilities, risk, and impact. An attack is an intentional action that aims to
exploit a vulnerability in a system to compromise its security. Andress describes various
attacks that specifically target the CIA concepts [9]:

• Confidentiality

– Interception

• Integrity

8
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Confidentiality

Availability Integrity

(a) The CIA Model

Based on Andress [9]

Confidentiality
and

Possession

Availability
and
Utility

Security

Integrity
and

Authenticity

(b) The Parkerian Hexad Model

Based on Reid [12]

Figure 2.1: Security Models

– Interruption
– Modification
– Fabrication

• Availability

– Interruption
– Fabrication

Andress states that any concrete attack fits into one of these four categories. He also
notes that, depending on the concrete attack, it can target multiple aspects of the CIA
model. [9]

Interception attacks aim to compromise the confidentiality of data, systems, and
services by accessing them unauthorizedly. These attacks can range from interception
of data in transit or at rest. An example of an interception attack is eavesdropping
on unencrypted network connections to capture sensitive data or accessing a database
without proper authorization. [9]

Interruption attacks aim to compromise the availability of data, systems, and services
by disrupting the systems’ operation temporarily or permanently. A classic example of
an interruption attack is a Denial of Service (DoS) attack, which aims to overwhelm a
system with requests, rendering it unavailable to legitimate users. These attacks can

9



2. Information Technology Security Basics

impact not only the availability of a system but also its integrity if the system cannot
process data correctly. [9]

Modification attacks aim to compromise the integrity of assets by tampering. These
attacks generally affect the integrity of data, systems, and services, but they can also
impact the availability of a system. An example of a modification attack is the unautho-
rized alteration of a critical configuration file of a web server. When restarting the web
server, it may not function correctly, impacting the system integrity primarily and, as a
further consequence, its availability. [9]

Fabrication attacks aim to compromise the integrity of assets by inserting false data.
In addition to compromising the integrity of systems, these attacks can also affect their
availability. An example of a fabrication attack is inserting false data into a database. A
user subsequently querying the database may receive incorrect statements. [9]

When discussing attacks, it is essential to consider the threats that can lead to them.
Generally speaking, a threat is a potential danger to systems and data. Andress [9] notes
that these threats are often specific to particular environments. For example, a virus
designed for the Windows OS typically does not threaten a GNU/Linux system.

These threats can exploit vulnerabilities in systems to carry out attacks. Vulnerabilities
are weaknesses in systems that lead to damages when exploited by threats. Weaknesses
can occur in software, hardware, human processes, or even due to physical factors. [9]

Given a threat exploiting a vulnerability, the risk of an attack is the likelihood of the
threat exploiting the vulnerability within a specific environment. Andress’s example of a
wooden structure, the vulnerability, and fire, the threat, illustrates this concept: The
risk of the wooden structure catching fire is the likelihood of the fire threat exploiting
the vulnerability of the wooden structure. Replacing the wooden structure with concrete
eliminates the risk, as the initial vulnerability is no longer present. [9]

Another factor important for judging the security requirements of an asset is its impact.
To better estimate the given risk of an asset, it may be worth considering the impact on
confidentiality, integrity and availability. As previously stated, if an asset contains only
public data, the violation of the confidentiality of said asset might not be a risk worth
considering. In other words, not everything is worth protecting, and the impact is the
name of this factor. [9]

2.3 Defense in Depth
Defense in depth is a strategic approach in military operations and information security.
The core idea is to establish a series of defensive layers so that others will continue to
protect if one fails. [9]

Figure 2.2 illustrates this concept for a system or organization. The figure illustrates the
necessity for defenses at various levels, including the outermost layers through physical
security, network elements in the outer perimeter, and authorization and access control

10
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Target Assets

Authorization & Access Control

Outer Perimeter (Firewalls, IDS, DMZ, ...)

Physical Security

Figure 2.2: Defense in Depth
Based on Rass et al. [13]

to access the asset. Effectively implementing defenses across multiple layers makes it
exceedingly challenging for an adversary to infiltrate a network and directly compromise
critical assets. [9]

Recognizing that defense in depth is not a foolproof solution is essential. Despite
implementing numerous layers and security measures, preventing all attackers from
breaching defenses indefinitely is impossible. Instead, the aim is to create a sufficient
defense buffer between the attacker and the organization’s vital assets. This buffer alerts
the organization to an ongoing attack and provides enough time to enact countermeasures
to halt the attack’s progress [9]. Organizations can apply defense in depth to various use
cases, such as securing a network, a system, or a software package.

2.4 Software Protection

Producing software is time-consuming and costly, with the resulting software often
containing valuable IP. This IP can include proprietary algorithms, confidential data,
and trade secrets. Unless the producer offers the software in a client-server model, they
must distribute it as a software package to users. Such a software package is often in a
compiled form that can be executed directly by users receiving it. Users have physical
access to the software package. Thus, they can always analyze the software and extract
its valuable IP. A common reason for such analysis, further called reverse engineering, is
to circumvent licensing restrictions, i.e., software piracy, which Mooers et al. [14] have
discussed as early as 1977. Another reason for reverse engineering software is to extract
proprietary algorithms or confidential data, which competitors can use to create rival
products or exploit vulnerabilities. Generally, producers aim to protect their programs’
confidentiality, integrity, and availability. (Collberg et al. [15])
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2.4.1 Man-at-the-End Attacks

Researchers and practitioners describe a particular attack scenario in software protection
contexts as MATE attacks. This model outlines a powerful attacker with unrestricted
access to the targeted software and hardware, allowing them to examine these using any
tools. Given the strength of this attacker, defending against such a threat is considered
challenging. A MATE scenario occurs when attackers gain physical access to a device
or software, providing them unlimited time and access to achieve their goal, such as
tampering or inspecting it. This scenario differs from typical attacks in information
technology security, as the attacker can access both the protection mechanism and the
asset itself. Defenders can employ defense in depth techniques to slow down MATE
attackers. However, given the advantageous position of MATE attackers, skill, and effort,
they will inevitably breach defenses. As a result, defenders can only develop defenses
against MATE attacks to endure for as long as possible. (Akhunzada et al. [16])

To illustrate a MATE scenario, we provide the following example. A software producer
works with a tax expert to develop a software solution for tax declaration. Through
combined effort and expertise, the software developer and tax expert jointly create an
algorithm embedded within the software and distribute it to customers. Under the
assumption that no further protection mechanisms against reverse engineering attempts
are in place, a competitor could acquire the software upon release and extract the
algorithm with little effort. Given the extracted algorithm, the competitor produces
a competing product in a fraction of the time and cost it took the producer to create
the original software. Due to the competitor offering the product at a lower price, the
original software producer loses significant revenue. The incurred loss could even occur
in the worst case before the product has had enough time to sell enough copies to cover
the costs of producing said software [17]. Figure 2.3 illustrates this example.

The software producer has various defensive options depending on their specific situation.
Producers can always use legal means to protect their IP, such as patents, trademarks, or
copyrights. They can also utilize watermarking, fingerprinting, and birthmark techniques
to detect and trace illicit copies. However, it is only sometimes possible to protect
software by legal means. In such cases, technical means can prevent the analysis long
enough for the producer to break even on production costs. [2]

An example of technical software protection would be offering the software as an online
service, where the producers’ server executes parts or the entire software, and the user
only interacts with them through, e.g., a web interface. In this way, the producer never
distributes the software to the user, making it difficult for the user to extract any IP.
This approach indefinitely protects IP within the software. However, it is only sometimes
feasible, as the software may require offline operation, or the producer may need more
infrastructure to provide it as a service. In such cases, the producer must resort to
alternative approaches to protect the software as long as possible until the producer can
at least break even for producing said software. [15]
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Figure 2.3: Graphical Representation of a Software Protection Failure

2.4.2 Reverse Engineering
To better understand what options the software producer has, it is helpful to understand
how an attacker analyzes the software. An attacker with access to a distributed software
package usually conducts a reverse engineering attack in two stages. In the first stage, the
attacker analyzes the software to gather information about its functionality, structure, and
algorithms. The second stage involves modifying the software to achieve the attacker’s
goals, such as circumventing licensing restrictions or creating a competing product based
on the knowledge gained in the first stage. [15]

Within the first stage, attackers have a variety of techniques at their disposal. We
can divide these techniques into static and dynamic analysis. Static analysis involves
analyzing the software without executing it, for example, examining its binary or source
code. Dynamic analysis involves executing the software and observing its behavior, e.g.,
monitoring system calls or memory accesses. Standard techniques used in static and
dynamic analysis include the following [15]:

• Static analysis

– Decompilation — Translating binary code into a higher-level programming
language.

– Disassembly — Translating binary code into assembly language.
– Control flow analysis — Analyzing the various paths a program can take.
– Data flow analysis — Analyzing how data flows through a program.

• Dynamic analysis
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– Debugging — Executing the software in a debugger to observe its behavior.
– Tracing — Collecting information about the software’s execution, e.g., function

calls or memory accesses.
– Emulation — Executing the software on software-emulated hardware to observe

its behavior.
– Profiling — Collecting information about the software’s performance, e.g.,

execution time or memory usage.

We can also categorize software analysis techniques as manual or automated. Manual
techniques require human intervention, while software tools can perform automated
techniques. However, these categories are not strictly separate. Automated tools can
support manual techniques and vice versa. Cohen [132] presents a two-dimensional
representation of program analysis techniques to find software vulnerabilities. Figure 2.4
displays how some techniques map across these two dimensions.

2.4.3 Defensive Techniques
Knowing attackers’ options, we can now discuss the software producers’ options for
protecting their software. Using hardware-based protection is a promising but costly
approach to protect software since it requires specialized hardware. For example, hard-
ware dongles have historically been prevalent in software protection. However, these
devices are expensive and cumbersome for users and are only sometimes an effective
deterrent. Further, vulnerabilities in hardware protection schemes are costly and difficult
to repair [16]. In conjunction with encryption, hardware security can be a powerful
tool for protecting software. The software producer could distribute its software in an
encrypted form, where a particular processor decrypts each instruction on the fly during
execution. However, this technique would again require specialized hardware. [15]

The software producer can resort to software-based methods to work around the described
issue of hardware-based protection and ensure that protected software is executable
regardless of a customer’s hardware. We refer to these techniques as software-based “code
obfuscation”, as they constitute a program transformation into a version that is more
difficult to reverse engineer but behaves the same to a user, hence obfuscating the original
version. In other words, the software should still perform the same function for the user
as the original version, regardless of the transformation applied, while being more difficult
for an attacker to analyze. However, since an attacker has a difficult-to-analyze version
of the program, given enough time and skill, they will eventually manage to achieve their
goals. [2]

On the other hand, if the time that code obfuscation buys is enough for the producer
to earn sufficient revenue from sales, the protection has served its purpose. Code
obfuscation offers a protection scheme that may eventually fail. However, compared to
other protection schemes, its low cost makes it a popular option to protect software long
enough, which often suffices. [2]

14



2.4. Software Protection

Figure 2.4: Automated/Manual Static and Dynamic Analysis Techniques
[132]

Code obfuscation offers a variety of methods to protect software. These methods can
range from removing comments and renaming variables to more complex transformations
such as control flow or data obfuscation. It is essential to remember that with more
robust obfuscation techniques, there is a trade-off between additional protection and
performance. For example, removing comments from the source file may make the code
harder to analyze and has no impact on performance. Adding additional code to confuse
attackers may be more robust at the cost of additional computation, possibly affecting
the overall performance of the software [15].

Furthermore, the concept of depth of defense holds in the context of software protection.
The combination of multiple obfuscation techniques provides more robust defenses against
analysis. [8]
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Collberg et al. [2] provide a taxonomy of code obfuscation transformations in their work,
along with discussions of their effectiveness and limitations. The broad categories they
outline are as follows:

• Layout transformations — Transformation methods targeting the lexical struc-
ture of software, e.g., scrambling identifiers, removing comments

• Control flow transformations — Transformation methods targeting the flow of
control of software, e.g., inlining methods, unrolling loops, table interpretation

• Data transformations — Transformation methods targeting data contained
within software, e.g., splitting variables, converting static data to procedures

• Preventive transformations — Transformation methods targeting specific deob-
fuscation methods and weaknesses in decompilers

Today, obfuscators, programs that apply code obfuscation transformations to software,
are readily available. Collberg’s C99 obfuscator, “Tigress” [133], offers various obfuscation
techniques and allows users to configure it to apply multiple transformations to a program,
as shown in Figure 2.5. Other programming languages require different obfuscators, but
the general function of every obfuscator is similar, offering a variety of techniques that
can be chained together.

Figure 2.5: Collberg’s C99 Obfuscator „Tigress”
Collberg et al. [133]

One of the most effective obfuscation techniques is virtualization, which is the focus of
this work. We further discuss virtualization in Section 3.2.
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2.4.4 Evaluation of Quality for Code Obfuscation
In their work, Collberg et al. [2] describe how to evaluate the quality of code obfuscation
techniques by three measures:

• Measure of Potency — The ability of the obfuscation technique to make the
code difficult to understand and reverse engineer.

• Measure of Resilience — The ability of the obfuscation technique to resist
automated analysis and reverse engineering tools.

• Measure of Execution Cost — The impact of the obfuscation technique on the
programs’ performance and resource usage.

The resulting quality measure combines the above measures and evaluates the overall
effectiveness of the obfuscation technique. Although defined in 1997, these metrics are
still relevant to this day, as Jin et al. [18] show, by presenting measurement indicators
for Collberg et al.’s [2] measures.

Collberg et al. [2] also classify obfuscation techniques given their measures, among which
table interpretation is one of the most effective and expensive. This described table
interpretation obfuscation technique is, in essence, VM-based obfuscation that ArmorVM
(AVM) implements. In their “Table of Transformations”, they describe the following
measures for table interpretation:

• Potency — High

• Resilience — Strong

• Cost — Costly

When investigating resilience, Collberg et al. describe two measures that factor into the
overall resilience of an obfuscation technique:

• Programmer Effort — The time required for a programmer to develop an
automated tool to deobfuscate the obfuscated code.

• Deobfuscator Effort — The execution time and space required for a deobfuscator
to deobfuscate the obfuscated code.

Another important definition for discussing an obfuscator’s quality is the notion of a
perfect or black-box obfuscator. The idea of a perfect obfuscator is theoretical, as its
definition comes from the field of whitebox cryptography. An obfuscator that does not
leak any information through its computation has the Virtual Black Box (VBB) property.
The VBB property of an obfuscator is described by Barak et al. [19] informally as follows:
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Given an obfuscator O that takes a program P and outputs an obfuscated
program O(P ):
Anything that can be efficiently computed from O(P ) can be efficiently
computed given oracle access to P .

In other words, a perfect black-box obfuscator can generate an obfuscated program that
behaves like an oracle that replicates the behavior of the original program. An attacker
can only observe in- and outputs when prompting the oracle. The generated obfuscated
program behaves like the oracle and allows an attacker to observe only in- and outputs.
This property will further be referred to as a black-box scenario in this thesis and would
constitute unbreakable obfuscation.

It is important to note that Barak et al. [19] prove formally that a VBB obfuscator for
general circuits does not exist. This work is foundational for whitebox cryptography and
obfuscation. The authors note that their proof is valid for a general VBB obfuscator,
and relaxations of the definition may still be possible and valuable in practice.
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CHAPTER 3
Arm TrustZone and Virtual
Machine-Based Obfuscation

Integrating the Arm TZ with VM-based code obfuscation is a novel approach to code
protection, combining hardware-enforced security mechanisms with software-based ob-
fuscation techniques. To understand the proposed approach, we separately provide an
overview of both topics in this chapter. At the end of the chapter, we explore the
combination of both concepts. In it, we discuss the potential advantage that we can gain
from employing the Arm TZ for VM-based code obfuscation. This exploration aims to
provide a foundation for the subsequent chapters.

3.1 Arm TrustZone as a Trusted Execution Environment
The Arm TZ is a Trusted Execution Environment (TEE), ensuring secure hardware
isolation for various critical applications. Arm originally introduced the Arm TZ in
2004 with the Arm Cortex-A application processors and was later extended to the
Arm Cortex-M microprocessors. It provides hardware-based isolation of a secure and
non-secure state on a single Arm processor, enhancing security by segregating sensitive
operations. This partitioning, often called a TEE, maintains the authenticity of the code,
the confidentiality of the stored code and data, and the integrity of the runtime, even in
a compromised, non-secure state. [20], [21]

Sabt et al. [22] and Valadares et al. [21] state that the idea of TEEs stems from “Trusted
Computing” where a separate hardware module provides security-related functions,
such as cryptographic functions over a functional interface. They discussed how this
separate processor idea of isolated execution was insufficient because it would not provide
execution for third-party applications. TZ addresses this limitation by providing isolation
for third-party applications on the same processor and separating all resources into a
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SW and a NW. In the context of TEEs, researchers often use the terms SW and TEE
interchangeably, as are NW and Rich Execution Environment (REE). Pinto et al. [20]
explain how the same Arm processor enables the creation of the Arm TZ.
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Figure 3.1: Arm TrustZone Architecture
Based on: Arm Developer [134], Pinto et al. and others [20], [21], [23]

The Arm AArch64 architecture defines various levels of execution privileges on the
processor, called Exception Levels (ELs). Figure 3.1 illustrates the separation of various
ELs, SW, and NW, and the communication between these. On the left side of Figure 3.1,
the NW contains applications that communicate from EL0 through the GlobalPlatform
TEE client Application Programming Interface (API) and NW rich OS using a Secure
Monitor Call (SMC) to a TA that resides within the SW. On the right side of the figure,
the TA answers the request and exchanges data through the GlobalPlatform TEE internal
API and the trusted SW OS, which handles the lower-level SMC. The side annotation of
each component in the figure shows its respective EL. These ELs range from 0 to 3 and
are analogous to the classical protection rings in computer science. The so-called “secure
monitor” and other AArch64 firmware run in the highest EL, EL 3, thus isolating them
from other applications, which run on EL 0 and OSs, which run on EL 1. The respective
GlobalPlatform APIs are standardized interfaces with which programs on either side can
use to communicate to the OS that communication with the other side is wanted. [23],
[24]

The TZ security features and components, such as the TrustZone Address Space Controller
(TZASC), TrustZone Memory Adapter (TZMA), and TrustZone Protection Controller
(TZPC), isolate hardware throughout the system, including the memory and system
devices [20]. The trust given to a TEE creates a higher permission level for a TEE
than for a REE through hardware-based isolation. The described trust results in higher
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privileges for the TEE, which allows a TEE to access all resources of the REE, but the
untrusted REE cannot access the TEE’s resources. [24]

A mechanism called “Secure boot” ensures the integrity of the entire TEE, confirming
no tampering. This mechanism establishes the so-called “chain of trust” by verifying
the signature and hash of the boot image before booting the OS. When a system starts,
the Central Processing Unit (CPU) initiates the secure boot mechanism before starting
anything else. This starting point, called the “root of trust,” is inherently trusted and is
implemented through hardware. First, the system executes the bootloader in the SW,
and then, after the setup is complete, it gives control to the NW bootloader. The CPU
verifies the signature and hash of each bootloader before loading it. If verification fails,
the CPU will not load the bootloader and stop the boot mechanism. This additional
verification ensures that the booted OS is the intended one and has not undergone any
modifications. By wayside of secure boot verification, the trusted components of the
system can be trusted. [20], [25]

One subset of use cases for the SW is the execution of TAs running in a trusted OS. Client
Applications (CAs) running in the NW can access these TAs through a Supervisor Call
(SVC) to the REE OS, triggering a SMC. The secure monitor facilitates communication
between SW and NW, acting as a gatekeeper for the isolated SW. The privileged
SMC instruction enables communication between SW and NW. This secure monitor
also switches the CPU between SW and NW and handles exceptions and interrupts.
Figure 3.1 depicts the interaction in which a NW CA uses the privileged SMC instruction
to access services the TA provides. [20]

The main idea behind executing a separate OS is to reduce the Trusted Computing
Base (TCB) in modern OSs such as GNU/Linux or Android running in REEs. Modern
OSs have a TCB consisting of the OS kernel, privileged services, and libraries. Due to
the significant size of these services and libraries, vulnerabilities are likely to occur. To
mitigate this risk, developers have created minor footprint secure OSs that run in the
TZ, such as the following [20]:

• Linaro’s open-source OP-TEE project [135], part of the Trusted Firmware project [136]

• Qualcomm’s closed source Qualcomm Secure Execution Environment (QSEE) [137],
[138]

• Trustonic’s closed source Kinibi TEE [139], [140]

Pinto et al. [20] list additional projects the SW can utilize. These projects differ in their
licensing and the level of openness of their source code. One significant differentiation
is whether a trusted kernel adheres to the GlobalPlatform TEE standards [141]. TEE
standards such as the GlobalPlatform TEE standards are essential for development
because they define the consistent interfaces for and between the SW and NW. Thus,
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these standards allow developers to create TAs and CAs that can be used across different
platforms, regardless of the utilized secure OS.

Despite its widespread availability on mobile devices, the TZ technology has often
remained obscure due to manufacturers’ reluctance to disclose technical details. This
lack of transparency has hindered research progress, limiting its use predominantly to
proprietary secure services in consumer electronics.

Over the years, researchers have studied the Arm TZ for various applications, such
as ticketing [26], [27], automotive [28], [29], mobile payments [30], DRM [31], [32] and
authentication [33], [34] (partly taken from [22]).

Many real-world frameworks for the Arm TZ exist, and mobile devices utilize them for
applications requiring trusted services. Samsung’s KNOX [142] offering includes a widely
known TZ implementation, which Samsung mobile devices use to implement various
trusted services. Samsung uses a closed-source TZ implementation called Samsung
TEEGRIS [143]. Another example is the utilization of the Arm TZ within the Android
Open Source Project (AOSP), which offers the Trusty TEE [144]. An example of Trusty’s
usage given by the AOSP is Android’s DRM framework [145]. Lastly, smartphones that
use the Qualcomm Snapdragon System on Chips (SoCs) can use the QSEE [137] as
their TZ implementation. Another widely used secure OS for the Arm TZ is Trustonic’s
closed-source Kinibi project [139]. Trustonic markets its Kinibi project as a secure Arm
TZ OS for use in applications such as automotive, IoT, and trusted user interfaces [146].
As can be seen, the Arm TZ is used various applications and is thus a widely used
technology in the context of cloud computing [21], [35] and the IoT. [36], [37]

Generally, developers use the TZ in scenarios that require confidentiality, integrity, and
authenticity of data and code for various third-party applications running on mobile
Arm application processors or microprocessors. Ngabonzia et al. [23] further refine these
features into the following functional criteria:

• Protected Execution

• Sealed Storage

• Protected Input and Output

• Attestation

This thesis uses the TZ to protect the VM from reverse engineering attempts and provide
an additional defense against attackers while executing obfuscated programs. Although
the highly flexible Arm TZ has many potential uses, one of the primary uses of interest for
this thesis is protecting the code and its IP in various locations while deployed on a device.
Before compiled code in binary form is ready for use, it needs storage in non-volatile
memory, making it essential to protect it “at rest”. Additionally, before execution, the
system loads the program in its binary form into volatile memory, making it essential to
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protect it in volatile memory. Lastly, as the processor executes the program, protecting it
from exterior interference or introspection during execution on the processor is essential.
Using the Arm TZ as a TEE protects binary data in two of three locations: volatile
memory and during execution [23]. The TZ security guarantees prevent highly privileged
attackers from introspecting or interacting with programs executing within the TEE from
outside the TEE. The Arm TZ does not cover the latter part of protecting code at rest,
i.e., while stored in non-volatile memory.

One significant area for improvement in research on the Arm TZ and its secure OSs is
that only vendors can deploy and utilize them on consumer devices. The reason for this
is the TCB mentioned above, which increases as the number of TAs increases, and the
proprietary nature of such software components. If a deployed TA contains vulnerabilities,
the elevated privileges and trust bestowed on the TZ may allow threat actors to carry
out further exploits and potentially gain complete control over consumer devices. [38]

Because the Arm TZ is such a high-value target, researchers have extensively researched
how to attack it. Koutroumpouchos et al. describe the landscape of possible hardware,
architectural, and software attacks on the TZ [39]. They summarize the possible attacks
as follows:

• Software Attacks

– Buffer Overflow & Overread Attacks
– Logic-Based Attacks
– Bad Use of Cryptography

• Architectural Attacks

– Unused Security Features
– Underlying Architecture

• Hardware Attacks

– Side-Channel Attacks
– Fault Injection Attacks

One particular class of vulnerabilities affecting TEEs is the Boomerang vulnerability
class described by Machiry et al. [24]. These attacks stem from the semantic separation
between the TEE and the untrusted OS. The OS can influence the TEE in a way that
attackers can exploit to attack the REE OS and read out arbitrary memory, including
kernel memory in the untrusted OS, through a TA using a NW application.

The vast amount of talks and blog posts on the topic [147]–[150] also shows that TEEs
are popular targets for security researchers.
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Although protecting against such attacks is outside the scope of this thesis, it is essential
to consider them when developing for the TZ. For the thesis, we assume that the TZ and
VM are secure when running within the TZ.

A developer needs the following key elements to establish a secure application within
the Arm TZ. First and foremost, a secure OS, such as OP-TEE, is designed to operate
within the TZ as a TEE. This environment should ideally adhere to standards such
as the GlobalPlatform TEE specifications, ensuring portability. Developers can deploy
AVM to any secure OS that meets the specifications of a GlobalPlatform TEE. A TA
specifically developed for execution within the TEE is needed to manage the intended
services. In the case of the thesis, this TA offers an interface that interacts with the
VM. A NW CA will facilitate developer or user-facing interactions and communication
with the TA. Finally, to utilize TZ’s hardware-enforced isolation or for development
and testing, developers require an Arm application processor; however, if the secure OS
supports emulation, an emulator can accurately simulate this environment. It is also
important to note that vendors usually deploy TAs into the TZ due to the chain of trust
that needs to be established [23]. Although the Arm TZ specification does not require
the deployer to be a vendor, this is usually true for locked consumer devices such as
smartphones. Thus, we assume that the developers of TAs are trusted parties, such as
vendors.

3.2 Virtual Machine-Based Code Obfuscation
This section establishes the foundation for the concept of VM-based code obfuscation. It
overviews goals, requirements, advantages, and common attack vectors. The concepts
introduced in this section and Section 3.1 provide a foundation for understanding the
arguments presented in Section 3.3, where both concepts are combined to form the core
idea of the thesis.

Many obfuscation techniques exist, with VM-based code obfuscation being one of the
most promising ones, as Collberg et al. noted in 1997 [2]. This technique uses a custom
VM to execute programs after translating them to a custom IS. The customized program
format makes it harder for attackers to reverse engineer the original code statically. In
addition, the additional complexity provided through the virtualization execution layer
hampers dynamic analysis. Failing to protect against reverse engineering attacks can lead
to financial and reputational damage, for example, unauthorized use of software, cheating
in computer games, or bypassing and redirecting payment processes [40]. To utilize this
obfuscation technique, developers must first translate programs to the custom IS using a
transpiler. After that, during execution, the VM acts as an intermediary between the
translated program and the underlying hardware, providing additional protection against
reverse engineering and other attacks. Developers can use VM, to protect their IP from
unauthorized access and tampering, ensuring the integrity and confidentiality of their
code and data. [40], [41]

The general process of VM-based code obfuscation translates the original code into a
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Figure 3.2: VM-Based Code Obfuscation
Based on the inner workings of the ArmorVM and Cheng et al. [40]

custom bytecode format using a custom IS that only the VM can interpret and execute.
This custom bytecode format design and custom IS make it difficult to reverse engineer
a binary VM program and more challenging for attackers to understand the logic and
functionality of the original code. A VM for this purpose includes several components:
an interpreter for the custom IS, a dispatcher for queuing and invoking handlers for the
custom IS, and respective handlers that translate the custom instructions to actions on
the CPU[40], [42]. Figure 3.2 illustrates the general working process of VM-based code
obfuscation. In the figure, the gray nodes represent the data, the green nodes represent
the actions, and the red nodes represent the handlers of the VM. The VM in Figure 3.2
calls handlers sequentially, not in parallel. Dotted arrows show handlers that the VM
does not call in this snapshot.

The general requirements for a VM-based code obfuscation solution include the following
minimum requirements:

• A custom bytecode format for the obfuscated code that the VM can decode and
execute

• A custom IS for the VM that defines the instructions and operations supported by
the VM

• A VM capable of interpreting and executing the parsed instructions
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Enhancing the capabilities of the VM and developer tooling can further improve the
solution. Developers can extend the VM with additional features, such as support for more
obfuscation techniques, error handling, and recovery mechanisms. These features can
improve the security and robustness of the obfuscated code and its execution. Improving
developer tooling for and of the VM can simplify the development and maintenance of
the project and the creation of programs intended for obfuscation.
VM-based code obfuscation offers several advantages over other techniques. One of the
primary benefits of VM-based obfuscation is the additional complexity it introduces for
reverse engineers. Due to the custom bytecode format and IS, attackers encounter an
unfamiliar environment they must understand before reverse engineering the bytecode [43].
Another advantage is the flexibility to adjust subsequent transformations, thanks to
the custom bytecode and IS [44]. Together with the possibility of integrating further
obfuscation techniques for the original code and translated VM bytecode, VM-based
obfuscation is highly effective against analysis techniques that are effective against more
straightforward alternative approaches. Manual analysis remains essential for thorough
reverse engineering, while automatic deobfuscation of VM-based techniques may be
partially effective. [45]–[47]
VMs are frequently packed into the same binary with the obfuscated code and thus run
in the same process space. This additional VM bytecode significantly increases the size
requirements of obfuscated programs in volatile memory as in non-volatile memory. If
developers do not optimize the custom bytecode and IS for size, the obfuscated code
executed by the VM may occupy a significant amount of additional space. Developers
must carefully anticipate and manage this increased space requirement, especially if the
code representation needs to be optimized. Additionally, the custom IS and bytecode
format may require careful additional development effort and expertise to implement and
maintain. This additional effort could increase the complexity and cost of the obfuscation
process compared to other obfuscation methods, which rely on more straightforward
transformations such as opaque constructs [48] or Mixed Boolean-Arithmetic (MBA) [49].
Employing a VM for obfuscation introduces new risks, including vulnerabilities in the
implementation of the VM or custom IS, potentially compromising program security. [43],
[44]
Execution performance is also a key factor that this obfuscation technique may impact.
Running the VM and the obfuscated code can introduce significant performance overhead,
which can affect the responsiveness and efficiency of the obfuscated program. The
architecture of the chosen VM plays a crucial role in the performance overhead introduced.
Stack-based VMs generally require more instructions than alternative approaches, such
as register-based VMs, to achieve the same computation but increase reverse engineering
efforts. [43], [44]
Although VM-based obfuscation offers strong protection against reverse engineering, it
is not immune to all attacks. Advanced attackers may still be able to analyze the VM
and the obfuscated code to reverse engineer the custom bytecode and IS. To do this,
attackers require access to an obfuscated program, especially the VM in decompiled
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form. Because the obfuscated program and VM are accessible during execution in volatile
memory, accessing both in MATE scenarios given elevated privileges is realistically
possible. VM-based obfuscation is often the target of intensive manual static and
dynamic deobfuscation, although intensive, through the use of debugging tools that
operate on the running obfuscated program and VM and also, to some degree, automatic
deobfuscation. [45], [50]

VMAttack, an open-source toolkit compatible with the popular IDA Pro binary code
analysis tool [151], exemplifies this [51], [152]. This toolkit aims to assist reverse engineers
in manual reverse engineering of VM-based obfuscated code. The proposed toolkit utilizes
static and dynamic analysis techniques to assist in the manual deobfuscation process of
VM-based obfuscated code. It serves as a proof of concept for the effectiveness of manual
deobfuscation techniques against VM-based obfuscation.

3.3 Application of the Arm TrustZone to Virtual
Machine-Based Obfuscation

With the analysis provided in the previous sections, we can now explore the general
idea, potential benefits, and challenges of integrating the VM used in VM-based code
obfuscation with the Arm TZ.

Deploying TAs into the Arm TZ is an essential requirement for this integration. Vendors
of smartphones, cars, and other devices enabled by the TZ fulfill this requirement. Further
requirements are interfaces to and from the VM, i.e., CA, TA, and VM, which require
requirements such as a custom bytecode format and IS.
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Obfus. BytecodeObfus. BytecodeObfus. BytecodeObfus. BytecodeObfus. BytecodeObfus. BytecodeObfus. Bytecode
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Figure 3.3: Proposed Control Flow of TrustZone-Enabled Virtual Machine-Based Obfus-
cation

Figure 3.3 illustrates the primary loop of the TZ-enabled VM-based obfuscation. A VM
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runs within the SW of the Arm TZ, providing additional protection for the obfuscated
code and the VM from deobfuscation attempts. The numbering in Figure 3.3 indicates
the order of execution of the components in the loop and goes as follows:

1. Obfuscated bytecode is loaded by a regular application that wants to execute it.
The regular application then passes the obfuscated bytecode to a VM CA that can
interface with the TA in the SW.

2. A CA written for this purpose, that is, the VM’s CA, interfaces with the trusted
OS through the GlobalPlatform Client API to call the correct routine in the TA,
i.e., the VM’s Trusted App, written for this purpose. The VM’s CA passes the
obfuscated bytecode call parameter.

3. The trusted secure OS instantiates the TA in the SW and invokes it. The TA then
instantiates a new VM and passes on the obfuscated bytecode to it, which the VM
executes.

4. The execution result is then passed back to the TA.

5. The TA then passes the result to the CA through the trusted OS.

6. The CA returns the result to the regular application.

Based on the Arm TZ and VM-based code obfuscation, one can assume that given a non-
compromised TZ, attackers cannot access the obfuscated code or the VM during execution.
The thesis bases this assumption on the Arm TZ security guarantees. Integrating the Arm
TZ with VM-based code obfuscation offers a novel approach to code protection, combining
hardware-enforced security mechanisms with software-based obfuscation techniques. A
secure execution environment such as the TZ protects against one of the primary attack
vectors on VM-based obfuscation: introspection with the VM and the obfuscated code
during execution. Although this approach does not protect against all possible attacks, it
significantly raises the bar for attackers and increases the complexity of reverse engineering
attempts. One possible open attack vector is the analysis of the VM by interacting with
it through the CA and analyzing its behavior based on the results of the execution of the
obfuscated code. However, this attack vector is significantly more complex.

The limitations of this approach are the following:

• The increased system complexity

• The potentially high-performance overhead introduced by the VM and the TZ

• The additional development effort required to integrate the VM with the TZ

This increased system complexity may introduce new vulnerabilities that attackers could
exploit. These vulnerabilities may further compromise the entire security of the TEE
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and REE. Performance overhead from the VM, and the TZ may impact the efficiency of
the obfuscated program, especially during intense computation.

Furthermore, the development effort required to integrate the VM with the TZ can
increase the complexity and cost of the obfuscation process, making it less accessible to
developers with limited resources or expertise. Possible further limitations introduced
by the TZ and VM-based obfuscation should also be considered when evaluating the
feasibility and effectiveness of this approach.

To our knowledge, researchers had not conducted studies on integrating the Arm TZ
with VM-based code obfuscation at the time of writing. However, researchers have
demonstrated similar approaches that utilize the Arm TZ for secure code execution,
though not as a runtime for VM-based obfuscation [52], [53]. Further research, such
as Wang et al. [54] and Ahmad et al. [55] on utilizing TEEs for obfuscation purposes
exists; these, however, are based on other TEE technologies such as Intel Software Guard
Extensions (SGX) [153]. This thesis aims to explore this novel approach and evaluate its
feasibility and effectiveness in protecting code and IP from reverse engineering and other
attacks within the Arm TZ, specifically due to its widespread availability, e.g., on mobile
devices.
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CHAPTER 4
Case Example: ArmorVM as
Virtual Machine in the Arm

TrustZone

This chapter, which builds upon the foundations and concepts discussed previously, delves
into the architecture and design of ArmorVM (AVM) and the AVM system, as well as a
proof-of-concept implementation of a VM running within the SW of the Arm TZ and
its supporting framework. Throughout the thesis, AVM refers to the VM itself, and
the AVM system refers to the VM and its companion applications within the TZ. The
name “AVM” reflects enhanced protection compared to traditional VM-based obfuscation
techniques. Using the hardware-based isolation provided by the Arm TZ, AVM adds a
layer of “armor” to the VM and the obfuscated code it executes.

The SW of the Arm TZ provides a TEE isolated from the NW. Running AVM within this
SW protects the VM and the obfuscated programs it executes from unauthorized access
and tampering attempts from the untrusted NW. This additional protection significantly
increases the difficulty of analyzing and reverse engineering the VM and the obfuscated
code during runtime.

In the following sections, we will explore the threat model considered for AVM, the VM
requirements, associated development framework requirements, and the design decisions
to fulfill them. Through this in-depth examination, we discuss the feasibility and
effectiveness of using the Arm TZ to enhance the security of VM-based code obfuscation.

4.1 Threat Model
To develop a comprehensive threat model, it is first essential to define the protected assets
and the associated attack vectors. The primary asset under protection is the IP contained
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within the obfuscated programs executed by the AVM. This IP includes critical elements
such as the program logic, algorithms, and data structures embedded in the obfuscated
code. By extension, components of the AVM system that could provide attackers with
insights for reverse engineering must also be considered part of the protection scope.
Specifically, these components include the AVM itself, the CA, and the TA, as they are
essential for the function of the AVM system.

The threat model assumes that the Arm TZ environment is secure and uncompromised,
as it forms the basis of the security model. Since the TZ underpins the system’s security,
this thesis excludes any attacks targeting the TZ or vulnerabilities within it. Additionally,
communication with the external world, including the NW, is excluded from the threat
model, except for the interactions between the AVM CA and the AVM TA to invoke the
VM and return a result. This model excludes other components, such as the development
environment, build processes, and tools supporting the VM’s development.

4.1.1 Threats to CIA

The main threat to the AVM system concerns confidentiality through interception attacks,
particularly the risk of reverse engineering the obfuscated code to extract valuable IP.
Attackers seek to analyze the obfuscated programs, gaining insights into the algorithms,
logic, and data structures. Another significant threat to confidentiality arises from
unauthorized access to sensitive data, such as private keys used within the obfuscated
code.

Our threat model excludes availability threats, as usual for MATE scenarios. In such
scenarios, availability attacks typically affect only the attacker’s access to the application
rather than the broader availability of the system for other users, making them less relevant
to this threat model. MATE attack scenarios are further described in Section 2.4.1.

While the threat model focuses on protecting the VM, the obfuscated code, and the
embedded IP from reverse engineering, we do not consider additional threats in this work.
One such threat is the risk of tampering with the obfuscated programs to introduce
vulnerabilities or malicious code, potentially compromising the system’s integrity. These
additional threats include attacks targeting the TZ environment or the VM. However,
they fall outside the scope of this thesis due to the assumption of a secure execution
environment.

Furthermore, while this model emphasizes protecting obfuscated programs from reverse
engineering and unauthorized access during execution, vulnerabilities may exist in the
implementation of the VM. We acknowledge these vulnerabilities as potential risks but
do not directly address them within the threat model. However, we require minimum
safety mechanisms within the VM to prevent common misbehavior that could lead to
vulnerabilities.
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4.1.2 Attack Vectors in the Man-at-the-End Scenario

In a MATE scenario [16], as is present in this case, our model assumes a highly privileged
attacker with control over the end-user device. This attacker can execute arbitrary code
at ELs EL0, EL1, and EL2, access any memory location, and statically and dynamically
examine processes in the NW. This elevated control gives them access to the obfuscated
code, the CA, and the communication channel between the CA and the TA that resides
within the SW.

An attacker’s access to the SW TA does not provide direct access to memory or process
space, as would be possible in the NW. However, attackers can still interface indirectly
with the TA through the CA, allowing indirect access to the VM API. Figure 4.1 illustrates
this interaction, where black arrows represent direct access to memory, processes, and
resources. In contrast, green arrows depict indirect access, particularly indirect access
to the TA VM through the CA. The attacker is positioned within the NW but has no
direct access modality or control into the SW as it is on a higher privilege level.

Given the high level of access, a skilled attacker can attempt to reverse engineer the VM
and its IS, circumvent any defense in depth protection methods, and, ultimately, reverse
engineer the obfuscated code. However, the model assumes neither the TZ nor the VM
can be compromised.

Normal World

Obfus. BytecodeObfus. BytecodeObfus. BytecodeObfus. BytecodeObfus. BytecodeObfus. BytecodeObfus. Bytecode

Regular App

VM Client App

Rich OS

Secure World

VM Trusted App

Trusted OS

VM

Attacker

Figure 4.1: Threat Model for the ArmorVM System

4.2 Requirements for the ArmorVM System

The AVM system protects the VM and the obfuscated code from reverse engineering
attempts and unauthorized access during execution and at rest. To be able to do this,
the system must meet several requirements to ensure the confidentiality and integrity of
the VM and the obfuscated programs it executes. Additional non-technical requirements
must be defined to ensure the practicality of the proposed proof of concept and enable
efficient development.

33



4. Case Example: ArmorVM as Virtual Machine in the Arm TrustZone

This section provides a detailed description of each requirement, and summary in Ta-
ble 4.1. The table includes short textual descriptions of each requirement, Requirement
Identification Numbers (RIDs), and a column that shows how each requirement relates
to a research question, if applicable.

ID Name Short Description Research Q.
TR-01 Execution in the TZ AVM must execute software within

the TZ
RQ2

TR-02 Advanced Opera-
tions

AVM must support operations such
as floating-point arithmetic and ar-
rays

RQ2, RQ3b

TR-03 Custom Bytecode
and IS

A custom bytecode format and in-
struction set for the VM is required

RQ2

TR-04 Native Instruction
and Bytecode

AVM must execute native instruc-
tions and bytecode

RQ3a, RQ3b

TR-05 Interfaces in the TZ Core interfaces, CA and TA, are re-
quired

RQ2

TR-06 Error Handling and
Recovery

Mechanisms for detecting and han-
dling errors must be in place

RQ2, RQ3b

TR-07 Obfuscation Meth-
ods

Additional obfuscation techniques
are required as part of the proof of
concept

RQ2

NTR-01 Extensibility of VM AVM must support extensibility RQ3a
NTR-02 Extensible Obfusca-

tion Techniques
Obfuscation at bytecode and VM lev-
els must be extensible

RQ2, RQ3a

NTR-03 Integration with
Development Work-
flows

The AVM system must integrate
seamlessly with existing develop-
ment environments

RQ3a

NTR-04 Execution in the
NW

AVM must be executable in the NW RQ3a, RQ3b

NTR-05 Portability to the
TZ

Changes to the VM must be easily
portable to the TZ

RQ3a, RQ3b

NTR-06 Development
Framework

AVM must include a development
framework for testing, development,
and iteration

RQ3a, RQ3b

NTR-07 High-Level Lan-
guage and Tran-
spiler

A high-level language and transpiler
are required for development

RQ3a

Table 4.1: Requirements for the ArmorVM System
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4.2.1 Technical Requirements
The AVM system must primarily support the execution of AVM-compatible software
within the TZ, particularly for applications handling sensitive data, such as cryptographic
keys or proprietary algorithms.

Key technical features include support for advanced operations like floating point arith-
metic, array data structures, and random value generation. These capabilities are essential
for managing diverse software use cases. Such operations may be built directly into the
VM or provided through a standard library.

To enable execution, we require a base custom bytecode format and IS for the VM.
Developers could extend and exchange these in the future, but a base functionality must
be present. AVM should be capable of executing native instructions for development and
bytecode for productive purposes.

In addition, the system must establish core interfaces for interacting with AVM within
the TZ, specifically the AVM CA and TA, which serve as reference implementations.
These interfaces demonstrate how developers can integrate and interact with the system,
allowing developers to test AVM in a TEE.

A crucial requirement is the implementation of error handling and recovery mechanisms to
preserve the integrity of the VM’s execution. As an execution environment, the VM must
verify the safety of operations before executing them. These mechanisms must detect
errors while maintaining overall system security and prevent attackers from exploiting
vulnerabilities, such as buffer overflows, to gain unauthorized access or tamper with the
VM or TZ.

The AVM proof of concept must provide exemplary implementations of additional
obfuscation methods, demonstrating how to extend the VM’s capabilities.

4.2.2 Non-Technical Requirements
In addition, obfuscation techniques on bytecode and VM levels must be extensible so
that developers using the AVM system can iterate and improve the effective obfuscation
at runtime and rest.

The AVM system must utilize existing development workflows to ease the development
process of and for the AVM system. Thus, the AVM must also be executable in the
NW. Given this NW execution, developers can use their knowledge and tools to create,
execute, and debug obfuscated programs within AVM. It also eases further development
efforts to customize AVM to their needs.

The AVM system must include a development framework to enable practical development
for and of AVM. This framework is considered an extension of the AVM system.

The core design of the AVM must enable the extensibility of its features and capabilities,
allowing developers to adjust it to different use cases and requirements. The VM and the
development framework that are part of the AVM system must meet this requirement.
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The development framework must include interfaces accessible to developers to test
programs for and of the AVM itself.

Any changes to the VM must be easily portable to the TZ environment so developers can
quickly iterate on their code and test it in the SW. The included development framework
can meet this requirement.

An essential part of the development framework is a high-level language that allows
efficient development of AVM software and integrates tightly with the AVM. To this end,
the development framework must include a transpiler. A transpiler component combines
translation and compilation, which converts high-level language code into AVM bytecode
and native code executable by the AVM.

4.3 Design of the ArmorVM System
This section provides an overview of the design of the AVM and the AVM system, focusing
on the architecture, development environment, execution flow, security features, and
development practicality chosen to meet the requirements outlined in the previous section.
The system’s requirements and the limitations described in Section 3.3 imposed by the
Arm TZ environment guided the design decisions for the AVM system.

4.3.1 ArmorVM Architecture
The primary VM component of the AVM system is a C library called libvm that
provides the core functionality for loading and executing obfuscated programs. libvm is
designed for high modularity and extensibility, enabling developers to add new features
and capabilities to the VM. Using standard C, developers can integrate the VM into their
existing development environments and workflows, making it easy to create, execute, and
debug obfuscated programs within the NW, a developer’s usual development environment.

The following general components are identifiable in libvm:

• Public API for loading and executing obfuscated programs

• Internal functions for loading bytecode and cleartext AVM assembly code

• Internal data structures for managing the VM’s state and memory

• Main execution loop for interpreting and executing instructions

• VM handlers for translating custom instructions to CPU actions

• Serialization and deserialization functions for internal data structures

• Proof-of-concept obfuscation techniques for protecting obfuscated code at rest
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AVM is purely stack-based; it performs all operations on a stack data structure. This
design choice simplifies the implementation of the VM, making it easier to maintain and
less prone to errors. AVM’s language resembles assembly code, where each operation has
a specific Operation Code (opcode). Examples of such opcodes are the POP and PUSH
operations, which allow programs to modify the VM’s stack. On a basic level, the VM
interprets one opcode and up to two basic value types (parameters) as an instruction.
The combination of multiple instructions constitutes an executable program.
For parameters and internal workings, the VM understands various basic value types of
fixed-size whole numbers (NUM), real numbers (REAL), booleans (BOOL), simple pointers
to the internal stack (POINTER), and void values (NONE), dynamically-sized strings of
characters (STRING), as well as labels for various control flow operations and functions.
AVM understands basic value types and more advanced concepts, such as functions, which
allow the creation of more sophisticated and efficient programs by enabling developers to
encapsulate code into reusable blocks, making it easier to manage and maintain complex
programs.
The handlers for the VM implement functions that take the current state, the current
instruction, and, at most, two parameters as input. The VM performs the corresponding
operation on the CPU using these. The handlers translate custom instructions to CPU
actions, such as arithmetic, logical, memory, and control flow operations. The VM
provides a default custom IS that defines the instructions and operations supported by
the VM. Developers may modify the VM and its IS to fit specific use cases. During
the main execution loop of the VM, the dispatcher queues and invokes the appropriate
handler for each instruction dynamically, ensuring that the VM executes the obfuscated
code correctly. The design of the custom IS is extensible, allowing developers to add new
instructions and operations to the VM as needed, effectively altering its default behavior
and capabilities to suit their requirements better.
AVM achieves integration with the Arm TZ environment through a CA and a TA. These
special applications enable communication with the VM within the Arm TZ. The CA is
responsible for interfacing with the NW and invoking the TA in the SW, which loads
libvm. After instantiating a new AVM, the TA passes the obfuscated bytecode to it for
execution. After that, the VM executes the obfuscated code and returns the result, if
any, to the TA, which serializes it and returns the serialized result to the CA for further
processing to, for example, display it.
Integrated with the VM is a developer development framework that contains a transpiler
that converts a high-level language designed for AVM, appropriately named ForgeLang
(FL), to AVM native bytecode and cleartext AVM native assembly-like code. The
transpiler implements an ANTLR4 [154], [155] visitor parser that traverses the FL
Abstract Syntax Tree (AST) and generates the corresponding native AVM bytecode and
cleartext AVM native assembly-like code, ready for use with AVM. The transpiler and
FL are tightly coupled to AVM and show high modularity and extensibility, allowing
developers to add new features and capabilities to AVM or FL as needed. The tight
coupling between AVM and the FL development framework is evident, as the development
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framework generates the data structure and IS definitions for AVM. Furthermore, the
development framework enables direct instantiation and execution of AVM through its
Command-Line Interface (CLI) interface for development purposes.

The FL development framework and the language implement further advanced features
in the AVM system. One such feature is an import system that includes external modules
standard in widely known programming languages. Another feature is the FL standard
library, which extends FL with additional base functionality, such as access to standard
output interfaces such as the terminal and random number generation.

4.3.2 Execution
The execution flow within libvm follows a pattern similar to other VMs [40], [56].
Figure 4.2 shows the execution flows available for the AVM system. We can categorize
these into the following steps:

Decode: libvm parses and deobfuscates the input program and decodes the opcodes
into an internal instruction data structure.

Setup: libvm sets up the VM data structure, initializing the state, memory, and other
internal data structures.

Execute: The VM loads the instructions and sets up additional data structures related
to the program, such as reading available labels for control flow operations. It then enters
the main execution loop, interpreting and executing the instructions.

Within Figure 4.2, arrows indicate the execution flow, and the lines with a circle at the
end indicate the data flow. In addition, icons and shapes indicate the type of operation
or data processed. The icons have the following meanings:

Data structure

Action

AVM data structure

V AVM native value

Decode

The topmost section of Figure 4.2 shows the decoding process. Developers can supply
programs run by the VM, such as packed AVM native bytecode or as cleartext AVM
assembly-like native code. The two differing boxes illustrate this at the beginning of the
decoding process in Figure 4.2. The bytecode format serializes the cleartext assembly-
like code in a simple Type-Length-Value (TLV) format. In addition to packing, the
AVM system encodes opcodes with randomized values to obfuscate the data at rest.
Subsection 4.3.5 provides further details on this process.
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Figure 4.2: AVM Execution Flow

The system parses and decodes the input program, deobfuscating the opcodes into an
internal instruction data structure with their static parameters. We will refer to this
internal instruction data structure as instructions, which represent the expected format
that the VM uses, as it requires programs to undergo preprocessing by the respective
routines available in libvm. The routines of this part of libvm were separated from the
main execution loop of AVM to allow for easy extension and modification of the AVM.

Setup

After parsing the input, the system must instantiate and set up the VM before using any
other functions of libvm. This setup consists of initializing the VM’s state, memory,
e.g., the internal VM stack, and other internal data structures such as pointers. These
internal data structures make up the AVM data structure, further called VM, resulting
from this operation. The middle section of Figure 4.2 illustrates this setup process and
the involved data structures.

Execution

Lastly, the bottom section of Figure 4.2 shows the execution process. libvm sets up the
required data structures using the VM and instructions as input. These data structures
are related to the program: reading available labels for control flow operations and saving
them to the VM. This additional setup step allows the VM to efficiently execute control

39



4. Case Example: ArmorVM as Virtual Machine in the Arm TrustZone

flow operations, as it parses all available control flow labels once at the beginning and
can access these locations more efficiently.

Once fully set up, the VM enters the main execution loop to interpret and execute the
instructions. The dispatcher controls the execution flow by queuing and dynamically
invoking the appropriate handler for each instruction from a given set of instructions
defined when compiling libvm. Figure 3.2 illustrates the general approach to imple-
menting this loop in the AVM system. The execution flow continues until the VM
executes a HALT instruction or VM_RETURN instruction or runs out of instructions to
execute. Alternatively, the VM may encounter an error or faulty operation, which stops
it immediately to prevent undefined behavior and, thus, possible vulnerabilities. After
execution, the VM cleans up resources and terminates the program. When the VM
executes a VM_RETURN instruction, it returns the result to the caller as a libvm native
value.

4.3.3 Execution within the TrustZone
When executing programs within the TZ environment, the VM interacts with the NW
through the CA and TA. Figure 4.3 illustrates this interaction. The red participants in
Figure 4.3 execute within the NW, while the green participants execute within the SW.

The CA provides an interface to the NW and its users and invokes the TA in the SW.
Specifically, the CA is responsible for initially loading the bytecode to be executed. After
loading the bytecode, the CA sets up a new session with the VM’s TA. Using this session,
the CA invokes the respective routine on the TA side while passing the loaded bytecode
as a parameter.

Next, the invoked TA uses the received bytecode described above to invoke the correct
routines within libvm. libvm parses and decodes the bytecode, returning instructions
that the VM understands. Then, the TA instantiates a new VM. This new VM instance
is then further used to execute the instructions. If the VM returns a result to the TA, it
is transferred back in serialized form to the CA over a shared memory interface. It is
important to note that the VM result, being a libvm native value, cannot be transmitted
using shared memory since it only supports the transmission of raw byte values. Thus, the
result requires serialization before transmission. This serialized result can be exchanged
with the CA in byte form for further processing. Lastly, the CA can deserialize the result
if it chooses to do so and, for example, display it to the caller over the command line
interface, as currently implemented in the proof-of-concept CA of the AVM system.

4.3.4 Development Environment
It is important to outline the tooling and development environment used to enable

reproducible results. Some requirements are strictly mandatory, while others offer various
alternatives for researchers and developers. In addition to the utilized development
environment, we present minimal development environment requirements. This section
provides the requirements for reproducing or further developing the AVM system.
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Figure 4.3: Sequence Diagram for Client Application and Trusted Application Interaction
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The development and testing of the AVM system require a secure OS. We chose OP-
TEE [135], an open-source TEE, because it is openly available, unlike most TEEs, which
are typically closed-source and inaccessible for research. Because OP-TEE is openly
available, it meets the project’s need for a platform developers can use to freely test and
execute the VM and its TA in the TZ. OP-TEE offers various configurations for building
the OS and its dependencies from source. These configurations enable the use of OP-TEE
on various physical Arm processors. One specific configuration allows the utilization of
the Quick EMUlator (QEMU) [57] to emulate an Arm processor, effectively allowing for
development and testing on any QEMU-supported processor architecture. This QEMU
emulation configuration enables the development and testing of the AVM system without
the need for additional physical hardware. Note that the OP-TEE build system includes
QEMU, eliminating the need for a separate installation. Only dependencies for building
OP-TEE need to be installed, as stated in the official documentation [156].
We recommend a GNU/Linux-based Ubuntu system as the primary environment for
development. The official OP-TEE documentation also suggests this because Ubuntu
supports the specific dependencies required by OP-TEE. The documentation details
the dependencies needed to build OP-TEE and its toolchain from source. Developers
can perform general development and testing of the AVM system within the NW on
any system that supports the GNU Compiler Collection (GCC)[157] and C Language
family frontend for LLVM (Clang)[158] compilers, together with libc. Only one of these
compilers is mandatory. However, testing the AVM system within the TZ requires using
OP-TEE and its dependencies.
Although the compilers GCC and Clang are suitable for the build process, we prefer
the GCC as the primary compiler during the development phase since it aligns with the
OP-TEE build chain. Additionally, address sanitization and memory leak tooling, namely
GCC’s and Clang’s AddressSanitizer [159] and Valgrind [160], can be extensively utilized
for memory leak detection and debugging. Both GCC and Clang can employ the specific
AddressSanitizer, Clang’s comprehensive diagnostics and user-friendly error reporting
make it the preferred choice for utilizing the AddressSanitizer. The project utilizes the
CMake build system [161], which provides a flexible and efficient way to manage the
build process and the project’s dependencies. For example, exchanging the used compiler
can be done quickly by setting the respective environment variable.
The GoogleTest framework [162], a C++ testing framework that enables the writing and
running of C and C++ code tests, is the choice for testing purposes. The framework
enables writing unit tests for AVM, ensuring the correctness and reliability of the VM’s
primary handlers. We have performed further end-to-end testing of complex AVM
programs manually on the AVM system itself.
In addition to the AVM, the AVM system contains a development framework, the FL
development framework. This development framework supports developers in developing
AVM programs and the AVM system. A suitable Python [163] and Java [164] environment
is required to use the development framework. As the FL development framework provides
access to the custom high-level FL programming language and its transpiler for AVM,
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it is required to install the ANTLR4 [154] dependency for parsing and transpiling FL
high-level code to AVM bytecode and AVM native code. The included FL CLI aids
developers in automatically setting this dependency up in their development environment.
The FL development framework is the primary framework for AVM system development
and is essential for efficiently creating programs for the AVM system. We strongly
recommend that developers use the FL development framework for AVM development,
as it greatly enhances the system’s practicality

To summarize the minimal recommended development requirements for the AVM system,
the following tools and technologies need to be present:

• The OP-TEE project build system and toolchain, which comes with a QEMU
configuration for emulation

• A compiler such as GCC or Clang and libc for building the AVM system in
addition to the CMake build system

• The FL development framework, comprising a Python [163] and Java [164] environ-
ment AVM development

4.3.5 Security Features
The AVM system protects the VM and the obfuscated code from reverse engineering
attempts and unauthorized access during execution. To achieve this goal, it implements
various security features to ensure the security and integrity of the VM and the obfuscated
programs it executes.

The TrustZone Environment

A primary security feature of the AVM system is its novel approach of executing within
the TZ, denying even highly privileged attackers access to sensitive resources such as the
VM’s memory state. The TZ environment’s hardware-based isolation ensures that the VM
and obfuscated code are isolated and protected from unauthorized access and tampering
attempts from the untrusted NW. This environment restricts access to sensitive resources
and ensures that interactions with the VM occur only through a dedicated interface.
This additional protection significantly increases the difficulty of analyzing and reverse
engineering VMs and obfuscated code during runtime compared to a similar system that
does not utilize hardware-based isolation, such as the TZ environment.

The inherent design of the AVM system protects the data stored within its memory.
For example, an attacker analyzing a VM executing in the NW can generally access
any memory region of the VM if they have sufficient privileges. If the VM unpacks
confidential data, the attacker can access and extract the confidential data while residing
in unprotected volatile memory. In contrast, the TZ environment protects the AVM
system against such attacks during execution.
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Opcode Obfuscation

Another exemplary security feature implemented in the prototype AVM system is using
obfuscation techniques to provide additional protection from reverse engineering attempts
for the AVM bytecode while at rest. As proof of concept, the system implements opcode
obfuscation by scrambling the opcode values in the bytecode. This obfuscation technique,
inspired by Cheng et al. [40], makes it more difficult for attackers to reverse engineer
the obfuscated code. The proof of concept uses a random value, further called key, to
generate the mapping of scrambled opcode values to the original opcode values. Using
the key as input, the VM regenerates the mapping to obfuscate the opcodes, thereby
deobfuscating the opcode values before program execution. The AVM system incorporates
extensible interfaces for implementing obfuscation techniques, allowing developers to add
new methods as needed. An example of further protective measures is the obfuscation or
protection of the bytecode itself, such as encrypting it with a key known only to the VM
or TA, as described in Chapter 8.

Error-Handling

Lastly, the AVM system includes mechanisms to detect and handle errors during program
execution, ensuring that the VM maintains its integrity and prevents unauthorized
access or tampering attempts. The system implements these mechanisms by checking
potentially dangerous calculations and operations to catch common runtime issues such
as faulty pointer arithmetic or overflow and underflow operations. These error-handling
mechanisms prevent attackers from exploiting such vulnerabilities in the VM or the
obfuscated code to gain unauthorized access or tamper with the system. The error-
handling mechanisms are portable and automatically integrated into the TZ environment
to ensure the system’s security regardless of the execution environment.

4.3.6 Development Practicality
A focus is placed on the developer experience when developing the AVM system and
developing programs for the AVM system. The AVM system allows for efficient develop-
ment and execution of programs, ensuring that developers can quickly iterate on their
code and further test it in a secure environment. Design and architecture are optimized
to facilitate the development of programs for the VM and the VM itself, ensuring that
developers can leverage their existing knowledge and tools to create, execute, and debug
obfuscated programs within the VM in the NW.

An example of optimization is the FL development framework, which is highly modular
and extensible, allowing developers to add new features and capabilities to the VM or
FL as needed. A vital part of development is the possibility of testing and executing
the VM within a NW environment, as described in Section 4.2, requirement NTR-04.
Testing and executing the VM within a NW environment comes with various challenges,
as described throughout this thesis. The AVM system addresses these challenges through
an automatic porting tool that enables seamless integration of the VM with the OP-TEE
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toolchain and portable code within the VM to allow execution in the NW and the SW to
fulfill non-technical requirements NTR-03, NTR-04, and NTR-05.

In addition, the FL development framework includes essential extensions, such as an
import system, that allow developers to reuse code and extend the language and the VM.
The development framework also includes a standard library that provides additional
base functionality for FL, such as access to standard output interfaces, random number
generation, and array structures. With the FL development framework, developers can
quickly develop extensions to FL and the VM.
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CHAPTER 5
Implementation of the ArmorVM

System

Given the design and decisions described in Chapter 4, this chapter offers a closer look
at the implementation of the AVM system.

5.1 The ForgeLang Development Framework
The FL development framework is a Python and Java-based environment used to develop
programs for the AVM system and the system itself. A key objective of the framework is
to offer a fully equipped environment, enabling developers to efficiently create, execute,
and test AVM programs without the need to write in the native stack-based language of
the VM. To this end, the development framework offers the high-level FL language, a FL
standard library, and a multi-functional CLI utility for various development tasks. The
FL development framework contributes these components to the project to meet most
non-functional requirements (NTR-02 to NTR-07) of the AVM system and to address
the complexity limitations outlined in Section 3.3.

Due to the framework’s tight integration into the AVM system, it can be considered an
essential part of the AVM system during development. An example of this integration is
its strong coupling with the AVM as a controlling component of the VM build process,
pushing opcodes and native value type definitions to the AVM through C header files.
Even outside of development, when the AVM system is in use, the FL development
framework enables the system to be practical by allowing developers to develop complex
programs using the FL language. Such programs would be more complex and time-
consuming to write in the AVM native stack-based language.
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5.1.1 ForgeLang Language Features and Capabilities
ForgeLang is a custom-made high-level programming language designed for use with
the AVM system. Language definition, analysis of programs, and transpilation to AVM
native code and byte code are the main contributions by the FL language. The FL
development framework uses the ANTLR4 [154] parser generator to create parsers on the
basis of provided grammars. An ANTLR4 parser, generated based on the FL grammar,
allows the FL transpiler to structurally parse FL input programs using an AST. Using
the ANTLR4 provided AST, the transpiler can generate AVM executable stack-based
code on the basis of input programs.

The language supports essential programming constructs and data types, making it
suitable for various use cases and applications. It supports the following features, among
others:

• Arithmetic and Logical Operations

• Variables and Data Types

• Arrays

• Control Structures

• Functions

• Import Statements

• Standard Library

Basic features, such as arithmetic and data types, are mapped directly to functionality
in AVM. In constrast, other features, such as control structures and standard library
functions, are transpiled into the AVM bytecode. AVM has no knowledge of these features
since they are inherent to the FL development framework as they become part of the
resulting AVM bytecode.

FL features a user-friendly design with a syntax similar to other widely used programming
languages such as Python or JavaScript. Listing 5.2 shows an exemplary program that
implements the Fibonacci calculation of 30 written in FL. This short program presents
the basic syntax and constructs of the FL language, including function definitions, control
structures, standard library imports, and function calls.

FL uses static typing, defining variables and data types at compile time to ensure type
safety and prevent runtime errors. The transpiler allows for a more flexible and concise
programming experience by inferring these data types. FL supports the following data
types for common programming tasks:

• NUM, integral numbers
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1 class NUM(ValueType):
2 @staticmethod
3 def is_valid(value: Any) -> bool:
4 return type(value) == int
5

6 @staticmethod
7 def value_str(value: Any, **kwargs) -> str:
8 return str(value)
9

10 @classmethod
11 def pack(cls, value: Any) -> bytes:
12 return struct.pack("B", cls.code) + struct.pack("<i",

value)�→

Listing 5.1: ForgeLang NUM Value Type Definition

• REAL, floating point numbers

• BOOL, boolean values

• STRING, string values

• NONE, null-like values

• Arrays of the above types, which are not a basic data type

These value types are defined in the FL transpiler by subclassing the ValueType class;
see Listing 5.1 for an example. It shows the minimum requirements for defining a new
value type in FL, which includes a method to check if a Python value is compatible with
the FL value type, a method to convert the value to a string, and a method to pack the
value into a byte buffer.

FL’s grammar defines its syntax, which the ANTLR4 parser generator parses to generate
the underlying parser for generating corresponding ASTs of input programs. The transpiler
then uses the AST to generate the AVM bytecode or the native AVM instructions. Listing 1
shows the FL grammar that the ANTLR4 parser accepts.

5.1.2 ForgeLang Development Framework and Its Components
The FL development framework, packaged with Python Poetry [165], can be installed
through the Poetry package manager. After installing the package in a suitable Python
environment, the development framework offers developers a CLI to interact with the
AVM system and the FL language. Listing 5.4 shows the FL framework’s CLI, the
available subcommands, and their help messages.
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1 import std::outn;
2

3 def fib(n) {
4 if (n <= 1) {
5 return n;
6 }
7 return fib(n - 1) + fib(n - 2);
8 }
9

10 n = 30;
11 outn("Fib of " + n + ": " + fib(n));

Listing 5.2: ForgeLang Example Program

1 grammar ForgeLang;
2

3 program: (importStatement | function | statement)* EOF;
4

5 importStatement:
6 'import' (IDENTIFIER | STRING) (
7 '::' IDENTIFIER (',' IDENTIFIER)*
8 )? ';';
9

10 function: 'def' IDENTIFIER '(' parameters? ')' block;
11

12 functionCall: IDENTIFIER '(' arguments? ')';
13

14 arrayDeclaration: IDENTIFIER '[' INTEGER ']';
15

16 arrayAssignment: IDENTIFIER '[' expression ']' '=' expression;
17

18 ...

Listing 5.3: ForgeLang Grammar Excerpt
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1 ~/stack-vm$ forge
2 Usage: forge [OPTIONS] COMMAND [ARGS]...
3 Options:
4 --help Show this message and exit.
5

6 Commands:
7 antlr Build ForgeLang from the grammar file.
8 headers Generate header files for the VM.
9 run Transpile the input file and then run it on the VM.

10 transpile Transpile input file and write the output to the...
11 vm Run the VM with the given bytecode file.

Listing 5.4: ForgeLang Development Framework CLI

FL development framework’s main components are as follows:

• Dependency setup for the language and development framework

• Transpiler for transforming FL code to VM native bytecode and cleartext code

• Runtime for the NW VM using the libvm library

• Access to the FL standard library

• Definition and export of vital C headers for the VM

5.1.3 The ForgeLang Transpiler
The FL transpiler is a central component of FL, developed in Python. Using the ANTLR4
parser generator, it parses the FL grammar and generates an AST. This transpiler is
responsible for converting FL code into AVM bytecode or cleartext assembly code and
defining the corresponding data structures and opcodes understood and used by the
AVM system.

The key features of the FL transpiler include its highly modular and extensible design,
which facilitates the easy addition of new features and supports custom ISs and byte-
code formats. This flexibility is crucial for adapting the transpiler to various specific
requirements and for future enhancements. By adjusting or extending classes within the
transpiler library, developers can customize the transpiler to suit their needs and add
new features, such as additional data types or opcodes, to the AVM system.

Additionally, the transpiler can generate both bytecode and cleartext assembly code
simultaneously. This dual-output capability is particularly beneficial for debugging and
thorough code analysis. The system also includes robust mechanisms for symbol tracking
and error handling, ensuring the integrity and reliability of the transpiled code.
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The TLV format encodes the generated bytecode, providing a standard for compact
and efficient data packaging that libvm can parse and decode into instructions. By
encoding the value alongside its type and length, the TLV format gains the advantage of
being self-describing and easy to parse. It is important to note that this binary format
cannot be scheduled by an OS or executed directly by a CPU, as it is not a standard
format for executable code such as the Executable and Linkable Format (ELF) [58] or
the Portable Executable (PE) [166] formats. A non-standard format such as the TLV
format increases the difficulty of reverse engineering, as attackers must first identify and
familiarize themselves with it before attempting to analyze the bytecode.

Another significant feature is the import system, which allows the (re-)usage of self-written
external modules and the standard library. This system extends the functionality of FL,
providing additional tools and features readily available to developers. The standard
library is extensible through FL or AVM assembly, offering examples of functions that
developers can customize or extend as required.

5.1.4 Integration with ArmorVM
FL and its development framework serve as the primary development environment for
programs running in AVM; thus, the FL high-level language dictates the AVM’s data
structures and IS. Using the development framework, developers must export the required
headers from the FL transpiler using the CLI. The routine shown in the Appendix Listing 2
exports declared value types and opcodes to the headers of AVM. This export of value
types and opcodes is crucial for the AVM system, as it syncs the AVM and the FL
language. In addition, it ensures that the AVM can correctly interpret and execute
programs written in FL and translated into AVM native code. Compiling AVM requires
first exporting the headers from the FL development framework, as the AVM system
relies on these headers to define its value types and IS.

To extend AVM with new opcodes, developers must define them in the respective
opcode.py, see Listing 5.5. As shown in the listing, the requirements for creating a
new opcode are a class with the opcode’s name and a function that returns the stack
pointer change upon opcode execution. A simple example like PUSH returns a positive
change in the stack pointer’s value based on the number of arguments in its instruction.
In contrast, changing the stack pointer’s value when executing the CALL opcode depends
on its context and the number of arguments passed to the function.

After defining the update opcodes, developers export them using the FL development
framework through the CLI utility. The FL development framework then generates
the necessary headers for the AVM system, ensuring that the AVM system is aware of
the new opcode and can correctly interpret and execute programs that use this opcode.
Lastly, developers must implement the new opcode functionality within the AVM using
C code to translate the new opcode to CPU instructions while executing AVM programs.

Another shared responsibility of the FL development framework and the AVM system is
the additional obfuscation of opcodes in the produced bytecode. Figure 5.1 illustrates
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ForgeLang
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Figure 5.1: ForgeLang and ArmorVM Opcode Obfuscation
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the following process:

During bytecode generation, the FL development framework executes a separate routine
responsible for opcode obfuscation. Figure 5.1a illustrates how the FL development
framework generates an opcode mapping during transpilation by using a Prime Modulus
Multiplicative Linear Congruential Generator (PMMLCG) or “Lehmer pseudo-random
number generator” [59], with the AVM opcode definitions. The PMMLCG is a pseudo-
random number generator that takes an initial value called seed or key. The generator
can then produce a random number within a specified range as often as needed. It is
important to note that a number can repeat if the generator undergoes enough cycles
within a small enough range. To generate a valid mapping, FL prompts the PMMLCG
once for each opcode. If the generator assigns the same random number to two opcodes,
we discard the key and try another random value. Figure 5.1a shows this part of the
process by the loop below the PMMLCG. If the generator finds a valid opcode mapping,
it prints the key to the CLI and forwards it to the transpiler to generate obfuscated
bytecode. Obfuscation occurs through FL mapping opcodes during bytecode output to
their target random number.

To execute the bytecode, AVM regenerates the obfuscation mapping using the given key
and then translates the scrambled opcodes into the original opcodes before execution.
Figure 5.1b shows this deobfuscation process, which is similar to the obfuscation process
found in FL. AVM uses the key and its defined opcodes as input for the PMMLCG to
recover the opcode mapping used by FL for the opcode obfuscation. After that, AVM
uses the opcode mapping to decode the bytecode to instructions it can execute. The
described process ensures that the obfuscated code can be parsed and executed correctly
by removing the randomization of opcodes.

5.2 Anatomy of ArmorVM

AVM is the core component of the AVM system. It is responsible for executing obfuscated
programs within the Arm TZ or NW environments for development purposes. The
implementation in C99 [60] focuses on maintainability, easy extensibility, and portability,
allowing developers to quickly add new features and capabilities to the VM as needed.
This section provides a deeper understanding of the implementation of AVM and its key
components.

AVM’s primary function is to execute obfuscated programs within the TZ and NW
environments. Its main implementation, libvm, can be included in any project that
supports shared objects. This portability becomes evident by binding the libvm library
within the FL development framework, enabling the creation and execution of AVM
programs using Python. Integration of libvm with the TZ environment occurs through
a self-written porting tool that automates the necessary steps to tightly incorporate
libvm within the TA and certain parts of the CA.
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1 class PUSH(OpCodeType):
2 @staticmethod
3 def stack_frame_sp_change(inst: Instruction) -> int:
4 if len(inst.args) == 2:
5 return 2
6 return 1
7

8 class CALL(OpCodeType):
9 @staticmethod

10 def stack_frame_sp_change(inst: Instruction) -> int:
11 offset = 0
12 if inst.ctx.arguments():
13 offset = -len(inst.ctx.arguments().expression())
14 if isinstance(inst.ctx.parentCtx,

ForgeLangParser.ExpressionContext):�→
15 offset += 1
16 return offset

Listing 5.5: ForgeLang Opcode Definition

5.2.1 The libvm C Library

libvm is a stack-based VM library that uses a stack data structure to store and
manipulate values during program execution. This stack data structure stores values,
function arguments, function frames, and return values in a stack-based manner, serving
as the primary memory for managing data during program execution. In addition to
the stack, the VM uses other data structures, such as the instruction array for storing
the program’s instructions and the label array for storing the program’s labels. Further,
the VM tracks the current instruction pointer, stack pointer, and stack base pointer to
control the execution flow and manage the stack during program execution. The VM’s C
structure definition in Listing 5.6 shows these and other values.

5.2.2 ArmorVM Values

A central part of AVM is its value type, representing any value stored or manipulated
by the VM. What kind of values are understood by AVM is defined by its high-level
language FL and the FL development framework. FL is responsible for defining the
value types and writing AVM’s value types header defining C macros to generate a C
enumeration of all supported value types (see Subsection 5.1.4). Listing 5.7 shows the
default implementation of the supported values in AVM.

An AVM native value is a C union structure that can store different values, such as
integers, floating-point numbers, booleans, strings, pointers, and none values. This type
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1 typedef struct vm {
2 #ifdef DEBUG
3 bool trace; // should the vm trace?
4 #endif
5 bool running; // is the vm running?
6 uint32_t sp; // stack pointer
7 uint32_t bp; // stack base pointer
8 uint32_t ip; // Instruction pointer
9 uint32_t label_count; // amount of labels

10 Value stack[VM_MAX_STACK_SIZE]; // stack
11 Label labels[VM_INIT_LABELS_SIZE]; // found labels
12 Instruction *instructions; // loaded instructions
13 size_t num_instructions; // amount of loaded instructions
14 } VM;

Listing 5.6: Virtual Machine Structure Definition

1 #define NUM_VALUE_TYPES 6
2

3 #define VALUE_TYPE_LIST(VALUE_TYPE) \
4 VALUE_TYPE(NONE) \
5 VALUE_TYPE(BOOLEAN) \
6 VALUE_TYPE(STRING) \
7 VALUE_TYPE(NUM) \
8 VALUE_TYPE(REAL) \
9 VALUE_TYPE(POINTER) \

10

11 #define GENERATE_ENUM(ENUM) ENUM,

Listing 5.7: ArmorVM Value Type Generation

is used throughout the VM, whether within the binary representation of the bytecode,
the stack, the IS, or during the program’s execution. Listing 5.8 presents AVM’s native
value structure definition and its supporting definitions.

5.2.3 ArmorVM Opcodes

As the name opcode suggests, these are the basic building blocks of the AVM system.
They are codes that indicate to the AVM that it needs to perform operations such as
pushing values onto the stack, popping values from the stack, moving values between
stack positions, performing arithmetic operations, and controlling the program flow.
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1 typedef struct pointer {
2 uint32_t *base;
3 uint32_t v;
4 } Pointer;
5

6 typedef enum type { VALUE_TYPE_LIST(GENERATE_ENUM) } Type;
7

8 typedef struct value {
9 Type type;

10 union v {
11 bool boolean;
12 int32_t num;
13 char *str;
14 double real;
15 Pointer pointer;
16 } v;
17 } Value;

Listing 5.8: Value Structure Definition

We can categorize AVM’s base IS into several categories, including stack manipulation
instructions like PUSH, POP, and MOVE, which handle data on the VM’s stack. Arithmetic
operations, like ADD, SUB, and MUL perform basic calculations, while logical operations
like AND, OR, and NOT facilitate condition evaluation. Control flow instructions, includ-
ing CALL, RETURN, and HALT, manage the execution sequence. Lastly, miscellaneous
operations like LOAD, REL2ABS, and RND provide additional functions within the VM.

Internally, the VM implements a custom IS using opcodes that the VM executes during
the program’s execution. As with values, these opcodes are defined in the FL development
framework and exported to AVM using the FL development framework’s CLI utility as
C macros to generate a C enumeration in a designated header file (see Subsection 5.1.4).
Listing 5.9 shows an excerpt of the default set of opcodes that AVM understands. When
the VM encounters each declared opcode during program execution, it automatically
resolves and executes it to a generated function. These functions are created upon opcode
definition by the C preprocessor using macros and adhere to the signature shown in
Listing 5.10. The VM stores the opcode functions in a buffer of function pointers indexed
by the opcode enum values. Due to this design, advanced features such as dynamic
opcode loading and unloading can be implemented by AVM since the opcode functions
can be dynamically bound, unbound, and replaced at runtime. A possible use case for
this would be to allow the VM to load and execute opcodes from external libraries or
modules, extending the VM with new features and capabilities at runtime.

AVM’s opcodes provide the functionality needed for a Turing-complete language but lack
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1 #define NUM_OPCODES 33
2

3 #define OPCODE_LIST(OPCODE) \
4 OPCODE(PUSH) \
5 OPCODE(PUSHN) \
6 OPCODE(POP) \
7 ...
8

9 #define GENERATE_ENUM(ENUM) ENUM,

Listing 5.9: ArmorVM Opcode Type Generation

1 typedef Value (*vm_func)(VM *vm, Value arg1, Value arg2);
2

3 typedef enum opcode { OPCODE_LIST(GENERATE_ENUM) ERROR }
Opcode;�→

4

5 extern const vm_func vm_funcs[];
6

7 #define VM_FUNC_DECL(OPCODE) Value vm_##OPCODE(VM *vm, Value
arg1, Value arg2);�→

8 #define VM_FUNC(OPCODE) [OPCODE] = vm_##OPCODE,
9

10 OPCODE_LIST(VM_FUNC_DECL)

Listing 5.10: ArmorVM Opcode Inner Workings

complex data structures and high-level programming constructs, which the high-level
language FL manages.

As shown in Listing 5.10, the opcode function name prefixes with vm_ followed by the
opcode name in uppercase. Appendix Listing 3 presents two examples of opcode function
implementations in the AVM, specifically the vm_PUSH and vm_EQ functions. The
vm_PUSH function pushes a value onto the stack, while the vm_EQ function pops two
values off the stack, compares them for equality, and pushes the result back onto the
stack. The VM’s main execution loop always receives the resulting values, sometimes
NONE, pushing them onto the stack or using them in further operations.

5.2.4 ArmorVM Programs
A program to be executed by the VM consists of a series of opcodes to be executed
sequentially by the VM. Each opcode may take up to two arguments in the form of
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1 typedef struct instruction {
2 uint32_t line_number;
3 Opcode opcode;
4 Value arg1;
5 Value arg2;
6 } Instruction;

Listing 5.11: Instruction Struct Definition

AVM native values, which the VM passes to the opcode function during execution. A C
structure aptly called Instruction represents AVM native code, containing the opcode
and its arguments. Listing 5.11 presents the Instruction C structure implemented in
AVM.

libvm provides functions for loading and transforming AVM native code or bytecode
into AVM native instructions. These functions parse inputs and transform them into
AVM instructions that the VM can execute in its main execution loop.

For example, the Fibonacci program shown in Listing 5.2 is transpiled to AVM native
code, as shown in Listing 5.12. This native code also appears in AVM bytecode format,
demonstrated in Listing 5.13. Developers can additionally obfuscate opcodes used in the
bytecode format through opcode randomization, as described in Subsection 5.1.4.

The AVM native code in Listing 5.12 shows that the program executes stack-based,
pushing values onto the stack, manipulating them with opcodes, and popping them off
as needed. Execution begins by pushing the value 30 onto the stack, followed by a series
of opcodes performing string concatenation operations and function calls to calculate
the Fibonacci number of 30. Finally, the result is printed on the console using the outn
function, a standard library function provided by the AVM system. We have omitted the
implementation of the Fibonacci function for brevity.

Further, overloaded opcodes, such as PUSH, can be seen in Listing 5.2. Overloaded
opcodes behave differently depending on the number of arguments received. If there are
no values, it pushes a NONE value onto the stack; if there is a value, it pushes that value
onto the stack. Other opcodes interact purely with the stack for in- and outputs, such
as ADD, which pops two values off the stack, adds them together, and pushes the result
back onto the stack, while other opcodes, such as MOVE, receive arguments and interact
with the stack more flexibly. The described functions are opcodes inherent to AVM’s
implementation. In contrast, the called fib and outn functions are developer or FL
standard library-provided functions embedded into the specific AVM bytecode.

5.2.5 ArmorVM Execution Flow
Listing 5.14 outlines the execution flow using the external API of libvm. A new
VM is created and initialized with a blank state in the listing. After that, the re-
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1 LABEL entry
2 PUSH
3 PUSH 30
4 MOVE $SP-1 $BP+0
5 POP
6 PUSH "Fib of "
7 PUSH
8 MOVE $BP+0 $SP-1
9 ADD

10 PUSH ": "
11 ADD
12 PUSH
13 MOVE $BP+0 $SP-1
14 CALL fib 1
15 ADD
16 CALL outn 1
17 HALT

Listing 5.12: Example of ArmorVM Native Code

1 0265 6e74 7279 0000 0000 0000 0000 0000 .entry..........
2 0103 1e00 0000 0400 0000 0205 01ff ffff ................
3 ff05 0000 0000 0002 0000 0000 0000 0000 ................
4 0102 4669 6220 6f66 2000 0000 0000 0004 ..Fib of .......
5 0000 0002 0500 0000 0000 0501 ffff ffff ................
6 0600 0000 0000 0000 0001 023a 2000 0600 ...........: ...
7 0000 0000 0000 0000 0400 0000 0205 0000 ................
8 0000 0005 01ff ffff ff1d 0000 0002 0266 ...............f
9 6962 0003 0100 0000 0600 0000 001d 0000 ib..............

10 0002 026f 7574 6e00 0301 0000 001b 0000 ...outn.........
11 0000 ..

Listing 5.13: Example of ArmorVM Bytecode
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1 VM *vm = vm_create();
2 vm_init_blank(vm);
3 vm_load_byte_program(vm, buffer, buffer_size);
4

5 Value *result_value = vm_run(vm);
6

7 uint8_t *serialized_value;
8 size_t serialized_value_size;
9 serialize_value(result_value, &serialized_value,

&serialized_value_size);�→
10 memcpy(return_buffer, serialized_value,

serialized_value_size);�→
11

12 return TEE_SUCCESS;

Listing 5.14: Trusted Application Code Excerpt Interacting with libvm

ceived bytecode program is parsed and loaded into the empty VM instance using the
vm_load_byte_program function. The vm_run function then executes the program
and returns the result, which may be a NONE value if there is no return value. This result
value is then serialized and copied to a shared memory buffer to which the CA has access.
The code in Listing 5.14 is a schematic representation of the execution flow of a program
within the AVM system described in Section 4.3.3.

Among the functions called, the most interesting is the vm_run function, which executes
the main execution loop of the VM, as illustrated in Appendix Listing 4. After setting
up values and the Instruction pointer to the program’s entry point, the function
enters a loop that iterates over the program’s instructions until it reaches the end of the
program or terminates the program. During each iteration, the VM executes the opcode
pointed to by the Instruction pointer and advances the Instruction pointer to
the next Instruction. Results of the executed opcode are then handled accordingly,
either by pushing the results onto the stack, freeing the results, or storing the results as
the program’s return value.

With this simple execution flow, the VM can execute a wide range of programs, provided
that developers implement the required functionality in the VM and its IS. When
adjusting the VM’s functionality, developers should generally not need to modify the
main execution loop, as the VM’s main functionality resides in the opcodes executed
during program execution.
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5.2.6 ArmorVM Error-Handling
The AVM system includes robust error-handling mechanisms to ensure the integrity
and reliability of the VM during program execution. Errors can occur for various
reasons, such as invalid instructions, stack overflows, division by zero, or memory access
violations. The primary defense mechanism utilized by the VM is to halt program
execution when an error is detected and report the error to the user. When executing in
the NW, the VM will print an error message to the console and terminate the program
using exit(EXIT_FAILURE). In the TZ environment, the VM will panic using the
TEE_Panic function, which will terminate the execution of the TA. The macro variant
used in the build of libvm depends on the preprocessor flags, particularly the OPTEE
flag, which indicates that the build is for the TZ environment.

These error handling mechanisms, e.g., VM_EXIT_FAIL, use C Macros, as depicted in
Appendix Listing 5. Any calls to this macro will print an error message, free the VM’s
resources, and terminate the program execution immediately. This macro ensures that
the VM does not continue to execute in an invalid state, which could lead to additional
errors or security vulnerabilities.

An example of its usage is in the vm_PUSH function shown in Appendix Listing 3.
Suppose the stack pointer exceeds the maximum stack size. In that case, the VM will
execute the VM_EXIT_FAIL macro code inserted by the C preprocessor, which handles
the error and terminates the program execution. AVM consistently executes checks
since AVM implements any functionality centrally, and any functions should utilize these
central functions of the VM. A typical example would be how functions that utilize
the vm_POP function to retrieve values from the stack automatically check if the stack
is empty before popping the values off the stack. Given a correct and memory-safe
implementation of vm_POP, any function, depending on this function, should be safe
from stack underflow when retrieving values from the stack using vm_POP. Appendix
Listing 3 shows an example of this behavior in the vm_EQ function.

5.2.7 ArmorVM TrustZone Integration
AVM uses the OP-TEE project, as the SW OS as outlined in Section 4.3.4. OP-TEE
allows us to meet requirement TR-01.

When testing and debugging the AVM system, developers must build it within the
OP-TEE-provided build system. This build system is complex and requires a specific
setup to build the AVM system for the TZ environment due to the required dependencies
and configurations given by OP-TEE. A crucial part is that TA and CA require headers
and libraries from the OP-TEE build system, which are unavailable in usual development
environments. Further, building and starting the OP-TEE environment takes considerable
time due to many required individual components built from source, e.g., the Linux kernel
or QEMU. When developers change the CA, TA, or VM, they must run the OP-TEE
build process to test these modifications. This process can be time-consuming and slow
development, particularly when iterating on minor changes. We considered alternatives
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armourvm-tz
ta

src
libvm

vm.c
vm.h
...

armourvm_ta.c
...

Makefile
host

src
main.c
...

Makefile
shared

include
common.h
...

resources

Listing 5.15: ArmorVM File Structure Within the OP-TEE Build System

to building the VM and TA without executing the entire OP-TEE build-chain. However,
this approach was not feasible due to the tight integration of the VM with the TA and
the TZ environment.

The developed solution for this integration of the AVM into the TZ environment is
achieved by porting the libvm library to the TZ and developing the AVM within the
NW. Testing AVM functionality that does not depend on the TZ occurs within the
NW, while specific testing of TZ code requires porting the project to OP-TEE. This
process uses a self-written porting tool that automatically takes steps to tightly integrate
libvm within the TA and parts within the CA. These steps involve moving files to the
correct directories, templating values for configuration, and fixing incompatible code. The
porting tool is in Python and part of the AVM system, allowing developers to quickly port
the VM to the TZ environment without copying and rewriting files manually. Manually
porting libvm to the TZ environment would be a time-consuming and error-prone
process, as it involves many files and a specific file structure that needs to be adhered to,
as can be seen from AVM’s file structure in Listing 5.15.

Various issues can occur when building libvm within the OP-TEE build system. The TZ
environment lacks many standard C library functions and GNU C extensions commonly
used in C development. Although OP-TEE provides a subset of the standard C library
functions with the OP-TEE libutils library, some functions still need to be added
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1 Value vm_RND(VM *vm, Value arg1, Value arg2) {
2 if (arg1.type != NONE || arg2.type != NONE)
3 {
4 VM_EXIT_FAIL(vm, "RANDOM takes no arguments");
5 }
6 Value result = {.type = NUM};
7 #ifdef OPTEE
8 uint32_t initial = 0;
9 TEE_GenerateRandom(&initial, sizeof(uint32_t));

10 int32_t random_int = (int32_t)(initial & 0x7FFFFFFF);
11 result.value.num = random_int;
12 #else
13 result.v.num = rand();
14 #endif
15 return result;
16 }

Listing 5.16: vm_RND Function

or implemented, making developing specific features challenging. For example, glibc
functions are not available in the TZ environment, meaning that the code written for the
NW will not compile when building for the TZ environment, and missing an essential
library such as glibc results in a lack of support for math functions such as pow or
sqrt, which are essential for mathematical operations within the VM. Further, external
libraries that rely on standard libraries, such as glibc, are not usable within the TZ
environment because these dependencies are unavailable within an OP-TEE system.
Instead, developers need to rely on OP-TEE-supplied libraries, such as libmbedtls, or
implement these functions, which can be time-consuming and error-prone. The OP-TEE
framework provides stand-in replacements for some functions, such as string utilities.
For others, such as random value generation or mathematical operations, developers
must either use TEE implementations, which may behave differently, or rewrite the
code to avoid relying on these functions. The porting tool replaces certain functions
with stand-in alternatives, such as substituting fprintf with EMSG and exit with
TEE_Panic. Other functions with no stand-in replacements require rewriting to use the
OP-TEE-offered GlobalPlatform TEE API, as demonstrated by the vm_RND function in
Listing 5.16.

Further functions with no OP-TEE replacements, such as glibc pow, need to be im-
plemented using custom functions, which may exhibit different behavior depending on
the environment where AVM executes. The vm_POW function in Appendix Listing 6
illustrates this.
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5.2.8 ArmorVM Security Features
We have designed and implemented AVM’s security features to protect the integrity and
confidentiality of the obfuscated programs executed by the VM. These features fall into
secure execution environments and code obfuscation at rest.

The primary security feature of AVM is its integration into the TZ environment, which
provides a secure execution environment for the VM and the programs it executes. The
TA manages access to the VM through its interface, offering a secure communication
channel between the NW and the TZ environment. As a proof of concept, the simple host
program, CA, allows interaction with the TA and execution of the AVM programs by
supplying the TA_ARMOURVM_CMD_RUN_VM command ID and the program for execution.

For code obfuscation at rest, AVM employs a custom bytecode format designed to be
more challenging for reverse engineers than cleartext assembly-like native AVM code.
As described in Subsection 5.1.4, the FL development framework obfuscates the AVM
bytecode opcodes, making reverse engineering more difficult. Other static data, such
as function names, strings, and numbers, are not obfuscated. Attackers accessing the
base AVM code can parse bytecode, allowing further analysis. The obfuscation process
involves generating a mapping of opcodes to random values and translating the opcodes
in the bytecode accordingly, as demonstrated by the code responsible for generating a
randomized mapping shown in Appendix Listing 7. As a result of this mapping, an
opcode such as PUSH will be translated to a random value, making it more difficult for
attackers to understand the program’s functionality by analyzing the bytecode. After
finding a valid mapping, the FL development framework outputs a key for libvm to use
as input to regenerate the mapping when loading the bytecode. libvm uses this mapping
to undo the operations performed by FL, allowing the VM to execute the obfuscated
bytecode as if it were the original bytecode. The corresponding counterpart, implemented
in C, is shown in Appendix Listing 8.

5.2.9 ArmorVM Testing and Validation
During development, we conducted extensive testing and validation procedures to ensure
the correctness and reliability of the AVM system. These procedures include automated
testing using unit and manual integration tests for complex functionality and integration
with the TZ environment. Unit tests, written using C++ and the GoogleTest framework,
aim to validate the behavior of the VM’s core functions, which map to opcodes. The
tests cover various scenarios, including both positive and negative cases. They ensure the
correctness of the VM’s IS and its interaction with the stack and memory. A particular
focus of the unit tests is the interaction of functions with libvm’s implementation of
pointers to the stack, which, if faulty, may introduce severe vulnerabilities to the VM.
Listing 5.17 shows an example of a unit test for the ADD opcode.
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1 TEST_F(VmFuncTest, ADDNum) {
2 vm_PUSH(vm, value_create_num(42), NONE_VAL);
3 vm_PUSH(vm, value_create_num(42), NONE_VAL);
4 Value result = vm_ADD(vm, NONE_VAL, NONE_VAL);
5 EXPECT_EQ(vm->sp, 0);
6 EXPECT_EQ(result.type, NUM);
7 EXPECT_EQ(result.v.num, 84);
8 }
9

10 TEST_F(VmFuncTest, ADDOffsetDeath) {
11 vm_PUSH(vm, value_create_num(42), NONE_VAL);
12 vm_PUSH(vm, value_create_pointer(vm, "SP-3"), NONE_VAL);
13 EXPECT_DEATH(vm_ADD(vm, NONE_VAL, NONE_VAL),

mem_access_msg);�→
14 vm_pop_free(vm);
15 vm_PUSH(vm, value_create_pointer(vm, "SP"), NONE_VAL);
16 EXPECT_DEATH(vm_ADD(vm, NONE_VAL, NONE_VAL),

mem_access_msg);�→
17 vm_pop_free(vm);
18 vm_PUSH(vm, value_create_pointer(vm, "SP+1"), NONE_VAL);
19 EXPECT_DEATH(vm_ADD(vm, NONE_VAL, NONE_VAL),

mem_access_msg);�→
20 }
21

22 TEST_F(VmFuncTest, ADDOverflow) {
23 vm_PUSH(vm, value_create_num(INT_MAX), NONE_VAL);
24 vm_PUSH(vm, value_create_num(1), NONE_VAL);
25 EXPECT_DEATH(vm_ADD(vm, NONE_VAL, NONE_VAL),

op_overflow_msg);�→
26 }

Listing 5.17: Example of ArmorVM Unit Tests
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CHAPTER 6
Evaluation of ArmorVM

This chapter evaluates the effectiveness and practicality of the AVM system for code
obfuscation and software development.

The first half of this chapter shows how the AVM system addresses non-functional
practicality requirements. To evaluate its practicality, we demonstrate how the AVM
system implements two real-world application routines that require protection. Through
self-assessment of development and workflow on the AVM system, this practical evaluation
demonstrates how the proof of concept can be utilized in real-world software development.
An evaluation of practicality with human subjects is out of the scope of this thesis.

In addition to the practicality, we evaluate the AVM system’s quality of obfuscation
according to Collberg et al. [2] metrics. Since our system uses a method described in
their code obfuscation taxonomy, we will use their classification of VM-based obfuscation
as a starting point for our critical assessment of the AVM system. This classification
relies on three qualities: Potency, Resilience, and Cost.

We will forego measuring the potency metric, as it requires human subjects. As our
system has at least the same qualities as any other VM-based obfuscation technique, we
will adapt Collberg et al.’s metric.

After that, we will further analyze and discuss the AVM systems’ resilience strengths and
address known limitations and open questions using Schrittwieser et al. [61] classification
of automated deobfuscation techniques.

Lastly, to estimate the cost of using the AVM, we provide an estimate comparison by
measuring runtimes. These measurements are not strict benchmarks but provide a
starting standpoint for future work.

At the end of the chapter, we provide a short discussion to comparing AVM to other
obfuscation methodologies, which provides a broader perspective on the system’s effec-
tiveness.
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6.1 Test Environment and Scenarios

We use the same test environment for evaluating the AVM system described in Subsec-
tion 4.3.4. This test environment relies on a GNU/Linux Ubuntu VM to emulate the TZ
environment with QEMU and OP-TEE. For any further testing and evaluation, we will
build and test the AVM system within this described setup.

We define two test scenarios to facilitate the evaluation of the AVM system and demon-
strate its capabilities. The first scenario displays the obfuscation of a security-critical
component of a program that encrypts and decrypts data. In contrast, the second scenario
demonstrates the protection of a sensitive algorithm within the VM. These scenarios
showcase the effectiveness of the AVM system in protecting IP and sensitive information
within obfuscated programs.

Listing 9 shows an example of a security-critical component that encrypts and decrypts
data using asymmetric cryptography (RSA algorithm [62]). The code shown is a simplified
RSA algorithm version unsuitable for a production environment. Its main script generates
a key pair, encrypts a message, and decrypts the encrypted message, outputting relevant
information along its execution. The core concept that this sample demonstrates is
the defense in depth protection of security-critical components that are part of a more
extensive program. A realistic use case could be the secure encryption and decryption of
sensitive data using a key stored within the TZ environment. As a result of its Turing
completeness, the AVM system applies to a vast array of scenarios in any domain where
secure execution of code is required.

Another exemplary scenario is the protection of a proprietary algorithm within the VM.
Appendix Listing 10 shows a simplified version of a financial risk assessment algorithm
that calculates the risk of potential lenders based on their financial data. This simple
algorithm may be deployed on customer devices to self-assess financial risk and may be a
critical component of a more extensive financial application. Hurley et al. [63] describe
the importance of protecting proprietary machine learning algorithms for credit scoring
and how “big-data” tools use increasing personal data points to assess financial risk.
Although the presented algorithm is similar to the simple FICO model described by
Hurley et al., more complex machine learning algorithms may be used on the devices of
borrowers to assess their financial risk in a privacy-preserving manner without needing
data brokers.

The need for protection in both scenarios is evident, as valuable data and algorithms
risk being reverse-engineered and exploited by attackers when they control devices and
software. In the following sections, we will evaluate both scenarios as one. A possible
real-life scenario where both are relevant is a financial application running on consumer
devices that assesses the financial risk of potential borrowers using proprietary algorithms
and encrypts/decrypts sensitive data to protect it from unauthorized access.
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6.2 Usage during Software Development
Incorporating software protection within software development starts with evaluating
which parts of the software package require protection. Developers must determine which
parts contain trade secrets or sensitive information that attackers could exploit in a
MATE scenario.

After identifying sensitive parts of the application, developers set up the AVM system
to rewrite, test, and debug these parts within the AVM system. They achieve this by
downloading the AVM system’s and OP-TEE’s source code, setting up and building the
AVM system for the NW using the FL development framework, and porting the AVM
system to the TZ environment using the porting tool.

Developers can perform these actions using the provided development framework, part
of the AVM system. We provide examples of available commands and their effects in
Appendix Listing 12.

An example used during the development of the shown applications involves Visual Studio
Code launch configurations, which allow the execution of these commands from within
the editor. Listing 6.1 shows an example of a launch configuration that runs the forge
transpile command on a selected FL file for debugging purposes. By allowing access
to the development framework from the command line interface, developers can easily
integrate the AVM system into their existing development workflows, regardless of their
development environment.

1 {
2 "name": "Forge transpile",
3 "type": "debugpy",
4 "request": "launch",
5 "module": "forge_lang.cli",
6 "args": ["transpile", "${input:pickfg}", "/tmp/out.avm"],
7 "justMyCode": true,
8 "cwd": "${workspaceFolder}/forge_lang"
9 }

Listing 6.1: Visual Studio Code Launch Configuration for ForgeLang Transpilation

During the development of Listing 9, we extended the FL standard library with required
mathematical functions for calculations, namely for calculating the Greatest Common
Divisor (GCD) and the Extended Euclidean Algorithm (EEA). The FL standard library
does not provide these essential functions for the RSA algorithm. Listing 11 presents
the functions added to the FL standard library. After implementing these functions
in math.fg within the standard library folder, they become immediately available to
all FL programs. Alternatively, these algorithms can be implemented in Python using
the AVM native assembly-like language for higher optimization and performance. The
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standard library exposes these functions just like the FL functions. Because the RSA
algorithm implementation uses the FL import system, it also has access to the extended
math standard library.

If required, AVM can be modified to support additional data types, alternative opcodes,
and additional features without much effort, as the development of the AVM system
accounted for these use cases. For example, adding a new data type, such as a Java-like
BigInteger type, would require adding the data type to the known data types in the
transpiler and adjusting type support in the VM’s functions to support the new data
type. These changes would allow developers to instantiate and utilize the new data type
in their programs. With the given example of BigInteger, this adjustment would help
handle large numbers standard in, e.g., cryptographic algorithms.

After developers have implemented the sensitive parts of the application using FL, they
can transpile the code and test it within the NW. To this end, AVM provides a debug
configuration to output extensive tracing information and allow debugging using tools
like the GNU Debugger (GDB). After completing application testing, developers can
port the AVM system to the OP-TEE project and evaluate the application within the
TZ environment.

The general development workflow shows that the AVM system provides a flexible
framework for developing and deploying applications within the Arm TZ, designed to
integrate with standard development environments. With its accessible CLI, developers
can effectively incorporate AVM into their workflows to enhance the security of sensitive
information and IP in their applications.

6.3 Evaluation of Quality for Code Obfuscation
We evaluate the AVM obfuscation quality with Collberg et al.’s [2] obfuscation metrics
described in Section 2.4.4 through critically assessing the proof of concept and discussing
defenses against automated analysis. Evaluating concrete attacks against the proof-of-
concept AVM system is out of the scope of the thesis.

Since AVM implements at least the table interpretation, among other possible obfuscation
methods, it aligns with Collberg et al.’s taxonomy of obfuscation methods, indicating
that the overall quality of obfuscation is high. However, this comes at a performance
cost compared to native execution. We will briefly discuss or analyze the measures to
provide further insights into AVM obfuscation effectiveness.

Similar to the work of Banescu et al. [64], this thesis will forego an analysis of potency since
this requires experimentation with a human subject and is time-consuming. Theoretically,
the potency of the AVM system is high, as it uses a custom bytecode format that is
difficult to reverse engineer even after thorough analysis compared to other obfuscation
methods. Measuring code complexity, as proposed by Collberg et al., is only sometimes
possible. For the case of AVM this also presents a challenge because AVM bytecode is a
complete transformation of the original code and lacks a direct mapping to the source
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code, unlike other obfuscation techniques. This characteristic aligns with Collberg et al.’s
classification of table interpretation as a high-potency obfuscation method.

To discuss AVM’s resilience against automated analysis, we first need to consider the
available techniques for deobfuscation. Schrittwieser et al. [61] provide a classification of
deobfuscation techniques that we can utilize to discuss AVM’s resilience. The classification
is as follows:

• Pattern matching

– Description — Detecting known obfuscation patterns in the code. This
technique is effective against simple obfuscation methods but may fail against
more complex ones.

– AVM Resilience — AVM is fairly resilient against pattern-matching techniques
since the obfuscated bytecode is custom and does not contain publicly known
patterns or calls to known library functions. Attackers may still deduce
valuable information from the AVM bytecode by matching the pattern of the
TLV format. However, opcodes are randomized by default, making deducing
the program’s functionality from the bytecode difficult. Static data, including
strings and numbers, remain unobfuscated, creating a potential vulnerability
for pattern-matching attacks.

• Automated static analysis

– Description — Using static analysis tools to analyze the code and detect
obfuscation patterns. This technique involves only the code analysis and does
not require execution.

– AVM Resilience — Unlike other VM systems, which pack virtualized code and
VM into the same binary, AVM bytecode and VM are separated as the VM
executes within the TZ. For this reason, static analysis can only target the
AVM bytecode and not the VM, effectively making it more resilient against
automated static analysis. Although the VM bytecode cannot be analyzed,
attackers can still deduce valuable information from the AVM bytecode through
static analysis.

• Automated dynamic analysis

– Description — Using dynamic analysis tools to analyze the code during execu-
tion and detect obfuscation patterns. This technique involves the execution of
the code and is more resource-intensive than static analysis. Dynamic analysis
involves program behavior analysis through traces; thus, debugging access to
the program during execution is required.

– AVM Resilience — AVM is highly resilient against automated dynamic analysis
since the VM executes within the TZ environment, which is isolated from
the NW. This isolation prevents attackers from accessing the VM’s execution
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using debugging tools, e.g., creating traces of the program execution. One
promising attack vector is the use of “Black-Box” testing, where the attacker
observes the input and output of the program and tries to deduce the program’s
functionality from this information since attackers do have access to the NW
and can observe the input and output of the program or interact with the VM
through the CA at will.

• Human-assisted analysis

– Description — Using human intelligence to analyze the code and detect
obfuscation. This technique is effective against complex obfuscation methods
that are difficult to analyze automatically but are the most time-consuming
and costly.

– AVM Resilience — Given human-assisted analysis, practical reverse engineering
using this method is not unthinkable but is highly time-consuming and costly.
Analysts cannot rely on traditional reverse engineering tools to examine AVM
bytecode; they must develop custom tools for such analysis. It is also important
to note the factor of extensibility of the VM since various AVM VMs may be
highly customized and thus require a new custom deobfuscator and analysis
for each VM.

Having established the resilience of AVM against various deobfuscation techniques, we can
conclude that AVM is highly resilient against automated analysis and reverse engineering
tools. AVM’s resilience against automated analysis stems from its use of the table
interpretation obfuscation technique, which, as described by Collberg et al., inherently
provides strong resilience to such attacks. Kochberger et al. [45] also demonstrate the
high resilience of VM-based obfuscation against automated analysis tools. They describe
difficulties in analyzing VM-based obfuscation techniques using automated analysis tools.
They also note that manual (human) assistance is often required to produce valid results.

In addition to its robust basis of VM-based obfuscation, AVM further increases its
resilience against any form of analysis through its isolation. The TZ hinders analysts
from accessing the VM’s memory and execution, effectively increasing the effort required
to reverse engineer the AVM system and thus obfuscated bytecode. Given this crucial
property, AVM achieves a higher level of resilience than NW VMs. Although Collberg et
al. classify table interpretation as a strong resilience obfuscation method, we discussed
how AVM’s resilience is stronger than the known table interpretation method. Attackers
that usually can utilize dynamic deobfuscators such as VMAttack [51] cannot resort to
these methods as the VM is isolated and out of their reach.

Lastly, the measure of execution cost requires discussion. Collberg et al. state that table
interpretation is a costly obfuscation method due to the VM needing to interpret the
obfuscated bytecode. This process requires additional computational cycles compared
to native execution. Our implementation, AVM, demonstrates the high execution cost
described due to its use of table interpretation. In addition, the performance penalty
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incurred is further increased by executing the VM within the TZ environment, which
adds more overhead to executing the obfuscated code due to additional factors such
as context switching. The execution cost of AVM is a trade-off between security and
performance.

To estimate the performance impact, we record the execution time of AVM. For this
purpose, we use a short computationally intensive calculation, the program shown in
Listing 5.2, that calculates the Fibonacci sum of 30 recursively. In addition to the
recursive implementation, we prepare an iterative program version for testing. We also
evaluate a C and Golang implementation for the recursive version of the program to
compare the performance of the AVM system with native execution. We execute each
program within the NW and SW in QEMU at least one hundred times and collect times
to a Comma-Separated Values (CSV) file.

Since this evaluation provides only an estimate rather than a benchmark, it is essential to
consider factors such as noise from other processes — especially relevant in the emulated
NW — and the performance impact of emulation. To enhance the box plot’s readability,
we removed extreme outliers from the following plots, attributing them to noise factors.

Figure 6.1 shows the AVM system’s performance compared to other compiled languages
in the emulated NW, while Figure 6.2 compares of AVM’s performance for the program’s
iterative implementation.

Both figures are collections of boxplots of the times we recorded by executing the Fibonacci
programs using different languages and environments. Each boxplot shows the minimum,
quartile 1, median, quartile 3, and maximum recorded time for each recording set of
times. Boxplots are labeled below to indicate what language, compiler, and environment
we used to record times for the particular boxplot. A _sec postfix label and a green
boxplot color signifies execution within the emulated SW. In contrast, a red label and
no postfix annotation indicate execution in the emulated NW. Concrete numbers of the
boxplots for the recursive and iterative recording sets are shown in Tables 6.1 and 6.2,
respectively.

The numbers show that the AVM system has a significant performance penalty compared
to the execution of native code. When executing the recursive Fibonacci program in the
NW, the AVM system is slower by a factor of around 10 when compared to compiled
languages. Due to the significant variance of AVM’s NW execution time, especially the
clang version, we are comparing the numbers of the compiled programs and the avm_sec
results. We selected a worst-case scenario for AVM using the recursive implementation of
the Fibonacci sum algorithm, which involves many internal VM function calls. An iterative
AVM implementation of the same Fibonacci sum algorithm shows times comparable to
compiler-optimized recursive programs (see Figure 6.2 and Table 6.2). These estimates
show that although some parts of the AVM system may be unoptimized, the correct choice
of program implementation can allow significant performance improvement. However,
given the worst-case performance penalty of the AVM system, developers should account
for this when employing the system in performance-critical applications.
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Figure 6.1: Performance Comparison (Recursion)

Min Q1 Median Q3 Max Average
Program
avm_clang 36.306871 54.732927 64.586511 65.201935 79.135393 60.568337
avm_gcc 8.737171 9.548978 12.561804 47.992776 86.753448 28.724536
avm_sec 14.619626 15.686654 17.141019 17.865134 18.704943 16.884795
clang 0.113068 0.120371 0.122360 0.129377 0.145861 0.124443
gcc 0.105919 0.111244 0.112775 0.114733 0.500924 0.121020
go 0.601102 0.827658 0.869324 0.901758 1.060409 0.859293

Table 6.1: Performance Statistics (Recursion)

6.4 Discussion

AVM’s threat model, defined in Section 4.1, describes highly privileged attackers and
MATE scenarios where attackers fully control a device containing to-be-protected software.
Further, the threat model describes AVM-specific threats and considerations that fit
within this work’s context. Given such an attacker, protection of IP is difficult. However,
given AVM’s strong VM-based obfuscation, attackers have little information about the
obfuscated code.
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6.4. Discussion

Figure 6.2: Performance Comparison (Iteration)

Min Q1 Median Q3 Max Average
Program
avm_clang 0.365692 0.429629 0.451946 0.468064 0.516458 0.447219
avm_gcc 0.379613 0.441363 0.463620 0.478617 0.536588 0.460034
avm_sec 0.110590 0.176614 0.205924 0.220920 0.273622 0.200385

Table 6.2: Performance Statistics (Iteration)

Following Collberg et al.’s classification of obfuscation techniques and given our analysis
and discussion, the AVM system can be classified as follows:

• Potency — High

• Resilience — Very Strong

• Cost — Costly to Very Costly

As a result, the overall quality of the AVM system for code obfuscation sets a new
standard for obfuscation techniques, providing a higher level of obfuscation, albeit at a
higher cost in execution performance.
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Although this work includes an extensive development framework for developing ob-
fuscated programs, the AVM system requires a specific environment to function (see
Section 4.3.4). This environment is only sometimes available to developers, which may
limit the practicality of the AVM system. The AVM system can also obfuscate programs
within the NW, but this approach provides a different level of obfuscation quality due to
missing isolation.

This isolation is AVM’s key feature that sets it apart from other obfuscation techniques
and regular table interpretation. The AVM system’s execution within the TZ environment
provides high resilience against automated and manual analysis. Without this isolating
property, the AVM system can still obfuscate programs, but the overall obfuscation
quality, as defined by Collberg et al., decreases.

Given the scenario of a malicious actor trying to reverse engineer an AVM bytecode, they
have the following:

• The obfuscated AVM bytecode containing valuable IP

• A device that is capable of running AVM

• Full control over the device and AVM bytecode

• Full access to the NW, the AVM CA, and thus the AVM TA

They explicitly do not have access to the following:

• The AVM source code of the specific VM that is on the device

• The AVM source code of the obfuscated program

• Access to the AVM memory or execution environment

• Access to the TZ environment

• Further knowledge about the AVM system

Given these conditions, the malicious actor has several attack vectors to consider. The
most effective is “Black-Box” testing, where the attacker observes the program’s input and
output to infer functionality. This approach is efficient because the attacker has complete
control over the device and the AVM bytecode, allowing them to monitor the program’s
behavior. Additionally, the attacker can interact with the AVM CA and the AVM TA to
further analyze the program’s operations. By crafting smaller programs, attackers can
systematically deduce AVM’s behavior. Although these attack vectors offer considerable
potential, they require extensive manual analysis and direct human intervention, which
demand significant time and effort compared to automated deobfuscation methods.
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Furthermore, compromising one AVM implementation may expose essential information
attackers can use to compromise other AVM implementations. Developers can still
protect against these attacks by employing additional obfuscation techniques that work
with AVM’s obfuscation, such as MBA, for data points and further customization of the
bytecode format.

When considering automated analysis, the attacker has limited options. The attacker can
analyze the AVM bytecode using static analysis tools, which will only provide limited
information about the program’s functionality. The proof-of-concept AVM does not have
mechanisms to obfuscate function names and data points. Data points are static data
included in the bytecode, such as strings and numbers. However, it is also possible to
obfuscate these without much effort, similar to the demonstrated opcode obfuscation. In
addition, attackers cannot analyze AVM using automated dynamic analysis tools because
it executes within the TZ environment, leaving human-assisted analysis as their only
viable option.

Another possible attack vector is the compromise of the VM itself through malicious
inputs. Suppose an attacker can create malicious inputs that exploit vulnerabilities in
the VM. In that case, they may gain control over the VM, allowing them to analyze the
AVM during execution.

Attacks against AVM are possible since no obfuscation technique can be considered
entirely failsafe. We summarize the above-discussed attack vectors as follows:

• Manual “Black-Box” testing through the NW through various approaches

• Manual static analysis of the AVM bytecode

• Compromise of the VM through malicious inputs
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CHAPTER 7
Related Work

This chapter explores related adjacent works to this thesis’ topics. Among these topics are
works on software protection, software-based software protection, and hardware-assisted
isolated execution.

The following works are historically founding works for the topic of software protection
as a whole. Early ideas in software protection revolved around utilizing specialized
hardware, often in conjunction with encryption, to keep software safe from prying eyes
and manipulation.

Preventing software piracy is a topic that has a long history, along with discussions
about copyright on software products [65]. Mooers [14] discusses the issue of software
piracy and various ways to prevent it. Most solutions discussed are legal measures,
such as registering patents and, at that time, enforcing the newly decided US-Copyright
legislation. Among these solutions, the authors discuss one technical solution that involves
a so-called “sealed-in software” package. A software vendor must package the software
on a Read-Only Memory (ROM) with a supporting microprocessor that works with the
customer’s host processor to execute the software on the ROM. The software vendor
may seal the physical board with epoxy to prevent further tampering with the supplied
hardware. Mooers’ scheme is an early example of a hardware-assisted isolated execution
environment.

An early work by DeMillio et al. [17] discusses protecting proprietary software by
obfuscation. They argue that encrypting programs like static data is insufficient for
software protection since a program is dynamic and intentionally leaks data by outputting
information to users. Their work proposes a scheme for protecting a general-purpose
taxing software package by utilizing special information coding and adding false rules
to the software package to confuse potential attackers. The authors also argue that the
most crucial part of the scheme is the provability of theft in court. In their article, the
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authors discuss whether watermarking or preventive obfuscation would be more effective
in protecting software.

Further works around this time primarily focus on utilizing hardware and cryptography
to protect software. An example is the work by Kent [66], which focuses on protect-
ing software in a decentralized computer system using tamper-resistant modules and
cryptography to secure communications to and from tamper-resistant modules over bus
systems. Best [67] also demonstrates the use of specialized hardware to protect software
with crypto-microprocessors. The device described by Best can execute encrypted soft-
ware by decrypting it on the fly with the supplied key stored on the processor. Purdy
et al. [68] describe a similar software protection scheme with their proposed software
protection module two years later. Both works utilize symmetric cryptography, namely
Data Encryption Standard (DES) [69], for software protection, raising the issue of key
management and distribution.

Among the works discussing software protection in a more structured way is the work by
Gosler [70]. Gosler discusses the three main strategies for software protection: marketing,
legal, and technological protection. The article presents technological protection methods
such as signatures on floppy disks, software analysis denial, hardware security devices,
and technological denial concepts. Gosler states that employed protection schemes are
insufficient and advocates for developing cryptographic solutions that are provably secure
or at least predictable.

Herzberg et al. [71] describe a complete system utilizing asymmetric or symmetric
cryptographic protocols. The proposed Public Protection of Software (PPS) system
addresses many of the flaws in previous work. The authors base their system on
modifications to a regular CPU that allow the creation of protected environments capable
of executing encrypted software at a low cost. These isolated environments resemble
modern TEEs, especially as the concrete implementation is supposed to be an extension
of regular CPUs. Furthermore, other works followed the idea of protected execution
environments utilizing cryptographic protocols, such as the ABYSS cryptoprocessor
system [72], [73] and Kuhn’s “Trust No 1” cipher hardware [74].

7.1 Software-Based Software Protection
Following a more extended period of less significant advancements in software protection,
the field saw a resurgence with the work of Collberg et al. [2]. Collberg et al. present
a taxonomy of obfuscating transformations and discuss current software protection
methods. In addition, they present a scheme for evaluating the quality of obfuscation
techniques and discuss the effectiveness of various obfuscation techniques. They also draw
parallels between software protection through obfuscation and cryptography, arguing
that both fields are similar in that they both aim to protect information and may fail
under certain conditions. This work is foundational for code obfuscation and software
protection, setting the stage for further research. Despite the age of their work, it remains
state-of-the-art as evaluation methodology is a problem that still needs to be solved in
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the software protection field [75]. This problem worsens due to the difficult-to-measure
human factor [76] and the incompatibilities between evaluation strategies and obfuscation
techniques [18].

Nachenberg [77] discusses the malicious evolution of obfuscation techniques in computer
viruses. They describe how polymorphic viruses utilize encryption bundled with decryp-
tion routines to obfuscate their code and avoid detection by antivirus software. These
polymorphic viruses can change their appearance with each infection, making it difficult
for antivirus software to detect them. In addition, they discuss advances in antivirus
software through generic decryption to detect polymorphic viruses.

Low [78] and Collberg et al. [48] present practical obfuscation techniques to obfuscate Java
bytecode. Collberg et al. mainly discuss the notion of cheap and opaque predicates that
obfuscate efficiently, while Low presents general methods for obfuscating Java bytecode.

Collberg et al. [3] present extensive work on practical tools for software protection:
watermarking, tamper-proofing, and obfuscation. Along with the practical tools, the
authors discuss the state of mediocre software protection tools and note that the field
was still in its infancy at the time.

Linn et al. [79] present and evaluate methods to protect software against static analysis.
Their implementation successfully thwarts disassembly attempts by implementing ob-
fuscation techniques on a binary level, targeting disassembly techniques such as linear
sweep disassembly and recursive traversal disassembly.

Anckaert et al. [80] introduce the novel idea of software diversity with the aim of software
protection. Diverse software is software that is functionally equivalent but has different
implementations. Through this mechanism of software diversity, the authors aim to
increase the cost of reverse engineering, software piracy, and software exploitation. The
authors state that together with tailored updates, diverse software is a promising but
costly approach to software protection. Anckaert et al. [81] iterate on their previous work
by utilizing VM-based obfuscation to create diverse software. They present a system
that generates diverse software by generating VMs that execute the same program but
with different implementations. The authors note that their system effectively protects
software, but the execution cost is high.

Monden et al. [82] are among the first to present a software protection scheme utilizing
an interpreter-based approach, specifically VM-based obfuscation. They employ an
interpreting Finite State Machine (FSM) to translate obfuscated Java opcodes back to a
valid Java bytecode for interpretation.

In their 2005 literature survey on code obfuscation, Balakrishnan et al. [4] lay out the
state-of-the-art in code obfuscation for benign and malicious purposes. Later surveys and
systematic literature reviews on software protection and code obfuscation include works
by Sebastian et al. [83], Schrittwieser et al. [61], Banescu [84], Kochberger et al. [45], and
De Sutter et al. [75].
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Madou et al. [85] address the issue of software protection by presenting a novel approach
through dynamic mutation of instructions during runtime.

Zhou et al. [49] introduce a popular data protection scheme in MBAs transformations.
Such transformations preserve the program’s functionality while making it difficult to
reverse engineer due to NP-hard MBA expressions that are difficult to analyze even with
advanced tooling.

Another valuable contribution is Collberg et al.’s [15] book on “surreptitious software”,
which provides a comprehensive overview of software protection techniques and state-of-
the-art software protection.

Schrittwieser et al. [61] provide a novel obfuscation technique to increase attackers’
dynamic reverse engineering effort. Based on control flow diversification, their protection
scheme also increases automated static analysis efforts.

“TrulyProtect” is a project developed for ten years until 2022, presented by Averbuch
et al. and Zaidenberg et al. [56], [86]. TrulyProtect is a hypervisor-based virtualization
approach that allows code execution in “Exception Level 2” (EL2, Arm-based systems) or
“Ring-1” (hypervisor mode, x86-based systems) after establishing a system of trust using
the Trusted Platform Module (TPM) [167], [168]. Their system follows a fundamental
concept called the Decrypt-Execute-Discard (D-E-D) cycle, which governs execution.
According to the authors, their proposed approach is practical in various domains. They
also note, however, that VM-based copy protection may decline in popularity as CPUs
with memory encryption capabilities emerge.

Tigress [133] is Collberg’s free but closed-source obfuscation tool, which provides many
obfuscation techniques. Academia and industry widely use the tool for code obfuscation
and protection. As an alternative to Tigress, Junod et al. developed the open-source
obfuscation tool “Obfuscator-LLVM” (OLLVM) [87]. OLLVM is a fork of LLVM [158] that
provides various obfuscation techniques to protect software against reverse engineering.

Banescu et al. [64] present an open-source tool, “VOT4CS”, a VM-based obfuscator
for C# software. The authors argue that software protection for Java and C# is more
necessary than for compiled languages due to the ease of decompiling Java and C#
bytecode. In their work, they describe the inner workings of their obfuscator and evaluate
its effectiveness.

Another contribution of Banescu et al. [88] focuses on deobfuscation techniques involving
symbolic execution of obfuscated code. Through an empiric evaluation of the available
obfuscators, the authors show that some existing obfuscation techniques are vulnerable
to symbolic execution-based deobfuscation. To solve this fundamental issue, they also
propose solutions, such as path explosion, intending to make deobfuscation using symbolic
execution infeasible.

Wang et al. [89] explore the topic of software protection for iOS applications, which are
often fully executed on user-controlled devices and thus affected by MATE attacks.
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Ahmadvand et al. [90] extend LLVM VM-based obfuscation with tamper-proofing through
self-checksumming [91].

“DynOpVm” [40] is a dynamic opcode mapping obfuscation technique that aims to protect
software against reverse engineering. The authors argue that their approach is more
effective than static opcode mapping obfuscation techniques.

Schloegel et al. [92] extensively analyze the effectiveness of combined known code ob-
fuscation techniques against automated attacks and provide a proof-of-concept LLVM
VM-based code obfuscator “Loki”, which implements the proposed techniques. According
to the authors, their approach successfully defends against automated deobfuscation
attacks. However, they also acknowledge that a determined human attacker might still
be able to deobfuscate the code with sufficient effort.

Bolat et al. [93] explore the idea of encrypted software distribution in modern cloud
computing. The authors present “Eric”, a software obfuscation framework that protects
against static and dynamic analysis.

Zhang et al. [94], [95] present „BiAn”, a collection of obfuscation techniques for Ethereum
smart contracts to protect IP and sensitive information by employing known obfuscation
techniques such as control flow, data flow, and layout obfuscation and customizing them
to the Ethereum-native Solidity language.

Xiao et al. [41] developed an open-source state-of-the-art LLVM-based VM obfuscator,
“xVMP”. Compared to other LLVM-based obfuscators, xVMP can protect C and C++
running on the x86/64 and ARM32/64 architectures, allowing for a broader range of
applications. The extensibility, protections against frequency analysis and symbolic
execution through instruction diversity and encryption, and developer-friendly nature
make it a state-of-the-art obfuscator for C and C++ code. Compared to other obfuscators,
xVMP is fully open-source and can thus be readily extended and used for further research.

Wang et al. [96] demonstrate how their LLVM-based “VMENP” prototype protects
cloud-based applications from attackers. Their prototype uses VM-based obfuscation
and encryption of instructions and basic blocks to achieve this.

7.2 Hardware-Assisted Software Protection
Software protection is not constrained to software-based obfuscation methods, as further
methods can be employed to limit an attacker’s ability to reverse engineer software. One
of these fields is hardware-based software protection, as outlined in Section 2.4. Hardware-
based software protection methods initially started the field of software protection research,
as described above in this chapter’s introduction. In this section, we will outline important
works in this field as they are closely related to the approach of the AVM system that
uses the Arm TZ.

Boneh et al. [97] present eXecute Only Memory (XOM), which implements a hardware
mechanism called “decrypt-and-execute”. XOM aims to open new software protection
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possibilities by offering a machine-level primitive to enable the safe execution of software
even in untrusted environments. The authors note that their threat model is limited in
scope and does not consider side-channel attacks such as power analysis. A follow-up
paper studies a hardware implementation of XOM [98].

Intel revealed its LaGrande technology (later renamed to Intel Trusted Execution Technol-
ogy, Intel TXT) [99] at IDF 2002, marking the beginning of commercial hardware-assisted
isolated execution environments. One year later, Arm introduced its TZ technology [100],
[101], aiming to compete in this sector.

Suh et al. [102] present the design of the “AEGIS” processor. As the authors describe,
AEGIS provides tamper-evident and authenticated environments for software execution
as part of a single-chip secure processor.

Lee et al. [103] discuss their “secret-protected” architecture to protect critical secrets,
such as cryptographic keys, using a “Trusted Software Module”, which runs orthogonally
to the known protection rings.

Early works using the Arm TZ show its potential for secure mobile computing. Hussin et
al. [26], [27] present use cases for the TZ in mobile computing, such as mobile ticketing
and DRM integration for the Symbian mobile OS. Pirker et al. [30] demonstrate using
the TZ for secure mobile payments.

Champagne et al. [104] present “Bastion”, a hardware- and hypervisor-based secure
execution environment for trusted software modules. In addition, utilizing hypervisor-
based execution environments, Szefer et al. [105] develop the “HyperWall” architecture.
Their work focuses on the possibility of a compromised hypervisor and aims to protect
VMs in such a scenario.

Hofmann et al. [106] introduce the “InkTag”, a virtualization-based system that provides
strong security guarantees for software execution on a potentially compromised OS.

McKeen et al. introduce Intel’s SGX [107], which aim to provide secure enclaves for
software execution within the OS for Intel-based processors.

Criswell et al. [108] propose “Virtual Ghost”, a hardware abstraction layer between kernel
and hardware that allows the creation of “ghost memory” that a hostile OS cannot access.

Sun et al. [109] present “TrustICE”, a novel TZ-based isolation framework that allows
secure user-space enclave execution within the NW.

In 2016, Kaplan et al. from AMD introduced its Secure Encrypted Virtualization
(SEV) technology [110], [111], which allows for memory encryption and the execution of
encrypted VMs on AMD processors.

Costan et al. [112] developed “Sanctum”, an Intel SGX equivalent for RISC-V processors.

Cho et al. [113] present the “On-demand Software Protection”, an Arm TZ-based
hypervisor hybrid that offers isolated execution environments for security-critical code.
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Hua et al. [114] argue that the Arm TZ offers only one TEE and does not offer virtu-
alization capabilities for multiple guest TEEs that run within the SW, each with its
own secure OS and TAs. They propose a novel approach to overcome this limitation by
taking advantage of the existing hardware capabilities provided by Arm TZ to execute a
monitor that enables virtualization and, thus, stronger isolation between multiple TEEs.
Further isolation provides a smaller TCB and, thus, stronger security guarantees for TAs
and TEE.

Ferraiuolo et al. [115] improved upon the SGX architecture by introducing “Komodo”,
implemented in the Arm TZ. Their work focuses on separating hardware mechanisms,
such as memory encryption and address-space isolation, from their management to allow
for updating and patching security-critical components, such as the secure monitor.

Lazard et al. [116] developed “TEEShift”, a tool suite that aims to protect marked
functions of ELF binaries by shifting their execution to any supported TEE.

“Sanctuary” by Brasser et al. [38] is an architecture that provides SGX-like user space
enclaves for software execution on Arm-based systems without relying on virtualization.

In their work, Lee et al. [117] show a novel open-source called framework “Keystone”,
which allows for building customizable TEEs on RISC-V processors.

Quarta et al. [53] present their user-friendly approach, “Tarnhelm”, regarding code
confidentiality. With this approach, developers can use a specific keyword to mark
the sections of the source code that must be protected. The marked sections are then
encrypted and stored in the binary’s “.invisible” section. During execution, the system
deploys the protected code to the SW. Inside the SW, Tarnhelm decrypts and executes the
code in its thread. In their work, the authors assert that their approach is user-friendly
and allows implementation without necessitating extensive refactoring of the existing
code base.

Bahmani et al. [118] discuss the challenges of current TEEs and propose a novel secu-
rity architecture, “CURE”, to address the limitations of current TEEs. CURE offers
customizable enclaves that adjust to different security and functionality requirements,
allowing for more flexible enclave execution and finer-grained control.

Pereira et al. [52] describe another VM-based approach that allows for creating secure
enclaves running in the NW on Arm-based systems, ad-hoc to how Intel SGX-based
enclaves work. The approach allows security-critical applications to run in a safe execution
environment without compromising the system because a faulty application in the SW
can cause severe harm to the underlying OS of the TEE within the SW.

Sun et al. [119] propose the “LEAP” framework, a NW enclave execution framework
focusing on mobile devices and developer friendliness and practicality, aiming to provide
secure execution environments for intelligent mobile apps.
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CHAPTER 8
Future Work

Further research should improve the overall quality of obfuscation and practicality of
the AVM system. To this end, we can improve the AVM system by adding further
obfuscation techniques.

Two main approaches exist to protect further information in the AVM bytecode. An
initial approach to further raise the bar for attackers would be to obfuscate plain data, e.g.,
function names and data points such as strings, within the AVM bytecode analogous to the
demonstrated opcode obfuscation. AVM bytecodes currently incorporate these function
names and data points in plain text, allowing attackers to infer valuable information
about the obfuscated code. Extending the transpiler to rewrite expressions using MBA
before generating AVM bytecode would be another obfuscation technique to protect data
within AVM bytecode. Since MBA expressions are NP-hard, they are difficult to analyze
or simplify. When implementing these, one must exercise caution, as MBA expressions
can incur significant computational expense for evaluation based on their complexity.

Increasing the quality of obfuscation of the AVM system further can be achieved by
implementing additional code obfuscation techniques. An exemplary technique is control
flow obfuscation [5] through opaque predicates [48]. Opaque predicates are always true or
false, adding additional complexity to the program’s control flow and making it difficult for
attackers to determine the actual control flow. Another VM-specific obfuscation technique
is implementing a dynamic opcode generation system that generates new opcodes at
runtime. This dynamic generation enables the on-the-fly creation of instructions, possibly
entire ISs, during program execution. Attackers need access to the VM for effective
introspective analysis to attack the protection scheme under such circumstances.

While additional obfuscation techniques enhance security, they also increase performance
costs. While additional obfuscation techniques enhance security, they also increase
performance costs. This balance illustrates the classic trade-off between security and
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usability: increasing a system’s security reduces its practicality. Therefore, balancing
security and usability is essential when applying further obfuscation techniques.

Additionally, extending the AVM system to support more complex use cases and provide
advanced features, such as secure communication channels between the VM and the NW,
communication to servers for, e.g., validation of AVM bytecode, direct developer access
to the GlobalPlatform TEE API through AVM, retrieval and storage of data within the
TZ, new data structures for the FL language such as hashmaps, and secure cryptographic
operations, would be beneficial. These features further enhance the practicality of the
AVM system, allow developers to utilize the VM in a broader range of applications,
and allow the development of stronger protection schemes through the utilization of the
AVM system. For example, the concept of software diversification for AVM bytecode
could involve generating multiple binaries from the same source code. These different
but computationally equivalent bytecodes can then be managed and controlled by a
server, e.g., for license management, to provide different features to different users, or
for updating the software. For this scheme to work, the AVM needs the capability to
communicate with a server over the network. A software diversification scheme allows for
finer control over the software and its distribution, making it harder to pirate software.
This approach is similar to the work by Anckaert et al. [81].

Another aspect that might be interesting to explore is the security of AVM in a stricter
threat model that assumes that an attacker has access to the source code of AVM. In
this case, a scenario where developers use the base AVM system source code without
incorporating any changes made for a specific deployment of the VM is of interest. This
stricter threat model should adhere to Kerckhoffs’ principle [120], which states that a
(cryptographic) system should be secure even if everything about the system, except the
key, is public knowledge. Under this threat model, an attacker should not be able to
infer any helpful information that aids the reverse engineering of the obfuscated code
from the base AVM system source code.

The performance aspect of AVM also requires further iteration. AVM’s current implemen-
tation serves as a proof of concept and lacks explicit performance optimization. Future
work should optimize the AVM system to reduce the performance overhead of executing
obfuscated code, especially when executing functional call-intensive code, as shown in
the evaluation. Another avenue for improving performance is the optimization of the FL
transpiler. Optimizing the produced AVM bytecode by reducing unnecessary instructions
and reorganizing the instruction order can further improve the performance of the AVM
system. To this end, future work should include conducting VM benchmarking.

Encryption of the AVM binary can further increase the scheme’s security. This approach
would offer additional protection but shift the security focus to the encryption key,
potentially leading to a decryption key distribution problem and needing to be imple-
mented in hardware [2]. More advanced cryptographic concepts, such as homomorphic
encryption [121] or proxy reencryption [122], could be used to enhance the software
protection of the AVM system using cryptographic methods.
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Another aspect that needs further work is the evaluation of concrete attacks against the
AVM system. Although automatic deobfuscators cannot access the AVM for dynamic
analysis, such as tracing and slicing [51], certain attack paths remain open. Future work
evaluating which attack paths and strategies are particularly effective against the AVM
is an open research question.
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CHAPTER 9
Conclusion

The need for effective code obfuscation techniques is growing as protecting IP and sensitive
information becomes increasingly important in our digital world. These techniques are
already prevalent in our daily lives in the form of DRM systems, anti-cheat mechanisms,
or secure communication protocols. A common theme is that successful attacks against
these software protection schemes incorporate deep introspection and analysis, which is
possible due to the nature of software execution.

VM-based obfuscation is a promising technique, as seen by the widespread commercial
availability of VM-based obfuscators and the scientific community. Deobfuscation at-
tempts involve analyzing the VM. Thus, enhancing software protection requires isolating
and securing the VM itself, building upon the robust protection offered by VM-based
obfuscation.

In this thesis, the AVM system was developed and evaluated as a proof-of-concept
implementation of a VM-based code obfuscation system for the Arm TZ. The AVM
system follows the idea of treating its interpreting VM with a custom IS as an important
asset that needs protection. The system achieves the security goal by utilizing the
hardware-isolating properties of the Arm TZ. By prototyping the AVM system, we
showed that it is possible to develop a VM-based obfuscation system that provides a
potent and mutable obfuscation scheme and offers a high degree of practicality.

An essential part of this work is the theoretical discussion of the underlying concepts of
TEEs and VM-based obfuscation and the advantages of combining these. Based on this
knowledge, we developed and outlined requirements and designs for the AVM system. In
addition to these requirements, we have outlined the specific threat model for this thesis.
The AVM system consists of the AVM VM and a supporting development framework to
ensure the practicality of the AVM system for developers of and for the AVM system.
This focus on practicality and extensibility extends throughout the thesis, showing that

91



9. Conclusion

even within restricted environments such as the TZ, it is possible to develop and deploy
advanced and accessible obfuscation techniques.

We evaluated the AVM system in a theoretical, qualitative, and practical quantitative
manner, depending on the needed measures. Our theoretical evaluation showed that the
AVM system is at least as potent as its NW peers while providing stronger resilience
against VM-introspective analysis. In our evaluation, we have outlined the practicality
through, for example, seamless integration of the AVM system within development
environments. Furthermore, our theoretical evaluation also showed that the AVM system,
in its current form, still leaks some information through its AVM bytecodes, allowing
attacks through static analysis of AVM binaries. However, further development of the
AVM system could enable the achievement of a near-black box scenario. This near-black
box means that attackers aiming to deobfuscate an AVM obfuscated binary should ideally
be left to observe only the inputs and outputs of the executing AVM program. AVM’s
implementation allows for such a black-box scenario, making it more resilient against
usual VM analysis attacks than its peers.

As with other VM-based obfuscators, our practical evaluation showed the known trade-off
between security and performance that is present. Our practical evaluation found a
significant penalty in execution performance for specific worst-case scenarios compared
to native execution. However, the performance overhead is not as severe as to render the
AVM system unusable for practical applications. Our evaluation further shows that this
penalty can be minimized through careful choice of algorithms when implementing AVM
applications.

Our proof-of-concept system shows that an Arm TZ-enabled VM-based obfuscation
scheme effectively protects the software and the VM employed against reverse engineering.
This thesis addresses the literature gap by demonstrating that such a system is feasible
and that developers can develop, deploy, and utilize it to secure their software on Arm-
based systems such as smartphones. Developing a system such as the AVM system poses
significant challenges and requires considerable effort due to the complexity and number
of components involved. Complex systems such as the AVM system may contain bugs and
vulnerabilities that attackers can exploit, effectively compromising the software protection
scheme and, in this case, the Arm TZ. Therefore, carefully considering the necessity of
such a strong protection scheme for the software is crucial, as the development effort and
potential worst-case scenarios may outweigh the benefits of the protection scheme.

While many obfuscation schemes exist, regardless of the chosen one, it is essential to
remember that no one is unbreakable. Software obfuscation aims to raise the bar for
attackers, make reverse engineering harder, and possibly dissuade low-skill attackers. The
AVM system demonstrated in this thesis is a potent obfuscation scheme that significantly
raises this bar for attackers. However, regardless of measures taken in addition to those
outlined in this thesis, it is not unbreakable, and attackers with sufficient resources and
time can still reverse engineer the obfuscated code.
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Appendix

Übersicht verwendeter Hilfsmittel
Verschiedene generative und nicht-generative KI-Tools wurden unterstützend für die
Erstellung dieser Arbeit verwendet. Diese Werkzeuge wurden hauptsächlich unterstützend
genutzt um bei der Ausarbeitung der Arbeit zu helfen. In dieser Arbeit existsieren keine
Textpassagen welche ohne zumindest substantielle Änderungen aus KI-Tools stammen.

Die unterstützend verwendeten KI-Tools sind folgende:

• Perplexity AI mit Modellen GPT-4, Claude 3 und LLaMa 3 — Dieser KI-Dienst
wurde zu Recherchezwecken von wissenschaftlichen Arbeiten und zur Schreibunter-
stützung genutzt.

• OpenAI ChatGPT mit Modellen 3, 4 und 4o — Diese KI-Modelle wurden zu
Recherchezwecken und Schreibunterstützung genutzt.

• Microsoft GitHub Copilot — Dieses KI-Tool wurde zur Schreibunterstützung
genutzt. Die angebotene „Chat” Funktionalität wurde nicht genutzt.

• DeepL Translate und Google Translate — Diese KI-Tools wurden zur Übersetzung
von Wörtern als Schreibunterstützung genutzt.

• Grammarly — Dieses KI-unterstützte Tool kann nicht als generative KI klassifiziert
werden, wurde aber zur Rechtschreib- und Grammatikprüfung genutzt.

„Schreibunterstützung durch KI-Tools” soll so interpretiert werden, dass mit Hilfe der
genannten KI-Werzeuge Ideen, Ansätze und generelle Unterstützung in textueller Form
generiert wurde. Sämtliche generierten Text wurden entweder nicht übernommen, zu
kleinen Teilen übernommen oder substantiell verändert. Die Verantwortung für den
Inhalt und Text der Arbeit liegt weiterhin beim Autor.

„Die Nutzung von KI-Tools zu Recherchezwecke” soll so interpretiert werden, dass mit
genannten KI-Werkzeugen Suchen in wissenschaftlichen und nicht wissenschaftlichen
Arbeiten durch Internet-Suche durchgeführt werden und diese Informationen durch
generativen KI-Modellen beispielsweise durch Zusammenfassen verarbeitet wurden. Die
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resultierenden generierten Texte wurden nicht verbatim in diese Arbeit übernommen.
Informationen welche von generativen KI-Modellen stammen wurden validiert, mit
anderen Quellen verifiziert, in eigenen Worten wiedergegeben und mit einer Quellenangabe
versehen.
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Overview of Generative AI Tools Used
The creation of this thesis involved the support of various generative and non-generative
AI tools. No text passages in this thesis originate from AI tools without at least substantial
changes.

The AI tools used for support are as follows:

• Perplexity AI with models GPT-4, Claude 3, and LLaMa 3 — This AI service was
used for scientific paper research and writing support purposes.

• OpenAI ChatGPT with models 3, 4, and 4o — These AI models were used for
research purposes and writing support.

• Microsoft GitHub Copilot — This AI tool was used for writing support. The “chat”
functionality was not used.

• DeepL Translate and Google Translate — These AI tools provided writing support
by translating words.

• Grammarly — This AI-supported tool cannot be classified as generative AI but
was used for writing support.

“Writing support” should mean that ideas, approaches, and general support were generated
in textual form with the help of the AI tools mentioned. All generated text was either
not adopted, adopted in small parts, or substantially changed. Responsibility for the
content and text of the work remains with the author.

The use of AI tools for “research purposes” should be interpreted as meaning that searches
in scientific and non-scientific works are carried out with the above AI tools through
Internet searches, and this information was processed by generative AI models, e.g., by
summarizing. The resulting generated texts were not included verbatim in this work.
Information originating from generative AI models was validated, verified with other
sources, reproduced in the author’s own words, and cited.
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Implementation of the ArmorVM System
The following section contains code listings discussed in Chapter 5.

Listing 1 is the full FL grammar that is used by ANTLR4 to create a parser that accepts
programs written in the given grammar. The listing is referenced in Section 5.1.1.

1 grammar ForgeLang;
2

3 program: (importStatement | function | statement)* EOF;
4

5 importStatement:
6 'import' (IDENTIFIER | STRING) (
7 '::' IDENTIFIER (',' IDENTIFIER)*
8 )? ';';
9

10 function: 'def' IDENTIFIER '(' parameters? ')' block;
11

12 parameters: IDENTIFIER (',' IDENTIFIER)*;
13

14 returnStatement: 'return' expression?;
15

16 functionCall: IDENTIFIER '(' arguments? ')';
17

18 arguments: expression (',' expression)*;
19

20 block: '{' statement* '}';
21

22 statement:
23 assignment ';'
24 | arrayAssignment ';'
25 | returnStatement ';'
26 | ifStatement
27 | forLoop
28 | whileLoop
29 | breakStatement
30 | functionCall ';'
31 | arrayDeclaration ';'
32 | arrayDeclarationAndAssignment ';';
33

34 assignment: IDENTIFIER '=' expression;
35

36 arrayDeclaration: IDENTIFIER '[' INTEGER ']';
37
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38 arrayAssignment: IDENTIFIER '[' expression ']' '=' expression;
39

40 arrayDeclarationAndAssignment:
41 arrayDeclaration '=' '{' elements '}';
42

43 elements: expression (',' expression)*;
44

45 ifStatement: 'if' '(' expression ')' block ('else' block)?;
46

47 forLoop:
48 'for' '(' assignment? ';' expression? ';' assignment?

')' block;�→
49

50 whileLoop: 'while' '(' expression ')' block;
51

52 breakStatement: 'break' ';';
53

54 expression:
55 atom
56 | '(' expression ')'
57 | unaryOp expression
58 | expression powOp expression
59 | expression mulOp expression
60 | expression addOp expression
61 | expression relOp expression
62 | expression logOp expression
63 | arrayAccess
64 | functionCall
65

66 unaryOp: (NOT | MINUS);
67

68 powOp: POW;
69

70 mulOp: (MUL | DIV | MOD);
71

72 addOp: (PLUS | MINUS);
73

74 relOp: (EQ | NEQ | LT | LTE | GT | GTE);
75

76 logOp: (AND | OR);
77

78 arrayAccess: IDENTIFIER '[' expression ']';
79
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80 atom: INTEGER | FLOAT | STRING | BOOLEAN | NONE | IDENTIFIER;
81

82 INTEGER: [0-9]+;
83 FLOAT: [0-9]+ '.' [0-9]*;
84 STRING: '"' ( EscapeSequence | ~["\\])* '"';
85 fragment EscapeSequence: '\\' [btnfr"'\\];
86 BOOLEAN: 'true' | 'false';
87 NONE: 'none';
88 IDENTIFIER: [a-zA-Z][a-zA-Z0-9_]*;
89 PLUS: '+';
90 MINUS: '-';
91 MUL: '*';
92 DIV: '/';
93 MOD: '%';
94 POW: '^';
95 EQ: '==';
96 NEQ: '!=';
97 LT: '<';
98 LTE: '<=';
99 GT: '>';

100 GTE: '>=';
101 AND: '&&';
102 OR: '||';
103 NOT: '!';
104 LINE_COMMENT: '//' ~[\r\n]* -> skip;
105 BLOCK_COMMENT: '/*' .*? '*/' -> skip;
106 WS: [ \t\n\r]+ -> skip;

Listing 1: ForgeLang Grammar
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Listing 2 shows how the FL development framework ties in with the AVM system by
exporting the defined types in FL directly as C header files. The listing is referenced in
Section 5.1.4.

1 def generate_header_files(libvm_header_path: Path):
2 opcodes = OpCodeType.all()
3 values = ValueType.all()
4 with open(libvm_header_path / "opcode.h", "w") as f:
5 f.write("// This file is generated by the

transpiler\n")�→
6 f.write("// DO NOT CHANGE OR THINGS MIGHT BREAK\n\n")
7 f.write("#ifndef OPCODE_H\n")
8 f.write("#define OPCODE_H\n")
9 f.write("\n#define NUM_OPCODES " + str(len(opcodes)) +

"\n")�→
10 f.write("\n#define OPCODE_LIST(OPCODE) \\\n")
11 for opcode in opcodes:
12 f.write(f" OPCODE({opcode})\t\\\n")
13 f.write("\n#define GENERATE_ENUM(ENUM) ENUM,\n")
14 f.write("#define GENERATE_STRING(STRING) #STRING,\n")
15 f.write("\n#endif // OPCODE_H\n")
16

17 with open(libvm_header_path / "value_type.h", "w") as f:
18 f.write("// This file is generated by the

transpiler\n")�→
19 f.write("// DO NOT CHANGE OR THINGS MIGHT BREAK\n\n")
20 f.write("#ifndef VALUE_TYPE_H\n")
21 f.write("#define VALUE_TYPE_H\n")
22 f.write("\n#define NUM_VALUE_TYPES " +

str(len(values)) + "\n")�→
23 f.write("\n#define VALUE_TYPE_LIST(VALUE_TYPE) \\\n")
24 for value in values:
25 f.write(f" VALUE_TYPE({value})\t\\\n")
26 f.write("\n#define GENERATE_ENUM(ENUM) ENUM,\n")
27 f.write("\n#endif // VALUE_TYPE_H\n")

Listing 2: ForgeLang Header Export
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Listing 3 shows the implementation of two exemplary AVM handlers, vm_PUSH and
vm_EQ. It is referenced in Sections 5.2.3 and 5.2.6.

1 Value vm_PUSH(VM *vm, Value arg1, Value arg2) {
2 if (vm->sp >= VM_MAX_STACK_SIZE) {
3 VM_EXIT_FAIL(vm, "Stack overflow");
4 }
5 vm->stack[vm->sp++] = value_clone(arg1);
6 if (arg2.type != NONE) {
7 vm->stack[vm->sp++] = value_clone(arg2);
8 }
9 return NONE_VAL;

10 }
11

12 Value vm_EQ(VM *vm, Value arg1, Value arg2) {
13 if (arg1.type != NONE || arg2.type != NONE) {
14 VM_EXIT_FAIL(vm, "EQ takes no arguments");
15 }
16 Value stack_value2 = vm_POP(vm, NONE_VAL, NONE_VAL);
17 Value stack_value1 = vm_POP(vm, NONE_VAL, NONE_VAL);
18 Value result = {.type = BOOLEAN};
19 result.v.boolean = value_eq(stack_value1, stack_value2);
20 value_free(stack_value1);
21 value_free(stack_value2);
22 return result;
23 }

Listing 3: ArmorVM Opcode Functions
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Listing 4 shows AVM’s main execution loop, the vm_run function. The listing is
referenced in Section 5.2.5.

1 Value *vm_run(VM *vm) {
2 Value return_value = NONE_VAL;
3 vm->running = true;
4 int entry_addr = vm_get_label_addr(vm, VM_ENTRY_LAB);
5 if (entry_addr != -1) {
6 vm->ip = entry_addr;
7 }
8 for (; vm->ip < vm->num_instructions && vm->running;

vm->ip++) {�→
9 Instruction instruction = vm->instructions[vm->ip];

10 Value result = vm_funcs[instruction.opcode](vm,
instruction.arg1, instruction.arg2);�→

11 if (instruction.opcode == POP) {
12 value_free(result);
13 } else if (instruction.opcode == VMRETURN) {
14 return_value = result;
15 } else if (result.type != NONE) {
16 vm_PUSH(vm, result, NONE_VAL);
17 value_free(result);
18 }
19 }
20 Value *return_value_ptr = vm_malloc(sizeof(Value));
21 return_value_ptr->type = return_value.type;
22 return_value_ptr->v = return_value.v;
23 return return_value_ptr;
24 }

Listing 4: vm_run Function
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Listing 5 shows how errors within AVM are handled safely by exiting. The shown macros
are compatible with the NW and SW, making the code portable. The listing is referenced
in Section 5.2.6.

1 #ifdef OPTEE
2 #define VM_EXIT_FAIL(vm, ...) \
3 do { \
4 EMSG(__VA_ARGS__); \
5 vm_free(vm); \
6 TEE_Panic(0); \
7 } while (0)
8 #else
9 #define VM_EXIT_FAIL(vm, ...) \

10 do { \
11 fprintf(stderr, "[!] "); \
12 fprintf(stderr, __VA_ARGS__); \
13 fprintf(stderr, "\n"); \
14 vm_free(vm); \
15 exit(EXIT_FAILURE); \
16 } while (0)
17 #endif // OPTEE

Listing 5: ArmorVM Error Handling
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Listing 6 shows an excerpt of a problematic function to implement within the Arm TZ,
the vm_pow function. The listing includes the compromise that is implemented in AVM
through a custom simple_pow function. It is referenced in Section 5.2.7.

1 #ifdef OPTEE
2 double simple_pow(double base, int exponent) {
3 double result = 1.0;
4 for (int i = 0; i < exponent; i++) {
5 result *= base;
6 }
7 return result;
8 }
9 #endif

10

11 Value vm_POW(VM *vm, Value arg1, Value arg2) {
12 // ... setup code ...
13 // no floating point support in OP-TEE
14 #ifndef OPTEE
15 case REAL:
16 exponent = stack_value2.v.real;
17 break;
18 #endif
19 case NUM:
20 exponent = (double)stack_value2.v.num;
21 break;
22 default:
23 VM_EXIT_FAIL(vm, "Unsupported type for POW");
24 }
25 #ifdef OPTEE
26 double pow_result = simple_pow(base, exponent);
27 #else
28 errno = 0;
29 double pow_result = pow(base, exponent);
30 if (errno == EDOM) {
31 VM_EXIT_FAIL(vm, "Domain error in POW");
32 } else if (errno == ERANGE) {
33 VM_EXIT_FAIL(vm, "Range error in POW");
34 } else if (isinf(pow_result)) {
35 VM_EXIT_FAIL(vm, "Range error in POW");
36 }
37 #endif
38 // ... result handling ...
39 }
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Listing 6: vm_POW Function
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Listing 7 shows the class OpCodeScrambler, which is responsible for opcode obfuscation
within the FL development framework. The listing is referenced in Section 5.2.8.

1 class OpCodeScrambler:
2 __instance = None
3

4 @classmethod
5 def get_instance(cls) -> "OpCodeScrambler":
6 if cls.__instance is None:
7 cls.__instance = OpCodeScrambler()
8 return cls.__instance
9

10 def __init__(self, enabled=True, seed_retries=1000):
11 self.seed = -1
12 self.a = 16807
13 self.c = 0
14 self.m = (1 << 31) - 1
15 self._seed_retries = seed_retries
16 self._opcode_mapping = (
17 self._generate_map() if enabled else

self._fetch_opcodes()�→
18 )
19

20 def _fetch_opcodes(self) -> Dict[int, int]:
21 return [o.code for o in OpCodeType.all()]
22

23 def _generate_map(self) -> Dict[int, int]:
24 opcodes = self._fetch_opcodes()
25 self._retries = 0
26 mapping = {}
27 while self._retries < self._seed_retries:
28 self.seed = random.randint(0, (1 << 30) - 1)
29 self.current_value = self.seed
30 mapping = {}
31 for opcode in opcodes:
32 mapping[opcode] = self._next()
33 if len(set(mapping.values())) == len(mapping):
34 break
35 self._retries += 1
36 if self._retries == self._seed_retries:
37 self.seed = -1
38 mapping = self._fetch_opcodes()
39 return mapping
40
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41 def _next(self):
42 self.current_value = (self.a * self.current_value +

self.c) % self.m�→
43 return self.current_value
44

45 def enable(self):
46 self._opcode_mapping = self._generate_map()
47

48 def disable(self):
49 self._opcode_mapping = self._fetch_opcodes()
50

51 def scramble(self, op_code: int) -> int:
52 return self._opcode_mapping[op_code]

Listing 7: ForgeLang Opcode Obfuscation
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Listing 8 shows the deobfuscation process for opcode obfuscation within the AVM. The
listing is referenced in Section 5.2.8.

1 const long a = 16807;
2 const long c = 0;
3 const long m = 0x7FFFFFFF;
4

5 OpCodeMap *opcode_mapping_new(int32_t seed) {
6 if (seed == -1) {
7 return NULL;
8 }
9 OpCodeMap *mapping = (OpCodeMap

*)vm_malloc(sizeof(OpCodeMap) * NUM_OPCODES);�→
10 if (mapping == NULL) {
11 return NULL;
12 }
13 int32_t current_value = seed;
14

15 for (int i = 0; i < NUM_OPCODES; i++) {
16 current_value = (a * current_value + c) % m;
17 mapping[i].scrambled_opcode = current_value;
18 mapping[i].original_opcode = i;
19 }
20 return mapping;
21 }
22

23 int32_t opcode_map_unscramble(int32_t scrambled_code,
24 const OpCodeMap *mapping) {
25 for (int i = 0; i < NUM_OPCODES; ++i) {
26 if (mapping[i].scrambled_opcode == scrambled_code) {
27 return mapping[i].original_opcode;
28 }
29 }
30

31 return -1;
32 }

Listing 8: ArmorVM Opcode Deobfuscation
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ArmorVM Scenario Code Samples
The following section contains listings of FL code used to demonstrate AVM’s practicality
for complex real-world utilization, as discussed in Chapter 6.

Listing 9 is an implementation of an RSA-based encryption and decryption scheme imple-
mented in FL that the AVM system can execute. As this is an exemplary implementation
keys are shown as output to the CLI. Mathematical operations imported at the beginning
of the listing are written as an extension of the FL library and shown in Listing 11. The
listing is referenced in Section 6.1 and Section 6.2.

1 import math :: gcd, mod_inverse;
2 import random :: rand_prime;
3 import std :: outn;
4

5 def generate_keys(keys, max_prime) {
6 p = rand_prime(max_prime);
7 q = rand_prime(max_prime);
8 n = p * q;
9 phi = (p - 1) * (q - 1);

10 e = 3;
11 while (gcd(e, phi) != 1) {
12 e = e + 2;
13 }
14 d = mod_inverse(e, phi);
15 keys[0] = e;
16 keys[1] = n;
17 keys[2] = d;
18 }
19 def encrypt(message, e, n) {
20 cipher = 1;
21 i = 0;
22 while (i < e) {
23 cipher = (cipher * message) % n;
24 i = i + 1;
25 }
26 return cipher;
27 }
28 def decrypt(cipher, d, n) {
29 message = 1;
30 i = 0;
31 while (i < d) {
32 message = (message * cipher) % n;
33 i = i + 1;
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34 }
35 return message;
36 }
37

38 keys[3];
39 max_prime = 256;
40 generate_keys(keys, max_prime);
41

42 e = keys[0];
43 n = keys[1];
44 d = keys[2];
45 outn("e: " + e);
46 outn("n: " + n);
47 outn("d: " + d);
48 message = 42;
49 outn("Original Message: ");
50 outn(message);
51 cipher = encrypt(message, e, n);
52 outn("Encrypted Message: ");
53 outn(cipher);
54 decrypted = decrypt(cipher, d, n);
55 outn("Decrypted Message: ");
56 outn(decrypted);

Listing 9: Simple RSA Encryption and Decryption Scenario
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Listing 10 is an implementation of a financial application that calculates the lending
risk of a lending application based on rules. These rules may be more complex in the
real world than shown in our exemplary implementation. The listing is referenced in
Section 6.1.

1 import std :: outn;
2

3 def assess_risk(financial_data) {
4 risk_score = 0;
5

6 if (financial_data[0] >= 800) {
7 risk_score = risk_score - 50;
8 }
9 if (financial_data[0] >= 700 && financial_data[0] < 800) {

10 risk_score = risk_score - 20;
11 }
12 if (financial_data[0] >= 600 && financial_data[0] < 700) {
13 risk_score = risk_score + 10;
14 }
15 if (financial_data[0] < 600) {
16 risk_score = risk_score + 50;
17 }
18

19 if (financial_data[1] <= 20) {
20 risk_score = risk_score - 30;
21 }
22 if (financial_data[1] > 20 && financial_data[1] <= 30) {
23 risk_score = risk_score - 10;
24 }
25 if (financial_data[1] > 30 && financial_data[1] <= 40) {
26 risk_score = risk_score + 20;
27 }
28 if (financial_data[1] > 40) {
29 risk_score = risk_score + 50;
30 }
31

32 if (financial_data[2] >= 5) {
33 risk_score = risk_score - 20;
34 }
35 if (financial_data[2] >= 3 && financial_data[2] < 5) {
36 risk_score = risk_score - 10;
37 }
38 if (financial_data[2] >= 1 && financial_data[2] < 3) {
39 risk_score = risk_score + 10;
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40 }
41 if (financial_data[2] < 1) {
42 risk_score = risk_score + 30;
43 }
44

45 if (financial_data[3] >= 50000) {
46 risk_score = risk_score - 40;
47 }
48 if (financial_data[3] >= 25000 && financial_data[3] <

50000) {�→
49 risk_score = risk_score - 20;
50 }
51 if (financial_data[3] >= 10000 && financial_data[3] <

25000) {�→
52 risk_score = risk_score + 10;
53 }
54 if (financial_data[3] < 10000) {
55 risk_score = risk_score + 30;
56 }
57

58 if (financial_data[0] == 404 && financial_data[1] == 0 &&
financial_data[2] == 0 && financial_data[3] == 0) {�→

59 outn("Error 404: Financial stability not found!");
60 return 9001;
61 }
62

63 return risk_score;
64 }
65

66 applicant1_data[4] = {750, 25, 4, 30000};
67 applicant2_data[4] = {650, 35, 2, 15000};
68

69 applicant1_risk = assess_risk(applicant1_data);
70 applicant2_risk = assess_risk(applicant2_data);
71

72 outn("Applicant 1 Risk Score: ");
73 outn(applicant1_risk);
74

75 outn("Applicant 2 Risk Score: ");
76 outn(applicant2_risk);

Listing 10: Financial Risk Assessment Scenario
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Listing 11 shows math extension for the FL standard library written in FL. Listing 9
utilizes the math extensions. The listing is referenced in Section 6.2.

1 def gcd(a, b) {
2 while (b != 0) {
3 t = b;
4 b = a % b;
5 a = t;
6 }
7 return a;
8 }
9

10 def mod_inverse(a, m) {
11 // Extended Euclidean Algorithm
12 m0 = m;
13 y = 0;
14 x = 1;
15

16 if (m == 1) {
17 return 0;
18 }
19

20 while (a > 1) {
21 q = a / m;
22 t = m;
23 m = a % m;
24 a = t;
25 t = y;
26 y = x - q * y;
27 x = t;
28 }
29

30 if (x < 0) {
31 x = x + m0;
32 }
33

34 return x;
35 }

Listing 11: ForgeLang Math Standard Library Extensions
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ForgeLang Evaluation
Listing 12 shows the practicality of the AVM system through the FL development
framework CLI utility. The listing is referenced in Section 6.2.

• cd forge_lang && poetry install — Installs the required Python depen-
dencies for the AVM development framework

• forge antlr install — Installs the required Java dependencies for the FL
development framework

• forge antlr — Generates the FL parser using the ANTLR parser generator

• mkdir build && cd build && cmake .. — Sets up the build environment
for AVM

• cd build && ninja — Builds all AVM targets

• forge transpile example_program.fg example_program.avm —
Transpiles the example program to obfuscated bytecode

• forge vm example_program.avm — Runs the example program using the
AVM

• forge run example_program.fg — Transpiles and runs the example program
using the AVM

• cd to_optee && python main.py config.toml build — Port the AVM
system to OP-TEE and build the system

Listing 12: ForgeLang Usage in Software Development
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