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Abstract

Monitoring the correct behavior of an arbitrary system can be costly if it the monitoring system has to be

taylored to the system under observation. To ease the configuration of such a device health monitoring

system, Confidence-based Context-Aware Monitoring (CCAM) was developed. Although it can be

considered a lightweight algorithm on modern embedded computing systems, it was not designed for

extremely hardware-constrained use cases. To further extend the field of possible applications, the algo-

rithm has been simplified and implemented in hardware on a novel NEMS technology. Simultaneously,

this work is a case study for logic design on NEMS. Therefore, it has been investigated how to leverage

the potential of that technology and a trade-off analysis for two implementations has been performed.

The insights allow for improvement of further circuit designs and hint towards potential improvements

of synthesis targeting NEMS.
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Kurzfassung

Die Überwachung des korrekten Verhaltens eines beliebigen Systems kann kostspielig sein, wenn das

Überwachungssystem an das zu überwachende System angepasst werden muss. Um die Konfiguration

eines solchen Systems zur Überwachung des Gerätezustands zu vereinfachen, wurde Confidence-based

Context-Aware Monitoring (CCAM) entwickelt. Obwohl es als ressourcen-schonender Algorithmus auf

modernen Embedded Systems betrachtet werden kann, wurde er nicht für Anwendungsfälle mit extrem

beschränkten Hardware-Anforderungen konzipiert. Um das Feld der möglichen Anwendungen weiter zu

erweitern, wurde der Algorithmus vereinfacht und in Hardware auf einer neuartigen NEMS-Technologie

implementiert. Gleichzeitig ist diese Arbeit eine Fallstudie für den Logikentwurf auf NEMS. Daher

wurde untersucht, wie das Potenzial dieser Technologie genutzt werden kann und es wurde eine Trade-

off-Analyse für zwei Implementierungen durchgeführt. Die Erkenntnisse ermöglichen die Verbesserung

weiterer Schaltungsentwürfe und geben Hinweise auf mögliche Verbesserungen der Synthese für NEMS.
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Chapter 1

Introduction

As manual adjustments and maintenance of industrial systems are very expensive and time-consuming,

it is desirable to reduce the need for manual (re-)configurations and device health checks.

Especially in the field of the Industrial Internet of Things (IIoT), the amount of small devices grows

rapidly and so does the maintenance effort. Therefore, generalized methods that are able to automatically

monitor the system state of a variety of systems are required. By detecting deviations from the normal

system behavior, respectively, and untypical transitions between sensor measurements, the maintenance

costs can be greatly reduced.

Because devices in the IIoT domain are usually resource-constrained, onmany devices only lightweight

monitoring algorithms can be used. As a possible solution, Confidence-based Context-Aware Monitoring

(CCAM) has been proposed [10]. The monitoring algorithm treats the System under Observation (SuO)

mostly as a black box as depicted in Figure 1.1. This allows for the application of CCAM on various

SuOs, without prior knowledge of internal processes.

It is an algorithm that compares samples from system input and output variables with preceding

System under Observation
(SuO)

CCAM

Signal
States

System
State

Su
O
In
pu
ts

Su
O
O
ut
pu
ts

OK
Drifting

Malfunction

Figure 1.1: CCAM monitoring a black box [3]
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samples and calculates a confidence value of how likely a new sample fits the preceding samples, based

on fuzzy logic. Similar samples of the same system variable form a dataset. These clustered datasets are

called signal states. If the distance between a new sample and the current dataset is too big, a change of

the signal state is detected. Moreover, the relations between system inputs and outputs are treated as

bijective functions. If the signal state of a system input changes, but the signal state of a corresponding

output does not, the monitored system will be considered malfunctioning. More detailed descriptions

can be found in section 2.1 and in chapter 3.

Although CCAM is considered to be a light-weight context-aware monitoring algorithm, for instance,

compared to approacheswith neural network classifiers [11], it has to be further optimized to fit extremely

resource-constrained use cases, like integration in logic onto an Field Programmable Gate Array (FPGA)

or an Application Specific Integrated Circuit (ASIC).

A very challenging and interesting use casewould be the implementation of CCAM in a harsh environ-

ment, where even traditional computer architectures and Complementary Metal-Oxide-Semiconductor

(CMOS) technology may not be suitable. Such harsh environments could be either in the domains of

aerospace or industrial with high temperature or radiation doses.

The Nano Electro-Mechanical (NEM) relays [12] developed by the i-EDGE project are a novel

technology that is designed for harsh environments. The logic gates built with it can still operate at high

temperatures (above 225◦C and up to 300◦C) and high radiation levels. Furthermore, there is no leakage

current without switching activity, so battery-powered devices can continue operation much longer.

Thus, it may have the potential to help to overcome limits that CMOS cannot. The NEM technology of

the i-edge project is explained in the next section (1.1).

1.1 NEM Devices

This section explains the underlying target technology for the resource-constrained implementation

use case. Although this work always refers to the NEM switches designed by the i-EDGE project when

mentioning NEM switches, there exist different approaches and motivations for NEM switches. [13]

[14] [15].

In the course of ZeroAMP, the predecessor of the i-EDGE project, three different switch designs

have been created [16] [12]. They differ in their functionality as well as in the number of terminals.

Their design and characteristics are explained in detail in the thesis of Elliott Worsey [2].

www.i-edge-project.eu
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1.1.1 NEM 3-T Device

The Three-Terminal (3-T) Device is a small relay that connects the source terminal with the drain terminal

when the voltage applied between the source and gate terminal exceeds a certain threshold. Figure 1.2

depicts the device symbol and the truth table describing the switch behavior. As the polarity of the gate

voltage is irrelevant, the 3-T device can be handled in the same way as the n-MOS and p-MOS transistors.

Therefore, most CMOS logic gate designs can also be implemented in NEMS without relevant changes

in the circuits.

Source (S)

Gate (G)

Drain (D)

(a) Symbol

G S D
0 0 Z
0 1 1
1 0 0
1 1 Z

(b) Truth Table

Figure 1.2: NEM 3-Terminal Device (3-T)

1.1.2 NEM 4-T Device

The Four-Terminal (4-T) Device is designed like the 3-T device, however, the beam of the relay is divided

into two separate parts that are mechanically connected but electrically insulated. This leads to the

advantage that the voltage controlling the switch state is applied between the gate terminal and the new

body terminal and independent from the potential of the source terminal. Figure 1.3 shows the symbol

of a 4-T device and the corresponding truth table.

Source (S)
Body (B)

Gate (G)
Drain (D)

(a) Symbol

G B S D
0 0 0 Z
0 0 1 Z
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 Z
1 1 1 Z
(b) Truth Table

Figure 1.3: NEM 4-Terminal Device (4-T)

1.1.3 NEM 7-T Device

The Seven-Terminal (7-T) Device is the most complicated of the three NEM switches designed to date.

The device symbol and the truth tables are shown in Figure 1.4. Its circular beam starts in a neutral
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position and can be moved to one of two drain terminals. Once it is connected to a drain terminal, it

will its position until the conditions to move to the other drain terminal are met. As the device keeps its

position and the there are two truth tables, one for setting the switch position and another one for the

actual drain outputs. In addition to the two gate terminals, there are also two auxiliary gates but they

are connected to the gate terminals to increase the attraction of the beam. Therefore, the 7-T device is

actually treated as if it had only five terminals.

Source (S)
Gate 1 (G1)

Gate 2 (G2)

Drain 1 (D1)

Drain 2 (D2)

(a) Symbol

G1 S G2 posn+1

0 0 0 posn
0 0 1 right
0 1 0 posn
0 1 1 left
1 0 0 left
1 0 1 posn
1 1 0 right
1 1 1 posn

(b) Device State Table

posn S D1 D2
neutral 0 Z Z
neutral 1 Z Z
left 0 0 Z
left 1 1 Z
right 0 Z 0
right 1 Z 1
(c) Output Truth Table

Figure 1.4: NEM 7-Terminal Device (7-T)

1.2 Research Questions

To bring context-aware system monitoring and cheaper maintenance also into domains with harsh

environments on the one hand, but also to help demonstrate the applicability of the NEMS relay

technology on the other hand, this thesis will evaluate how much the arithmetic and computational

effort of the CCAM algorithm can be reduced and optimize it towards the benefits of the target technology.

The research questions can be reformulated as following questions:

• What are the tradeoffs of the CCAM algorithm regarding area, latency, and accuracy?

• How can the algorithm be optimized towards the NEMS relay technology by utilizing the 4-

terminal and 7-terminal relays?

1.3 Methodology

The methodology for resolving the answers to the research questions consists of different steps.

1. Describe the rather unmodified algorithm in Verilog and simulate it

(a) Identify area-expensive (arithmetic) operations

(b) Derive Finite State Machine(s) from algorithm
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(c) Identify design parameters

(d) Determine memory requirements

2. Simplify the algorithm and describe it in Verilog

(a) Simplify the algorithm and its arithmetic

(b) Compare the simplified algorithm with the original CCAM algorithm

(c) Describe the stripped-down algorithm in Verilog and simulate its behavior

3. Explore the tradeoffs between different implementations when changing design parameters

(a) Explore implementations of area-expensive operations

(b) Consider serialization vs. parallelization

(c) Consider resource sharing

(d) Implement promising designs and compare them

4. Implement the simplified algorithm on NEM hardware

(a) Complete the entire RTL-to-GDSII flow to prepare the designs for fabrication

Metrics for comparison between original CCAM and simplified CCAM are:

• Percentage of correct outputs over time series (Accuracy)

• NEM Switch Device Count

• Cycle Count (Time)

Power has not been included in the set of metrics as there is hardly any useful information available

at the time of writing this thesis. In the later course of the project, more information on power dissipation

will be measured and provided to the design tools. The device count of the NEM switches is correlated

with the necessary chip area, however, the probability of the occurrence of faults that originate from

manufacturing does not only depend on the chip area but also on the device count. This is because

stuck-on and stuck-off faults of the NEM switches are rather caused by mechanical breakdown or

unwanted mechanical connections, than by doping and impurity issues.
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Chapter 2

Literature Review

As there is related work and literature from different topics that have been considered to be relevant for

this thesis, this chapter focused on the review of literature about Context-Aware Monitoring and Fuzzy

Logic for a general overview. Literature about possible implementations of sub-components is covered

in the respective sections about the implementation of these sub-components.

2.1 Device Health Monitoring

2.1.1 Context-Aware Health monitoring (CAH)

The early version of CCAM has been named Context-Aware Health monitoring (CAH) and is introduced

in [17] with an AC-motor case study. In [18] it was shown, that CAH is also applicable to a completely

different application domain by monitoring a hydraulic system.

Striking differences to its successor CCAM are, firstly, that it uses threshold-based instead of

confidence-based comparisons, and secondly, that signal state detection is only performed on stable

signals. To assess if a sample belongs to a signal state, the sample value is compared to an average of

previous sample values, whereas CCAM compares a sample with all entries of a sliding window history

(stated in [19, p. 88]).

These algorithmic changes in CCAM resulted in "equally good or better results" than with CAH [10].

Moreover, CAH requires signal preprocessing (lowpass filtering) to remove noise but CCAM does not

anymore.

2.1.2 CCAM for Smart Grids

Daniel Hauer et al. adapted CCAM for monitoring of Smart Grids [3]. In this context load day profiles

have been investigated, so only one signal is monitored and thus only the signal state detection of

7
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CCAM has been used but not the system state detection functionality. The high complexity of load

profiles of Smart Grids hamper a proper detection of signal states and therefore, some adaptations have

been necessary.

Instead of checking the similarity to other signal states only if a sample does not fit the current state,

Continuous State Reevaluation compares a new sample to all already created signal states and selects the

most fitting one.This change notably enhances the detection of signal states at the cost of additional

computational effort (linear growth with the amount of created states).

Another deviation from CCAM is State Mooring. As load profiles can have quick as well as slow

state transitions, slow transitions would be recognized as signal drift. The drift detection of CCAM is

replaced by a similar concept, however, instead of raising a drift alarm, state mooring influences the

state matching calculation. The mooring history which reminds of the Discrete Average Blocks (DABs)

in the original CCAM adds the initial sample values of a signal state until it is full. If the mooring history

of a signal state is full, samples are not only compared to the values inside the sample history but also to

the mooring history’s mean value. This adaption is reasonable if the monitoring system does not need

to have a distinction between signal drift and state changes. However, in the majority of use cases in

the domain of embedded systems a semantic difference between drift and signal transition will exist.

2.1.3 Mathematical Analysis of CCAM and Enhancements

In the thesis of Daniel Schnöll the Signal State Detector of CCAM is analyzed from amostly mathematical

point of view. [20]. With the gained findings, enhancements to improve the accuracy of the signal state

change detection have been proposed.

As different naming conventions have been introduced for distances and confidences, denominations

of both [10] and [20] are used in this section.

This thesis stays with the denominations defined in [10] throughout all other sections but the term

co-confidence has been adopted from [20]. Figure 2.1 shows an example confidence function in green and

its so-called co-confidence function in red. The idea behind it is that the co-confidence is the confidence

in the opposite case. As an example, if c1(x) is the confidence that a property of a signal is "X", its

co-confidence c2(x) is the confidence that this property is not "X". In CCAM these co-confidences are

defined as the negated confidences s.t. c2(x) = c1(x) = 1− c1(x). Fuzzy algebra is explained in the

section 2.2.

Daniel Schnöll identified mainly five problems ( [20, p. 26]) in the original CCAM algorithm.

1. Normalization of the distance

The normalized distance di,j = Δnorm,i,j =
���vi−Hi,j

vi

��� uses a division for normalization.If sample
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x

c(x)

confidence co-confidence1

0

Figure 2.1: Confidence Function with its Co-Confidence Function

values can happen to be 0, this possibly leads to a division by 0 and even a close vicinity to 0

would result in an enormous distance. CCAM would be unable to keep any signal state.

2. Definition range of the sample value confidence

Descriptions and diagrams in [10] show fuzzy functions for the confidence mapping of distances

that are defined for negative distances, too. This is misleading as the calculation of distances

includes an absolute value function. Therefore, fuzzy functions only need to be defined over R0+.

3. Potential over-complication of fuzzy operations

Like the previous problem, this problem is not necessarily a problem of the algorithm itself but of

its description.

4. Reduction to threshold-based algorithm

In CCAM any fuzzy confidence function a and its co-confidence function b are defined such

that a + b = 1 always holds. It has been proven that, under this condition, the decision if a

sample matches a signal state could be reduced to a threshold-based decision without changing

the decision outcome.Nevertheless, confidences contain more information than boolean decision

outcomes as they show how confident CCAM has been about its decisions.

5. Outlier creating states

In case the first sample that leads to the creation of a new signal state is an outlier, it may happen

that subsequent samples are still close enough to this outlier such that the falsely created state

will not be left or deleted. However, such false state changes should be avoided.

Among the proposed enhancements, there is a method for automatic configuration parameter

detection. Selecting optimal configuration values for the kink points of all fuzzy functions in a use case

still involves human involvement and automatic configuration would avoid misconfiguration and make

the adoption of the algorithm easier.

Furthermore, integrated preprocessing was discussed. With the absence of the division in the

distance calculation, the algorithm becomes more sensitive to drift. For history lengths |H| > 10 the

addition of a mean of differences or linear approximation have been suggested. However, both options

significantly increase the computational effort, including multiplications or even divisions.
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2.1.4 RoSA Framework

The original CCAM algorithm has been implemented on top of the RoSA framework, hence RoSA is

briefly introduced. The Research on Self-Awareness (RoSA) framework was built to make modeling and

evaluation of self-awareness concepts easier [4]. It is organized into independent components called

agents with a hierarchical structure (Figure 2.2). Correspondingly, in order to implement CCAM, for

each monitored signal a signal state detector agent is instantiated that reports to a common system state

detector agent on a higher hierarchy level. This results in a structure like in Figure 2.3.

Agent

Agent Agent Agent

Agent Agent Agent Agent Agent Agent

Agent Agent Agent Agent Agent

hi
er
ac
hi
ca
ll
ev
el
s

Figure 2.2: General hierarchical model
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Figure 2.3: Architecture of CCAM for AC motor
case-study

Figure 2.4: Agent-based structure in RoSA [4]

The C++ implementation of RoSA is open-source and includes also the implementation of CCAM.

The source code is available at the following Git repository:

https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git

As there were two minor bugs in the code on the master branch at the time of writing this thesis, a

separate branch named ccam_fixes_2024 was set up in the repository, including the bug fixes and some

changes for easier information extraction. When referring to the original CCAM in comparison, the

code on this branch is spoken of.

2.2 Fuzzy Logic

Since CCAM involves fuzzy logic for calculating the confidences of its system assessment, literature on

hardware implementations with fuzzy logic seems relevant. In general, fuzzy logic extends Boolean

logic by extending the set of Boolean values B = 0, 1 to the interval (0,1]. Instead of just having Boolean

states of true or false, this allows the expression of uncertainties.

Watanabe et al. presented a VLSI Fuzzy Logic Controller [5] while also giving a good explanation

how fuzzy logic is applied to a control engineering problem.

Typically, fuzzy logic controller consist out of three stages:

https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git
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• Fuzzification

• Rule Evaluation

• Defuzzification

2.2.1 Fuzzification

Fuzzification applies fuzzy membership functions to "crisp" input data, like discrete sensor measurements,

and returns confidences on the membership to multiple classes [5]. These confidences are real numbers

and lie within the interval (0, 1]. A simple example for a temperature value as input would be a

classification into "low", "medium" and "high" temperature, whereby the membership functions are

allowed to overlap (See Figure 2.5). Membership functions are can have different shapes; mostly

triangular, trapezoidal and gaussian shapes.

m
em
be
rs
hi
p

temperature0

1 low medium high

Figure 2.5: Example membership functions

2.2.2 Rule Evaluation

Rule Evaluation or Inference applies the membership confidences to a set of rules in the form

IF A’ is A1 [AND B’ is B1] THEN C is C1’. The operations AND and OR in

these rules are fuzzy logic operands. The standard algebraic operations on fuzzy logic are related to

their Boolean counterparts as Table 2.1 shows. Distributive and De Morgan’s laws apply to fuzzy logic,

too [21].

Table 2.1: Fuzzy Logic Algebra [1, p.124]

Operation Definition
Negation T (P ) = 1− T (P )
Disjunction T (P ∨Q) = max(T (P ), T (Q))
Conjunction T (P ∧Q) = min(T (P ), T (Q))

Implication T (P → Q) = max(T (P ), T (Q))

As multiple rules are applied, there will be multiple results for the THEN-parts of the rules(actions).

The fuzzy result of C’ can be acquired by computing C ′ = max(C1, C2, C3, ...).
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2.2.3 Defuzzification

Defuzzification transforms a fuzzy variable back to a real-numbered property.

x

C ′

0

1

C2’ C3’

Figure 2.6: Example of a fuzzy result [5]

CCAM does not completely adhere to the concept of a fuzzy controller, as the confidences in CCAM

are either used as confidence outputs without defuzzification or they are used to evaluate binary decisions.

The defuzzification used for these binary decisions is done by a comparison of a confidence with its

co-confidence.

if (confidence > co-confidence) then ... else ... ;

However, the outputs of a fuzzy system are usually not binary. Instead, defuzzification is a task that

is more complicated than a comparison between two confidences. There are various defuzzification

methods with center of gravity (COG), shown in Equation 2.1, being probably the best known [22].

COG(A) =
Σxmax
xmin

(x ∗A(x))

Σxmax
xminA(x)

(2.1)

The result is the center of gravity of the area under the membership functions (Figure 2.6).

2.3 Logic Design for NEMS

Although there are several publications on different NEM relay technologies, logic design for NEMS

surpassing the scope of individual logic gates is still a field where little work has been done. In the

course of the i-EDGE project, a NEM standard cell library [2], a switch box unit for FPGAs [23] and an

Analog-to-Digital Converter (ADC) [24] have been presented, however, it does not include logic design

and optimization on Register-Transfer Level (RTL) level. Besides that, research on some arithmetic

blocks has been carried out but has not been published yet.

Liu et al. built some logic gates from Six-Terminal (6-T) switches [25] comparable to i-EDGE’s 4-T

switches that were used later in a case study designing an Floating-Point Unit (FPU) [26]. The underlying

NEM synthesis tool that focuses on minimization of the circuit delay was presented in [27].
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Optimization of logic synthesis for another 6-T NEMS technology has also been proposed in [28]

and [29] leading to subsequent publications including a book on data structures and algorithms for

synthesis of beyond CMOS technologies [30].
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Chapter 3

Algorithmic Analysis

To simplify and implement the CCAM algorithm, an in-depth analysis of the source code is necessary.

The analysis contains an extraction of precise decision diagrams and dataflow diagrams.

Decision diagrams can then be translated into finite state machines (FSMs), whereas dataflows

allow for an overview of necessary datapaths. These datapaths have to be broken down into required

arithmetic and logic operations and especially, computationally intensive operations in the datapath can

be identified.

As for simplification, the goal is to find possible simplifications that do not alter the output behavior

of the algorithm. So for this thesis, deviations in the behavior are only acceptable if absolutely necessary.

There are different versions of the CCAM code, but the official one is available in C++ on the

repository of the RoSA Framework. For more details on RoSA and a link to the repository, see section

2.1.4. For the sake of easier modification and better exploration of the algorithm, CCAM has also been

implemented in Python. In the repository SoC_Verilog_CCAM there are various variants of CCAM,

starting with a direct translation of the algorithm in the folder src/ccam/python/ccam_orginal. Each

simplification has been tested in Python and the quantization can also be emulated.

This chapter does not focus on design decisions and implementation of certain operations, but solely

on the algorithm itself. Nevertheless, presented algorithmic simplifications will lead to design decisions

that will occur in chapter 5.

In section 2.1.3 it has been stated that the relation a + b = 1 between confidences and their co-

confidences has the consequence that the confidence-based decisions could be reduced to threshold-based

decisions. This opens up two major simplification possibilities of different granularity.

Moreover, the limited memory makes it necessary to adapt the algorithm as dynamic memory

allocation will not be possible in hardware. This also opens up the question on what to do if "allocation"

of additional memory is not possible because it would exceed the capacity.

15
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3.1 Testing

Adaptions of the CCAM algorithm have to be compared to a golden model to ensure correct behavior

on the one hand and to compare relevant metrics of different versions of CCAM on the other. For this

purpose, a set of Python scripts was written that read configuration files, start the execution of the

algorithms, store the results in CSV files, and visualize the differences in diagrams. Since the original

RoSA implementation is compiled into a C++ program but all other software CCAM versions are written

in Python, the comparison script executes the CCAM versions via system calls.

start comparison.py

comparison config

CCAM reference result.csv

ccam config

CCAM test result.csv

ccam configdiagrams

Figure 3.1: Setup for Comparison (SW to SW)

Figure 3.1 depicts the rough flow of the algorithm comparison. The script requires the path to a

comparison configuration file in JSON as a command line argument. The command to start a comparison

is therefore python3 comparison.py -f <path-to-config>. Inside the config file, the path to the executables

and their intended working directory and the path to the CCAM config file are set. Listing 3.1 shows an

example of such a configuration.

Listing 3.1: Comparison Configuration Example
1 {

2 " l e v e l " : " system " ,

3 " r e f e r e n c e " : {

4 " name " : " RoSA " ,

5 " cwd_path " : " . . / . . / t e s t s / 2 0180529 _NormalTwoTimesSameState " ,

6 " command " : " " ,

7 " cmd_path " : " . / c cam_bugf ixed " ,

8 " c o n f i g " : " c o n f i g _ r o s a . j s on " ,

9 " type " : " r o s a "

10 } ,

11 " imp l emen ta t i on " : {

12 " name " : " Python " ,

13 " cwd_path " : " . . / . . / t e s t s / 2 0180529 _NormalTwoTimesSameState " ,

14 " command " : " python 3 " ,

15 " cmd_path " : " . . / . . / s r c / ccam / python / c c am_o r i g i n a l / run_py_ccam . py " ,

16 " c o n f i g " : " c on f i g_py . j s on " ,

17 " type " : " python "
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18 }

19 }

The name fields are to distinguish the time series in the diagrams and the level field can be signal,

system, or both. It defines whether to run the Signal State Detector or the entire CCAM including the

System State Detector. The RoSA implementation always runs the entire CCAM, but the Python versions

can be configured to run only the Signal State Detector. The both level will output the results of the

System State Detector but also the detailed results of each Signal State Detector.

The configuration of a Python CCAM version is an extended version of the config files used by

RoSA. The additional fields are mainly needed for quantizing data, such as simulating a reduced bit

width for samples or confidence values.

The comparison of the results of a behavioral simulation of a Verilog implementation with the

golden model in Python is done by another script and will be mentioned later.

The data set for the algorithm testing consists of timeseries from a water pipe system that has

already been used in [18] and [10]. Figure 3.2 shows the CCAM architecture for these case studies.

System
State

Detector

Signal
State

Detector

Signal
State

Detector

Signal
State

Detector

Signal
State

Detector

Signal
State

Detector

Signal
State

Detector

Signal
State

Detector

Voltage Temp1 Temp2 SharkyS SharkyB Dyna Riels

Figure 3.2: CCAM for water pipe case-study

The voltage of the water pump is an control input to the SuO and lies between 3 to 10 V during oper-

ation. The voltage samples in the data set have been normalized (0.3 - 1.0). All other monitored signals

are sensor measurements and are treated as SuO outputs. The measurement unit of the temperatures is
◦C and the unit of the remaining timeseries is l/s. The sampling frequency was 30.5 Hz in average. [18]

The time series snippets have an average length of 20000 subsequent samples but CCAM was configured

to apply a downsampling rate of 50, resulting in a sequence of 400 samples per snippet. A hardware

implementation would therefore have to process new samples every 1639 milliseconds in this use case.

The accuracy metric used for CCAM has already been mentioned in section 1.3, but will now be

explained in more detail. The correct operation of CCAM relies on the detection of Signal States in the

Signal State Detector. The Signal State IDs are the essential input to the System State Detector and the

confidence if the SuO is functional depends on the System State. Despite the appliance of fuzzy logic,

creating, leaving and entering a state are binary decisions in the end. A divergence of the state detection

may lead to different decisions afterwards, making the detection accuracy time-dependent. More than
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the functional confidence or any other confidence in the system, the State IDs are the relevant results

that have to be compared between different implementations. As the creation of a Signal State affects

the Signal State ID of future states, a short visit in a state created by outliers in the samples could already

lead to a divergence that detects the Signal States correctly but with different IDs assigned to them.

Therefore a state mapping algorithm has been written to get a significant accuracy metric. Listing 3.2

shows the algorithm in Python.

Listing 3.2: State Mapping Algorithm

states1 = stateDf1["StateID"].unique()

states2 = stateDf2["StateID"].unique()

stateMapping1 = {}

stateMapping2 = {}

for s1 in states1:

maxOverlap = 0

for s2 in states2:

o = 0

for i in range(0, length):

if (stateDf2.loc[i, "StateID"] == s2):

if (stateDf1.loc[i, "StateID"] == s1):

o += 1

if o > maxOverlap:

maxOverlap = o

stateMapping1[s1] = s2

if (maxOverlap == 0):

stateMapping1[s1] = 0

#---

for s2 in states2:

maxOverlap = 0

for s1 in states1:

o = 0

for i in range(0, length):

if (stateDf2.loc[i, "StateID"] == s2):

if (stateDf1.loc[i, "StateID"] == s1):

o += 1

if o > maxOverlap:

maxOverlap = o

stateMapping2[s2] = s1

if (maxOverlap == 0):

stateMapping2[s2] = 0

#---
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if (len(states1) > len(states2)):

for s1 in states1:

s2 = stateMapping1[s1]

if (s2 in stateMapping2):

if (stateMapping2[s2] != s1):

stateMapping1[s1] = 0

else:

for s2 in states2:

s1 = stateMapping2[s2]

if (s1 in stateMapping1):

if (stateMapping1[s1] != s2):

stateMapping2[s2] = 0

For every state detected by an CCAM implementation, the time-wise most overlapping state of the

other implementation is selected as the corresponding state. If one state is the corresponding state of

more than one state, the non-bidirectional mapping will be deleted, resulting to 1:1 mapping between

the State IDs. When there is no corresponding state, the state will be mapped to ID 0. This happens

when one detector detects more or less states than the other.

3.2 Data Flow

All calculations on sample values or confidences are part of the data flow in CCAM. Most of these

calculations have a Boolean result in the end, and subsequent Boolean operations on them are somehow

in a gray zone between data and control flow. The nomenclature used for confidence values in this

section adheres to that used in [10].

Inside the Signal State Detector, the following three data flows can be found:

1. Matching Confidence Data Flow

This data flow includes all necessary calculations to decide if a sample matches a signal state.

2. Validity Confidence Data Flow

This data flow derives if a signal state is valid.

3. Stability Confidence Data Flow

This data flow is part of the drift detection.

The confidences of all Signal State Detectors are then passed to the System State Detector. The data

flow of the System State Detector can be split into these parts:

1. Aggregation of Signal State Confidences

The matching confidence, the validity confidence, and the stability confidence as well as their

co-confidences are aggregated over all observed signals.
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2. Functioning Confidence Data Flow

The value of a counter that counts the subsequent time steps where the mapping of signal states

indicates an inconsistency in the System State is translated into confidence if the system is working

correctly or malfunctioning.

3. Overall Confidence Data Flow

All confidences about the decisions of CCAM are combined to an overall confidence.

Diagrams of all these data flows could already be interpreted as potential physical structures of the

respective data paths in a hardware implementation and are thus part of chapter 5. All data flows will

be presented and explained in detail and possible simplifications will be discussed below.

3.2.1 Matching Confidence Data Flow

A signal sample is added to a history of a signal state if it matches the older samples in the history.

When a signal state does not exist or the sample does not fit into any available signal state, a new signal

state is created.

The decision if a sample matches, depends on the matching confidence cb,i and the mismatching

confidence cn,i. So the inputs of this data flow are the new sample, the samples present in the sample

history, the fill level of the sample history and its maximum fill level, and the configuration of the

used fuzzy functions. The outputs are the matching confidence and its co-confidence, the mismatching

confidence.

At first, the definitions from [10] are re-examined, together with additional explanation. Let the

sample history H have a length |H| s.t. it can store up to |H| samples of the same signal from previous
time steps that matched the current signal state. The current fill level of the sample history is sa, the

new sample value of signal i is vi,new and the samples in the history are vhi,j
with j = 1..sa.

The distance metric that describes how well two samples match each other is defined as 3.1.

di,j =

����vi,new − vhi,j

vi,new

���� (3.1)

As already suggested and implemented by [20], the division in the distance metric could be removed.

(This has been mentioned in section 2.1.3.) The argument was that values in the close vicinity of 0 result

in a high distance that makes it impossible for the algorithm to keep a signal state. Besides that, this

suggestion is highly welcomed as a division unit is also a complex hardware module that would cost a

lot of chip area. Equation 3.2 shows the adapted distance metric.

di,j =
��vi,new − vhi,j

�� (3.2)
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This change from a relative distance in percent to an absolute distance affects the algorithm’s results

as Figure 3.3 shows on an example where the results from the RoSA framework are compared to a

Python implementation with the divisionless distance metric. Also, the definition of the fuzzy function’s

kink points in percentages is more use-case agnostic than with absolute distances. Therefore, the

configuration of the fuzzy functions have to be adapted, too.
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Figure 3.3: Signal States in original CCAM and with the adapted Distance Metric

As it does not make sense to keep CCAM with the relative distance as the golden model for all

subsequent comparisons, the version using the absolute distance has been selected as the golden model

from here on.

The fuzzy functions used in this data flow are depicted in Figure 3.4. While csv(d) (Equation 3.3 [10])

maps the distance between two sample values to a confidence if these values are "similar", cdv(d)

(Equation 3.4 [10]) is the fuzzy function for the confidence if the values are "different".

These confidence functions have also been originally defined for negative distances, but since the

distance is defined as an absolute value, the function only needs to be considered for positive values.

This is why the lines in Figure 3.4a are dashed for the negative x-axis. The definitions of csv(d) and

cdv(d) have been simplified to model the fuzzy function only for positive distances.
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similar different
1

0 dc dddbda

(a) csv and cdv

set size

css/cds

different
similar

1

0 sa

(b) css and cds

Figure 3.4: Confidence functions for matching data flow
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csv,i,j =

����������
1, if di,j ≤ dc

dd−di,j
dd−dc

, if dc < di,j < dd

0, otherwise

(3.3)

cdv,i,j =

����������
0, if di,j ≤ dc

di,j−dc
dd−dc

, if dc < di,j < dd

1, otherwise

(3.4)

The fuzzy function css(k) (Equation 3.5 [10]) maps the number k of considered samples from the

history to a confidence that the samples in the history seem to be in the "same set" as the new sample.

More precisely, the algorithm tries to find the biggest set of distances that are all "similar" enough

and therefore, the distances of the new sample vi,new and all history values vhi,j
have to be sorted in

ascending order. The initial set size k starts with 1 but increases until the history fill level sa. The bigger

the set, the higher the confidence that the new sample matches the samples in the history and thus

matches the signal state. The function cds(k) (Equation 3.6 [10]) is the respective co-confidence function

and yields the confidence that vi,new does not belong to the same set of distances ("different set").

css,i,k =

��
1, if k ≥ sa

k
sa
, if 0 ≤ k < sa

(3.5)

cds,i,k =

��
0, if k ≥ sa

sa−k
sa

, if 0 ≤ k < sa

(3.6)

After mapping the ascendingly sorted list of distances to the lists of confidences, csv,i,j , j = 1..sa

will be sorted in descending order and cdv,i,j , j = 1..sa will be still sorted in ascending order because

the fuzzy function csv(d) is falling monotonically while cdv(d) is monotonically rising. The conditions

3.7 and 3.9 are thus satisfied.

Equations 3.8 and 3.10 [10] show the definitions of cb,i,k and cn,i,k which are the confidences that
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the new sample matches the subset or not.

csv,i,j ≥ csv,i,k ∀j ≤ k (3.7)

cb,i,k = (∧k
j=1csv,i,j) ∧ css,i,k (3.8)

cdv,i,j ≤ cdv,i,k ∀j ≤ k (3.9)

cn,i,k = (∨k
j=1cdv,i,j) ∨ cds,i,k (3.10)

Under the circumstances in which CCAM has been presented in various use cases, the algorithm can

be simplified to be threshold-based rather than confidence-based. It can be argued that this reduction

might not be possible to that extent when changing the definition of fuzzy functions used in the algorithm,

however, in the way CCAM uses fuzzy logic, the following conditions that allow for a threshold-based

implementation are all true:

• The co-confidence c(xi) = 1− c(xi)

• Operations on co-confidences are complementary

• Decisions in CCAM depend on comparisons like cz > cz

As the confidence functions yield co-confidences that are the exact negated corresponding confidence,

like cdv = csv , the resource-intensive fuzzification of co-confidences is redundant and can be replaced

by an inversion of the confidence. Inversion of confidences can easily be implemented by bit-wise

inversion (one’s complement) with an unsigned numeric representation of confidences.

Equations 8+11, as well as 9+13, in the paper introducing CCAM [10], lead to 3.11 and 3.12. When

comparing both equations, it becomes apparent that fuzzyAND and fuzzyOR operations are inter-

changed for the co-confidence cn,i. This was referred to when calling the operations on co-confidences

complementary.

cb,i = ∨n
k=1((∧k

j=1csv,i,j) ∧ css,i,k) (3.11)

cn,i = ∧n
k=1((∨k

j=1cdv,i,j) ∨ cds,i,k) (3.12)

Adding the fact that DeMorgan’s laws are applicable, inserting cdv = csv and cds = css yields

cn,i = cb,i within a few steps. It will be shown that this does not only apply to the calculation of the

confidence if a sample matches the state but also to all other occurrences of fuzzy algebra within the

algorithm. Calculations with fuzzy algebra on co-confidences can thus be omitted completely in CCAM.

This has further consequences, as there is no typical defuzzification in CCAM but simple comparisons
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if a confidence value is greater than its co-confidence value. The decision if a sample of a variable i is

matching, depends on the outcome of cb,i > cn,i and so it depends on a fixed confidence threshold:

cb,i > cn,i ⇒ cb,i > 1− cb,i ⇒ cb,i > 0.5 (3.13)

All confidence functions in CCAM are defined as monotonically rising or falling. Therefore, a

distinct mapping of the threshold for a confidence to a threshold for the original fuzzified metric is

possible. Even csv and cdv , although depicted as defined over negative distance values in Figure 3.4,

are monotonic because the distance metric is an absolute value according to Equation 3.2. Therefore, a

comparison against only one threshold is sufficient as a replacement for each fuzzification (mapping to

confidence by applying a confidence function). The threshold for the distance metric, for example, is

dt = c−1
sv (0.5). The fuzzy algebra in CCAM, which involves partial sorting (minimum and maximum

operations), ultimately reduces to much simpler Boolean algebra.

Although it might not be obvious in [10], the computation of cb,i requires ascending sorting of the

distances di,j . With the reduction to Boolean logic, there is no need to calculate an exact confidence;

it is just a decision flag. The confidence functions css(k, sa) and cds(k, sa) (see Figure 3.4) also have

their confidence threshold at 0.5. This translates to a threshold for k as sa
2 because css(k, sa) =

k
sa
. So

more than half of the entries in the sample history have to be considered in order to get a css,i,k > 0.5.

Actually, the first kt = ⌊ sa2 ⌋ values of csv,i,j (k = 1..kt) will not be considered for the result. As the

distances are sorted ascendingly, these are the lowest distances and, respectively, the highest csv,i,j .

The condition that cb,i > 0.5 can also be described the following way:

∀k ∈ 1..sa : ∃cb,i,k = (∧k
j=1csv,i,j) ∧ css,i,k > 0.5

∀k ∈ ⌊sa
2
⌋+ 1..sa : ∃cb,i,k = (∧k

j=1csv,i,j) > 0.5

∀k ∈ 2..sa : csv,i,k > 0.5 ⇒ csv,i,k−1 > 0.5

∀k ∈ ⌊sa
2
⌋+ 1..sa : ∃cb,i,k > 0.5 ⇒ ∀j ∈ 1..k : csv,i,j > 0.5

Considering the facts that csv,i,k are sorted descendingly and that kt = ⌊ sa2 ⌋, more than half of all
csv,i,k that are computed with the entries from the sample history have to match to fulfill the condition

on cb,i. Therefore, it is possible to eliminate the sorting and count the number of matching csv,i,k instead.

If more than kt csv,i,k match, the new sample will match the signal state.

Figure 3.5 shows an example run of the Signal State Detector on the voltage samples of the

"15states4times" timeseries snippet on both the divisionless but not simplified version and the threshold-

based implementation (called Threshold-based Context-Aware Monitoring (TCAM)). It can be seen
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that if the confidence moves beyond 0.5, the binary confidence of TCAM also changes. The matching

confidences and the mismatching confidence are the exact opposite of each other (complementing

confidences) when they are computed but there is an exception where both confidences are zero. This

happens when a new Signal State has been created. As there are no previous samples in that new state,

the matching confidence cannot be calculated and is assigned to 0 by the control logic of the algorithm.

The plots of the matching confidences usually do not show confidences below 0.5 because the plot

always shows the last result of a detector execution with a new sample. When the Signal State is not

matching anymore, a different but matching state will be entered (confidence above 0.5) or a new one

will be created (confidence is exactly 0).
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Figure 3.5: Confidence-based and threshold-based Matching Confidence

3.2.2 Validity Confidence Data Flow

The lowest of all csv,i,j , csl,i,new, is inserted into a Confidence History which stores the lowest sample

value confidences from the n last detector executions. The Confidence History stores the same amount

of elements as the Sample History. Instead of calculating the distances and performing the fuzzification

again, this confidence can be acquired during the matching confidence calculation before. Analogously,

the highest mismatching confidence cdh,i,new is inserted into a second Confidence History. After these

new confidence values have been inserted into the histories, the minimum csl,i,j and the maximum

cdh,i,j are identified by iterating over these histories. A counter sr that counts how many samples have

been inserted into the Sample History since the last Signal State reentrance is fuzzified and combined

with (∧n
j=1csl,i,j), respective (∨n

j=1cdh,i,j). All relevant equations are written below (3.14 - 3.17 [10]).
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csl,i,new = (∧n
j=1csv,i,j) (3.14)

cdh,i,new = (∨n
j=1cdv,i,j) (3.15)

cval,i = (∧n
j=1csl,i,j) ∧ css,i,sr (3.16)

cinv,i = (∨n
j=1cdh,i,j) ∨ cds,i,sr (3.17)

The confidence that a state is valid is called cval,i and if it is greater than the confidence that a state

is invalid cinv,i, the Signal State is considered valid. More precisely, the assertion of the valid flag of an

execution t can be described as validi,t = validi,t−1 ∨ (cval,i > cinv,i).

As in the section about the matching confidence data flow, the relations cdv(d) = 1 − csv(d) and

cds(k) = 1 − css(k) are assumed. Therefore, it can be quickly proven that csl,i,new = cdh,i,new =

(∧n
j=1cdv,i,j) = (∧n

j=1csv,i,j) by applying DeMorgan’s rules. Eventually, this is also true for cval,i =

cinv,i = (∧n
j=1cdh,i,j) ∧ cds,i,sr = (∧n

j=1csl,i,j) ∧ css,i,sr .

This shows that the co-confidence calculations are also redundant in the Validity Confidence

Data Flow. Furthermore, it can be adapted to a threshold-based datapath, too. The Boolean variable

csl,i,new,binary = ∧n
j=1(di,j > di,t) is 0 if one of all distances is less than or equal to the threshold di,t.

The Confidence History would store up to n of these values in a FIFO fashion and as long as there is a

’0’ in the FIFO, the validity confidence bit is also ’0’. This behavior could also be performed with a shift

register or a binary counter instead of iterating over that history. The code in Listing 3.3 sets a counter

value if a ’0’ should be inserted and decreases the counter every detector execution that inserts a ’1’.

The variable vac corresponds to css,i,sr,binary = sr >
n
2 .

Listing 3.3: Simplified Validity Confidence Code

vac = 1 if (self.numberOfInsertedSamplesAfterReentrance > (maxHistorySize//2)) else 0

validityConfidence = 1 if (self.invalidityCounter == 0 and vac == 1 and lowestConfidence

== 1) else 0

if lowestConfidence == 0:

self.invalidityCounter = maxHistorySize - 1

elif self.invalidityCounter != 0:

self.invalidityCounter = self.invalidityCounter - 1

return validityConfidence

Still, the counter value has to be stored for each Signal State, but the memory requirements have been

reduced to a counter value with a bit width of ⌈log2(n)⌉ instead of n memory bits or even more when
using confidences (n ∗C bits, when C is the confidence bit width.) The runtime for this calculation also
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reduced from O(n) to O(1). However, the validity confidence cval,i,binary is mainly necessary for the

decision if a state is valid and a valid state cannot become invalid. Thus, loading the invalidity counter of

a re-entered Signal State from memory does not have an influence on the validity of a state anymore. As

a result, the counter could just be reset when a state reentrance occurs which saves ⌈log2(n)⌉ ∗ |States|
bits of memory. The only diverging effect of this change is that the flag validAfterReentrance could be

set at most ⌊n2 ⌋ executions earlier.
Figures 3.6 and 3.7 show the comparison of the validity confidence in CCAM and TCAM on different

timeseries snippets.
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Figure 3.6: Confidence-based and threshold-based Validity Confidence ("severalChanges" snippet)

Figure 3.7: Validity Confidence cval,i ("15states4times" snippet)



28 Chapter 3. Algorithmic Analysis

3.2.3 Stability Confidence Data Flow

To obtain a stability confidence, the new sample is inserted into a Discrete Average Block (DAB). The

DAB is a history with a fixed length that does not accept values once it is full. Instead, a new DAB will

be filled. As only the first and the most recent DAB are relevant for the algorithm, it is sufficient to

provide only memory for two DABs. When the latest DAB is full, the mean is calculated, as well as

the mean of the first DAB. If the size of a DAB is defined as a power of two, the division necessary for

the mean can be implemented as a shift. Then the distance metric (Equation 3.18 [10]) is derived from

those two mean values, similar to the Matching Confidence data flow, however, the fuzzy function for

the stability might be a bit different. To again avoid divisions, the distance metric has been changed to

Equation 3.19.

ddft =

����vavg,1 − vavg,2
vavg,1

���� (3.18)

ddft = |vavg,1 − vavg,2| (3.19)

The fuzzy function cstb,i (Equation 3.20 [10]) yields the confidence that the observed signal is stable,

whereas and cdft,i (Equation 3.21) is the co-confidence that expresses if the signal is drifting.

cstb,i =

����������
1, if ddft,i ≤ dc,dft

dd,dft−ddft,i
dd,dft−dc,dft

, if dc,dft < ddft,i < dd,dft

0, otherwise

(3.20)

cdft,i =

����������
0, if ddft,i ≤ dc,dft

ddft,i−dc,dft
dd,dft−dc,dft

, if dc,dft < ddft,i < dd,dft

1, otherwise

(3.21)

Also the flag isStable = cstb,i > cdft,i = cstb,i > 0.5 can be assigned by comparing the distance

between the means with a drift threshold.

As the removal of the division from the distance metric has the disadvantage to make the algorithm

more prone to noise, especially the results of the drift detection became worse. Some systems experience

signal drift at their inputs, whereas others do not require a drift detection at all. Therefore, the drift

detection was assessed as an optional feature of CCAM. An implementation of a reliable drift detection

on NEMS has been defined as future work.
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3.2.4 Aggregation of Confidences

The System State Detector receives also the matching confidence, the validity confidence and the stability

confidence from all Signal State Detectors and their co-confidences as well and uses them to aggregate

them to respective confidences for the System State Detector (Equations 3.22-3.27 [10]). The number of

observed SuO signals ism.

cb = ∧m
i=1(cb,i) (3.22)

cn = ∨m
i=1(cn,i) (3.23)

cval = ∧m
i=1(cval,i) (3.24)

cinv = ∨m
i=1(cinv,i) (3.25)

cstb = ∧m
i=1(cstb,i) (3.26)

cdft = ∨m
i=1(cdft,i) (3.27)

Thus, the System State Detector needs to calculate minimum and maximum operations. If the Signal

State Detectors are threshold-based and provide only 1 bit variables, they become Boolean operations.

Even when the Signal State Detectors are still confidence-based, they can forward the decision flags

instead of the confidence values, so that the System State Detector operates on binary "confidences".

However, these aggregated confidences are only needed for the computation of the overall confidence.

3.2.5 Functioning Confidence Data Flow

The data flow of the functioning confidence cok is mostly part of the control flow than a separate data

flow. A System State can be defined as a mapping of Signal States of all observed SuO signals (Equation

3.28). To check against the assumed bijective function property of the SuO, the mapping is separated in

a SuO input and a SuO output group (Equations 3.29 - 3.32).

sysstatet = (idsigstate,1,t, ..., idsigstate,m,t) (3.28)

sysstateinputs,t = (idsigstate,1,t, ..., idsigstate,minputs,t) (3.29)

sysstateoutputs,t = (idsigstate,minputs+1,t, ..., idsigstate,m,t) (3.30)

matchinputs = (sysstateinputs,t == sysstateinputs,t−1) (3.31)

matchoutputs = (sysstateoutputs,t == sysstateoutputs,t−1) (3.32)
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In case of a mismatch of the System State, all stored System States are compared against the tupel

of current Signal State IDs and the matching System State will be entered. If there is no matching

System State but a potential System State, the potential System State will be entered. A potential System

State matches either with all Signal State IDs from the input or output group. Only when there exists

no potential state, a new System State will be created. A counter increments for every subsequent

execution of the System State Detector in which a potential state is active. If a matching state or a

newly created state is entered, this disparity counter (dc) is reset to zero. The resulting counter value is

fuzzified and provides the functioning confidence cok (Equation 3.33 [10]) and its co-confidence, the

broken confidence cbrk (Equation 3.34 [10]). This means that the disparity counter contains the same

information as the functioning confidence. The decision (cok > cbrk) = (cok > 0.5) can be further

simplified to (dct > dca
2 ).

cok =

��
0, if dct ≥ dca

dca−dct
dca

, if 0 ≤ dct < dca

(3.33)

cbrk =

��
1, if dct ≥ dca

dct
dca

, if 0 ≤ dct < dca

(3.34)

3.2.6 Overall Confidence Data Flow

The overall confidence provides an estimation how confident CCAM is about its estimations over-

all. Therefore, it combines the aggregated matching confidence cb, validity confidence cval, stability

confidence cstb and the functioning confidence cok as well as some of their co-confidences.

Until the two DABs of a Signal State have not been filled, there is no meaningful stability and drifting

confidence available and the flag stability_known states that. This and other flags will choose the State

Condition of the System State:

• UNKNOWN: At least one signal stability is unknown

• STABLE: All signals are stable (∀i : cstb,i > cdft,i)

• DRIFTING: At least one signal is not stable (∃i : cstb,i ≤ cdft,i)

• MALFUNCTIONING: (cok ≤ cbrk)

Depending on the State Condition, the overall confidence will be calculated differently as shown in

Equation 3.35 [10].
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call =

������������������

0, if UNKNOWN

(cb ∨ cn) ∧ cok ∧ cstb ∧ cval, if STABLE

cb ∧ cdft ∧ cval, if DRIFTING

cn ∧ cbrk ∧ cval, ifMALFUNCTIONING

(3.35)

3.2.7 Numeric representations

To avoid computationally costly floating-point arithmetics in hardware, integer or fixed-point represen-

tations are desired. Regarding the numeric representation of sample values, it has to be differentiated

between a representation of the voltage the ADC measured at its input or a representation of the

metric that is measured by the sensor (e.g. temperature in ◦C). As the samples are most likely directly

from ADCs without any conversion, they are assumed to be unsigned integers. However, the dataset

of the hydraulic system [18] contains samples in signed floating point format and each metric has a

different range. For the conversion to an unsigned binary representation, the following formulas are

used (3.36-3.38):

vclamped = min(max(vreal, a), b) (3.36)

Δ =
b− a

2n − 1
(3.37)

vbinary(vreal, a, b, n) = ⌊vclamped − a

Δ
⌉ (3.38)

Q(vreal, a, b, n) = vbinary ∗Δ+ a (3.39)

The parameters are the lowest representable value a, the highest representable value b and the tar-

geted bit width n. At first, the real number vreal is clamped to ensure that it lies within the representable

range. Then the quantization step sizeΔ and the converted binary representation vbinary are calculated.

To get the quantized real numbered representation of the binary value, formula 3.39 can be utilized.

This approach can also be applied on confidence values. The defined range of confidence values is

D = {x ∈ R|0 ≤ x ≤ 1}, so this range is mapped to an unsigned integer or fixed-point number with a
certain bit width C. Figure 3.8 shows an example of the mapping to binary confidences. Note that the

values of the binary confidences are given in decimal representation but are actually bit vectors with bit

width C . The binary confidence values and their assigned real numbered range are listed in the table in

figure 3.9b.

The presented binary representation minimizes quantization errors and keeps the decision boundary
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Figure 3.8: Quantization Steps of Confidence

for confidences around 0.5 precise, however, it has to be mentioned that it is not a fixed-point format

but a mapping to integers. An appropriate fixed-point representation would be a UQ0.n format. The

Q notation Qm.n means that the fixed-point number hasm integer bits and n fractional bits. The U

stands for unsigned. The table in figure 3.9a shows the usage of the UQ0.2 format for confidences with

bit width 2.

2−1 2−2 Decimal Range
0 0 0.0 0.0 - 0.249
0 0 0.25 0.25 - 0.499
1 0 0.5 0.5 - 0.749
1 1 0.75 0.75 - 1.0
(a) Fixed-point format UQ0.2

Binary Decimal Range
00 0.0 0.0 - 0.166
00 0.333 0.166 - 0.499
10 0.666 0.5 - 0.833
11 1.0 0.833 - 1.0

(b) Using quantization formulas 3.36-3.39

Figure 3.9: Binary confidence representations with bit width 2

3.3 Control Flow

The version of the code at the time of [10] might have had no clear separation between Signal State

Detector and System State Detector, the available code of the implementation inside RoSA, however,

had. Instead of using the flow graph shown in [10], the control graphs in this chapter have been derived

from the code of the CCAM implementation in Python.

3.3.1 Signal State Detector Control Flow

The control flow of the Signal State Detector is depicted in Figure 3.10. Compared to the RoSA im-

plementation, it does not have global variables whose modification could be confusing, but just local
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variables and class properties. By several tests, it has been checked that the unmodified Python algorithm

and the RoSA implementation provide the same outputs for the same input time series.Under these

circumstances, the Python code has been taken as a template for the analysis.

New Sample

currentState
!= None

Block A1:
Calculate MatchingCon-
fidence

stateChanged

currentState.
isValid

Block A2:
Leave SignalState

Block A4

Block A5:
Check other Signal-
States

currentState
== None

Block A6:
Create new SignalState

Block A7:
Insert Sample

Block A3:
Delete SignalState

y

y

y

n

y

n

n

n

Figure 3.10: Control Flow of Signal State Detector

The descriptions of the code blocks in Figure 3.10 give a grasp of what the algorithm does in these

blocks. In Block A7, however, the sample is not only inserted into the history of the active Signal State
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but also calculates the Validity Confidence to assess if the Signal State becomes valid and the Stability

Confidence to assess if the observed signal is drifting.

In order to derive a Finite State Machine(FSM) from the given control flow diagram, code blocks

could be translated to possible FSM states whereas decisions form transitions between states. A notable

difference is that an FSM for hardware should not remain in an accepting state during normal operation

and that time constraints have to be considered. The basis design principle is as follows. The FSM starts

in a state that waits for a new sample as input and changes to a different state when a sample arrives.

When all necessary computations have been performed, the hardware is ready again and enters the

initial state again.

When identifying the necessary states of an FSM, there has to be an arguable reason why states

cannot be combined into a bigger one and why a decision requires the transition to another state. Thus,

data dependencies within the algorithm have to be resolved and described as time constraints in discrete

time steps. Changing from one state to another takes one discrete time step Δ, so a state transition

helps to meet some of these constraints. If the time steps between two actions have to be longer than 1

Δ, such a constraint has to be included in the transition condition. The following data dependencies

have to be considered:

• Read-After-Write (RAW)

• Write-After-Read (WAR)

• Write-After-Write (WAW)

While in ordinary sequential logic with flip-flops such dependencies usually need just 1 Δ between

the accesses of the particular variable, memory access and function calls may need more time steps

before finishing. Depending on the interface of the memory, the memory access has an effect on the

design of the FSM.

State machines in CCAM have been designed as Mealy FSMs with additional stateful variables to

store data. Figure 3.11 shows the FSM of the Signal State Detector. It has exactly 8 states and thus

utilizes the bit width of the FSM state register efficiently. To get a clear arrangement, the FSM states and

input variables have been replaced by shorter abbreviations. Table 3.1 and 3.2 show the mapping of

these abbreviations to their more meaningful names.

3.3.2 Signal State Flag Simplification

After the validity and invalidity confidences have been calculated, the code listed in Listing 3.4 from the

original CCAM implementation sets the state flags that are needed for further decisions of the algorithm.
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Figure 3.11: State Diagram of Signal State Detector FSM

Table 3.1: FSM Variable Translation

a sample_valid
b slot_used
c md_valid
d match
e last_addr
f vd_valid

Table 3.2: FSM State Abbreviations

ID Idle
M1 MD1
V S Visit State
M2 MD2
CS Create State
V D VSD
IS Insert Sample
ST Store

Listing 3.4: Signal State Flag Assertions (Original)

if (self.currentState.isValid):

self.currentState.justGotValid = False

if (self.currentState.validityConfidence > self.currentState.invalidityConfidence):

if (not self.currentState.isValid):

self.currentState.justGotValid = True

self.currentState.isValid = True

self.currentState.isValidAfterReentrance = True
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This code can be reformulated so that it does not contain if-statements as shown in Listing 3.5.

Listing 3.5: Signal State Flag Assertions (Simplified)

newIsValid = self.currentState.validityConfidence > self.currentState.invalidityConfidence

self.currentState.justGotValid = (not self.currentState.isValid) and (newIsValid or self.

currentState.justGotValid)

self.currentState.isValid = self.currentState.isValid or newIsValid

self.currentState.isValidAfterReentrance = self.currentState.isValidAfterReentrance or

newIsValid

The values of these flags at the beginning of the shown code block have been assigned in the previous

execution of the Signal State Detector. As these flags are properties of the currently active Signal State,

they need to be stored across state changes and should be stored in a memory for state properties (called

Signal State Memory in hardware). However, some assumptions can be made about the initial flag values.

According to the code listing above, a Signal State is considered valid if it has been valid before or

when the Validity Confidence is high enough. When a Signal State is exited, it is deleted in case it is not

valid. Therefore, we can assume that every old state that is re-entered has already been valid before.

Instead of storing the valid flag beyond state changes, it is sufficient to store it only for the currently

active Signal State.

Similarly, the flag validAfterReentrance is set to false when a Signal State is exited and set if the

Validity Confidence is high enough. So this flag also does not need to be stored for inactive states as it is

known to be false for them. The flag justGotValid should detect the execution step when a state becomes

valid as the name suggests. As it is false for all Signal States that already have been valid before, it will

be so for all re-entered states, too. Summing up, all of these three flags does not require to be stored per

Signal State, reducing the amount of required memory.

3.3.3 System State Detector Control Flow

The control flow of the System State Detector in Figure 3.12 is very similar to the control flow of the

Signal State Detector (Figure 3.10). Instead of executing the algorithm when a new signal sample arrives,

the System State Detector is evoked when new Signal State information is available for all monitored

signals (from all Signal State Detectors).

In Block B1, all saved Signal State IDs are compared with the updated Signal State IDs. The result is

a relation enum with four possible values:

• MATCH: all Signal State IDs are matching

• ONLYA: only all Signal State IDs in group A are matching

• ONLYB: only all Signal State IDs in group A are matching
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• MISMATCH: mismatches in both groups

Signal groups A and B are just more general group names for what would be defined as "Inputs" and

"Outputs" signal groups in a typical CCAM use case.

If the comparison of a System State with the updated Signal State IDs yields an ONLYA or ONLYB

relation, the System State will be classified as a "potential" state. The algorithm will enter a potential

System State if and only if the current state is not matching, there is no matching state in the list of

System States and there is at least one potential state.

The state diagramm of the derived FSM is provided in Figure 3.13. As the algorithm also looks for

potential System States, the transitions T2 → PP and V S → PP are added compared to the Signal

State Detector FSM. Furthermore, the check if a System State is matching is much easier and can be

done in one cycle, removing the loop transistions of the states T1 and T2. See Table 3.3 and 3.4 for the

meaning of the abbreviated states and variables.

Table 3.3: FSM Variable Translation

a sig_state_ids_valid
b slot_used
c group1_matching
d group2_matching
e last_addr
f potential_state_found

Table 3.4: FSM State Abbreviations

ID Idle
T1 Test IDs 1
V S Visit State
T2 Test IDs 2
CS Create State
IS Insert SignalStateInfo
PP Postprocessing
OP Output

3.4 Memory Management

As the usage of object-oriented data structures in the original C++ or Python code obfuscates the time

window in which data has to be held in registers or memories, the first step in identifying necessary

memory would be to reduce the scope of variables in the code as much as possible.

A rough heuristic would be that class properties are likely to require memory as the content of

these variables depends on the particular instance of that class, whereas local variables in sequential

functions often resolve to registers or even wires. This has led to the simplifications that have already

been discussed in the previous sections.

The second set of tasks that deal with the memory topic is about designing circuitry for accessing

the memory. Signal state or system state-related data will require a memory that is accessed with an

address that is linked to that corresponding state. Most memory data is signal state-dependent and there

is no requirement to have a common shared memory between different instances of the signal state
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Figure 3.12: Control Flow of System State Detector
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Figure 3.13: State Diagram of System State Detector FSM

detector or the system state detector, so the easiest addressing would be counting up the needed state in

a simple enumeration from 0 to the maximum possible state ID. CCAM also deletes Signal and System

States, therefore the address range may be smaller than the range of possible state IDs.

In the original C++ and the equivalent Python code, some data structures include dynamic lists.

Relevant lists are the list of samples in the sample history, the list of confidences in the confidence

history, and the discrete average block (DAB) for the drift detection as well as the lists of signal and

system states.

On the hardware side, lists with dynamic lengths would require dynamic memory allocation in

combination with a big shared memory. This would lead to a too-high complexity for a minimal

implementation of the algorithm. The simpler approach would be defining maximum list lengths with

reasonable bounds.

The histories and the DAB have defined a fixed length anyway, but the list of detected states is

supposed to grow over time. Depending on the use case, the amount of possible states could be estimated.

If the memory is too small to fit the amount of detected states, CCAM cannot operate reliably
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anymore. A clever replacement policy could increase the possibility that CCAM still works reasonably

with too many detected states, however, this operation mode should be avoided as proper operation can

not be guaranteed anymore. In general, it is suggested to define the maximum list length of the CCAM

Signal or System States list according to the expected number of states during a long-term operation.

3.4.1 State Slots

Figure 3.14 shows a visualization of the structure of a double-linked list like it is probably used in the

high-level code. In each list element there is not only the content stored but also references (pointers)

to the previous and next elements in the list. These references are essentially already real memory

addresses when there is no paging or sophisticated memory management as in modern computers.

However, the start and end of the list should be distinguishable by storing a NULL pointer in the previous

or next address fields. Therefore, the address 0 or any other address that is used to work as a NULL

pointer could not be in the range of the addressable memory, so this requires a bigger address range

than the addressable range for the actual memory.

start

content

next

prev

content

next

prev

content

next

prev

Figure 3.14: Double-Linked List

List iteration in the CCAM algorithm is always one-way, which could also be implemented with a

single-linked list without a reference to the previous list element if no elements are deleted. A deletion

operation would require the modification of the next reference of the previous list element and either

there is a prev pointer as in the double-linked list, or the algorithm has to remember the address of the

previous element somehow. Indeed, in CCAM the current Signal or System State could be deleted from

the memory and thus from the list of detected states.

A hardware realization would need additional memory space to fit all the references and the actual

memory allocation that selects addresses for empty space in the memory had still to be added, too. It

becomes apparent, that this approach is not the right choice for an area-minimized ASIC for a small

algorithm.

Therefore, a simpler approach has been chosen. Lists have a defined maximum length and iteration

is implemented by counting up the memory address. More precisely, a read iteration over the list starts

at address 0 and counts over the whole address space of the list. There is a flag for each position, if it is

empty or not (slot_used). For appending a new element to the list, the list positions are iterated from the
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beginning until an empty position has been found. Then the data is stored and the flag is set. Deletion

only resets the flag. The addition of a new list element is depicted in Figure 3.15 for a maximum list

length of 8. Empty spaces between list elements may come from previously deleted elements and this is

also the reason to iterate over the whole address range during a read iteration as the first encountered

empty position might not guarantee that all elements have been read.

1 2 3 5

Figure 3.15: Allocating space for a new element

CCAM creates a new state after it has iterated over all detected states in its state list and no state

has been fitting. So insertion into the list can only occur after a read iteration and thus, the FSM for the

memory interaction can already select an empty slot during the read iteration and if a new state has to

be created, the address for the insertion is already known.

3.4.2 State ID

Each time a Signal or System State becomes valid for the first time (the flag justGotValid is true), the

State ID is incremented. Therefore, for each created state that became valid, there is a State ID in the

system. As only states are deleted that did not become valid, there are no empty state slots between used

ones in the memory. The result is that the state address of a newly created state (starts with 0) is always

the State ID minus one (addr = id− 1). Under this circumstance it is unnecessary to save the State

ID of a state in a memory because the address of the state slot can be treated as the ID. Moreover, the

hardware implementation of CCAM should start the State IDs at 0 anyway in order to use the counter

and memory bit width more efficiently. The calculation of the flag justGotValid also becomes redundant.

3.5 Summary

In this chapter, the CCAM algorithm has been described in detail. After a brief introduction, the test

environment is presented before the examination of the algorithm starts. At first, the data flow is

presented using the same nomenclature as in [10] and possible simplifications are suggested. Besides the

omission of co-confidence calculations, these include the reduction of all data flows to a threshold-based

version. In a next step, the control flow is described, showing control flow diagrams directly derived from

the code and state diagrams for hardware implementations. Furthermore, it is shown that various state

flags don’t need to be stored per Signal State. Last but not least, the memory management for CCAM is

covered. As CCAM changes between detected states, state-related data has to be stored accordingly
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to prevent data loss. Due to the simplistic memory management, the state IDs are equal to the state

addresses and thus, the state IDs do not have to be stored per Signal or System State.
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Exploration of Basic Components

In this chapter, different implementations of relevant building blocks for a CCAM design are compared

by their NEM device count and the estimated (worst case) clock cycle count. Although 3-T, 4-T and 7-T

switches have different dimensions, the device count of all switch types has been combined for the sake

of simplicity. The device count for a logic circuit correlates with the total area.

4.1 Prerequisites

All Verilog modules are synthesized with the synthesis tool Genus (Genus(TM) Synthesis Solution,

Version 21.10-p002_1) which is part of the Cadence toolset. The logic gates used for the synthesis were

taken from the liberty file which is provided in the i-EDGE Process Development Kit (PDK). The PDK

has been created by the project members at the University of Bristol and includes schematics, layouts

and simulation files for NEM switches, standard cells, basic memory cells and some arithmetic cells. A

detailed description of the PDK and thus also a list of the contents of the standard cell library is provided

in [2]. The relevant parts are described in the following subsections.

4.1.1 Logic Gates and Flip-Flops

In order to ensure comparable synthesis results, all designs have been synthesized with the same liberty

file. As the list of the NEM standard cell library in [2] is not identical to the list of gates in the liberty file,

all gates defined in the liberty file are listed in Table 4.1. The 4-T implementations of the MUX, XOR and

XNOR gates and the device count of all gates have been added to the table as additional information.

Also, note that the naming convention of these cells has changed in the PDK. The 4-T implementations of

the XOR and the XNOR gate consist of only two 4-T switches, however, they need an additional inverted

input (Figure 4.1) and the synthesis tool does not understand the requirement of complementary inputs

for a logic gate, despite the existence of a pin_opposite attribute in the Liberty Reference Manual [31].

43
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Therefore, an inverter is included in these gates to provide these inverted inputs, which increases their

device count to 4.

a

b
b

out

(a) XOR gate

a

b
b

out

(b) XNOR gate

Figure 4.1: Gates with a complementary binary input

Table 4.1: NEM standard cells in the liberty file [2]

Cell Device Count Height in µm Width in µm
inv_3T 2 80 14.5
nand_3T 4 80 34.4
and_3T 6 80 48.9
nor_3T 4 80 34.9
or_3T 6 80 49.4
xor_3T 12 80 97.8
xnor_3T 12 80 97.8
xor_4T 4 80 42.7
xnor_4T 4 80 42.7
mux_3T 12 80 100
mux_4T 2 80 28.2
D_FF 26 80 250.7

D_FF_rst 38 80 353.3

The difference between the D-flip-flops (D-FFs) D_FF and D_FF_rst is the asynchronous reset of the

latter. The D_FF design does not have a reset input but can be turned into a D-FF with a synchronous

reset (SR) by adding some gates or a multiplexer in front of the D input. An additional enable input (EN)

can be implemented by another multiplexer. Figure 4.2 shows a D_FF design that has been extended

with both, an SR and EN input.

0

Din 1

EN

SR Q

D Q Q

CLK

Figure 4.2: D flip-flop extended with EN and SR inputs



4.1. Prerequisites 45

4.1.2 Memory

Memory blocks cannot be synthesized with the normal synthesis flow and have to be layouted by hand as

long as no memory creation tool flow is set up. With the memory cells in the PDK (Table 4.2) unclocked

registers, LUTs and RAMs can be constructed. All NEM memory cells are non-volatile because they are

built from 7-T devices.

Table 4.2: NEM memory components [2]

Cell Device Count Height in µm Width in µm
Wordline Driver (WLD) 6 80 49.9

RAM-U cell 5 66.9 43.9
LUT-U cell (min) 3 60 33.8

LUT cell 5 80 55.2

The LUT cell with only three devices has the shortcoming that the data input needs to be driven with

a logical ’1’ in read mode. Therefore, it has been extended by two additional switches to automatically

fulfill this requirement when write is set to ’0’. Besides a LUT, the LUT cell also allows us to build an

unclocked register as shown in Figure 4.3. Equation 4.1 gives the device count of such a register.

LUT cell LUT cell LUT cell LUT cell

data in[3] data in[2] data in[1] data in[0]

write

data out[3] data out[2] data out[1] data out[0]

Figure 4.3: Unclocked NEM register [2]

DReg(n) = n ∗DLUT _Cell (4.1)

The disadvantage of this register is that the data output during a write operation is not defined and

a floating voltage. Therefore, it can only be used when write and read operations never occur in the

same clock cycle.

Figure 4.4 shows the structure of a LUT. If the output of the LUT should have more than one bit, the

LUT structure could be duplicated and placed in parallel. The usage of this LUT design for long output

vectors, however, is not recommended as the parallel data input is impractical for the configuration of

such a LUT with a large amount of data.

Formula 4.2 calculates the device count of a LUT with an address of bit width k, n = 2k possible
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LUT cell LUT cell LUT cell LUT cell

Address Decoder

data out

data in[3] data in[2] data in[1] data in[0]

write

addr[0]
addr[1]

Figure 4.4: NEM LUT structure [2]

input combinations, and a 1-bit output.

DLUT = 2k ∗DLUT _Cell +DAddr_Decoder(k) (4.2)

Figure 4.5 depicts an example of a NEM RAM with a size of 4 by 4 cells. Data is written and read in

serial (element-wise but not bit-serial). The word line driver (WLD) converts the select signal of the row

and the read/write signal to the word lines that are needed by the RAM cells.

W
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RAM cell
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addr[0]
addr[1]

data in[3] data in[2] data in[1] data in[0]

data out[3] data out[2] data out[1] data out[0]

read

sel[3]

Figure 4.5: NEM RAM structure [2]

The device count of a RAM withm rows and n bits per row can be calculated as shown in Formula

4.3. A table for the device count of a binary decoder for different bit widths is derived from synthesis
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results and will be given later.

DRAM (m,n) = m ∗ n ∗DRAM_Cell +m ∗DWLD +DBinary_Decoder(m) (4.3)

4.1.3 Arithmetic Blocks

Optimized designs for a ripple carry adder and a subtractor have already been available in the PDK but

they also require additional inverted inputs and could thus not be added to the liberty file. Figure 4.6

shows the adder and subtractor designs as black boxes. Both blocks have a NEM device count of 6.

add_4T
cin

cin
cout

cout

a b b

s

(a) Full adder

sub_4T
cin

cin
cout

cout

a b b

s

(b) Full subtractor

Figure 4.6: Symbols for 4-T optimized adder and subtractor

The borrow in and borrow out signals of the subtractor ports are also called carry in(cin) and carry

out(cout) as in the adder in order to better distinguish between them and the input b.

In the course of the i-EDGE project, also a multiplier and an optimized comparator have been

designed, however, they have not been part of the PDK and have not been described in a publication at

the time of writing this thesis. The comparator compares two binary numbers and outputs a lesser(L), a

greater(G), and an equal(E) signal. For the exploration in this chapter, mainly the synthesis results have

been considered instead of adding a lot of optimized sub-circuits that would have to be designed and

integrated by hand.

4.2 Optimization towards 4-T

Optimizing CCAM towards NEMS technology does not only mean to deal with the area and device

count restrictions but also to exploit the special properties of this technology as much as reasonably

possible. While most logic gates built with 3-T switches have the same device count and circuits as

a CMOS implementation, 4-T and 7-T devices pave the way for logic gate designs that provide the

same behaviour but through a different concept that allow for more efficient or robust cells. As the 7-T

switch keeps its position without further appliance of voltages, it is used for stateful components such as
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latches, flip-flops and memory cells. The 4-T device can help decrease the device count in combinational

circuits, mainly by providing the efficient 4-T MUX and demultiplexer, presented in [12], as well as the

4-T XOR and XNOR gates and the previously presented full adder and subtractor cells, add_4T and

sub_4T, which are all part of the i-EDGE PDK.

In the following sections, the synthesis results will show that Genus will almost not make advantage

of these cells, even though there is often optimization potential. This can also be seen by looking at the

MUX-based AND and OR gates in Figure 4.7. A 4-T multiplexer is much smaller than the CMOS-like 3-T

AND and OR gates and by swapping the MUX inputs, even inverters can be saved.

Y
A 0

1 1

B
(a) Y = A ∨B

Y
0 0

A 1

B
(b) Y = A ∧B

Y
1 0

A 1

B
(c) Y = A ∨B

Y
A 0

0 1

B
(d) Y = A ∧B

Figure 4.7: Trivial logic functions with 2:1 multiplexers

A generalization of the 4-T MUX circuit is the MUX-XOR structure in Figure 4.8. Its potential for

logic optimization has been mentioned in [29], where it represents a 6-T relay from a different NEMS

technology. The inverted input B can be provided by an inverter. If B is assigned to a fixed value, the

structure is a 4-T multiplexer and the inverted input is not needed.

OUT
IN0 0

IN1 1

A
B

(a) Equivalent Circuit

IN0

IN1

OUT

B

B

A

(b) Circuit

Figure 4.8: MUX-XOR Structure

As a measure to obtain better synthesis results, the liberty file has been extended by the 4-T AND

and OR gates with and without one inverted input, and by the MUX-XOR gate (including an inverter).

The list of additional cells can be seen in Table 4.3. For even better results, the synthesis tool would
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have to be adapted or replaced.

Table 4.3: Extension of the Liberty File

Cell Device Count Height in µm Width in µm
and_4T 2 80 28.2

and_not_4T 2 80 28.2
or_4T 2 80 28.2

or_not_4T 2 80 28.2
mux_xor_4T 4 80 42.7

4.3 Binary Encoder and Decoder

Encoders and decoders are necessary for addressing memory and binary/unary conversions used in

some sorting approaches. Therefore, their synthesis results help to calculate the device count of some

sub-designs in CCAM. The results are plotted in figures 4.9 and 4.10.

2 4 6 8 10 12 14 16

Onehot Bit Width

0

25

50

75

100

125

150

175

N
E
M

 D
e
v
ic

e
 C

o
u
n
t

[Encoder] Device Count

Synthesis

Synthesis 4T

Figure 4.9: Device Count of the Onehot-to-Binary Encoder

4.4 Comparator

All the comparisons in CCAMof bit vectors with a potentially higher bit width are comparisons on sample

or confidence values and can be formulated as either less than(LT) or greater than(GT) comparisons

with no need for additional outputs. Therefore, no in-depth exploration of comparators is made but an

estimation of the NEM device count of an LT block.
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Figure 4.10: Device Count of the Binary-to-Onehot Decoder

The probably least device-intensive LT block implementation in NEMS could be the structure

depicted in figure 4.11 as it would make use of the cheap MUX and XNOR gates. The logic function

Ln = An ∧Bn compares one digit of two binary numbers and results in ’1’ if An is less than Bn. The

circuit checks the most significant bits(MSBs) at first and in case they are equal, the next digits are

compared. The shown circuit has actually still optimization potential. The function Ln = An ∧Bn can

be implemented with a MUX. Furthermore, the MUXes that have an XOR or an XNOR gate at their

select input could be combined with the X(N)ORs to MUX-XOR gates. Such a MUX-XOR gate consists

only of four devices in i-EDGE’s NEM technology.

A0 B0B1A1

0 1

B2A2B3A3

0 1

0 1

L

Figure 4.11: Less-Than comparison

However, this circuit results in a long critical path for comparisons of large bit vectors. A long chain
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of multiplexers can also have problems with voltage degradation and require the insertion of buffer cells.

The circuit is thus seen as a limit of the lowest device count achievable and compared with synthesis

results. The equation for the NEM device count of the shown LT block with bit width n is written below

in Equation 4.4.

DLTmin(n) = n ∗DMUX + (n− 1) ∗DMUXXOR = 2n+ (n− 1) ∗ 4 = 6n− 4 (4.4)

In figure 4.12 the device count from synthesis results and the estimation of the introduced LT

structure are depicted. The blue line shows the synthesis results from the basic liberty file, the green

line shows synthesis results where the AND and OR gates are built from 4T multiplexers.
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Figure 4.12: Device Count of the LT Block

4.5 Absolute Subtractor

Adders and subtractors are basic arithmetic operations that are present in almost every digital system.

Most adders and subtractors in the design are incrementers or decrementers for counters, which

means that these components always increment or decrement by 1. Such an incrementer can also be

implemented by a chain of half adders. As the insertion of the arithmetic blocks from the PDK by

hand introduces a lot of work overhead apart from the usual synthesis flow, and because this scale

of micro-optimization is unnecessary for a rough tradeoff analysis, only the big absolute subtractor

block is built by hand, whereas all other subtractors and counters are synthesized from Verilog code.
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An absolute subtractor always yields the positive difference of two numbers. The absolute subtractors

in this section expect unsigned integers as inputs. Hamzaoglu et al. presented three ways to build an

accurate unsigned absolute subtractor, while they proposed an approximate implementation [6]. These

three circuits are shown in Figures 4.13a, 4.13b and 4.13c.
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Figure 4.13: Accurate unsigned absolute subtractor circuits [6]

Using the adder and subtractor blocks from the PDK and the device count estimation of the LT

block from the previous section, the device count estimations for a bit width n are as follows (Equations

4.5,4.6,4.7):

DASUB1(n) = DLTmin(n) + 2n ∗DMUX +DSUB(n) = DLTmin(n) + 2n ∗DMUX+

n ∗DSUB + n ∗DINV = (6n− 4) + 4n+ 6n+ 2n = 18n− 4 (4.5)

DASUB2(n) = 2 ∗DSUB(n) + n ∗DMUX = 2n ∗DSUB + n ∗DINV + n ∗DMUX =

12n+ 2n+ 2n = 16n (4.6)

DASUB3(n) = DSUB(n) + n ∗DXOR +DADD(n) = DSUB(n) + n ∗DXOR+

(n− 1) ∗DADD +DXORmin = 6n+ 2n+ 2n+ 6n+ 2− 6 = 16n− 4 (4.7)

Even with the optimistic estimation for the LT block, the first option has the highest device count. As

the third approach has the lowest device count, it has been selected. Figure 4.14 shows the implementation

in more detail. Because cout,add is not needed and the b input is 0, the last add_4T block on the lower
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right side can be replaced with an XOR gate.

sub_4T sub_4T sub_4T sub_4T
1

0
cout,sub

cout,sub

A0B0 A1B1 A2B2 A3B3

add_4T add_4T add_4T add_4T
cout,add

cout,add

0 1 0 1 0 1 0 1

O0 O1 O2 O3

Figure 4.14: Circuit of 4-T optimized absolute subtractor

A comparison of synthesis results and the three presented physical implementations can be seen in

figure 4.15.
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4.6 Binary Counter

There is a variety of requirements for counters, counters can be up-counting or down-counting, can

have an asynchronous or synchronous reset, and can require an enable input or even a set input to set

the counter to a desired value. Different counters have been used for various purposes in the realization

of CCAM. If the output is not required to be binary but one-hot encoded, a shift register might be an

option, however, flip-flops are expensive gates in NEMS. The bit width of a one-hot output is growing

exponentially (2n) compared to the bit width of a binary counter output and so is the number of required

flip-flops. A one-hot output can be transformed into a binary value via an encoder and vice versa via a

decoder.

For the following comparison an up-counting counter with a defined range, binary output, asyn-

chronous reset but without additional inputs has been considered. The binary implementation with an

incrementer (Figure 4.16) needs a comparison for counter ranges that are not of a power of 2, but the

one-hot shift register with a binary encoder (Figure 4.17) does not.
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Figure 4.16: Circuit of Binary Counter
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Figure 4.17: One-hot shift register with binary encoder

Apart from the synthesis results of the binary counter, also an implementation with the lowest

device count has been looked for. The incrementer used for the counter in Figure 4.16 could be a chain of
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the add_4T block, as was done with the absolute subtractor in Figure 4.14. However, the add_4T block

is a full adder and has a device count of 6 while it still requires complementary inputs. To exploit the

availability of the inverted D-FF outputs Q, the structure shown in Figure 4.18 is suggested for counters.

The AND gates are implemented with MUXes and thus the device count can be calculated as is written

in Equation 4.8.
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Figure 4.18: Optimized Incrementer of Binary Counter

DCNTR(n) = n ∗DFF,rst + n ∗DXOR + (n− 1) ∗DMUX =

38n+ 2n+ 2 ∗ (n− 1) = 42n− 2 (4.8)

A formula of the device count of a counter that can count until an arbitrary number k − 1 that fits

the counter bit width (k < 2n), like in Figure 4.16b, is given in Equation 4.9. It is assumed that the range

input comes from a FF-register and therefore is also present in inverted form.

DCNTR,DY N (k) = DCNTR(n) + n ∗DXOR + n ∗DMUX ; n = ⌈log2(k)⌉
DCNTR,DY N (k) = 42n− 2 + 2n+ 2n = 46n− 2 (4.9)

Figure 4.19 compares the device count of the synthesized binary counter and the optimized circuit

(Figure 4.18). The synthesis works quite well, even without the extended liberty file, as it can already pick

the xor_4T cells. Figure 4.20 shows the synthesis results of the binary counter and the one constructed

with the onehot shift-register. The dashed line marks the device count of the circuit of Figure 4.16b.

Unlike the synthesized counters, it can be configured to different counter ranges during runtime.

To estimate a counter with a synchronous reset or the possibility to assign the counter value,

multiplexers can be added to the device count formula as shown in Equations 4.10 and 4.11. These

estimations include the asynchronous reset of the D-FFs. If the counter should only have a synchronous
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reset, the device count can be reduced by 12n.
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DCNTR,SET (n) = DCNTR(n) + n ∗DMUX = 42n− 2 + 2n = 44n− 2 (4.10)

DCNTR,DY N,SET (k) = DCNTR,DY N,SET (k) + n ∗DMUX = 48n− 2 (4.11)

4.7 Fuzzification

As the shape of all fuzzy functions in CCAM is semi-trapezoidal, meaning that the shape looks like

a halved trapezoid and that these functions are monotonically rising or falling, the function can be

separated into one linear range and two static ranges. Figure 4.21 shows the sketched implementation

of the mapping to a semi-trapezoidal fuzzy function.
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Figure 4.21: Semi-trapezoidal function csv(d)

The two comparisons check if the distance lies in the linear or one of the static ranges and the

multiplexing logic propagates the according confidence values. The case d < dc ∧ d > dd cannot occur

if the fuzzy function is configured correctly and can therefore be seen as a don’t care. The linear function

can be implemented in different ways. Let the constant Z be Z = dd − dc then the linear function

segment can be described as:

• (d− dc)/Z

• (d− dc) ∗ 1
Z

• LUT (d− dc)

The values of slope are either stored in a LUT or a multiplication with a fixed factor has to be

implemented. A division like in the original software code would only be an option if there was already

an idle division unit in the design but no available multiplier.
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The downside of the LUT approach is that the linear range of the fuzzy function should be con-

figurable, and thus the size of the LUT needs to be sufficiently large to fit a very flat slope. If the LUT

covers the entire range of possible input values, the comparators and the subtraction become redundant

and the fuzzy function could be redefined freely, however, this is a very inefficient usage of memory for

fuzzy functions with steep slopes. The advantage of a LUT is that the quantization error does not add

up as it does with a multiplication.

Which implementation is the better option, depends on the design parameters and the fuzzy functions.

Parameters are the bit width of the input valueW , the bit width of the resulting confidence value C

and the range R of the slope of the fuzzy function in sample quantization steps. As there is a variety of

possible multiplier implementations and they have a high device count, it was intended to implement

CCAM without a multiplier. Because of this, the higher accuracy and the easier implementation, the

LUT approach has been chosen without a detailed analysis.

The formula of the required memory bits for the fuzzy function csv is shown in Equation 4.12. For

clarification, it should be mentioned that for the fuzzification LUTs, the NEM RAM structure is used and

not the NEM LUTs.

MFUZZ1 = R ∗ C; 0 ≤ R ≤ 2W (4.12)

The resulting device count estimation is (Equation 4.13):

DFUZZ1 = DRAM (R,C) +DSUB + 2DLT + 2C ∗DMUX + 2 ∗DREG(C) =

DRAM (R,C) + 6C + C ∗DINV + 2 ∗ (6C − 4) + 4C + 10C =

DRAM (R,C) + 34C − 8 = RC ∗DRAM_Cell +R ∗DWLD +DDecoder(R) + 34C − 8 (4.13)

The two 7-T registers in the equation are used to hold the configuration values dc and dd. The device

count for a full LUT implementation would be DRAM (2W , C).

For the fuzzification of sample numbers, the entire fuzzy function is a slope. Since css and cds depend

on the index of the sample from the history currently compared to and the fill level of the history,

the fuzzy function changes according to the fill level sa ≤ H . The maximum history length H thus

defines the number of memory bits of the LUT of this fuzzification as in Equation 4.14. The device count

estimated in Equation 4.15.

MFUZZ2 =
H2 −H

2
+H =

H2 +H

2
(4.14)
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DFUZZ2 =
H2 +H

2
∗ (C ∗DRAM_Cell +DWLD +DAND) + 2 ∗DDecoder(H) =

H2 +H

2
∗ (5C + 8) + 2 ∗DDecoder(H) (4.15)

4.8 Sorting

Since the CCAM algorithm requires sorting of sample or confidence values, selecting a resource-efficient

sorting algorithm is crucial. As unsorted data will probably arrive serially, considering a form of insertion

sort might be worthwhile. The exact requirements for the sorting block depend on the design decisions

in chapter 5. The chosen sorter implementations need to be able to work on a list with dynamic length

which disqualifies some of the common hardware sorting techniques.

Most sorting circuits in hardware are built to maximize the achievable performance and therefore

exploit parallelism. However, there already exist some papers that focus on the area usage of different

sorting hardware and compare them. Abdelrasoul et al. [32] and Alif et al. [33]) implemented common

software sorting algorithms (bubble sort, selection sort, insertion sort and merge sort). However,

especially approaches that are very different from the software sorting algorithms were not included.

A recent and extensive survey is from Jalilvand et al. [34]. It organizes hardware sorting solutions

into four categories.

• Comparison Based

• Comparison Free

• Partial Sorting

• In-Memory

In-memory sorting techniques are less relevant to this thesis because most of them use memristor

technology or they assume the availability of modern memory access e.g. including paging. Moreover,

the values in the histories have to be sorted in order of occurrence to keep the FIFO property and

only after the distance calculation the distances can be sorted, or the confidences can be sorted after

fuzzification.

Among the comparison-based sorters, there are also the widely used Bitonic Sorter [35] and hardware

implementations of typical software sorting algorithms. Bubble sort in hardware can be built with a

single comparison unit, but then it requires some kind of addressing logic for comparing and swapping

the right registers and needs o(n2) cycles to sort. In [36], a parallelized version of bubble sort is described,

but then a lot of comparison units are used like in a Bitonic Sorter.
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Unary processing [37] can also allow for very simple swapping, because minimum and maximum

functions can be built with AND and OR gates, but the bit width of unary signals is growing exponentially

with the bit width of the corresponding binary bit width. Furthermore, binary-to-unary conversion

logic is necessary.

Some comparison-free and partial sorting approaches use a largest element detector or something

similar. They iteratively select the largest element from the remaining list and build a new sorted

list. Campobello et al. proposed an FPGA implementation that gets the maximum value of a list by

passing the elements bit-serially to a multi-input maximum circuit [38]. Jalilvand et al. also introduced a

comparison-free sorter that identifies the largest element by operations on bit-serial unary elements [39].

Because of the requirement of sorting on dynamic lists and low device count, two especially relevant

sorting techniques have been implemented and examined. These are described below in more detail.

4.8.1 Parallel Shift Sort

Parallel shift sort (PSS) is a very efficient hardware algorithm that is a kind of insertion sort therefore

takes n cycles for sorting n values and consists of identical cells with low complexity [7]. As the data is

expected to arrive most probably element-wise, sorting would take O(n) cycles anyway. The downside

is that it also uses n LT comparison units, which will be the biggest building blocks of that algorithm.

Figure 4.22 shows the sorting engine of this sorter. The sorted elements can either be read in parallel

or shifted out of the shift register. To know how many elements are actual values (due to the dynamic

length), either a small shift register with valid bits or counters have to be added. Furthermore, the

registers in the sorting engine have to be initialized correctly before sorting (each register should be set

to the highest possible value e.g. 0xFF when the bit width is 8 bit).
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Figure 4.22: Parallel Shift Sort Engine [7]

4.8.2 Comparison-free Sorter

A non-bit-serial comparison-free implementation has been presented by Ray et al. [8]. For sake of

simplicity, this circuit will be called Largest Element Detector (LED) Sorter. Figure 4.23 shows the sorting

engine of this approach.It determines the element with the highest set significant bit through a simple
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network and uses an encoder to derive the address of the element. Sorting the entire list takes n cycles.

The EVT is a vector table that stores which element has still to be sorted. This goes well with sorting

lists with dynamic lists as these flag act as a valid bit for each element. The sorting network will then

identify the largest element and the priority encoder ensures that a one-hot bit vector remains as some

elements may have the same value. The one-hot vector is then encoded into the address of the memory

that holds the unsorted elements. Originally, the approach presented in the paper requires two memories

for sorting, the memory containing the unsorted elements and a memory that stores the sorted elements

afterwards. Of course, the address of the sorted memory would have to be provided by an incrementing

counter.

However, it is not necessary to store all sorted elements into a memory. Either the circuit after the

sorter accepts the sorted elements sequentially or it needs to access them in parallel. The presented

NEM RAM structure that is available in the project does not allow for parallel read-out of its rows and

thus a shift-register could be used to gather the sorted elements.

To change the sorting order from descending to ascending, the sorting block can be changed so that

the data bit inputs Di,j are inverted. By inserting XOR gates, the sorting order could be configured as

needed.
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Figure 4.23: LED Sorting logic presented in [8]

4.8.3 Comparison

For a fair comparison of both sorting units that have been presented, the interface has to be the same.

While the PSS works the best with shifting the data in serially and providing the sorted data in parallel,

it is the other way around for the "largest element detector" circuit. The unsorted data and the EVT

could be assigned in parallel but the sorter only yields one list element at a cycle. To parallelize the
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incoming data, a shift register can be used. Serialization requires a counter and addressing logic. If the

sorted data is shifted out serially, the subsequent datapath will probably require a list index provided by

a counter.

The design decisions of the datapath using the sorter define the necessary interface and the sorting

order. For a first comparison, both sorter designs have been configured in the code to have serial

(sample-wise) input and serial output and have been synthesized.

The synthesis results with the extended liberty file are shown in Figure 4.24 and 4.25.
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Figure 4.24: Device Count of LED Sorter and PSS over List Length
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Figure 4.25: Device Count of LED Sorter and PSS over Bit Width

The device count of both sorters scales linearly with the bit width and the maximum list length.
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Since the execution takes H cycles for both of them, the LED Sorter outperforms the PSS. Another

advantage is that the LED Sorter could be used for minimum and maximum operations as covered in

the next section. Sorters that operate bit-serially per cycle have not been considered as sample-serial

data would first have to be parallelized in n ≤ H cycles before takingW cycles to consider each bit,

resulting in an execution time of O(H ∗W ).

4.9 Min/Max Operations

For a min or max operation on a list with exactly two elements, a so-called Compare-And-Swap (CAS)

unit is sufficient. Figure 4.26 shows the hardware circuit for a CAS unit.
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Figure 4.26: Compare-And-Swap (CAS) Block

The device count for a Min2 operation in unary is written in Equation 4.16. If the operation should

be applied on binary values, binary encoders and a binary encoder are necessary as well.

A glimpse of the device count of the LT block combined with MUXes (Equations 4.17 and 4.18)

shows that the minimum and maximum operations are relatively cheap for two operands.

DMin2,Unary = 2 ∗DDecoder(n) + 2n ∗DAND +DEncoder (4.16)

DMin2,Binary = DLT (n) + n ∗DMUX = 6n− 4 + 2n = 8n− 4 (4.17)

DMax2,Binary = DLT (n) + n ∗DMUX = 8n− 4 (4.18)

If the list can have more than two elements, the following naive algorithm can be implemented in

hardware (Listing 4.1):

Listing 4.1: Min/Max algorithm
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min = list[0]

max = list[0]

for element in list[1:]:

if element < min:

min = element

if element > max:

max = element

The synthesized algorithm would also use a CAS unit and store the result in a register but iterate

over the list in k cycles for a list with k elements. If the list is available in parallel, a counter can be used

to iterate over the list serially (one element per cycle). The estimated device count of this sequential

approach is written in Equations 4.19 and 4.20.

DMink
(k, n) = (DMin2(n) + n ∗DFF + n ∗DMUX) = 36n− 4 (4.19)

DMaxk
(k, n) = (DMax2(n) + n ∗DFF + n ∗DMUX) = 36n− 4 (4.20)

A parallelized version could build a tree of reduced CAS blocks (only minimum or maximum is

needed) which would lead to a device count as shown in Equations 4.21 and 4.22. The additional

multiplexers ensure that only valid input values are considered since the circuit has cover K input

vectors if 1 ≤ k ≤ K . If one of the vectors is not valid, the select signal of the MUXes inside the CAS

block is manipulated.

DMinK
(k, n) = (K − 1) ∗ (DMin2(n) + 2 ∗DMUX) = (K − 1) ∗ 8n (4.21)

DMaxK
(k, n) = (K − 1) ∗ (DMin2(n) + 2 ∗DMUX) = (K − 1) ∗ 8n (4.22)

Finding the maximum or minimum values in a list, as needed for theMink() and max() operations

on confidence values, are special cases of sorting where the list does not have to be sorted completely.

Since CCAM also needs a full sorter anyway, the use of such a more complicated full sorter may

make sense for min/max operations as well when the sorter is idle (resource sharing). Especially, the

comparison-free sorter with the largest element detector is suitable to find the largest element in 1 cycle

(O(1)) without the need to sort all elements in the list. To get the minimum element, the sorting engine

should yield the smallest element instead of the largest element.
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4.10 History

In CCAM, histories are memories that store records of sample values or confidences per signal state

over time. The maximum amount of values that can be stored for a certain signal state is called history

length (H). If a new value is inserted into a full history, the oldest value will be replaced in a First In

First Out (FIFO) manner. They are not typical FIFO memories, however, as all their values have to be

readable without deleting them by read-out. In addition, the fill level needs to be accessible from outside

of the history block.

While parallel write access to the history is not needed as only one sample comes at a time, both

parallel or serial read-out of the stored sample values could be desired depending on the design of

the logic reading from the history. These requirements lead to different architectures for the histories.

Therefore, a history with serial read-out, as well as a history with parallel read-out, are presented and

their device count is estimated. While it is kind of a comparison of apples to oranges, the results can

be used to explore the trade-offs of designs that process the data in parallel or serially. The following

explanations will target histories for samples, but they are also applicable to a confidence history. The

confidence histories of the validity confidence datapath can use the same addresses as the sample history

but the confidence history will insert the new value earlier than the sample history, which requires

additional logic.

4.10.1 History with Serial Read-Out

When serial write access and serial read access are desired, the RandomAccess Memory(RAM) with a row

width of the sample or confidence bit width is favorable. Figure 4.27 shows the rough implementation

of the history. The pointer address (ptr_addr) stores the index on which the next history element will

be inserted. In fact, this index is produced by a counter that increments after insertion. The counter

overflow leads to a round-robin, respectively, a FIFO replacement strategy in case the history length is a

power of 2. For other history lengths, the counter has to be compared against the history length to reset

the counter when needed.

The iteration address (iter_addr) is used for iteration over the history as a sequence of read accesses

and has to be provided by the datapath that reads the history. Additionally, the fill level has to be tracked

as stated before. This can be done with a third counter without overflow. The fill level can range from

zero elements to the history length H , which are H + 1 values in total. Instead of using a counter over

H + 1 values, it is also possible to have a hist_full flag to remember when a history is filled completely

and to count the maximum address for iteration (max_iter_addr) from zero to H − 1.

As the pointer address and the fill level of the history for a certain signal state have to be stored
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Figure 4.27: Sample-serial History

permanently, these registers have to be saved to memory before a signal state change. After the signal

state address (sig_state_addr) has been updated, these addresses or indexes have to be loaded from

memory in case of a state reentrance. If a new signal state has been created, both registers are initialized

with zero. A hist_full flag would certainly have to be set to false. An overview on how to handle the

ptr_addr and the fill_level is shown in Figure 4.28.

Counter ptr_addr

D-FF hist_full
0 1

H

⌈log2(H + 1)⌉

⌈log2(H)⌉

1

fill_level
⌈log2(H + 1)⌉

Signal State
Memory

Figure 4.28: Circuitry for ptr_addr and fill_level

As the history RAM has two input addresses at the same time, the (signal) state address and the index

of the sample, the history RAM has internally 2 address decoders. The select bits could then, for example,

be combined with AND gates as shown in Figure 4.29. The rows from different Signal States could be

stacked up, however, stacking up too many rows will increase the memory latency and therefore it

might make sense to have memory blocks per Signal State. The outputs of these memory blocks have to

then be multiplexed.

W
LD

sel_addrstate[j]
sel_addrsample[i]

read
RAM cell

Figure 4.29: Select signal for History RAM
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For the estimation of the device count of a History RAM with data bit withW , history lengthH and

up to S possible Signal States, the RAM cells, wordline drivers, 2 binary encoders for address encoding

and AND gates are considered (Equation 4.23). The required memory has S ∗H ∗W bits.

DHistoryRAM (S,H,W ) = S ∗H ∗W ∗DRAM_Cell + S ∗H ∗DWLD

+DBinary_Decoder(S) +DBinary_Decoder(H) + S ∗H ∗DAND =

= (5 ∗W + 8) ∗ S ∗H +DBinary_Decoder(S) +DBinary_Decoder(H) (4.23)

The complete history logic can be estimated to be the result of Equation 4.24. It counts the whole

Signal State Memory to the device count although it might also contain other information. With the

simplifications to the control logic, however, the only data that has to be stored per Signal State are

the samples and the history meta-data. Moreover, the circuitry shown in Figure 4.28 and additional

multiplexers to select FF-register inputs have been considered.

DHistory(S,H,W ) = DHistoryRAM (S,H,W )+2∗⌈log2(H)⌉∗DMUX +⌈log2(H+1)⌉∗DMUX+

+DCTNR,DY N (H) + 2 ∗DMUX + 1 ∗DDFF,rst +DRAM (S, ⌈log2(H)⌉+ 1) =

= DHistoryRAM (S,H,W ) +DRAM (S, ⌈log2(H)⌉+ 1) + 4⌈log2(H)⌉+
+ 2⌈log2(H + 1)⌉+ 4 + 38 + 46 ∗ ⌈log2(H)⌉ − 2 = DHistoryRAM (S,H,W )+

+DRAM (S, ⌈log2(H)⌉+ 1) + 50 ∗ ⌈log2(H)⌉+ 2⌈log2(H + 1)⌉+ 40 (4.24)

4.10.2 History with Parallel Read-Out

Instead of writing the samples element-wise into the history, the whole history of a Signal State could be

addressed with the Signal State Address only. As a consequence, the FIFO behavior has to be implemented

with a shift register. New samples are shifted into the shift register but are read in parallel from all

registers. When a the Signal State is exited, the whole content of the shift register must be saved into the

History RAM and the content of the entered Signal State has to be retrieved from the memory as well.

The shift register is reset if a new state is created. Figure 4.30 shows a sketch of the history structure.

The flip-flop registers inside the shift register require a MUX in front of their data inputs to switch

between shifting and loading from the History RAM. The parallel output of the registers is wired to the

data input of the RAM and the datapath. To keep track of the fill level of the history, an additional valid

bit for each sample in the history could be stored in the RAM and the shift registers. The flip-flops of
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Shift Register
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Datapath

Figure 4.30: Sketch of the Sample-parallel History

holding these valid bits require a synchronous reset to deal with the creation of a new Signal State. The

synchronous reset adds one MUX per resettable FF.

This architecture allows for a parallelized Matching Confidence datapath at the cost of device count.

The History RAM stores S ∗H ∗ (W + 1) bits due to the additional valid bit per sample. The estimated

device count formula is written below (Equation 4.25 for the History RAM and Equation 4.26 for the

complete device count of the history).

DHistoryRAM (S,H,W ) = S ∗ H ∗ (W + 1) ∗ DRAM_Cell + S ∗ DWLD + DBinary_Decoder(S)

(4.25)

DHistory(S,H,W ) = DHistoryRAM (S,H,W )+H∗(W+1)∗DFF+H∗(W+1)∗DMUX+H∗DMUX =

= DHistoryRAM (S,H,W ) + 26H ∗W + 26H + 2H ∗W + 2H + 2H =

= DHistoryRAM (S,H,W ) + 28H ∗W + 30H (4.26)

4.10.3 Comparison

The decision on which history to take is mainly based on the requirements of the datapaths. Regarding

the device count, both history designs are viable options, however, the history with the sample-serial

read-out has the lower device count as shown in the diagram in Figure 4.31.

4.11 Summary

In this chapter, relevant building blocks of CCAM and, respectively, TCAM have been discussed. At

first, the underlying technology with the available standard cells containing logic gates and memory

cells is presented. Then logic optimization towards 4-T devices is mentioned, followed by sections about
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Figure 4.31: Device Count of Histories over Bit Width

the discussed building blocks. To support the design exploration, their device count has been calculated

or estimated, including synthesis results. If more than one design was considered, comparisons have

been made. For modules containing sequential logic, their cycle count is estimated a well. Covered

modules are binary encoders and decoders, a Less-Than comparison, an absolute subtractor, binary

counters, fuzzifcation, sorting unit, minimum and maximum operations, and histories for samples and

confidences. Table 4.4 summarizes formulas for device count estimation. Components that have only

been synthesized and the device count estimation of components including RAM like the history and

the fuzzification have not been added to keep the table clean.

Table 4.4: Device Count Estimation Formulas

Component Notation Device Count
Less-Than DLT (n) 6n− 4
Greater-Than DGT (n) 6n− 4

Absolute Subtactor DASUB(n) 16n− 4
Minimum (2 Operands) DMin2(n) 8n− 4
Maximum (2 Operands) DMax2(n) 8n− 4

Minimum (k Operands) serial DMink
(n) 36n− 4

Maximum (k Operands) serial DMaxk
(n) 36n− 4

Minimum (k Operands) parallel DMinK
(n) (K − 1) ∗ 8n

Maximum (k Operands) parallel DMaxK
(n) (K − 1) ∗ 8n

Counter DCNTR(n) 42n− 2
Counter + Set DCNTR,SET (n) 44n− 2

Counter w. arbitrary range DCNTR,DY N (k) 46⌈log2(k)⌉ − 2
Counter w. arbitrary range + Set DCNTR,DY N,SET (k) 48⌈log2(k)⌉ − 2
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Chapter 5

Architecture and Design Space

Exploration

5.1 Exploration Strategy

Optimization of a design architecture in general is known to be an NP-hard problem. The bigger the

overall design, the more options have to be considered and the more design decisions have to be made.

To apply a structured methodology that helps to not get lost under all possible designs, it may seem a

good idea to take a look at the field of high-level synthesis (HLS). HLS has been an active field of research

over the last decades and can therefore be considered to have well-understood concepts. Although the

Verilog code and the architecture are not generated automatically via HLS, the methodology behind an

HLS process is still applicable. This may lead to the question, of why HLS has not been used in the first

place, but designing with an HDL allows for a more fine-grained optimization. Moreover, the gained

insight is greater if the design is not partitioned automatically and the original CCAM algorithm would

have to be adapted anyway to be synthesizable via HLS.

Especially, the topics of resource allocation, scheduling, and resource binding, are of special interest(

[9] [40]). These steps can be translated to the following methodology:

• Allocation: Identify necessary functional blocks

• Scheduling: Consider serialization, parallelization, pipelining, resource sharing, and adaption of

control logic

• Binding: Compare trade-offs of equivalent functional blocks and design decision outcomes and

select the most promising ones.

The functional blocks have already been identified and discussed in the previous chapter (Chapter

71
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4), along with a comparison of different implementations of them. Therefore, the focus in this chapter

will be the scheduling and the combination of the discussed sub-components to form the desired system.

Resource sharing includes sharing of registers, functional units, and communication channels [9].

In this work, the sharing of functional units is focused as it could lead to high savings in device count if

an expensive functional unit could be shared between different parts of the system.

Sharing a logic block between two datapaths or different stages within a datapath could be done by

multiplexing the inputs of the shared block as shown in a general example in Figure 5.1. This requires a

control signal that defines which module uses the shared logic block and the block can only be assigned

to one location at a time. If the block should be shared between more than two locations, a bus system

with some bus arbitration logic might be an option.

Asource1 0

Asource2 1

control

Bsource1 0

Bsource2 1

control

Shared
Module

Outsource1

Outsource2

n

n

Figure 5.1: Sharing a 2-input module between 2 modules [9]

To estimate if it would save device count to share a common module between 2 locations, the

multiplexers at the inputs have to be taken into account. Asmost arithmetic blocks have two input vectors

with the same bit width, this general example can be applied to adders, subtractors, binary comparisons,

multipliers, and so on. Under the assumption that the control signal is already available, the decision

can be based on the question if the inequationDshared(m,n) +m ∗ n ∗DMUX < 2 ∗Dshared(m,n) is

true, withm being the number of input vectors and n being their bit width.

Another scheduling-related design decision is to balance serialization and parallelization. Paral-

lelization allows for more performant designs that can do calculations in a shorter time, however, at the

cost of higher area requirements. Serial implementations, however, have an overhead in control logic

compared to their parallel counterparts that is usually negligible. Pipelining separates a serial datapath

into pipeline stages that allow for the next execution in a stage when the previous execution result has

been passed to the next stage. The decision on how many pipeline stages are necessary is fine-grained

and heavily depends on the clock frequency and the delay of the critical path of the datapath. For this
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case study of CCAM on NEMS, such fine-grained design decisions will not be made. Further pipeline

registers can be easily added to the datapaths of the presented designs if necessary.

5.2 Overview

Figure 5.2 depicts the first naive structure of the CCAM hardware implementation. Each signal under

observation needs its own Signal State Detector state machine with its own histories for sample and

confidence values, a DAB, and other memories. The resulting confidences, state flags and, most important,

the IDs of the signal states are passed to the System State Detector. When all signal states have been

updated, the System State Detector will start its execution. The relevant outputs of it are the functioning

confidence, the System State ID and maybe the overall confidence.
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Figure 5.2: Naive Structure of CCAM Implementation

Modules of the datapath like arithmetic blocks may be shared among the CCAM design but this

makes allocation logic for these resources necessary.

As the execution times of the Signal State Detectors can overlap, either waiting cycles for allocation

would have to be introduced, or no resources are shared between multiple Signal State Detector instances.

Depending on the use case, the number of SuO signals to monitor varies and so the number of required

Signal State Detectors.

The sharing of control logic and counters, however, does not make a lot of sense as the overhead of

the allocation logic is not in a reasonable relation. Moreover, states of stateful logic that are not part of a

datapath have to be preserved until the next execution. Also, slow serialized computations are more

difficult to share between different modules.
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The identified design parameters of a CCAM or TCAM design are listed in Table 5.1. The ranges

that seemed to be relevant for the tradeoff analysis are also attached. CCAM also requires a confidence

bit width as shown in Table 5.2. Design parameters that were originally considered but discarded are

presented in Table 5.3. The bit width of the State IDs became redundant as the IDs are the same as the

state addresses with the bit widths ⌈log2(S)⌉ and ⌈log2(Y )⌉. The size of the DAB has to be configured
only if drift detection is implemented.

Table 5.1: Design Parameters of CCAM / TCAM

Symbol Name Description Range
N Signal Number Number of monitored SuO signals 2-4
W Signal Bit Width Bit width of sampled sensor data 4-16
H History Length Number of storable samples per Signal State 4-16
S Signal States Number of storable Signal States 4-16
Y System States Number of storable System States 4-16

Table 5.2: Additional Design Parameters for CCAM

Symbol Name Description Range
C Confidence Bit Width Bit width of confidence values 1-8

Table 5.3: Removed Design Parameters

Symbol Name Description Range
D DAB Size Number of samples stored in a DAB 4,8,16
SW Signal State ID Bit Width - 3-5
YW System State ID Bit Width - 3-5

5.3 Signal State Detector

As Figure 5.3a shows, the Signal State Detector consists of the main state machine, the memory manage-

ment and a module which contains the datapaths for computation of the confidence values.

While the Memory Management Unit (MMU) contains the Signal State Memory, the histories, the

control logic for loading and storing them and the state address counter, the Datapath Module (DPM)

contains the Matching Confidence Datapath (MCDP) and the Validity Confidence Datapath (VCDP),

together with possibly shared resources (Figure 5.3b). The MCDP may directly share csl,i,new and

cdh,i,new with the VCDP if it calculates them for it. Both datapaths are interfacing with the main state

machine and return their results to it. Access to the histories is given by the MMU.

The Signal State address, respectively the Signal State ID, for the output of the Signal State Detector

can be taken from the MMU. The resulting confidence values from the DPM do not actually have to be



5.3. Signal State Detector 75

FSM

MMU

DPM

(a) Top Level

Fuzzification

Sorting Unit

MC Datapath

VC Datapath

Config

FSM

FSM

MMU

MMU
(b) Datapath Module

Figure 5.3: Signal State Detector Architecture

exchanged with the main state machine since only the decision flags are relevant for the FSM of the

detector. If desired as detector outputs, the confidence values can also be forwarded from the DPM to

the outputs.

5.3.1 Matching Confidence Datapath

Original MCDP in Serial

Figure 5.4 shows an overview of the MCDP in serial. The samples are fed from the history cycle by

cycle into the absolute subtractor (ASUB) to calculate the distances which are then passed to the sorting

unit. The presented sorting modules take up to H cycles for sorting and can then shift out the sorted

distances to the fuzzification blocks. The index of the sorted elements are also fuzzified. On the resulting

confidences values, the fuzzy algebra can be applied and the comparison the the matching confidence

cb,i against the co-confidence cn,i yields the decision flagmatch.

The formula for the device count is written in Equation 5.1. It also includes two fuzzy operations for

the VCDP and a counter to iterate over the history. The device count of the serial history has not been

included.



76 Chapter 5. Architecture and Design Space Exploration

csv
mapping

css
mapping

cdv
mapping

cds
mapping

fuzzyAND
(Min2)

fuzzyOR
(Max2)

csv,i,j

css,i,j

cdv,i,j

cds,i,j

value

index
Sorter
(asc)

fuzzyOR
(Max)

fuzzyAND
(Min)

>
match

cb,i

cn,i

cb,i,k

cn,i,k

ASUB

di,j
vi,new

vhi,j

Figure 5.4: Matching Confidence Datapath (Serial)

DMCDP = DASUB(W ) +DSORTER(H,W ) + 2 ∗DFUZZ1(R,C) + 2 ∗DFUZZ2(H,C)+

+DMin2 +DMax2 + 2 ∗DMaxk
(C) + 2 ∗DMink

(C) +DGT +DCNTR,DY N,SET (H) =

= 16W − 4 +DSORTER(H,W ) + 2 ∗DFUZZ1(R,C) + 2 ∗DFUZZ2(H,C)+

+ 16C − 8 + 32C − 16 + 6C − 4 + 4C ∗DFF + 4C ∗DMUX + 48⌈log2(H)⌉ − 2 =

= DSORTER(H,W )+2∗DFUZZ1(R,C)+2∗DFUZZ2(H,C)+16W +48⌈log2(H)⌉+166C−34

(5.1)

It takes n cycles to read the sample values from the history. The selected sorting unit (LED Sorter)

will start to push out the sorted distances when the sorter has been filled with all distances. Since the

fuzzification consists of RAM LUTs, they do not add additional cycles to the execution cycles. The Min

and Max operations at the end contain FF-registers. Therefore, after 2n cycles, the result(s) will be ready

at the outputs of the datapath.

Co-Confidenceless MCDP in Serial

Due to the redundancy of co-confidences in CCAM as described in Section 3.2.1, the MCDP can be

reduced to the design shown in Figure 5.5. The order of the fuzzification to csv,i,j and the sorting unit

can be changed, when the sorting order is changed to descending. As a consequence, the confidence

values csv,i,j will be sorted instead of the distances, but the fuzzification of the sorting index still has to

be done after the sorter.

The execution of this datapath still needs 2n clock cycles, however, the device count has been greatly



5.3. Signal State Detector 77

value

index

csv
mapping

css
mapping

fuzzyAND
(Min2)

csv,i,j

css,i,j
Sorter
(asc)

fuzzyOR
(Max)

>
match

0.5

cb,i

cb,i,k
ASUB

di,j

vi,new

vhi,j

Figure 5.5: Matching Confidence Datapath without Co-Confidences (Serial)

reduced.

DMCDP = DASUB(W ) +DSORTER(H,W ) +DFUZZ1(R,C) +DFUZZ2(H,C)+

+DMin2 +DMaxk
(C) +DMink

(C) +DGT +DCNTR,DY N,SET (H) =

= 16W − 4 +DSORTER(H,W ) +DFUZZ1(R,C) +DFUZZ2(H,C)+

+ 8C − 4 + 16C − 8 + 6C − 4 + 2C ∗DFF + 2C ∗DMUX + 48⌈log2(H)⌉ − 2 =

= DSORTER(H,W ) +DFUZZ1(R,C) +DFUZZ2(H,C) + 16W + 48⌈log2(H)⌉+ 86C − 22

(5.2)

Besides halving the number of requires memory bits for the fuzzification, the device count of the

logic that scales with the confidence bit width is also nearly halved by a reduction of 80C − 12 devices.

Co-Confidenceless MCDP in Parallel

Figure 5.6 shows the first part of CCAM’s MCDP in parallel. A parallel datapath only makes sense if the

sample history can be read in parallel and the resulting confidences can be passed to the sorting unit in

parallel. This includes that the sorting unit does not expect the data to arrive in serial).

If the sorting unit pushes the sorted elements out in parallel, the second half of the Matching

Confidence Datapath could be realized in parallel, as shown in Figure 5.7. Since the indexes of the

sorted elements are fixed in a parallel implementation, the fuzzification could be simplified, however,

the confidence css depends on the fill level of the history and is therefore not fixed.

Equation 5.3 shows the device count formula for the whole parallized datapath.
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DMCDP = H ∗DASUB(W ) +DSORTER(H,W ) +H ∗DFUZZ1(R,C) +DFUZZ3(H,C)+

+H ∗DMin2(C) +DMaxK
(H,C) +DMinK

(H,C) +DGT =

DSORTER(H,W ) +H ∗DFUZZ1(R,C) +DFUZZ3(H,C)+

+ 16HW − 4H + 8HC − 4H + 2 ∗ (H − 1) ∗ 8C + 6C − 4 =

= DSORTER(H,W )+H ∗DFUZZ1(R,C)+DFUZZ3(H,C)+ 16HW +24HC − 10C − 8H − 4

(5.3)

Since the fuzzification of the sample distances is one of the most expensive blocks in device count

or memory bits, a duplication of it is not desired. However, the sorting unit kind of cuts the datapath

in two halves, and parallelization of the second half seems to be more feasible if the sorter outputs all

sorted elements in parallel. Equation 5.4 estimates only the device count of the second half of the MCDP.
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DMCDP2 = DFUZZ3(H,C) +H ∗DMin2(C) +DMaxK
(H,C) +DMinK

(H,C) +DGT =

= DFUZZ3(H,C) + 8HC − 4H + 2 ∗ (H − 1) ∗ 8C + 6C − 4 =

DFUZZ3(H,C) + 24HC − 10C − 4H − 4 (5.4)

Threshold-based MCDP in Serial

When deciding on a threshold-based design, the datapaths become much simpler. Memory requirements

are greatly reduced and the logic of the datapaths transforms into a combination of counters and Boolean

operations. Figure 5.8 depicts the threshold-based MCDP.
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Figure 5.8: Threshold-based Matching Confidence Datapath

If the sample distances are less than a configurable threshold dth, the 1-bit "confidence" csv,i,j is

true. A counter counts the number of matching distances and in the end, this number has to surpass the

threshold kth which is the half of the current number of samples in the history. If there was a sample

distance that exceeded the threshold, csl,i,0 is set to false. Since the sorter is no longer required, the

execution of the MCDP takes n clock cycles. The formula of the estimated decive count is written in

Equation 5.5.

DMCDP = W ∗DREG +DCNTR,DY N,SET (H) +DASUB(W ) +DLT (W )+

+DCNTR,SET (⌈log2(H + 1)⌉) +DGT (⌈log2(H + 1)⌉) +DDFF +DMUX =

= 5W + 48⌈log2(H)⌉ − 2 + 16W − 4 + 6W − 4 + 44⌈log2(H + 1)⌉ − 2+

+ 6⌈log2(H + 1)⌉ − 4 + 26 + 2 = 48⌈log2(H)⌉+ 50⌈log2(H + 1)⌉+ 27W + 12 (5.5)
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It takes the register for the threshold dth, the counter for iterating over the history, and the calculation

of csl,i,0 into account.

5.3.2 Validity Confidence Datapath

Original VCDP in Serial

The unsimplified serial version of the VCDP is shown in Figure 5.9 and Figure 5.10. The first part should

be combined with the MCDP as it would only be an addition of one fuzzy AND and one fuzzy OR

operation instead of the whole circuit in Figure 5.9.
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Figure 5.9: First Part of the Validity Confidence Datapath (Serial)

In addition to fuzzification and the histories, the second part of the VCDP consists of a counter, four

fuzzy operations, and a Greater-Than comparison.

The device count is estimated as written in Equation 5.6. It includes a counter for iterating over both

confidence histories, the confidence histories, the fuzzy operations, the SAR counter, multiplexers to use

the fuzzification from the MCDP and the Greater-Than comparison. The SAR counter does not have to

count beyond the history length.

DV CDP = DCTNR,DY N,SET (H) + 2 ∗DCHISTORY (H,C) +DMink
(C) +DMaxk

(C)+

DMin2(C) +DMax2(C) +DCNTR,SET (⌈log2(H)⌉) + 2 ∗ 2 ∗ ⌈log2(H)⌉ ∗DMUX +DGT (C) =

= 48⌈log2(H)⌉ − 2 + 2 ∗DCHISTORY (H,C) + 2 ∗ (36C − 4) + 2 ∗ (8C − 4)+

+ 44⌈log2(H)⌉ − 2 + 8⌈log2(H)⌉+ 6C − 4 =

= 2 ∗DCHISTORY (H,C) + 100⌈log2(H)⌉+ 94C − 24 (5.6)
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Figure 5.10: Second Part of the Validity Confidence Datapath (Serial)

The execution of the VCDP takes n cycles to iterate over n confidence values in the confidence

histories.

Co-Confidenceless VCDP in Serial

Figure 5.11 shows the reduced Validity Confidence Datapath. Also here, almost half of the circuit was

removed as it computed the co-confidence cinv,i.

csl,i,0

Lowest
Confidence
History csl,i,j

fuzzyAND
(Min)

csl,i
fuzzyAND
(Min2)

cval,i

SAR
Counter

css
mapping

css,i,sr
> valflag

0.5

Figure 5.11: Co-Confidenceless Validity Confidence Datapath (Serial)

Equation 5.7 estimates the device count. The execution still takes n cycles for n ≤ H values in the

confidence history.
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DV CDP = DCTNR,DY N,SET (H) +DCHISTORY (H,C) +DMink
(C)

DMin2(C) +DCNTR,SET (⌈log2(H)⌉) + 2 ∗ ⌈log2(H)⌉ ∗DMUX +DGT (C) =

= 48⌈log2(H)⌉ − 2 +DCHISTORY (H,C) + 36C − 4 + 8C − 4+

+ 44⌈log2(H)⌉ − 2 + 4⌈log2(H)⌉+ 6C − 4 =

= DCHISTORY (H,C) + 96⌈log2(H)⌉+ 50C − 16 (5.7)

Threshold-based VCDP in Serial

The threshold-based implementation does not need a confidence history but a counter that countsH

cycles when csl,i,0 is below 0.5 (or rather 0 since it became a 1 bit flag). As for the SAR counter that

counts the number of samples since the last state reentrance, it only matters if the counter value exceeds

the threshold. Therefore, the counter bit width can be set to ⌈log2(H/2 + 1)⌉.

SAR
Counter

insert

reentrance

INV
Counter

insert

reentrance

csl,i,0

invc

<

H >> 1

sar

=

0

valflag
csl,i,0

Figure 5.12: Threshold-based Validity Confidence Datapath

The estimated device count is written in Equation 5.8. The execution takes 1 cycle since the counters

just have to be updated once per execution.
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DV CDP = DCNTR,DY N,SET (H/2 + 1) +DLT (⌈log2(H/2 + 1)⌉)+
+DCNTR,DY N,SET (H) + ⌈log2(H)⌉ ∗ (DMUX +DXOR) + 2 ∗DAND =

= 48⌈log2(H/2 + 1)⌉+ ⌈log2(H/2 + 1)⌉ ∗ 6− 4 + 52⌈log2(H)⌉+ 4 =

= 54⌈log2(H/2 + 1)⌉+ 52⌈log2(H)⌉ (5.8)

5.3.3 Synthesis Results with Original Datapaths

The design has been implemented in Verilog with the same simplified control logic as the threshold-based

version but without any simplification of the datapaths. Moreover, the extended cell library has also

not been used. Figures 5.13 and 5.14 show the logic device count from the synthesis results and the

memory requirements with a fixed number of storable Signal States S of 8 and a confidence bit width C

of 1. The device count and the memory size seem to grow linearly with increasingW or H . A major

difference from the results of the threshold-based Signal State Detector in the next subsection is the

linear dependence of the device count on H . The results are also listed in Table 5.4. The LUT RAMs for

fuzzification have not been added to these numbers and have to be considered additionally.

(a) Logic Device Count (b) Memory Bits

Figure 5.13: Device Count and Memory for CCAM Signal State Detector over W, S=8, C=1

Figure 5.15 clearly shows that the device count grows linearly with increasing C . The growth of the

memory size over C has a higher gradient. The precise numbers are also written in Table 5.5.

Thw worst case execution cycles can be calculated as (2H + 2) + (2H + 3)S + (H + 2) + 4 =

(2H +3)S +3H +8 when all histories are full and only the last Signal State at the last slot is matching.
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Table 5.4: Device Count Results of CCAM Signal State Detector with C=1

W H S C Complete DC Logic DC RAM Bits
4 4 8 1 5974 3542 216
8 4 8 1 7436 4324 344
12 4 8 1 8888 5096 472
16 4 8 1 10356 5884 600
4 8 8 1 9486 4864 416
8 8 8 1 12358 6416 672
12 8 8 1 15176 7914 928
16 8 8 1 18078 9496 1184
4 16 8 1 17670 8698 808
8 16 8 1 21804 10232 1320
12 16 8 1 27270 13098 1832
16 16 8 1 32830 16058 2344

Table 5.5: Device Count Results of CCAM Signal State Detector with H=10, S=8

W C Complete DC Logic DC RAM Bits
4 1 11326 5570 520
4 8 19620 8054 1640
8 1 14876 7480 840
8 2 16080 7854 1000
8 4 18290 8404 1320
8 6 20658 9112 1640
8 8 23170 9964 1960
16 1 21890 11214 1480
16 2 23114 11608 1640
16 4 25320 12154 1969
16 6 27676 12850 2280
16 8 30200 13714 2600
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(a) Logic Device Count (b) Memory Bits

Figure 5.14: Device Count and Memory for CCAM Signal State Detector over H, S=8, C=1

(a) Logic Device Count (b) Memory Bits

Figure 5.15: Device Count and Memory for CCAM Signal State Detector over C, H=10,S=8

5.3.4 Synthesis Results with Threshold-based Datapaths

The TCAM Signal State Detector contains both threshold-based datapaths and was synthesized with the

extended gate library. Figure 5.16 shows synthesis results of the logic design excluding memory and the

required memory bits in a 3-dimensional plot. The complete device count is depicted in the 3D plot in

Figure 5.17. Since there are three design parameters (S,H andW ), the number of storable Signal States

S has been set to 8 in these diagrams to create 3-dimensional plots.

Figures 5.18 and 5.19 show the same information in a 2-dimensional plot for a more detailed

inspection. Apparently, the logic device count grows logarithmically by the history length but linearly

by the sample bit width. The logarithmic shape of the curves is probably due to the counting and

addressing logic with adress bit width of ⌈log2(H)⌉. The memory size, however, scales linearly on both
parameters, H andW .
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(a) Logic Device Count (b) Memory Bits

Figure 5.16: Device Count and Memory for TCAM Signal State Detector, S = 8

Figure 5.17: Total Device Count of TCAM Signal State Detector, S = 8
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Figure 5.18: Logic Device Count for TCAM Signal State Detector, S = 8 (2D)
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Figure 5.19: RAM Bits for TCAM Signal State Detector, S = 8 (2D)

Figures 5.20 and 5.21 show that S almost does not affect the logic device count. The control logic

includes a counter that computes the address of the Signal State but the state machines and datapaths

are not affected at all. The number of memory bits, however, grows linearly with increasing S. The

sample history has clearly a much stronger influence on the device logic than the remaining control

logic and datapaths.
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Figure 5.20: Device Count and Memory Bits for TCAM Signal State Detector, W = 8

The synthesis results and the calculated memory size are shown in Table 5.6. Some columns have

been removed from the table to make it more compact.

The worst case of execution cyles of this implementation amounts to (H +2)+ (H +3)S+4 when

all Signal State Slots contain Signal States and only the last one matches.
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Table 5.6: Synthesis Results of the TCAM Signal State Detector

W H S Complete DC Logic DC RAM Bits
4 4 4 2380 1788 76
8 4 4 2836 1884 140
16 4 4 3768 2096 268
4 8 4 3194 2118 144
8 8 4 3970 2214 272
16 8 4 5542 2426 528
4 16 4 4340 2324 276
8 16 4 5756 2420 532
16 16 4 8608 2632 1044
4 4 8 2928 1788 152
8 4 8 3704 1884 280
16 4 8 5276 2096 536
4 8 8 4210 2118 288
8 8 8 5626 2214 544
16 8 8 8478 2426 1056
4 16 8 6272 2324 552
8 16 8 8968 2420 1064
16 16 8 14380 2632 2088
4 4 16 4016 1788 304
8 4 16 5432 1884 560
16 4 16 8284 2096 1072
4 8 16 6234 2118 576
8 8 16 8930 2214 1088
16 8 16 14342 2426 2112
4 16 16 10128 2324 1104
8 16 16 15384 2420 2128
16 16 16 25916 2632 4176



5.4. System State Detector 89

History Length (H)
4

6
8

10
12

14
16

St
at

e 
Sl

ot
s 
(S

)

4
6

8
10

12
14

16

N
E
M

 D
e
v
ic

e
 C

o
u
n
t

4000

6000

8000

10000

12000

14000

Complete Device Count over H and S for W = 8

Figure 5.21: Total Device Count of TCAM Signal State Detector, W = 8

5.4 System State Detector

The System State Detector receives the outputs of all Signal State Detectors, including the Signal State

IDs, the Signal State flags and the calculated confidences. Figure 5.22 depicts the topology of this module.

The first component is a synchronization stage that stores all relevant Signal State Detector outputs until

the computation can start. This happens when all Signal State Detectors have updated their estimation.

The data is then passed to the state machine and the aggregator. As the Signal State IDs are the most

important information for the System State Detector, it passes them to the memory management unit

(MMU) to store them when a new System State is created. The ID checker compares the current Signal

State IDs to the moored State IDs that the System State has been created with. If one of the input

Signal State IDs or one of the output Signal State IDs does not match, this information is fed back to the

FSM. Since the datapath of the functioning confidence consists only of a counter and a LUT RAM for

fuzzification, no separate datapath module has been depicted in the topology.

SYNC
STAGE

FSM

MMU

ID
Checker

Aggregator

Figure 5.22: System State Detector Topology
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As the focus of the research was on the more important Signal State Detector, the System State

Detector was only implemented without confidence values. It supports threshold-based and confidence-

based Signal State Detectors because it only needs the Signal State IDs and the Signal State flags.

Therefore, the fuzzification of the functioning confidence has not been implemented. The information is

more compact in the form of the disparity counter before fuzzification or as a flag that compares the

counter value against a threshold.

In principle, the aggregation would use a fuzzy AND operation across all kind of confidences from

the Signal State Detectors to get one common confidence value across the system. Co-confidences are

aggregated by a fuzzy OR operation, respectively. The exact calculations to get the overall confidence

have been mentioned in Section 3.2.6.

5.4.1 Synthesis Results

The relevant design parameters of the System State Detector are the number of observed SuO signalsN ,

the bit width of the Signal State ID SW = ⌈log2(S)⌉ and the number of storable System States Y . If
the System State Detector would also handle confidence values, the bit width of confidence values C

would also have to be considered. Therefore, the design of the System State Detector is independent of

the sample bit widthW and the history length H . Of course, the implementation of the Signal State

Detectors affects the detection of the System State but does not affect the device count and the number

of required execution cycles.

Table 5.7 shows the synthesis results. Figures 5.23 and 5.24 depict them in diagrams for a fixed

number of SuO signals, whereas Figures 5.25 and 5.26 show diagrams with a fixed number of System

State slots. Since not the number of Signal State slots is relevent to the System State Detector but the

bit width of Signal State IDs, the device count does not increase with every increase of S. The device

count and the memory size have a linear dependence on the number of monitored SuO signals N . The

number of available System State slots only affects the memory size linearly but has hardly any effect

on the logic device count.

The worst case of execution cyles of the System State Detector is 2Y + 5 cycles. Before the System

State Detector starts its execution, however, all Signal State Detectors have to update their results.
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Table 5.7: Synthesis Results of the TCAM System State Detector

N S Y Complete DC Logic DC RAM Bits
2 4 4 624 490 20
2 4 8 764 490 40
2 4 12 912 490 60
2 4 16 1036 490 80
2 8 4 744 570 28
2 8 8 924 570 56
2 8 12 1112 570 84
2 8 16 1276 570 112
2 12 4 864 650 36
2 12 8 1084 650 72
2 12 12 1312 650 108
2 12 16 1516 650 144
2 16 4 864 650 36
2 16 8 1084 650 72
2 16 12 1312 650 108
2 16 16 1516 650 144
3 4 4 934 760 28
3 4 8 1114 760 56
3 4 12 1302 760 84
3 4 16 1466 760 112
3 8 4 1114 880 40
3 8 8 1354 880 80
3 8 12 1602 880 120
3 8 16 1826 880 160
3 12 4 1294 1000 52
3 12 8 1594 1000 104
3 12 12 1902 1000 156
3 12 16 2186 1000 208
3 16 4 1294 1000 52
3 16 8 1594 1000 104
3 16 12 1902 1000 156
3 16 16 2186 1000 208
4 4 4 1226 1012 36
4 4 8 1446 1012 72
4 4 12 1674 1012 108
4 4 16 1878 1012 144
4 8 4 1466 1172 52
4 8 8 1766 1172 104
4 8 12 2074 1172 156
4 8 16 2358 1172 208
4 12 4 1706 1332 68
4 12 8 2086 1332 136
4 12 12 2474 1332 204
4 12 16 2838 1332 272
4 16 4 1706 1332 68
4 16 8 2086 1332 136
4 16 12 2474 1332 204
4 16 16 2838 1332 272
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Figure 5.23: Device Count and Memory Bits for TCAM System State Detector, N = 4
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Figure 5.24: Total Device Count of TCAM System State Detector, N = 4
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Figure 5.25: Device Count and Memory Bits for TCAM System State Detector, Y = 8
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Figure 5.26: Total Device Count of TCAM System State Detector, Y = 8

5.5 CAM Accuracy Results

When configuring the fuzzification Look-Up Tables of CCAM correctly, it provides the same accuracy at

an arbitrary confidence bit width as a threshold-based solution. Therefore, the results for the accuracy

have been shared. Unless the confidence values are not needed in a subsequent system, there are no

disadvantages of using the threshold-based TCAM instead of CCAM. The timeseries used for testing

originate from the CCAM case study mentioned earlier in Section 3.1. The selected timeseries snippets

are:

1. 20180529_NormalModeSeveralChanges

2. 20180529_BrokenSystem

3. 20180529_Drift

4. 20180529_NormalTwoTimesSameState

Since some of the signals to be monitored do not change effectively in any of the selected test cases,

the number of monitored signals can be reduced. In the following measurements, the control input

V oltage and the SuO outputs SharkyS, SharkyB and Dyna have been observed. In the following

subsections the results of the mentioned test cases are presented. The diagrams and results of test case

20180529_NormalTwoT imesSameState did not add additional value and have been skipped.

5.5.1 Test Case 1: 20180529_NormalModeSeveralChanges

Figures 5.27, 5.28 show the results on the timeseries snippet 20180529_NormalModeSeveralChanges. The

accuracy of the detection of a Signal State drops significantly when the sample bit width is decreased

too much. A bit width of 8 is sufficient for all of the relevant Signal State Detectors in the hydraulic
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system data set. A bit width of 7 still gives good results but a decrease in accuracy is already noticeable

for some of the observed signals. When all Signal States are derived correctly, also the System State will.

Although history length does not appear to have an important effect on accuracy in Figure 5.27, the

functioning flag produces incorrect outputs below a history length of 9. This means that the System

State stays in a potential state that is the correct System State but detects a mismatch.

(a) Voltage Signal State ID (b) SharkyB Signal State ID

Figure 5.27: Accuracy of Signal State Detection on (1)
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Figure 5.28: Accuracy of System State Detection on (1)

5.5.2 Test Case 2: 20180529_BrokenSystem

Figures 5.29 and 5.30 show results from a run on the timeseries 20180529_BrokenSystem in which the

SuO was indeed not working as intended. The accuracy of the functioning flag drops below a history

length of 8. For lower sample bit widths, shorter history lengths also produce correct results, however,

in this case the quantization of the samples probably mitigates the effect of outliers and noise to some
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extent.
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(a) SharkyB Signal State ID
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(b) Dyna Signal State ID

Figure 5.29: Accuracy of Signal State Detection on (2)
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Figure 5.30: Accuracy of System State Detection on (2)

5.5.3 Test Case 3: 20180529_Drift

Figures 5.31 and 5.32 show the accuracy of the results on the 20180529_Drift snippet. The drift detection

of CCAM has not been implemented, however, the drift detection can be seen as an optional module

that is able to detect drift but is not mitigating its effect on the state detection. This is where the sample

history comes into effect. Only a slightly shorter history length of 9 already yields wrong results on this

test case.
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(a) SharkyB Signal State ID

History Length (H)
4

5
6

7
8

9
10

Bit 
W

id
th

 (
W

)

4
6

8
10

12
14

16

A
c
c
u
ra

c
y

0.6

0.7

0.8

0.9

1.0

[Dyna] Accuracy of State ID over H and W

(b) Dyna Signal State ID

Figure 5.31: Accuracy of Signal State Detection on (3)
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(a) System State ID
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Figure 5.32: Accuracy of System State Detection on (3)

5.6 Discussion

The results of the accuracy measurements show that the minimum design parameters that are acceptable

for the hydraulic system data set are a sample bit width of 8 and a history length of 9 when no drift

occurs. Otherwise, the history length has to be kept at 10.

Table 5.8: Maximum Used State Slots for Working Configurations

Test Case Voltage SharkyS SharkyB Dyna System
20180529_NormalModeSeveralChanges 3 1 4 4 3
20180529_BrokenSystem 1 2 3 3 1
20180529_Drift 1 5 3 2 1
20180529_NormalTwoTimesSameState 2 1 4 3 2
Maximum 3 5 4 4 3

The maximum numbers of signal state slots and system state slots required for the working con-
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figurations are shown in Table 5.8. The total maximum number of stored Signal States was 5 and the

maximum number of System States was 3. As further states may be created with longer time series, at

least S = 8 and Y = 4 are suggested, however, even these numbers would be most probably too low in

the real application. Table 5.9 summarizes the selected design parameters.

Table 5.9: Selected Design Parameters

W H S Y
8 10 8 4

The following device count requirements (Table 5.10) can be derived from these design parameter

settings:

Table 5.10: Results for selected Design Parameters

Design Opt C Complete DC Logic DC RAM Bits WC Cycles
CCAM Signal State Detector - 4 18290 8404 1320 222
CCAM Signal State Detector 4 15312 6474 1320 222
CCAM Signal State Detector - 1 14876 7480 840 222
CCAM Signal State Detector 1 12222 5874 840 222
TCAM Signal State Detector - - 7818 3172 680 120
TCAM Signal State Detector - 6602 2364 680 120
TCAM System State Detector - - 1520 1214 52 13
TCAM System State Detector - 1466 1172 52 13

Results from synthesis with the basic and extended standard cell library are shown (Opt column).

The confidence-based design has been synthesized with a confidence bit width of 4 and a confidence bit

width of 1. However, a confidence value of one transforms CCAM in fact already into a threshold-based

design but without the simplifications that were made possible. Fuzzification has not yet been considered

and has to be added to the resulting numbers. The LUT RAM is not necessary for C = 1, but for C = 4.

If an LUT RAM address range of R = ⌈15 ∗ 2W ⌉ for containing the configurable slope of the fuzzy
functions csv and cdv are assumed, the additional memory requirement would be as shown in Table 5.11.

Table 5.11: RAM Bits of fuzzification with C = 4

Fuzzy Function Equation Reference RAM Bits
csv 4.12 208
cdv 4.12 208
css 4.14 55
cds 4.14 55

Total Σ 526

Figures 5.33 and 5.34 depict the results from Table 5.10. Without surprise, the threshold-based Signal

State Detector performs best in means of device count and the worst case cycle count. The device

count of the confidence-based Signal State Detector with C = 4 amounts to about 21000 devices when
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including the fuzzification. The optimized threshold-based design has only 31.4% of this device count

which is approximately a reduction of 68.6%. The extension of the standard cell library reduced the

logic device count of the TCAM Signal State Detector by 25.5 % which leads to an overall device count

reduction of 15.5 % when including memory.
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Figure 5.33: Signal State Detector Design Comparison
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5.7 Summary

This chapter presented the basic architecture and explored different datapath designs of hardware

implementations of confidence-based CCAM and threshold-based TCAM. Then, synthesis and simulation

results are discussed and the device count and worst case cycle count for a design parameter setting

that yields satisfying accuracy for out test dataset are given.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

By going through the ASIC design flow of CCAM targeting NEMS, insight has been gained for both

CCAM and NEMS. Due to the hardware restrictions and the lack of a NEMS processor, the whole

algorithm has been synthesized to hardware instead of following a hardware/software co-design.

At first, the original CCAM algorithm (A) has been adapted to be more hardware-friendly by

removing division operations (B). After thorough simplification, the algorithm was reduced further to a

threshold-based algorithm called TCAM (C). Versions B and C have both been implemented in Verilog

and synthesized to a netlist of gates constructed from NEM switches. By an extension of the standard

cell library for synthesis, the synthesis results have been considerably improved. The device count of

the logic design of the Signal State Detector has been decreased by 25.5 %. Furthermore, custom NEM

designs for basic components like counters or an absolute subtractor have been introduced that are

optimized to the capabilities of 4-T NEM devices.

In the end, the trade-off between accuracy and the device count of implementations B and C has

been explored by using the example of a use case that monitors a hydraulic system. The results show an

astonishing decrease in the device count of 68.6% from CCAM to TCAM for the setting of the selected

design parameters.

6.2 Future Work

Future work could include applying CCAM to an actual NEMS use case in a harsh environment. The

dataset that has been used for the validation of the results was captured from a hydraulic system for

previous work on CCAM. As fuzzy logic operations have been implemented, the acquired knowledge

could also be propagated to different NEMS fuzzy logic designs.
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With regard to the underlying NEMS technology, during the design process for the CCAM case

study, the strengths and weaknesses of the current state of the NEMS design flow have become apparent.

A big advantage of NEMS designs is that they require a lower device count than conventional CMOS

designs due to the 4-T and 7-T devices, however, the potential is still not utilized to the full extent.

Therefore, one of the next steps is to adapt a synthesis tool for optimization toward NEMS.

Another possibility is to add more standard cells to the NEMS standard cell library mentioned in [2]

and to further optimize the ones already present. Especially the flip-flops in the standard cell library do

not use 4-T devices although they are by far the most area-demanding standard cells. This leads also to

the preference for asynchronous design techniques. Synchronous designs require a clock signal that is

still difficult to provide in NEMS and this results in high switching activity, and thus in increased power

consumption and faster contact degradation of the NEMS devices. Therefore, asynchronous design suits

the technology and implementing basic building blocks for asynchronous designs in NEMS would pave

the way for an asynchronous CCAM implementation in the future.
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