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Abstract: In order to improve the current standard of analysis-ready Synthetic Aperture
Radar (SAR) backscatter data, we introduce a machine learning-based approach to estimate
the slope of the backscatter–incidence angle relationship from several backscatter statistics.
The method requires information from radiometric terrain-corrected gamma nought time
series and overcomes the constraints of a limited orbital coverage, as exemplified with
the Sentinel-1 constellation. The derived slope estimates contain valuable information
on scattering characteristics of different land cover types, allowing for the correction of
strong forward-scattering effects over water bodies and wetlands, as well as moderate
surface scattering effects over bare soil and sparsely vegetated areas. Comparison of the
estimated and computed slope values in areas with adequate orbital coverage shows good
overall agreement, with an average RMSE value of 0.1 dB/◦ and an MAE of 0.05 dB/◦. The
discrepancy between RMSE and MAE indicates the presence of outliers in the computed
slope, which are attributed to speckle and backscatter fluctuations over time. In contrast,
the estimated slope excels with a smooth spatial appearance. After correcting backscatter
values by normalising them to a certain reference incidence angle, orbital artefacts are
significantly reduced. This becomes evident with differences up to 5 dB when aggregating
the normalised backscatter measurements over certain time periods to create spatially
seamless radar backscatter composites. Without being impacted by systematic differences
in the illumination and physical properties of the terrain, these composites constitute a
valuable foundation for land cover and land use mapping, as well as bio-geophysical
parameter retrieval.

Keywords: Sentinel-1; radiometric terrain correction; analysis-ready data; incidence angle

1. Introduction
The last two decades have seen a surge in the availability of C-band Synthetic Aperture

Radar (SAR) data due to the successful launches of Envisat ASAR in 2002, RADARSAT-2 in
2009, Sentinel-1 CSAR in 2014/2016, and the RADARSAT Constellation Mission (RCM) in
2019. In comparison to optical sensors, C-band SAR has the ability to penetrate through
clouds and features day-and-night operability, making it an indispensable data source
for the Earth Observation (EO) user community. Microwaves in the C-band frequency
domain are highly responsive to the presence of water, allowing one to monitor bio-
geophysical processes such as soil moisture [1,2], vegetation dynamics [3,4], snow melt [5,6],
and flooding [7,8].
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However, the side-looking acquisition geometry of SAR has the disadvantage of
causing terrain distortions, which can only be corrected to a certain degree. A Digital
Elevation Model (DEM) is a prerequisite to geolocate each observation correctly by using
the well-established range-Doppler geocoding procedure. DEMs are also used to derive
essential geometrical properties of SAR observations, e.g., the local incidence angle or
the scattering area. These terrain characteristics are indispensable for transforming the
measured radar brightness (β0) into the backscatter coefficients sigma nought (σ0) and
gamma nought (γ0), which are based on models that approximate the surface as a collection
of small, spherical scatterers [9,10]. γ0 refers to the area perpendicular to the looking
direction and is often the preferred quantity for a complex surface, since it remains constant
for a perfectly rough surface or dense vegetation [11,12].

The orientation of the terrain with respect to the sensor significantly impacts the
radiometry, since the size of the local illuminated area is one of the key components that
govern the returned signal. Mitigating these radiometric distortions is essential to reveal
the underlying signal of objects covering the terrain. Thus, several Radiometric Terrain
Correction (RTC) methods have been developed to normalise backscatter data and to
reduce their dependence on the looking direction. As an example, Ulander [13], Loew
and Mauser [14], Hoekman et al. [12], and Vollrath et al. [15] presented geometric angular-
based terrain slope and azimuth corrections using the local incidence (θ/θi) and projection
(ψ) angle. However, these approaches apply a correction directly in map geometry and
neglect the homomorphism between orbit and map geometry, which is taken into account
by Small’s radiometric terrain-flattening algorithm [16,17]. Small’s RTC method directly
utilises the local illuminated area of the sensor to normalise backscatter data in orbit
geometry, which results in the so-called RTC gamma nought backscatter coefficient (γ0

T).
γ0

T is a major milestone on the road to analysis-ready SAR backscatter data and was,
thus, chosen by the Committee on Earth Observation Satellites (CEOS) as the standard for
Normalised Radar Backscatter (NRB) [18].

Several NRB products from various software packages have already been thoroughly
validated and tested by Flores-Anderson et al. [19], demonstrating their superiority in
undulated terrain and in densely vegetated regions. γ0

T has also already proven beneficial
for deriving higher-level products, e.g., forest and wet snow maps [20–22]. Substantial effort
is needed to roll out NRB data production globally, since radiometric terrain correction
is a time-consuming process [23]. Other backscatter coefficients like Geometric Terrain-
Corrected (GTC) sigma nought (σ0) require fewer resources but clearly lack adequate
radiometric quality in steeper terrain or when comparing backscatter between near and far
ranges [19]. Regardless of the chosen coefficient or methodology for RTC, it is important to
note that georeferencing and RTC operations are DEM-dependent, leading to an over- or
under-compensation of the computed local illuminated area [14,16].

In addition to Small’s RTC algorithm [17], Small et al. [24] proposed a method for gen-
erating wide-area, analysis-ready radar backscatter composites. By calculating a weighted
average using the Local Contributing Area (LCA), preference is given to measurements
with a higher local resolution. In steep terrain, the method allows for the combination of
observations from different orbit directions considering the orientation of the terrain facets
and automatically fills gaps caused by shadowing.

The RTC methods presented in the studies of Small et al. [16,17,24] and Loew and
Mauser [14] only take into account the geometric component of the SAR acquisition,
without considering the scattering properties of the target. Several publications have
demonstrated the sensitivity of the C-band backscatter–incidence angle relationship to
certain types of land cover [25–30]. For instance, backscatter from dense vegetation shows
little dependence on the incidence angle due to a high volume-scattering contribution,
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whereas water bodies act as mirrors, scattering the incoming radiation away from the sensor.
Thus, when measurements from different orbits are aggregated, wherever a strong incidence
angle dependence exists, systematic orbital artefacts emerge in the combined product.

Zhao et al. [31] and Villard et al. [32] extended the RTC standard, which is only based
on the scattering area, by also correcting for polarisation-dependent scattering mechanisms
of the land cover, such as differences caused by double bounce and volume scattering
over vegetated areas. Both studies utilised polarimetric SAR data to perform a so-called
Polarimetric Orientation Angle (POA) correction. Due to the correlation of the rotation
of the polarisation ellipse with the azimuth angle, POA can be used to reduce azimuthal
effects in the backscattering coefficient. Both studies confirmed that after POA-corrected
measurements have been normalised by the local scattering area, it is still necessary to
account for Angular Variation Effects (AVEs). Using an incidence angle-based cosine
model [11] coupled with polarimetric information, both studies were able to minimise
reflection asymmetry and incidence-angle dependence over forested areas. Chen et al. [33]
focused on normalising backscatter data to a common reference angle over the Greenland
ice sheet and resolved the issue of incidence-angle dependence by considering freeze–thaw-
related factors.

However, these methods require polarimetric SAR data, sufficient orbital coverage,
or auxiliary data and are optimised for one specific type of land cover. Generic and ade-
quate modelling of the backscatter–incidence angle relationship is therefore key to being
able to normalise backscatter to a common reference incidence angle, which mitigates the
impact of incidence angle-dependent scattering for different types of land cover. Existing
approaches utilise linear regression or first-order radiative transfer models on a dense
time series of backscatter–incidence angle observations to describe this relationship with a
slope value (first-order derivative) and, if possible, a curvature value (second-order deriva-
tive) [12,25,34–36]. Depending on the given satellite and acquisition strategy, observations
from a multitude of different incidence angles may be limited, requiring a reduction in the
complexity by assuming a linear relationship. Scatterometers like ASCAT offer simultane-
ous measurements in six different directions, whereas SAR sensors provide observations
from only a single looking direction from distinct relative orbits.

At the forefront of modern SAR missions, Sentinel-1 stands out due to its high spatio-
temporal resolution, stable orbit trajectory, and open data access policy [37]. To achieve a
high and regular revisit time globally, Sentinel-1 revolves the Earth in 175 Sun-synchronous,
relative orbits at a height of 700 km. This acquisition scheme, together with the observation
scenario that gives preference to European land and tectonic areas, yields a limited set
of measurements from different incidence angles [38]. With the majority of Earth’s land
surfaces only being covered by one orbit, it is impossible to use linear regression to calculate
a slope value. Other studies working with GTC sigma nought backscatter used an average
slope value for areas where it is not possible to calculate a slope [27] or introduced a
multivariate linear regression model based solely on backscatter [35] or other auxiliary
variables [33].

In this paper, our aim is to improve the current standard of analysis-ready SAR
backscatter data by creating seamless, normalised radar backscatter composites. Building
on the work of Bauer-Marschallinger et al. [35] and Hoekman et al. [12], we introduce a
novel Machine Learning (ML)-based approach to estimate slope values from several γ0

T
backscatter statistics. This approach relies on the assumption that there is a correlation
between backscatter statistics and the actual computed backscatter–incidence angle slope.
Certain statistics, such as the average backscatter and the sensitivity (representative of
the spread of the backscatter distribution), have been found to correlate well with the
backscatter–incidence angle slope [35,39].
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Since land cover effects prevail after correcting for geometric terrain illumination,
the complexity of the relationship between backscatter and incidence angles increases.
Thus, machine learning may help to estimate this relationship more reliably than a simple
multivariate regression model when working with γ0

T instead of σ0. This novel approach
enables the global availability of a γ0

T backscatter–incidence angle slope to normalise
backscatter data to a certain reference angle without being limited to well-covered regions.

Section 2.6 explains the design of the machine learning model in more detail. Our
SAR pre-processing engine, wizsard, which was developed in-house, was used to generate
RTC gamma nought backscatter data cubes for several regions of interest around the world
(Section 2.1.2). The statistical parameters derived from these data cubes (Section 2.4) were
ingested into the machine learning model to train and estimate a slope value (Section 3.1).
The estimated slope value was then used to normalise the backscatter data to a certain
reference incidence angle, preferably to the mean incidence angle of Sentinel-1’s swath at
around 38◦ [27]. Finally, we present the aggregated result of normalised backscatter time
series as seamless radar backscatter composites in Sections 3.2 and 3.2.2.

2. Materials and Methods
2.1. Input Data
2.1.1. Regions of Interest

Figure 1 provides a global overview of all 36 regions of interest for this study. The se-
lection was performed based on the following criteria: (a) broad global coverage, (b) a
diverse distribution of land cover types (Figure 1, bottom), and (c) consideration of the
number of relative orbits (Figure 1, top). ESA’s WorldCover 2021 land cover dataset served
as a reference to assign a land cover type to each data point [40]. The number of relative
orbits was calculated from the GTC sigma nought data cube from Wagner et al. [41] for
the years spanning 2019–2022. The global distribution shown in Figure 1 highlights the
sparse multidirectional and multiorbital acquisition scheme of Sentinel-1 outside of Europe.
Approximately half of global land surfaces are observed from more than one relative orbit.
In particular, Africa and Oceania are only imaged from one orbit direction. Retrieving a
slope value by applying linear regression on backscatter and incidence angles is therefore
impossible for these regions and requires a different approach to obtain a reliable estimate.

The dots in Figure 1 (bottom) mark the regions of interest and are scaled by the average
terrain slope derived from the 30 m Copernicus DEM [42]. Most of the regions are in rather
flat or hilly terrain (0–20◦), and a few are located in steeper terrain (>20◦), e.g., in the Alps
and the Himalayas.

Each region of interest has an extent of 100 × 100 km and is represented as a tile in
the Equi7Grid system [43], which minimises distortions and oversampling, making this
an optimal gridding and projection system for high-resolution raster data. All imagery
were sampled at or resampled to 20 m following the datacube architecture reported in [41].
The following subsections provide more details on the input data generated for each tile
defining a region of interest.

2.1.2. RTC Backscatter

The key input for our experiments is RTC gamma nought backscatter derived from
Sentinel-1 Ground Range Detected (GRD), Interferometric Wide (IW) swath data. Sentinel-1
IW GRD data were retrieved for the years 2019, 2020, and 2021 from the Earth Observation
Data Centre for Water Resources Monitoring (EODC, [44]) storage and processed at the
Vienna Scientific Cluster 5 (VSC-5, [45]). We specifically limited the time range of the input
data to these years to (a) limit the impact of border and thermal noise, which was mitigated
after the release of version 2.90 of the Instrument Processing Facility (IPF) software [46–48],
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and (b) benefit from the dense observation time series from both satellites (Sentinel-1A
and Sentinel-1B). Unfortunately, due to an anomaly in the instrument’s power supply,
Sentinel-1B stopped delivering radar data on 23 December 2021 [49].

Number of orbits

0 1 2 3 4 5 6

0 10 20 30

Terrain slope [◦]

No data

Tree cover

Shrubland
Grassland

Cropland
Build-up Bare

Snow & ice

Water bodies
Wetland

Mangroves

Moss & lichen

Figure 1. Number of relative orbits derived from Wagner et al. [41] (top) and ESA WorldCover
2021 [40] (bottom). All regions of interest are visible as black markers and are scaled by the average
terrain slope in the lower figure. The crosses in the upper figure remain constant to avoid overlaying
any interesting orbital patterns.

The total volume of input data of around 25 TB distributed across 25,000 files requires
a significant amount of processing effort to perform radiometric terrain flattening and geo-
referencing. Our in-house-developed, efficient SAR pre-processing toolbox, wizsard [23,50],
alleviated the heavy lifting and enabled the production of RTC gamma nought backscatter.
The processing chain utilising wizsard is shown in Figure 2 and resembles the ones pre-
sented in [23,50]. We used the Copernicus DEM 30 m [42] for all map geometry and precise
orbit data (POEORB [51]) for all orbit geometry operations.
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Scene extraction
from DEM

S1 IW GRDH

γ0
T datacube

CopDEM 30m

POEORB

POEORB
data selection

Orbit data
interpolation

Thermal noise
correction

Radiometric
calibration

Look-up table

generation
Local contr.
area computation

Area
projection

Radiometric
normalisation

Resampling
Reprojecting to

Equi7Grid
Tiling

Compressed data

writing

Figure 2. RTC gamma nought (γ0
T) pre-processing workflow implemented in wizsard. The grey boxes

represent a specific processing step; the smaller boxes in the upper corner represent the input layers,
and those in the lower corner represent the output layers. The colours of the small boxes help to trace
the data flow of the processing chain. More details can be found in [23].

On top of the processing chain presented in [23], we added cubic-spline re-gridding of
scene-based RTC backscatter data from the LatLon projection to tile-based data cubes with
a 20 m sampling in the Equi7Grid system. The target sampling of 20 m not only drastically
reduces the data volume but also diminishes the effect of speckle. wizsard still applied
a scene-by-scene-based processing approach, where narrow gaps might occur between
adjacent scenes of the same swath after georeferencing [27].

To obtain information on the viewing geometry necessary for estimating the
backscatter–incidence angle relationship, the local incidence angle and the local contribut-
ing area per relative orbit were computed following the framework presented by Navac-
chi et al. [23,50]. In addition, wizsard was used to generate a static layover and shadow mask
per relative orbit to remove artefacts originating from the side-looking data acquisition of
the radar sensor [52].

2.2. Slope (β) Computation

Within the limits of DEM accuracy and resolution, the generated γ0
T data cubes show

a significant reduction in the influence of the illuminated area on the backscattered sig-
nal [14,16]. The remaining systematic influence of the sensor’s viewing geometry after
RTC is governed by the scattering characteristics of the land surface [53]. γ0

T resembles the
scattering area-corrected data of Zhao et al. [31] and Villard et al. [32], who further nor-
malised the data using polarimetric or aggregated backscatter–incidence angle correlation
information over forested areas. However, γ0

T from Sentinel-1 only provides dual-polarised
measurements and a limited orbital coverage to model and utilise the backscatter–incidence
angle relationship for normalisation. In general, complex spatio-temporal variations ex-
acerbate the physical modelling of the backscatter–incidence angle relationship, which
is therefore often simplified by a single linear slope coefficient (β [db/◦]). Equation (1)
defines this linear relationship specifically for the local incidence angle (θ) and RTC gamma
nought (γ0

T).
γ0

T(θ) = β · θ + const. (1)

β is usually calculated directly from observation pairs (θ, γ0
T) using linear regres-

sion [35,39]. Scatterometers such as ASCAT offer concurrent measurements from various
incidence angles (25–64◦), enabling a reliable estimation of β [54]. However, the C-band
sensor onboard Sentinel-1 observes Earth from a single looking direction and operates in
175 distinct relative orbits [37]. This yields a limited range of backscatter observations
from different incidence angles, with a maximum coverage of six orbits over northern land
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surfaces (Figure 1, top). Reliably computing the slope of the backscatter–incidence angle
relationship is therefore challenging, given the narrow range (29–45◦ for the IW mode) and
sparse set of incidence angles.

Due to these constraints, it is essential to mask areas where the following rules apply:

• Locations are only observed by one orbit, i.e., the linear system is under-determined;
• The relative standard error of the slope calculation should not exceed 5 % with re-

spect to the given incidence angles and the average incidence angle (θ0) of 38◦ for
Sentinel-1’s IW mode, as formulated by the following equations [55]:

SEγ0
T
= Sγ0

T ·θ · C (2)

C =

√
1 +

1
n
+

(θ0 − θ)2

SSθ
(3)

where SEγ0
T

is the standard error of the linear regression, Sγ0
T ·θ is the standard error of

the estimate, n is the number of observations, θ is the average incidence angle, and SSθ

is the sum of the squared error of θ. C acts as a scale factor and can therefore be used
to mask all pixels, where (C − 1) · 100 > 5 %.

Following the rules outlined above ensures that only reliable slope data are used as a
target variable for training the ML model.

Before calculating β for each pixel for all data between 2019 and 2022 using linear
regression, the input was separated into each orbit direction to prevent the impact of
azimuthal anistropy. This effect is explained in more detail in [13,24,32,56] and was already
heavily reduced by radiometric terrain correction. However, as visually demonstrated
in Figure 3, some azimuthal effects remain in the slope and normalised data depending
on the type of land cover. Figure 3 (top) shows a bias for certain fields, tree-lined roads,
and urban areas, which were not radiometrically adjusted due to (a) insufficient detail
of the digital elevation model and (b) land cover dynamics. In addition, we observed
large slope differences between the ascending and descending overpasses for, e.g., the
Bonneville Salt Flats in Utah, USA (Figure 3, bottom). Extensive flooding in the winter
months and high diurnal temperature differences cause large variations in the aggregate
state of water [57]. Sentinel-1 passes the Bonneville Salt Flats around 7.30 a.m./p.m. local
time and, thus, observes different surface conditions, causing the slope bias in Figure 3
(bottom).

Finally, β can be used to correct for systematic changes in backscatter by calculating
a normalised backscatter value [27,35]. Equation (4) explicitly formulates this correction
using a reference incidence angle (θ0) of 38◦.

γ0
T(θ0) = γ0

T(θ)− β · (θ − θ0) (4)

The sparse orbital coverage of Sentinel-1 and the separation of different orbit directions
result in measurements from only one or two distinct incidence angles for all regions of
interest. Thus, the limited set of incidence angles prevents the usage of a non-linear model
representing the backscatter–incidence angle relationship and hinders the quantification of
non-linear effects, where our basic assumption of a linear model would not be applicable.
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Figure 3. Orbit direction difference of normalised γ0
T (γ0

T(38◦), top left) and β computed from
VV polarised γ0

T (βVV, bottom left). Optical imagery (©2024 Microsoft Corporation, ©2024 Maxar,
©CNES (2024), ©Earthstar Geographics SIO) is provided in the second column.

2.3. Slope Analysis

In this section, we briefly present the behaviour of β with respect to different land
cover types covered by our regions of interest. Figure 4 shows distributions of β for different
polarisations, orbit directions, and land cover types. The distributions are based on all data
points that meet the requirements explained in Section 2.2, providing a reliable slope value.
Comparing βVV with βVH shows the pronounced scattering characteristics of VV polarised
backscatter for all land cover types. Due to specular reflections, backscatter from water
bodies experiences the most significant dependence on the incidence angle and polarisation
(Figure 4, bottom left). Volume scattering prevails for tree cover, which is a slim distribution
centred around zero. This fulfils the expected behaviour of γ0 [11,58,59] and implicitly
confirms the excellent performance of RTC gamma nought backscatter as already presented
in other studies [19,20]. The non-central wetland and water bodies distributions in Figure 4
(bottom right) demonstrate the necessity of separating different orbit directions, as already
explained in Section 2.2. In addition to wetland, backscatter from water bodies is heavily
impacted by the orbit direction, which is also likely caused by the difference in local time
and the state of the water during Sentinel-1’s overpasses. Built-up areas show up as a
zero-centred, broad distribution in every plot, indicating complex angular behaviour due
to double-bounce effects or specular reflections [60].

Figure 5 provides further insights into the behaviour of the slope values for each
polarisation with respect to the terrain slope. As already indicated by Figure 1 (bottom),
the largest portion of the terrain slope is between 0◦ and 10◦. In this flat terrain, the slope
values spread over the full range shown in Figure 4, whereas for higher terrain slopes, the
distribution approaches β = 0. The VH distribution is narrower than the VV distribution,
which shows that βVH is less affected by the terrain slope than βVV and might be linked
to the presence of forests in steeper terrain [29]. Overall, Figure 5 confirms that RTC
mitigates the impact of the terrain (slope). Additionally, certain land cover in flat terrain,
e.g., water bodies causing strong forward scattering, clearly has more impact on the RTC
backscatter–incidence angle relationship than the terrain slope.
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Considering a steepest slope of −0.5 dB/◦, Sentinel-1’s incidence-angle range of
29–47◦, and a reference incidence angle of 38◦, the actual difference between normalised
and non-normalised backscatter is around 5 dB. The magnitude of this difference indicates
that land cover significantly affects γ0

T , and normalising for incidence angle is essential
when merging data from various orbits.
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Figure 4. Slope distributions for VV polarised γ0
T (βVV, top left), VH polarised γ0

T (βVH, top right),
their difference (bottom left), and the difference between the two orbit directions (βVV, A − βVV, D)
(bottom right) for the land cover classes tree cover, cropland, built-up, water bodies, and wetland.
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Figure 5. Two-dimensional distributions of the terrain slope and the computed slope values (β) for
VV (top) and VH (bottom) polarisation.

2.4. Parameter Generation

Following the approach of Bauer-Marschallinger et al. [35], our objective is to model β

as a function of various statistical parameters derived from γ0
T backscatter instead of param-

eterising it directly via the incidence angle. Estimating β without being dependent on the
incidence angle facilitates the normalisation of backscatter data to a standardised reference
angle, since issues with an under-determined system of equations are prevented upfront.
Finding parameters that are sensitive to the behaviour and variations of β (Section 2.3) is,
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thus, indispensable before modelling β using machine learning. Wagner et al. [39] and
O’Grady et al. [28] have already pointed out several statistics showing a noticeable correla-
tion with β: the average backscatter and the (static) sensitivity, defined as the difference
between maximum and minimum backscatter values. The additional advantage is that
these statistical parameters are less noisy and less impacted by the acquisition scheme than
the actual computed slope [35]. The RTC γ0

T backscatter data cubes served as a basis to
extract various statistical parameters that represent a broad range of slope conditions. All
parameters considered as input data for training the ML model presented in Section 2.6 are
listed below (generated for each orbit direction):

• Mean of γ0
T (γ0

T) for each polarisation;
• The 5th and 95th percentiles of γ0

T for each polarisation;
• The difference between the γ0

T percentiles (referring to sensitivity from now on [35])
for each polarisation (γ̃0

T);
• Mean of the Cross-Ratio (CR) γ0

T, CR (γ0
T, CR);

• The 5th and 95th percentiles of γ0
T, CR;

• The difference between the γ0
T, CR percentiles (γ̃0

T, CR).

Figure 6 visualises a subset of these parameters for a small region containing all kinds
of land cover. Each parameter is able to highlight a certain set of features. Vegetation stands
out in the VH parameters and, consequently, in the CR parameters as well [59,61]. Due to a
high volume-scattering contribution for larger incidence angles and, thus, a slope close to
zero (Figure 4), the sensitivity (γ̃0

T) is the lowest compared to other land cover types.
The finest granularity of grasslands and croplands is present for all sensitivity pa-

rameters, making it possible to identify field boundaries and agricultural patterns. A very
dominant feature is the small water body/wetland in the top-left corner of the area. A low
average backscatter and a high sensitivity indicate forward scattering with a steeper slope.
In addition, the water surface is observed at high incidence angles, causing a stronger
contribution of the horizontal component to the backscattered radiation and, thus, a higher
CR [59]. The provided points make it clear that this collection of parameters is suitable for
characterising various conditions of β.

2.5. β Uncertainty

Information on the uncertainty of the slope values is indispensable for assessing the
performance of the ML model and highlighting areas or specific types of land cover that
are a priori difficult to model. In addition to the parameters described in Section 2.4, we
calculated the standard deviation of γ0

T based on a log-normal distribution for each relative
orbit (o) (Equation (5)):

σ2
γ0

T
(o)[dB] = ln

1 +
γ0

T
2
(o)

σ2
γ0

T
(o)

 (5)

where σ2
γ0

T
(o) is the variance of γ0

T in linear units for each relative orbit and σ2
γ0

T
(o) [dB] is

the respective variance in dB. Inserting this, together with the incidence-angle difference
(∆θ), into Equation (6) yields the standard deviation of the slope (σβ). Since most of the
slopes were calculated based on input data from two relative orbits, Equation (6) was
derived using Gaussian uncertainty propagation starting from a (two-point) linear model
with β as an unknown.

σβ =
1

∆θ
·

√√√√ 1

∑
o=0

σ2
γ0

T
(o) (6)
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Figure 6. Input parameters for estimating β for each polarisation: mean of γ0
T , γ0

T (VV, top left; VH,
top right; CR, bottom left) and the percentile difference of γ0

T , γ̃0
T (VV, centre left; VH, centre right;

CR, bottom right). In this example, all input data were acquired from a descending orbit and cover
the surroundings of the village of Marghita in Romania. To provide some context, the top row shows
optical imagery (©2024 Microsoft Corporation Earthstar Geographics SIO) next to land cover data
taken from ESA WorldCover 2021 [40].

Table 1 lists σβ for each polarisation and for each type of land cover covered by two
relative orbits. The expected range of slope values presented in Figure 4 indicates that σβ is
relatively high, especially for land cover types with significant temporal variability, such
as water bodies (impacted by wind and a frozen surface), wetlands, and snow. Moreover,
the 20 m sampling does not fully suppress the impact of speckle, further increasing the
standard deviation.
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Table 1. Estimated standard deviation of the slope for VV (σβ, VV) and VH (σβ, VH) polarisation for
selected land cover types.

Land
Cover

Tree
Cover

Shrub-
Land

Grass-
Land

Built-
Up

Bare Water
Bodies

Wetland Cropland Snow
and Ice

Moss and
Lichen

σβ, VV
[dB/◦] 0.4431 0.3604 0.5658 0.4093 0.6280 0.7798 0.6490 0.5073 1.1822 0.6372

σβ, VH
[dB/◦] 0.4810 0.4048 0.6393 0.3595 0.5946 0.4382 0.4469 0.5784 1.3447 0.7073

2.6. Machine Learning

To account for the different scattering behaviours of co- and cross-polarised backscatter
outlined in Section 2.3, distinct models were trained for both polarisations. Considering
the large amount of input data and that the relation between the input variables and the
target variable (β) is assumed to be non-linear, a Neural Network (NN) was chosen as a
model [62]. In the process of a randomised grid search, the ideal hyperparameters were
identified. The resulting model was a Feed-Forward Neural Network (FFNN) with four
hidden layers, starting with 58,000 neurons in the first layer, decreasing the number with
every following layer by 25%. This led to a total of 145,000 neurons. Each hidden layer was
followed by a LeakyReLu activation and a dropout layer as a regularisation mechanism to
prevent overfitting. For the final dense layer, a linear activation function was used. Adam
was selected as the optimiser, and log cosh was used as a loss function.

Figure 4 shows that the slope values accumulate near zero. Applying random sampling
to generate input data for training of the model would, thus, lead to certain land cover
types being under-represented, e.g., water bodies. To account for this, we performed two
sampling strategies:

(A) Balancing the land cover frequency by applying stratified sampling, i.e., we randomly
selected an equal amount of data for each land cover type;

(B) Balancing the slope frequency by applying stratified sampling, i.e., we randomly
selected an equal amount of data for certain slope bins.

In total, 200,000 data points were collected from all regions of interest. Of these points,
4/5 were used for training and 1/5 for the validation of the model. Both model training
and prediction were carried out on an NVIDIA A40 GPU node on the VSC-5.

Figure 7 composes all important steps of this study, which are explained in detail in
the previous subsections. The γ0

T data cubes are the main output of Figure 2 and are filtered
for each polarisation and orbit direction. The subset of the γ0

T data cubes serves as input for
Figure 7, along with several auxiliary layers, like a SAR terrain mask and local incidence
angles. The final outputs of the study are Analysis-Ready Data (ARD) radar backscatter
composites aggregated from normalised γ0

T time series and validation metrics derived by
comparing the computed slope (βr) with the estimated slope (βe).
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LIA
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Slope computation

Slope estimation

Data sampling Model training

Slope validationγ0
T normalisation

γ0
T (38

◦) composite

creation

Figure 7. Workflow summarising all key components of our study. The grey boxes represent a
specific processing step; the smaller boxes in the upper corner represent the input layers, and those in
the lower corner represent the output layers. The colours of the small boxes help to trace the data
flow of the processing chain. The whole workflow is executed separately for each polarisation and
orbit direction.

3. Results
3.1. Slope Estimations

The trained models were used to obtain a slope estimate (βe) for each combination
of polarisation and orbit direction (VV-A, VV-D, VH-A, and VH-D) for all regions of
interest. Valid reference slope values (βr) were extracted where none of the rules described
in Section 2.2 apply and which were not used during the training phase. These values
were compared to the estimated slope values (βe) using several accuracy metrics, which
are compiled in Table 2 for each land cover type. The following results are based on
the models trained with sampling strategy A, since the derived accuracy metrics did not
deviate significantly.

Overall, RMSE values are high compared to the actual range of β in Figure 4. The MAE
is significantly lower, which indicates the presence of larger differences, forcing the RMSE
up. The highest values for both metrics can be observed for the land cover classes snow
and ice, bare, built-up, and water bodies. When comparing the two polarisations, both metrics
are lower for VH, which is due to the lower average slope of VH (c.f., Figure 4). Except for
wetland, the relative behaviour of both metrics remains the same.

The averages of βr (βr) and βe (βe) tend to be close, with some larger discrepancies for
bare, built-up, snow and ice, and water bodies. Wetland areas are well-estimated by the VH
model, but βr significantly differs from βe in the case of the VV model. Moreover, for most
land cover types, there is a trend according to which βe values are lower than βr, suggesting
that both models are unable to estimate steeper slope values. This is further emphasised by
the actual stretch of the slope distributions—represented by the inter-decile range—being
fundamentally lower for the estimated slope values.

In the end, the estimated slope value (βe) is used to normalise backscatter data to
a certain reference incidence angle [35]. To avoid introducing artefacts or improperly
adjusting backscatter values, it is crucial that βe exhibits a smooth behaviour and does not
exceed βr. Given that the backscatter–incidence angle relationship is linear, having β close
to zero results in minimal modifications of the initial backscatter values. To assess this
behaviour, we introduced an additional metric, βr{e}, which sets βe into direct relation with
βr and its average (βr) as formulated in Equation (7).

βr{e} =
∑n

i=0 (sign(βr,i − βr) · sign(βr,i − βe,i)) > 0
n

· 100 (7)

On average, βr{e} is around 80%, which means the majority of βe underestimates βr

but is still on the same level as the expected mean slope behaviour (βr). Thus, by applying
βe instead of βr to normalise backscatter data, the actual backscatter correction is softer
and limits the presence of unpredictable and noisy artefacts. Statistics like RMSE and MAE,
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as presented in Table 2, are clearly affected by the noisy behaviour of βr, which can be
partially justified with the high standard deviations (σβ) shown in Table 1.

Table 2. Accuracy metrics of calculated slope values (βr) and estimated slope values (βe) for selected
land cover types: Root Mean Squared Error (RMSE), Mean Average Error (MAE), average reference
slope (βr), average estimated slope (βe), Inter-Decile Range (IDR) for the reference slope (IDR(βr)),
inter-decile range for the estimated slope (IDR(βe)), and the percentage of estimated slope values
within the half-sided distribution limits of the reference slope values (βr{e}, c.f., Equation (7)).

Land Cover RMSE
[dB/◦]

MAE
[dB/◦]

βr
[dB/◦]

βe
[dB/◦]

IDR(βr)
[dB/◦]

IDR(βe)
[dB/◦]

βr{e}
[%]

VV

Tree cover 0.0900 0.0490 −0.0179 −0.0200 0.5520 0.0648 92.0

Shrubland 0.0735 0.0483 −0.0138 −0.0277 0.3328 0.0958 90.1

Grassland 0.1142 0.0638 −0.0637 −0.0539 0.6672 0.0643 81.4

Built-up 0.2686 0.1718 0.0065 −0.0476 0.6909 0.4245 88.1

Bare 0.1374 0.0913 −0.1246 −0.1158 0.4958 0.0961 79.8

Water bodies 0.1160 0.0860 −0.2147 −0.1846 0.1429 0.1114 77.9

Wetland 0.1342 0.0947 −0.0649 −0.1373 0.0722 0.0176 69.3

Cropland 0.0688 0.0459 −0.0866 −0.0722 0.1749 0.0443 81.6

Snow and ice 0.2053 0.1124 −0.1625 −0.1176 0.9971 0.3199 75.3

Moss and
lichen 0.1230 0.0682 −0.1280 −0.0916 0.6406 0.0737 74.6

Total 0.1080 0.0617 −0.0604 −0.0561 0.6406 0.0737 77.5

VH

Tree cover 0.0791 0.0436 0.0091 0.0050 0.4428 0.0306 93.5

Shrubland 0.0658 0.0447 0.0218 0.0039 0.2556 0.1393 85.6

Grassland 0.0974 0.0561 −0.0148 −0.0171 0.4682 0.0854 82.9

Built-up 0.1909 0.1172 0.0187 −0.0023 0.6476 0.1214 92.2

Bare 0.1142 0.0783 −0.1179 −0.0853 0.2472 0.0667 68.7

Water bodies 0.1165 0.0878 −0.1578 −0.1201 0.1005 0.0574 71.3

Wetland 0.0526 0.0403 −0.0645 −0.0628 0.0701 0.1112 70.8

Cropland 0.0709 0.0526 −0.0508 −0.0247 0.0884 0.0292 72.3

Snow and ice 0.1901 0.1129 −0.0946 −0.0489 0.8003 0.1084 76.5

Moss and
lichen 0.1002 0.0615 −0.0488 −0.0246 0.5082 0.0935 80.9

Total 0.0933 0.0557 −0.0266 −0.0211 0.5082 0.0935 78.9

Figure 8 provides additional context by displaying the two-dimensional distributions
of the reference slope (βr) and each input parameter (Section 2.4), as well as those of βr and
the estimated slope (βe). All input parameter distributions show the highest separability
of water bodies with respect to other land cover types, which appear to be less correlated
but also less stretched. γ0

T, CR is characterised by the lowest value range and correlation
with βr, while γ̃0

T, VV experiences a pronounced relation with βr. The bottom row shows
that the distributions are squeezed towards zero along βe, leading to a wider range of βr

values compared to a smaller range of βe values, which was already captured by βr{e}.
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Water bodies seem to correlate better and wetlands the least. This is probably caused by the
insensitivity of wetlands present in the input data to βr, since the same slope value covers
almost the entire range of the sensitivity (γ̃0

T).
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Figure 8. Two-dimensional distributions of the reference slope (βr) and each input parameter, i.e., the
average γ0

T and sensitivity γ̃0
T for each polarisation (and CR), as well as those of the reference slope

(βr) and the estimated slope (βe). Contours show the 50% level of the kernel density estimate for tree
cover, water bodies, wetland, and shrubland.

As an example to visually demonstrate the performance of the estimated slope value,
Figure 9 compares the calculated reference slope values (βr) with the estimated ones (βe)
for the same area of interest as in Figure 6. Overall, βr and βe show good agreement, as the
land cover patterns are consistent. Higher slope values, i.e., close to zero, are visible for
land surfaces covered by vegetation, e.g., tree cover, or anthropogenic objects, whereas
lower slope values are present for water bodies and wetlands. βe shows a smoother and
more uniform appearance, whereas βr is quite noisy, making it difficult to discern land
cover transitions. βe is based on multi-temporal statistics, which reduce the impact of noise,
whereas βr is directly influenced by speckle and the temporal variability of the land surface.
The slope estimates from both ML models (VV and VH) appear to capture the overall slope
behaviour effectively. For example, water bodies are more pronounced than other land
cover types when comparing βe, VH with βe, VV (c.f., Figure 4), which could be due to the
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fact that cross-polarised backscatter is less affected by wind ripples [63]. Another benefit of
βe over βr is that the influence of corner reflectors on adjacent pixels is clearly mitigated.
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Figure 9. Calculated reference slope values (βr) for VV (top left) and VH (top right) polarisation
and estimated slope values (βe) for VV (bottom left) and VH (bottom right) polarisation. The image
content covers the same region of interest as in Figure 6. Attention should be paid to the varying
scales of the colour bars.

In the northeastern and southern part of βr, VV, some terrain-related effects appear.
The orientation of the forested and farmed slopes with respect to the sensor might cause a
difference in volume or double-bounce scattering [29], supported by the fact that they are
not visible in the cross-polarised case, i.e., βr, VH. For both estimated slopes, these effects
were completely removed.

Although βe and βr are relatively well-aligned, there appears to be a discrepancy in
their absolute values shown by the two-dimensional distributions in the bottom row of
Figure 8. In particular, for βe, VH, the majority of land cover types exhibit higher slope values
compared to βr, VH, with most slope values being close to zero. The gap is significantly
smaller in cases of βr, VV and βe, VV due to a higher sensitivity of VV polarised backscatter
to surface scattering.

3.2. Backscatter Normalisation

Using the complete set of parameters (Section 2.4) as input for the model described in
Section 2.6, we generated slope values (βe) for all regions of interest. βe was then inserted
into Equation (4) to generate normalised, radiometric terrain-corrected backscatter (γ0

T) at
38◦. Figure 10 shows the distributions of non-normalised (γ0

T) and normalised (γ0
T(38◦))

backscatter for certain land cover types within nine regions of interest. For nearly all
land cover types, the distributions are narrower after normalising the backscatter data.
Depending on the magnitude of β, as visualised in Figure 4, the impact of normalisation
increases from tree cover to water bodies. Notably, the backscatter from water bodies in
“AS20M_E026N015T1”, “AF20M_E066N050T1”, and “AF20M_E077N089T1” results in a
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bimodal distribution. This phenomenon arises due to the presence of strong forward
scattering and the dual orbital coverage of the tile. Normalising backscatter data transforms
these bimodal distributions to bell-shaped distributions, with a significantly lower standard
deviation and a mean value centred between the two peaks of the original distributions.
This effect is also clearly visible for other land cover types, like wetlands and shrublands.
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Figure 10. Comparison between non-normalised (γ0
T) and normalised (γ0

T(38◦)) backscatter dis-
tributions for each polarisation and a selection of land cover types in certain regions of interest.
VV polarised backscatter is coloured as turquoise and VH polarised backscatter as orange. Non-
normalised backscatter is shown in the background with a dashed contour. The reference to each
region of interest originates from the Equi7Grid tile naming scheme [64].

3.2.1. Normalised Backscatter Composites

In order to create seamless normalised radar backscatter composites, we computed
the temporal average of the γ0

T(38◦) time series for each pixel for the period 2019–2022.
Figure 11 displays these composites in VV and VH polarisation for some selected

areas in our regions of interest. In comparison to the non-normalised composites, all
normalised composites show a significant improvement, with reduced orbital artefacts
along the transitions of different swaths. Normalised composites covering the arid area
in Iraq (second row), the wetlands in the Arctic tundra (fourth row), and the glacier in
southern Chile (fifth row) appear completely seamless. For the other regions, slight orbital
patterns are still visible. The agricultural areas in southern Australia (first row) show up
smoother in the VV composite, whereas the opposite is the case for Lake Tai Hu in eastern
China (third row). Notably, both normalised radar composites of Lake Tai Hu introduce
new objects, which are not as visible or pronounced in the non-normalised composite.
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Figure 11. Radar backscatter composites generated from non-normalised backscatter (γ0
T ; first

and third columns) and normalised backscatter (γ0
T(38◦); second and fourth columns). The radar

backscatter composites in the first two columns were generated from VV polarised backscatter and
the ones in the last two columns from VH polarised backscatter. The selected areas are located in
southern Australia (first row), Iraq (second row), eastern China (third row), northern Canada (fourth
row), and southern Chile (fifth row). The small boxes in the lower-right corner of the images in the
first column show the number of observations. The red dots in the boxes in the lower-right corner of
the images in the third column provide some geographical context and mark the centre of the region.
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3.2.2. Twelve-Day Composites

Instead of creating composites by using the entire time series, short-term compos-
ites may enable dynamic, gap-filled land cover mapping. Small et al. [24] introduced
twelve-day wide-area backscatter composites based on an LCA-weighted combination
of γ0

T from different orbits. Considering a period of 12 days is a good trade-off between
the revisit frequency of the Sentinel-1 satellites and the impact of natural variability when
extending the time window to aggregate measurements. Figure 12 presents a compar-
ison between non-normalised (γ0

T); LCA-weighted, non-normalised (γ0
T,c); normalised

(γ0
T(38◦)); and LCA-weighted, normalised γ0

T,c(38◦) twelve-day radar backscatter com-
posites combining all scenes within the period from 15 October 2020 to 27 October 2020.
The VV polarised, normalised composites are entirely seamless and smooth, demonstrating
the superior performance of normalisation using the estimated slope (βe). However, all VH
polarised composites show an obvious orbital pattern, with a slightly weaker performance
for the normalised ones. In addition to the effects of freezing and wind, an explanation
could be that backscatter values observed at certain incidence angles are close to the noise
floor of Sentinel-1’s C-band sensor [30,65]. LCA-weighting seems to have no effect, since
the strong forward scattering over water bodies prevails in terms of the difference in
local resolution.
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Figure 12. Comparison between a non-normalised (γ0
T, first column); LCA-weighted, non-normalised

(γ0
T, c, second column); normalised (γ0

T(38◦), third column); and LCA-weighted, normalised (γ0
T, c(38◦),

fourth column) twelve-day radar backscatter composites (15 October 2020–27 October 2020). The first row
shows VV backscatter, and the second row shows VH backscatter. The small boxes in the lower-left corner
of the first images in the first and second rows show the location of the selected area (Lake Näsijärvi,
Finland) and the number of observations (yellow: 7; purple: 5), respectively.

4. Discussion
Some factors that make it difficult to obtain a reliable estimate of β have already been

mentioned in the previous sections. The natural variability of backscatter in combina-
tion with a sparse angular coverage yields a high standard deviation of the calculated
slopes (σβ), which directly affects the training and validation of the model (Section 3.1).
Bio-geophysical processes, anthropogenic changes, and the impact of speckle alter the
relationship between incidence angles and backscatter. Examples are frozen lakes in winter



Remote Sens. 2025, 17, 361 20 of 26

(Figure 12), ship traffic (Lake Tai Hu in Figure 11), seasonal vegetation cycles and forest
phenology [66], wind ripples, and snow melt. Uncertainties caused by daily variations
of the land surface, e.g., day–night freezing (Section 2.3) and evapotranspiration, have
already been mitigated by separating model training and prediction for each orbit direction.
Another measure to counteract systematic temporal backscatter variations and to improve
the overall performance of the FFNN would be to define the training and reference datasets
and the sampling strategy for shorter time periods, e.g., seasons or months, instead of
multiple years. Dynamic weight adjustments could then be used to evolve the model over
time and improve the robustness with respect to sensor changes [67].

Additionally, we found a significant number of scenes affected by thermal noise, dis-
continuities at sub-swath boundaries, and Radiometric Frequency Interference (RFI) [68,69].
RFI could be observed near military bases and urban areas, e.g., in eastern China close
to the metropolitan area of Suzhou (Figure 11), and impacts co- and cross-polarisations
differently, polluting certain parameters more than others, thereby biasing the slope es-
timate. In addition, objects acting as corner reflectors show a polarisation dependence
on the computed slope values (Figure 9, top). Another source of uncertainty might be
changes in Sentinel-1’s antenna pattern throughout the years [70]. Statistically, the VH
model performs better, but this can be attributed to the lower incidence-angle dependency
of VH backscatter. There are cases where one polarisation outperforms the other, e.g., as in
Figure 12 or southern Australia in Figure 11, which is caused by temporal dynamics and
the aforementioned noise contributions.

These uncertainties affect the input parameters differently than the calculated slope,
leading to a disagreement between βe and βr, with an average RMSE value of 0.1 dB/◦ and
an MAE of 0.05 dB/◦. The introduced noise and the limited dynamic range of the input
parameters might explain the observed underestimation of βr by βe of around 80 % of the
population. The initial approach to counteract the underestimation was to apply different
sampling strategies for training, i.e., random sampling of balanced amounts of data across
land cover types (A) and slope bins (B). The accuracy metrics for A and B turned out to
be very similar, which shows that the sampling and model training are already robust.
The estimation of extreme values is, in general, difficult for conventional machine learning
methods. Since extreme-value data points occur only rarely, machine learning methods
tend to learn mainly non-extreme data points [71]. But even under all these circumstances,
the predictors still provide enough information to model βe, with its mean value (βe) being
close to βr for most land cover types (Table 2).

Comparing land cover patterns in the input parameters with respect to the predicted
slope (Figures 6 and 9) and the two-dimensional distributions in Figure 8 reveals that the
most important variable is the sensitivity (γ̃0

T) of a specific polarisation, followed by CR
sensitivity, with the average backscatter (γ0

T) coming in last. The steepness of the slope
is directly correlated with the spread of the backscatter distribution, which justifies the
variable importance of γ̃0

T .
Sentinel-1’s acquisition strategy limits the number of available observations from

different orbits, leading to the majority of Earth’s land surface being only covered by
one orbit (Figure 1, top). To overcome the under-determinacy of the linear system, other
publications used an average slope estimate [27], a multi-variate regression solely based
on backscatter [35], or no normalisation at all, instead using local-resolution weighted
averaging for radar composites [24]. The advantage of our model is the higher complexity
compared to that proposed in [35], allowing for consideration of more input parameters
and operation at the spatial resolution of the SAR data, i.e., 20 m. In particular, the addition
of the CR-based parameters proved beneficial to the model’s performance. When dealing
with RTC backscatter data, the impacts of static terrain and viewing geometry have already



Remote Sens. 2025, 17, 361 21 of 26

been considered, making it more difficult to establish a reliable connection between statisti-
cal backscatter parameters and the slope (β). Bauer-Marschallinger et al. [35] defined the
relationship between σ0 and the incidence angle using three coefficients of a multivariate
regression model, whereas our FFNN allows for a more complex mapping of input param-
eters to β. Even when our model is trained in regions being observed by two relative orbits
per orbit direction, the information provided by the chosen input parameters also mitigates
orbital artefacts in sparsely covered areas, e.g., in southern Australia and northern Canada
in Figure 11. In regions where the SAR data are not contaminated with thermal noise or
RFI, we observed a smooth transition across the orbital swath boundaries.

As seen in Figure 12, LCA-weighted averaging following the recipe of Small [72] has a
very limited impact in terms of reducing orbital artefacts in composites containing objects
with pronounced scattering characteristics. Compared to non-normalised backscatter
data, LCA-weighted composites provide a significant advantage in undulated terrain,
where local resolutions are strongly varying and infilling of shadow areas with data from
other orbit directions comes in handy. After normalising the data, backscatter values are
theoretically aligned to the local resolution at 38◦. However, when combining data from
different orbits or sensors, the actual detail and resolution of the observed signal still vary
due to the difference in the illuminated area. LCA-weighted averaging is therefore key to
providing a radiometrically meaningful estimate of the mean normalised backscatter.

However, we did not observe any major artefacts when simply averaging normalised
backscatter from different orbit directions. This might be mainly due to the low number of
orbital crossings, i.e., backscatter from ascending and descending directions, within our
regions of interest for the selected time period. The only noticeable discrepancies arise due
to the temporal variability in the slope estimates. The method of Small et al. [24,72] only
considers static terrain information and is not affected by a temporal mismatch between
the period of the estimated slope (three years in this case) and the time window of the
aggregation (12 days to three years). Theoretically, since our model operates with the
small set of parameters defined in Section 2.4, the current setup would even allow for the
introduction of parameters covering the same time frame as the data used for compositing.
This could provide significant improvements for short-term, normalised radar composites.

5. Conclusions
In this paper, we demonstrated the potential of a machine learning-based slope esti-

mate that captures the linear behaviour between backscatter and incidence angles. The nov-
elty of this approach is that it only requires information from backscatter time series and,
thus, overcomes the constraints of the limited orbital coverage of the Sentinel-1 constella-
tion. Sentinel-1’s observation scheme and the narrow range of incidence angles add a high
level of uncertainty to the reference slope values used to train with and validate against.
Choosing statistical parameters representing the level and range of expected backscatter
values and an FFNN allowed us to significantly reduce the noisy behaviour of the slope at
the cost of a limited range of values. The final slope estimates contain valuable information
on scattering characteristics of different land cover types and, thus, enable the modelling
of strong forward scattering over water bodies and wetlands, moderate surface scattering
over bare soil and sparsely vegetated areas, and volume scattering over forested areas.

Certain land cover types experience strong temporal variations, e.g., freeze–thaw
cycles or snowfall over wetlands, water bodies, and alpine regions; forest phenology;
and agricultural practices, which deteriorates the representativeness of a single slope
value for the entire time series. This requires further research using a more granular land
cover classification and a revised training and prediction approach for the FFNN. Instead
of training the model on the entire time series, training samples could be selected from
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temporal subsets such as seasonal or monthly intervals across several years. It would
also be beneficial to not only train but also estimate slope values for shorter time periods,
resulting in a better match of land cover conditions. Since the FFNN only requires a few
static input layers, which can be derived by aggregating backscatter data over any time
period, the whole setup is highly flexible and scaleable. Moreover, the FFNN bypasses the
computational burden of fitting a physically based model to backscatter-incidence angle
measurements, enabling the trained model to be applied efficiently on a global scale.

After using the slope to normalise backscatter data to a certain reference angle, i.e., 38◦,
it is possible to generate seamless normalised radar backscatter composites. Other methods
producing analysis-ready backscatter composites [24] use static terrain-based information
to aggregate data but do not consider any physical aspects, such as scattering characteristics.
Thus, orbital patterns remain for land cover types with a pronounced backscatter–incidence
angle dependency. The novel composites presented in this paper are able to mitigate these
orbital artefacts, marking an important step forward in offering analysis-ready backscatter
data. They will be valuable to the EO user community in the realms of land cover and land
use mapping [24], as well as for the radiometric calibration of sensors [27]. As we look
forward to the launches of Sentinel-1 C/D and NISAR at the beginning of 2025, the golden
era of SAR will continue to offer a valuable data stream to improve our presented machine
learning model and to generate seamless analysis-ready radar backscatter composites.
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EO Earth Observation
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ESA European Space Agency
FFNN Feed-Forward Neural Network
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IW Interferometric Wide swath mode
LCA Local Contributing Area
MAE Mean Average Error
ML Machine Learning
NN Neural Network
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