
TlJ 
WIEN 

TECHNISCHE 
UNIVERSITÄT 
WIEN 

DISSERTATION 

A Masing Diamond: Triggered and 
Self-Induced Superradiance 

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines 
Doktors der technischen Wissenschaften 

unter der Leitung von 
Univ.Prof. Dipl.-Ing. Dr.techn. Hannes-Jörg Schmiedmayer 

eingereicht an der Technische Universität Wien 
Fakultät für Physik 

von 
Dipl.-Ing. Wenzel Nikolaus Kersten 

Wien, J anuary 2025 

Gutachter: 
H-J. Schmiedmayer G. Kirchmair 

W. Kersten 

P. Rabl 





aRemember when you were young 
You shone like the sun 

Shine an you crazy diamond" 
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Abstract 

In this work, I present experimental studies of cavity quantum electrodynamics (cQED) 
with a focus on superradiant emission from a hybrid system of nitrogen-vacancy (NV) 
centers in diamond strongly coupled to a microwave cavity. The research centers on 
two key experiments that investigate superradiance, a collective phenomenon where 
synchronized emitters generate a coherent hurst of radiation with nonlinear intensity 
scaling, facilitated by their common coupling to the cavity mode. 

First, I demonstrate a protocol for generating and storing a uniformly inverted 
spin ensemble, enabling the controlled release of a superradiant hurst. By extending 
the inversion storage time for up to tens of milliseconds, I achieve a fully upright, 
metastable spin state with vanishing transverse spin components. I explore the onset 
of superradiance, revealing that weak microwave trigger pulses on the order of 10-11 

photons per spin are sufficient to influence the superradiant decay in both timing and 
phase. 

Second, following the initial decay, I observe unexpected self-induced superradiant 
dynamics that evolve from a periodic pulsing regime into quasi-continuous masing, 
lasting up to a millisecond. This behavior, which cannot be explained by known cQED 
effects, is driven by direct spin-spin interactions that redistribute the spectral spin 
inversion within the inhomogeneously broadened NV ensemble. These findings reveal 
a new role for spin-spin interactions as an active drive of superradiant emission, rather 
than merely a source of decoherence. 

The experimental results are prefaced by a theoretical framework and numerical 
simulations. Additionally, I present microwave cavity designs aimed at achieving strong 
and uniform spin coupling with reduced mode volumes. These designs, realized through 
finite-element simulations and experiments, explore a range of resonator types - from 
bulk copper and superconducting niobium to on-chip, nano-fabricated structures -
paving the way for future cQED experiments and quantum technology applications. 





Zusammenfassung 

In dieser Arbeit präsentiere ich experimentelle Studien zu Effekten der Resonator-
Quantenelektrodynamik (cQED), mit einem Fokus auf superradiante Strahlung eines 
stark gekoppelten hybriden Systems bestehend aus Stickstoff-Fehlstellen-Zentren (NV-
Zentren) in Diamant und einem Mikrowellenresonator. Im Mittelpunkt stehen zwei 
Schlüsselversuche zur Superradianz - einem kollektiven Prozess, bei dem synchronisierte 
Emitter einen kohärenten Lichtpuls von nichtlinearer Intensität erzeugen, vermittelt 
durch ihre gemeinsame Kopplung an die Resonatormode. 

Zunächst erarbeite ich ein Verfahren zur Erzeugung und Speicherung eines gle-
ichmäßig invertierten NY-Ensembles sowie zur späteren kontrollierten Auslösung des 
superradianten Zerfalls. Eine Verlängerung der Inversionsspeicherzeit auf bis zu mehrere 
zehn Millisekunden führt zum Verschwinden der transversalen Spin-Komponenten und 
zur Erzeugung eines vollständig aufrechten, metastabilen Zustands. Ausgehend von 
diesem Zustand untersuche ich den Initialmoment der Superradianz und zeige, dass 
schwache Mikrowellenpulse von etwa 10-11 Photonen pro Spin ausreichen, um sowohl 
den Zeitpunkt als auch die Phasenlage des superradianten Zerfalls zu beeinflussen. 

Anschließend beobachte ich nach dem anfänglichen Zerfall eine unerwartete, selb-
stinduzierte superradiante Dynamik, die sich von einem periodischen Pulsregime zu 
einer quasi-kontinuierlichen Emission weiterentwickelt und bis zu einer Millisekunde 
andauert. Diese Dynamik, die durch keine bekannten cQED-Effekte erklärt werden 
kann, wird durch direkte Spin-Spin-Wechselwirkungen angetrieben, welche die spektrale 
Spin-Inversion im inhomogen verbreiterten NY-Ensembleumverteilen. Diese Ergebnisse 
weisen auf eine neue Rolle der Spin-Spin-Wechselwirkungen als aktive Triebkraft der 
superradianten Strahlung hin, anstatt lediglich als Quelle der Dekohärenz zu fungieren. 

Die experimentellen Ergebnisse werden durch ein theoretisches Rahmenwerk ein-
geleitet und durch numerische Simulationen untermauert. Zusätzlich präsentiere ich 
neu entwickelte Mikrowellenresonatoren, die eine starke und gleichmäßige Photonen-
Spin Kopplung bei reduziertem Modenvolumen ermöglichen. Diese Resonatoren, die 
mithilfe von Finite-Elemente-Simulationen und experimentellen Umsetzungen unter-
sucht werden, umfassen eine Reihe von Archetypen - von Realisierungen aus Kupfer 
und supraleitendem Niob bis hin zu Chip-basierten und nanofabrizierten Strukturen -
und ebnen den Weg für zukünftige cQED-Experimente sowie Anwendungen in Quan-
tentechnologien. 
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Chapter 1 

Introduction 

One of the most fundamental interactions shaping the world around us is the inter-
action between light and matter. From the discovery of electromagnetism - which 
describes the behavior of "invisible" fields generated by static and dynamic charges -
to Maxwell's realization that these fields are equivalent to visible light [1], our under-
standing of light-matter interactions has profoundly deepened. This development was 
further advanced by the emergence of quantum mechanics in the early 20th century 
[2], which revealed the remarkable dual nature of both light and matter - exhibiting 
both wave-like, non-local behavior and the graininess associated with particles. These 
groundbreaking developments culminated in the field of quantum electrodynamics 
(QED) [3], which bridges classical electromagnetism and quantum mechanics, forming 
a comprehensive fundamental description of light-matter interactions at the quantum 
level. 

Notably, the very existence of matter in its seemingly infinite possible shapes and 
configurations is a direct result of these light-matter interactions. Light acts as a 
mediator, while matter is the substrate, allowing for the formation of atomic orbitals, 
molecular bonds, and crystal structures that define the properties of organic and 
inorganic materials, encompassing everything that surrounds us from the microscopic 
to the macroscopic scale. 

The study of light-matter interactions has led to revolutionary technological ad-
vancements, from electric motors and illumination to modern electronics and telecom-
munications. One key development in this area is the laser, a prototypical example 
of controlled light-matter interaction. The laser, originally realized as a maser in the 
microwave regime, is a product of the field known as cavity QED [4]. Cavity QED 
investigates the interaction between quantized fields of electromagnetic radiation and 
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atomic or spin-based systems confined within cavities, providing insights into both 
fundamental physics and practical applications. 

In cavity QED, a key goal is to achieve strong coupling between light and matter. 
This regime allows for coherent energy exchange between the quantized field in the 
cavity and the system of quantum emitters on a faster timescale than energy dissipation. 
Achieving strong coupling opens the door to the manipulation and readout of quantum 
systems for computing, sensing, and communication. A central challenge in this area is 
designing cavity geometries that maximize this interaction, particularly when working 
with solid-state systems like nitrogen-vacancy (NV) centers in diamond [5] or molecular 
spin systems [6]. 

In my work, I developed new cavity geometries and chips to enhance the coupling 
between microwave fields and spin ensembles, with the goal of reaching the high cooper-
ativity regime with ever-smaller spin ensembles. This is a crucial step towards realizing 
quantum computing architectures [7] with spin systems [8], enabling scalable qubit 
operation and quantum information processing with nature's largest indistinguishable 
unit: single molecules. 

The main focus of my thesis is based on explorations with a particularly promising 
microwave cavity design. When coupled to a small NV diamond, this cavity forms 
a highly cooperative hybrid system, enabling rapid and efficient excitation of the 
NV spin ensemble and offering unprecedented control over the resulting metastable 
inverted spin state. A fascinating phenomenon that arises from the strong light-matter 
coupling in this hybrid system is superradiance, a collective emission of radiation from 
an ensemble of excited emitters. First described by Dicke in 1954 [9], superradiance 
is a synchronized emission process that produces a highly coherent and intense burst 
of light, profoundly distinct from the sum of individual contributions of independent 
emitters [10]. 

In this thesis, I study superradiant dynamics with a diamond-cavity hybrid system. 
My initial focus lies on investigating the onset of superradiance - revealing a remarkable 
sensitivity of the inverted spin system to weak trigger pulses down to 10-11 photons 
per spin. Moreover, using this experimental platform, I uncover an unexpected 
mechanism appearing as a driving force for said superradiant emission: direct spin-
spin interactions of NV centers within the crystalline diamond lattice. This novel 
observation, where the spin-spin interactions facilitate energy transfer into a spectral 
window of "active" superradiant emitting spins, is underpinned by several experimental 
pieces of evidence. This constructive role of direct spin-spin interactions in driving the 
superradiant emission stands in contrast to their typical appearance as a detrimental 
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source of dissipative decoherence effects. Not only remarkable from a fundamental 
viewpoint, this observation holds implications that extend into a practical domain of 
applied physics, where superradiant lasing offers the potential for ultranarrow frequency 
generation. 

These exciting results breach only the surface of how these spin-spin interactions 
work in detail, so far only understood with an effective description of self-induced 
superradiant dynamics. Further studies are needed to fully understand the mechanisms 
at play - complex spin-spin dynamics, possibly only accessible via a many-body 
description - and to explore their fundamental aspects and potential applications in 
quantum technologies. 

Outline 

This thesis is structured as follows: 
In Chapter 2, I present the theoretical framework for the relevant cavity QED 

physics, starting with the basic quantum aspects of electromagnetic fields and spin 
systems, advancing to their mutual ( collective) interactions, and finally discussing the 
cooperative emission phenomenon of superradiance. 

Chapter 3 gives a short description of the experimental setup and techniques, 
including the cryogenic systems and microwave equipment used in the experiments. 

In Chapter 4, I cover the spin systems relevant to this work: NV centers in diamond. 
Additionally, I shortly tauch on the topic of molecular spins, particularly a simple 
testbed molecular spin species used in a study on enhancing spin-photon coupling. 

Chapter 5 is focused on cavity designs for reaching the strong coupling regime, 
offering my viewpoint and design approaches for chip-based and 3D lumped-element 
microwave resonators, based on several different cavity designs developed and charac-
terized in the course of my studies. 

In Chapter 6, I present the main experimental results with our1 hybrid diamond-
cavity platform: ( i) triggered superradiance, realizing the controlled release of su-
perradiant emission and investigating the sensitivity to weak trigger signals; and ( ii) 

1This introduction chapter is written in a first-person style, stressing that the presented contents 
are my original work. In the following chapters, I mostly adopt the commonly used scientific we. This 
has a twofold meaning: First, even though I am the main contributor, at least in the results based 
on my first-authored publications, scientific work nowadays is rarely a single-person job; it would be 
impossible without the environment of a research group and collaborators. Secondly, we is meant to 
include me and the reader of this thesis, attempting to make the involvement more engaging. 
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self-induced superradiance, uncovering a novel pumping mechanism driven by direct 
spin-spin interactions. 

In the final Chapter 7, I offer a brief outlook on possible future explorations of our 
experimental platform and conclude the thesis with final remarks and open questions. 



Chapter 2 

Theory of Spins in Cavities 
From a single spin and the quantum harmonic oscillator to 
collective light-matter interaction 

In this chapter, we will start by introducing two fundamental concepts in quantum 
mechanics: the spin of a particle and the quantization of the electromagnetic field. 
These two systems are on opposite ends when considering linearity in the number of 
excitations. The simplest spin system is a two-level system with only two possible 
states: spin up lt) and spin down I+), thus can only absorb or emit one excitation 
quantum. On the other hand, a single mode of the electromagnetic field has no limit in 
the number of photons it can carry, a property making it a bosonic system. N aturally, 
it follows to look at the interactions between these two quantum systems - photons 
and spins - opening up the vast field of cavity QED, for which the basic theoretical 
concepts will be laid out. Our goal will be to arrive at a description of the dynamics 
involving an ensemble of a large number of spins coupled to a single electromagnetic 
mode, and finally, to have a set of equations that will allow us to quantitatively model 
these dynamics. 

2 .1 A single spin in a static field 

Spin is a quantum property of elementary particles such as electrons, protons, and 
neutrons that carry a magnetic dipole moment. Although the prominent spin system 
of this work, the negatively charged NV center, involves two electrons bound to a point 
defect in a diamond crystal, in this section, I will introduce the concept of spin with 
the example of a neutron spin. This is dorre to later support this theoretical description 
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with an instructive experiment carried out at the very beginning of my PhD journey 
- a neutron interferometry experiment that uses 3D printed permanent magnets to 
exemplify two important concepts: the superposition principle and the 47r-symmetry 
of spin S = 1/2 particles. 

The neutron is a spin S = 1/2 particle, which means that upon measurement, one 
would find that its spin is in either one of two possible states, either spin up lt) or spin 
down I+) with regards to the measurement direction, conventionally the +z-direction. 
The spin projection along this axis can only take discrete values in half-integer units of 
Planck's constant ±n/2. Prior to this measurement, the neutron's spin can be in an 
arbitrary superposition of these two states, and its wave function is written as 

I\J!) = cos(0/2) 1--1--) + sin(0/2)ei4> lt) . (2.1) 

This parametrization of the state I\J!) is very useful, as it allows us to understand 
the direction of the magnetic dipole j1, associated with the arbitrary spin state lw), 
represented by a point on the surface of the Bloch sphere, determined by the two 
angles 0 and </J, see Fig. 2.1. The magnetic dipole moment is calculated using the spin 
operators as 

(2.2) 

which are given in terms of the Pauli matrices Si = ~O"i- Here, 9n is the neutron's 
g-factor and µn is the nuclear magneton, resulting in the neutron's gyromagnetic ratio 
1'n -1.83 x 108 s-1 T-1 . 

The Hamiltonian of a (neutron) spin in a static magnetic field is written as 

(2.3) 

We can see how the static field causes rotations of the spin around an axis given by 
the field's direction. Suppose the spin is initially polarized in the +x-direction, where 
its wavefunction is given by 11Pa) = l+x) = 0 (1t) + 1--1--)), and the magnetic field is 
oriented along the +z axis, B = Baez. Then, we can use the Schrödinger equation to 
calculate the time evolution of l1J,(t)) 

1i l1J,(t)) = in :t l1J,(t)) . (2.4) 
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Figure 2.1 (Left) Bloch sphere to visualize the two possible spin orientations, ltz) and 
1--1-z), and their arbitrary superposition. (Right) Excursion into neutron interferometry: 
A neutron interferometer, where unpolarized neutrons pass through from left to right 
into a detector. Inside the interferometer, the neutron beam is split evenly into path II) 
and III). Neutrons in path II) experience an additional spin rotation around the z axis 
through the 3D-printed permanent magnet spin rotators, controllable by the magnet 
distance b.z. Before entering the detector, the two paths are recombined. Rotating 
the phase plate introduces a path-dependent phase shift x to record an interferogram. 

Since 1-l = -f(Ynfo az is independent of time, we can simply apply the unitary time 
evolution operator U(t) = e-i1it/n to calculate the state at a later timet from the initial 
state l1Po) at t = 0. 

l1P(t)) = U(t) l1Po) = exp(/Yn:O taz) ~(lt)+ lt)) 

= ~(e+(Yn:ot lt)+ e_(Yn:ot lt)). 
(2.5) 

Comparing this result with Eq. (2.1) and Eq. (2.2), we see that the spin state and also 
its associated magnetic dipole moment undergoes a rotation in the xy-plane around the 
equator of the Bloch sphere. This rotation occurs at the Larmor frequency, denoted as 
WL = ,nBo. 

An instructive excursion into neutron interferometry 

In the experiment of Ref. [11], we see an instructive demonstration of spin rotations and 
the superposition principle. Here, I will only explain the basic result of this experiment 
without going into detail about the broad topic of neutron interferometry, as it is not 
the main focus of this thesis. A neutron interferometer, see Fig. 2.1 is a very useful 
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tool to study phenomena of a perfectly isolated quantum system: the neutron, as 
it moves through the interferometer. A neutron interferometer is cut from a single 
silicon crystal, such that all its crystal planes are perfectly aligned. This allows for the 
coherent diffraction of a neutron beam via Bragg reflection at the four plates of the 
interferometer, which act as mirrors and beam splitters. This way, the incident beam is 
split into two paths, which are later recombined to interfere. The spatial separation of 
neutrons in the two paths enables the possibility of independent manipulation. The low 
flux of neutrons and their rather high speed of 2 km s-1 makes sure that, on average, 
only maximally one neutron is passing through the interferometer, such that the 
observed quantum phenomena stem from self-interference of the neutrons. Assuming 
perfect interferometric contrast, the density matrix of an unpolarized ( completely mixed 
spin state), and monochromatic ( constant velocity) neutron inside the interferometer 
can be written as 

(2.6) 

where 11/\) = 0 (II)+ eix III)) is the path state after the phase plate, which introduces 
a path-dependent phase shift X· Importantly, this phase shift can be varied by rotating 
a phase plate after the first beam splitter. In path II) there is a 3D-printed permanent 
magnet spin rotator, as shown in Fig. 2.1. Adjusting the distance ~z of the two 
permanent magnet pairs allows for a change in the rotation angle of the spins around 
the +z-axis in this path. The action of this spin rotator can be written by the unitary 
transforma tion 

(2.7) 

where the rotation angle a(~z) = (gnµn/n)B10 c~t depends on the local magnetic field 
B10c(~z) created by the spin rotator, which acts for a fixed duration ~t while the 
neutron passes through. The last interferometer plate recombines the two paths and 
projects on the final path state l1Pt) = 0 (11) + III)) with the projection operator 
P1 = l1P)(1Pl1 ® ]__ 

The neutron beam intensity at the detector is then given by 

(2.8) 

(2.9) 

where O:::; C:::; 1 takes the limited contrast of the neutron interferometer into account. 
The recorded interferograms, measured at the Atominstitut's TRIGA MARK-II reactor, 
are shown in Fig. 2.2. The effective interferometric contrast, represented by C cos(a/2), 
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Figure 2.2 Neutron interferometric measurements. (Left) Recorded interferograms 
with different D.z values, measured with a magnetization strength of the permanent 
magnets of Bref = 4.4 mT. (Right) A plot of the effective contrast C cos( a/2) derived 
from fits to the interferograms over the spin rotator's magnetic field strength measured 
at the center. Datasets using different base magnetization strengths of the permanent 
magnet spin rotators are shown. 

becomes zero for spin-rotation angles a equal to odd multiples of 1r, which causes 
the spin states in the different paths to become orthogonal. When a reaches 21r, the 
interferogram displays a phase shift of 1r compared to the case a = 0 (magnets removed). 
Only at a = 41r does the interferogram restore its initial contrast and phase, which 
occurs at twice the magnetic field strength needed to rotate an equivalent classical 
magnetic dipole of strength µn to return to its original state. 

We end this short excursion into neutron interferometry with a summary. This 
experiment, a replication of Helmuth Rauch's seminal experiment from 1975 [12] (its 
novelty being the topology optimized 3D-printed permanent magnet spin rotators), 
illustrates two things: ( i) the principle of superposition and interference, where the 
neutron beam is split into two paths and then recombined, and ( ii) the 41r-symmetry 
of the spin-½ property of neutrons, where the permanent magnet spin rotators cause a 
phase shift in the interferometer, even though the unpolarized spin state has no net 
magnetic dipole moment. 

2.2 A quantized spring 

The quantization of the electromagnetic field can be understood by starting from every 
physicist's favorite pet model: the harmonic oscillator. Later, we can use a formal 
equivalence in their descriptions to gain a deeper understanding of these systems. The 
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derivations given here follow in parts Refs. [4, 13]. The Hamiltonian of the harmonic 
oscillator - the sum of kinetic and potential energy as a function of the position and 
momentum of, for example, a mass on a spring moving along the x-direction - is 
written in the standard form as 

(2.10) 

Here, m is the mass, and the angular frequency w = is calculated via the spring 
constant k. Quantum physics involves an operator description for position x = x and 
momentum ß = -in ;x. In the definitions given here, these are explicitly written in the 
position-basis. These operators obey the canonical commutation relations [x, ß] = in. 
An elegant way of solving Eq. (2.10) is achieved by introducing the non-hermitian 
operator a and its conjugate at 

a = X 0 +iPo, at = X 0 - iP0 . (2.11) 

These definitions involve dimensionless position and momentum operators: 

Xo = ~x and Po = J 2n~wß. (2.12) 

The operators a and at then obey the commutation relation 

(2.13) 

The above allows us to rewrite the equation of the quantum harmonic oscillator (2.10) 
as 

(2.14) 

We substitute X 0 = (a + at)/2 and P0 = i(a - at)/2, which finally leads to the result 

(2.15) 

The operators at and a are called creation and annihilation operators, which either 
add or subtract one quantum of energy nw when acting on an eigenstate 11/!(E)) with 
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energy E 

1-l a 17/J(E)) = (E - nw) a 17/J(E)) , 
1-l at 17/J(E)) = (E + nw) at 17/J(E)) . 

11 

(2.16) 

These energy quanta of a mechanical oscillator are called phonons. However, subtracting 
an infinite number of quantum excitations from an arbitrary state is not possible. Thus, 
there must exist a state of lowest energy, which is the vacuum state IO) with energy 
'7w /2. Explicitly written in the x representation, the vacuum state is given by a 
Gaussian wavefunction 

This state has minimum uncertainty in both x and ß quadratures, fulfilling the lower 
bound of the Heisenberg uncertainty relation O"xO"p n/2 for the standard deviations 
of position and momentum. Applying the creation operator n-times to the vacuum 
state IO) yields the Fock states (or number states) 

In)=~ IO), (2.17) 

a complete set of basis states of the quantum harmonic oscillator's Hilbert space. The 
operators a and at acting on a Fock state In) and obeying the commutation relation 
(2.13) result in 

a In) = y1n In - 1) and at In) = Jn+l In+ 1) , (2.18) 

and allow us to define the number operator n = ata. The energy of a Fock state In) is 
then given by 1-L In) = En In) = nw(n + 1/2). 

U sing the displacement operator, defined as 

with complex a we introduce the coherent states 

oo n 
la) = D(a) IO) = e+i12;2 L In) ' 

n=O y'n! 

(2.19) 

(2.20) 

which are eigenstates of the annihilation operator a la) = a la), with a mean excitation 
number of (n) = la:1 2 . The action of this operator in phase space corresponds to 
a displacement of the vacuum state from the origin while maintaining minimum 
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uncertainty in both quadratures. This latter property makes the coherent state the 
closest analog to a classical state. An important example of a coherent state is the light 
field of a laser. The probability of measuring n photons in a laser pulse using a photon 
counter is obtained by projecting the coherent state onto the Fock state In), resulting 
in a Poissonian distribution Pn = l(nla)l 2 = e-lal 2 Ial 2n/n! with variance (~n) 2 = lal 2 . 

For large numbers of excitations, the relative error ~n/ (n) = 1/lal vanishes via the 
correspondence principle between quantum and classical physics. 

2.3 Quantization of the electromagnetic field 

In this section, I will motivate the formal equivalence of a single electromagnetic mode, 
such as the electric and magnetic fields that oscillate in a resonant cavity ( e.g. a 
rectangular box cavity), to the quantum harmonic oscillator described in the previous 
chapter. In doing this, I will mostly follow the derivations of Ref. [14]. The dynamics 
of the electromagnetic field in vacuum are described by the Maxwell equations: 

V-E=O 
' 

V-B=O 
' 

_, BE 
VxE=--Bt ' 

_, BE 
V X B = µoEo Bt . 

(2.21) 

A solution for the electric field that exists inside a cavity of volume V and length L, 
confined between two perfectly conducting walls (see Fig. 2.3), is given by: 

(2.22) 

while the magnetic field can be calculated from this result with the last line in Eq. (2.21) 
as ( using c = 1 / JµoEo) 

l {2c:? 
By(z, t) = c2k y ~q(t) cos(kz). (2.23) 

Here, q(t) describes the time dependence of the fields. We assume the cavity is 
oriented along the z-direction, while the electric field is polarized along x. The wave 
number is an integer multiple of k = m1r / L, and the angular frequency of the mode 
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Figure 2.3 The fundamental mode inside a resonant cavity: electric and magnetic 
fields are reflected between two perfectly conducting walls and form a standing wave, 
oscillating in time. 

is given by w = ck. The total energy of the electromagnetic field can be recast in a 
familiar shape: 

1 1 2 2 ·2 J ( _, 2 _, 2) W q q 1-l = - EoE + -B dV = -- + - . 2 µ0 2 2 
(2.24) 

We recover the harmonic oscillator with unit mass m = 1 by recognizing the formal 
equivalence of Eq. (2.24) and Eq. (2.10) when identifying q = ß and q = x. Using the 
same construction of the operators a and at introduced in the previous chapter, this 
allows us to rewrite the oscillating electric and magnetic fields as 

Ex(z, t) = Eo(ae-iwt + ate+iwt) sin(kz), 

By(z, t) = -iß0 (ae-iwt - at e+iwt) cos(kz). 
(2.25) 

We can see that a single mode of the electromagnetic field can carry excitation quanta 
nw called photons and also has a state of minimum energy nw/2, the vacuum state IO). 
Here, the time dependence of the fields is explicit but can be eliminated by moving into 
the rotating frame via the unitary transformation a(t) = e+i1-lt/na(O)e-i1-lt/n = ae-iwt_ 
From now on we will refer to a as simply a. The amplitude of the magnetic field, 

(2.26) 

is an important quantity for the experiments that will be discussed in the following 
chapters. lt quantifies the root mean square magnetic field strength of the vacuum 
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fluctuations and depends on the volume and frequency of the mode. The electric 
field amplitude [ 0 is analogously obtained by replacing µ0 with 1/ c0 . The speed of 
spin rotations - and thus the ability to manipulate spin states within a given time -
depends on the strength of the magnetic field. This principle applies to static fields, 
where it appears in the form of the Larmor frequency, but is also true for time-varying 
fields, such as those generated by driving the cavity with a microwave pulse. To 
anticipate a key point discussed later, this vacuum magnetic field strength can be 
effectively increased by shaping the environment of a mode with a specially designed 
cavity geometry, thereby deviating from a simple box mode, while decreasing the 
effective mode volume V. In the microwave (MW) regime, with frequencies in the 
gigahertz range, the concept of plane waves reflected off conducting walls often becomes 
too simplistic. Instead, it is more practical to consider the system as an LC resonant 
circuit - with spatially separate inductances L and capacitances C, or with Land C 
being distributed over the circuit. Nevertheless, a description using the total energy in 
the electromagnetic field, i.e. Eq. (2.24), will always be valid. Therefore the physics of 
any microwave resonator, cavity, or LC circuit is equivalent to the quantum harmonic 
oscillator. 

2.4 Coupling a spin to a cavity - the Jaynes-
Cummings model 

Now, having introduced the most important concepts to describe the quantum exci-
tations of spins and photonic modes, we are ready to take a look at the coupling of 
these two systems, and the basic phenomena resulting from their mutual interactions. 
We start by writing down a Hamiltonian as the sum of two contributions: the cavity 
mode and a single spin. The spin is assumed to experience the magnetic fields at a 
fixed position, allowing us to ignore the spatial dependencies. 

1{ = Hcav + Hspin+field = nwc(ata + 1/2) - µ · B(t). (2.27) 

The cavity is described by the now familiar quantum harmonic oscillator, but looking 
at the Hamiltonian Hspin+field, we can further expand it into two parts. We split the 
magnetic field into a static external field, which is purely classical, and a time-dependent 
cavity field necessitating a quantum description. The static field Boez, by convention 
assumed to be oriented along the z-direction, supplies the quantization axis which 
causes the spin-½ of an electron to have two well-defined energy levels for its two possible 
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states lt) and 1-t). We recall the magnetic dipole moment is calculated with the formula 
fJ, = _ 9e~B § = -r'e~a, using the electron g-factor 9e -2, the Bohr magneton µB, 

and the electron gyromagnetic ratio of approximately re/2w = 28 MHz mT-1 . The 
oscillating cavity field, or radio-frequency (RF) field, oriented perpendicular to the 
quantization axis along the x-direction, is described in terms of the operators a and at. 

These operators are defined in the rotating frame of the RF frequency, eliminating the 
explicit time dependence in the Hamiltonian. This leads to 

(2.28) 

We make use of the spin raising and lowering operators a + and a _ with the definition 
a± = ½(ax ± iay)- The action of these operators is to either excite a spin down 
a+ I+) = lt), or de-excite an excited spin a_ lt) = I+), while the processes of exciting 
an already excited spin (or de-exciting a spin down) a+ lt) = a_ I+) = 0 are forbidden. 
With these operators to express ax = a+ + a_ we finally write down the Jaynes-
Cummings Hamiltonian 

(2.29) 

using the spin transition frequency Ws = reBo and the coupling strength g0 = ,eBcav/2 
of a single spin-½ to the cavity vacuum field. The vacuum energy offset nwc/2 is here 
still included but will be dropped in subsequent calculations for simplicity. In this 
Hamiltonian, we have omitted terms such as ata+ and aa_, which either create or 
destroy two excitation quanta with total energy 2nw. These processes correspond to fast 
rotating terms: in the Schrödinger picture, the Operator pairings of e.g. ase-iwctas e-iwst 

rotate with double the frequency as compared to ake+iwctas e-iwst ' where the frequencies 
cancel out on resonance. They are energy non-conserving and usually neglected under 
the rotating wave approximation, which is well justified in the limit of small couplings 
g0 « w as compared to the transition frequencies. 

Now, let us look at the solution space of the Jaynes-Cummings Hamiltonian, a 
universal description of a two-level system coupled to a bosonic mode. We can start by 
recognizing that under the action of this Hamiltonian, excitations can only be swapped 
from the cavity mode to the spin state, which will always conserve the total number of 
excitations. Fora given subspace of n excitations, we can therefore write down two 
possible states with the two-level system (spin or atom) being either in the ground 
state lg) or the excited state le), and the cavity having an additional excitation In+ 1) 
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or not In) , forming a basis 

19,n) (01) and lc,n-1) (~) 

Then, the Hamiltonian 1-lJc can be written as a matrix 

from which the eigenenergies 

and the corresponding eigenstates 

In,+) = cos (0 /2) 19, n) + i sin (0 /2) le, n - 1) and 

1 n, - ) = sin ( 0 / 2) l 9, n) - i cos ( 0 / 2) 1 e, n - 1) , 

(2.30) 

(2.32) 

(2.33) 

are obtained. These eigenstates, also called the polariton modes, are parametrized by 
the angle 0 = arctan(290 y'n/(wc - Ws)) and are plotted in Fig. 2.4. We can see that 
the eigenstates, initially degenerate on resonance for an uncoupled system with 90 = 0 
and = Wc - Ws = 0, obtain a finite splitting ±n90 in the one excitation manifold 
n = 1, called the vacuum Rabi splitting. The energy nw is then equally shared between 
cavity and spin 

1 . 
1±) = \!'2(19, 1) ± i le, o)), (2.34) 

and continually oscillates between the hybridized subsystems at a rate given by the 
coupling strength 90. This can be seen by imagining the system to be in the state 
11/Jo) = le, 0) at t = 0. Then, its time evolution is given by (expanding in the eigenstate 
basis and using Eq. (2.32)) 

Now, using the Born rule we calculate the probability of the system tobe in the state 
19, 1) at time t as 
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n=l 

E =Wc f±go 

Yo = 0 Yo = 0.1 • W c - 0.5 · W c ß = 0 + 0.5 · W c 

Figure 2.4 Eigenstates of the Jaynes-Cummings Hamiltonian. We assume n = 1 and 
shift all energy levels by +(wc - ws)/2, such that the cavity level becomes a flat line. 
(Left) For the resonant case between spin and cavity (ß = Wc - Ws= 0), the polariton 
modes are split symmetrically by ±y'nng0 relative to the originally degenerate states at 
zero coupling (g0 = 0). (Right) A scan of ß in the n = 1 excitation subspace. At large 
detuning ß to either side, the eigenstates are very close to the uncoupled system and 
can be ascribed a rather definite spin or cavity character. On resonance ß = 0 this is 
not the case, and the polariton modes carry equal contributions from both subsystems. 

The probability of being in the state le, 0) is easily calculated by the counter probability 
Pe(t) = 1 - Pg(t) = cos2 (g0t). This continuous energy exchange between cavity mode 
and spin is called the vacuum Rabi oscillation. 

For large detunings ß » g0 , known as the dispersive regime, it is instructive to look 
at the perturbation that the presence of the spin exerts onto the cavity eigenstate. For 
this, we write the Jaynes-Cummings Hamiltonian of Eq. (2.31) in the n = 1 manifold in 
a slightly different way, corresponding to a shift +ws/2 of the diagonal entries, leaving 
the dynamics unchanged 

(2.37) 

The second-order contribution of the perturbation term V using the basis states 
19, 1) (1, Of and le, 0) (0, lf (the first order gives zero contribution) is calculated 
using perturbation theory [15] as 

(2.38) 
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2 
similarly for E~2) = +~- We can therefore interpret the measured cavity frequency 

2 
El::..»go = E(o) + ß(2) = Wc ± 90 in this regime to depend on the state of the spin either g,e g,e 1:,. , 

shifted down for state lg) or up for state le). As the mutual influence of the spin on 
the cavity and vice versa the cavity on the spin is small, this allows us to infer the spin 
state with minimal disturbance by measuring the dispersive shift of the cavity peak, 
denoted as 

(2.39) 

2.5 Many spins in a cavity 

To arrive at a realistic description of the experiments presented in the next chapters, 
we extend the Jaynes-Cummings model to now include N spins, not just one. This 
extension, known as the Tavis-Cummings Hamiltonian, provides a framework to study 
collective phenomena and cooperative effects in systems with many spins coupled to a 
common cavity mode. 

(2.40) 

Here, we allow two generalizations for the N spins in the ensemble: each spin with 
index j can have its own transition frequency wl and coupling constant 9J. Deviations 
in the spin energies wl are due to inhomogeneities in the local environment of the spin. 
In the case of NV centers, this can be caused by the presence of crystal defects, different 
carbon isotopes, and other color centers. Together these effects lead to a broadening of 
the spin frequency distribution, referred to as inhomogeneous broadening. Similarly, 
inhomogeneities of the cavity's RF magnetic field over the spin sample volume cause 
deviations in the individual coupling strengths. 

When we neglect these inhomogeneities, the system can be described using the 
collective spin operators 

The Hamiltonian (2.40) then reads 

N 
and S± = I:ai. 

j=l 

and describes the coupling of a mode to a collective spin S = N /2. 

(2.41) 

(2.42) 
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The Hilbert space of the spin system is spanned by the states IJ,M), which are 
eigenstates of both operators 8 2 = (8; + 8; + 8;) and 8z. The quantum number 
J = 0, ... , ( d'f-1), ff of the total angular momentum operator 8 2 is given by 8 2 IJ,M) = 
J(J + l) IJ,M), and M = -J, ... , J is its projection on the z-axis given by 8z IJ,M) = 
M IJ,M). These states couple to the cavity via the operators 

(2.43) 

The lowest energy Dicke state has all spins in the ground state 

(2.44) 

whereas the first excited Dicke state has one excitation shared equally among all spins, 
given by the symmetric superposition 

(2.45) 

In the one excitation subspace, where either one photon is in the cavity l lc) and the 
spins are all in the ground state IG), or there is no cavity photon IOc) and the spin 
system is in the first Dicke state ID1), the off-diagonal elements of the Hamiltonian 
are calculated as e.g. (lc, GI 1-l lOc, D1) = ig0 --/"N. We recover the result from above 

- the polariton modes - where the eigenstates are a symmetric or antisymmetric 
superposition between cavity and spins, 

(2.46) 

with energies E± = nwc ± ng0 --/"N. We can understand this energy-splitting as the 
vacuum Rabi splitting due to a collective coupling strength 9coll = JI:f=il9ol 2 = go--/"N, 
amplified by the factor --/"M as compared to a single spin. 

Fora large spin ensemble N (most experiments in this thesis have N ::::;j 5 x 1013 ), 

when probing the system initialized in the ground state with low input power, we expect 
nearly all spins to remain in their ground state. At these low powers, the number of 
photons n « N compared to the number of spins is so low, that the probability for a 
photon to interact with a given spin twice is negligible. In this regime, the spin system 
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Giant Bloch sphere Dicke Ladder 
J = N/2 for N = 4 spin-½ 
,.--, 

M= N/2 

! J=N/2 - 1 

M= N/2-1 

i i i i J = N/2 -2 

M = O - - -
i i i i 

M= - N/2 + 1 -
! i 

M = -N/2 

Figure 2.5 Bloch sphere of the giant spin vector (left) and Dicke ladder diagram 
for four spin-½ (right)- The most symmetric states are on the left side of the Dicke 
ladder with maximum J and are linked to each other via the operators S±, which 
preserve the symmetry. This process is accompanied by the emission/ absorption of 
a cavity photon a t S_ / aS+, as symbolized by the arrows pointing down. States with 
lesser symmetry are located to the right. The red lines mark the lowest possible M 
states for a given J-manifold, which cannot couple to lower states via a cavity-mediated 
process. Different colors of the arrows mark the different transition rates associated 
with the spin decay, which is fastest at the equator of the Bloch sphere with tipping 
angle 0 = 1r /2 and i ex: N 2 . 

can be viewed as a bosonic mode able to accept equally spaced quanta of energy nws, 
and the system response is that of two coupled harmonic oscillators. 1 

2.5.1 The Dicke ladder 

Taking a closer look at the spin states, we can draw the Dicke ladder (see Fig. 2.5), a 
diagram that encompasses all possible basis states for quantum numbers J and M, not 
only the Dicke states which have the highest J = ~. Starting from the ground state, 
we can apply the operator 

(2.47) 

1This notion can be formulated in a mathematically exact way, which is known as the Holstein-
Primakoff approximation, utilizing the bosonic operators b and bt [16]. They follow the commutation 
rule [b,bt] = 1, and lead to spin operators S+ = (S_)t = andSz = (btb-S). 
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which raises the quantum number M by one, with k = 0, ... , N - 1. The Dicke states 
correspond to k = 0, and are the result of applying m-times the operator S+ = Et 

(2.48) 

When k -=J. 0, the states Et IG) have phase differences between the terms in the sum that 
constitutes the total wave function, thus lesser permutation symmetry. The number of 
degenerate states that have in total m excited spins and z-projection M = -ff+ m 
is given by the possible pathways to combine E"t El ... Etm to act on the ground 
state IG) and create states with different permutation symmetries, calculated by the 
binomial coeffi.cient (:). Another way of seeing this is to count the number of possible 
replacements of ( +) signs appearing in a sum with N terms to ( - ) signs, not counting 
arrangements that just introduce a global phase factor -1. This consideration also 
gives an intuition of how the symmetry is reduced by every additional (-) sign that 
is introduced in the wave function in this way: every ( - ) term decreases the number 
of possible permutations of spins (i.e. swapping two spins) that leave the total wave 
function unchanged. 

From Eq. (2.43) we see that the operator S_ acting on a spin state with maximum 
J = ff reduced by m gives zero: S_ IJ=~-m,M=-~+m) = 0. Therefore these states 
cannot be involved in a process at S_ where a photon is emitted into the cavity. This 
characteristic assigns them the name dark or subradiant states. Other states that can 
be linked by possibly even a full cascade of multiple such processes are called bright or 
superradiant states. 

Looking at the transition matrix elements that link two Dicke states by the process 
at S_ for different projections M, we make an interesting observation that will become 
important later [only focusing on the spin part and using Eq. (2.43)]: 

for M = +ff 
for M = 0 

(2.49) 

We see that the squared amplitudes, corresponding to probabilities via the Born rule -
and connected to the rates associated with the transitions - have different scaling 
with the number of spins N depending on their z-projection M. In other words, the 
decay rate Y depends on the tipping angle 0 = arctan(IS-1/Sz) = arccos(M/J) of the 
collective spin vector § = (Sx, Sy, Bzf on the giant Bloch sphere (see Fig. 2.5). At the 
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north pole of the Bloch sphere, the decay rate Y scales as N, whereas at the equator it 
scales as N 2 . 

2.5.2 Dephasing of the collective spin states 

So far, we have talked about the possible spin states with different symmetries in the 
Dicke ladder, but we have not discussed how states of lesser symmetry can come about 
in the first place, especially when we keep in mind that cavity-mediated processes 
(atS_)(t) will only create Dicke states - the states with maximum symmetry-when 
starting from the ground state IG), thus corresponding to a vertical motion in the 
Dicke lad der. This is easily seen when we consider the inhomogeneous broadening 
of the spin frequencies w! again. Now, when each spin has its own slightly different 
frequency w! =Ws+ flt over time this will lead to a phase difference eit::..lt between 
terms in the total spin wave function, for example as in 

1 ( )) 1 if::..jt 1 ) Ws t = 17\T L.., e s 91, ... , ej, ... , g N , 
vN j=l 

(2.50) 

written in a frame rotating with the mean ensemble frequency Ws and factoring out a 
physically insignificant global phase factor e -i y:,; (t::..lt/2). As the frequency detunings 
fl! are randomly sampled from the spin distribution p(fls) (assumed tobe a smooth 
function for large N), these phase differences quickly will cause the superradiant states 
to lose symmetry and become subradiant, corresponding to a lateral motion in the 
Dicke lad der. 

Recalling the picture of a single spin in a static field and the spin-½ Bloch sphere, we 
remember that each spin rotates around the z-axis in the xy-plane with its individual 
frequency w!. The detunings fl! then will result in some spins rotating faster and 
others slower than the mean circular frequency Ws, Considering the giant Bloch 
sphere of a collective spin again as a vectorial sum of all individual spins, we see 
that the inhomogeneous broadening leads to a decrease of the collective spin vector's 
transversal component 1S- 1 over time, as the individual spin constituents lose their 
mutual alignment and fan out. However, this situation is in principle reversible, as a 
n-rotation (achieved with a cavity pulse) around an axis in the xy-plane makes the fast 
and slow spins switch places, and over time, their phase evolution will be reversed. This 
effect, where the refocussing of spins generates an echo pulse, is known as a Hahn-echo 
[17], see Fig. 2.6. 
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TC Echo 
Dephasing Rephasing T 

Figure 2.6 Dephasing of the collective spin vector due to inhomogeneous broadening. 
A 1r-rotation, in this example around the y-axis, will reverse the dephasing and cause 
a refocusing of the collective spin vector. 

At this point, it is also convenient to discuss the consequences of inhomogeneous 
single-spin couplings 9j, which occur when there is a gradient of the cavity's RF 
magnetic field Bcav(r) over the spin sample volume. Then, the state that is created via 
the spin-cavity interaction term acting on the state l lc, G) is written as 

N 

Hint l lc, G) = in L 9j ( ac?+ - a t (l~) l lc, G) 
j=l 

N 

ex L9j IOc; 91, ... , ej, ... ,9N). 
j=l 

(2.51) 

This state exhibits asymmetry in the individual magnitudes of coefficients, compared 
to the symmetric Dicke state ID1). The asymmetry is only amplified when considering 
multiple actions of the "inhomogeneous coupling" collective raising operator ( S+ )m ex 
(Lj 9ja-t)m. For this reason, the simple picture of the Dicke ladder breaks down -
linking states of sequential Sz projections via the collective cavity-spin interaction 
becomes impossible. Therefore, to observe the dynamics of superradiant Dicke states, it 
is important for all spins to couple to the cavity with a homogeneous coupling strength 

90· 
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2.6 Loss mechanisms for spins and photons 

As we have seen above, inhomogeneous broadening decreases the transversal component 
of the collective spin vector over time. This process does not correspond to an actual 
loss of energy or coherence, as it is, in principle, reversible. However, other loss 
processes act on the level of individual spins and also on the cavity. Looking at a closed 
system, the law of energy conservation requires that energy is never lost. Similarly, 
information, such as the relative phase of a quantum superposition, cannot be destroyed 
but only transformed. This information can be distributed through interactions that 
entangle the state with other parts of the system, resulting in a total wave function of 
ever-increasing complexity. The apparent loss of energy and coherence comes about 
by making a distinction between the system of interest and its environment, which is 
usually too complex and has too many degrees of freedom to accurately model the 
dynamics of all its parts. The loss processes we want to describe here correspond to the 
dissipation of energy and coherence into this environment. The standard approach to 
calculating the dynamics of an open quantum system is given by the Lindblad master 
equation, which governs the dynamics of the density matrix p, 

(2.52) 

L(p) 

Here, { a, b} = ab+ ba denotes the anti-commutator, and the operators Li and L! 
are called jump operators, influencing the time evolution of p at characteristic rates 
'Yi· This formalism is an extension of the van Neumann equation, which is given by 
Eq. (2.52) without the term .C(p) - it is a generalization of the Schrödinger equation 
that allows to model the time evolution of mixed states of an isolated quantum system. 
These states, described by the density matrix p, encompass coherent superpositions 
and incoherent additions within the system. The need to use incoherent additions, 
i.e. a statistical description, is a result of ignoring parts of the total wave function by 
tracing out the environmental degrees of freedom. Including the term .C(p) makes it 
possible to describe non-unitary dynamics that model dissipative processes and are 
associated with certain pathways of interaction with the environment. 

For a spin system we can distinguish two processes: 

• Loss of energy, where the excited state will eventually decay to the ground state 
with a characteristic timescale T1 and rate 'YII = 1/T1 . This process affects the 
diagonal entries ( or populations) of the density matrix p and is associated with 
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a decrease of the Pee and a complementary increase of the p99 components via 
the a_ jump operator. lt is caused by coupling to additional modes of the 
environment, such as phonons in the crystal host matrix of the spin, or coupling 
to modes of the electromagnetic field other than the cavity. In solid-state spin 
systems, this rate 1'11 is also called the spin-lattice relaxation rate. 

• Loss of coherence, where the off-diagonal entries ( or coherences) of the density 
matrix Peg and Pge decay with a timescale T2 and rate ')'1_ = 1/T2 . Over time 
this makes the relative phase in a coherent superposition of le) and lg) vanish 
and turn it into an incoherent sum. This process is described with the az jump 
operator and is associated with fluctuations of the external magnetic field Bz. 

The cavity photons are also lost over time, leading to a decay of the cavity amplitude 
as lal ex: e-1,,t with a dissipation rate r,,. This process is caused by lossy channels, such 
as the surface resistance of metal walls in a box cavity, losses in a dielectric material, 
or lossy mirrors e.g. in a Fabry-Perot resonator. The associated jump operator is the 
annihilation operator a. 

The full Lindblad operator for a system with N spins coupled to the cavity is given 
by 

.C(p) = r,, (2apat - atap- aatp) 
N 

+ ~I ~(2a~pat - ~atp - pata~) 
J 

1'..l • • + 2 ~(a;;pa;; - p), 
J 

(2.53) 

where we used the result a; = 1. The choice of prefactors follows Ref. [18] and is 
determined by the equations of motion for the coupled system of cavity and spins -
the Maxwell-Bloch equations - presented at the end of this chapter. 

2. 7 Cavity input and output theory 

Having discussed an effective way of dealing with losses to the environment, we now 
want to describe how fields from outside couple to the photons in the cavity and 
simultaneously how these photons can escape the cavity to be measured, forming the 
basis for doing any experiment that probes the system. We consider a cavity with 
two ports, such as two lossy mirrors in a Fabry-Perot resonator as shown in Fig. 2.7. 
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Figure 2. 7 Schematic representation of a cavity with two ports. The cavity field 
operator a(t) is coupled to the incident fields ain and bin and the outgoing fields aaut 

and baut· 

These mirrors allow external fields to enter the cavity and increase the number of 
photons inside. At the same time, photons within the cavity interact with the field 
amplitudes outside. The dynamics of the cavity annihilation operator a are governed 
by the quantum Langevin equation, following Ref. [19] as 

(2.54) 

where the Hamiltonian of the cavity is just 1i = nwcat a, the cavity's internal loss 
rate is given by l\:int and we are using the coupling rates 1,;1 , 1,;2 to the impinging fields 
ain, bin at both ports. With the unitary transformation U = eiwpatat we can move into 
a frame rotating with the probe frequency wp, where the transformed Hamiltonian is 
given by il = utHU + inUt We then get the result 

(2.55) 

where ~c = Wc - Wp is the detuning with respect to the probe frequency, the total loss 
rate is /\:tot = l\:int + 1,;1 + 1,;2 , and we assume the cavity is driven only via one port such 
that bin = 0. In the steady state ä = 0, the cavity amplitude becomes 

ain a=----. 
i~c + /\:tot 

(2.56) 

The in- and outgoing fields on both ports are related via 

(2.57) 
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We can therefore calculate the transmission ITl 2 as the absolute squared ratio of input 
amplitude on one side over output amplitude at the other side as 

(2.58) 

The resulting function is a Lorentzian with a half-width at half-maximum (HWHM) 
of "'tot· We can relate the steady state cavity photon number n = latal on resonance 
(ßc = 0) to the squared field amplitude lainl 2 = Pin/nwp in terms of the input power 
per photon of the probe frequency as 

(2.59) 

Here, we see that the cavity photons are maximized when the cavity is over-coupled 
such that external losses dominate the internal losses "'ext = (1,;1 +1,;2 ) > 1,;int· Conversely, 
they are minimized in the under-coupled regime when "'ext < 1,;int· In most cases, it 
is favorable to have an appreciable number of photons in the cavity (to interact with 
the spin ensemble), but at the same time, low total losses "'tot = 1,;int + "'ext might be 
desirable, which makes the photons stay around for longer times, thereby amplifying 
the interactions. A suitable trade-off depends on the experimental requirements. In 
general, it is easier to tune the external coupling rates, for example by changing the 
length of microwave coupling pins, rather than the internal losses, which depend on 
the material properties of the cavity. 

2.8 Maxwell-Bloch equations 

Finally, we have almost all the ingredients to fully describe our system of N spins 
coupled to the cavity. The last step is to include the Hamiltonian for driving the cavity 
at frequency wp, as given by 

(2.60) 

The driving amplitude 'T/ is related to the incident field at port 1 of the cavity from 
Eq. (2.55) above via 'TJ = ain· 

Now, we can calculate the equations of motion for the expectation values of cavity 
and spin operators in a frame rotating with the drive frequency. We use the Tavis-
Cummings Hamiltonian (2.40) including the driving term (2.60) and the full Lindblad 
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operator (2.53) to incorporate lasses. For these calculations, we utilize the definition 
for the expectation value of an observable A of the system (A) = Tr(pA) and similarly 
for its time derivative (Ä.) = Tr(pA). We also employ the commutator relations for the 
cavity, [a, at] = 1, and the spin ladder operators, 

(2.61) 

along with the invariance of the trace under cyclic permutations. Then, after some 
juggling around we arrive at a set of equations that fully describe the dynamics of the 
system: 

N 

(ä) = - (ri, + il::::..c)(a) + L gj(ai__) + TJ 
j=l 

(&i__) = - (rj_ + ~I + i!:::..D(ai__) + gj(aaD 

(&l) = - ,11 (1 + (ai)) - 2gj ( (at ai__) + (aat)) 

(2.62a) 

(2.62b) 

(2.62c) 

Here, the detunings of the cavity l::::..c = Wc - Wp and the j-th spin !:::..i = wi - Wp are 
both with respect to the drive frequency wp. This is not a closed set of equations, as 
the second-order cumulants on the right-hand side are again expressed in terms of 
higher-order operators and so on, ad infinitum. Altogether, these never-ending coupled 
equations would contain the full quantum description of the system - but solving 
them all is impossible. 

The simplest way of dealing with this issue is breaking the chain after the first link: 
we will use a semi-classical approximation by splitting the second-order cumulants into 
products of their first-order counterparts, neglecting higher-order correlations. The 
closed set of (2N + 1) equations attained in this way is known as the Maxwell-Bloch 
equations (MBE) of motion: 

N 

(ä) = - (ri, + i!:::..c)(a) + L gj(ai__) + TJ 
j=l 

(&i__) = - (,J_ + ~I + i!:::..D(ai__) + gj(a)(aD 

(&i) = - ,11 (1 + (aD) - 2gj ( (at) (ai__) + (a) (at)) 

(2.63a) 

(2.63b) 

(2.63c) 

These equations form the basis for simulating the time evolution of the spin ensemble 
coupled to the cavity. Strategies for solving these equations in practice to model the 
experiment are discussed below. 
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Figure 2.8 Discretized q-Gaussian spin distribution. 

Numerical methods of solving the Maxwell-Bloch equations 

29 

As it is impractical to numerically solve a set of equations for 5 x 1012 spins - roughly 
the number of NV spins in our samples - we will make simplifying assumptions 
to bring the number of equations down to a solvable level: We assume a smooth 
distribution of spin frequencies represented by the function p(w8). This function is 
discretized into NP spin packets, indexed by j, with weights Pi= p(w1) sampled at the 
linearly spaced spin frequencies w1 =Ws+ D.L see Fig. 2.8. The discrete distribution 
is normalized to "E.f P Pi = l and the sum over all spins in Eqs. (2.63) is replaced by 
"E.f --+ NP "E.? Pi. The cavity is designed to realize homogeneous single-spin couplings 
g0 throughout the sample volume, as detailed in Ch. 5. Then, the single-spin couplings 
gi in Eq. (2.63a) can be factored out and replaced by gP = 9con/ ,Jii;. Thus, spins that 
fall into the same frequency packet will behave identically, which reduces the number 
of coupled equations to 2NP + 1: 

Np 

(ä) = - (t,; + iD.c)(a) + gpN/L Pi(c,i_) + rJ 
i=l 

(äi_) = - (,_1_ + ~I + iD.{)(c,i_) + gp(a)(c,{) 

(ä{) = - ,11(1 + (c,{)) - 2gp ((at)(c,i_) + (a)(c,t)) 

(2.64a) 

(2.64b) 

(2.64c) 
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To model the spin distribution, we use a q-Gaussian function [20, 21] 

1 

p(w) = [1 - (1- q) (w -wo) 2/ö;r-q' (2.65) 

with öq = W - 1)/(2q-l - 1), where W is the full-width at half-maximum (FWHM). 
The parameter 1 < q < 3 influences the fall-off behavior to the sides of the distribution. 
A value of q = 1 corresponds to a Gaussian, q = 2 to a Lorentzian distribution, 
respectively. The value chosen in our models is q = 1.39 following previous works 
on related systems [21, 22]. This exact choice is not as important for a steady-state 
description ( a normal distribution works too) but leads to a better correspondence 
with the time-resolved dynamics. The set of differential equations (2.64) can now 
be efficiently solved numerically using the Runge-Kutta method [23] to simulate the 
system's evolution in time. 

Steady-state solution of the MBE 

For extracting the relevant model parameters from the experiment, it is instructive to 
look at the steady-state solution of Eqs. (2.64). When the time derivatives on the left 
side become zero, these equations simplify to 

(2.66) 

where we use the definition i = 11_ + ½,11· In our system, we have i 11_, as the 
NVs' decoherence rate 11_ is much faster than the spin-lattice relaxation ,11· Looking at 
this equation, we see that the spin ensemble's effect on the cavity amplitude vanishes 
( i) either when all (aD = 0, i.e. when the ensemble is in a completely mixed state 
( e.g. at higher temperatures or after a weak but long MW excitation pulse), or ( ii) 
when the spin ensemble is far detuned such that all ~t » 9coll• Then, Eq. (2.66) just 
describes the "empty" cavity's Lorentzian lineshape of width t,,. In Fig. 2.9, we plot a 
simulated transmission spectroscopy measurement of the system in the ground state 
using Eq. (2.66), while the center spin frequency is varied across the cavity resonance 
frequency, corresponding to a magnetic field scan. 

To better understand the effects of the other parameters, particularly the collective 
coupling 9coll and the spin-distribution width W, we plot the cavity transmission 
ITl 2 = lal 2 /772 on resonance in Fig. 2.lü(a,b). The system response exhibits anormal-
mode splitting [c.f. Eq. (2.46)], with the two peaks separated by a frequency difference 
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Figure 2.9 Simulated transmission spectroscopy and magnetic field scan, i.e. the 
ground state polarized spins are tuned across the cavity resonance. The model pa-
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Figure 2.10 Simulated cavity transmission on resonance Wc = w8 using the steady-
state solution of Eq. (2.66) with the spins in the ground state p = (a1) = -1, varying 
9coll in (a), and W in (b), while keeping other parameters fixed. (a) The collective 
coupling strength 9coll influences the peak-separation of the normal-mode splitting (the 
actual peak distance is exactly given by 2gcoll only for a homogeneous system with 
W = 0). (b) The peak widths are described by r, also referred to as the effective 
ensemble-linewidth, which is influenced by both the spin-distribution width W and 
the parameter i = 1 .1_ + ½,11 · 
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of approximately 2gcoll· The peak widths are determined by the effective ensemble-
linewidth r, calculated as 

r [ ~P; H\ili r (2.67) 

In our case, the dominant contribution to this characteristic width r is the width of 
the inhomogeneously broadened spin distribution W » 1' ..l · An essential parameter 
characterizing the cavity-spin system is the cooperativity, defined as 

(2.68) 

This dimensionless parameter compares the rates of excitation exchange between the 
cavity and spins with the individual subsystem's loss rates due to dissipation and 
dephasing. When C > 1, the normal modes are split into two distinct peaks, and the 
system is said to be in the strong coupling regime. 

2.9 Superradiance 

We continue discussing a collective spin decay as a cascade through the highly symmetric 
subspaces - the superradiant states - of the Dicke ladder, right where we left off in 
Sec. 2.5.1. This collective decay, accompanied by a strong burst of emitted light, was 
initially predicted by Dicke in 1954 [9] and is known as a superradiant decay. A handy 
theory resource is the review paper by Gross and Haroche [10]. First, we will take a 
step back and focus on the most essential ingredients for superradiant emission, offering 
a qualitative description. For this, we only need a collection of N excited emitters 
coupled to a common mode, with the simplest case being the always-present vacuum. 

The superradiant decay of this fully excited state will start with the spontaneous 
emission of a single photon, which has an equal probability of being emitted by any 
one spin - causing the total emission rate to initially scale as the number of spins 
Y ex N. Now, the presence of this photon is "felt" by all the other spins and leads 
to the stimulated emission of other photons - generating a photon avalanche. The 
collective emission will speed up as long as there are more excited spins than already 
de-excited ones. lt reaches its maximum Y ex N 2 when the collective spin vector is at 
the equator of the giant Bloch sphere, where the number of up-spins equals the number 
of down-spins. This process is depicted in Fig. 2.ll(b), where a dense atomic cloud is 
fully excited at t = 0: The first few photons are emitted spontaneously, possibly into 
different competing modes (i.e. directions and frequencies). After a short period, one 
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Figure 2.11 Collective decay as the essence of superradiance: A cloud of emitters -
or spins - is initialized in an excited state at t = 0. (a) When the cloud is dilute, 
the spins are essentially non-interacting and decay individually through spontaneous 
emission with the time constant Tsp by weakly coupling to the electromagnetic modes 
of the vacuum. (b) When the cloud is dense, the decay becomes a collective effect, 
accompanied by spontaneous synchronization mediated via coupling to a common 
mode and a speed up of the collective emission process. Figure adapted from the 
seminal review paper on superradiance by Gross and Haroche, Ref. [10]. 

of the modes will dominate and an intense burst of light is generated. If the ensemble 
of emitters has an elongated shape, the dominant mode aligns with this axis, and the 
emitted light will be directed accordingly. In some aspects, the physics of superradiance 
has similarities to laser physics, which also involves the synchronization of all atoms 
in the active medium. A key difference is that this synchronization in a conventional 
laser is enabled by a large number of photons in the cavity radiation field, whereas in 
superradiance, the coherence will be generated through the collective behavior of the 
excited emitters themselves. 

When considering the initial fluctuations triggering the avalanche effect, we can 
interpret the superradiant decay as undergoing a transition from a regime dominated 
by quantum effects - the spontaneous emission of the first photon - to a classical 
regime, involving the formation of a macroscopic dipole that emits a strong burst of 
light. As will be discussed in Ch. 6, we realized an experiment to study the triggering 
of a superradiant decay using a weak microwave pulse and explore the high sensitivity 
offered via the amplification through the avalanche process. 

The superradiant emission requires the indistinguishability of individual emitters -
a necessary condition during the decay, which can only create a photon cascade when 
the permutation symmetry of the spin state is preserved, as discussed in Sec. 2.5.1. 
Only then can the amplitudes of individual emitters g0at interfere constructively 
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and synchronize collectively. Notably, not only the Dicke states enable a theoretical de-
scription of the transition from a linear N to a quadratic N 2 scaling of the superradiant 
decay process akin to Eq. (2.49). Also, a description in terms of spin-coherent states -
the same key ingredient being indistinguishability and, thus the permutation-symmetric 
nature of the states - can capture these essential dynamics. The spin-coherent states 
are generated by the operator [24] 

1 . with r = -rJe-i'-P ',, 2 ' (2.69) 

using the spin ladder operators S±. These states are coherent superpositions of Dicke 
states and are constructed analogously to the coherent states of the photon field [with 
the displacement operator (2.19) acting on the vacuum state IO)]. Spin-coherent states 
are generated when a classical light field interacts with a spin ensemble, causing a 
spin-rotation when acting on the "spin-vacuum" state, i.e. all spins down. For example, 
when r.p = 0, 

IW) = R(rJ,0) I+-!- ... -!-) = ei1JSy I-!--!- ... -!-) 
N 

= IJ ( cos( 0 /2) 1-!-) j + i sin( 0 /2) lt\) . 
j 

(2.70) 

This state, being a product state, does not exhibit any correlations between individual 
spins - it has no entanglement. N evertheless, it has the required symmetry for a 
superradiant decay as the permutation of two spins leaves the state unchanged. In this 
sense, superradiance, with its hallmark N 2 scaling of the maximum emitted intensity, 
is not inherently a quantum effect but an interference phenomenon arising from the 
collective decay of indistinguishable emitters. 

The condition on symmetry preservation during the superradiant decay explains 
the requirement of a "dense" atomic cloud in Fig. 2.ll(b). When the cloud is confined 
to a small volume V, symmetry-breaking effects such as the retardation of light, which 
introduces phase changes for individual spin processes, can be neglected. Therefore, 
a simplified condition for free-space superradiance is usually formulated as V « >. 3 , 

where >. is the wavelength of the emitted light. In real examples of physical systems, 
there can be many effects that actively work against superradiance, dependent on the 
physical system. These effects include, for example, Doppler broadening in atomic 
gases, dipole-dipole interactions between emitters, limited lifetimes and decoherence, 
or other atomic transitions and modes of decay, just to name a few. Superradiance 
has been studied in a myriad of physical systems, e.g. ordered arrays of atoms [25], 
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quantum <lots [26], atomic beams [27], cold atoms systems [28], atoms near optical 
nanofibers [29], and astrophysical masers [30]. 

Superradiant threshold condition 

In our system of a spin ensemble coupled to a microwave cavity, several processes 
compete with the superradiant decay, and have already been introduced above: photon 
loss with rate K,, and the ensemble dephasing with rate r - summarizing both the 
effects of inhomogeneous broadening and the individual spin decoherence rate 1 ..1_. The 
key process to enable superradiance is the collectively enhanced coupling 9coll = g0-J]v 
to the cavity mode. lt is, therefore, natural to expect the cooperativity parameter 
C = g~011 / K,f to show up in a threshold condition for superradiance. We derive this 
threshold following Ref. [31]: Assuming an initial state of the spin ensemble with 
homogeneous polarization p = (ey1) > 0 and zero transversal spin components (ey~) = 0, 
as well as no photons in the cavity, we insert Eq. (2.64b) above into Eq. (2.64a) (with 
no external cavity drive rJ = 0 and on resonance ßc = 0): 

(2.71) 

Under a quasi-steady slow initial evolution of the system from this meta-stable state, 
with (&~) 0, we can interpret the expression in the large round brackets as a necessary 
condition on the stability of the inverted ensemble: in the case pC < 1, the cavity 
amplitude (a) does not grow, and the system self-stabilizes due to the dephasing r 
and dissipation K, winning over the rate of energy exchange 9coll· By inverting this 
condition we arrive at a threshold definition for spontaneous superradiance - meaning 
that any fluctuation of the system will trigger a superradiant decay: 

pC > 1 (2.72) 

We find that a cooperativity C > 1 - the system being strongly coupled - is a 
necessary condition, as the inversion p is bounded by -1 :::; p ::::; 1. However, for 
a system to exhibit spontaneous superradiance the system also needs a minimum 
homogenous inversion p > 1/C. We can drop the requirement on homogeneity of the 
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inversion by employing a generalization 

pC = N/f:Jpj(ü~)Cj, 
j 

Theory of Spins in Cavities 

(2.73) 

using the spin frequency distribution pj, where we have introduced the definition of 
single-spin cooperativities 

(2.74) 

These frequency-dependent contributions to the total cooperativity C = NP ~j pjCj 
are peaked for spins with zero detuning ßt. As expected, spins that are closer to the 
center frequency contribute more to the threshold for spontaneous superradiance 

(2.75) 

Below this threshold, the formation of a collective dipole 1S- 1 during the superradiant 
decay is hindered via dissipation through r and /'i,. 

Delay time of the superradiant emission 

We now turn our attention to the delay time of the superradiant burst. This delay 
time is defined as the time it takes for the superradiant emission to reach its maximum 
amplitude max(lal) when starting from an inverted state with an initial tipping angle 
0 = arctan(IS- 1/ Sz) and no cavity photons lal = 0. To derive an analytic result, we 
start with a major simplification of the system, now recalling the Hamiltonian (2.42), 
where inhomogeneous broadening is neglected and the spin system can be accurately 
described by the collective operators Sz and S±· The Heisenberg-Langevin equations 
of motion are given by 

ä = - K,a + goS _ , 

s_ = - ,1-S- + goaSZ' 

Bz = - 9o ( at s_ + aS+) 

(2.76a) 

(2.76b) 

(2.76c) 

Here, we assume the system is on resonance ßc = ß 8 = 0, is not driven TJ = 0, and 
has infinite spin lifetime ,11 = 0. Inserting Eq. (2.76a) into Eq. (2.76c), we arrive at 
the result 

(2.77) 
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Now, we will neglect the term on the right, assuming that ä 0. This assumption is 
known as the fast cavity limit - photons leave the cavity on a faster timescale than 
the decaying spin system generates them. While not technically true for our system, 
this simplification offers an easy way to derive an analytic expression of the delay time 

- which is later confirmed by numerical simulations. By using this approximation, we 
ignore the cavity backaction on the spins, which becomes important for the dynamics 
only at later times. As we will see, the cavity will act as a reservoir and cause the 
energy emitted during the superradiant decay to oscillate back and forth between the 
two subsystems. Continuing the derivation, we assume the system is in a state IJ,M), 
where J » 1 and the time-ordering of the operators is not crucial, and evaluate 

(2.78) 

We parametrize the initial z-projection (Sz) = M = J cos(0) with the tipping angle 0 
at timet= 0, further using a magnitude of the giant spin vector J = pN /2 dependent 
on the initial polarization. Then, utilizing Eq. (2.43), we get 

(2.79) 

We solve2 for the delay time t0 , where the emitted intensity is maximum and the spin 
state points towards the equator of the Bloch sphere such that (Sz) = 0. We end up 
with the result 

to = to - _r,, ! log (tan2 (~)) . 
2g5N p 2 

(2.80) 

As a last step, we linearize tan(0/2) (0/2) and neglect the constant time offset to 
arrive at our final result 

to = -2TR1 log(;), (2.81) 

where we introduce the superradiant timescale TR = #- following Refs. [10, 27]. 
9coll 

Finally, we note that the prefactor 2g5/ r,, in Eq. (2. 78) represents the Purcell 
enhancement [32], which describes the enhancement of the single spin spontaneous 

2Using shorthand notation z = (Sz) the result of Eq. (2.80) follows via 

K, 
to -to = --

2g5 

in the limit of large J » 1. 

z=O 

J 
z=J cos(0) 

dz 1 = _ _!5:__ __!_ log ( 1 - cos( 0)) 
(J+z)(J-z+l) 2g5 2J l+cos(0) ' 
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emission rate due to the coupling to the resonant cavity mode ( as opposed to the 
vacuum field). 

Comparison with numerical simulations 

Let us now compare these results with numerical simulations using the Maxwell-Bloch 
equations (2.64). With these simulations, we include inhomogeneous broadening and 
the cavity's backaction on the spins, using the same parameters as in the experiment.3 

We initialize all spins with uniform initial inversion (a{) = p and a small tipping angle4 

0 = arctan(IS-I/S2) and then numerically evolve the system in time, plotting the 
simulated cavity amplitude lal in Fig. 2.12(a,b). 

The first noticeable difference to the "textbook" superradiant decay illustrated in 
Fig. 2.11 - which shows a single burst - is that each simulated decay has multiple 
peaks. These peaks correspond to the emitted photons being reabsorbed by the spins 
and oscillating back and forth between cavity and spins multiple times before being 
gradually lost due to dissipation and dephasing. They are, essentially, damped Rabi 
oscillations between the two subsystems with the oscillation frequency 0, appearing 
because the cavity acts as a reservoir for the photons emitted by the spin ensemble 
when we are not in the fast cavity limit. 

We will now analyze the simulation runs and discuss several observations, where 
the simulated system's behavior either confirms or deviates from the simplified theory 
expectation Eq. (2.81). For these comparisons, we extract three parameters from 
the simulations, including the maximum cavity amplitude max(lal), the time of its 
appearance defined as the delay time t0 , and the inverse time between consecutive 
cavity maxima, defined as the Rabi frequency 0. We then will fit these extracted 
parameters with simple polynomial functions and discuss the observed trends. 

In Fig. 2.12(a), where the initial inversion p is varied and the tipping angle is 
fixed, we see a confirmation of the threshold behavior pC > 1 - when the initial 
inversion approaches this threshold, the emitted pulses become weaker and appear 
at later times - below it, a superradiant decay would eventually not be able to 
form. From the polynomial fit, we see that the delay time t0 is inversely proportional 
to x = p - 1/C, where the minimum inversion threshold is subtracted from p to 

3The parameters are determined for the N-diamond sample coupled to the DCR cavity as 9can/2n = 
4.6 MHz, K,/2n = 420 kHz, W /2n = 9.2 MHz, q = 1.39, "fj_/2n = 177 kHz and 'YII = 0, see steady-state 
coupling fit in Fig. 6.5(b). 

4If the tipping angle was exactly zero, the equations would not show any decay - all spins would 
stay perfectly upright. In a real experiment, there is always a noise source present ( e.g. thermal 
and/or quantum fluctuations) that would eventually trigger a superradiant decay. 
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Figure 2.12 Numerical simulations of superradiant decay using model parameters as 
determined from the experiment. The signal marked with a blue star in (a,b) is a single-
shot time-resolved measurement - the experimental data (black line) is overlayed 
with the simulation result (dashed blue line). (a) Scan of p for fixed tipping angle 
0. The y-axis offset corresponds to the value of p in the simulation. (b) Logarithmic 
scan of tipping angle 0 for fixed p, confirming the linear dependence of the delay time 
t0 ex -log(0/2). In (c), the maximum cavity amplitude max(lal) in arbitrary units as 
determined from the runs shown in (a), is plotted against the inversion p. Similarly, in 
(d), the squared frequency 0 2 of the damped Rabi oscillations [graphically defined in 
(b)] is plotted against p. 
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recreate the delay time divergence to infinity when p = 1/C. This precisely follows the 
expected behavior t0 ex: -1/p from Eq. (2.81). Along the same lines, the logarithmic 
dependence t0 ex: - log( 0 /2) is perfectly confirmed by the simulation runs with fixed p 
in Fig. 2.12(b). 

Another expectation is confirmed, at least to a high degree, when we plot the 
maximum cavity amplitude of the numerical runs against the initial inversion in 
Fig. 2.12(c), and observe an almost linear relationship, max(lal) ex: p. This is, essentially, 
the hallmark N 2 scaling of the emitted intensity, as quantified by the maximum photon 
number lal 2 in a superradiant decay, where the number of participating spins is directly 
proportional top. Not reverting to previous definitions, we can also motivate this 
expectation with a simple argument: When the cavity amplitude reaches its maximum, 
its change (a) = 0 becomes zero. Rearranging Eq. (2.76a), we get (a) ex: S_. The cavity 
amplitude is, therefore, proportional to the transversal component of the collective 
spin vector. However, this vector's initial orientation was along +z, and its length 
corresponded to the initial inversion p, subsequently having performed a rotation 
towards the equator during the superradiant decay. This establishes the expected 
dependence max(lal) ex: p. Notably, this argument also works for the inhomogeneously 
broadened case, where the collective spin vector would experience a length reduction 
due to fanning out of fast and slow spins during the decay process, which nonetheless 
is always proportional to its starting length and does not change our result. The 
deviations from the ideal superradiant emission where max(lal) ex: p, particularly for 
higher values of p, can be explained by the cavity backaction on the spins. Faster 
dynamics of lal and S_ occur with higher p, making the system deviate from the 
adiabatic approximation a 0 (i.e., the fast cavity limit). 

Next, we look at the Rabi frequency O extracted from the simulations [how it 
is extracted can be seen in Fig. 2.12(b)], plotted against the initial inversion p in 
Fig. 2.12(d). A natural assumption is that this frequency is proportional to the 
collective coupling strength 9coll = g0 ,/N. By definition, this coupling strength 
describes the rate of energy exchange between the two subsystems of cavity and spins. 
When including the inversion p in this picture, it should appear as a square root - in 
the same way as the number of spins N would - leading to our expectation O ex: ,Jp, 
or this expression squared: 0 2 ex: p, as shown in the plot. The slight rightward shift of 
the linear fit towards higher inversion than the threshold value of p = 1/C is attributed 
to the fact that the oscillation frequency O is somewhat ill-defined in the regime of a 
critically damped emission, particularly when the inversion is only slightly above the 
minimum threshold. 
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Figure 2.13 Simulated superradiant decays with initial inversion p = 0.25, comparing 
different combinations W, ')'..1_, and r. In the three panels, the middle row is identical, 
and one of the parameters is always fixed, while the remaining two are varied. Other 
simulation parameters as used for Fig. 2.12. 

Finally, to further explore the infl uence of inhomogeneous broadening W and single 
spin dephasing 1' ..1_, and how these two are combined in the effective ensemble linewidth 
r, we compare superradiant decay simulations for different combinations of these 
parameters in Fig. 2.13. For fixed r [but increasing ')'..1_ while decreasing W, or vice 
versa, see Fig. 2.13(a)] we observe a very similar behavior of the first cavity peak. This 
is consistent with the threshold formula for the superradiant decay p = 1/C, which 
depends only on r (via C = gJ0 n/ t,;r) and not on the specific values of W and ')'..1_. 

However, the later dynamics of the damped Rabi oscillations differ significantly under 
varying combinations of these parameters, see also Figs. 2.13(b,c). As we will discuss 
in Ch. 6, the spin distribution width W can be measured directly and independently. 
The parameter ')'..1_ is then estimated by adjusting the simulations to align with the 
experimentally observed superradiant decay dynamics. 

To summarize, the numerical simulations confirm the delay time formula (2.81). In 
place of the initial inversion p, the numerical results suggest using a value of p - 1/C, 
reduced by the superradiant threshold p = 1/C for an inhomogeneously broadened 
spin system. This comes as no surprise, as the simplified derivation of Eq. (2.81) above 
neglects all effects that would keep a giant spin of any non-zero positive inversion from 
decaying via a superradiant burst. 

We conclude our discussion on superradiant decay here and will revisit this topic 
when discussing the experiments in Ch. 6. 





Chapter 3 

Experimental Setup and 
Instrumentation 
Using fridges and microwaves 

This chapter provides an overview of our experimental setup, beginning with an 
introduction to our cryogenic systems. We then discuss the microwave devices and 
techniques used for both spectroscopic and time-resolved measurements, concluding 
with a pulse power (photon number) characterization. 

3.1 Cryostats 

Dilution fridge 

The main experiments discussed in this thesis are carried out at extremely low tempera-
tures in the millikelvin range, achieved using a dilution refrigerator (Oxford Instruments, 
model Triton 400), see Fig. 3.1. A low-temperature environment is essential for initial-
izing our spin system in the ground state and minimizing thermal noise. To maintain 
minimal thermal contact with the outside, the fridge has to maintain a vacuum inside. 
lt is constructed from several temperature stages ( concentric cylinders) with limited 
thermal contact between them, creating a stepwise temperature gradient from the 
lowest temperature at the core to room temperature at the outermost layer [nominal 
temperature values for each stage are shown in Fig. 3.l(left)]. 

A dilution fridge's operation relies on the properties of a 3He/ 4He mixture at 
low temperatures, contained in a separate closed tubing system extending from the 
room-temperature environment into the cryostat's vacuum chamber. Below a critical 
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temperature of 870 mK, the 3He/ 4He mixture undergoes phase separation, forming a 
3He-rich phase and a 3He-dilute phase. The core of the cooling process occurs in the 
mixing chamber, where these two phases meet. By continuously removing 3He from the 
dilute phase through pumping ( using two turbo pumps outside the fridge), 3He from the 
rich phase is forced to cross the phase boundary to maintain equilibrium. This process 
of 3He moving from the concentrated phase to the dilute phase absorbs heat, cooling 
the system [33]. A key advantage of this system is its ability to provide continuous 
cooling: A minimum concentration of roughly 6.5% 3He will always remain in the dilute 
phase, even as temperatures approach absolute zero. Our dilution fridge can reach a 
minimum temperature of 24 mK (which is actually the minimum displayed value, the 
real temperature could be slightly lower), limited by the small but unavoidable heat 
influx from the environment. 

To reach the low temperature required for this 3He/ 4He cooling mechanism to work, 
the fridge is equipped with additional cooling systems: a pulse tube cooler [34] for 
reaching down to around 2. 7 K, and the Helium gas itself. Even above the condensation 
temperature, the system can achieve cooling through compression and expansion of 
the gas mixture, similar to a conventional fridge. 

The fridge's multiple temperature stages are also used to mount the coaxial MW 
wires (50 0 impedance) and various active and passive MW components to control the 
MW signals entering and exiting the cavity-spin system. These cables are made from 
either steel (with better thermal isolation) or copper (lower absorption lasses). To 
reduce heat intake on the lower stages and allow for thermal expansion and contraction, 
the cable routing includes additional bends, extending the heat gradient over langer 
distances. The total cable length of roughly 1.5 m for each line inside the fridge adds 
approximately 10 dB of attenuation. 

Passive components include attenuators, MW isolators, and a DC block ( essentially 
a tiny capacitance for both inner and outer conductors between coaxial wires), all 
used to provide thermal photon isolation. We also employ a power splitter to connect 
cavity port 2 to both the probe and out-line. Active components inside the fridge 
include a low-noise amplifier in the out-line and a high-isolation MW relay switch in 
the pump-line. More details on the MW setup are provided below. 

The cavity box is placed within a vector magnet mounted at the coldest temperature 
stage. This vector magnet consists of three intermeshed Helmholtz coils (a home-built 
setup using superconducting NbTi wire). A crucial aspect of the magnet setup is the 
heat-anchoring of its wires at every temperature stage. The wire is wrapped around 
small copper cylinders multiple times to ensure good thermal contact. 
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Figure 3.1 The dilution fridge and its temperature stages. (Left) The cavity box, 
housed within a vector magnet (Helmholtz coils along x, y, and z-axes), is located at 
the lowest stage (24mK). Three MW lines (pump, probe, and out-line) connect to 
the lowest stage, assembled from steel and copper coaxial wires with various passive 
elements: attenuators (dark gray), DC block, power splitter/combiner (Y-shape), and 
isolators (round arrow). MW inversion pulses sent through the pump-line to cavity 
port 1 are amplified by a high-power amplifier ( +40 dB, right outside the fridge), with 
a solenoid switch at the 1 K stage acting as a MW relay. Cavity port 2 connects via a 
splitter to the probe line (for applying weak pulses) and the out-line, which carries 
the measurement signal, amplified by a low-noise amplifier ( +30 dB) at the 5 K stage. 
(Right) Photograph of the dilution fridge's insides. 
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Adiabatic demagnetization refrigerator 

For some of the experiments, particularly those focused on cavity characterization 
and collective coupling measurements, we employ a different cryostat: a pulse-tube 
pre-cooled Adiabatic Demagnetization Refrigerator (ADR, HPD Model 103 Rainier). 
This system operates based on the magnetocaloric effect. In contrast to the continuous 
cooling offered by the dilution refrigerator, the ADR provides non-continuous cooling 
in a single-shot mode down to a slightly higher minimum temperature of around 50 mK. 
Each cooling cycle takes approximately 1 h, followed by a gradual warm-up over several 
hours. The microwave setup in the ADR is similar to that of the dilution fridge but 
simpler, consisting of only a single microwave input and output line. This configuration 
is primarily used for spectroscopy measurements, where the system is kept in a steady 
state. 

3.2 Microwave techniques 

3.2.1 IQ-mixing 

As we have seen in Sec. 2.8 of the last chapter, our hybrid system is governed by 
transition frequencies of the cavity and of the spin ensemble, Wc and Ws, respectively. 
Although these frequencies in our experiments are in the gigahertz range, with Wc ::::: 
Ws ::::: 27r x 3 GHz, the relevant dynamics occur in the rotating frame with rates of 
change given by their mutual detunings b.sc = Ws - Wc, which are in the megahertz 
range - three orders of magnitude slower. Consequently, to control our system in 
practice, the modulation of external MW drives needs to occur only over a timescale 
of microseconds. This is where IQ mixing becomes essential. 

IQ mixing employs a high-frequency signal that is modulated in time - including 
both amplitude and phase modulation - on a slower timescale (the baseband) using 
two inputs: the in-phase component J(t), and the quadrature component Q(t). Given 
the widespread use of gigahertz frequencies in modern technology, such as cellphone 
networks, devices for signal synthesis are readily available. In practice, an IQ mixer is a 
simple building block featuring four ports for coaxial connections: the Local Oscillator 
(LO) port, which carries the continuous wave high-frequency signal; the I and Q ports, 
used for modulating the signal; and the output port, where the upconverted signal 
exits. 
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Mathematically, the process of IQ mixing can be formulated as follows: 

s(t) = J(t) cos(wwt) - Q(t) sin(wwt) (3.1) 

Here, s(t) is the output signal, Ww is the frequency of the local oscillator, and J(t) 
and Q(t) are the in-phase and quadrature components, respectively. Let us now go 
through the down-conversion step, where the same operation as Eq. (3.1) is effectively 
performed in reverse. The signal s(t) is mixed separately with the in-phase and 
quadrature components of the same local oscillator frequency, sin(wwt) and cos(wwt), 
respectively - this is essentially called a homodyne detection scheme. For the in-phase 
component, one of the two output channels of the down-conversion operation, we get: 

J'(t) = s(t) · cos(wwt) 

= J(t) cos2 (wwt) - Q(t) sin(wwt) cos(wwt). 
(3.2) 

We will use these trigonometric identities: 

1 
cosacosß = 2 [cos(a + ß) + cos(a - ß)] 

1 
sinacosß = 2 [sin(a + ß) + sin(a - ß)] 

(3.3) 

Substituting these, we continue as 

1 1 
J'(t) = J(t) • 2[1 + cos(2wwt)] - Q(t) • 2 sin(2wwt) . (3.4) 

By applying a low-pass filter, we remove the high-frequency oscillations and are left 
with the original in-phase part (up to a factor 1/2). The same is true for the quadrature 
component Q(t). 

Often, it is more convenient to express the baseband signal in a complex form as 

y(t) = J(t) + iQ(t)' (3.5) 

where we now also consider the up-conversion process as a complex multiplication 

y(t)eiwwt = [J(t) + iQ(t)] · [cos(wwt) + i sin(wwt))], (3.6) 

and down-conversion becomes trivial. The actual transmitted signal corresponds to 
the real part of this expression (similar to the use of phasor notation in electronics), 
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resulting in the modulated signal s(t), as above. Using the complex form, it is also 
easy to see how the cavity drive T/, introduced in Eq. (2.60), corresponds to the I(t) 
and Q(t) quadratures in the rotating frame of the driving frequency Wp as 

TJ(t) = I(t) + iQ(t). (3.7) 

Instead of relying on homodyne detection, where up- and down-conversion are performed 
using the same frequency wLO, we can also employ heterodyne detection by demodulating 
at an intermediate frequency WrF· This shifts the baseband from being centered at zero 
to a slightly higher range ( e.g. in the kilohertz range), thereby avoiding issues with 
DC leakage. 

3.2.2 Time-resolved and spectroscopy measurement setup 

This subsection details the setup's equipment - a comprehensive, though not exhaus-
tive, list intended for readers with an interest in the technical details. 

The time-resolved measurements described in this thesis are primarily conducted 
in the dilution fridge. To synthesize the spin-inversion pulses (see Sec. 6.0.2), we 
use an arbitrary waveform generator (AWG, Tabor Electronics model WX2182B) to 
generate the 1/Q signals, and a frequency source (Anritsu MG3692C) to produce the 
high-frequency signal. The actual mixing is performed using an IQ mixer (Marki 
IQ1545LMP). 

To minimize unwanted MW leakage, we apply DC offset correction to the 1/Q 
input signals using a spectrum analyzer (Agilent E4440A) and employ a series of 
microwave switches (various models at different stages of the pulse synthesis chain) to 
block the MW drive when it should be inactive. Before entering the dilution fridge's 
pump-line, the MW signal passes through a series of digital attenuators, allowing for 
precise control of the MW power in -0.5 dB steps. The signal is then amplified by a 
high-power amplifier ( +40 dB, Mini-Circuits ZHL-16W-43-S+ ). 

To block residual amplifier noise, which can persist even after conventional MW 
switches, we employ a mechanical MW switch at the 1 K stage inside the dilution 
fridge. This switch utilizes a solenoid mechanism to open and close a mechanical MW 
relay connection, providing approximately -100 dB isolation in about 1 ms. 

After passing through the cavity - entering at port 1 and exiting at port 2 - the 
MW signal travels up and out of the fridge, passing through two MW isolators ( each 
having -16 dB isolation and -7 dB insertion loss ). lt is then amplified by a cryogenic 
low-noise amplifier (+30dB, LNF-LNC4_8A) located at the 5K stage. The signal 
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exits the fridge, undergoes further amplification and IQ demodulation, and is finally 
recorded using a digitizer (Acqiris U1084). 

For the measurements on triggered superradiance ( see Sec. 6.1), we send in very 
weak MW pulses to probe the system. To achieve this, cavity port 2 is connected to 
both the out-line and a highly attenuated probe-line via a power splitter. This setup 
allows us to inject the probe pulses while simultaneously blocking amplifier noise from 
the pump-line using the relay switch. The weak pulses are generated by simply gating 
the continuous-wave signal from a second frequency source. 

When not conducting time-resolved measurements, but instead focusing on the 
steady-state spectroscopic response of the system under study, we use a vector network 
analyzer (VNA, Rohde&Schwarz ZNB8). The VNA measures scattering parameters, 
such as S21 - the (steady-state) transmission from port 1 to port 2 in a two-port 
network, a complex quantity that carries amplitude and phase information - to 
determine the transmission and reflection characteristics of the microwave signal 
through the system. The MW setup is illustrated schematically in Fig. 3.2. 

3.2.3 Pulse photon number calibration 

An important aspect of our experiment is the careful control of the microwave pulse 
power reaching our coupled cavity-spin system. This aspect is crucial in the experiment 
on triggered superradiance (see Sec. 6.1 and Ref. [35]), where we study the influence of 
trigger pulses, injecting different numbers of trigger photons into the cavity, on the 
system's behavior. The following passage is adapted from the Supplemental Material 
of Ref. [35]. 

To estimate the number of photons contained in a probe pulse we do a calibration 
measurement of the attenuation A2 = -54.5 dB + 5 dB at room temperature for the 
probe-line inside the fridge up to port 2 of the cavity, where an estimated increased 
transmittance of +5 dB is added to account for the lowered resistance of the lines when 
cold. We determine the MW power at the strongest setting for pulses that enter the 
probe-line outside the fridge using the power spectrum analyzer, Pmax = -58µW. The 
other power settings used in the experiment have variable attenuation decrements of 
-5 dB each, so the photon numbers change accordingly down to -45 dB relative to 
the highest power value. 

Next, we determine the values of ;.;1 and ;.;2 , the external coupling rates at both 
ports. For that, we measure the S-parameter traces of our system at 24 mK with the 
spins far detuned using the VNA. These traces are shown in Fig. 3.2(b). By fitting 
the measured traces with the expected results from cavity input-output theory (shown 
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Figure 3.2 MW lines schematic and trigger pulse photon-number estimation mea-
surements. (a) Schematic illustration of the MW setup connected to the DCR cavity 
(c.f. Sec. 5.2.3) in the cryostat. (b) VNA traces of the S-parameters with far-detuned 
(uncoupled) spins. (c) Time-resolved measurement of a sequence of lOOns pulses 
injected into the uncoupled cavity, which allows to relate the measured 1/Q amplitudes 
to the known injected pulse power. 
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here for .ßc = 0, i.e., on resonance condition, c.f. Sec. 2.7) we obtain ,,;1 and ,,;2 . 

ISu 12 = Ai (2,,;i/ ,,;tot - 1)2 

1S311 2 = A1A3 (2~/ ,,;tot) 2 

1S321 2 = A2A3 (21,;2/1,;tot - 1)2 
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(3.8) 

Here, the subscripts in A1,2,3 refer to the fixed MW line attenuations inside the cryostat 
for pump-, probe-, and out-line, respectively. 

The time-dependent cavity amplitude lal can be determined by solving the differ-
ential equation (2.64a) [with the spins far detuned, we ignore their contributions by 
letting gP = O] and assuming a constant drive 'T/d = that starts at time 
t = 0 as 

with the incident power Pin and the appropriate port's coupling rate ,,;in· 

In a pulse injected via port 2, with duration .ßt = 100 ns, as used in the experiment, 
the number of photons n = lal 2 in the cavity charges up to a maximum value of 

p-45dB 2 2 
nm!n = max A 1,;2 (l _ e-ßtK,tot) 50 tng 't;, . 2 2 ' 

1 ll./.Jc /,;tot 

where the power P~~i8 measured outside is attenuated by an additional factor A2 

inside of the cryostat ( c.f. Table 3.1). 

For the pulse train measurements in the reduced cooperativity regime we use the 
same procedure to calculate the number of photons per 100 ns pulse entering through 
the pump-line (c.f. Table 3.2), 

These pulses are also used to calculate the lal units given as the square root of the 
cavity photon number n1/ 2 from the voltages of the time-resolved I/Q measurement, 
see Fig. 3.2(c). 

Lastly, we estimate the number of thermal photons in the cavity, when the solenoid 
switch at the 1 K stage is open to decouple the higher temperature stages. We use the 
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values of Table 3.3 and evaluate according to 

ni = nth(~) + Ai-1,i ni-1, 

1 
nth (T) = exp(nwc/kBT) - 1 ' 

(3.9) 

going down the stages for all MW lines. The dominant contribution is thermal photons 
from the 1 K stage of the pump-line, which result in a value of nth 3 photons. 

Notably, the calculated number of photons depends on the actual attenuation of 
the MW lines in the cryostat, which decreases from the room-temperature values when 
cooled. To account for this, we have estimated a +5 dB change due to the temperature 
effects, which agrees well with the estimated number of decaying spins as shown in 
Fig. 6.16(c) in Sec. 6.1. However, we acknowledge that the photon numbers may be 
subject to a factor of two uncertainty. 

Table 3.1 Summary of the parameters used to estimate the number of photons entering 
the cavity via the 100 ns trigger pulses through the probe-line. 

p-45dB 
max 

59kHz 586kHz -49.5dB 1.83nW 

Table 3.2 Parameters used to estimate the number of photons per pulse in the pulse 
sequences injected via the pump-line. This experiment was clone in another cool-down 
of our cryostat, so the Q-factor of the resonator, therefore the K;tot value, exhibits some 
deviations from the ones above. 

182kHz 516kHz -10.6dB 2.lµW 
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Table 3.3 Temperatures of the various stages inside the dilution fridge and correspond-
ing attenuations (in the direction of lowering temperatures) between the respective 
stages to estimate the number of thermal cavity photons, when the solenoid switch at 
the nominal 1 K stage is disconnected. 

stage i 1 2 3 4 5 6 
296 42 4 0.9 0.12 0.025 

Ai,i+l (dB) 
pump - - - -1.5 -2 
probe -1.5 -21.5 -1.5 -11.5 -13.5 
out -1.5 -1.5 -1.5 -1.5 -30 





Chapter 4 

Spin Systems 

4.1 Nitrogen-vacancy center in diamond 

The spin system central to most experimental results presented in this thesis is the 
negatively charged nitrogen-vacancy center in diamond (NV center1) [5]. lt is a point 
defect in the diamond crystal, consisting of a substitutional nitrogen atom and an 
adjacent lattice vacancy. In many ways, this defect can be thought of as a molecule 
trapped in the diamond lattice - although held in place and without rotational 
degrees of freedom. With the diamond lattice as its host matrix, the NV center sits in 
a highly stable and inert place and is well-isolated from its surroundings. This leads 
to well-protected quantum properties with coherence times T2 reaching up to 1 s [36] 
and T1 lifetimes of up to 8 h [37] at millikelvin temperatures. However, these record 
values can be substantially lower in practice, depending on the diamond quality and 
the method of NV creation, as is the case for the NV sample used for the experiments 
in this work. 

Another clear advantage of diamond - in a quite literal sense - is its optical 
transparency in a wide spectral range. Combined with the NV centers' optical address-
ability, allowing initialization and readout of the spin state at room temperature using 
green pump light and red fluorescence detection, the NV center is a useful tool for 
quantum technologies, particularly quantum sensing applications [38-41]. Although 
optical addressability is of minor concern for the experiments presented here, which 
explore phenomena arising from the collective coupling to a microwave cavity, an 

1The superscript "-" to indicate the charge state, as in NV-, is sometimes used in the literature, 
but will be omitted here for better readability. 
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Figure 4.1 (Left) Unit cell of the diamond crystal hosting the NV center, consisting of 
a lattice vacancy in the center and neighboring substitutional nitrogen atom. (Right) 
Ground state manifold (carrying the name 3 A2 , following molecular symmetry naming 
conventions) of the negatively charged NV center with spin S = 1 and V-level structure. 
The ms = 0 state is the lowest level, separated by a zero-field splitting of 2.88 GHz 
from the almost degenerate ms= ±1 upper states. The degeneracy is lifted when an 
external B field is applied and the ms= ±1 states are Zeeman-shifted up/down. 

introduction of the NV center cannot omit this aspect, which forms the basis of the 
NV center's relevance today. 

The NV center, as a solid-state emitter, is a powerful platform for a variety of 
vibrant research fields, such as quantum information processing [42-44] and quantum 
networks [45], and fundamental studies of disordered spin systems [46, 47]. Especially 
in biomedical sensing applications [48, 49], the NV center has attracted interest in 
recent years due to the bio-compatibility of diamond [50, 51] and the possibility to 
incorporate nanodiamonds in living cells [52]. 

In the following, we delve into the fundamental properties of the NV center, laying 
the groundwork for understanding the cavity QED experiments presented later. Details 
about the specific NV diamond sample used in the experiments will be discussed together 
with the measurements for characterizing its relevant properties in the experiment 
chapter. 

4.1.1 Structure and ground state level scheme 

The NV center, as a point defect in diamond, is a spin S = 1 system that is created 
when a substitutional nitrogen atom sits next to a lattice vacancy, see Fig. 4.1. The 
nitrogen atom has 3 covalent bonds to the neighboring carbon atoms in the diamond 
lattice, which leaves 2 electrons free of the total 5 valence electrons of nitrogen. The 
three carbon atoms next to the vacancy each have one dangling electron that is not 
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bound to a neighboring carbon atom, which gives another 3 electrons. Now, yet another 
electron is "borrowed" from the diamond lattice - which is the reason for the attribute 
negatively charged - summing up to a total of 6 electrons. Two electron pairs, so 
in total 4, will form stable bonds within the diamond lattice. This finally leaves 2 
unpaired electrons to contribute to the electronic properties of the NV center, forming 
the spin-triplet ground state 3 A 2 . Notably, also other charge states of the NV center 
exist, such as the neutrally charged NV0 , but their uses are less common. 

The spin Hamiltonian for this ground state is denoted as 

(4.1) 

where § (Sx, Sy, Bzf are the S = 1 spin operators in the reference frame of 
the NV center, with the z-axis aligned parallel to the N-V-axis. The parameter 
D /2n ,::::;:: 2.88 GHz [5] represents the zero-field splitting between the ms = 0 and 
ms = ±1 states, which arises from the anisotropic interaction of the electrons with the 
crystal field. The parameter E /2n ,::::;:: 8 MHz is due to strain in the diamond crystal 
[53] and is highly sample dependent. An external magnetic field Bext allows to further 
tune the ms= ±1 levels via the Zeeman effect. In the experiment, Bext is chosen such 
that one of these transitions is resonant with the microwave frequency of the driving 
field, i.e. the cavity frequency. 

In the Hamiltonian ( 4.1), we neglect contributions from hyperfine interactions with 
nuclear spins, such as 14N (about 99.6% natural abundance), 15N (0.4%), and 13C (1%). 
In real diamond samples, the NV center can interact with many different spin species, 
including the Pl center, a point defect with spin-1/2 formed by only a substitutional 
nitrogen atom (no adjacent vacancy). All of these interactions, along with the presence 
of strain-inducing lattice defects, will lead to shifts in the NV center's level structure. 
However, for the purpose of this thesis, we are concerned with the effective description 
of a whole ensemble of around 1013 NV centers. Hence, we assume that all NV centers 
are effectively described by the level structure of Eq. ( 4.1) although the individual NVs 
energy levels can be shifted by up to ±5 MHz, depending on the local environment of 
each NV center. These individual energy shifts can be modeled statistically with a 
spin frequency distribution p(ws)-

NV directions 

The NV center comes in four possible orientations with respect to the diamond unit 
cell shown in Fig. 4.1. These orientations correspond to the tetrahedral symmetry of 
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diamond and are given in terms of the unit cell axes as [1, 1, 1], [1, -1, -1], [-1, 1, -1], 
and [-1, -1, 1]. lt is useful to think of NV centers that have the same orientation as 
belonging to a subgroup of the whole ensemble. By carefully aligning the external field, 
it is possible to effectively control the number of subgroups - between 1, 2, 3, and 
4 - that experience the same Zeeman shifts and therefore share identical transition 
frequencies between the states ms= 0 and ms= ±1. 

• The external field direction can be chosen to have an equal projection on all 
four subgroups of NVs when it is aligned along the edges of the unit cell crystal 
axis, e.g. [1, 0, 0]. Then, all NV centers in the diamond are affected by the same 
Zeeman shift. 

• When Bext is aligned at an angle in the plane spanned by one side of the unit cell 
cube, e.g. somewhere between [1, 0, 0] and [0, 1, 0], then two subgroups will have 
one value for the Zeeman shift, whereas the two other subgroups have another 
value. 

• By aligning the external field along one of the NV axes, e.g. [1, 1, 1], the subgroups 
are split into one and three. 

• In the general case with an arbitrary direction of the external field, each subgroup 
will experience a different Zeeman shift. 

Optical transitions 

As mentioned above, the profound interest in NV centers for both research and 
technological applications, besides having highly coherent microwave transitions, stems 
mostly from their optical addressability. The optical transitions between the ground 
and excited state manifolds are shown in Fig. 4.2. The excited state 3E exhibits a 
similar fine structure as the ground state 3 A 2 , with a zero-field splitting and spin 
S = l. The optical transitions between these manifolds are spin-state preserving. 
Using red 637nm light, the zero-phonon line is targeted. When green light is used, the 
additional energy is dissipated via phonon excitations in the diamond crystal lattice. 
From the ms = ±1 spin-states in the excited state manifold, the NV center is more 
likely to decay via intermediate states to the ground state manifold [54]. This decay 
via the meta-stable intermediate states can be radiative in the infrared or non-radiative 
and is not spin-state preserving. Conversely, the ms = 0 spin-state in the excited 
state manifold has a higher likelihood of reverting back to the ground state manifold, 
while preserving its ms= 0 projection and emitting a red fluorescence photon. When 
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Figure 4.2 Spin-state preserving optical transitions between the ground state manifold 
3 A 2 and excited state manifold 3E, both having spin S = 1 and a zero-field splitting. 
The excited state can cycle back to the ground state by emitting red fluorescence light. 
When green light excites the ground state, the surplus energy is dissipated in the 
phonon sideband. The ms = ±1 states are more likely to decay via the intermediate 
states 1 A 1 and 1E ( either non-radiatively or by emitting in the infrared) to the ground 
state manifold 3 A 2 - over a few cycles this leads to a net polarization in the ms = 0 
state. Higher transition probabilities for the decay pathways via the intermediate states 
are indicated by the darker gray arrow shadings. Figure adapted from Ref. [55]. 

driving the optical transition, the system is therefore initialized in the ground state 
with ms = 0 after a few cycles. By using green light for the optical state initialization, 
it is easy in practice to distinguish the pump light from the red fluorescence signal, 
which conveniently allows to measure the polarization in the ms = 0 state by counting 
the red fluorescence photons. 

Notably, the optical properties of the NV center enable the operation of an NV 
diamond maser, as experimentally demonstrated in Ref. [56]. In principle, such a maser 
could function in a superradiant regime [57], where the spin ensemble is strongly coupled 
to the cavity - although this is still awaiting experimental realization. This regime has 
the potential to dramatically narrow the linewidth to the benefit of microwave quantum 
technology applications. However, for such a maser to work, the external tuning field 
must be sufficiently high and well-aligned with one of the NV axes. Then, the optically 
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Figure 4.3 (a) Alignment of the external magnetic field for masing operation, with a 
10° deviation from the optimal orientation, chosen here for demonstration purposes. (b) 
Energy eigenstates of the NV Hamiltonian for varying field strength. ( c) Transitions 
between these levels by subtracting the lowest energy value. At a high field value 
of roughly 200 mT, the ms = -1 to ms = 0 transition crosses the cavity frequency, 
assumed tobe at 3GHz. (c) Around this field value, the (Sz) eigenvalue is again 
sufficiently well defined in the ms = 0 state for efficient optical pumping. 

pumped ms= 0 state is a well-defined (Sz) eigenstate and becomes an excited state 
when the zero-field splitting is overcome, and the ms = -1 state crosses below; see 
Fig. 4.3. Only in this case will optical pumping supply the population inversion required 
for maser operation. Consequently, instead of all 4 NV orientations, only one of the 
NV subgroups can be selected, reducing the total number of coupled spins. Another 
complication is that increased NV center densities in diamonds lead to a loss of optical 
transparency, posing a challenge for efficient optical pumping, particularly with larger 
diamond samples. Achieving the necessary conditions for optical pumping and strong 
coupling to the cavity RF field becomes a delicate balance, making the realization of a 
superradiant diamond maser a problem of finding the right cavity design. 

Thermal occupancy of the NV levels 

In the main experiments of this thesis, we couple a superconducting microwave cavity 
to an NV diamond in a cryostat at millikelvin temperatures. Therefore, we rely on the 
cold environment to initialize the spins in the ground state, which is the ms = 0 state. 
Besides this convenient way of state initialization, the low-temperature regime offers 
other advantages, such as enabling superconductivity of the cavity in the first place 
and reducing the number of thermal photons to a minimum. A clear disadvantage for 
relying on the thermal occupation of the ground state is the long lifetime of the NV 
center with T1 100 s for the diamond sample mainly used. However, combining the 
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Figure 4.4 Thermal occupation of the NV center's ms levels. At T = 25 mK, the 
temperature of our dilution refrigerator's lowest stage, the ground state polarization is 
more than 99%. In the high-temperature limit, all three available states are equally 
populated, leading to 1/3 occupation probability for the ground state, and 2/3 for the 
degenerate excited states, respectively. 

use of lasers for optical initialization with superconducting circuits is technically hard 
- as the comparatively high energy optical photons tend to break the Cooper pairs in 
the superconductor - although not impossible as e.g. employed in Ref. [58]. 

The thermal occupation probability for a state with energy nw5 is proportional to 
the Boltzmann factor exp(-nws/kBT). lt is straightforward to calculate the thermal 
occupation of the NV's ms states as a function of the temperature, see Fig. 4.4, where 
we assume the ms= ±1 states tobe degenerate and have energy nws = n21r x 2.88 GHz 
and the ms = 0 state to have zero energy ( only the difference matters). The occupation 
probabilities are given by 

At the low cryogenic temperatures of around 25 mK in the experiment, more than 99% 
of NVs are polarized in the ground state. By applying an external magnetic field on 
the order of lümT, we split up the (almost) degenerate ms= ±1 states by roughly 
21r x 400 MHz, allowing us to tune one transition into resonance with the cavity. As a 
result, when considering interactions with the cavity, we can neglect the off-resonant 
transition of the S = 1 spin system and approximately describe the NV centers as 
effective two-level systems thermally polarized in the ground state. 
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4.1.2 NV samples used in this work 

N-diamond sample 

The roughly 200 µm sized diamond sample utilized in the main experiments in Ch. 6 
will be referred to as N-diamond - where N is short for neutron irradiated diamond, 
referring to the method for creating the lattice vacancies, making up one-half of the 
essential ingredients to form NV centers. 

lt was cut from a larger piece of single-crystal Type Ib diamond synthesized using 
the high-pressure-high-temperature (HTHP) method. The parent sample had an initial 
nitrogen concentration of approximately 200 ppm and naturally occurring 13 C isotopes, 
and was sourced from the company Element-6. This parent sample underwent neutron 
irradiation at the Atominstitut's TRIGA Mark II reactor with a fluence of 5 x 1017 cm-1 

for 50 h to induce lattice vacancies. lt was subsequently annealed at 900 °C for 3 h to 
facilitate the formation of NV centers. The heightened annealing temperatures cause 
the mobility of vacancies, which then move around and bind to the nitrogen atoms 
in the crystal lattice. Details of the parent sample creation are reported in Ref. [59], 
where the parent sample is referred to as "H4b". Around 80 identical small diamond 
cubelets were cut from the parent sample by the company Delaware Diamond Knives 
using a C02 laser. 

The extensive lattice damage resulting from neutron irradiation leads to a significant 
inhomogeneous broadening with an FWHM of W /21r = 9.2 MHz for the q-Gaussian 
shaped spin distribution, modeled with a shape parameter of q = 1.39. An estimated 
short T2 coherence time of approximately 0.9 µs is in good agreement with the time-
resolved collective ensemble behavior. The spin-lattice relaxation time was measured at 
T1 ::::: 134 s. Details on the experimental characterization methods of these parameters 
are presented in Ch. 6. The shape of the small diamond is roughly cube-like but 
is described more precisely as a truncated rectangular pyramid with dimensions of 
approximately 210 x 190 µm2 for the base, 120 x 100 µm2 for the top face, and a height 
of 210µm, resulting in a volume of V= 5.16 x 106 µm3 . 

The number of spins in the N-sample is estimated at roughly N = 5.3 x 1012 . This 
estimate results from a comparison of the measured collective spin-cavity coupling 
strength 9coll = g0--/N to the simulated single-spin coupling g0 obtained with reliable 
finite-element simulations of the microwave cavity, as detailed in Ch. 5. Using the 
sample volume V, we calculate the NV density nnv = nc 6 x 10-5 at approximately 
6 ppm of the carbon density of diamond nc = 1.755 x 1023 cm-3 . The resulting 
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Figure 4.5 Microscope image of the E-diamond sample. lt is optically more transparent 
as the N-sample [shown in Fig. 5.8(b) in the next chapter], as can be seen from the 
internal light reflections visible on the left side of the image. This sample is also a bit 
smaller than the N-sample. 

typical nearest-neighbor distance between neighboring NV centers then follows as 
r typ = 10 nm. 

E-diamond sample 

Another diamond sample employed in an attempt at realizing a superradiant diamond 
maser (details on this experiment are presented in the next chapter, Sec. 5.2.4) is 
the E-diamond, which was irradiated with electrons for lattice vacancy formation. 
A microscope image of this sample is shown in Fig. 4.5. The parent sample was 
created in a similar fashion as the sample "El" employed in Ref. [37]. lt was created 
from a type-lb HPHT diamond with an initial nitrogen concentration of 100 ppm 
and irradiated with electrons accelerated to 2 MeV at a total <lose of 5.6 x 1018 cm-2 

at temperatures of 800 °C and later annealed multiple times at 1000 °C. This larger 
sample was similarly cut to cubelets of nominally 200 µm, although these cubelets 
happened tobe a bit smaller than the N-diamond samples. 

The relevant parameters for the E-diamond, such as inhomogeneous broadening 
and coherence time, as well as spin lifetime, are not well-known. The sample was used 
in the superradiant maser attempt for its higher optical transparency due to having 
less lattice damage, as electron irradiation is a gentler method for the creation of 
lattice vacancies. The increased transparency helps for more efficient optical pumping 
of the NV transitions. Comparison with finite-element simulations of the maser cavity 
suggests that the spin density is also around 6 ppm. Presumably, the inhomogeneous 
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broadening is smaller and the spin coherence time is higher than for the N-diamond 
sample. 

4.2 Molecular spins 

While the primary focus of this thesis lies in exploring collective phenomena that 
arise from the coupling of NV ensembles to a microwave cavity, another avenue of 
my research, touched upon lightly here, focuses on molecules as spin systems. These 
molecular spins have the potential to be building blocks for encoding and manipulating 
quantum information, i.e. for use as qubits [6]. The spin physics of such molecular spins 
is very similar to the physics described by the NV center's ground state Hamiltonian 
(4.1). In general, there are multiple levels with different Sz projections on the molecular 
quantization axis, a zero-field splitting due to internal molecular anisotropies, and 
tunability with an external magnetic field. Additionally, hyperfine interactions with 
nuclear spins in the molecule can give rise to further complexities that allow for the 
engineering of molecular spins with tailored properties. The advantages that molecular 
spin systems can offer for quantum applications are summarized in the following, 
non-extensive list: 

• High spin species S for higher magnetic moments lµI = gµ8 S/n to enhance 
spin-photon coupling. The single spin coupling scales linearly with S. 

• Molecules are the largest singular physical building blocks that can be made 
to be completely identical - one molecule is exactly like any other molecule 
of the same kind - as opposed to, e.g., superconducting qubits, which have 
device-dependent differences due to fabrication imperfections. 

• Tailored level structures for specific applications: Rich molecular level structures 
can be exploited, e.g. using internal error correction protocols due to redundancy 
in the way the information is encoded [60]. Another example is engineered 
clock transitions that are robust to magnetic field inhomogeneities and imperfect 
control [61]. 

• Molecular spins profit from the vast possibilities offered by chemical synthesis, 
e.g. controlling isotope composition and molecular architecture. Tailoring the 
ligands - chemists speak for molecular appendages or exchangeable parts of 
a molecule - offers control over the exact ways these molecules coordinate to 
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make, for example, two-dimensional layers for interfacing with superconducting 
circuits on a chip. 

These advantages make molecular spins, when interfaced with superconducting circuits, 
a potential candidate system for building a quantum computer. A proposal [62] for such 
a quantum computer imagines this system as follows (see Fig. 4.6): Molecular spins act 
as the qubits (or in general: qudits with a d-level structure) and are the nodes where the 
information is stored and processed. Photons couple to the molecular spins and serve 
to read out and manipulate the internal states, as well as to transport and share the 
information, by mediating an effective coupling between spatially separate molecules to 
create entanglement. The photons live in superconducting circuits, which are nothing 
else than resonant circuits ( or LC circuits) with low lasses. One of the challenges for 
realizing such a proposal lies in engineering a coupling between photons and spins that 
is sufficiently strong. The coupling rate needs to overcome the information loss rate, i.e., 
decoherence in the molecular spins - which is, in general, worse than in solid-state spin 
systems. A possible strategy to increase the single-spin coupling strength is to place the 
molecules at certain spots in these circuits, where the oscillating current associated with 
the photonic excitations is forced to pass through a nanowire or nanoconstriction. Then, 
the magnetic field created by this current is locally increased, possibly by many orders 
of magnitude, due to the spatial confinement. This spatial confinement is equivalent to 
a local decrease of the effective mode volume, which increases the oscillating magnetic 
field as in 8 0 = J µ0 nJ.JJ/2V, see Eq. (2.26). 

Although there are many other challenges with this proposal for a quantum computer 
based on molecular spins - e.g. the low spin coherence times and the problem of 
reliably placing a single molecular spin at a desired location in the circuit and keeping 
it there - the challenge of reaching the strong coupling regime is one of the recurring 
themes of research presented in this thesis. My efforts in this direction have culminated 
in our publication Enhanced Molecular Spin-Photon Coupling at Superconducting 
Nanoconstrictions [63], which will be further discussed in the following chapter on 
microwave cavities. The molecular spin system employed for this work is a very simple 
one, and was decidedly chosen for its simplicity and for being a standard material for 
electron paramagnetic resonance spectroscopy: the organic free-radical molecule with 
the pleasant name 2,2-diphenyl-1-picrylhydrazyl and the common abbreviation 
DPPH [64]. The spin Hamiltonian for this molecule is, as the byname free-radical 
suggests, that of a single electron with S = 1/2 and therefore tunable with an external 
magnetic field, 1-l = -(geµ8 /n) § · B. The molecules form a crystal structure with 
a higher spin density than usually attainable for NV diamonds, which helps with 
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Figure 4.6 Molecular spins for quantum applications. (Left) Molecular structure 
of the model system DPPH and schematic of a nanowire, where the single spin 
coupling (here referred to as G1) is locally enhanced. (Right) Proposal for a quantum 
computing architecture using molecular spins. The schematic shows a detail view of a 
superconducting circuit - a wire with two constrictions - where the magnetic field 
is locally enhanced. At these two nodes, the molecular spins are placed and couple 
to the photons in the circuit. Additional wires (shown below) allow for independent 
manipulation of the spin states. 

detecting the influence of spatial confinement in the nanowire, i.e. variations in its 
width, on the spin-photon coupling strength. The molecular structure of DPPH and 
the nanowire are illustrated in Fig. 4.6. 



Chapter 5 

Microwave Cavity Designs 
H ow to catch a wave 

Cavities, as the name suggests, are an essential part of the field of cavity quantum 
electrodynamics. They help to interface with the quantum emitters and facilitate 
coupling to, as well as manipulation and readout of the spins. The outgoing microwave 
signal of a cavity, after being converted to time-varying voltages by the use of IQ-mixing, 
is also what is ultimately measured in the experiment, allowing us to draw conclusions 
on the dynamics of the coupled system of cavity and spins. In this chapter, we will lay 
down my thoughts on how to design a microwave cavity.1 After discussing some basic 
principles accompanied by simple formulas, we introduce simulation tools that help 
to guide the design process before a cavity is finally manufactured and its properties 
are determined by experiment. Then, we will consolidate the discussion by means 
of several cavity designs that were built and characterized experimentally during my 
PhD. The focus of all these cavity designs is to reach the strong coupling regime -
where energy exchange between the coupled systems happens at a faster rate than the 
respective lasses: 9coll > fi,, r - with a small number of spins. In the case of molecular 
spins, the ultimate goal would be to strongly couple to a single spin. Admittedly, this 
task poses a significant experimental challenge. 

1The words cavity and resonator are sometimes used interchangeably in this thesis but essentially 
mean the same thing. lt could be said that the word resonator applies very generally - extending its 
meaning to the fields of electronics and acoustics - and the term cavity is more specific in that it 
refers to a hollow space or negative volume inside a conducting material, e.g. bulk copper, where the 
electromagnetic mode is confined. 
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5.1 Design principles for microwave resonators 

Resonant phenomena are ubiquitous in physics - every object, depending on its 
shape and composition, will have several acoustic and electromagnetic resonances, 
although sometimes these spectral features are hard to detect, as they may appear 
very broadband due to damping. Often, these resonances can be grasped with the 
simple intuition of a standing wave, e.g., a vibrating guitar string, or the fundamental 
mode of a box cavity as discussed in Sec. 2.3. For more complicated geometries, the 
oscillation patterns of a resonant mode are less obvious. To conceptualize microwave 
resonances, I find it easiest to adopt a viewpoint of electronics: resonant circuits. 

LC-resonators 

Under this perspective, the total energy stored in the electric and magnetic fields, 
expressed as an integral over the cavity mode volume, is recast into a simple formulation 
involving two numbers, the capacitance C and the inductance L. These two constants 
absorb all the geometric intricacies of the field distributions: 

(5.1) 

In simple terms, capacitance is a measure of the total energy that can be stored 
in an electric field, whereas inductance quantifies the amount of magnetic energy. 
However, when considering actual realizations of microwave resonators, the simplest 
case of a coiled-up wire constituting an inductance, and two metal surfaces forming a 
capacitance - archetypical examples of so-called lumped-element circuits, see Fig. 5.1 

- may not always hold. In such cases, it becomes necessary to consider capacitance 
and inductance as a sum of individual parts: L = L li and c-1 = '2:, ci1 . This line 
of thinking will eventually end in a distributed element picture, where each volume 
element has capacitive and inductive characteristics and an integral formulation can 
again be required. 

Nevertheless, it is essential to keep in mind that an LC circuit has a simple 
property: energy oscillates between being stored electrically in the total capacitance 
and magnetically in the total inductance. The frequency of this oscillation - the 
resonance of the system - is given by 

1 
W= -JLG" (5.2) 
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Figure 5.1 Electric and magnetic fields in an LC circuit. Every half oscillation period, 
positive and negative charges in the capacitor switch places, leading to a current flowing 
over the inductor. Consequently, the stored energy oscillates between electric and 
magnetic fields. 

In a real LC circuit, there will always be resistive elements present, causing the 
dissipation of electromagnetic energy, which is eventually turned into heat. The 
way to incorporate their effective description has already been discussed in Sec. 2.6 
and is simply accomplished with the cavity loss rate ,.;,. The formula (5.2) is key to 
designing microwave resonators for specific purposes. When the goal is to achieve a 
high coupling strength to spins - magnetic dipoles - the magnetic field strength has 
tobe maximized in a volume where the spins are positioned. The desired resonance 
frequency of the microwave cavity is dictated by the spin system. For NV diamonds 
a resonance of around 3 GHz is a useful goalpost, as then the spins can be Zeeman 
tuned into resonance with the cavity by moderate external fields of roughly 10 mT. 
With this goal in mind, our freedom in designing the cavity is already restricted; we 
can choose a value for C, and the required L will follow from Eq. (5.2). lt may seem 
paradoxical at first glance, but to maximize the RF magnetic field at the spin site, 
it is necessary to maximize the capacitance C and to minimize the total inductance 
L. In other words, a low impedance Z = /Lfc circuit is desired for coupling to a 
small number of spins [65]. A simple argument for this is given by Ampere's law - the 
magnetic field produced by a one-dimensional wire carrying the current I is calculated 
as 

B_,( ) _ µol _, r - 2 ecp, 
7rT 

(5.3) 

where the magnetic field strength is proportional to I. In an ideal LC circuit, the energy 
oscillates back and forth between the inductor and the capacitor. When the energy is 
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maximum in one component, it is zero in the other. Therefore, the maximum values 
for current and voltage are related by the equation ½CV~ax = ½LI~ax· To maximize 
magnetic coupling to the spins, a high current maximum needs to be generated in a 
small inductance, resulting in high magnetic fields. Then, the magnetic energy in a 
microwave resonator will be focused down to a small volume, where the spins reside. 
Another perspective is provided by the expression for the magnetic field amplitude 
associated with the cavity vacuum fluctuations, discussed in Sec. 2.3, ß 0 = J µ0 nw /2V. 
The smaller the effective magnetic mode volume V can be engineered, the higher the 
magnetic field amplitude will be. lt is worth noting that this effective volume can take 
different values within the same electromagnetic mode, depending on whether electric 
or magnetic contributions are considered. In general, it is more challenging to spatially 
focus magnetic fields than electric fields, as the magnetic field lines need to form closed 
loops around conductors, whereas electric field lines originate and terminate in charges 
between conductors. A useful visualization of this difficulty is the shape of a needle: 
the tip is always smaller than the overall width of the needle's body. In this picture, 
the tip is where electric field lines originate, whereas the magnetic field lines are formed 
around the body. 

A possible strategy to create the desired spatial focusing of magnetic fields in 
a resonator is then to approximate an ideal plate capacitor geometry with a high 
capacitance and connect the plates with a short current path to minimize inductance. 
Here comes the crux of the problem: Every capacitive element inevitably introduces a 
parasitic inductance, and vice versa. The challenge in designing a microwave cavity 
is, therefore, to minimize these unwanted parasitic effects by tinkering with the exact 
geometry. Another problem arises when we consider Ohm's law: P = RI2 . The 
dissipated power in a resistance R goes with the square of the current I. A current-
carrying metal surface made of anormal conducting material like copper will always 
have a finite resistance. As discussed above, we want to maximize the current - or 
more accurately, the current density - to create the magnetic fields for strong spin-
photon coupling. This can lead to significant lasses, as quantified by a large dissipation 
rate, or equivalently a large Lorentzian linewidth t,,, see Eq. (2.58). A solution is offered 
by other material choices - superconductors - that have zero electrical resistance 
below a critical temperature and magnetic field strength. This in turn can create a 
new challenge: field expulsion via the Meißner-Ochsenfeld effect, which complicates 
the application of homogeneous external magnetic fields for frequency tuning of the 
spin system. As will be laid out on the basis of experimentally tested cavity designs 
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below, informed design choices can help to achieve desired outcomes, depending on the 
specific experimental requirements. 

Simulation techniques 

To make informed design decisions effectively, it is essential to play around with 
different geometries. However, manually manufacturing each design iteration to assess 
the outcome would be very ineflicient. Therefore, including simulation tools in the 
design process is crucial. For this purpose, the finite-element simulation suite COMSOL® 
[66] is used, specifically the ((Electromagnetic Waves, Frequency Domain" module. 2 

The problem of simulating the electric and magnetic fields for a given cavity geometry 
is essentially defined by the boundary conditions. The simulation software triangulates 
the surface elements of the geometry ( either constructed in the program or imported 
from a file) and applies material properties as specified, see Fig. 5.2. lt then can 
search for resonant modes in a specified frequency range, or even simulate a broadband 
transmission or reflection spectrum of a microwave resonator, see Fig. 5.3. 

When comparing different cavity designs, the main figure of merit is the single spin 
coupling strength 9o = lgeµB(Bo x es)/nlS. In the case of NV Centers with S = 1 it 
is given by g0 = aryeEo, where a is a geometric factor that describes the orthogonal 
projection of the field B0 at the location of the spin onto the spin quantization axis es, 
and 'Ye/21r;:::; 28 MHz mT-1 is the electron gyromagnetic ratio. When equal couplings to 
all four sub-directions of NV centers in a diamond are desired, this factor is a = /213. 
As the simulated magnetic field Bsim of the mode is not normalized to anything, one 
has to take an extra step to get the cavity's vacuum magnetic field fluctuations E0 

- the field strength associated with a "half-photon" nw /2. lt is calculated using the 
time-averaged total magnetic energy E B (half of the maximum magnetic energy), 
which is conveniently simulated by the program, as E0 = For the 
experiments on superradiance, another important characteristic of the cavity is the 
uniformity of the RF magnetic field across the spin sample. Achieving homogeneous 
fields involves designing current paths that mimic the geometry of a Helmholtz coil. A 
discussion on this approach will be provided based on real cavity designs later in this 
chapter. 

The other significant metric is the cavity's quality factor Q = w /2t,,, as given by 
the frequency w and the total loss rate t,,. lt is generally not accessible by simulation 

2 A very good starting point for doing simulations of microwave resonators is the tutorial sim-
ulation of a Coplanar Waveguide Bandpass Filter, which is currently accessible under the link 
www.comsol.com/model/coplanar-waveguide-bandpass-filter-12099 at the time of writing. 
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Figure 5.2 Finite-element simulations of the LGW cavity using COMSOL. (Left) 
Triangulation of the surface elements and material selection for the surfaces and bulk 
components, with some parts hidden for visual clarity. (Top right) Streamline plot 
of the magnetic field distribution of the cavity mode around 3.3 GHz. The magnetic 
field lines form closed loops around the plate capacitances positioned symmetrically 
on both sides. (Bottom right) The field lines squeeze through a small opening in the 
center, where the cube-like NV diamond sample sits. The region inside the pink surface 
contains more than ten thousand times the average energy density in the simulation 
volume. 
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Figure 5.3 Simulated vs. measured broadband transmission spectrum of the DCR 
cavity. Comparison between the simulated and measured two-port transmission shows 
good qualitative agreement, with all resonant features appearing in both. The main 
resonance of interest is around 3 GHz. The measurement's background waviness is 
caused by partial reflections at impedance jumps between MW line connections, with 
the distance between jumps given by L = c* /2,6.f, where c* ::::: 2 x 108 m s-1 . 
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in the same way as g0 , which is effectively a geometric quantity. The Q factor depends 
on specific material properties - particularly the surface conductivity - of the cavity 
walls and other conductive surfaces. These properties are not fully known, as they 
depend on material composition, as well as on surface quality. They are influenced by 
several factors, including surface smoothness and level of oxidation, which are hard to 
characterize in the cryogenic environment. In simulations, I mostly used the material 
properties of the standard COMSOL material library. Ultimately, only the experiment 
can tel1 the Q factor of a real cavity. 

5.2 Microwave resonators 

5.2.1 Enhancing the single spin coupling with nanoconstric-
tions 

The discussion here is based on the following publication: 

• Enhanced Molecular Spin-Photon Coupling at Superconducting Nanocon-
strictions 
Ignacio Gimeno*, Wenzel Kersten*, Maria C. Pallares, Pablo Hermosilla, Maria 
Jose Martinez-Perez, Mark D. Jenkins, Andreas Angerer, Carlos Sanchez-Azqueta, 
David Zueco, Johannes Majer, Anabel Lostao, and Fernando Luis 
ACS nano, 14(7), 8707-8715 (2020); arXiv:2006.03386 

As already outlined in Sec. 4.2, a way to increase the coupling strength to a single 
spin lies in approximating the geometry of a one-dimensional wire, see Eq. (5.3). The 
magnetic field strength in such a configuration then scales as r- 1 . However, a real 
wire has a finite width, setting a natural limit to the infinite magnetic field divergence 
at zero distance. In our publication Enhanced Molecular Spin-Photon Coupling at 
Superconducting Nanoconstrictions [63], we investigated this approach to enhance the 
coupling by decreasing the width of a wire using nano-fabrication techniques. The 
experiments and calculations were carried out in collaboration with the research group 
of Fernando Luis at Instituto de Nanociencia y Materiales de Arag6n (ICMA) in 
Zaragoza, Spain. Here at the Atominstitut, we conducted spectroscopy measurements 
of DPPH molecules (a simple S = 1/2 spin, see Sec. 4.2) deposited on a nanoconstriction 
in a coplanar-waveguide resonator. In the following, we will discuss the main results 
of this study, as well as further ideas on resonator designs towards the realization of 
strong coupling to single molecules. 
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Figure 5.4 Schematic representation of a CPW resonator with a nanoconstriction in 
the center, fabricated from superconducting niobium on a sapphire substrate. The 
nano-fabricated constriction at the center of the CPW resonator significantly enhances 
the local magnetic field strength. Arrows indicate the directions of the resonator's 
electric (shown in blue) and magnetic (shown in red) fields. The field magnitudes along 
the longitudinal y-axis are sketched on the right, representing a >../2 standing wave, 
while a simulated cross-section of the fields (in the xz-plane far from the constriction) is 
shown in the top-right corner. Microwave input and output cables depict schematically 
the capacitive coupling to the resonator's central wire strip. 

Figure 5.5 CPW resonator with nanoconstriction in the center. (Left) Microscopy 
image of the superconducting niobium chip, showing the CPW resonator, with the 
meander structures on both sides effectively shrinking its dimensions to fit on the 
chip, and the in- and out-coupling ports left and right. (Right) SEM image of the 
nanoconstriction with a length of 10 µm and width 42 nm in the center of the resonator. 
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First, let us discuss the type of microwave resonator utilized in this study, a 
commonly employed resonator architecture for microwave circuit QED experiments, 
particularly in connection with superconducting qubits. A coplanar waveguide ( CPW) 

- not yet a CPW resonator - is a type of microwave transmission line resembling a 
flattened coaxial cable with a central wire positioned between two ground planes and 
separated by a gap. When the center conductor is cut at two points, a standing wave is 
supported between these two points of reflection, see Fig. 5.4. The principal resonance 
frequency is determined by the distance L between the cut points: wc/21r = c* /2L. 
Here, c* is the effective speed of light in the medium, which is a property influenced 
by the substrate material (sapphire with Er 12) and the cross-sectional geometry 
of the CPW [67]. In the experiments, we use a CPW resonator made of a 150 nm 
superconducting niobium thin film. The middle strip has a width of 14 µm and gap 
separation from the ground planes on both sides of 7 µm, with a length of approximately 
44 mm, resulting in a fundamental resonance frequency of around wc/21r::::: 1.4 GHz. 

In the center of the resonator, a 10 µm long section of the middle strip is thinned 
down to a width of 42 nm using a focused ion beam for nano-machining. Using this 
technique, the niobium layer is bombarded with Ga+ ions to ablate the thin film with 
nanometer resolution, creating a thin wire structure - the nanoconstriction - shown 
in Fig. 5.5. This alteration does not have a strong effect on the CPW resonator's 
frequency and Q factor, as demonstrated in Ref. [68]. However, it leads to a localized 
increase in the resonator's magnetic field close to the nanoconstriction, as the RF 
current is concentrated to a smaller cross-section. The goal of our study is now to 
quantify this increase and its effect on the local single-spin coupling strength. 

After this fabrication step, a droplet of DPPH solution is deposited on the nanocon-
striction using dip-pen nanolithography [69]. This involves an atomic force microscopy 
(AFM) tip that carries a droplet of molecules in solution and is able to precisely deposit 
a defined volumetric quantity at the nanoconstriction site. The solution is prepared by 
dissolving the DPPH spin-1/2 molecules in the solvent N,N-Dimethylformamide with 
added glycerol to increase the viscosity and keep the solution from evaporating too 
quickly, which helps with the deposition. The distribution of deposited DPPH spins in 
the active coupling areas of the resonator is later determined using a combination of 
AFM and scanning electron microscopy (SEM) measurements at INMA. 

A low-temperature spectroscopy measurement at 44 mK is carried out in our 
ADR fridge at the Atominstiut to investigate the collective coupling strength to the 
DPPH molecules after deposition at the 42 nm nanoconstriction. We use our vector 
network analyzer to measure in transmission while magnetically tuning the spins across 
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Figure 5.6 Transmission spectroscopy versus magnetic field scan of DPPH molecules, 
deposited at a nanoconstriction of a superconducting CPW resonator at 44 mK. Reso-
nance frequency ( a) and linewidth (b), as determined from Lorentzian fits of the data 
shown as a color plot in ( c). After correcting for the cavity's magnetic field dependent 
resonance peak shifts with a polynomial fit, the corrected data (d) can be readily 
compared with the simulation ( e) to estimate the collective coupling strength. 

resonance with the cavity. The results are shown in Fig. 5.6. The system is weakly 
coupled, such that the avoided crossing on resonance is not readily observable; rather, 
we see an apparent broadening of the cavity linewidth. The external magnetic field 
direction, which is scanned along the x-axis as indicated in Fig. 5.4, is chosen due 
to size constraints in the cryostat. lt is actually not the optimal direction for the 
strongest coupling, which would be the y-direction, where all spins have a quantization 
axis perpendicular to the resonator's RF magnetic fields. The microwave power at the 
cavity input port is -80 dBm, with a total downline attenuation inside the cryostat of 
-60 dB. The resonator has a quality factor of around Q 35 000 with the spins far 
detuned from resonance. 

The first prominent feature is the shifting of the resonator peak with the external 
magnetic field strength, see Fig. 5.6(a,c). This effect likely arises from the type-II 
superconducting nature of the resonator's niobium thin film, particularly in conjunction 
with the narrow dimensions of the nanoconstriction. In type-II superconductors, 
magnetic flux vortices can penetrate the superconducting phase above a critical field. 
These vortices become trapped near local defects in the superconductor, such as 
impurities or grain boundaries. Notably, the nanoconstriction, due to it being much 
narrower than the surrounding niobium structures, serves as a site for trapping these 
vortices, a phenomenon known as flux pinning [70]. This flux pinning introduces an 
effective resistance in the superconductor, leading to a shift in the resonance frequency. 
This shift is observed in the scans shown in Fig. 5.6, where the coupled resonator-spin 
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system is thermally cycled to above 5 K before it is brought to 44 mK during the 
cooldown procedure of the ADR fridge (see Sec. 3.1). Throughout this cooldown, the 
external fields are held constant at the starting value for the scan. After the thermal 
cycling, the system has likely settled into a "relaxed" configuration of pinned fluxes. 
Any change of the external field from the starting value - an unavoidable occurrence 
during a magnetic field scan - will then shift the resonance frequency to lower values. 

Therefore, to analyze the spectroscopy results and enable comparison with a 
theoretical model for estimation of the collective coupling strength, this frequency 
shift is corrected. For this correction, a simple 2nd-order polynomial is fitted to the 
frequency peaks and later subtracted from the data, see Fig. 5.6(a). The model used 
for simulation of the corrected spectroscopy, see Fig. 5.6( d,e) for a comparison of 
data and simulation, is a steady-state solution of the Maxwell-Bloch equations (2.63). 
Instead of N spins, the ensemble of S = 1/2 DPPH molecules is modeled with a single 
"giant" spin in the ground state, having a collective coupling strength 9coll = 
and a combined decoherence rate 1 = (,..1 + ,11/2). This is a valid approximation when 
the effects of inhomogeneous broadening for the DPPH sample can be neglected as 
compared to the large linewidth 1 . The cavity transmission then becomes 

(5.4) 

where 9con/21r '.:::: 1.2 MHz and 1 /21r '.:::: 65 MHz. The cavity linewidth K,/21r '.:::: 20 kHz 
is determined for the "empty" cavity, with the spins far detuned. The spin system, 
due to the low transition frequency around 1.4 GHz, is not fully polarized in the 
ground state at 44 mK. Therefore, the average single spin coupling strength g0 at 
zero temperature is calculated via the relation g5(r=oK)N-1,.(T=44mK) = g~011 , where 
N-1,.(T) = N[l + tanh(nws/ kBT)]/2. This is the typical scaling of the collective coupling 
with the square root of the number of emitters N - which is effectively controlled by 
the temperature.3 

After the cryogenic spectroscopy measurement, the spatial distribution of molecular 
spins is determined with a combination of AFM and SEM high-resolution imaging 
techniques. lt is compared to a three-dimensional simulation of the magnetic fields 

3The temperature dependence of the polarization for the spin-1/2 molecules is given by 
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Figure 5.7 Enhanced single spin coupling along the nanoconstriction. (Left) AFM 
data (A) and SEM image (B) for estimating the spatial spin distribution along the 
nanoconstriction. From the imaging data, a 3D map of the spin distribution ( C) and 
in combination with a magnetic field simulation, an estimate of the spatial distribution 
of spin couplings (D) is attained. (Right) Combined data of the average single spin 
coupling (here referred to by the symbol G1) near the nanoconstriction from all 
measurements with different constriction widths. Widths other than 42 nm were 
measured at INMA under elevated temperature conditions of 4.2 K. The solid and 
dashed lines correspond to theory predictions with different distances z of the spins 
above the nanoconstriction. 

around the nanoconstriction with a cubic cell resolution of 3 nm, to estimate the 
individual contributions of spins depending on their location to get an estimate of the 
single-spin coupling strengths g0 (r), see Fig. 5.7 on the left. The exact methodology is 
described in detail in the paper [63] and will not be covered here further, as this part 
of the research is conducted by other co-authors. 

The main results of the study are summarized in Fig. 5. 7 on the right, showing a 
comparison of the measured average single spin coupling strength g0 across varying 
nanoconstriction widths w. Beyond the w = 42 nm constriction measurements dis-
cussed here, the study explored other widths ranging from 158 nm to 400 µm. These 
experiments, similar to the ones described here although at elevated temperatures of 
4.2 K, were carried out at INMA. Overall, the results show that the nanoconstriction 
approach is a valid method of reaching high spin-photon couplings. The average 
measured single spin coupling scales consistently as 1/w over more than three orders 
of magnitude, with some spins approaching maximum couplings in the kHz range. 
The experimentally estimated coupling strengths only start to deviate from the 1/w 
trend when the constriction width becomes comparable to the thickness of the su-
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perconducting niobium layer. This study paves the way toward the goal of strong 
single-spin coupling to superconducting microwave resonators. Nevertheless, challenges 
remain, such as the precise delivery of the spin molecules as close to the surface of the 
nanoconstriction as possible. Other efforts towards this goal - on the molecular side of 
things - involve improving the spin molecules' coherence times, as well as increasing 
couplings via the dipole moment with high spin S species, as has been discussed in 
Sec. 4.2. Realistically, values for g0 on the order of 100 kHz are required for quantum 
technology applications of single molecular spins. 

On the resonator side, a possible way to increase the single spin-photon coupling g0 

is to use low impedance LC resonators, with maximum C and minimum L for a given 
resonance frequency, as already mentioned in Section 5.1 above. This approach will be 
further discussed below on the basis of experimentally tested cavity designs, based on 
both 3D bulk-machined metal cavities and 2D chip-based microwave resonators, for 
which the nanoconstriction approach is straightforwardly applicable. 

5.2.2 Loop-Gap-Wedge cavity 

An example of a low-impedance cavity design is shown in Fig. 5.8, given the name 
Loop-Gap-Wedge (LGW) cavity after the two wedge-shaped plate capacitors as the 
most prominent circuit elements. The LGW cavity is a 3D lumped-element resonator, 
where capacitance and inductance are separate structures, and draws inspiration from 
Ref. [71] and also from the cavity design outlined in Ref. [72]. 

This cavity is designed to facilitate strong and spatially homogeneous coupling to a 
mesoscopic diamond sample that has a cube-like shape of roughly 200 µm size hosting 
approximately 5 x 1012 NV spins, with a resonance frequency of around 3 GHz. The 
reason to use a diamond sample that is three orders of magnitude smaller than the 
samples previously used in our lab (having typical dimensions of 4 x 4 x 0.5 mm3 , see 
e.g. in Refs. [22, 37, 73]) follows a simple logic: fewer spins means more photons per 
spin to cause interactions. This way, we make more efficient use of the microwave power 
achievable in our setup within cryogenic constraints. The intended use case for the 
LGW cavity is to study superradiance effects, necessitating homogeneous spin-photon 
couplings throughout the sample volume. 

To realize these requirements, the LGW cavity design relies on short current paths 
with low inductance around the square-shaped center hole, where the diamond sample 
is placed, see Fig. 5.8(d). These short current paths connect two large capacitor 
structures on both sides, having an air gap of around 20 µm and a pointed wedge shape 
towards the center to further narrow down the current paths. When the capacitor 
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Figure 5.8 Loop-Gap-Wedge 3D cavity. (a) Photograph of the disassembled cavity. 
The central part of the cavity assembly is made of two polished niobium pieces. The 
flat wedge-shaped mirror surfaces come together to form two plate capacitors with 
an air gap of 20 µm. Between the two capacitors, there is a small slot machined, that 
holds the 200 µm sized diamond sample. When assembled, the niobium pieces are 
separated by a thin isolation layer left and right, so as to not close a superconducting 
current loop. The assembly is completed with the copper parts on both sides, which 
also hold the microwave ports for in- and out-coupling, extending with little antenna 
pins into the cavity volume. (b) Microscope image of the diamond sample next to a 
125µm diameter copper wire, and (c) diamond placed inside the sample volume. (d) 
Schematic drawing of the capacitances and inductances in the circuit. As the current 
path for the inductance loop L1 in the center is much shorter than for L2 , we have 
L 1 « L2 and thus 11 » 12 , leading to high RF magnetic field strengths in the center 
volume. 
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charges flow as a current from one side to the other during one-half of an oscillation 
period, an RF magnetic field is created in the sample hole. As the surface current is 
highly concentrated around the center hole, with its narrowest patch having a width 
only slightly larger than the sample dimensions, a normal conducting metal like copper 
would cause significant ohmic lasses limiting the cavity's quality factor, as outlined in 
Section 5.1. Therefore, the choice of material fell on superconducting niobium for the 
two halves that make up the core of the microwave cavity. The surface currents around 
the walls of the sample hole mimic the current distribution of a multi-turn coil and thus 
create a homogeneous RF magnetic field inside the hole. Additionally, the capacitor 
plates on both sides are connected through significantly langer current paths on the 
outsides as shown in Fig. 5.8( d). These outer current paths have considerably larger 
inductance and contribute minimally to the total circuit inductance - a reciprocal 
sum for the parallel inductances - which is dominated by the currents around the 
center hole. The simulated RF magnetic field distribution is shown in Fig. 5.2 above. 

The niobium (sourced from Xian Ocean Material Technology Co., Ltd.) and 
copper pieces of the LGW cavity were machined by our in-house machine shop at the 
Atominstitut. The niobium pieces, particularly the capacitor surfaces and the sample 
hole, were then polished to a mirror finish. The cavity is loaded with the N-diamond 
sample (c.f. Sec. 4.1.2), which is "glued" to the walls of the central hole with a small 
amount of vacuum grease, see Fig. 5.8(b,c). The diamond sample is oriented such that 
the cavity's RF magnetic field [along the y-axis in Fig. 5.8( d)] is parallel to the edges 
of the diamond unit-cell cube, having equal projections on all four diamond axes. A 
correspondence between the cube-like shape of the sample and the unit-cell cube helps 
with the difficult tasks of positioning the sample using a toothpick and a microscope. 

An experimental characterization of the LGW cavity under millikelvin temperatures 
in the ADR cryostat is presented in Fig. 5.9(a,b). A magnetic field scan shows a nice 
avoided crossing of the coupled NV spins - a hallmark sign of the strong coupling 
regime. The external magnetic field in this scan is oriented parallel to the cavity 
RF field. This arrangement, where the normal projection of the RF field and the 
parallel projection of the external field have the same value of /2[3 on the NV axes 
of all four sub-groups, is only possible because the NV center spin Hamiltonian has a 
zero-field splitting. Notably, we also see the weak coupling of another spin transition 
to the left of the avoided crossing in Fig. 5.9(a), caused by NV centers coupling to 
nearest-neighbor 13C nuclear spins [74]. The "empty" cavity with spins far detuned is 
fitted by a Lorentzian with a center frequency of wc/21r = 3.093 GHz and a linewidth 
of ri,/21r = 970kHz, yielding a quality factor of Q ;::::j 1600, see Fig. 5.9(b). Notably, 
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Figure 5.9 LGW cavity: Measured collective coupling and superradiant emission. 
( a) Scan of the external Magnetic field showing the avoided crossing of the strongly 
coupled cavity-spin system. The magnetic field values are significantly lower than a 
naive expectation, due to the magnetic field expulsion by the superconductor. (b) 
Lorentzian fit of the "empty" cavity (red line) and fit of the normal mode splitting 
on resonance (blue line) with Bext;:::: 1 mT. (c) Time-resolved superradiant emission 
dynamics after a 100 ns inversion pulse with increasing power measured in the dilution 
fridge, cf. Sections 2.9 and 6.0.2. 

during other cooldowns, a higher Q factor of around 3000 is achieved with the diamond 
sample present - the quality factor is highly dependent on the surface quality of the 
niobium and also influenced by the amount of vacuum grease used for holding the 
diamond in place. The unloaded cavity initially had Q ;:::: 8000, suggesting that the 
sample introduces significant photon loss. 

The normal-mode splitting of the system with the spin ensemble on resonance is 
fitted with a steady-state solution of the Maxwell-Bloch equations, see Fig. 5.9(b). 
The parameters for the fit reveal a collective coupling strength of g~in/21r = 7.4 MHz, 
using a q-Gaussian spin distribution of width W /2n = 17 MHz and shape parameter 
q = 1.39 (see Sec. 2.8 for details on the simulation method, other model parameters are 
,1-/21r = 177kHz and , 11 = 0). Correcting for the reduced NV ground state polarization 
at the scan-temperature of 51 mK, with Pms=o(T = 51 mK) ;:::: 90% [see Eq. (4.2)], 
yields a slightly higher experimental value of the collective coupling 9con/21r = 7. 7 MHz. 

A comparison of the measured coupling strength to the COMSOL simulation and 
to a simple geometric estimate is presented in Table 5.1 together with a measure of 
the field homogeneity calculated from the simulated field distribution. The sample 
shape in the simulation is a truncated pyramid with rectangular bottom and top faces 
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Table 5.1 Simulated parameters of the LGW cavity. The collective coupling strength 
is evaluated as an integral over the sample volume using the spin density and the 
simulated distribution of the vacuum fluctuation RF magnetic field Bgim as outlined 
in Section 5.1, taking the NV orientations into account. The simulated value of B'0im, 

averaged over the sample volume, can be readily compared to the estimated theory 
result 8 0 = µ0 nJ.,.Jc/2¼ff, where an effective mode volume ¼ff = 300 x 300 x 400 µm3 is 
used, which approximately corresponds to the sample hole size. The field homogeneity 
is quantified using the standard deviation of the RF field in the sample volume (T( 1 Bsim 1), 
or in more simple terms, as the ratio of minimum over maximum. 

3.3GHz 

sim/2 9coll 7f 

6.8MHz 128pT 

Bo(¼ff) 

195pT 8.7 X 10-3 

min IBsiml 
maxlßsiml 

92% 

of roughly 210 x 190 µm2 , and 120 x 100 µm2 respectively, and a height of 210 µm, 
resulting in a volume of 5.16 x 106 µm3 [see Fig. 5.8(b)]. The number of NV spins in 
the simulation follows from the density of carbon in diamond nc = 1.755 x 1023 cm-3 

and an NV concentration of 6 ppm. 

The coupling comparison agrees well with the measurement within 88%, with 
the simulation slightly underestimating the measured collective coupling. This could 
have many reasons, the most critical being likely the unknown exact dimensions of 
the diamond sample - for a fair comparison of different cavity design simulations 
below, we will keep these dimensions fixed from now on. Moreover, the simulated and 
measured cavity resonance frequencies agree even better within 94%. Notably, the 
cavity frequency is tunable by varying the torque on the screws used to hold the two 
niobium pieces together. This changes the gap size d of the capacitors, thus the total 
capacitance with a 1/d dependence. 

A surprising result is the low external magnetic field value Bext :::::; 1 mT on resonance, 
see Fig. 5.9(a). A rough estimate for the expected resonance magnetic field strength is 
calculated as Bext :::::; (wc -Dzr)//[1e :::::::; 9.6 mT, using the zero-field splitting parameter 
Dzf and the gyromagnetic ratio re from Sec. 4.1.1. An explanation for the factor 10 
difference is offered by the superconductivity of the niobium: it acts like a perfect 
diamagnet at low fields and will sustain surface currents that shield the bulk from 
having a non-zero magnetic flux density. Therefore, the magnetic fields in the vicinity of 
the niobium surface will be "deformed", as shown in Fig. 5.10, leading to focussing and 
amplification of the static field in the sample hole. This property of the LGW cavity 
is also its biggest drawback, as it makes it impossible to change the field orientation 
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Figure 5.10 Static magnetic field deformation near a perfect diamagnet superconductor 
in the Meissner phase. Vector field plot of the simulated external magnetic fields in 
the z = -50µm plane (z = 0 corresponds to the center of the sample volume). The 
magnetic field direction far away from the superconductor in this simulation is along 
(1, 1, 0f, but in the small sample hole, it is only along the y-axis. To simulate this 
effect, the niobium material has an almost zero relative permeability of µr = l x 10-5 . 

for tuning the NV spins into resonance - only fields passing straight through the 
sample hole are possible. In order to have the four sub-groups of NV directions nicely 
aligned, one has to perfectly place the sample with the correct orientation. This is 
very challenging, as the only feedback one can get is the cryogenic experiment with 
cooldown times lasting at least a day. lmperfect alignment leads to a splitting of the 
NV sub-groups and a broadening of the spin distribution width W /21r = 17 MHz in 
the fits shown in Fig. 5.9(b), which is almost twice as large as the later determined 
value of 9.2 MHz. For this reason, the LGW cavity design is abandoned in favor of the 
next cavity design presented below. Nevertheless, we were able to successfully measure 
superradiant dynamics as teased herein Fig. 5.9(c). The curious reader is referred to 
the later treatment of this type of measurement results in Ch. 6. 

5.2.3 Double-Chip resonator 

To combat the unwanted effect of magnetic field expulsion by the bulk niobium, while 
realizing the same design requirements of strong and homogeneous coupling to a 200 µm 
sized diamond sample, I came up with the Double-Chip resonator (DCR) design. This 
design proved to be very useful and is the cavity utilized in the main publications 
covered in this thesis, Refs. [35, 75]. My idea was to realize a similar configuration 
as the LGW cavity - large capacitor pads and a small current loop to create a 
low-impedance circuit - in a 2D superconducting chip assembly. 
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Figure 5.11 Double Chip Resonator. (Left) Schematic illustration of the double chip 
assembly with inward-facing split-ring structures made of a superconducting niobium 
thin film ( exploded view). During one half-oscillation period, a charge imbalance is 
accumulated on the large capacitor surfaces, creating an edge current around the center 
hole, when the charges swap sides. This current creates a homogeneous RF magnetic 
field throughout the diamond sample in the center. (Right) The two chips, with the 
diamond sample sandwiched between them, are enclosed inside a copper box, shown 
with open top and bottom lids, along with in- and out-coupling antenna pins. 
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The DCR cavity, illustrated in Fig. 5.11, consists of two superconducting chips 
mounted inside a copper box, arranged in parallel with a gap of 250 µm between 
them. Each chip is patterned with a split-ring structure, featuring an approximately 
16 x 16 mm2 square shape with a small 380 µm diameter hole at its center. The circular 
hole is partially opened on one side by a 4 µm slit extending outwards. This slit 
divides the plane into two sides, thereby creating two large capacitive surfaces. A 
split-ring resonator [76] is a planar realization of the archetypical LC circuit diagram, as 
illustrated in Fig. 5.1. However, the capacitance in a planar circuit is inherently limited 
by the dimensionality.4 Hence, to create the desired combination of high capacitance 
and low inductance, the planar structure is extended into the third dimension, thereby 
realizing two plate capacitors, as shown in Fig. 5.11 on the left. The short current 
paths around the center holes serve as inductive elements on both sides, where the 
RF current is pushed towards the hole perimeter due to the skin effect. This creates 
a current geometry that is reminiscent of a one-turn Helmholtz coil, thus generating 
a homogeneous RF magnetic field in the center, oriented perpendicular to the chip 
planes. The chip layout for the patterned niobium layer with 200 nm thickness is 
presented in Fig. 5.12(a). lt features an additional large inductance connecting the two 
capacitor pads on each chip through an outer current loop. Since this current path is 
considerably langer than the small center hole, it contributes minimally to the overall 
inductance. The reason for including it in the design is twofold: ( i) both DCR chips 
resemble the layout of the established LGW resonator, particularly its cross-section in 
Fig. 5.8( d); and ( ii) it is thought to confine the RF fields closer to the chip planes. In 
this configuration, the total magnetic flux remains constant inside a superconducting 
loop. Consequently, the RF field lines passing through the small center hole need to 
re-enter through the two larger hol es on both sides and are held closer together. This 
is expected to reduce the amount of eddy currents in the copper walls, thus leading to 
an improved Q factor. 

The copper housing of the DCR cavity consists of three parts, as shown in Fig. 5.11 
on the right: a central frame, a top cover, and a bottom cover. The center box has two 
sets of shelves at different levels rotated 90° relative to each other. On these shelves, the 
sapphire chips with 0.5 mm thickness are held in place using copper clamps and screws, 
see Fig. 5.12(c). Thein- and out-coupling ports are coaxial MW antennas, which 
capacitively couple to the mode. They are placed diagonally opposite to each other, 
with the antennas positioned to one side of the slit structure in the pattern on each 

4Increasing capacitance in a planar metalized structure can be achieved using interdigit-finger 
capacitors, although this comes at the expense of increased parasitic inductance, as each finger forms 
a small wire. 
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Figure 5.12 DCR chip layout and field homogeneity. (a) Niobium pattern of a single 
chip with 380 µm diameter hole in the center and 4 µm slit reaching outwards. The air 
gap between both resonator chips is 250 µm. Note that the placement of the second 
chip results from a 180° rotation around the x-axis. (b) COMSOL simulation of the 
RF magnetic field in the sample volume between the center holes of both chips. Red 
arrows indicate the field direction and strength ( also shown by the color plot inset). 
The green surface encloses a region with a less than 5% deviation from the average 
IBoscl in the sample volume. (c) Photograph of the copper holder with only the bottom 
chip shown. ( d) Equivalent circuit diagram of the DCR cavity. 

chip. This configuration is designed to minimize direct cross-talk between the ports, 
which could otherwise produce a distinctly asymmetric Fano-lineshape [77] in the DCR 
cavity resonance. The copper parts were machined by our in-house machine shop at 
the Atominstitut, and the chips were sourced from the company Star Cryoelectronics. 

The big advantage of the DCR cavity design, as compared to the LGW cavity, is 
that the external magnetic tuning field is not deformed, at least when it is applied 
parallel to the chip planes. In this orientation, field lines can pass virtually unchanged 
above and below the superconducting niobium thin film. This allows changing the 
angular orientation of the tuning field in the chip plane, which makes it much easier 
to align all 4 NV sub-groups and tune them into resonance with the cavity, when the 
cube-shaped diamond sample is placed flat onto the "bottom" chip. Other orientations 
are also possible, which result in equal projections of the tuning field for 2 and 2 NV 
sub-groups. For 1 and 3 NV sub-groups, a magnetic field component out of the chip 
planes is needed, which is not favorable in the planar superconducting configuration. 

In Fig. 5.13, experimental results are presented, which characterize the DCR 
cavity coupled to a roughly 200 µm sized N-diamond sample at 24 mK, where the 
NV ground state polarization is more than 99%. The magnetic field direction for the 
scan in Fig. 5.13(a) is parallel to the chip plane, oriented along the xy-direction in 
Fig. 5.12(a,b) and has equal projections onto all 4 NV directions. The "empty" cavity 
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Figure 5.13 DCR cavity: Measured collective coupling and superradiant emission. (a) 
Avoided crossing in the transmission spectroscopy versus magnetic field scan, measured 
in the dilution fridge. (b) U sing high MW input power, the "empty" cavity is measured 
and fitted with a Lorentzian (red line). At low MW input power, the normal-mode 
spli tting is measured and fitted for the system on resonance (bl ue line), and wi th the 
detuning loop current switched off (yellow line, see discussion below). (c) Time-resolved 
superradiant emission dynamics after a 100 ns inversion pulse with increasing power, 
cf. Sections 2.9 and 6.0.2. 

signal is obtained by measuring the transmission at a high MW input power, thus 
driving the spin ensemble into a mixed state with net polarization zero, which effectively 
decouples the spin system and the cavity. In Fig. 5.13(b), it is fitted by a Lorentzian 
with a center frequency of wc/21r = 3.103 GHz and a linewidth of 11,/21r = 420 kHz, 
yielding a quality factor of Q 3700. Again, the Q factor is highly dependent on the 
surface cleanliness. Initially, pristine chips directly from the factory yielded quality 
factors exceeding 10 000 for the DCR cavity when loaded with the sample. The quantity 
of vacuum grease utilized as a sample "glue" also plays a role. Through successive 
cooldown cycles, the DCR cavity with internal detuning loop (see discussion below) 
experienced a gradual increase in its Q factor, rising from approximately 1500 to higher 
values around 3700. This enhancement is likely a result of the gradual evaporation 
of excess grease. The transmission spectroscopy with the spins in the ground state 
on resonance is fitted with a steady-state solution of the Maxwell-Bloch equations in 
Fig. 5.13(b), revealing a collective coupling strength of g~in/21r = 4.6MHz, using a 
q-Gaussian spin distribution of width W /21r = 9.2 MHz and shape parameter q = 1.39 
(the simulation method is detailed in Sec. 2.8, other parameters are ,J_/21r = 177kHz 
and ,11 = 0). 
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Table 5.2 Simulated parameters of the DCR cavity. Compare with Table 5.1, where 
the same evaluation method is used for the LGW cavity design. The geometric estimate 
ß~eom is calculated by assuming a perfect plate capacitor geometry and circular current 
paths around the center holes, see text. 

3.0GHz 

sim/2 9coll 1f 

4.7MHz 92pT 108pT 42.3 X 10-3 

min IBsiml 
maxlßsiml 

63% 

A comparison of these experimentally determined values with the COMSOL simu-
lation is offered in Table 5.2, showing a very good agreement. For the DCR cavity, it 
is possible to calculate a "geometric" estimate of the magnetic field's vacuum fluctu-
ations, denoted as ß~eom_ We assume the LC circuit diagram shown in Fig. 5.12(d), 
and an ideal plate capacitor geometry with C1 = EoA/ d. The area for one capacitor 
plate - roughly half of the blue shaded area in the chip layout of Fig. 5.12(a) - is 
approximately A = 8 x 16 mm2 and the plate distance is d = 250 µm, resulting in 
C1 ;::::; 4.53 pF. The total circuit capacitance, with both plate capacitors C1 in series, is 
given by C = Ci/2. Then, we combine the formula for the LC resonance frequency 
with the total energy in an LC circuit, where the magnetic half of the vacuum energy 
will be produced by the root-mean-square RF current 10 , arriving at 

I O = y ;::::; 2 8 nA , (5.6) 

where we use the value wc/21r = 3 GHz. From this estimate, we can calculate the 
magnetic field produced by a circular current loop, which represents the current flow 
around the center hole on each chip. While the details of this calculation are well-
documented in textbooks (e.g. Ref [78]) and will not be elaborated on here, the key 
parameters used include a radius of r = 190 µm, a distance from the circle plane of z = 
125 µm, and a configuration with two one turn coils with a separation 2z. This yields an 
estimated geometric field strength of ß~eom;::::; 108 pT. Remarkably, this estimate closely 
aligns with the simulated value, indicating that the DCR cavity concept represents 
a near-optimal realization of a 2D low-impedance circuit design. The simulated RF 
field homogeneity within the sample volume is slightly lower compared to that of the 
LGW cavity, with the ratio of minimum over maximum field strength approximately at 
63%, although this ratio is influenced by the most extreme spots. However, the local 
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deviation from the average field strength within the sample volume remains below 5% 
across almost all areas, as depicted in the isosurface plot in Fig. 5.12(b). 

Rapid magnetic field switching inside the DCR cavity 

A very useful feature of the DCR cavity design is its compactness. As the magnetic 
mode is spatially confined close to the chips, and the electric fields are enclosed even 
tighter between the capacitor plates, it is possible to wind a small coil directly around 
the chip stack, without negatively impacting the cavity resonance, as shown in Fig. 5.14 
on the left. This coil is used for rapidly tuning the spins in and out of resonance with 
the cavity mode in about 200 ns. In our setup, a current of 1 A passing through this 
low-inductance coil, made of four coil turns of superconducting wire, can be switched 
off in roughly 200 ns using a semiconductor switch. The field created by this current in 
the sample volume is sufficiently homogeneous and has a strength of B1oop 1.1 mT. 
The experimental characterization of the DCR cavity in Fig. 5.13 were measured with 
the detuning loop in place. For tuning all four NV sub-directions into resonance 
with the cavity while B 100P is maintained [blue curve in Fig. 5.13(b)], the sample and 
the external field direction are aligned within the chip plane at 45° relative to the 
rectangular chips, to match the loop orientation. When the loop current is switched 
off [yellow curve in Fig. 5.13(b)], the spins are detuned by ö/21r 25MHz, and the 
spin ensemble is effectively decoupled from the cavity - the transmission signal then 
looks similar to the empty cavity resonance, but having a finite dispersive-shift [c.f. 
Sec. 2.4]. This rapid detuning capability is useful for protocols that rely on storing 
the spin inversion after an inversion pulse. Subsequently, after a variable storage time, 
the ensemble can be brought back into resonance to release the stored inversion in a 
superradiant pulse, see Ch. 6. 

Integrating a nanoconstriction into the DCR cavity 

As previously mentioned, the DCR cavity design is a near-optimal realization of 
a low-impedance circuit design. 5 Naturally, the nanoconstriction approach lends 
itself to be used for such a cavity design, when the goal is to achieve strong single 

5Even better would be to have only two capacitor plates connected by a single wire - the simplest 
form of an LC circuit - instead of an arrangement of effectively four plates connected with two 
separate current paths on both sides as in the DCR design. However, this is much harder to achieve 
with a 2D design approach. lt would necessitate a multilayer pattern on a chip with a dielectric 
separation layer between the capacitor pads and a wire-like inductance loop, as proposed in Ref. [79]. 
In this case, dielectric losses need to be considered and could potentially limit the achievable Q factors. 
Generally, the fabrication of such a design is much more technically demanding. 
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Figure 5.14 DCR cavity: detuning loop and optical fiber access. (Left) A magnetic 
detuning loop, consisting of 4 windings of superconducting wire, can be wrapped 
directly around the double chip assembly. In the experiment it is used for rapidly 
detuning the spins from resonance and back again. (Right) An attempt at building a 
superradiant maser: the diamond sample is glued to the tip of an optical fiber, which 
enters through a small hole in the copper housing. The fiber is sandwiched between 
the two chips and oriented to align one NV direction with the external tuning field -
in this case along the slit structure to the right. 

spin-photon coupling, see Fig. 5.15. To investigate the feasibility of integrating a 
nanoconstriction into a DCR cavity, superconducting chips were fabricated by the 
company Star Cryoelectronics and later nano-machined with the focused ion beam 
technique at INMA in Zaragoza. For these chips, designed to operate at around 
wc/21r ::::::: 2.5 GHz with the help of COMSOL simulations, the dimensions for the 
capacitor surfaces (half of one chip square) are A = 16 x 8 mm2 and the plate separation 
is d = 50 µm. The bottom chip pattern of the two DCR chips, see Fig. 5.15(a), features 
a 1 µm slit and a circular 150 µm hole. The upper chip has the same hole, but the slit 
extends on the other side as well, and the two capacitor surfaces are only connected via 
a narrow bridge of width 1 µm, see Fig. 5.15(c,d). This bridge is later thinned down to 
a width of only ~ 100 nm to create the nanoconstriction. The nanoconstriction DCR 
cavity is designed to minimize the ratio L / C even further than the previous DCR 
chips, and the outer large current loop [see Fig. 5.12(a)] is left out completely.6 

The nanoconstriciton DCR cavity is characterized experimentally in our ADR 
refrigerator at around 60 mK and showed a strong coupling of 9con/21r 30 MHz to a 
large ensemble of approximately 1 x 1016 DPPH molecules covering a large ~ 1.5 mm 
area in the center of the "upper" chip with the ~ 100 nm constriction, see Fig. 5.15(b,e). 

6This leaving out of the large outer current loop likely gives rise to the asymmetric Fano resonance 
of the nanoconstriction DCR cavity, as shown in Fig. 5.15(b). 
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Figure 5.15 DCR cavity with nanoconstriction. (a) Schematic layout of the two chips. 
The upper chip has only a single wire next to the center hole that connects the two 
capacitor sides, whereas the lower chip is similar to the DCR design discussed above. 
(b) Magnetic field scan of DPPH molecules coupled to the DCR cavity, measured in the 
AD R fridge. SEM image before ( c) and after ( d) a nanoconstriction of width ~ 100 nm 
is machined. ( e) Photograph of the 16 x 16 mm2 chip ( nanoconstriction side) with a 
dried droplet of DPPH solution containing approximately 1 x 1016 spins. 
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The maximum quality factor for the DCR cavity with nanoconstriction is measured at 
Q 12 000. Unfortunately, the large deposition area of the DPPH molecules does not 
allow us to estimate the contributions of individual spins at the constriction - the 
DCR chips are too large for an AFM scan - and is only ab experimental proof of the 
general feasibility of this approach. 

We can still directly calculate the expected increase of the spin-photon coupling 
g0 ex 10 in the vicinity of the nanoconstriction for a low-impedance DCR design as 
compared to a CPW resonator, with a typical impedance Zcpw = 50 n, as the CPW 
resonator from Ref. [63] discussed above. We revisit this topic by looking at the 
zero-point fluctuation current 10 of Eq. (5.6), slightly rewritten using the definition for 
the circuit impedance Z0 = jLfc 

Io=lfi. (5.7) 

The circuit impedance for the DCR design is calculated as ZDcR = l/wcC, with the 
total circuit capacitance given by C = Ci/2 = ½EoA/d (see discussion above), resulting 
in ZDcR 5.6 0. This leads to an expected increase of the current 10 and thus the 
RF magnetic field at the nanoconstriction by a factor of roughly J Zcpw / ZDcR 3 
when the resonance frequency Wc is assumed to be the same. While not enough to 
reach the strong coupling regime to a single spin, this estimated increase - and the 
experimental evidence as feasibility proof - marks another step towards achieving 
this goal. Notably, a circuit impedance of 5.6 0 does not constitute the ultimately 
achievable value and can be further decreased by reducing the chip distance and the 
inner hole diameter. Additionally, increasing the resonance frequency Wc is another 
possible avenue for improvement of g0 . 

Attempt at realizing a superradiant diamond maser with the DCR cavity 

Finally, to conclude this exploration of potentials offered by the DCR cavity design, I 
discuss an attempt at realizing a superradiant diamond maser with the DCR cavity as 
shown in Fig. 5.12(a). A 200µm optical fiber enters the cavity through a small hole in 
the copper housing. The diamond sample is glued on the flat tip of the fiber using an 
optically clear ultraviolet curing adhesive. The fiber is oriented between the chips at 
an angle that allows to approximately find a good alignment of the NV diamond with 
the external field; see Fig. 5.14. This alignment of the NV axis parallel to the external 
field and orthogonal to the cavity's RF field is a necessary requirement for achieving a 
superradiant maser, as discussed in Sec. 4.1.1. This attempt turned out tobe unfruitful, 
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as the intense green laser light used for optical pumping completely destroyed the 
cavity resonance peak. This effect is attributed to a breakdown of superconductivity, 
as the high-energy photons break apart the Cooper pairs. 

A possible way to mitigate this problem is to have the fiber enter from the "top" 
in a direction perpendicular to the chip planes, requiring a borehole in the sapphire 
chips. This configuration would allow the pump light to exit on the opposite side 
without hitting the niobium layer. Unwanted light on the superconducting layer could 
be further prevented by a reflective coating around the diamond and the fiber tip. 
Additionally, the boreholes in the chips' sapphire substrate would allow the placement 
of the chips closer together than the diamond sample size - where the sample now 
extends partially outside the niobium layers - and the RF magnetic field is even more 
strongly focused. In conclusion, although not successful, this initial attempt at building 
a superradiant maser provided many valuable insights for future explorations. 

5.2.4 3D-Cavity towards a superradiant diamond maser 

The development of a superradiant diamond maser represents a significant step forward 
in quantum technologies with solid-state spin platforms, providing a robust and compact 
system with the potential for room-temperature operation. Its potential applications 
include precise microwave frequency sources with ultra-narrow linewidths, quantum-
limited microwave amplification [80], and new possibilities for studying quantum 
effects in microwave cavities at room temperature [81]. Progress towards this goal 
includes the first continuous-wave room-temperature diamond maser in 2018 [56]. 
However, this system did not reach the high-cooperativity regime (C > 1) needed 
for superradiant emission. Recent theoretical work suggests that a carefully designed 
system of NV centers strongly coupled to a microwave cavity could achieve continuous 
wave superradiant emission with optical pumping [57]. With these considerations in 
mind, I developed a new microwave cavity design called the Maser-3D (M3D) cavity. 
This design aims to create the conditions necessary for a superradiant maser: the 
strong and uniform cavity-spin coupling, combined with optical access for pumping of 
the masing transition. The M3D cavity combines elements from both the LGW and 
DCR cavities, integrating the strengths of 2D and 3D lumped element cavities. A key 
feature of this new design is the incorporation of an optical fiber, which is crucial for 
its intended operation. 

This cavity design is shown in Fig. 5.16(a). At its heart, the M3D cavity shares a 
fundamental concept with the DCR cavity: two flat metal surfaces, separated by a 
small air gap, form mirrored capacitor structures and allow the RF magnetic field lines 
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Figure 5.16 Photographs of the M3D cavity. (a) The M3D cavity is assembled from 
four machined copper parts: a base part, a box cover, and two identical copper blocks 
with a wedge-cut machined in the center. The polished flat faces of the two blocks 
come together to forma pair of capacitances that are connected via short current paths 
around a small hole in the center - where the diamond sample is held in place on the 
tip of an optical fiber, see microscope image in panel (b). The diamond is oriented to 
align one NV-axis along the x-direction. (c) A home-built superconducting wire coil is 
able to create high magnetic fields of more than 200 mT. 

to only squeeze through a small hole in the center. In the M3D cavity, these surfaces 
are the inward-facing sides of two copper blocks with a wedge-shaped cutout in the 
center. An essential feature of this cavity, crucial for its intended masing application, 
is the integration of an optical fiber, uniquely made possible by the space created by 
the wedge cutout. For the diamond samples we have, which are cut along the (100) 
planes, the fiber needs to enter at an angle. 

Current paths along the sharp inner edges of the wedge cutouts on both sides 
forma loop around the diamond sample, which is glued on the tip of an optical fiber, 
and shown in Fig. 5.16(b). These current paths connect the two plate capacitors and 
are the source of the homogeneous RF field in the sample volume, penetrating the 
sample volume along the yz-plane, as shown in Fig. 5.17. The bulk copper is very 
efficient in squeezing the magnetic field lines through the small sample hole, which 
makes it possible to only use an easy-to-machine wedge cutout instead of a narrow slit 
as on the DCR chips. At the same time, the flat sides of the copper parts' capacitor 
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Figure 5.17 RF magnetic field of the M3D cavity. Streamline plot of the RF magnetic 
field distribution inside the M3D cavity at a resonance frequency of around 3.5 GHz, 
simulated with COMSOL. A dashed line indicates the placement of the optical fiber 
through a small hole in the copper walls of the base piece. 

surfaces are well-suited for polishing to a mirror finish. Dimensions for the copper 
blocks are approximately 20 x 20 x 6 mm3 , with a nominal capacitor gap of 50 µm and 
a center hole diameter of roughly 350 µm. The orientation of the optical fiber with a 
core diameter of roughly 200 µm, reaching into the center hole at an angle, is chosen 
such that the strong external field along the x-direction is parallel to one of the four 
NV-axes, as required for efficient optical pumping (c.f. Sec. 4.1.1). The M3D cavity 
fits snugly into a superconducting coil with around 6000 windings that is custom-built7 

for this application. At current values of around 2 A, it generates fields upwards of 
200mT. 

In Fig. 5.18, a transmission spectroscopy measurement of the M3D cavity coupled 
to an NV diamond sample is presented. The magnetic field is scanned and the NVs' 
ms = -1 to ms = 0 transition crosses the cavity resonance when the system is cold 
at around 65 mK, with the spins polarized in the ground state to approximately 93%, 
and with the green pump laser turned on at around 4 K. The green laser light is 
produced from a laser diode with a nominal wavelength of 520 nm, using a home-built 
temperature-controlled diode driver setup. The output power of the laser at the tip of 
the fiber is measured at approximately 700µW. The experiment is carried out in the 
ADR cryostat because its single-shot cooldown operation allows for sudden warming 
up due to a sustained heat intake from the pump laser. With the laser turned on, 

7The coil body fabrication process is quite interesting: I created a 3D printed mold and laminated 
the body using a composite material mix of glass-fiber sheets and two-component epoxy glue, sourced 
from a local hardware store. This finished coil turned out to be well-suited for the cryogenic conditions. 
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Figure 5.18 Magnetic field scan of NV diamond coupled to the M3D cavity. (a) 
Avoided crossing of the ms = -1 to ms = 0 transition at cryogenic temperatures. (b) 
When the pump laser is on, the temperature rises to around 4 K, and the coupled 
system shows an amplification of the probe MW signal on resonance. 

the temperature quickly rises but stabilizes as continuous cooling is provided by the 
pulse tube cooler at the 4K stage. The diamond sample used for this experiment is an 
E diamond sample, as it is optically more transparent than the N-sample, and thus 
better suited for optical pumping. 

The "empty" cavity, with the spins far detuned, is fitted by a Lorentzian with a 
center frequency of roughly wc/2n = 3. 75 GHz and a linewidth of t,,/2n = 3720 kHz, 
yielding a quality factor of Q 500, see Fig. 5.19(a). Although an avoided crossing 
at 65 mK is observed, a coupling fit using the Maxwell-Bloch equations in the steady 
state reveals that the system does not enter the strong coupling regime. For this fit, 
we assume the same parameters for the spin ensemble as for the N-sample in the DCR 
cavity - this way we can directly compare the fitted collective coupling strength, as 
the specific parameters such as 11_ and the q-Gaussian FWHM for the E-sample are 
not known. The collective coupling strength is determined as g~iu/2n = 2.6 MHz (fixed 
model parameters are: q = 1.39, W/2n = 9.2MHz, ,1-/21r = 177kHz, and ,11 = 0). 

In Fig. 5.19(b,c) a simulated magnetic field scan is shown that replicates the mea-
surements in Fig. 5.18(a,b), with all spins polarized in the ground state p = (a1) = -1, 
and with a constant polarization of p = +0.1 to simulate the effect of the optical 
pumping. With the pump laser turned on, the absorption dip of the cold spin system 
on resonance turns into a peak, resulting in weak amplification of the transmitted MW 
signal. 
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Figure 5.19 M3D cavity coupling fit and magnetic field simulation. (a) Lorentzian 
fit of the far-detuned cavity and MBE-steady-state fit of the ground-state polarized 
spin ensemble. Simulated magnetic field scan using the same fit parameters with a 
polarization p = (aD = -1 (b) for the effective two-level-system, and with p = 0.1 (c) 
to simulate the effect of optical pumping. Compare with Fig. 5.18(a,b). 

Table 5.3 Simulated parameters of the M3D cavity. Compare with Table 5.1 and 5.2, 
where the same evaluation method is used for the other cavity designs. The spin density 
used to simulate g~~11 is taken to be 1/ 4 of the usual value of 6 ppm NV concentration 
with nc = 1.755 x 1023 cm-3 carbon density in diamond. 

3.5GHz 

sim/2 9coll 7f 

3.35MHz 102pT 99 X 10-3 

minlBsiml 
maxlBsiml 

36% 
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For the sake of comparison, the COMSOL simulation results shown in Table 5.3 
use the same sample dimensions as the other cavity simulations above, although a spin 
density that is reduced to 1/4, as only one of the four NV-directions is tuned into 
resonance with the cavity due to the optical pumping requirements. The simulation 
results - usually trustworthy as the experimental comparisons for the other cavity 
designs suggest - show a higher simulated coupling strength than measured in the 
experiment. This is likely caused by a lower spin density in the E-sample and its 
slightly smaller size than the N-sample [shown in Fig. 4.5, and Fig. 5.8(b), respectively]. 
The M3D cavity design sacrifices some field homogeneity to allow for good integration 
of the optical fiber. Additionally, the very simple geometric structure makes it easier to 
polish the copper surfaces to improve the Q factor. As the cavity-spin system is only 
weakly coupled, it does not function as a superradiant maser. Still, it is worthwhile to 
explore how far away the system is from this regime - and to discover the roadblocks 
and possible strategies to overcome them. 

A complete model of superradiant masing dynamics, including a theoretical pre-
diction of the continuous-wave emission's linewidth, requires a second-order cumulant 
expansion of the relevant operators for spin and cavity degrees of freedom. This 
approach leads to quadratic scaling of numerical complexity with the number of spin 
frequency packets - the number of equations to solve grows as O(N2) instead of O(N) 
when using standard Maxwell-Bloch equations. While such a full treatment is beyond 
the scope of this thesis, interested readers can find practical information on numerically 
simulating higher-order cumulant expansions in Ref. [82]. 

For our purposes, we employ simplified simulations of the steady-state solution 
for the cavity amplitude lal using a modified set of Maxwell-Bloch equations. These 
equations are adapted with a pumping term and take the contributions of thermal 
photons into account, causing a non-negligible contribution at elevated temperatures 
of 4K. The equations follow from the Tavis-Cummings Hamiltonian (2.40), using a 
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modified Lindblad operator of Eq. (2.53), 

.C(p) = ti:(nth + 1) (2apat - atap- aatp) 

+ h:nth (2atpa - aatp- atap) 
N 

+ ~I (nth + 1) L(2~pa-t - o-j_a-tp - pa-ta-j_) 
J 

+ [,11 nth + w] f)2a-tpa-j_ - a-ta-j_p - p~a-t) 
J 

(5.8) 

with the addition of two new processes, the creation and annihilation of either a 
photonic or spin excitation by interacting with the bath of nth thermal photons with 
operators a(t) and ~' and the creation of an excited spin by the optical pumping with 
rate w and operator a-t. Then, the steady-state equations ( (ä) = 0, (äj_) = 0, and 
(&t) = 0) simplify to 

(5.9a) 

(5.9b) 

using NP= 501 spin packets following the discretization method outlined in Sec. 2.8, 
and i = 1 ..1 + ½,11(2nth + 1) + w/2. The number of thermal photons at the relevant 
frequency of wc/21r 3.75GHz and temperature T 4K is evaluated with the 
Base-Einsteindistribution as nth(wc, T) = [exp(nwc/kBT) - 1J-1 22. 

The numerical steady-state solution for lal is then calculated as a 2D plot for 
three different scenarios, shown in Fig. 5.20(a,b,c). The x-axis is the rate of optical 
pumping w, while the y-axis represents either the cavity's quality factor Q = wc/2ti:, the 
collective coupling 9coll, or the effective ensemble-linewidth r. While the Q-factor and 
the collective coupling strength need no further explanation, the value of r is varied by 
changing the width W of the q-Gaussian spin distribution, appearing in the model via 
Pj and the spin packet's detunings ßf The exact values chosen for ,..1/21r = 177kHz 
and ,11/21r = 20 Hz are mostly inconsequential for the effective linewidth r, as it is 
dominated by the inhomogeneous broadening W, but are still required for the numerical 
model. They are taken from simulations of the N-diamond coupled to the DCR cavity 
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Figure 5.20 Simulated steady-state cavity amplitude lal during optical pumping of 
the spin-ensemble. Color-plots of the cavity amplitude as a function of pump rate w 
versus the cavity's quality factor Q = wc/211, (a), versus the collective coupling strength 
9coll (b), and versus the inverse effective ensemble-linewidth r ( c), while the other 
parameters, taken from the experiment, are held constant. The superradiant threshold 
prediction ( dashed-line) follows from Eq. ( 5) of Ref. [ 5 7] . 

and make sense in the context8 of the experiments presented in Ch. 6. For numerical 
stability, and to bypass the need for a second-order cumulant expansion - essentially 
to prevent lal = 0 as a solution - a very low value for the external MW cavity drive 
of TJ ;=:j 2 x 10-15 is used in the simulations.9 In the plots of Fig. 5.20, we see a clear 
signature of the superradiant masing regime: when the optical pumping crosses a 
threshold value given by 

w 2nth + C + 1 
->------
111 C-1 

(5.10) 

the cavity amplitude will grow exponentially. This threshold formula is taken from 
Eq. (5) of Ref. [57] (where a true second-order cumulant expansion is used) and adapted 
to work with our choice of definitions. 

With these results, we see that the M3D cavity in its current state is actually not 
too far from the superradiant masing regime. The most straightforward way to get 
into this regime is to increase the Q factor, where an improvement of slightly more 
than factor 2 is needed. lmproving the single-spin coupling is much harder, as it is 
limited by the ability to constrain the effective mode volume to ever smaller dimensions 

8The value of , 11 = 1/T here represents the lifetime of a spin-ensemble having a net polarization 
p > 0, which is measured to be T :=::; 8 ms for the N-sample, as opposed to the long lifetime T1 > 100 s 
of a completely mixed ensemble with p < 0. This discrepancy is attributed to the effect of spin-spin 
interactions within the diamond. A detailed discussion will be given in the next chapter. 

9 0ur trick to avoid a second-order cumulant expansion is to treat the system as a microwave 
amplifier for an extremely weak signal, rather than as a maser that spontaneously emits radiation. In 
essence, spontaneous emission can be viewed as amplification of an intrinsic signal: noise. Noise-driven 
terms are part of the second-order cumulant expansion but are absent in the first-order treatment. 
More on this in Sec. 6.1. 
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by the relation g0 ex B0 = J µ0nwc/2¼ff. To have a high collective coupling strength 
9coll = g0 ,J""N, one needs a filling ratio of sample volume over mode volume V/¼ff and a 
high spin density n to get large N = n V - which inevitably makes the diamond sample 
more opaque, limiting the optical pumping efficiency. The effective ensemble linewidth 
r, on the other hand, depends mostly on the degree of inhomogeneous broadening, 
which is a highly sample-dependent quantity. 

As an improved Q factor seemed to be the clearest path forward to realize the 
superradiant maser, some attempts were made to improve it further, such as trying 
harder at polishing all internal copper surfaces, annealing the copper parts for hours at 
around 900 °C and subsequently etching the surface to improve the surface conductivity, 
and even trying to coat the flat capacitor surfaces with a thin superconducting niobium 
layer, using an electron evaporation machine at the Atominstitut - although niobium 
sputtering seems tobe a more suitable coating technique [83]. Unfortunately, none 
of these attempts led to any substantial improvements. A possibility that has not 
been explored yet is electropolishing as a surface treatment. Notably, using bulk 
superconducting niobium for the cavity parts is out of the question, as it leads to large 
deformations of the external fields, which are required to be homogeneous, as shown in 
Fig. 5.10. 

Another question is, if our setup's optical pumping rate is strong enough to achieve 
masing, even if the Q factor is twice its actual value. A very simple estimate is given by 
the steady-state solution of Eq. (5.9b) when the cavity influence is neglected (gp = 0). 
Then, we can assume all spins have the same inversion, resulting in p = (cr1) = 
(-,11 + w)/b11 (2nth + 1) + w]. Fora value of p = 0.1 [see simulation in Fig. 5.19(c) and 
compare with measurement in Fig. 5.18(b)] and using the model parameters above, this 
results in a value of w /2n = 4. 7 x 10-5 MHz, which is below the threshold everywhere 
in Fig. 5.20. This estimate is not very reliable, ( i) as it is based on oversimplified 
assumptions about a homogeneous steady-state inversion and unknown effective value 
of ,11, and ( ii) as the actual sample temperature, and therefore value of nth, is likely 
higher than measured by the thermo-sensor, which is mounted at the coldest cryostat 
stage, far away from the small diamond sample. This sensor is only reliable when the 
pump laser is off and the system is in equilibrium. The laser power in the experiment 
is not a bottleneck and could be substantially increased by using a commercial green 
fiber laser. 

Notably, after the design and testing of the M3D cavity, I stumbled upon an inter-
esting cavity design reported in Ref. [80], which claims to have realized superradiance 
effects, although in a short offhand remark at the end. 
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lf I were to try again to realize a superradiant diamond maser, I would focus on 
the following improvements: 

• Work at a higher cavity frequency upwards of 10 GHz, as the single spin coupling 
scales as g0 oc VW:,. This would necessitate higher external magnetic fields larger 
than 450 mT, currently not possible with our coil setup. 

• Use a slightly bigger diamond sample with high NV density, e.g. (500 µm) 3 -

this should come with an improved Q factor, as the surface currents at the bigger 
sample hole, and therefore the ohmic lasses scaling as 12 , would be reduced. On 
the other hand, a bigger sample makes optical pumping less efficient. A delicate 
balance must be found, or possibly an optimal sample shape with decreased 
thickness in one dimension. 

• Generally, work with a larger physical design volume for the total cavity di-
mensions - this would help tremendously with the awkwardness of assembling 
everything in a small space, and could also help to improve the Q factor when 
the RF fields do not reach outwards into the cavity walls, effectively reducing 
parasitic inductance. 

• The ultimate goal would be to realize a superradiant diamond maser at room tem-
perature, so maybe an optical fiber is actually not needed, and direct illumination 
with green laser diodes from two sides is a possibility. 

• Use a better quality NV diamond to reduce the inhomogeneous broadening and 
thereby r. 

• A diamond cut square along the (111) plane would remove the need to orient the 
sample at an awkward angle and could at the same time help to achieve a higher 
filling factor of the cavity's mode volume. 

In summary, my efforts in exploring different cavity designs have culminated in 
many insights and new ideas to try in the future. My experimentalist's trial-and-
error approach led me somewhat close to the lofty goal of realizing a continuous-wave 
superradiant diamond maser. As it turned out, the experiments accomplished with 
the DCR cavity, in particular, enabled by its rapid magnetic detuning capabilities, 
have actually realized a quasi-continuous superradiant maser. This quasi-continuous 
emission is driven not by the optical pumping of NV centers but by an effective internal 
pumping mechanism attributed to spin-spin interactions within the dense diamond 
sample - and opens up a completely new window for looking at spin-spin many-body 
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physics through the lens of collective superradiant dynamics. This aspect, among other 
superradiant phenomena, will be the topic of the next chapter. 



Chapter 6 

Experiments 
Explorations with a superradiant diamond 

After introducing the theoretical tools in Ch. 2, as well as the technical and setup-related 
details in Ch. 3, we now turn our focus on the experiments realizing superradiant 
emission from our diamond sample coupled to the microwave cavity. In these ex-
periments, we use the N-diamond sample (see Section 4.1.2) and the DCR cavity 
(see Section 5.2.3). The hybrid system of cavity and spins is illustrated in Fig. 6.1, 
which schematically highlights the key aspects of our system. The system is essentially 
characterized by three rates: the rate of collective energy exchange between the spin 
ensemble and the cavity 9coll, the cavity dissipation rate r.,, and the spin ensemble's 
effective linewidth r. 

We begin this chapter with an experimental characterization of our system, par-
ticularly the NV diamond's inhomogeneously broadened spin distribution, the main 
contributor to the parameter r. We then explore superradiant dynamics by inverting 
the spin ensemble using simple rectangular microwave pulses. As we will demonstrate, 
higher initial spin inversion, and crucially, the homogeneous inversion over the full range 
of frequencies of the broadened ensemble, can be achieved with a specially designed 
chirped pulse. By combining this improved pulse design with a rapid detuning protocol 
using the magnetic detuning loop inside the DCR cavity, we achieve an initial state of 
the inverted ensemble that closely approximates the ideal situation of all spins inverted 
with a vanishing tipping angle, i.e., oriented only along the +z-direction. 

Upon tuning the inverted spin system back into resonance with the cavity, the 
system enters a metastable initial state. This inversion and detuning protocol, which 
offers a high level of control over the spin ensemble's initial state, allows us to study 
in detail the crucial moment at the beginning of the superradiant decay, where small 
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24mK 

09coll 

____________, 

Figure 6.1 Hybridsystem at the heart of our experiment. The homogeneously coupled 
spin ensemble exchanges excitations with the cavity mode at a rate 9coll, while the 
cavity loses photons with rate 11, and the spin system dephases with the effective rate r. 
This effective rate encompasses both the individual spin dephasing 1..1 and the fanning 
out of fast and slow spins due to inhomogeneous broadening of width W. 

causes have significant effects and minute fluctuations are subsequently amplified by the 
superradiant avalanche process. We reveal the inverted spin system's high sensitivity 
to weak microwave trigger pulses, which influence both the delay time and the phase 
of the superradiant decay. 

Lastly, we focus on a novel phenomenon at the intersection of superradiance and 
many-body spin-spin interactions. After the initial superradiant decay, we observe a 
series of revival pulses and a subsequent regime of sustained quasi-continuous masing. 
After presenting several experimental pieces of evidence, we conclude that dipolar 
coupling between the disordered spins in the ensemble is directly responsible for driving 
these dynamics. 

6.0.1 Hybrid system characterization 

Measuring the spin distribution p(w) and lifetime T1 in the dispersive regime 

We begin our characterization of the spin distribution by scanning the external magnetic 
field, as shown in Fig. 6.2, with the field oriented to have equal projections along all 4 
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Figure 6.2 Transmission spectroscopy and external magnetic field scan with equal 
projections on all 4 NV sub-groups, with the spin system in the ground state. When 
tuning the spin center frequency (green line) across the "empty" cavity resonance 
( dashed black line), we observe an avoided crossing of the coupled system. Off resonance, 
the spin ensemble's coupling to the cavity causes a dispersive shift x of the Lorentzian 
response relative to the bare resonator frequency. 

NV axes. For the next set of measurements, we detune the spins by about ß = 50 MHz 
from the cavity frequency, as indicated by the dotted vertical line in Fig. 6.2. In 
this dispersive regime, where ß » 9coll, the apparent cavity peak is shifted from the 
"empty" cavity frequency by an amount 

2 
= 9coll (S ) X ß z , (6.1) 

depending on the polarization of the spin ensemble ( using a generalized form of 
Eq. (2.39) for the collective spin operator). We will now frequency-selectively alter the 
spin polarization p(wp) = (a-z(wp)). 

To this end, we use a highly-attenuated 100 ms lang microwave pulse of probe 
frequency Wp to drive spins in a narrow frequency range around Wp into a mixed state 
with partial inversion, while maintaining the initial polarization in the ground state for 
the other spins. We then measure the cavity transmission spectrum over time using 
the VNA while the spin system slowly relaxes to the ground state with the spin-lattice 
relaxation rate ,11 = 1/T1 . These measurements allow us to determine the dispersive 
shift depending on the number of spins targeted by the probe pulses, thereby mapping 
the frequency distribution of the detuned spin system, as shown in Fig. 6.3. Each run 
with a different probe frequency is fitted with an exponential decay function to extract 
data points for the spin distribution, which is shown in Fig. 6.4(a), and fitted with 
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Figure 6.3 Relaxation dynamics after 100 ms low-power probe pulse with a set probe 
frequency is applied to the system, measured with the VNA. (a) Color plot of a single 
run with exponential decay fit. (b) Repeating the measurement while scanning the 
probe frequency reveals the spin distribution. 

a q-Gaussian function of width W /2n = 9.2 MHz and shape parameter q = 1.39, see 
also discussion in Sec. 2.8. Additionally, this measurement allows us to evaluate the 
spin-lattice relaxation time T1 = 150 s, as shown in Fig. 6.4(b ). 
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Figure 6.4 Spin distribution and relaxation time T1 . (a) Data points for the spin 
distribution follow from exponential fits of each run shown in Fig. 6.3(b), and fitted 
with a q-Gaussian of width W/21r = 9.2MHz and shape parameter q = 1.39. (b) Using 
a higher-power probe pulse, the entire ensemble is brought into a mixed state with 
partial inversion, generating a larger signal. An exponential decay with a characteristic 
timescale of around T1 = 150 s is observed. 
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Figure 6.5 Transmission spectroscopy measured with the VNA and fitted using steady-
state MBE solutions. The coupled system on resonance exhibits a normal mode splitting 
(blue), allowing the extraction of the collective coupling strength 9cou/21r = 4.6 MHz. 
At high measurement power of the VNA, we measure the "empty" cavity signal (red). 
The yellow curve is measured at low power with the detuning loop switched off and 
fitted by using a detuning of roughly /:1/21r,::::;: 20 MHz between cavity and spins. The 
detuning loop will be used for the experiments presented below. 

Determining the cavity linewidth K,, the coupling strength 9con, and estimat-
ing the spin linewidth 1..1 

We continue our system characterization by magnetically tuning the spins back on 
resonance. Using a high-power setting on the VNA and tracing over the cavity resonance 
several times, we bring all spins into a fully mixed state. This leaves only the cavity 
Lorentzian response, which directly yields the cavity linewidth K,/21r = 420 kHz, as 
shown in Fig. 6.5. 

After allowing the spin system to relax to the ground state, we measure the steady-
state response to reveal the normal-mode splitting of the coupled system. From this, 
we extract the collective coupling strength using our semi-classical model in the steady-
state, Eq. (2.66). By inputting the q-Gaussian spin distribution from Fig. 6.4(a), we 
achieve good agreement with a parameter value of 9con/21r = 4.6 MHz. 

The last system parameter is the estimated spin coherence time T2 = l/1..1 ,::::; 900 ns, 
corresponding to an individual spin linewidth of 1..1/21r = 177 kHz. This value is, in 
principle, accessible via direct measurement. Typically this is achieved through a 
spin-echo experiment, such as a Hahn-echo sequence [17] or a more robust CPMG pulse 
sequence [84]. However, direct measurement of T2 proved tobe challenging for our 
system for two reasons: ( i) the relatively short coherence time is difficult to measure 
accurately, and ( ii) the superradiant nature of our system - enabled by the spatially 
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homogeneous spin coupling to the cavity - complicates the application of 1r and 1r /2 
pulses without releasing a superradiant burst, thereby preventing spin refocusing to 
create an echo pulse. 

Despite these challenges, the parameter ,..1 = 1/T2 is crucial for our model and 
generates a distinctive signature in the time-resolved dynamics, as seen in Fig. 2.13 
and discussed in Sec. 2.9. Our estimated value for ,..1 is in good agreement with the 
observed dynamics in the main experiments of this work, particularly the superradiant 
decay of our uniformly inverted spin ensemble. 

Combining all parameters, we calculate the cooperativity parameter of our hybrid 
system tobe approximately C = 14, see Eq. (2.68). 

6.0.2 Inversion pulses 

Superradiant emission after a rectangular inversion pulse 

We start our experimental exploration of superradiance with all NV spins, including 
those along all 4 diamond axes, magnetically tuned into resonance with the cavity, and 
thermally polarized in the ground state. 

N ow, to bring the spin system into an inverted state - an essential step for the 
subsequent superradiant decay - the simplest way to achieve this is to apply a constant 
microwave drive for a fixed time, i.e. using a rectangular pulse. We drive the system 
with a 50 ns pulse of constant phase ( only using one quadrature channel) on resonance 
with the cavity via the pump line. 

To reduce waiting times between multiple experimental runs, we use a special 
protocol to initialize our spin system close to the ground state. First, we use a high-
power setting on the VN A to repeatedly trace over the cavity resonance, effectively 
bringing the spin ensemble into a completely mixed state of spins up and down. We 
then wait for a fixed period of ßt = 3 min, allowing the spins to relax with the time 
constant T1 . This protocol prepares the spin system in a state with an initial spin 
inversion of p = exp(-ßt/T1 ) - 1 :=:::: -0.7, based on our T1 estimate. In practice, the 
value of p is even closer to -1, as the resonant ensemble undergoes faster decay via 
Purcell enhancement due to its coupling to the resonant cavity mode (see Sec. 2.9). 
Using this method, we avoid waiting several T1 periods to reach the complete ground 
state and still prepare the system in a repeatable initial state. 

We conduct a power scan of the 50 ns pulses using a stack of digital attenuators, 
which can vary the power in increments of 0.5 dB, similar to the experiments of Ref. [73]. 
In Fig. 6.6(a), we plot the cavity amplitude for the run with a nominal attenuation value 
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Figure 6.6 Rectangular excitation pulse for superradiant emission. (a) Measured 
and simulated cavity amplitude for a nominal attenuation of -22.5 dB of the setup's 
maximum power for the 50 ns inversion pulse. This power corresponds to the lowest 
value for which the system exhibits superradiance. In (b), we plot the collective spin 
dynamics, evaluated as Sz = LPj(aD (yellow line) and similarly for 1S-1 (red line). 
Additionally, the magenta line illustrates the system crossing the instability threshold 
pC = 1, leading to the observed superradiant emission after the excitation pulse. 
(c,d) Color plots of the simulated spin system dynamics, showing Re(a~) and (a{), 
respectively, for different spin packet detunings '6.l. 
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of -22.5 dB, the lowest power at which the system subsequently decays by emitting 
a superradiant burst. The driving pulse appears as a large narrow peak, after which 
the cavity amplitude drops quickly but then gradually rises again, forming a long, 
drawn-out superradiant emission pulse with its maximum around the 1 µs mark. 

We use our semi-classical model [see Eqs. (2.63)] to numerically simulate the ob-
served cavity dynamics of the driven coupled system, starting from an initial state of 
the system with inversion p = -0. 7. The excitation pulse is modeled as a rectangular 
function for the cavity drive rJ(t), with its constant amplitude adjusted to replicate 
the measurement. Most parameters for the simulation are as given above and used for 
the steady-state fit in Fig. 6.5, except ')'..1_. To achieve good correspondence between 
measurement and simulation, we use a relatively large value for the single-spin deco-
herence rate, ')'..1_/21r 555 kHz. This value is roughly three times larger than the rate 
used to accurately model our system during a free, undriven superradiant decay from a 
uniformly inverted state, as seen in subsequent experiments. Additionally, this high ')'..1_ 
is inconsistent with our steady-state measurements. A discussion on this discrepancy 
will be given below. 

The simulation provides indirect insights into the dynamics of the spin system, 
where we plot the longitudinal and transversal components of the collective spin vector 
in Fig. 6.6(b), together with an evaluation of the superradiant instability threshold 
pC, for which the spins resonant with the cavity contribute most, see Eq. (2.73) and 
discussion there. Although the value of Bz = I:, pj ( aD is never above zero, the inverted 
center spins push the system above the threshold pC > 1, leading to a superradiant 
decay in the form of an extended shallow bump in the cavity amplitude. The dynamics 
of individual spin packets with different detunings ~t is shown in Fig. 6.6( c,d). The 
striped pattern, most clearly visible in the plot of ( a~), is a result of the inhomogeneous 
broadening, where the phase of spin packets with larger detunings on both sides changes 
significantly faster in time than the resonant center packets. 

In Fig. 6.7(a), the cavity dynamics for the full power scan are shown as a color plot, 
revealing several branches of superradiant pulses. When the spin system is inverted 
substantially above the superradiance threshold, the energy transferred into the cavity 
mode during the spin decay can oscillate back and forth between the two subsystems 
multiple times. In Fig. 6. 7(b), we present an attempt at recreating these dynamics in 
the simulation. The basis for this recreation is the fit run at -22.5 dB, only adjusting 
the constant amplitude for rJ(t). The measurement deviates from the simulation, with 
the branch structure appearing significantly more washed out in the experimental data. 
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Figure 6. 7 Rectangular excitation pulses for superradiant emission. ( a) Color plot 
of the measured cavity amplitude when scanning the rectangular pulses' power in 
logarithmic increments of 0.5 dB using the digital attenuators. (b) Simulation of the 
dynamics that attempts to recreate the measurements. The simulated power scan is 
based on a fit of the lowest power at 22.5 dB attenuation, as described in the text. 

Particularly in the higher-power runs, individual branches merge into a single blurred, 
colorful blob without any oscillatory structure visible. 

This discrepancy is possibly connected with the overestimation of ,..1 in the sim-
ulation. We offer a possible explanation: The semi-classical description provided by 
the Maxwell-Bloch equations, which uses a first-order cumulant expansion, fails to 
accurately capture the dynamics. A higher-order cumulant approach is required. While 
this is not critical during the driven part of the sequence - where a strongly driven 
system behaves classically and not quantum mechanically - it becomes crucial during 
the free evolution that follows. Effectively modeling these two regimes with the same 
set of parameters results in a discrepancy, particularly for higher-power pulses. 

To summarize this section on rectangular excitation pulses, we emphasize their 
main drawback: the inversion is highly inhomogeneous across the frequencies of the 
broadened ensemble. Off-center spins are rotated to different angles compared to 
resonant spins, leading to a state far from the desired uniform inversion p = (a-{) 
discussed in Sec. 2.9. To achieve this ideal initial state, which is crucial for exploring 
the superradiance phenomena central to this thesis, we developed a protocol combining 
a modified chirped pulse for uniform inversion with a rapid detuning and inversion 
storage sequence. The design approach for the chirped microwave pulse will be discussed 
next. 
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Design of a chirped microwave pulse for uniform spin inversion 

The starting point for our chirped pulse design process begins with a simple question: 
"How can we achieve homogeneous inversion over a whole range of spin frequencies in 
free space?" Initially, we disregard the cavity environment and focus on this challenge. 
Only later will we modify the microwave pulse to "work around" the cavity filter 
function. This filter not only causes the photonic amplitude to react to the driving 
amplitude TJ with a certain delay - manifesting itself for the cavity field's loading 
and its dissipation, determined by the linewidth f'i, - but also selectively transmits 
frequencies: resonant ones are transmitted maximally, while off-resonant ones are 
attenuated. 

A possible approach to invert an inhomogeneously broadened spin ensemble in a 
free space environment - or, in other words, under a high bandwidth filter function 

- is to use rapid adiabatic passage pulses. These pulses were originally developed for 
nuclear magnetic resonance experiments to achieve efficient ensemble inversion despite 
field inhomogeneities. With such pulses, the RF pulse frequency is swept across the 
spin center frequency in such a way that the effective magnetic field vector in the 
rotating frame moves slowly enough for the spin magnetization vector to adiabatically 
follow, but still faster than decoherence effects can occur [85]. 

Our approach is simple: we want to design a continuous pulse that sweeps linearly 
across the spin frequencies. Specifically, the pulse envelope should be smooth, avoiding 
steep gradients and sudden jumps. These criteria ensure that the pulse can later be 
adapted for use in the cavity, as will be discussed below. The pulse we have chosen 
is a chirped pulse, which involves a frequency sweep over a range of 20 MHz, with a 
400ns Gaussian envelope, shown in Fig. 6.S(a). 

We solve the dynamics of the spin ensemble in response to this pulse using the 
optical Bloch equations. These equations are derived from our semi-classical model 
by substituting the cavity amplitude in Eqs. (2.63) with a classical driving field, 
g0 (a) --+ O(t), resulting in the following coupled equations: 

(&!_) = -hj_ + ißD(a~) + n(t)(a{), 
(a{) = 2(n(t)(a~) + O*(t)(at)). 

(6.2a) 

(6.2b) 

The drive amplitude is expressed as a sum of the time-dependent field quadratures 
O(t) = I(t) + iQ(t) in the rotating frame of the drive frequency wP. In Fig. 6.S(b), we 
perform a numerical scan of the chirped pulse power to determine the pulse amplitude 
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that maximizes the ensemble inversion Sz. Specifically, in Fig. 6.8(e), we observe that 
this pulse in "free space" achieves a uniform final inversion of (at) +0. 7 for nearly 
all spins, starting from an initial inversion of p = (at) = -0.8. 

Now that we understand the necessary driving amplitude in free space, we can 
revert our earlier simplification O(t) ----+ g0 (a) and attempt to account for the cavity. 
When (numerically) solving a system of coupled differential equations, one usually 
assumes some initial conditions and an external drive, in this case, rJ(t), and then 
solves for the dynamics. Here, we will do the opposite: We assume the intended system 
dynamics ( and also know how to calculate their derivatives), particularly the cavity 
and the spin components (ai__) plotted in Fig. 6.8(a,c), and then solve for the required 
drive that is necessary to generate them. We invert Eq. (2.64a), assuming a drive 
frequency on resonance with the cavity (b.c = 0): 

Np 

rJ = fi,(a) - gPNP L pj(ai__) + (ä). 
j=l 

(6.3) 

This results in the modified chirped pulse shown in Fig. 6.9. We then perform a 
numerical power scan of our specially designed microwave pulse, plotting the cavity 
amplitude lal and the ensemble inversion Sz in Fig. 6.lü(a,b). The pulse power that 
achieves the best inversion leads to a superradiant emission with maximum cavity 
amplitude, as shown in Fig. 6.ll(a). Here, we also recognize the "free space" chirped 
pulse with Gaussian envelope of Fig. 6.8( a) during the first 400 ns of the cavity dynamics, 
confirming that our pulse design method is self-consistent, at least in the simulation. 
The superradiant decay is followed by a sequence of damped Rabi oscillations. The 
uniform inversion at the end of the pulse ( t = 400 ns) is also visible in the color plot of 
(aD across different spin frequencies, as shown in Fig. 6.ll(c). 

The final step is to test our modified chirped pulse in the experiment. As usual, we 
start with a power scan, which is shown in Fig. 6.12(a). We observe some similarities 
with the simulation in Fig. 6.lü(a), but the experimental data does not fully replicate 
the simulation. Notably, the detected signal is most likely somewhat saturated at 
amplitudes higher than around 5 arbitrary units. The discrepancy between measurement 
and simulation is ultimately not a surprise, as we observed a similar issue with the 
rectangular pulses. For the simulations shown here, we have reverted to the "default" 
value of "fj_/21r = 177kHz. Despite the differences, we can be very satisfied with our 
results. Our pulse achieves the desired outcome: it generates the superradiant decay 
of a uniformly inverted ensemble with initial inversion p, similar to the simulated 
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Figure 6.10 Numerical simulations with the modified 400 ns chirped pulse. Color 
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Figure 6.12 Using the modified 400ns chirped pulse in the experiment. (a) Cavity 
amplitude for a pulse power scan in 0.5 dB increments. (b) Detailed plot of the cavity 
dynamics at the optimal power setting. 

dynamics discussed in Sec. 2.9. This will be the microwave inversion pulse we use for 
the main experimental results below. 

6.0.3 Inversion storage using the rapid detuning loop 

We now have an inversion pulse that works well to almost uniformly invert spins over the 
whole range of frequencies in the inhomogeneously broadened ensemble. But looking 
closely at the cavity dynamics in Fig. 6.12(b) and comparing with the simulations, 
particularly the simulated spin packet's dynamics (ü~) in Fig. 6.ll(b), we see that 
the spin system has already started its motion of falling down the giant Bloch sphere 
while emitting a superradiant burst. The chirped inversion pulse alone just does not 
offer enough control over the spin system to perfectly align all spins along + z and 
momentarily freeze the dynamics in the metastable inverted state discussed in Sec. 2.9. 

Simply stated, while it does create a mostly uniform inversion p = (üD, the 
transversal spin components are not uniformly zero (ü~) -=/=- 0. To combat this effect, 
we devised a simple method that yields a perfectly upright condition for each spin 
packet with vanishing (ü~) 0. lt relies on using the detuning loop, a small loop 
of superconducting wire directly wrapped around the parallel chip assembly of the 
DCR resonator (see Sec. 5.2.3): right after the chirped pulse, we rapidly detune the 
whole spin ensemble from the cavity resonance by an amount of ö /21r 20 MHz. This 
detuning is achieved by switching off the loop current of 1 A in about 200 ns using a 
semi-conductor switching setup developed by the university's electronics workshop. 



119 

3.11 -20 

N -25 in I 
Q.3.105 :!e, 

c:: 
>, -30 -~ (.) 
C 

,,, 
Q) "i'! 
:::, 

3.1 
,,, 

0- -35 
LL 

-40 

9 10 11 12 13 14 15 16 
Magnetic Field (mT) 

3.11 -20 

N -25 in I 
Q. 3.105 :!e, 

c:: 
>, -30 -~ (.) 
C 

,,, 
Q) "i'! 
:::, 

3.1 
,,, 

0- -35 
LL f-

-40 

9 10 11 12 13 14 15 16 
Magnetic Field (mT) 

Figure 6.13 External magnetic field scan and transmission spectroscopy in the ground 
state, with loop current at 1 A in ( a) and with loop current switched off in (b). 

The offset magnetic field of the detuning loop I.B100PI 1 mT is oriented anti-parallel 
to the external field of the 3D Helmholtz coil cage IBextl 12.5 mT, see Fig. 6.13, 
where we show a magnetic field scan with loop current on and off. With the loop 
current switched off, the system is now in a detuned state where the superradiant 
dynamics are fully suppressed. This way, the spin system maintains its inversion, which 
is expected to only slowly decay via the long characteristic timescale T1 on the order of 
seconds, while the transversal components quickly vanish with the short microsecond 
timescale T2 . 

When tuning the spins back into resonance with the cavity by switching the loop 
current back on, the system is in a metastable inverted state. The stored inversion 
will always eventually decay via a superradiant burst when the threshold condition for 
superradiance, pC > 1, is fulfilled. However, it does so from a very controlled initial 
state of the spin ensemble. This carefully prepared initial state will allow us to study 
the crucial moments right at the onset of superradiance and investigate mechanisms 
that trigger the collective decay. 

An example run using this inversion pulse and loop-switching protocol is shown 
in Fig. 6.14. When the inversion is stored for a short hold time of only 60 µs, the 
superradiant emission that occurs upon tuning the spins back into resonance reaches 
a maximum cavity amplitude that is comparable to the first peak after the inversion 
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Figure 6.14 Single run of the experiment using our inversion pulse and loop detun-
ing/retuning protocol with optimized settings, plotting the measured cavity dynamics. 
The duration between the switch-off and switch-on triggers ( dashed green lines) -
where the superradiant dynamics are suppressed and the spin inversion is effectively 
stored - is defined as the hold time, shown here for a hold time value of 60 µs. The 
cavity dynamics of the superradiant decay are simulated using an initial state with 
uniform inversion p and a small tipping angle, with only p and a time offset as free 
parameters. 

pulse without detuning. This shows that our loop-switching protocol works as intended 
to store the inversion and later release it in a controlled way. Comparison with the 
numerical simulation also allows us to estimate the spin inversion efficiency of the full 
protocol from the simulation value p ;::;j 0.36 as the ratio of spins in the excited state 
as Nt/ N = (p + 1)/2 ~ 68%. Notably, the pulse does not appear immediately, but 
it takes a time of around 1 µs to reach its maximum - this is the delay time of the 
superradiant burst, discussed in Sec. 2.9. 

In reality, the current switching in the loop is not a perfectly rectangular function, 
as can be seen in Fig. 6.15(a) for both the switch-off flank and the switch-on flank 
of the loop current. We measure this loop current as the voltage drop over a series 
resistor in the loop switching circuit. The length of wire inside the cryostat ( ~ 2 m) 
adds some parasitic capacitance to the loop circuit, causing the oscillations due to 
unwanted LC characteristics. The reason for using the loop with the default setting of 
1 A for the on-resonance condition and 0 A to detune (instead of the opposite) is that 
the switch-off is much quicker. We simply do not care about the rapid fluctuations 
afterward, as the spins are already detuned far enough. The detuning loop alone, 
having an inductance of roughly L = 3 µH measured directly at the two leads into the 
cryostat, has a self-resonance frequency around 7.5 MHz [86] due to its LC behavior. 
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Figure 6.15 Details of the loop switching dynamics. (a) Loop current over time, 
measured as a voltage over a series resistor in the loop circuit. (b) Depending on the 
loop current level reached upon tuning the spins back into resonance, the superradiant 
emission has its J and Q quadratures in phase or undergoing a phase rotation - a 
beating signal - during the emission process. 

We chose a rather high series resistor value of around R = 30 n to achieve a short rise 
time T = L / R, thus approximating the ideally rectangular switching behavior. 1 

An intuitive expectation is that when tuning the spins almost back into resonance 
but not quite, with a small detuning lbl 0 left between the radiating spin system and 
the cavity frequency, the superradiant decay would still happen. However, this finite 
offset ö would be visible as a beating signal in the I and Q quadratures. In Fig. 6.15(b) 
we see exactly this effect happening. lt turns out that for the beating frequency to be 
exactly zero, the apparent loop current upon switching back - i.e. the voltage level 
measured at the resistor - needs to rise higher than the initial on-resonance setting 
prior to the inversion pulse. This peculiar behavior is most likely caused by the LC 
characteristics of the loop circuit. 

Additionally, the optimal level to suppress the beating - to have the cavity 
quadratures in phase - even needs to be adjusted for different hold times. We 
attribute this effect to the current-limiting electronics in the power supplies generating 
the loop current, which presumably have some finite reaction time. We found the 
easiest solution to this problem is to use two sets of power supplies and current switches 

- one for switching off and one for switching back on resonance. The value of ö when 

1The measured rise time in Fig. 6.15(a) of around 1 µs seems to contrast the statement above, that 
the superradiant decay does not appear immediately after switching back on resonance, but only 
after a certain delay time. As we will see below - especially for slightly reduced initial inversion p 
after a longer hold time - we can exert good control over the observed delay time by influencing the 
magnitude of fluctuations that trigger the superradiant avalanche effect. The delay time of around 
1 µs for the run in Fig. 6.14 is particularly short, as we start with a high initial inversion, and the 
superradiant decay is triggered by the noise photons of the high-power amplifier in the pump line. 
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tuning back can be adjusted by choosing the correct set voltage for the switch-on power 
supply, while the set current is always 1 A. 

At this point in the experimental chapter, we are finished with the preliminary 
discussions, which were carried mostly by considerations about the protocol to create 
a uniformly inverted spin state. We continue with the main results of this thesis, 
investigating some intriguing aspects of our superradiant system, where the discussion 
will be based on two of my first-authored publications in chronological order. 
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6.1 Triggered superradiance 

The discussion here is based on the following publication: 

• 'Iriggered Superradiance and Spin Inversion Storage in a Hybrid Quan-
tum System 
Wenzel Kersten, Nikolaus de Zordo, Oliver Diekmann, Tobias Reiter, Matthias 
Zens, Andrew N. Kanagin, Stefan Rotter, Jörg Schmiedmayer, and Andreas 
Angerer 
Phys. Rev. Lett., 131, 043601 (2023); arXiv:2301.04100 

In this work, we investigated the controlled triggering of superradiant emission from a 
metastable inverted spin state with uniform inversion p, following our inversion pulse 
and rapid-detuning protocol. The word "triggering" has a twofold meaning: ( i) The 
superradiant decay is triggered by bringing the inverted spins back into resonance 
using the detuning loop, as the system is fundamentally unstable above the inversion 
threshold pC > 1 on resonance. In this state, even the smallest fluctuation - in 
principle the presence of even a single microwave photon - will eventually set the 
collective superradiant avalanche process into motion. ( ii) The superradiant decay is 
triggered by a microwave trigger pulse, which provides the initial kick to the collective 
spin vector, initiating the superradiant decay from the metastable inverted state. When 
the intrinsic fluctuations - the thermal background noise and quantum fluctuations -
are well-controlled and small, the spontaneous formation time of the collective decay 
can be long. A coherent microwave pulse injected prior to self-decay will then influence 
the delay time and phase of the subsequent superradiant emission. Depending on the 
trigger pulse strength, the superradiant decay is shifted to earlier times, and its phase, 
as measured by the I/Q quadratures, is inherited from the trigger pulse. 

Before investigating the system's sensitivity to the number of trigger photons in 
the metastable state, let us examine the basis of our study - the superradiant decay 
from the uniformly inverted state - and compare it with our numerical simulations. 
In this first experiment, the decay is triggered by the high-power amplifier noise of 
the microwave pump line. Fig. 6.16(a) shows the cavity dynamics, with the y-axis 
in units of the square root of the estimated number of intra-cavity photons, using 
the calibration method outlined in Sec. 3.2.3. In this figure, we also give a visual 
definition of the delay time tD, the time of maximum cavity amplitude during the 
superradiant emission. The cavity linewidth during this cooldown was measured at 
K,/21r = 516 kHz, and the system's cooperativity is C 12. The simulation data is 
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Figure 6.16 Superradiant decay of the uniformly inverted spin-ensemble after a 
hold time of 3 ms, triggered by the high-power amplifier noise in the pump line. 
(a) Measured cavity dynamics, plotted as the absolute value of lal and as the field 
quadratures J = Re(a) and Q = Im(a). In this experiment, we plot lal in units of 
square root number of photons n 112 after calibrating our microwave setup. (b) A color 
plot of the simulated spin packet's dynamics for the transversal components Re(a~). (c) 
Dynamics of the spin ensemble averages: the inversion p = (Sz) /Sand the normalized 
transversal component of the collective spin vector, evaluated as S_ = Lj pj(a~) 
using the discrete distribution weights pj of the numerical model. ( d) Similar as in 
(b) but for the z-component (o-1). Notably, only spins within a narrow frequency 
window as determined by the cavity linewidth "" participate in the dynamics. After 
the superradiant decay, a spectral hole in the spin inversion profile is created. 
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created by time-evolving an initial state with uniform inversion p::::: 0.22 and a small 
initial tipping angle 0 = arctan(IS- 1/ Sz) 4.3 x 10-4 _ 

The number of photons that are generated by the superradiant decay, max(lal) 2 ::::: 

1.6 x 1012 , agrees well with the number of decaying spins /j,,Sz = /j,,pN/2::::: 1.5 x 1012 , 

see Fig. 6.16(c). We evaluate this number as the difference between the initial inversion 
p and the value at time t0 , using the estimated number of spins in the sample of 
N::::: 5.3 x 1012 , see Sec. 4.1.2.2 

An interesting observation from the dynamics in Fig. 6.16(d) is that the majority of 
spins, particularly the off-resonant spin packets, do not decay but remain inverted; only 
the spins close to the cavity resonance do. This creates a spectral hole of de-excited 
spins after the superradiant decay. lt becomes particularly evident that the total spin 
inversion p is still above the threshold (dashed pink line) in Fig. 6.16(c), implying that 
the inverted ensemble still carries enough energy to generate another superradiant 
decay. However, the non-uniformity of the inversion profile, with the resonant spin 
packets depleted, stabilizes the partially inverted state and prevents an immediate 
subsequent decay. This spectral hole formation is a crucial observation to keep in 
mind for the discussion of the second main experimental result presented in this thesis, 
focused on the paper "Self-Induced Superradiant Masing" described below. 

Quite naturally, the next step was to scan the hold time - the duration for storing 
the inverted ensemble using the detuning loop. Fig. 6.17(a) shows the result of this 
scan, where the superradiant decays are again triggered by the high-power amplifier 
noise. We use our semi-classical model to simulate the data, adjusting only the uniform 
initial inversion p and a time offset, using the same procedure mentioned above. A 
plot of the simulated values of p versus hold time will be presented below, along with 
another experiment demonstrating "superradiant amplification" of injected MW pulses, 
allowing us to estimate p even when p < 1/C, where the ensemble dephasing and other 
lasses overpowered the formation of a superradiant decay. 

For increasing hold times, the maximum cavity amplitude max(lal), which has the 
expected proportionality max(lal) ex: p (see Sec. 2.9), decreases roughly exponentially, 
as shown in Fig. 6.17(b). This indicates that the spin inversion is gradually lost during 
the hold time. While this result is to be expected, the timescale T = 7.6 ms comes 
as a surprise, being five orders of magnitude faster than the slow longitudinal spin 

2Notably, the values of our best estimates for some parameters (9coll, W, Tl, and N) have 
undergone slight changes within 20% as compared to the paper [35], and a keen reader might notice 
single-digit number changes compared to the original publication. This is of no further consequence to 
the main results, where the focus is mainly on a qualitative description. For the remaining discussion 
of the paper's results, I will stick to the original analysis. 
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Figure 6.17 Hold time scan of the spins in the inverted state. ( a) Multiple experimental 
runs (black) of the cavity amplitude dynamics are shown, where the y-offset corresponds 
to the different hold times in logarithmic scale. Gray curves represent semi-classical 
model simulations of the data. (b) Maximum cavity amplitudes of the superradiant 
decays plotted versus the hold time on a semi-log scale, exhibiting an exponential decay 
behavior. 

relaxation T1 > 100 s. For hold times above ~ 20 ms, the inversion has dropped below 
the threshold p = 1/C, and we no longer observe any superradiant emission. 

These results suggest two distinct timescales for spin inversion loss: a faster 
millisecond process, followed by the slower T1 relaxation to the ground state. Our 
proposed mechanism for the faster process is direct dipole-dipole coupling between 
neighboring spins. Flip-flop processes driven by these spin-spin couplings cause the 
exchange of excitations between neighboring spins. Among the trillions of NV spins in 
the diamond, a sizeable number have exceptionally short lifetimes due to their local 
crystal environment. These are described as "fluctuator NVs" in Ref. [87]. 3 Once an 
excitation is transferred to a fluctuator spin, it is quickly lost. Thus, the fluctuators 
act as local sinks for the spin polarization. The transfer of excitations into these sinks 

- a diffusive process - is driven by the spatial polarization gradient. Once an average 
inversion level p = 0 is reached throughout the sample, the gradient vanishes, and 
diffusion can no longer sustain the accelerated inversion loss. At this point, the slow 
T1 relaxation of individual spins takes over. The role of these spin-spin interactions -

3The fluctuator NVs owe their short lifetimes to fluctuations of their charge state from NV- to NV0 

and back, which does not preserve the spin state. These experiments, which consolidated the fluctuator 
model, were conducted at room temperature using optical initialization and readout ( crucially, of 
both the spin and charge state) in combination with MW pulses for spin state manipulation. In their 
paper, the authors report an extracted fluctuator density of approximately 16 ppm out of a very high 
density of 45 ppm NV spins in their sample. The charge state dynamics are postulated to arise from 
electron tunneling between NVs in close proximity to each other. 
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also acting as a driving force for superradiant dynamics - will be explored further 
when discussing the second publication. 

Leaving the "mystery" of spin-spin interactions and the fast relaxation dynamics 
behind us for now, we return to another aspect in Fig. 6.17(a). Looking at the stacked 
superradiant decay signals, we notice a trend of the delay time increasing with the hold 
time (or decreasing with the inversion), confirming the expected tD ex: p-1 dependence 
derived in Eq. (2.81). We restate the delay time equation: 

(6.4) 

where 0 = arctan(IS- 1/ Sz) is the initial tipping angle of the collective spin vector, and 
TR is the characteristic timescale of the superradiant emission, a fixed parameter tobe 
determined experimentally. 

The logarithmic dependence on the initial tipping angle 0 suggests a potential 
application as a microwave detector: Once the inverted spin state is tuned back into 
resonance, it has zero tipping angle, apart from the unavoidable intrinsic quantum and 
thermal fluctuations. A microwave signal injected before the spin ensemble eventually 
decays on its own will cause a rotation of the collective spin vector from its starting 
position. This will change the vector's azimuthal coordinate 0 contingent on the 
signal's amplitude, therefore influencing the delay time tD ex: - log(0). Additionally, 
the microwave signal's phase will influence the spin vector's polar coordinate <p = 
arg(S_), consequently determining the phase rp = arctan(Qv/ Iv) as measured by the 
quadratures of the cavity amplitude at time tD. In theory, this could result in a highly 
sensitive detection scheme, sensitive to both the amplitude and phase of microwave 
signals. 

To test this concept, we must first isolate the cavity, located at the 24 mK stage of the 
cryostat, from the noise of the pump line's high-power amplifier at room temperature. 
We implemented an isolation switch at the 1 K stage, which mechanically decouples 
cavity port 1 from the microwave pump line using a solenoid mechanism. Fig. 6.18 
compares the superradiant decay dynamics with this switch open and closed. We 
clearly see that, on average, the delay times with the open switch are roughly 500 ns 
earlier than for the closed switch, indicating that the noise isolation works as intended. 

We now proceed to evaluate the sensitivity of the inverted spin state experimentally. 
We fix a constant hold time of 2 ms, allowing sufficient time for the isolation switch 
operation and subsequent system equilibration, with an estimated remaining thermal 
photon population of n :::::: 3. At t = 150 ns after the detuning loop is switched 
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Figure 6.18 Repeated runs with a hold time of 5 ms, where the isolation switch is 
either open or closed. The red and blue horizontal error bars indicate the position of 
the mean delay time and its standard deviation. 

back (t = 0), we inject a lO0ns trigger pulse via the highly attenuated probe line 
( approximately - 70 dB attenuation). This pulse is resonant with the cavity and 
introduces a calibrated number of trigger photons. Our methods for estimating both 
thermal and trigger photon numbers are discussed in Sec. 3.2.3. 

The experiment is repeated many times, adjusting the trigger photon number ntrig 

by modifying the pulse power in 5 dB steps using digital attenuators, including runs 
without a trigger pulse (ntrig = 0). For each iteration, we determine the delay time 
t0 and the In/Qn quadrature values of the superradiant decay peak. As shown in 
Fig. 6.19, the superradiant decay amplitudes max(lal) = Jtb + Q'i> exhibit variations 
of ±10% between runs. These variations are likely caused by timing and amplitude 
imperfections of the inversion pulse generation, and variability of the mechanical 
connection opened and closed by the isolation switch. 

To focus only on the trigger photon number's impact on delay times, we com-
pensate for the systematic dependence of t 0 ex: max(lal)-1 by rescaling the t 0 data. 
Additionally, we apply an independent correction to the superradiant decay phases 
r.p = arctan(Qn/In) to account for a linear phase drift with t0 , which results from a 
slight constant detuning of the spins relative to the cavity. A visual representation of 
these correction methods is presented in Fig. 6.19(a,b). 

After applying these corrections, we plot the rescaled delay times and phases of all 
superradiant cavity pulses in Fig. 6.20. We see a clear trend: with higher numbers of 
trigger photons ntrig, the distributions of t0 shift towards earlier times and become 
narrower. Similarly, the r.p distributions change from initially random at low trigger 
photon counts to more well-defined and centered around zero for stronger trigger pulses. 
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Figure 6.19 Raw data from the detector experiment showing delay times, amplitude 
maxima, and phases. Different color <lots indicate the trigger photon numbers: brighter 
yellow for higher, darker red for lower, and blue for thermal and quantum noise 
triggering. (a) Delay time versus maximum superradiant decay amplitude, showing 
max(lal) = Ib + QJJ variations within ±10%. We compensate for systematic effects 
due to the amplitude variations. This involves removing outliers beyond the horizontal 
black lines and adjusting for the tD ex max(lal)-1 dependence by shifting x-coordinates 
to transform the fitted function x = ay- 1 + b (dashed line) to the vertical black line. 
(b) Superradiant emission phases cp = arctan(QD/JD) are independently corrected for 
a linear drift with tD by shifting y-coordinates from the dashed line to y = 0. 
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Figure 6.20 Rescaled delay times and phases, color-coded by trigger photon number 
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trigger photon numbers result in earlier tD distributions and narrower cp distributions. 
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superradiant decay. Prior to the trigger pulse, the vector is located near the origin of 
a plane with a z offset determined by the inversion p. The initial state distribution 
(blue) is a 2D Gaussian with width 0. The trigger pulse displaces this distribution by 
length TJ (in 0 units) towards </> = 0 (red). 

To understand this behavior intuitively, consider a mechanical analogy: a well-
balanced inverted pendulum. Left undisturbed, it would eventually topple, brought 
out of balance by a slight air current. The direction of its fall would be random, and 
the process would take langer. However, when deliberately pushed, the pendulum 
falls sooner and in the direction of the applied force. This mental image captures the 
essence of the data presented in Fig. 6.20, where intrinsic fluctuations play the role of 
air currents, and the trigger pulse acts as the deliberate push. 

Now, for a more quantitative analysis, we want to understand the distributions of 
the measured tD and cp data. The observed randomness is not part of our theoretical 
model, which only offers a fully deterministic description to calculate the evolution 
starting from a well-defined initial state. The easiest way to incorporate the effect of 
intrinsic thermal and quantum fluctuations is to introduce it via randomness in the 
initial conditions. To this end, we conceptually split the dynamics of the superradiant 
decay into two stages [10, 88]. 

The superradiant decay process begins with a linear phase, during which the total 
emission rate of the decaying spin ensemble scales linearly with the number of emitters, 
Y ex N (see Sec. 2.9). lnitially, the collective spin vector with a length given by the 
initial inversion p is oriented upwards along +z. Intrinsic fluctuations of the system 
induce a small tipping angle 0 = arctan(IS-1/Sz) 0 and a random polar angle 
q> = arg(S_). Given that cos(0) 1 throughout this linear phase, we model the spin 
vector's movement as confined to the offset plane z = p, see Fig. 6.21. The spin vector's 
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initial state, incorporating the random intrinsic fluctuations, is then simply described 
by a 2D Gaussian distribution of width 0 centered at the origin on this "map of the 
north pole" [27]. 

Now, the trigger pulse induces a coherent rotation of the collective spin vector 
about an axis determined by the phase of the trigger pulse, which is held constant 
across all experimental runs. This rotation corresponds to a displacement T/ within 
the plane,4 chosen tobe in the cp = 0 direction. The rotation angle - and therefore 
the displacement length T/, expressed in units of 0 - corresponds to the magnetic 
amplitude of the trigger pulse. This establishes the relationship T/ ex Btrig ex ~-

After the trigger pulse's displacement action, the "radial" coordinate in the offset 
plane, i.e. the tipping angle 0, follows the Rician distribution [89] 

- 0 ( 1 (02 2)) (0TJ) fe(0,TJ,0) = lJ2 exp - 2 lJ2 +TJ Io 0 , (6.5) 

with the modified Bessel function of the first kind 10 . For T/ » 1 this distribution Je 
becomes a Gaussian with mean value (0) = T/0 and variance Var(0) = e2. 

As T/ increases with higher trigger photon numbers, the initially random polar angles 
converge towards a narrower distribution around cp = 0. This is illustrated by the gray 
shaded angular spread of the coordinate cp for <lots sampled from the red Gaussian 
distribution, see Fig. 6.21. The angular distribution for cp is given by [90] 

(6.6) 

where rp is the standard normal distribution and <I> its cumulative distribution function. 
As T/ increases, the initially randomly distributed angle cp becomes more and more 
well-defined and approaches cp = 0. 

Following this linear stage, the system transitions into a nonlinear regime dominated 
by the superradiant avalanche dynamics. Collective stimulated emission will accelerate 
the spin vector's rotation towards the equator of the giant Bloch sphere, where the 
total emission rate reaches its maximum and scales as T ex N 2 . The emitted decay 
pulse's phase <p corresponds directly to cp at the onset of the nonlinear stage. 

4 Notably, we use here the same symbol T/ as for the cavity drive in the Maxwell-Bloch equations, 
particularly in the first line of Eq. (2.76a). This usage is in line with Refs. [27, 88]. The displacement 
T/ in the context of this section has units of a linearized angle in radians, in contrast to the cavity 
drive which is a rate with units of inverse seconds. 
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Figure 6.22 (a) Cosine of phase differences (cos(cpi - 'Pj)), averaged over all runs 
with identical ntrig, quantifying the phase randomness from the measured sets of cp. 
(b) Swarm plots of the delay time tD data. The solid lines in ( a) and (b) are o btained 
from our theoretical description, varying only the parameter rJ2 ex: ntrig· 

Less directly, the initial tipping angles 0 follow from the delay times tD using the 
relation Eq. (6.4) by applying a change of variables 

(6.7) 

where TR = TR/P- Using this relationship, we model the histograms of tD in Fig. 6.22(b ), 
by fixing TR = 142 ns and 0 = 5.85 x 10-4 and varying rJ2 linearly. To quantify the 
phase randomness, we average the cosine of mutual phase differences (cos(cpi - cpj)) 
over all runs with identical trigger photon numbers ntrig· Using the same rJ2 scaling as 
for the delay time data, we calculate the black line in Fig. 6.22(a) by evaluating the 
cosine average with Eq. (6.6). Since rJ2 is proportional to the energy imparted to the 
spin system during the linear stage, we can use it interchangeably with ntrig on the 
x-axes of Figs. 6.22(a,b), confirming the expected result ntrig ex: rJ2 . 

Notably, even a weak microwave pulse of approximately 10-11 photons per spin 
can significantly affect the superradiant decay. This high sensitivity demonstrates the 
potential of our system as a detector for weak microwave signals. We expect that 
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the system's sensitivity to both amplitude and phase could be further enhanced by 
reducing the number of spins while maintaining high cooperativity. However, a clear 
drawback of the current system is the requirement for statistics to differentiate pulse 
powers and phases. For any practical application, the averaging time needs to be 
reduced significantly from the current roughly 3 min per run. Potentially, this could be 
implemented using optical pumping of NV spins to create the inverted state, enabling 
dramatically increased experimental repetition rates. Furthermore, critical coupling 
of the cavity to the signal entry port is required to avoid parts of the signal being 
reflected and lost for detection. In the experiment presented here, we only refer to the 
number of intra-cavity trigger photons and disregard any prior signal losses. Lastly, the 
frequency range of detectable MW signals, currently limited by the cavity bandwidth of 
roughly 1 MHz around a resonance frequency of approximately 3 GHz, could be tuned 
in-situ using piezo-actuators to vary the chip distance and adjust the cavity's circuit 
capacitance, combined with Zeeman tuning the spin ensemble. These improvements 
could potentially open up new avenues for quantum sensing applications, making our 
system a candidate for detecting weak microwave signals with both amplitude and 
phase sensitivity. 

Having explored our system as a sensitive probe for weak microwave signals, we 
now shift our focus to the regime of reduced effective cooperativity pC < 1 below 
the superradiant threshold. In this regime, dissipation processes dominate over the 
spontaneous build-up of coherence in the spin system, preventing the generation of 
superradiant emission (see also Sec. 2.9). However, we demonstrate that by injecting a 
sequence of moderate-power MW pulses, we can externally seed coherence in the system. 
This process generates a form of "stimulated superradiant emission", observable as an 
effective amplification of the injected pulse sequence with the partially inverted spins 
acting as an effective gain medium. 

We probe the system by injecting a sequence of resonant MW pulses via the pump 
line at 5 µs intervals, each with a duration of 100 ns. As illustrated in Fig. 6.23, this 
results in an amplification of the pulses compared to the "empty" cavity response ( with 
far-detuned spins). Notably, tens of injected MW pulses can be amplified in succession, 
see Fig. 6.24. We find good agreement of the measured dynamics with our numerical 
simulations, using only two free parameters: the amplitude of the incident pulses (held 
constant for all fits) and the ensemble inversion p. 

Finally, we combine our results above and below the superradiance threshold 
pC = 1, demonstrating that our semi-classical model seamlessly captures the system's 
behavior in both regimes. In Fig. 6.25, we plot the inversion p extracted with our 
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Figure 6.24 Pulse amplification plotted as the difference of a measurement with 
partially inverted spins (pC < 1) and "empty" cavity b.lal = lal-laemptyl (c.f. Fig. 6.23). 
(a) Longer section of the dynamics for the run with a hold time of 40 ms in Fig. 6.23, 
with the measured data plotted in gray and the simulation result in black. Additionally, 
we plot the simulated inversion dynamics, where the value of p decreases as a step-like 
function with each pulse. (b) Similar measurement, but for a 10 dB higher pulse power 
than in (a). 
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Figure 6.25 Ensembleinversion as a function of hold time, extracted by simulations 
in the two regimes above and below pC = 1. Above this threshold, the pulse maxima 
(right y-axis) follow the values of p from simulations of the self-decays shown in Fig. 6.17. 
A stretched exponential with exponent 1/2 is fitted to the inversion. 

numerical simulations over the hold time. In the regime pC > 1 this confirms the 
relation max(lal) oc p. Furthermore, the p values derived from simulated pulse train 
amplification measurements provide insight into the time evolution of the ensemble 
inversion below the superradiance threshold pC < 1. We fit these data with a stretched 
exponential function, using an exponent of 1/2. Notably, this fit achieves good 
agreement without requiring an offset term, as p = 0 represents the natural endpoint 
of this rapid inversion loss process, in contrast to the slow T1 > 100 s decay. The 1/2 
exponent is characteristic of spin diffusion in three dimensions, as demonstrated in 
Ref. [87] and its accompanying Supplemental Material. This suggests that the fast 
inversion loss is indeed driven by spin diffusion, wherein fluctuators dissipate spin 
excitations from their local surroundings via direct spin-spin interactions until the 
spin ensemble reaches a completely mixed state (p = 0). At this point, spin diffusion 
becomes ineffective due to the vanishing spatial polarization gradient in the ensemble, 
and the slow T1 decay mechanism takes over. 

Summarizing the paper's results, we have established our experimental platform -
showcasing its ability to create an inverted spin ensemble and store the inversion for 
tens of milliseconds, before releasing it in the form of a strong superradiant burst. The 
observed superradiant dynamics are consistent with our numerical model, which assumes 
a uniformly inverted initial spin state. We observe a short lifetime of the inverted state, 
an effect we attribute to spin diffusion mediated by direct spin-spin coupling. Our 
platform exhibits remarkable sensitivity to weak microwave trigger pulses, influencing 
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the subsequent superradiant dynamics through amplitude and phase. Additionally, we 
explore a regime of reduced cooperativity without spontaneous superradiant emission, 
where the inverted spins effectively act as a gain medium for a series of short MW 
pulses. These observations showcase our ability to control superradiant emission and 
explore its fascinating collective behavior. Interestingly, as we will discuss in the next 
section based on my second paper using this platform, spin-spin interactions play a 
dual role. Beyond their dissipative effects, they actually drive a series of superradiant 
revival pulses, highlighting the complex nature of collective quantum phenomena in 
our system. 
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6.2 Self-induced superradiant masing 

The discussion here is based on the following publication: 

• Self-Induced Superradiant Masing 
Wenzel Kersten, Nikolaus de Zordo, Elena S. Redchenko, Nikolaos Lagos, Andrew 
N. Kanagin, Andreas Angerer, William J. Munro, Kae Nemoto, Igor E. Mazets, 
Jörg Schmiedmayer 
arXiv:2402.08537 

At the core of this work is an unexpected observation, shown in Fig. 6.27: After the 
initial superradiant decay, we observe a series of periodic revival pulses, which gradually 
diminish in amplitude, followed by a long period of sustained emission, decaying slowly 
and lasting more than 500 microseconds. Surprisingly, the pulsed emission sets in after 
a long break !:lt ranging from 15 µs up to 30 µs following the initial, well-understood, 
superradiant decay. 

This revival dynamics timescale !:lt is unexpected, as it is much longer than the 
characteristic timescales of the cavity loss rate, the ensemble dephasing, and the 
collective interaction of the coupled system, !:lt » { r,,, r, 9con}-1 . lt also significantly 
exceeds the individual spin linewidth !:lt » 1.:;:1 . This seems to exclude any Rabi 
oscillations or spin-echo behavior as a possible explanation for the revivals. These 
peculiar dynamics were already observed early on in our exploration of this experimental 
system, but a suitable explanation remained elusive. Only recently, we discovered a 
mechanism to describe our observations: As already pointed out in Fig. 6.16, only the 
resonant spin packets j, having a detuning ILltl smaller than the cavity linewidth r,,, 
participate in the dynamics and are de-excited after the initial superradiant decay, 
creating a spectral hole. The revival dynamics can be explained by the transport of 
spin excitations from off-resonant spins into this spectral hole, leading to a gradual 
homogenization of the spin inversion profile in frequency space. As we will discuss 
below, the underlying mechanism is governed by spin-spin interaction within the spin 
ensemble. 

In the following, we will develop our discussion in this order: First, we focus on 
the observed dynamics and their spectral properties. Next, we study the dynamics 
experimentally, employing a protocol that uses a second detuning sequence after 
the initial superradiant decay to effectively exclude any other sources for the revival 
pulses other than dynamics within the spin system itself. This will be followed 
by a phenomenological model that captures the observed dynamics using numerical 
simulations, underpinned by further experimental evidence. Finally, we lay our focus 
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Figure 6.26 Cavity dynamics of a single experimental run with 4ms hold time. (a) 
Plot of the initial superradiant decay, triggered by the high-power amplifier noise, 
together with a simulation using our standard semi-classical model with uniform initial 
inversion p0 ::::::: 0.22. (b) Details of the revival pulses and subsequent quasi-continuous 
superradiant emission. 

on the conjectured source for our observations, direct dipole-dipole interactions in the 
disordered spin system as a driving force for the spectral hole-refiling, generating the 
pulsed and subsequent sustained superradiant emission. 

The initial superradiant decay and novel subsequent dynamics are shown in Fig. 6.26, 
using our standard experimental protocol: We apply a microwave inversion pulse to 
uniformly invert all spins, starting from a relaxed spin ensemble in resonance with 
the cavity. After the inversion pulse, we store the spin inversion for a varying hold 
time using the detuning loop and subsequently release the superradiant emission. The 
initial superradiant decay is well captured by the standard semi-classical model using 
a numerical solution of the Maxwell-Bloch equations (2.64), starting from a uniformly 
inverted spin ensemble with a small initial tipping angle. 

Let us now focus on the first part of the novel dynamics, a sequence of periodic 
revival pulses. As we saw earlier, the initial superradiant peak amplitude max(lal), 
directly proportional to the initial spin inversion5 p0 , decreases for langer hold times. 
The superradiant avalanche formation starting from a state with lower initial inversion 
p0 takes a langer amount of time to reach its maximum, as quantified by the delay 
time, scaling inversely with the inversion as tn ex p01 . The revival timescale, on the 
other hand, decreases with the initial inversion t:J..t ex p0 , with the revival pulses shifted 
to earlier times for lower p0 , see the hold time scan shown in Fig. 6.27. 

We now discuss the time-resolved and spectral properties of the observed cavity 
dynamics for an exemplary single-shot experimental run. The data are recorded with 

5In this section the total ensemble inversion p = I\ Pk(c,!) will become a dynamical quantity, and 
we emphasize its value as an initial condition at t = 0 with the subscript zero as Po-
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Figure 6.27 Time evolution of the cavity emission using the standard experimental 
protocol: spin inversion pulse, detuning period for inversion storage (hold time), and 
release as superradiant emission. Following the initial superradiant decay, we observe a 
series of unexpected revival pulses, appearing at earlier times 6-t for langer hold times, 
i.e. decreasing initial inversion p0 . 

the same measurement settings as for the run in Fig. 6.26, using a hold time of 4 
milliseconds, corresponding to an initial inversion of approximately p0 :::::: 0.22. Only 
the digitizer sample rate is halved, extending the measured time window to capture the 
subsequent quasi-continuous regime lasting up to roughly one millisecond. The recorded 
quadratures J and Q of the cavity amplitude are demodulated at an intermediate 
frequency of 5 MHz detuned from the cavity resonance. This demodulation bypasses a 
DC noise peak, improving the signal quality. For visual clarity, the 1/Q signals shown 
in Fig. 6.28 and other plots below are digitally demodulated in the rotating frame of 
the cavity resonance frequency. 

The periodic pulses, which appear approximately 6-t :::::: 15 µs after the initial 
superradiant decay dynamics have subsided, manifest as approximately Gaussian 
envelopes of the absolute value of the cavity amplitude lal. To extract the pulsed 
emission's linewidth, we employ a fast Fourier transform (FFT) analysis of the recorded 
1/Q data. Gaussian lineshapes are then used to fit the pulses both in the time domain 
and in frequency space, using a limited time window centered around each pulse to 
calculate the FFT results. This fitting is shown for the time-resolved data in Fig. 6.28. 
The analysis results in pulse widths öt (FWHM) ranging from approximately 1.5 to 
3.8 microseconds, corresponding to bandwidths (<5w/21r) of about 120 to 400kHz. 

The ratio of I and Q - the phase cp = arctan( Q / I) of the signal - appears with a 
random but approximately constant value during each consecutive pulse, changing only 
slowly over time. The time-bandwidth product öt · öw /21r of these pulses ranges in value 
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Figure 6.28 Analysis of the pulsed emission regime, showing J and Q quadratures and 
spectral properties. Each pulse is fitted with a Gaussian profile in the time domain, 
yielding the width öt (FWHM). The integration window around each pulse, indicated 
by the vertical lines, is used for FFT analysis. The resulting frequency spectrum is 
also fitted with a Gaussian, yielding öw /21r (FWHM) values. 

between roughly 0.41 and 0.61, indicating that the pulses are approximately transform-
limited, with deviations likely driven by phase fluctuations and noise. This near-
transform-limited nature suggests a high degree of coherence in the pulses, consistent 
with collective emission processes as the source of the emission. For reference, the 
time-bandwidth product of an ideal Gaussian pulse is öt · öw /21r;:::::: 0.44 [91]. 

Next, we turn to the quasi-continuous regime starting at around t = 100 µs, shown 
in Fig. 6.29(a). To characterize the linewidth of this sustained emission signal, we 
extend the integration window to 200 µs and similarly employ FFT analysis, now using 
a Lorentzian profile to fit the spectrum, as plotted in Fig. 6.29(b). This fit function 
is an appropriate choice for a sustained signal with a slowly decaying amplitude. By 
varying the starting point tp of the integration window, we measure the drift of the 
central frequency of the masing emission over time within ±25kHz; see Fig. 6.29(c). 
The Lorentzian linewidth ranges from 5 kHz to 25 kHz and is significantly narrower 
than the cavity linewidth r., and the individual spin linewidth ')'..1_ by one to two 
orders of magnitude. This linewidth narrowing highlights the importance of collective 
enhancement - an indicative trait of superradiance - in achieving high coherence. We 
attribute the linewidth variation to the emission frequency drift within the integration 
window, likely caused by magnetic field fluctuations. Notably, this frequency drift 
behavior is reproducible across repeated experimental runs using the same parameters, 
suggesting that the loop-switching circuitry is the likely source for the oscillations. 
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Figure 6.29 Analysis of the quasi-continuous masing emission spectrum. (a) Extended 
view of the quasi-continuous masing emission, displaying the J and Q quadratures of 
the cavity amplitude lal. The signal is digitally demodulated in the cavity resonance 
frequency's rotating frame for visual clarity. The gray area indicates the interval 
for calculating the Fourier spectrum, which is plotted in (b), revealing an emission 
linewidth significantly narrower than the cavity linewidth (see inset). The frequency 
difference /:1w/21r is measured relative to the cavity frequency around 3.1 GHz. (c) 
Temporal evolution of the emission frequency and linewidth, obtained by shifting the 
Fourier analysis window in time. 
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Having examined the spectral characteristics of both the transient pulsed and 
quasi-continuous emission regimes, we now present a direct experimental test to shed 
light on the mechanism driving these novel dynamics. This test aims to determine 
whether the observed phenomena are driven by known cavity QED effects manifesting 
in an unusual form. Some potential explanations that come to mind include Rabi 
oscillations, spin-echo type behavior (see Sec. 2.5.2), or effects similar to collapse and 
revivals in the Jaynes-Cummings model [92]. 

Our experimental approach is straightforward: Following the initial superradiant 
decay, we rapidly detune the spin ensemble from the cavity resonance by our standard 
amount of c5 /21r 20 MHz using the detuning loop. During this second hold time, the 
superradiant interaction between the spins and the cavity mode is suppressed. Upon 
retuning the spins to resonance, we observe an increase in the peak cavity amplitude 
of the subsequent emission pulse, with the magnitude of this increase growing with 
the duration of the second hold time [see Fig. 6.30(a)]. The sharp initial amplitude 
increase exhibits a characteristic timescale of T = 13. 7 µs followed by a long plateau, 
as shown in Fig. 6.30(b). 

A common feature of the aforementioned cavity QED effects is that they typically 
involve a specific timescale associated with the dynamics, where the revival time is 
a characteristic of the coupled cavity-spin system. By decoupling the spins from the 
cavity during the second hold time, we can delay the appearance of the revival pulses. 
This observation leads to two key insights: ( i) The emission is generated by a collective 
interaction between the resonant spin ensemble and the cavity, and ( ii) the phenomenon 
does not appear to be governed by an internal clock cycle, as it can be effectively 
"paused and restarted" by detuning and retuning the ensemble. 

These findings suggest that the cavity does not play a central role in the mechanism 
driving the pulsed revivals. More so, the revivals even grow after the spins have 
been off-resonant with the cavity. Over time, this mechanism leads to an increase in 
spin inversion, which is subsequently converted into cavity photons upon release of 
the superradiant decay. With an increased spin inversion after an extended second 
hold time, the first superradiant emission even returns to exhibiting damped Rabi 
oscillations instead of one overdamped approximately Gaussian pulse. The long-term 
amplitude decrease, shown in the inset of Fig. 6.30(b) is a dissipative effect arising 
from a diffusive spin transport into fluctuator NVs (NVs having exceptionally short 
lifetimes), and has already been discussed in Sec. 6.1. 

We are now in a position to put the puzzle pieces together: ( i) The second-hold-time 
experiment indicates an increase in spin inversion p over time. ( ii) Our numerical 
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Figure 6.30 lnfluence of a second hold time on revival pulse dynamics. (a) Stacked 
cavity signals of superradiant dynamics with a second stabilization sequence (2nd 

hold time), indicated by light green shading. Longer second hold times lead to an 
increased amplitude of the superradiant masing pulse revival. (b) Revival amplitude 
as a function of second hold time duration, displaying a sharp initial increase followed 
by an exponential decrease over extended timescales ( see inset). 
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simulations, particularly the results presented in Fig. 6.16( d) of the previous section, 
demonstrate that the initial superradiant decay creates a spectral hole, reducing the 
ensemble below the threshold pC = 1 required for spontaneous superradiance ( as 
derived in Sec.2.9 for the generalized case of non-uniform inversion). 

Based on these observations, we propose a simple conceptual model: Over time, 
the spectral hole is gradually refilled, pushing the ensemble back above the superra-
diance threshold. At this point, the spin state becomes unstable, triggering another 
superradiant decay. Importantly, as we are not externally driving the spin inversion, 
the refilling mechanism must originate from internal dynamics within the spin system 
itself. This leaves direct spin-spin interactions as the primary candidate for driving 
this mechanism. 

Without delving into the precise nature of these interactions, we introduce a 
phenomenological model to capture this behavior. We augment the semi-classical 
Maxwell-Bloch equations (2.64) with a new term that facilitates the gradual filling of 
the spectral hole. This additional term allows each spin packet j to slowly approach the 
time-dependent mean ensemble inversion p = Lk Pk(a!) with a characteristic relaxation 
rate J. Mathematically, this is expressed as: 

(6.8) 

where ( ... ) represents the standard coherent (relaxation-free) components of the 
coupled system dynamics. This new term plays the role of an effective pumping of 
the central spin packets, at the cost of reducing the inversion at the lobes of the spin 
distribution over time. 

To effectively capture the observed dynamics - including the initial superradiant 
decay and the full subsequent dynamics - our model incorporates a free time offset 
parameter,6 the hole-filling rate J, and a small constant cavity drive 'T/· This drive 'T/, 
contributing to the right-hand side of ( a), represents the effects of cavity noise and 
intrinsic fluctuations that continuously trigger the recurring superradiant emission 
pulses. These fluctuations, arising from quantum, thermal, and technical noise, would 
typically require a higher-order cumulant expansion for a comprehensive description [93]. 

6This time offset is needed, because the constant cavity drive 'T/, used to match the timing of 
simulated revivals with the measurement (in combination with the hole filling rate J, see discussion), 
also affects the initial superradiant decay, shifting it to earlier times. The time offset in the simulation 
of Fig. 6.31 is t-tsim = -1.27µs. This makes the simulation start after t = 0, where the loop-switching 
is triggered. As the loop retuning is not instantaneous [see Fig. 6.14(a)], this is still not unphysical. 
In the simulation, cavity and spins are always assumed tobe on resonance (8 = 0). 



6.2 Self-induced superradiant masing 

a 

C 
0 

:::, 
.0 

-~ 0.2 
Q) 
> -~ 

'B.. 0.1 
Cl) 

"'Cl 
2 0 ..c 
Ol 
'cii 
S -0.1 

Cavity 
FWHM 

I=====--__,/ 

- t = 0 µs - t = 7 µs -·t = 17 µs 
~--~--~---~--~ 

-10 -5 0 5 10 
Spin detuning !::,,i21r (MHz) 

b 6 r-+---+----------------------------~ 

4 

? 2 

t,: 0 
N 
--,,, -2 
<l 

-4 

0.2 

1/C 

0 

-0.1 

-6 "---+---+-- -~----~----~----~----~----~ 

c 0.4 c-+-~-+----------------------------~ 

~0.3 
:::, 

..c:i 
0.2 

0.1 

0 
0 20 40 60 

Time (µs) 
80 

- sim 

100 120 

145 

> C: 

C: ·o.. 
Cl) 

"'Cl 
2 .r: 
Ol 
'iii :s: 

0 

Figure 6.31 Numerical simulation of superradiant dynamics using the effective re-
laxation rate model. (a) Spin distribution at key stages: uniform starting inversion 
(green), deep spectral hole after the initial superradiant decay (red), and partially 
refilled hole before the first revival pulse (yellow). The y-axis represents a weighted 
spin inversion Pj\CYl), renormalized to reflect (eyi) of the central frequency packet. 
For comparison, the cavity resonance (black) and single spin packet cooperativities 
Cj (pink) are overlaid. (b) Color plot of simulated spin inversion dynamics across 
different detunings. Vertical lines correspond to the three time points highlighted 
in (a). (c) Comparison of measured and simulated cavity amplitude lal using the 
spectral hole-filling model, alongside the temporal evolution of the weighted instability 
threshold pC. 
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For simplicity, we employ a first-order semi-classical approach, using rJ to effectively 
model these stochastic processes. 

Fig. 6.31(b) illustrates the simulated filling of the spectral hole over time, demonstrat-
ing the transfer of inversion from the edges toward the center of the spin distribution. 
The resulting simulated cavity amplitude, shown in Fig. 6.31(c), qualitatively repro-
duces the measured dynamics. Notably, the hole-filling rate used in this simulation, 
J /21r = 15.6 kHz, aligns well with the measured timescale Th ~ J- 1 presented in 
Fig. 6.30. This timescale is also in reasonable agreement with the lifetime T :=:;j 27 µs of 
engineered dark states in Ref. [22]. In this study, a similar NV diamond with comparable 
spin density and inhomogeneous broadening was used. The engineered dark states are 
generated by burning two spectral holes on both sides of the spin distribution at a 
distance 2gcoll and decay as the holes refill over time. 

Our simulation employs a constant cavity drive of rJ/21r = 5.6 kHz. While J and rJ 
appear similar in magnitude, potentially contradicting the earlier characterization of rJ 
as small, a more appropriate comparison considers these effective pump rates relative 
to their associated dissipation rates. The ratio J / ,11 ranges from 103 to 107 ( depending 
on whether we consider the lang T1 > 100 s process or the T ~ 10 ms "fast" inversion 
decay for ,11). 7 In contrast, the ratio of cavity drive to dissipation is considerably 
smaller, with TJ / 1,, ~ 10-2 . 

The dynamical quantity pC - the superradiance threshold - is key for understand-
ing how the system changes from self-pulsing behavior to quasi-continuous emission. 
The pulsed revivals are generated from the interplay between gradual spectral hole-
filling (an effective pump) and the threshold condition pC > 1, as shown in Fig. 6.31(c). 
Revival pulses start as soon as the threshold is exceeded, making the inverted spin state 
unstable and susceptible to triggering by cavity noise photons. Each pulse reduces the 
overall spin inversion p while consecutive spectral holes become shallower and need less 
time to refill. However, successive pulses exhibit increasing delay times to reach peak 
amplitude as the self-accelerating superradiant avalanche process slows down with a 
lower effective number of participating spins. This delay time goes inversely with p, 
see Eq. (2.80). 

Initially, pC clearly oscillates above and below 1, generating separated superradiant 
pulses. As pulses begin to merge, these oscillations get smaller. The system then 
reaches a quasi-steady state where energy lost through the cavity is balanced by steady 
inflow from the edges of the spin distribution, maintaining a threshold of just under 

71n the simulation, we set 1'11 = 0 and only account for spin inversion loss via cavity emission, 
which occurs on a much faster 10 - 100 microsecond timescale. 
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Figure 6.32 Simulation of self-induced superradiance using the effective relaxation 
rate model with time-dependent detuning b(t). (a) Asymmetrie spectral hole (red) in 
the off-resonant spin ensemble after initial superradiant decay. (b) Ensemble inversion 
dynamics over time, with fitted damped sine wave detuning function. ( c) Cavity 
dynamics and superradiance threshold pC, showing improved accuracy of the initial 
revival peak fit around t = 20µs. Compare with constant detuning (5 = 0) in Fig. 6.31. 

1. This process continues until significant inversion loss prevents any further masing 
emission. 

lt is worth noting that the sequence of periodic pulses observed in our system is 
similar to recent findings in Ref. [94], where a superradiant system was externally 
driven via optical pumping. The interpretation of the pulsed emission in both systems 
is essentially the same. The system is driven above the threshold pC = l relatively 
quickly, but the subsequent superradiant decay occurs after a langer delay time. Once 
it does occur, it pushes the system significantly below the threshold, and the cycle 
starts again. However, a key distinction lies in the pumping mechanism: in an optically 
pumped system, the pump rate remains constant, whereas in our system the effective 
pumping diminishes over time as the spin inversion becomes more uniform, approaching 
a threshold of p = l/C everywhere. Consequently, our system exhibits not only the 
initial self-pulsing behavior but also a quasi-continuous regime at later times, before 
the emission eventually comes to a halt. 

Our simple phenomenological model can be further refined to improve the fit of 
the self-induced superradiant dynamics. Glose examination of Fig. 6.31(c) reveals 
that the measured first revival pulse is significantly higher than our simple fit model 
predicts. To account for this discrepancy, we introduce a slight complication to the 
model: a time-dependent detuning function 5 ( t) between the cavity and spins, as shown 
in Fig. 6.32. This detuning function, illustrated in Fig. 6.32(b), takes the form of a 
damped sine wave b(t) = sin(wt + r_p) • exp(-t/T) + c. This form is physically plausible, 
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Figure 6.33 Recreation of the phase dynamics of the measured superradiant cavity 
amplitude (ameas = I +iQ) from the simulated signal asim of Fig. 6.32. Simulated curves 
include an additional time-dependent phase factor e-i(wt;.t+</J) with small additional 
detuning Wt:,./21r 26kHz. Different constant phase offsets cp are used for (a) initial 
superradiant decay and (b) subsequent dynamics, reflecting the stochastic nature of 
the noise triggering. 

as the magnetic field generated by the detuning loop after rapidly switching the current 
back on is likely to oscillate to some extent. 

U sing this enhanced model, we can even recreate the phase dynamics of the mea-
sured cavity amplitude, i.e., the time evolution of the I/Q quadratures (see Fig. 6.33). 
To achieve the best fit, which closely matches the initial superradiant decay and pro-
vides good qualitative agreement with subsequent dynamics, we multiply the simulated 
( complex) cavity amplitude by a time-dependent phase factor asim • e-i(wt,.t+</J). This 
introduces a small additional detuning wt:,./21r 26kHz, which was not resolved by 
the original fit method that only used the absolute cavity signal. In addition to the 
Wt:,. parameter, we apply independent constant phase shifts for the initial superradiant 
decay [Fig. 6.33(a)] and the later part [Fig. 6.33(b)]. These independent phase shifts 
confirm the stochastic nature of the superradiant emission triggering due to noise. 
Notably, the phase fit shows the greatest disagreement with the measurement during 
the first revival pulse, which could be interpreted as a separately triggered event, 
potentially requiring another independent phase offset. 

Our spectral hole-filling model is further validated by experiments investigating 
the deliberate creation of spectral holes in the spin ensemble and their impact on 
subsequent superradiant dynamics. In Fig. 6.34(a), we apply a strong microwave pulse 
with a duration of 8 µs to the spins while they are detuned from the cavity. Similar to 
the initial superradiant decay, this pulse generates a slice of decreased spin inversion 



6.2 Self-induced superradiant masing 

a 
Off-re80llllnl 

pulse 

::i 
-e No 

pulse 

HIIIH>umlng 
0.5 pulse 

0 
-10 -5 0 5 10 

Time (µs) 
15 20 

b 1 

0.8 

ro 
~0.6 
"' E 

0.4 

149 

----•--------------

5 10 15 20 25 30 35 
Pulse detuning (MHz) 

Figure 6.34 Hole-burning pulse and subsequent superradiant dynamics. (a) Cavity 
dynamics when applying a strong microwave pulse (red shading) while the inverted 
spins are initially detuned (green shading), followed by superradiant decay and revival 
pulses. A resonant hole-burning pulse recreates a spectral hole similar to that generated 
by the initial superradiant decay without a pulse. Off-resonant pulses trigger an earlier 
superradiant decay but maintain similar subsequent dynamics. (b) Maximum amplitude 
of superradiant emission after hole-burning pulses at different frequencies, revealing 
the (power broadened) spin frequency distribution. 

within the ensemble. Crucially, this pulse-generated spectral hole is centered at the 
pulse frequency, which is varied over multiple runs. 

When a hole is burned at the center of the spin ensemble, the subsequent first 
emission pulse resembles the usual revival pulse following the initial superradiant decay 
without a hole-burning pulse. An off-resonant hole-burning pulse applied to the sides 
of the spin distribution does not significantly alter the dynamics compared to not 
using a hole-burning pulse. The only difference is that the delay time of the initial 
superradiant decay is slightly shortened, as the off-resonant pulse still generates an 
increased initial tipping angle (see Sec. 6.1). 

The maximum amplitude of the superradiant decay pulse varies with different 
hole-burning frequencies, effectively mapping out the frequency distribution of the 
detuned spins, see Fig. 6.34(b). This distribution appears broader than the measured 
q-Gaussian linewidth of W /21r = 9.2 MHz [see Fig. 6.4], which we attribute to power 
broadening effects. The strong microwave pulse used for hole-burning is suffi.ciently 
intense to also affect off-resonant spin packets, exciting spins that are slightly detuned 
from the pulse frequency. This power broadening leads to a wider apparent distribution 
of the spin ensemble. 

To further elucidate the spectral hole-filling process, we examine the relationship 
between the filling time and the effective area of the spectral hole. Fig. 6.35 presents 
data from multiple cooldowns with different cavity linewidths ""· These variations in 
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linewidth likely stem from the gradual evaporation of the grease used to secure the 
diamond sample, resulting in a progressively cleaner surface over several cooldown 
cycles (see discussion in Sec. 5.2.3). 

The effective area of the spectral hole generated by the initial superradiant decay 
is characterized by its depth and width. The depth correlates with the initial inversion 
p0, as the spins involved in the superradiant decay effectively undergo a 'lf-rotation. Its 
width is determined by r,,, since only spins within the cavity linewidth interact with the 
mode. We extract p0 by using our numerical model to fit the initial superradiant decay 
signals, adjusting r,, (per cooldown) while keeping other model parameters constant. By 
comparing the time difference 6.t between the maxima of the initial superradiant decay 
and the first revival pulse with the effective area of the spectral hole, p0r,,, we uncover 
a consistent linear trend across different cooldowns. This time difference 6.t serves as 
a measure of the duration required to fill up the spectral hole with effective area p0r,,, 
bringing the ensemble above the threshold for pC to allow for the first superradiant 
revival pulse. 

Upon taking a closer look, our observation of 6.t ex: p0 r,,, validated for linewidths r,, in 
a range from roughly 400 to 700 kilohertz, reveals a more nuanced picture. The spectral 
hole refilling threshold to enable a superradiant revival pulse, approximately given by 
p = 1/C, changes for different values of r,, as the cooperativity C ex: r,,- 1 is inversely 
proportional to the cavity linewidth. This relationship suggests that higher r,, values 
should lead to langer hole-refilling times. However, this effect is counterbalanced by a 
decreased depth of the spectral hole, as the initial superradiant decay is increasingly 
damped with r,, and, therefore, hindered from extracting more excitations from the 
spin system. Consequently, the spectral hole formed is shallower, partially offsetting 
the increased superradiance threshold. 

In Fig. 6.36, we reproduce the experiment of Fig. 6.35 using numerical simulations 
with our phenomenological model (simple version with ö = 0). We fix the hole filling 
rate J and the trigger amplitude T/ (values taken from the fit in Fig. 6.31), varying 
the cavity linewidth r,, and the initial inversion p0 . Notably, the numerically simulated 
results of 6.t over p0 r,, align less well with a linear trend than the experimental data. 

This discrepancy is not entirely unexpected, as the fit results of our phenomenological 
model (Fig. 6.38) reveal a more complex relationship between the parameters p0, J, 
and T/· Fig. 6.37 illustrates the model parameters resulting in the best fits of multiple 
experimental runs with fixed r,, (same cooldown) and different initial inversions p0 (as 
controlled by different hold times). The fitted runs are shown in Fig. 6.38. 
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Figure 6.35 Influence of effective spectral hole area on refilling time across multiple 
cooldowns. (a) Data from cooldowns with different cavity linewidths "', showing the 
relationship between revival dynamics timescale and spectral hole area. The time 
difference ßt between initial decay and first revival pulse maxima is plotted against 
effective hole area Po"', revealing a consistent linear trend. Initial inversion p0 (varied via 
hold time) is extracted from the superradiant decay using our simple numerical model. 
(b) Three experimental runs with different initial inversions p0 and corresponding 
simulation curves for t.,/21r = 418 kHz, illustrating the hole refilling time ßt (gray 
shading). Measured cavity amplitude (black) is plotted alongside simulation curves 
(blue) using our simple phenomenological model. 
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Figure 6.37 Phenomenological model parameters obtained from fitting the measured 
self-induced superradiant dynamics in a hold time scan with cavity linewidth r;,/21r = 
418kHz. The model employs three parameters: initial inversion p0 , hole-filling rate 
J, and constant trigger amplitude 'T/· The fitted runs are shown in Fig. 6.38. The 
parameters p0 versus J are well described by a linear fit of Jas a function of inverse 
x = p0 - 1 / C, offset by the su perradiant threshold p = 1 / C. 
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Figure 6.38 Self-induced superradiant dynamics: measured and simulated runs in 
a hold time scan with cavity linewidth 11,/21r = 418 kHz. The model parameters (Po, 
J, and TJ), are plotted in Fig. 6.37. Here, we are using the simple phenomenological 
model (c5 = 0). 
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A clear trend of J ex (Po - l/C)-1 emerges from this analysis. Although the 
inclusion of an offset given by the superradiance threshold (inspired by the analysis 
accompanying Fig. 2.12) is not immediately obvious and might be coincidental, it leads 
to an excellent agreement with a linear fit of Jas a function of inverse (Po - l/C)-1 , 

rather than requiring a quadratic fit without the offset. This also explains why the 
experimental linear trend t:J..t ex p0 ;., in the effective-hole-area measurement (Fig. 6.35) 
deviates from the simulated scan with fixed J (less linear, see Fig. 6.36): The hole 
filling rate J is indeed inversion-dependent, increasing inversely proportional to p0 . 

On the other hand, the continuous cavity drive TJ for the recurrent triggering of the 
superradiant emission follows no clear trend, possibly reflecting the stochastic nature 
of the noise triggering that is only effectively modeled by the parameter TJ. 

Having explored these experimental and model-based insights, we now turn our 
attention to the underlying mechanism for the spectral hole-filling: direct dipole-dipole 
interactions within the disordered spin ensemble. This conclusion is supported by 
compelling experimental evidence, including the second-hold-time and hole-burning 
experiments, which demonstrate the spin system's role in hole-refilling and exclude 
other potential sources. 

Our findings strongly suggest that the hole-refilling process is primarily driven by 
direct spin-spin interactions among NV centers. While Pl centers are present at higher 
densities in our sample, their significant detuning (the Pl center's transition frequency 
at our operating field of Bext :=:::; 10 mT is around reBext = 280 MHz, which is more than 
2 GHz detuned from the 3.1 GHz NV resonance) effectively excludes their participation 
in this process. Furthermore, we can confidently exclude phonon-mediated processes 
as the primary mechanism, supported by Ref. [37] showing extremely long T1 times 
even in samples with significant crystal damage (as in our neutron-irradiated sample). 

In the next section, we will derive a model for effective hole-filling based on estimated 
NV density and spin-spin interactions, exploring the extent to which such a model is 
able to offer an explanation and also its limitations, including the possible need for a 
full many-body description beyond simple pair processes. 
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6.2.1 Spin-spin interactions 

To find a suitable description for the spectral hole-filling process, we must consider the 
different hierarchies of timescales within our system: 

1. Superradiant decay: The fastest process, characterized by time TR l µs (see 
Sec. 6.1). This is approximately the time required to create a spectral hole during 
the initial superradiant decay. 

2. Spectral hole-filling: Occurring over Th R;j 10 µs to 100 µs. During this time, spins 
from different frequency packets i equalize their inversion (a!), approaching the 
mean ensemble inversion p = Li Pi ( a!). 

3. Spin-lattice relaxation: The slowest process, with timescale ,t- Individualspins 
lose energy and return to the ground state. Our results (Fig. 6.25, Sec. 6.1) 
indicate an initial fast decay to p = 0 over a time T R;j 10 ms, followed by a slower 
T1 > 100 s decay. Both these timescales can be neglected for the superradiant 
dynamics driven by spectral-hole filling. 

These distinct timescales allow us to simplify our analysis. After the spectral hole 
has been created, the system falls below the superradiance threshold pC = l, and the 
spin-cavity dynamics can be ignored. Consequently, we can focus solely on processes 
within the spin system when modeling the spectral-hole filling process. This approach 
is supported by our second-hold-time measurements (Fig. 6.30), which show spectral 
hole refilling even when cavity-spin interaction is suppressed by a large detuning ö. 

The magnetic dipole-dipole interaction Hamiltonian between two nearest-neighbor 
spins at distance r is given by 

11,dipole = - rl ~0:!3n [ 3 ( 81 · f) ( 82 · f) - 81 · 82] , ..__, 
J(r) 

(6.9) 

where f is the unit vector connecting the spins, 8j = (at ai, a1f represents the Pauli 
matrices for spin j, and 1e/21r R;j 28 MHz mT-1 is the electron gyromagnetic ratio. 
We treat NV centers as effective two-level systems (spin-1/2), justified by the large 
frequency difference ( > 21r x 400 MHz) between the relevant ms = 0 +--------+ ms = + l 
transition and the inactive ms = 0 +--------+ ms = -1 transition in our experiment. We 
also introduce the interaction rate ln = J(rtyp) between nearest-neighbor spins at a 
typical distance Ttyp = n-;;.;13 R;j 10 nm, evaluated using the density nnv of NV centers 
in our sample of approximately 1.05 x 10-3 nm-3 (corresponding to the estimated 
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Figure 6.39 (a) Schematic illustration of a central NV spin in the diamond crystal 
lattice, interacting with surrounding NVs. The evaluation of the effective hole-filling 
rate J depends on the spin distribution (b) and the r-3 scaling of the spin-spin 
coupling (c), with the full model based on four parameters: the distribution width W, 
the individual spin linewidth 1 ..1_, the spin density nnv = r;;! and a minimum cut-off 
distance Tmin, taken as the diamond lattice constant. 

concentration of 6 ppm in the diamond lattice, see Sec. 4.1.2). The resulting value for 
the typical nearest-neighbor coupling rate is ln/21r ;::::::: 52 kHz. 

To derive the effective hole-filling term used in Eq. (6.8), we simplify the dipole-
dipole Hamiltonian by removing all directional dependencies arising from different 
orientations of spins. On average the terms involving products of spin operators are on 
the order of magnitude one. We then construct a simplified Hamiltonian that includes 
the on-site energies wg (sampled from the inhomogeneously broadened spin distribution) 
and a flip-flop interaction between spins, taking into account the r-3 scaling of the 
coupling rate between two spins j and k [95], see Fig. 6.39 for a conceptual illustration. 
Having only flip-flop processes ensures that the number of spin excitations is always 
conserved by the Hamiltonian 

(6.10) 

where we used Jjk = ln/nnvrJk· We employ a master equation approach and include 
Lindblad operators for the spin dephasing with rate 1 ..1_ and the spin-lattice relaxation 
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with a very slow rate ,11 ( c.f. Sec. 2.6): 

1..l • • 
J:,(p) = 2 ~(r7~pr7~ - p) 

J 

+ ~I ~(2~pr7t - r7~r7tp - Pr7t~) · 
J 

(6.11) 

From this, we derive the equations of motion up to second order for the relevant 
quantities 

(6.12a) 

(6.12b) 

Given that the timescale 1_i 1 ,::::: 1 µs is the fastest process in the spin system, we assume 
that the variable (~r7!) reaches quasi-equilibrium rapidly [96]. This leads to the 
adiabatic condition 

d . k 
_1(71(7 )~o dt \ - + (6.13) 

for the left-hand side of Eq. (6.12b). The third-order cumulants in the second line 
of Eq. (6.12b) are notoriously difficult to deal with and cannot be straightforwardly 
evaluated [93, 97]. One possible approach would be to split them into a product of 
first and second-order contributions, e.g. (r71'7!r7~) (r71) (r7!r7~) (splitting in this 
way leaves fJ_ and '7+ on the same footing). Substituting this approximation into 
Eq. (6.12b) and applying the adiabatic condition to solve for (~r7!), it becomes 
evident that these third-order terms contribute only at higher orders of Jjk and will 
thus be neglected for simplicity. We rearrange, using ,11 0, 

(6.14) 

Substituting this back into Eq. (6.12a), we get 

(6.15) 
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This equation closely resembles the effective term in our phenomenological model, 
describing a relaxation of spin j towards the mean ensemble inversion p with rate J 
[Eq. (6.8) above]: 

d • ( • ) dt \ a~) = ( ... ) + J p - \ a~) . 

To evaluate J from Eq. (6.15), we must average over the contributions of all spin pairs 
j and k. Our approach is to replace the discrete sum with an integral formulation 
over spatial coordinates and frequencies. Importantly, we require the final result to 
be independent of frequency wg and the specific shape of the inversion-over-frequency 
profile. This requirement marks the simplest possible description - consistent with 
our phenomenological model. In pursuing this approach, our underlying assumption is 
that the number of up spins inside and outside the spectral hole is roughly the same -
effectively assuming a shallow spectral hole. This assumption is reasonably justified, 
as the spin inversion inside and outside the spectral hole of width 2"' are typically 
p(l~sl < "') ~ -0.1 and p(l~sl > "') ~ 0.2, corresponding to spin-up percentages of 
about 45% and 60%, respectively. 

Rewriting the sums over spin frequencies w1,2 as integrals is straightforward, using 
the spin distribution p( w) as a kernel, 

(6.16) 

The sum over positions r is intentionally kept discrete. Converting this sum to an 
integral has tobe done carefully: We must account for the reduced probability of finding 
a spin that is both spatially close (small r) and simultaneously close in frequency (small 
detuning = w1 - w2 ). This is achieved using Poissonian statistics - describing the 
distributions of independent rare events. Details of this calculation, based on Ref. [98], 
are provided in Appendix A. lt involves solving complex integrals and approximating 
the q-Gaussian distribution with a standard Gaussian of equivalent width W (FWHM) 
to achieve an analytic solution. 

The final estimation, true within logarithmic accuracy, is obtained as 

j = 32n J~t J_ ln ( 2 1 - ) ln (2--) . 
9aw vminr _1_ r _1_ 

(6.17) 

Here, we have introduced the spin distribution's standard deviation aw = W/ ln 2), 
the small parameter I' _1_ = ry_1_/aw « 1, and the average number of spins Vmin = 



6.2 Self-induced superradiant masing 159 

!1rnnvr!in < 1 in a sphere with a radius corresponding to the minimum possible 
NV-NV distance Tmin = a, taken as the diamond lattice constant a = 0.3567nm. 

Using the estimated parameters of our system - W/21r = 9.2MHz, 1J_/21r 
177kHz from the phenomenological model, and the spin-spin interaction Jn/21r 
52 kHz of NVs at the typical distance Ttyp ;:::; 10 nm - we find that j /21r ;:::; 6.85 kHz. 
This estimate corresponds to a hole-filling timescale of Th = j-1 ;:::; 23 µs. This value is 
in good agreement with the observed revival times ßt, which range from approximately 
10 µs for shallow spectral holes (generated from an initial superradiant decay with low 
inversion) to about 40 µs for deep spectral holes (generated from high inversion), as 
shown in Fig. 6.35(a). 

Notably, a similar central spin model is discussed in Ref. [99], where critical 
(slower than exponential) relaxation with a power-law decay is observed in the limit of 
,J_ 0. Without decoherence, spin transport is suppressed by disorder in Hamiltonian 
( closed) systems, an effect known as Anderson localization [95]. This has an important 
implication for our simple model: lt relies on the spin decoherence rate 1J_/21r = 177 kHz, 
where the linewidth of the NV transition is broadened through the interaction with a 
bath, indicating that we are considering an open system. Only when the individual 
spin linewidths are sufficiently broad in this model can the spins inside and outside 
the spectral hole achieve enough "resonant" overlap to enable inversion exchange. 

Our spin coherence time T2 = 1/,J_ ;:::; 1 µs is markedly decreased from the record 
value of T2 ;:::; 1 s achieved with a less dense high-purity NV diamond [36]. lt is clear 
that in our system, at least concerning the superradiant interactions, this value is 
effective in the way it models the spin coherence of spin frequency packets. In our 
diamond sample, there are many sources for the decreased spin coherence, including 
interactions with substitutional nitrogen spins (Pl centers), 13C nuclear spins in the 
diamond, and high amounts of lattice damage, see Sec. 4.1.2. Crucially, the most 
important factor is the dipolar interactions within the NV spin ensemble itself. 

Here, it may be important to emphasize the distinction between the mechanisms 
underlying spin decoherence in our theoretical models. We use the same value 1 J_ to 
describe both the spin-spin interactions of individual spins ( although averaged in our 
model) and the spin linewidth relevant for the superradiance dynamics. This assumption 
leads to a decent agreement for the hole-filling timescale with the experiment, and it 
is hardly possible to measure T2 of individual spins in our system. Nonetheless, this 
assumption is likely an oversimplification, as the spin-spin interactions and cavity-
spin(-packet) coupling are different phenomena with different timescales. 
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Let us now discuss the result for the effective hole-filling rate j in our simple model, 
and see how it fares against further scrutiny in the broader context of our experimental 
observations. We will first look at the suggested dependence of Eq. (6.17) on the spin 
density (neglecting the lesser logarithmic part): 

(6.18) 

A natural approach would be to equate this spin density with the number of inverted 
spins outside the spectral hole, determined by the initial inversion p0 ~ nnv· These are 
the spins responsible for refilling the spectral hole via flip-flop interactions. Accordingly, 
we would expect the effective hole-filling rate to scale as .:J ~ p0 (we use the "~" 
notation here, as we are interested in a qualitative discussion of the suggested trends 
rather than the precise polynomial order). 

However, the fit results presented in Fig. 6.37 suggest a different trend: .:J ~ 1/p0 . 

Although the change of .:J is at most 50%, it is quite puzzling how to reconcile this 
discrepancy. 

A speculative explanation we can offer is as follows: The effective rate .:J is derived 
from Eq. (6.15), which averages the contributions of all other (single) spins to invert a 
central spin. However, this formulation does not account for the fact that the other 
spins themselves undergo flip-flop interactions. Intuitively, it seems clear that the 
number of flip-flops at any given time must be determined by the number of possible 
spin pairs that can participate in such processes. Crucially, these processes require the 
spins to be in opposite states relative to each other ( e.g., lt -J,.) +------+ I+ t) ), which cannot 
occur when both spins are in the same state. The number of available spin pairs for 
flip-flop interactions would be maximized as the ensemble approaches a 50/50 mixture 
of up and down spins, corresponding to a mean inversion of p = 0. In this scenario, 
the higher total rate of occurring flip-flops could facilitate a faster spectral-hole filling. 

This perspective suggests that a many-body theory is required to capture the 
essence of such dynamics, where individual spins are considered as parts of interacting 
pairs, chains, or more complicated networks, rather than isolated carriers of excitations. 
The current single-spin-based theory appears to be insufficient in fully describing 
the observed trends, hinting at the possibility of a more comprehensive many-body 
approach to understanding the complex nature of our system. 
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6.2.2 Spin exchange between detuned sub-ensembles 

To further explore the spectral spin exchange driven by direct spin-spin interactions 
within the disordered NV system, we present a new set of measurements featuring 
previously unpublished findings. These measurements introduce an additional layer of 
complexity by splitting the four NV subgroups ( aligned along the four diamond axes) 
into two halves, each comprising two NV directions. By applying an off-axis magnetic 
field, we create a tunable splitting Ösub between these sub-ensembles, as illustrated 
in Fig. 6.40. This allows us to study how the splitting influences the spectral spin 
exchange between detuned sub-ensembles. 

The experiment follows our standard protocol: ( i) We initialize the spins in their 
ground state, ( ii) invert the resonant (half) ensemble using a chirped microwave pulse, 
( iii) rapidly detune the spins to store the inversion for a variable hold time, and ( iv) 
return the spins to resonance to observe the superradiant decay and subsequent self-
induced dynamics. Importantly, the chirped inversion pulse only affects spins within 
a frequency window of approximately 21r x 20 MHz [assumed to have smooth edges, 
see Fig. 6.41(a)], corresponding to the resonant half-ensemble (see Sec. 6.0.2). We 
focus on two key metrics: the maximum amplitude of the first superradiant decay peak 
max(lal) and the time difference !lt between this peak and the first revival pulse, while 
scanning the hold time. Evidence that the full protocol inverts the resonant spins with 
the same efficiency, regardless of Ösub, is shown by the fact that the maximum values of 
max(lal) differ by a factor of 1/2 between Ösub = 0 and Ösub > 0. This difference occurs 
because the number of resonant spins within the superradiant window is halved, and 
max(lal) ex: Po(ws = wc) (see Sec. 2.8). The results are shown in Fig. 6.41. 

First, we focus on the influence of Ösub on the spin system's self-pulsed superradiant 
emission, see Fig. 6.41(b). As the detuning Ösub between the two sub-ensembles 
increases, the time !lt required for the system to fill the spectral hole and surpass the 
superradiant threshold becomes significantly langer. This suggests a high sensitivity 
of the spectral hole filling time to the sub-ensemble detuning, with a much shorter 
filling time observed when all four sub-ensembles are aligned [blue data in Fig. 6.41(b)]. 
However, the aligned configuration requires a lower inversion threshold p = l/C for 
the revival pulse due to the higher cooperativity C resulting from the larger number 
of resonant spins. The effective halving of C with the number of resonant spins 
complicates the direct comparison of the different slopes for Ösub > 0 and Ösub = 0. 
Notably, for fitting the slope in the cases Ösub > 0, we ignore the three points of highest 
max(lal), corresponding to shortest hold times. lt is reasonable to assume that these 
points might be outliers, as the homogenization of spin inversion over frequencies 
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Figure 6.40 Magnetic field scans (left) and transmission spectroscopy on resonance 
(right) with the spin system in the ground state. Top row: Magnetic field aligned along 
the (100) diamond axis, resulting in equal projection on all four NV axes (ösub = 0). 
Other rows: As the field direction rotates toward the (010) axis, the NV ensemble 
is split into two halves, with 2-and-2 sub-groups separated by a detuning ösub· This 
detuning is measured by the distance between the two diagonal lines crossing the 
vertical white line. When the number of resonant spins is halved, the normal-mode 
splitting is reduced, as the collective coupling effectively decreases by a factor of 1/ ,J2. 
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Figure 6.41 Hold time scan results of the self-induced superradiant dynamics for 
varying detunings Ösub between the 2-and-2 NV sub-ensembles, showing the maximum 
cavity amplitude max(lal) and the revival time ~t between the initial superradiant 
decay and the first revival pulse [c.f. Fig. 6.35(b)]. (a) Schematic representation 
of the sub-ensembles separated by Ösub, illustrating the estimated initial inversion 
distribution p0 (ws), the superradiant window defined by the cavity linewidth, and the 
frequency window targeted by the inversion pulse. (b) Linear fits of revival time ~t 
versus max(lal)- (c) Semi-log plot of max(lal) versus hold time with exponential decay 
fits. When the number of resonant spins within the superradiant window is halved, 
max(lal) ex: Po(ws = wc) also reduces by half. 

( essentially the hole-filling process) has not yet fully occurred, both within the resonant 
half-ensemble and also between the resonant and off-resonant parts. However, we know 
that the inversion p(ws) does not become entirely uniform over both ensemble halves, 
as it would then drop completely below the superradiance threshold for cases where 
Ösub > 0 [see Fig. 6.41(a)]. 

As a rough estimate, the fitted slopes should correspond to the inverse hole-filling 
rate, with d(ßt)/d(max(lal)) ~ 1/ J, according to Eq. (6.8), considering that max(lal) ex: p. 

The observed dependence of the slopes increasing with detuning Ösub qualitatively agrees 
with Eq. (6.16): J ex: 1/(4,1 + ~ 2). For very large detuning, we could assume that the 
off-resonant half-ensemble is mostly negligible for the spin interactions that refill the 
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spectral hole. Under this assumption, our existing theory of single spins interacting 
with the mean field generated by all other spins suggests a difference of roughly a factor 
of 4 between Ösub = 0 and detunings much larger than the inhomogeneous broadening 
width ( Ösub » W). This factor arises from the quadratic contribution of the effectively 
halved spin density, as suggested by Eq. (6.18), where we approximate this contribution 
as J ex: n~v- However, the experiment shows an even larger difference between the 
slopes (up to factor ~ 15), indicating that the spectral hole-filling rate slows more 
significantly with larger detuning than our current model predicts. 

To compare the measured slopes with a more rigorous prediction of the simple 
central spin model, we introduce a new complication in the model derived from 
Eq. (6.15). Instead of evaluating the sum over all other spins k around the central 
spin j by averaging over all spectral and spatial contributions (i.e. we average over 
all three: wt w:, Tjk), we only average over the spatial parts and leave the frequency 
dependence intact ( deri ved in the a ppendix A .1). This model replaces the hole-filling 
rate J, previously a constant, with the matrix Jjk• Thus, it describes a dependence 
of the hole-filling process on frequency wg of the j-th spin-packet, denoted as [c.f. 
Eq. (A.17)]: 

(6.19) 

where we use the notation (aD to emphasize that we are now dealing with frequency 
packets and not single spins (üD. The formula for Jjk, Eq. (A.18), is somewhat 
complicated - it assumes a spin-flip rate proportional to P-1-(wg) • Pt(w:) and includes 
a cumulative probability - but has the expected dependence on spin-packet detunings 
Jjk ex: 1/(4,1 + ß]k)- Using this model, we try to recreate the hole-filling after an 
initial superradiant decay of equal initial pC, resulting in equal emission amplitudes 
max(lal), in the different Ösub cases. This allows us to directly compare the measured 
/lt values at a fixed max(lal) slice in Fig. 6.41(b) with the frequency-dependent hole-
filling prediction. The simulation results are shown in Fig. 6.42. In this simulation, 
the first 10 µs until t = 0 are simulated using the standard Maxwell-Bloch equations 
without hole-filling, generating the spectral hole profiles at t = 0, each well below the 
superradiance threshold pC = 1. From this moment, the system is evolved using the 
frequency-dependent hole-filling model, excluding the cavity-spin interaction and single 
spin lasses. In this simulation, we are interested in what time the system crosses again 
above the threshold, where it would emit a superradiant revival pulse, indicating the 
revival time ( or hole-filling time) /lt. 
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Figure 6.42 Hole-filling simulation with the frequency-dependent central spin model. 
(Top) Time evolution of the superradiance threshold pC. When pC > l, the system is 
unstable and emits a superradiant (revival) pulse. In all four cases of sub-ensemble 
detuning c\ub, the spin system is initialized to the same pC state by adjusting the 
inversion (aD inside the inversion-pulse window accordingly. From this starting point, 
the system is evolved from t = -10 µs to t = 0 using the standard Maxwell-Bloch 
equations, leading to the formation of a spectral hole. In each case, at t = 0, the system 
is well below the superradiance threshold. From this moment, the system is evolved 
using the frequency-dependent central spin model, now excluding cavity coupling. 
Depending on the value of 6sub, it may eventually cross above pC = l corresponding to 
the revival time 6-t. (Panels below) The time evolution of the weighted spin inversion 
Pw(wn = Pj (aD / max(pk) is shown as color plots and as different snapshots in time. 
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Remarkably, this crossing above the threshold does not occur for the intermediate 
Ösub cases, where the resonant and off-resonant half-ensembles partially overlap. In 
these cases, even though the spectral hole initially refills to some extent, inversion 
from the resonant spins is quickly lost to nearby non-inverted spins due to their close 
proximity in frequency space. Thus, this model suggests that a revival pulse would 
never occur. However, for the largest detuning Ösub, where the resonant and off-resonant 
spins do not overlap, the spectral hole does refi.11, just as it does in the fully resonant 
case Ösub = 0. In the case of large detunings, the off-resonant spins are simply too far 
apart in frequency for any significant inversion exchange. 

Summarizing the above, the frequency-dependent central spin model outcome is 
opposite to what we observed experimentally. In the experiment [see Fig. 6.41(b), for 
example around max(lal) 1 arb.u.], spectral holes refi.11 across all cases and a revival 
pulse appears with /:}.t increasing in correlation with Ösub. 

Notably, our model overestimates the refilling time by roughly a factor of 4, which 
is of minor concern, as we are interested in a comparison of the simulation results. 
The discrepancy, compared to the simpler model with a constant hole-filling rate 
J, which showed better agreement, is likely introduced by the previous use of the 
shallow-spectral hole approximation and logarithmic approximations for the integral 
solutions. In the frequency-dependent model, we are using the same parameters as 
discussed in the previous chapter, including the nearest-neighbor spin-spin interaction 
Jn, the spin linewidth 11_ and q-Gaussian spin distribution width W. 

Next, we examine the influence of Ösub on the lifetime of spin inversion, as measured 
by max(lal) of the initial superradiant decay and shown in Fig. 6.41(c). Surprisingly, we 
observe an unexpected trend: the lifetime is significantly shorter when half the ensemble 
is detuned. While we previously identified the nature of the initial fast spin relaxation 
process (as opposed to long T1 > 100 s) as connected with short-lived fluctuator NVs 
(see discussion in Sec. 6.1), the exact mechanism remains poorly understood. 

A minor complication arises due to an additional splitting of each half-ensemble 
when the spin inversion is stored in the detuned state. The detuning loop is ( almost) 
parallel with the (100) diamond direction and cannot be rotated in the same way as 
the external tuning field. However, this added splitting is less than 10% of Ösub, making 
it a secondary effect. 

A simple explanation for the decreased lifetime with half the spins detuned is this: 
the detuned half-ensemble is not targeted by the initial inversion pulse, resulting in 
inversion profiles p0 (ws) as shown in Fig. 6.41(a). Inversion from the resonant half 
could slowly - over hundreds of microseconds to single milliseconds - wander off 
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Figure 6.43 Lifetime simulation with the frequency-dependent central spin model. 
(Top) Time evolution of the superradiance threshold pC with the spins inside the 
inversion-pulse window initialized to the same inversion p0 at t = 0. The blue curve 
(fully resonant case Ösub = 0) becomes flat after roughly 2 ms where the small valleys 
outside the borders of the initial inversion window have fully refilled at small cost to 
the central peak height. In the other cases, the system eventually drops below the 
superradiance threshold, as inversion wanders off to the off-resonant half-ensemble. 
(Panels below) Time evolution of the weighted spin inversion as color plots and at 
different snapshots in time. In the color plots, it is clearly visible that the non-inverted 
half-ensemble (red stripe) slowly draws inversion (blue) from the resonant spins, first 
depleting the inversion of nearby spins and later affecting the more detuned ones. 
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to the off-resonant half. This explanation is supported by the observed difference in 
slopes within the three datasets with Ösub -/=- 0, where the red dataset shows a higher 
lifetime than the other two, while also having a larger overlapping portion of the second 
sub-ensemble. This overlapping part is still inverted by the initial inversion pulse, 
potentially contributing to the langer lifetime. 

Again, we cross-check the observed lifetimes with a simulation using the frequency-
dependent hole-filling model. These simulations are shown in Fig. 6.43. We initialize 
the resonant spins within the inversion-pulse window to a fixed initial inversion [cor-
responding to equal time slices in Fig. 6.41 ( c)] and evolve the system according to 
Eq. (6.19), without cavity coupling. Importantly, in this simulation, we are excluding 
any spin-lattice relaxation (T1 losses), such that the total inversion p = Lj pj(a{) 
is conserved. For this reason, the fully resonant case ( Ösub = 0) shows an "infinite" 
lifetime, never dropping below pC = l. 8 Conversely, all cases Ösub > 0 eventually drop 
below the superradiance threshold, losing inversion at the cavity resonance frequency 
to the non-inverted detuned half-ensemble. However, the intermediate Ösub cases drop 
below the threshold first, and the model suggests the langest lifetime for the largest 
Ösub· Again, this result is opposite to the experimental observation, where the lifetime 
reduces with increasing Ösub· 

Further investigation with a higher degree of relative overlap between spin ensembles 
is needed to clarify and cement the observed experimental trends. However, at the 
current time, we lack a theoretical model that can fully explain these findings. Without 
such a theory at hand, we are left to speculate on what additional effects might need 
to be considered in order to capture this complex behavior. One plausible direction, 
already mentioned above, is the development of a many-body theory, where individual 
spins are no langer treated as singular units but rather as components of interacting 
networks. This perspective - and our experiments - suggests that the central 
spin model currently in use is insufficient to describe the full scope of the dynamics, 
hinting that collective interactions between multiple spins may hold the key to a more 
comprehensive understanding. 

While additional data and analysis are still needed, these preliminary results hint 
at a rich landscape of spin-spin dynamics that extends beyond the scope of our current 
models. The interplay between effective spin-spin interactions - influenced by the 
proximity of spins both in space and the frequency domain in the disordered system -

8Before flattening out, the initial decrease of the blue pC curve until around 2 ms bears some 
similarity to the blue data in Fig. 6.41(c), with a short non-exponential behavior at the beginning. 
In the simulation, this occurs due to the non-uniform initial inversion introduced by the finite 
inversion-pulse window approaching a uniform level over time. 
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causing spectral hole filling, combined with superradiance, suggests exciting avenues 
for future research. 

In summary, this chapter presented experiments that offer key insights into control-
ling superradiant emission in a diamond-based hybrid cavity-spin system and revealing 
complex self-driven dynamics that pave the way for further exploration and practical 
applications. In the final chapter, we will conclude this thesis by discussing potential 
future experiments and extensions of the work presented. 





Chapter 7 

Conclusion and future directions 

In this thesis, we have explored the fascinating realm of superradiant dynamics and 
the crucial role of spin-spin interactions in driving these phenomena. 

We conclude with a brief summary of our results: We have demonstrated the 
capabilities of our hybrid cavity-spin system in observing and controlling superradiant 
emission. By developing a technique to store spin inversion and release it at will, 
we achieved precise control over both the initial inversion and the crucial moments 
that define the onset of superradiance. This level of control enabled us to explore the 
transition from quantum-dominated dynamics to the classical emission of a macroscopic 
radiating dipole formed by trillions of spins. Our experiments also revealed the system's 
remarkable sensitivity to weak microwave signals during this critical onset stage. 

Additionally, we uncovered intriguing self-driven dynamics, characterized by a pulsed 
superradiance regime followed by a narrow-linewidth quasi-continuous emission. These 
phenomena are driven by the transfer of spin inversion into the active superradiant 
window, combined with the interplay of spectral hole formation and the superradiant 
threshold condition, pC = 1. We provided a phenomenological model to simulate these 
self-driven superradiant dynamics and presented direct experimental evidence that 
this inversion transfer is mediated by spin-spin interactions within the disordered spin 
ensemble. A simple microscopic theory involving a central spin interacting with a mean 
field generated by the ensemble and requiring only a few parameters - spin linewidth, 
spin density, and inhomogeneous broadening - agrees well with the observed hole-
filling timescale, although questions about the many-body nature of these processes 
remain open. 

Looking ahead, we highlight a promising direction toward technological applications: 
the possibility of using a microwave drive on the far-detuned half of the spin ensemble to 
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achieve superradiant emission from the resonant half. In this scenario, spin excitations 
could be repumped via the detuned half-ensemble and transferred into the resonant half-
ensemble through direct spin-spin interactions, where they would generate superradiant 
emission of microwave photons. This repumping would rely entirely on the microwave 
domain, bypassing the need for optical pumping of the NV centers [56]. This may 
potentially be achieved by repeatedly sweeping over the frequency range of the detuned 
spins, similar to a recurrent chirping pulse. 

A first simple test to explore these possibilities - before investigating if a stable 
population inversion of the off-resonant spins to drive superradiant emission by the 
resonant spins could even be achieved - would involve sweeping a strong microwave 
tone across the detuned ensemble, generating a fully mixed spin state with zero net 
inversion. This should decrease the spectral spin excitation flow between the inverted 
resonant spins and the fully mixed, off-resonant spins, leading to a change of the 
self-induced superradiant emission dynamics and hole-filling timescale in a repeated 
measurement akin to Sec. 6.2.2. Achieving steady population inversion only through 
microwave repumping is likely challenging and may be limited to pulsed operation 
under carefully optimized conditions. 

This speculative microwave-only pumping approach shares similarities with recent 
advancements in diamond-based cryogenic microwave amplifiers that exploit cross-
relaxation effects between NV centers and Pl centers - where dipole-dipole interactions 
also play a key role - to generate a population inversion in one of the hyperfine Pl 
transitions [100]. In this cross-relaxation process [101], the key mechanism involves a 
four-spin resonance between microwave-driven Pl centers, aided by a nearby NV spin 
to remove an excitation, while another Pl ends up inverted. Further research in this 
direction offers exciting potential for diamond-based systems in quantum technologies, 
particularly in high-precision frequency generation with ultra-narrow linewidths [57] 
and quantum-limited microwave amplification [80]. Moreover, future explorations with 
our experimental platform may contribute to ongoing efforts in applying collectively 
coupled diamond-based systems and superradiant systems to enhanced metrology 
techniques through superradiance effects [102, 103], quantum sensing of magnetic fields 
[104], and the implementation of microwave mode cooling techniques [105, 106]. 

At last, we mention additional layers to the physics that have not been included in 
the discussions so far, remaining as open questions: 

• What is the role of entanglement generated by superradiant emission in the spin 
system, and how does it influence subsequent spin-spin dynamics? While the 
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hallmar k N 2 of su perradiance can be o btained using ( classical) spin-coherent 
states (see Sec.2.9), it can be argued that the appearallce of coherent states might 
be due to an experiment's inability to resolve the actual quantum aspects, as 
discussed in Ref. [107]. With a highly entangled spin system possibly working 
behilld the scelles, how does the elltanglement affect spill-spill illteractiolls? 

• How call we illcorporate the lille-broadellillg of sillgle spills - partially caused by 
spin-spin interactions and used in our semi-classical modeling of superradiance 
based on spill frequellcy packets - illto a theoretical model that focuses Oll these 
spin-spin interactiolls? 

• What insights might be gained by treating the stochastic noise triggering of 
superradiant emission using a second-order cumulallt description in the semi-
classical model of spin-cavity dynamics, instead of the constant cavity drive 
T}? 

In collclusion, the observatioll of self-illduced superradiance driven by spin-spin inter-
actions reveals a new phellomenon with important implications for both fundamental 
quantum physics and potential techllological applications. Throughout this thesis, 
I explored key aspects of the complex interactions between spin ensembles and mi-
crowave cavities alld provided insights illto the illtriguing dyllamics of superradiallce 
in solid-state systems. These insights span a wide range ( of time), with an initial 
focus Oll the onset of superradiant dynamics - illvestigating the triggers that initiate 
emission - and later exploring the self-induced aspects of superradiant emissioll as it 
Ullfolds. While I have made sigllificallt progress in Ullderstandillg these phellomella, 
many opell questions remain, offering exciting opportunities for further research. As 
these hybrid quantum systems are further explored, I expect colltilluous advancement in 
the Ullderstallding of collective qualltum effects that harness the power of superradiallce 
and spin-spill illteractiolls. 





Appendix A 

Integral evaluation of the spectral 
hole filling rate J 

In this appendix, based on calculations by Igor Mazets [98], we evaluate the spectral 
hole filling rate J starting from the result [Eq. (6.16) in the main text]: 

(A.1) 

One of the frequency integrals can be taken, leaving the detuning probability density 

which is an even function, P(ß) = P(-ß), normalized as J~00 dß P(ß) = 1. To 
proceed from summation over NV positions to integration, we need to account for the 
discrete nature of spins in the crystal lattice by introducing the probability F(r, ß) of 
having no spins within a sphere of a radius r having detunings in the range from -ß 
to ß relative to the central spin. 

On average, there are 
- 4 3 
N(r) = -r7rnuvr (A.2) 

NVs in a sphere of a radius r. Assuming their statistical independence and, hence, 
Poissonian statistics, we find 

F(r, ß) = f ~e-N(r)[JV(r)t [1 - C(ß)t 
k=O k. (A.3) 

= exp [-N(r)C(ß)] , 
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where we introduce the cumulative probability 

We can now replace summation in Eq. (A.1) with integration: 

(A.4) 

Here we introduce the minimum possible distance r min a between NV spins, de-
termined by the period a 3.567 A of the diamond crystalline lattice, rmin « n;;.J-13 . 

This naturally eures the logarithmic divergence of the integral in Eq. (A.4). Using 
Eqs. (A.2,A.3) and integrating over r, we obtain: 

(A.5) 

1- e-x 
G(x) = -- + r(o, x), 

X 

and r(a, x) = fx= dzta-le-z is the incomplete gamma-function [108]. For small argu-
ments, relevant for Eq. (A.5), we have 

X« 1, 

with 1 0.577 being the Euler-Mascheroni constant. 

For ease of an analytic solution, we approximate the q-Gaussian spin distribution 
p(w) with a simple Gaussian of the same width W (FWHM) and standard deviation 
CJw = ln 2. The distribution of detunings is then also Gaussian: 

and C(~) = erf [~/(2C5w)] is given by the error function [108]. Changing the integration 
variable in Eq. (A.5) to C(~), we obtain 

J = (47f)2 J~ rl dyy ln (-1-) - r J_ 

3 C5w lo VminY n_ + [ erf-1 (y)]2 ' (A.6) 
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where r .l = ''(l_/CYw and erf-1 (y) is the inverse error function. In Eq. (A.6), we 
neglected, within logarithmic accuracy, the difference between e1-, and 1. 

The remaining task is to evaluate two integrals: 

I (r ) - rl d r .l 1 .1 - lo yy I'J_ + [ erf-1 (y)]2' 
- fl f1_ 

I2(f.1) = Jo dyyln(l/y) f'i + [erf-1 (y)]2. 

By assumption, the transition linewidth is narrow compared to the inhomogeneous 
broadening, and we have r .1 « 1. In this limit, the main contribution to these integrals 
comes from small y, where we can use the approximation erf-1 (y) -.firy/2. Then 
the first integral is elementary, yielding 

(A.7) 

A bit more cumbersome estimation yields 

(A.8) 

Direct numerical integration confirms the fairness of the estimations Eqs. (A. 7,A.8). 
Finally, within logarithmic accuracy, we obtain 

(A.9) 

where we assume r .1 « 1. 

A.1 Frequency dependent spectral hole refilling 

We revisit the full "microscopic" model of a central spin j interacting with all other 
spins k [c.f. Eq. (6.15)]: 

(A.10) 

Here, we attempt to incorporate the full extent of this model - suggesting a Wj 

dependent result of the sum on the right-hand side - into the description of the 
self-induced superradiant dynamics. Proceeding similarly to the above derivation, we 
separate the contributions in the sum into spatial and frequency parts. We introduce 
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the spectral distribution of inverted spins 

The spin distribution is given by the sum of all up and down spins 

which remains constant over time. Here, we assume the spin-lattice relaxation rate 
'"YII = 0. We now express Eq. (A.10) in its continuous form: 

(A.11) 

This equation describes the increase of inversion Pt(w) over time, driven by the 
interaction between down-spins at frequency w with up-spins at frequency w'. The 
spectral interaction rate is given by 

Js(w, w') = 41rnnv 1= dr r 2 ( In 3) 2 
4 2 ~')1_1_ ')2 [ 1 - .F(r, w, lw - w'I)] 

rmin nnvT '"'( j_ + W - W 
(A.12) 

Here, F(r, w, .6.) represents the probability of finding no inverted spins within a 
sphere of radius r around a central spin, such that their detunings are less than 
±.6. = lw - w'I- Analogous to the above derivation, this probability is modeled using 
Poissonian statistics: 

(A.13) 

where the cumulative probability is calculated as: 

The r integration can then be carried out, resulting in 

' (47r)2 2 4')1_1_ ~ ~ Js(w, W) = 3 Jn 4'"YI + ,6.2 C(w, .6.) G[vminC(w, .6.)], (A.14) 

where we use the same definitions of G(x) and Vmin as in the above derivation. 
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To make this result useful in combination with the Maxwell-Bloch equations, we 
discretize the problem again into NP equally spaced frequency packets using the 
normalized distribution weights p1, see Sec. 2.8. Here, we use the notation (a1) for the 
averaged spin-packet inversion to distinguish the spin-packets from single spins (aD. 

First, we express the up-spin and down-spin distributions as: 

P ( _) _ _ ( 1 + ( at) ) t WJ - PJ 2 ' (A.15) 

(A.16) 

The equation of motion for the inversion of the spin-frequency packet (a1) can then be 
written as: 

(A.17) 

Here, Jjk is the effective spin-packet interaction matrix, which we express as: 

(A.18) 

The cumulative discrete distribution C1k is given by: 

__ _ lmax(j,k) ( l _ (a~)) 
CJk - L_ Pz 2 , 

l=lmin(J,k) 
(A.19) 

where the indices lmin = max(j - I} - kl, 1) and lmax = min(j + I} - kl, Np) define the 
range of frequency packets l for which w1 lies within the interval w1 ± lw1 - wk 1- In the 
numerical implementation of this model, we symmetrize the matrix Jjk = (3;k + JkJ) /2 
to account for a small boundary error, where the range from lmin to lmax is not symmetric 
around j. This way, the total inversion p = Lj p1 (<71) is conserved. 
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