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Abstract

The division of labor in human-robot teams is a major research topic in Human-Robot
Collaboration (HRC). Effective collaboration requires seamless task transitions, espe-
cially when a human takes over a task from a robot. However, current industry stand-
ards are constrained by communication channels, like buttons, and complex recovery
procedures. Even with recent advancements in adaptive and communication-free task-
allocation methods, pre-defined task boundaries still limit when and how a human can
take over a robot’s task. To overcome these limitations, two key components are: (1) a
task model to recover from interruptions, and (2) methods for communicating them.

To investigate how interruptions can be handled and how different Human to Robot
Communication (HTRC) channels affect task takeovers, this thesis employs a mixed re-
search approach, combining a literature review with a user study. The review explores
the fundamentals of human-robot interactions, communication, and current task alloc-
ation techniques, and reveals a lack of research on task takeovers, in particular on how
to handle and communicate them. To quantitatively evaluate the effects of different
HTRC channels on team dynamics, a prototype setup was developed, and a user study
was conducted using three different communication channels: (a) baseline, mediated via
the push of a button in a Graphical User Interface (GUI), (b) explicit, facilitated by
physically touching the robot, and (c) implicit, based on human actions.

The findings suggest noteworthy differences in how HTRC channels affect the per-
ceived fluency, likability, and the human-robot bond during task takeovers. In contrast,
the results indicate no effect between HTRC channels for the trust in the robot, robot
traits like perceived intelligence or commitment to the task, and the goal alignment
between human and robot. Therefore, the results have implications for the design of
future collaborative robots, as they reveal the importance of employing communication
channels that minimize disruption to the human’s workflow while fostering a team-
dynamic comparable to human teams.
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Kurzfassung

Die Arbeitsteilung in Mensch-Roboter-Teams ist ein zentrales Forschungsthema in der
Mensch-Roboter-Kollaboration. Eine effektive Zusammenarbeit erfordert nahtlose Über-
gänge zwischen Aufgaben, insbesondere wenn ein Mensch die Aufgabe eines Roboters
übernimmt. Aktuelle Industriestandards sind jedoch durch Kommunikationskanäle, wie
physische Tasten und komplexe Prozeduren zur Wiederaufnahme des Betriebs einges-
chränkt. Selbst mit den neuesten Algorithmen zur adaptiven Arbeitsteilung schränken
vordefinierte Grenzen immer noch ein, wann und wie ein Mensch Aufgaben vom Roboter
übernehmen kann. Um diese Einschränkungen zu überwinden, sind zwei Komponenten
essenziell. (1) Eine interne Repräsentation, die es dem Roboter ermöglicht sich von
Unterbrechungen zu erholen. (2) Methoden zur Kommunikation von Unterbrechungen.

Um zu untersuchen, wie Unterbrechungen bewältigt werden und wie sich verschiedene
Kommunikationskanäle auf das Team auswirken, kombiniert diese Arbeit eine Literatur-
recherche mit einer Studie. Die Recherche analysiert sowohl die Grundlagen der Mensch-
Roboter-Interaktion, als auch der Kommunikation und dynamische Arbeitsteilung. Dabei
identifiziert die Arbeit eine Forschungslücke bei der Handhabung und Kommunikation
von Unterbrechungen. Zur Schließung dieser Lücke und zur Bewertung des Einflusses
verschiedener Kommunikationskanäle auf die Teamdynamik wurde eine Studie mit drei
Kanälen durchgeführt: (a ) eine Basisbedingung, bei der Unterbrechungen durch eine
Taste ausgelöst werden, (b) eine haptische-explizite Methode, bei der der Roboter phys-
isch berührt wird, und (c) eine implizite Methode, die sich aus menschlichen Aktionen
ableitet.

Die Ergebnisse der Untersuchung zeigen, dass der Kommunikationskanal (a) den
Aufgabenfluss, (b) die Sympathie sowie (c) die Mensch-Roboter-Bindung erheblich bee-
influssen kann. Hingegen wirkt er sich weder auf (a) das Vertrauen in den Roboter,
(b) dessen wahrgenommene Intelligenz noch auf (c) die Zielausrichtung des Teams aus.
Diese Erkenntnisse sind entscheidend für das Design zukünftiger kollaborativer Roboter,
da sie die Wahl von Kommunikationskanäle betonen, die eine menschenähnliche Team-
dynamik fördern.
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1 Introduction

1.1 Motivation and Problem Statement

Human-Robot Collaboration (HRC) is a field of research promising to democratize ro-
botics and lower entry barriers by offering concepts enabling robots to flexibly, safely,
and efficiently work alongside humans. To enhance human-robot flexibility, dynamic
human-aware task-allocation methods [1]–[3], enabling robots to dynamically adapt to
actions performed by a human, are currently being investigated in favor of traditional
static task-assignment approaches such as MABA-MABA (Men Are Better At - Ma-
chines Are Better At) [4].

The general direction of research is going toward machine learning-enabled methods
to handle offline as well as online task assignments. Zhang et al. [2] proposed an ap-
proach utilizing fusion-based spiking neural networks to process signals generated from
robot poses, human behavior, and product states to determine the optimal moment for
robotic assistance. Ramachandruni et al. [3] and Cheng et al. [1] both introduced adapt-
ive user-aware collaboration frameworks based on HTN (Hierarchical Task Network), an
artificial intelligence technique comprised of an initial state, a task network, and domain
knowledge [5]. Unlike traditional leader-follower models, their methods enable a robot
to adapt to human actions in real time without predefined communication modalities.
These methods excel at handling task-level transitions, like dynamically adapting the
task sequence if the human switched tasks. Nevertheless, they are limited by clear task
boundaries and do not consider interruptions to an ongoing task, as they typically as-
sume uninterrupted processes and optimal human behavior, making human intervention
basically only possible at said boundaries or via interrupting the robot’s programming.
However, in addition to knowing when and what to do, effective collaboration relies on
smooth transitions not only between but also within tasks. Particularly, when it comes
to the handling of task takeovers, where a human momentarily steps in and takes over
a task originally assigned to the robot.
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1 Introduction

Moreover, human-in-the-loop decision-making introduces uncertainty [6] and inap-
propriate robot behavior can disrupt the workflow and lead to dissatisfaction among
human operators [2]. To increase certainty, communication between humans and robots
is deemed vital for decision-making processes in HRI [7]. However, considerations in re-
gard to communication are generally excluded from task allocation frameworks, as they
aim to be communication-free [1], [3]. The need for communication within human-robot
teams has also been pointed out by others such as Salehzadeh et al. [8] and Hellstrom et
al. [9], who both argue that communication can lower uncertainty for real-world robot
applications.

To address the identified gap, this thesis explores existing literature on task allocation
methods and how they integrate Human to Robot Communication (HTRC). In addition,
this thesis utilizes a user study to evaluate the effects of HTRC on human-robot collab-
oration during task takeovers. The results provide new insights into how the utilized
communication channel affects the perceived team dynamics such as team fluency and
trust in the robot.

1.2 Research Question and Research Objective

Based on the discussed problem landscape, it becomes clear that one key obstacle to
fluent task takeovers is the lack of effective communication strategies. Consequently,
the research objective of this thesis is to explore the impact of various channels of
communication. Therefore, it is guided by the following research questions:

Q1.) Which communication theories can be used to model a takeover request?
Q2.) Which channels of communication can be utilized to communicate a task-takeover

request?
Q3.) What are current task allocation techniques, and how do they integrate task-

takeovers and communication?
Q4.) To what extent do different HTRC channels impact team dynamics, such as per-

ceived team fluency and trust, during task-takeovers?

6



1 Introduction

1.3 Methodology and Expected Outcome

As a first step, a semi-structured literature review explores the theoretical foundations
of human-machine interaction as well as human-robot collaboration. Academic search
engines are utilized for building a foundation to review and answer Q1, Q2, and Q3. In
order to find relevant state-of-the-art literature, search terms such as [[”robot-to-human”
OR [”human” AND ”robot”]] AND ”communication”] as well as [”human” AND ”robot”
AND ”task” AND [”allocation” OR ”request” or ”takeover”]] are used. Based on the
initial screening of available literature, forward and backward searches are applied to
find additional sources.

For answering Q4, a prototype setup exploring different communication modalities
is developed, and a user study is conducted to evaluate the impact of the individual
modalities on human-robot task takeovers. The prototype setup includes a cobot with
6-DOF (Degrees of Freedom), a stereo-vision camera, and is built using ROS (Robot
Operating System). The user study primarily utilizes quantitative evaluation metrics for
directly and indirectly assessing perceived team fluency and trust in the robot. The study
is concluded by performing a statistical analysis of the gathered data and a discussion of
the results. By evaluating different channels in the context of task takeovers, this thesis
tries to identify channels of communication that balance intuitive understandability with
technological feasibility. It thereby contributes to the understanding of how HRC can
be enhanced and potentially guides the design of future robots and their interaction
protocols.

7



2 Research Background

The following chapter first lays out the general objectives and research directions of
Human-Machine Interaction (HMI) and Human-Robot Interaction (HRI) (section 2.1).
Followed by a thorough discussion of how the terms human (section 2.2.1), robot (sec-
tion 2.2.2), and interaction (section 2.2.3) are conceptualized in previous literature. The
subsequent section dives into Human-Robot Collaboration (HRC) (section 2.3). The
final part of this chapter examines selected communication theories and their relevancy
for HRI (section 2.4) as well as important concepts of communication such as the com-
municated message (section 2.5) and the utilized communication channel (section 2.6).

2.1 Human-Robot Interaction

Human-Machine Interaction (HMI) is an interdisciplinary field of research, at its core
focused on the development, design, and evaluation of interactions between humans and
machines. Even though humanity has been using machines for millennia, the investiga-
tion of design principles such as comfort, safety, performance, and aesthetics have only
been of interest since the mid-20th century [10]. Before that, machines were hardly ever
adjusted to humans, instead, people had to adapt to machines in order to operate them
and avoid being injured or even killed in the process [11]. Human-related factors like
cognition, emotion, society, and physiology, are even more recent topics with the first
dedicated journal, called “International Journal of Man-machine Studies”, published in
1969 [10]. For the last four decades, most newly engineered human-machine interac-
tions have been software-based [10]. Along with this dominance of Human-Computer
Interaction (HCI) within research, human cognition was at the center of attention [10].
Unlike the 1980s, when computers were considered specialized machines, today they are
commonly seen as mediators, enabling human-machine interactions to the point where
they often go unnoticed [10].

Human-Robot Interaction (HRI) is a cross-disciplinary sub-area of research within
Human-Machine Interaction (HMI), focused on various aspects such as robot behavior,

8



2 Research Background

robot autonomy, social robotics, robot ethics, trust in robots, and human factors asso-
ciated with robot design [12]. By understanding the dynamics of human-robot inter-
actions, researchers aim to create robots that can be seamlessly integrated into various
domains such as manufacturing, healthcare, entertainment, education, and everyday life
[12]. The major research communities within HRI each contribute different yet rel-
evant expertise. Roboticists, for example, provide the physical hardware, controlling
algorithms, and robot performance metrics [13]. In contrast to that, HCI researchers
contribute performance metrics in regard to the interaction, as well as methodologies and
guidelines for performing usability studies [13]. Cognitive scientists, on the other hand,
provide human performance measurement metrics and methods to model the human
agent in HRI [13]. Despite major advancements in the last decades, robot applications
are still not capable of interacting on human-like levels, hence most literature sees a
successful human-robot interaction in mutual adaptation and successfully achieving a
shared goal [8].

Besides the many research-related facets of HRI, Burke et al. [13] also stress the
importance of looking at human-robot relations from multiple viewpoints. The three
major relationship taxonomies mentioned are:

(1) Numeric relation, depicting the ratio between humans and robots

Humans Robots
One person One robot
One person Many robots

Many people One robot
Teams of people Teams of robots

Table 2.1: Numeric relation = ratio of humans-to-robots (adapted from [13])

(2) Spatial relation, enabling a view on who is located where. For example: (a)
Remote - the physical workspaces are separated. (b) Beside - human and robot work as
peers in one workspace. (c) Robo-immersed - the human teleoperates the robot and sees
the world through the robot’s eyes. (d) Inside - the human is designing the robot and,
therefore, conceptionally within the robot (see Table 2.2).

(3) Authorial relation, expressing how control is allocated in the interaction. For

9



2 Research Background

Role Human’s POV Spatial Relationship
Commander God’s-eye Remote

Peer Bystander Beside
Teleoperator Robot’s eye “robo-immersion”

Developer Homunculus Inside

Table 2.2: Spatial relation = who is located where (adapted from [13])

instance (see Table 2.3): (a) Human as Supervisor, directing what the robot does in
a grander scheme of things. (b) Human as Operator, controlling how the robot does
a specific task. (c) Human as Peer, directly working with the robot. (d) Human as
Bystander, only sharing the environment without any direct interaction. [13]

Authority Relationship Function Context Required
Supervisor Commands “what” Tactical situation
Operator Commands “how” Detailed perception

Peer Cross-cueing Shared environment, functions
Bystander Interacts Shares environment

Table 2.3: Authorial relation = who is in control (adapted from [13])

2.2 Defining Human, Robot, and Interaction in HRI

2.2.1 The Human

When considering the human element, research has found numerous ways of character-
ization. Two often cited models in defining humans for HMI are based on early HCI
research by Kantowitz and Sorkin [14] as well as Card et al. [15]. The “human pro-
cessor” by Card et al. [15] depicts the cognitive functions of the human mind using an
analogy of a computer system. They integrate components such as short-term memory,
long-term storage, and processing speeds to explain how humans perceive, process, and
respond to information [15]. Kantowitz and Sorkin’s model [14], on the other hand,
depicts the human already integrated into a Human-Machine System (HMS) (see figure
2.1). In their model, the human is represented by a brain, sensors, and responders, and
the machine is depicted via its state, controls, and displays [14]. Based on their model,
interaction takes place at the interface between human and machine.

10



2 Research Background

Brain
Responders

Sensors

Controls

Displays

Machine
State

InterfaceHuman Machine

Figure 2.1: Human Machine Interaction Model (based on [14])

2.2.2 The Robot (Machine)

Similarly to the term “human”, research has not agreed on a single definition for what
to consider as “machine”. Usually, when talking about a machine in HMI, a man-made
technological artifact, for example, a car or a robot, but most commonly, a computer is
meant [16]. In contrast to HMI’s broader field of interest, HRI is only studying inter-
actions with robots. The fictional word “robot” was first introduced in 1920 by Czech
author Karel Capek in his book “Rossum’s Universal Robot (R.U.R.)” [17], portraying
a society with automated workers and class conflicts. Since then it has been reused by
many science fiction authors and inspired research, leading to the first industrial robot
“Unimate” by George Devol and Joseph Engelberger in 1961 [18], and ultimately to
the vast variety of modern robotics we know today, such as industrial, service, social,
humanoid, medical, and collaborative robots, depicted in figure 2.2. Among these, social
robots are the most researched when it comes to interactions with humans [19].

11



2 Research Background

(a) (b) (c)

(d) (e) (f)

Figure 2.2: (a) Industrial Robot by Kuka1, (b) Collaborative Robot by Universal Ro-
bots2, (c) Robot Vacuum by iRobot3, (d) Humanoid Robot by Agility Ro-
botics4, (e) Social Robot by Furhat Robotics5, (f) Surgical Robot by Intuitive
Surgical6

2.2.3 The Interaction

Despite being the core focus of HMI and HRI respectively, the meaning of the term
“interaction” is not characterized intuitively [20]. To some degree, the difficulty of
defining interaction seems to stem from HMI being an interdisciplinary endeavor, as it
includes research fields such as informatics, computer science, sociology, game theory,

1www.pixelsquid.com/png/kuka-kr-16-3-6-axis-robot-arm-3301356004083504972
2www.pixelsquid.com/png/universal-robots-ur10e-2656715789318493388
3www.pixelsquid.com/png/irobot-roomba960-robotic-vacuum-cleaner-2535027442859382238
4www.pixelsquid.com/png/digit-robot-3254797900609230193
5www.esa.int/ESA_Multimedia/Images/2019/04/Furhat_robot
6www.pixelsquid.com/png/surgical-robotic-system-da-vinci-si-with-operating-table-2839187826094905088
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psychology, philosophy, cognitive science, media studies, and communication science [16].
Each discipline contributes its own unique perspective, making a singular, universally
accepted definition not only challenging but also potentially restrictive to some degree
[16]. In addition, its vagueness becomes even more obvious when one tries to interpret
the commonly used definitions published in dictionaries. The Collins-Dictionary, for
example, lists interaction as (1) “a mutual or reciprocal action or influence” 1, but also
as (2) “the transfer of energy between elementary particles, between a particle and a
field, or between fields”2, which relates to physical phenomena such as electromagnetic-,
strong-, weak-, gravitational-interaction. The Cambridge-Dictionary, on the other hand,
defines interaction as (3) “an occasion when two or more people or things communicate
with or react to each other” 3. Taking a closer look at these three characterizations,
the 2nd definition can be discarded for evident reasons, as it constitutes several entirely
unrelated physical phenomena.

Utilizing a combination of the remaining two definitions, [16] suggests to interpret
“interaction” as a four-dimensional concept, respectively: (1) subjects, (2) mode, (3)
purpose, and (4) context. The first dimension, subjects, is derived from the question of
who is involved in the interaction [16]. The second dimension, mode, refers to the method
or way in which these subjects interact with each other [16]. The third dimension,
purpose, is concerned with the reasons behind the interaction [16]. And finally, the
fourth dimension, context, examines the environment or circumstances in which the
interaction takes place [16].

Along the line of these four dimensions, literature on defining “interaction” often
also discusses it in relation to the terms (1) “interactivity”, (2) “interactability”, and (3)
“interactiveness” [20]. (1) Interactivity is commonly used synonymously with interaction
but also to describe ongoing interaction [20]. (2) Interactability, on the other hand, is
denoted as an artifact’s or system’s capability to be interacted with [20]. Last but not
least, (3) Interactiveness is often described as an artifact’s or system’s way of how it
engages people to interact with it, for example by lure, insistence, or necessity [20].

1www.collinsdictionary.com/de/worterbuch/englisch/interaction
2www.collinsdictionary.com/de/worterbuch/englisch/interaction
3www.dictionary.cambridge.org/de/worterbuch/englisch/interaction
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HRI specific Conceptualization of Interaction

Besides the just discussed general HMI approach of characterizing interaction, previous
HRI research has introduced four distinguishable ways of conceptualizing interaction:

(1) Sending and Receiving Signals: Commonly seen as the simplest way of char-
acterization, sending and receiving of signals or cues, views interaction as a series of
turn-taking with disentangled discrete events [21]. While signals are by design informat-
ive, cues are often not explicitly meant to be [21]. In addition to distinguishing between
cues and signals, literature suggests the use of taxonomies differentiating on a human-
and-artificial likeness spectrum [22].

(2) Communicative Action: Communicative action, conceptualizes interaction as
chained events of communication where each interactor has a State of Mind (SoM) and
builds a mental model of their counterpart’s SoM [9]. Interaction can then be seen as
the intention to influence these mental models by increasing the other’s knowledge of
the own SoM [23]. Following this definition of interaction by Hellström and Bensch [23],
offers the benefit of a turn-taking algorithmic approach to interaction. Another very
important concept in this regard is the Theory of Mind (ToM) [24], first introduced by
Premack and Woodruff in 1978 [25]. ToM is seen as the ability to reason about, try to
explain, and predict actions of intelligent agents, this includes seeing oneself and others
as intentional entities [24].

(3) Joint Action: Expanding on the turn-taking concept of communicative action,
joint action incorporates continuous temporal and spatial coordination as important
aspects of co-performing a task [26]. Following this characterization of interaction, con-
cepts such as Theory of Mind provide tool sets to view both interactors as actively
involved in constantly sharing verbal as well as nonverbal information necessary for
co-constructing meaning and coordinating collective actions [26].

(4) Dynamic System: The characterization as a dynamic system combines ideas
from the other three into a continuous multimodal self-organizing process of coordination
between agents [27]. In contrast to simpler turn-taking concepts of interaction, the
meaning of individual interactions can no longer be derived without the knowledge of
the broader context in which these interactions occur [21].
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2.3 Human-Robot Collaboration

Human-Robot Collaboration (HRC) is a sub-field of research within HRI focusing on
the study of cooperation, communication, and the division of labor between humans and
robots, primarily within manufacturing and assembly-related, tabletop scenarios where
humans and collaborative robots work in close proximity with shared workspaces and
shared tasks (see figure 2.3a) [28], [29]. With growing product individualization [30] and
a shortage of skilled labor [31], real-world applications of HRC are becoming increasingly
sought after due to increasing complexity of modern production and assembly [30].
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Figure 2.3: (a) Collaborative Robot in Tabletop Scenario, (b) HRC - Area of Application
in Assembly (based on [32]),

The term cobot, short for collaborative robot, was first introduced by Colgate et al.
[33] in 1996 when they were tasked to find ways of making robots adequately safe to work
alongside humans without the need for safety fences. Since then cobots have promised
to democratize the use of robotics and lower entry barriers by offering affordability,
flexibility, safety, productivity, and ease of use [30]. The vital increase in safety necessary
for enabling cobots to work close to humans is achieved by their lightweight design in
combination with collision sensing technologies such as torque monitoring or collision-
sensitive robot enclosures [28]. In addition to being flexibly relocated as they are lighter
than traditional industrial robots, they are flexible in regard to quick changes in task
assignments, due to easy programmability even by non-expert users [28]. The proclaimed
productivity increases are primarily attributed to the combination of human reasoning
and decision-making as well as robot precision, repeatability, and durability [28]. Cobots
can, therefore, broaden the scope of robotic automation to include smaller lot sizes at
higher productivity and flexibility paired with larger variety (see figure 2.3b) [32].
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Previous literature introduced several ways to classify human-robot collaboration.
In addition to the already discussed (see section 2.1) numeric, spatial, and authorial
relation introduced by Burke et al. [13], other scholars such as Bauer et al. [34] or
Müller et al. [35] also distinguish between temporal relations and others like El Zaatari
et al. [36] based on task-related interdependencies. Although the classifications of [34]
and [36] are further discussed in section 2.3.1, it should be mentioned that there are
several others very similar to their approaches.

Another crucial aspect of HRC is task allocation, which focuses on the assignment of
sub-tasks between human and cobot. Generally speaking, task assignments can be pre-
planned and static or dynamically allocated during runtime [37]. Within task allocation,
the ability to handle task-takeovers and to transfer tasks between agents, outlined in
section 2.3.4 and section 3.2, plays a vital role towards increased flexibility in human-
robot-teams.

2.3.1 Defining Collaboration

Similar to the definition of interaction (see section 2.2.3), defining collaboration can be
done in many ways. When one only considers dyadic HRC, often cited approaches are
similar to Bauer et al.’s [34] classification based on spatial and temporal relation and El
Zaatari et al.’s [36] categorization based on task dependencies and process intersections
between cobot and operator.

Degrees of Collaboration based on Spatial and Temporal Separation

Based on Bauer and colleagues’ distinction [34], the degree of HRC can be classified as
either with or without temporal and spatial separation, their resulting types of collab-
oration are shown in figure 2.4 and best described as follows:

(1) Cell: The Cell is used to depict the case where no collaboration is possible, as hu-
man and robot are physically separated, e.g. via a fence, and work entirely disconnected
from each other [34].

(2) Coexistence: Coexistence, is similar to a cell in regards to spatial and temporal
separation as both still work independently of each other [34]. However, in contrast to
a cell, the robot is no longer encapsulated in a protective fence but is equipped with
safety concepts to ensure that it does not injure the human when a collision occurs [35].
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(3) Synchronized: In synchronized collaboration, human and robot are no longer
spatially separated as they now share a single workspace [34]. However, they are still
temporally separated and take turns working on the same workpiece [34]. Usually, each
agent has to accomplish a different set of interrelated sub-tasks depending on the prior
output of tasks performed by the other agent [35].

(4) Cooperation: In cooperative settings, human and robot are not temporally
nor spatially separated as they now simultaneously work in the same workspace, tough
on independent tasks with different components [34]. Therefore, the cobot must be
equipped with some sort of spatial and task awareness to ensure collision-free fluent
teamwork [35].

(5) Collaboration: Collaborative settings are the pinnacle of complexity within
HRC. There is no temporal or spatial separation, as human and robot interactively
work in a shared workspace, on a shared workpiece, towards a shared goal [34]. Their
individual actions are only possible through the other’s simultaneous actions [36]. To
accomplish such a unison, the cobot must be able to understand the task requirements
and comprehend the intentions of his human colleague [36].

Cell Coexistence Synchronized Cooperation Collaboration

Figure 2.4: Degrees of Human Robot Collaboration (based on [34])

Degrees of Collaboration based on Task Interdependencies

Although following an approach, such as Bauer et al.’s [34], to distinguish between
different degrees of HRC allows for a better understanding of especially safety-related
requirements, their distinction does not explicitly take into account if and how tasks and
processes assigned to cobot or human depend on each other. In contrast to that, Zaatari
et al. [36] classify as either with or without dependencies and shared workpieces. Their
resulting classification, shown in figure 2.5, distinguishes four degrees of collaboration:
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(1) Independent: In independent HRC, which is comparable to Bauer et al.’s [34]
classification of coexistence, human and cobot independently work on their individual
workpieces [36]. Safety is achieved by utilizing the cobot’s internal safety features such
as torque monitoring [36].

(2) Simultaneous: HRC can be classified as simultaneous if cobot and human work
on the same workpiece, yet on separate processes [36]. Consequently, their main depend-
ency is the shared workpiece, but they are neither task nor time-dependent from each
other [36]. Linking it to Bauer et al. [34], simultaneous HRC would roughly translate to
cooperation. Therefore, the cobot must also be equipped with spatial and task-awareness
techniques.

(3) Sequential: In sequential HRC, human and cobot still perform individual pro-
cesses, but time is introduced as the primary dependency between them [36]. The
respective processes have to be executed in sequence and outputs from one agent can be
seen as inputs for the other’s subsequent process [36]. Thus, depending on the overall
process structure, sequential HRC is comparable to Bauer et al.’s [34] classification of
either synchronized or cooperative HRC.

(4) Supportive: Similar to Bauer et al.’s [34] classification of collaboration, support-
ive HRC requires human and cobot to work on a single process in a shared workspace,
with a shared workpiece, without temporal or spatial separation [36]. Consequently, the
main dependencies between both agents are the joint actions toward a common goal
[36]. Therefore, the cobot must again be capable of understanding human intentions
and task requirements [36].
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Figure 2.5: Degrees of Human Robot Collaboration (based on [36])
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2.3.2 Task allocation in HRC

In Human-Robot Collaboration, both humans and robots need to be aware of their
own as well as their teammate’s current and future actions - this problem is commonly
referred to as task allocation [38]. In addition to the consideration of who does what
and in which order, it is important to assess when the allocation of tasks takes place [7]
and who is given the authority to allocate (see section 2.3.3). Typically, a given overall
process sequence contains information in regard to the required execution order which
can either be fully sequential or allow parallel execution of sub-tasks [32]. Additionally,
to maximize objectives such as time, quality, ergonomics, and flexibility [32], conflicts
like collisions, obstructions, or reaching for the same object need to be avoided in order
to exploit all advantages and the full potential of human-robot teams [38]. Commonly,
these human and robot characteristics are used to formulate some sort of optimization
problem, where a cost function encoded with all crucial aspects has to be minimized.

Previous literature reports two major approaches each having two subcategories,
namely (1) static/offline allocation with (a) suitability assessment or (b) simulation-
supported allocation, and (2) dynamic/online allocation, as either (a) reactive or (b)
proactive (see figure 2.6) [32].

Task Allocation
Approaches

Suitability Assessment
● Automation potential assessment
● Subjective suitability assessment 
● Quantitative capability calculation

Simulation Supported
● Simulation for schedule validation

● Simulation for schedule optimization
● Simulation for workplace optimization

Reactive
● Reactive adaptation of initial allocation
● Ad-hoc task allocation decision logic

Proactive
● Human as leader with anticipatory robot

Static / Offline
(before execution)

Dynamic / Online
(during execution)

Task X

Task Y

Task Z

Cobot

Human
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Task X

Task Y

Task Z
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Human

Human

Task X
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Task Z
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Figure 2.6: Categorization of Task Allocation (based on [32])
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Static (Offline) Task Allocation

The static view regards all design choices as pre-plannable [37]. Hence, task assignment
is performed prior to task execution, making it unable to cope with unpredictable cir-
cumstances as it cannot be changed at runtime and is therefore static over time [37]. In
general, task assignment prior to execution can be further distinguished by two subcat-
egories:

(a) Suitability Assessment: Allocation based on suitability assessments, assigns
tasks to humans and robots based on individual suitability given a task’s requirements
[32]. Additionally, a reasonability check can be applied to assess the overall appropri-
ateness of the allocation [32]. In principle, the most straightforward approaches are
very similar to Fitts’ [4] MABA-MABA (Men Are Better At - Machines Are Better At)
approach from the 1950s, as they simply assign sub-tasks based on automation poten-
tial and cost to automate [32]. Hence, the human is often forced to do leftover tasks
that can not be handled by the cobot or are to expensive to automate [37]. To over-
come the inherent subjectivity associated with these MABA-MABA-based approaches,
a combination of criteria catalogs and quantitative rating systems have been proposed,
for example, by Schmidbauer et al. [39], Ranz et al. [40], or Müller et al. [35]. However,
even these more analytical approaches are not further validated prior to execution [32].

(b) Simulation Supported: In contrast to that simulation-supported, capability-
based task allocation methods try to validate their assignment by running simulations
prior to task execution [32]. Therefore, these methods can evaluate and optimize mul-
tiple task assignments based on the interaction dynamics of humans and robots [41].
Additionally, these approaches can be used to optimize the physical workplace layout
for a given process [32].

However, even though these static allocation methods, can reduce some human-
related errors and decrease the cognitive load while executing a task, research criticizes
and questions the static view for driving a decline in human skills, knowledge, and
agency [42], while also causing distrust in automation, decreased situational awareness,
automation-induced errors, and ultimately job dissatisfaction [37].
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Dynamic (Online) Task Allocation

In order to tackle the limitations and challenges of static task allocation, research has
been investigating dynamic (online) allocation of tasks [37]. At its core, dynamic al-
location tries to use performance metrics, human attributes, and system conditions to
dynamically create contingency plans for emerging or unpredictable circumstances [37].
In accordance with [32], dynamic task allocation can be categorized into two subcat-
egories:

(a) Reactive / Ad-hoc Allocation: Reactive approaches either involve (i) a pre-
computed plan of tasks already assigned to the human or the robot that gets monitored
and adjusted on an individual task level or by invoking a re-planing of all pending tasks,
or (ii) an online ad-hoc decision logic assigning each task based on e.g. resource avail-
ability, resource capability, or a balanced workload to reduce to the potential of human
fatigue [32]. However, it’s important to note that these sub-approaches are usually blen-
ded together and overlap, especially when an ad-hoc logic is used to reassign tasks in
response to deviations from the original plan [43].

(b) Proactive Allocation: Proactive approaches, on the other hand, are inspired
by human teamwork, where each individual can anticipate and proactively support the
actions of their teammate by recognizing the need for assistance before it is even reques-
ted [44]. Therefore, proactive allocation empowers humans to be the team leader, as the
system proactively determines how to assist, anticipating the human’s needs and taking
the initiative to perform preparatory work in parallel [32].

2.3.3 Authority and Agency in HRC

Within automation, in general, and HRC in particular, the authority to allocate func-
tions within the team can be distinguished into three types: In (a) Adaptable Allocation,
also called user-driven allocation, only the human is given the authority to adapt the
task distribution [37]. (b) Adaptive Allocation, also known as system-driven allocation,
if the authority to adapt task assignments belongs to the system [37]. Last but not least,
(c) Hybrid Allocation when human and cobot share the authority to allocate [37].

Comparing these types of authority coupled with human agency within human-robot
teams, previous empirical work remains inconclusive, as reported results paint a spec-
trum of preferences based on multiple criteria. On the one hand, the findings by Gom-
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bolay et al. [42] indicate that humans prefer adaptive system-driven allocation merely
due to a higher degree of efficiency. Schulz et al. [45], however, suggest it may be prefer-
able to only use an interaction style that allows for robot-led interactions when dealing
with higher cognitive load actions and shift to human-led interactions for joint actions.
In contrast to that, the conclusions by Tausch et al. [7], imply that humans prefer to
have agency over the allocation of tasks. It is also worth mentioning, that while dynamic
techniques have been found to increase acceptance, the level of trust, and situational
awareness of the human worker when compared to static approaches [46], they can also
distill distrust in automation when the system is perceived as unreliable [37].

2.3.4 Task Takeovers

Lending from other collaborative human-machine systems like autonomous driving, the
concept of task takeovers refers to the dynamic transfer of control between agents, e.g.
between humans and vehicles [47]. Depending on the specific situation and task re-
quirements, this transfer can occur in both directions, allowing humans to hand over or
request control from the machine and vice versa [47]. However, to the best of the au-
thor’s knowledge, there are little to no publications in the HRC domain on the concept
of mid-task interruptions and task takeovers, respectively. Even though research in this
area could especially be of interest to human-robot teams in collaborative scenarios,
where human-in-the-loop decision-making introduces uncertainty [6] and inappropriate
robot behavior can disrupt the workflow and lead to dissatisfaction among human oper-
ators [2]. Figure 2.7 shows how a simple task takeover can be conceptualized: After the
human requests to take over a task, the robot must interrupt what it is currently doing
and transfer the task to the human. Once the human has completed the interrupted
task, the robot can be triggered to resume its remaining tasks.

Robot Tasks

Human Tasks

Request Takeover Transfer 
Taski

Interrupt
Taski

Interrupted

 Request Resume

Resume
Taski+1

Taski-1 Taski Taski+1

Taskk Taski Taskk+1

Figure 2.7: Concept of a Task Takeover)
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2.4 Theories of Communication

A primary challenge in HRI is to design robots that can effectively communicate with
humans [13], [48], [49]. Yet, regardless of being a core enabler of purposeful human-robot
interaction [8], literature struggles to agree on a single definition, as it “is an umbrella
term for different perspectives and constructs” [50, p. 3].

Often regarded as fundamental work in this regard are Watzlawick’s five axioms
on human communication [51], discussed in section 2.4.1. Additionally, two frequently
used types of communication frameworks are of transmissional and transactional nature
[21]. Transmissional models of communication, depict communicating as a linear one-
directional act of transmitting a message from an information source to a destination
[50]. Transactional models, on the other hand, try to capture the dynamic, irrevers-
ible, and continuous characteristics, by introducing concepts such as feedback loops for
establishing shared awareness in order to achieve a common goal and reduce misunder-
standings [21]. The general concepts, as well as respective advantages and drawbacks
of these two approaches, will be discussed in section 2.4.2 (transmissional) and 2.4.3
(transactional).

Despite several publicly available frameworks, which were specifically developed for
application in HRI and in combination with the fact that robots are currently only
capable of imitating, replicating, or approximating human communication [52], Krämer
et al. [24] argue that human will always look for familiarities with previous experiences.
Hence, every theory trying to depict human-robot communication should be grounded in
human-human communication theories [21], [24]. The main advantage of using human-
human communication theories is a huge corpus of already available insights into human
expectations [21]. Potential drawbacks, however, include not being able to fulfill human
expectations, due to expectations exceeding achievable humanlike robot behaviors [53]
and restricted design options due to focusing on said human likeness [54].

2.4.1 Watzlawick’s Five Axioms

One of the most cited theories on communication are Watzlawick’s five axioms, which
sum up to: (1) One cannot not communicate, (2) every communication includes con-
tent and relationships, (3) communication is punctuated, (4) communication is digital
(verbal) and analog (nonverbal), (5) communication is either complementary or sym-
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metric [51]. Relating the five axioms to human-robot interactions and consequently to
human-robot communication, [50] sees the key takeaway of the first axiom in recogniz-
ing that communicating with a human involves unconscious processes. This means that
any action or behavior, or even the lack thereof, can potentially be interpreted, hence
every design decision intentionally or not can influence success in HRI [50]. As humans
tend to attribute minds to almost anything they encounter [9], the notion of the second
axiom highlighting how relationships (e.g friends vs strangers) shape the communication
content and the third axiom emphasizing how different parties can construct diverging
meanings out of the flow of communication [51], are vital in acknowledging how humans
can understand robots. Utilizing the fourth axiom which tries to separate the spoken
word from how it is said and how other non-verbal cues can influence communication
[51], research can examine how different forms and modalities of human-robot commu-
nication can be categorized [55]. The fifth and final axiom relates to power dynamics [51].
For human-human communication, symmetric would mean that both parties behave as
equals [51]. Using [13]’s authorial relation viewpoint (see 2.1) this would roughly trans-
late to human and robot as peers. In this context of power, complementary would mean
that there is unequal power, for human-human this could be boss-employee, parent-child,
teacher-student and so on [51]. For human-robot on the other hand, again using [13]’s
third perspective on HRI, this translates to scenarios with humans as supervisors or
operators.

2.4.2 Linear (transmissional) Frameworks of Communication

As HMI and HRI, in particular, are rather recent areas of research (see section 2.1),
commonly used frameworks to describe unidirectional communication are adapted from
research on human-to-human communication as well as research on telecommunication
from the early 20th century. Three of the most influential publications in this regard
are “A Mathematical Theory of Communication” by Shannon [56], “The Structure and
Function of Communication in Society” by Lasswell [57] both published in 1948 and
Berlo’s “SMCR” [58] model published in 1960.

Shannon’s mathematical model [56], depicted in figure 2.8, initially designed to un-
derstand and enhance telecommunication message transmission, views communication
as a unidirectional linear process, where messages flow from an information source (left)
to a destination (right). In total, [56]’s schematic communication system consists of
six essential parts: (1) The information source to produce a single message or a set of
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multiple messages that are supposed to be transmitted to the destination. (2) The trans-
mitter to transform messages into transmittable signals. (3) The channel as a medium to
transmit the signals. (4) The noise source, influencing the channel, potentially altering
the transmitted signals and resulting in diverging signals at the transmitter and receiver.
(5) The receiver to reconstruct messages from the received signals. (6) The destination
a person (or thing), who is supposed to receive the messages. The general schematics
of source, transmitter, channel, noise, receiver, and destination are helpful analogies for
human-robot communication and can aid in understanding how for example a robot’s
intended and unintended communication cues can influence successful communication
with a human.

MessageInformation
Source

SignalTransmitter MessageReceiver Destination
Received

Signal
Channel

Noise Source

Figure 2.8: Schematic diagram of transmissions (based on [56])

In contrast to that, Lasswell’s model of communication within society (figure 2.9),
while also depicting communication as a unidirectional linear process, focuses on answer-
ing the five questions [57]: (1) “Who?” to identify the person (or thing) initiating the
communication. (2) “Says What?” to extract the topic/content of the communicated
message. (3) “In Which way?” to answer how the message is conveyed. (4) “To Whom?”
to identify the intended recipient of the message. (5) “With What Effect?” to determine
if and how the message has observably affected/manipulated the receiver. Based on these
five questions covering the entire process, from source and receiver characteristics, over
manipulable variables like behavioural cues, to dependent variables such as the effect of
the communication, Laswell’s 5Ws are still a valuable framework in designing human-
robot communication [50]. Especially, as Lasswell’s theory implies that communication
must be planned and designed before it actually takes place, which is even more true
for man-made systems where a designer must in advance consider how the design will
implicitly as well as explicitly influence communication [50]. However, following this no-
tion of planning and designing communication, Fritjns et al. [21] argue that interpreting
human-robot communication merely as communication with the designer is not sufficient
as there will always be an element of unpredictability and situational dependency.
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Figure 2.9: Laswell’s 5W communication model (based on [57])

Berlo’s “SMCR” [58] model of communication, depicted in figure 2.10, aims to extend
and combine the models of Shannon and Lasswell by discussing key ingredients shaping
communication. At its core, it follows the same concept of linearity with messages flowing
from source to receiver [58]. For Berlo, the four main components of communication
are: (1) The Source, which can either be one individual or a group of individuals, is
characterized by the five features (a) communication skills, (b) attitudes, (c) knowledge,
(d) social system, and (e) culture [58]. (2) The Message as a physical product produced
by the source, e.g., written text, speech, or artwork [58]. Each message can be analyzed
based on its elements or its structure and has features such as (a) code - which can be a
group of structured symbols with meaning, (b) content, i.e., the expressed information,
and (c) the treatment correlating to the decision of which code to use, which content
to express, and how to express it [58]. (3) The Channel, consisting of a vehicle, its
carrier, and docks to load and unload, as an analogy of traveling between shores, e.g in
oral communication sound waves are the vehicle, the air is the carrier and hearing and
speaking are the corresponding docks [58]. (4) The Receiver, defined with identical skills
and features as the source. Additionally, these four basic components are aided by (5)
an Encoder and (6) a Decoder to transform ideas into messages and messages back to
ideas.
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Figure 2.10: SMCR communication model (based on [58])
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Due to the rigidity and linearity, some researchers are criticizing that the mutual
and dynamic aspect of generating shared meaning via communication is not covered by
these transitional models [59]. In addition, it has also been pointed out, that treating
information as a carryable physical object fails to account for the crucial role of context
in shaping how a message is understood, as the same words can have different meanings
depending on the situation and background knowledge of the sender and receiver [21].
However, according to [50] the argument of missing mutuality is primarily valid for
complex human-to-human communication and less for communication between robots
and humans, where the linearity helps in systematizing and understanding the underlying
communication-processes.

2.4.3 Transactional Frameworks of Communication

Analogous to transmissional frameworks, most transactional communication theories
are grounded in research on human-to-human communication. However, in contrast to
the linearity, they introduce feedback loops from receiver to sender, often even going
as far as depicting both involved agents as communicators who continuously send and
receive messages. With the main focus on identifying relevant components and factors
influencing communication instead of defining the underlying technical process, these
frameworks try to see communication as a process of achieving mutual understanding
[60] and establish shared meaning with less uncertainty [61]. Most literature viewing
communication as a transaction can be linked back to Barnlund’s “Transactional Model
of Communication” [61] published in 1970 and Kincaid’s “Convergence Model of Com-
munication” [60] published in 1979.

Barnlund [61], characterizes communication as a complex, multifaceted and evolving
process. According to him, it is continuous, dynamic and circular, i.e. messages flow
back and forth in an ongoing, interconnected cycle [61]. Hence, meaning is not directly
linked to a perfect reconstruction of the message content itself, like in Shannon’s math-
ematical model [56], but rather to the individual process of constructing meaning based
on multiple factors such as behavioural, verbal, nonverbal, public and private cues as well
as prior experiences and social, cultural, relational, physical, and psychological context
[61]. He also suggests that each event of communication is unique and once a message
is communicated, it cannot be taken back, underscoring the irreversible nature of inter-
actions [61]. Figure 2.11 tries to depict this continuous circularity with its numerous
elements influencing the creation of shared meaning.
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Figure 2.11: Transactional Communication Model (based on [61])

Comparable to Barnlund’s approach, Kincaid’s convergence model of communication
[60], depicted in figure 2.12, interprets communication as a dynamic process aimed at
mutual understanding and mutual agreement through the creation and interpretation of
information. Meaning is no longer attributed to the message, instead meaning has to
be actively negotiated and worked out by the communicating agents [60]. However, this
also implies that while the understandings of involved agents might align over time, per-
fect convergence is unattainable due to each participant’s unique prior experiences [60].
According to Kincaid, human communication occurs within each communicator’s social,
physical, and psychological realities and mutual action, agreement, and understanding
are primarily shaped by the individual perception, interpretation, understanding, belief,
and action [60].
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Figure 2.12: Convergence Model of Communication (based on [60])
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Although transactional frameworks have been instrumental in understanding human-
to-human communication, literature notes objections in regard to their application to
other forms of communication [50]. These types of models have also been criticized for
their lack of explanation of how meaning is actually produced [62]. Furthermore, their
focus on continuous circular mechanisms, which frequently rely on shared background
knowledge and mutual understanding, is less applicable to robots that do not possess
the same conversational understanding and social cues as humans [24]. This asymmetry
in agent capabilities is central to the proposal of HRI specific communication models
discussed in section 2.4.4.

2.4.4 HRI Frameworks of Communication

To tackle the debated key issues of classical human-to-human centered communication
frameworks in regard to human and robot interactions, research has been discussing
simple adaptations to existing models and developing new HRI specific models for the
last decades. Classical approaches such as Osgood’s and Schramm’s model of circular
communication, Berlo’s SMCR model, and Barnlund’s transactional model have often
been used as a basis for further exploration [63], [64]. At the core of most HRI specific
communication models, such as Banks’ and De Graaf’s [65] “Agent-Agnostic Trans-
mission Model” and Visser et al.’s [66] “Theory of Longitudinal Trust Calibration in
Human–Robot Teams”, the reciprocal aspect of communication is depicted by viewing
humans and robots as different yet interrelated entities both capable of equally contrib-
uting towards a common goal.

In contrast to these symmetric approaches, Frijns et al.’s [21] “Asymmetric MODel
of ALterity in Human-Robot Interaction (AMODAL-HRI)” argues that, with currently
available technologies, communication between human and robot can not be symmet-
rical due to agent inherent capabilities and processes. They build their model on well-
established theories such as Kincaid’s convergence model of communication [60] and link
it to Hellström and Bensch’s [23] concept of mutual understanding and the Theory of
Mind (ToM). Additionally, they incorporate robot-specific aspects such as the robot per-
ception process as described by Christensen and Hager in the “Handbook of Robotics”
[67]. Thus their resulting model, depicted in figure 2.13 distinguishes:

(1) The Human with psychological capabilities such as perceiving, analyzing and
interpreting information, and choosing actions [21]. (2) The Situation, which encom-
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passes the physical environment and elements of the interaction such as interfaces and
interaction outcomes like the situational common ground, which accumulates over time
[21]. (3) The Robotic System in terms of its sensors and actuators, but also its in-
formation handling and behavioral capabilities [21]. Following the general approach of
trying to model similarities between the asymmetric agents, another important aspect
of their framework is the inclusion of short-term and long-term memory for the human,
and respectively a buffer and database for the robot [21]. These long and short term
storages are the foundation for arriving at common ground, as they hold the humans
and robots (although arguably artificial) beliefs, mental models, situational awareness,
inferred intent, and goals [21].
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Figure 2.13: Asymmetric MODel of ALterity in Human-Robot Interaction (based on
[21])

Despite the benefits of using feedback loops [21], [66], concepts of mutual under-
standing [21], [23], and dynamic agent roles [65], the applicability of these approaches
in HRI is mostly challenged by the difficulty to perceive and predict human behavior,
attitudes and internal states of mind [24], [50]. Therefore, it seems reasonable to fol-
low Kunold’s and Onnasch’s approach [50] of discretizing human-robot communication
acts. This discretization allows for a better understanding of how each individual act
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of communication influences the Human-Machine System (HMS) and helps to identify
applicable robot design options [50]. Their framework builds on Lasswell’s theory of
mass communication and extends it by introducing context-related key ingredients ne-
cessary for answering his five questions in regard to HRI (see figure 2.14). In a way
their ingredients are comparable to how Berlo’s “SMCR” model introduced the essential
features for human-to-human communication. Accordingly, they try to answer Lasswel’s
5Ws as follows:
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Figure 2.14: Linear HRI - Framework (based on [50])

(1) “Who?” - The Source of information as either (a) a (social) robot, which can be
characterized by its role and morphology, or (b) a human, with attitudes, a personal-
ity, personal knowledge and abilities, and a sociodemographic background such as age,
gender, education, ethnicity [50].

(2) “Says What?” - The Message of a given communicative act, can be put into
context based on (a) its content and (b) quality [50] - a detailed discussion of the
characteristics of a message can be found in section 2.5.

(3) “In Which Channel” - The Channel as a combination of (a) communication
form and (b) output modality [50], further elaboration can be found in section 2.6.

(4) “To Whom?” - The Receiver again as either (a) a (social) robot characterized
by role and morphology, or (b) a human with the already mentioned human traits [50].
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(5) “With What Effect” - The Effect of communicative actions can either be
(a) intentional and related to the task or social aspects, e.g., to raise awareness or shift
attention, to coordinate actions, to enhance transparency and understanding, or to affect
trust [50]. Alternatively, the effect can be (b) unintentional, e.g. caused by a random
movement that gets wrongfully interpreted [50], linking the framework to Watzlawick’s
first axiom “One cannot not communicate” [51].

2.5 Communication - The Message

Despite their varying understanding of human-robot communication, most of the theories
discussed in section 2.4, see the message and respectively its meaning as a central element
of communication. Expanding on Lasswell‘s theory, the answer to his second question
“Says What?” [57], discussing what the content of a message conveys, can be elaborated
through (1) interpersonal message-centered goals [68] and additionally, in the context of
HRI it can also be categorized by (2) the quality of how the message is communicated
[69] as well as (3) six distinct message types [55].

Taking a closer look at (1), the three major message-centered goals proposed by
Burleson et al. [68] are: (a) Interactional goals, in order to control the flow of com-
munication, e.g. to initiate or end a conversation, adapt messages for an audience, or
shape the impression one has on others [68]. (b) Relational goals, where tactics such as
humor, politeness, or flattery can be used to build, maintain, or restore a relationship
[68]. (c) Instrumental goals, covering all functional aspects such as asking for additional
information or the fulfillment of a task [68].

When talking about (2), the quality of a communicated message, research proposes
a spectrum of three approaches for considering how a robot could be communicating
messages: (a) The natural approach, suggests enabling robots to use similar commu-
nication patterns to humans, in order to improve relatability and effectiveness [69]. In
contrast, (b) the artificial approach advocates for creating robots that communicate in
a way clearly distinguishable from humans [69]. (c) The none of the above approach in-
volves mixed techniques and suggests integrating elements of human likeness and robot
characteristics [69].

Following the intent of (3), Gustavsson et al.’s [55] messages types, the messages
required for HRI can be categorized based on their content as follows: (a) Command
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messages, to communicate what to do next, for example, start or stop commands [55].
(b) Data messages, to inform either agent about things such as dimensions, quantity,
speed, system pressure, etc. [55]. (c) Highlighting messages, to reference objects and
their location in the physical world, in order to perform tasks where for example, the
human asks the robot to get a specific object [55]. (d) Demonstration messages, to illus-
trate the chronological and real world positional information required for the execution
of longer work-flows, such as product assemblies [55]. (e) Guidance messages, to demon-
strate to the robot how it should move for a specific task by physically moving it to the
appropriate real world poses [55]. (f) Option messages, to suggest context dependant
options to the human, e.g. to change the current operating mode [55].

2.6 Communication Channels (= Form + Modality)

Besides the message, the majority of theories examined in section 2.4 include the com-
munication channel as an essential element, which can be further distinguished by (1)
Form and (2) Modality [8]. When talking about, (1) the form of communication, most
literature distinguishes between (a) verbal and (b) nonverbal communication [8]. Fol-
lowing this distinction, verbal communication utilizes written or spoken words to share
messages [50]. In contrast, nonverbal communication refers to information being trans-
mitted via facial expressions, body language, gestures, and other physical or visual cues
instead of words [50]. In regard to (2), visual, auditive, and tactile are typically men-
tioned as the most common modalities in HRI [19]. Some exemplary combinations of
form and modality and their respective, channels of communication are shown in table
2.4.

Modality
Form Auditive Visual Tactile
Verbal Speech Text Braille dots

Nonverbal Primitive Sounds Pictures, Facial
Expressions

Vibrations

Table 2.4: Example combinations of form and modality

In addition to characterizing the communication channel by form and modality, it
can also be useful to distinguish between (1) explicit and (2) implicit communication
[8]. Typically, explicit communication refers to an intentional combination of a specific
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form and modality, to reduce the possibility of misinterpretations and ambiguities. In
contrast, implicit communication usually refers to nonverbal cues like pitch and tone in
a verbal message or visual cues like facial expression, gaze, and body language.

Drawing on Frijns et al.’s [21] claim of inherent agent asymmetry, coupled with Kan-
towitz and Sorkin’s model of Human-Machine Interaction [14] (see figure 2.1), it is reas-
onable to differentiate between Human to Robot Communication (HTRC) and Robot
to Human Communication (RTHC) in addition to categorizing by form and modality.
In a broader sense, Human to Robot Communication can be seen as an enabling factor
to empower humans to operate the robot [70]. Despite the design notion of human-
centered design, focusing on making robots adapt to humans, the majority of HTRC to
date is mediated by physical interfaces [55]. Section 2.6.1 and 2.6.2 further discuss the
modalities for HTRC and RTHC channels.

The combination of HTRC and RTHC channels is typically defined as part of the
User Interface (UI) [70]. The most common UIs to date are Graphical User Interface
(GUI), Voice User Interface (VUI), and most recently Natural User Interface (NUI) [70].
GUIs typically rely on a combination of verbal as well as nonverbal visual RTHC [70].
VUIs, on the other hand, solely rely on bidirectional auditive communication [70]. While
GUIs are based on metaphors, such as the office metaphor with a computer desktop and
a trash can for deleting objects, NUIs do not need metaphors anymore, as they try to
follow the notion of human-centered design and rely on direct input, such as gestures or
facial expressions [70].

2.6.1 Human to Robot Communication Channels

Human-to-human communication is complex and multimodal as it utilizes most human
responders and can include verbal as well as nonverbal aspects [71]. Therefore, it involves
channels such as speech, gestures, facial expressions, an body language [71]. Humans can
practically respond with almost any singular muscle or group of muscles, e.g. use a finger
or hand to touch something or point somewhere, raise an eyebrow to express disbelief,
walk or run via a coordinated movement of upper and lower limbs, or produce sounds via
synchronized muscle contractions affecting the lung, vocal chords, tongue and lips [72].
Hence, to enable natural and intuitive interaction, robots need to be able to perceive
and interpret these signals and cues of human speech, gaze, facial expression, and body
language in order to respond appropriately [71]. There are numerous technologies that

34



2 Research Background

can be utilized in Human to Robot Communication channels [70]. These technologies
can be roughly grouped into six subgroups each meeting different requirements in regard
to wearability, coverage, the necessity for active involvement of at least one of the user’s
hands, and the complexity of the transmittable message:

(1) Simple haptic control elements, such as levers, joysticks, and mouse pads are
usually not wearable and have limited coverage as the require physical contact with the
user’s hands [55]. In regard to message complexity, they are typically used for sending
simpler command messages [55].

(2) Buttons, e.g real or virtual keyboards are mostly also not directly wearable,
however, trough modern touch screens and for example smartphones or smartwatches
soft-buttons have also become wearable [55]. Nevertheless, real and virtual buttons and
keyboards typically require the use of hands [55]. Message complexity is also limited to
simpler types, with the ability to send command messages and, when using a keyboard
with multiple buttons, more complex data messages [55].

(3) Microphones, for speech recognition allow for hands-free HTRC and can either
be wearable or stationary [55]. Hence the coverage is either limited by the microphone’s
range to detect sound or the microphone’s wireless connection to the robot’s control
unit [55]. The transmittable message complexity includes command messages and more
complex data messages

(4) Cameras and motion sensors, can be utilized for hands-free recognition of
gaze and facial expressions but also for detecting gestures, body language, or human
intent [55]. Although there are individual use cases with wearable cameras, it is by far
more common to have a fixed camera position and, therefore, limited coverage based
on the camera’s field of view [55]. In contrast to that, motion sensors are by design
meant to be worn and can be less restricting when it comes to coverage [55]. Message
complexity can range from simple command messages to highlighting messages, or even
demonstration messages.

(5) Guiding devices, to allow for manual and direct movement of the robot, require
physical contact and can be used to transmit guidance messages to the robot [55].

(6) Brain Computer Interfaces, are the latest addition of wearable technologies
enabling hands free HTRC [73]. However, these systems are still an area of active
research [73], but in theory, they should be able to transmit most of the message types
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discussed in section 2.5.

2.6.2 Robot to Human Communication Channels

All modalities used in RTHC need to transmit information capable of being perceived
by at least one human sensation: (1) sight, (2) touch, (3) hearing, (4) taste, (5) smell,
(6) temperature, (7) acceleration, (8) pain or (9) the position of body parts [14], [72],
[74]. A key feature shared among all human sensors is the interplay of sensing physical
phenomena such as light rays, physical contact, sound waves, flavors, odors, etc. with
the respective sensory organ and the necessary processing of nerve signals in the brain
in order to perceive and develop a mental model of awareness [72]. Without claims to
completeness, table 2.5 depicts a list of human sensory modalities and their respective
organs.

Sensory System Sensation Organ
Visual Color, Brightness Eye
Tactile Pressure, Touch, Vibration Skin
Auditory Pitch, Loudness Inner Ear
Gustatory Taste Surface of the Tongue
Olfactory Smell Nasal Cavity
Thermal Temperature Skin
Vestibular Linear and Angular Acceleration Middle Ear
Pain Perception Pain All Free Nerve Endings
Kinesthetic Position of Body Parts Muscles and Spine

Table 2.5: Overview of sensory modalities (based on [74])

To produce one of these signals detectable by a human sensor, multiple technologies
can be utilized. Similar to HTRC, these technologies meet different requirements in
regard to wearability, coverage, usage of hands, and the transmittable message type:

(1) Simple Indicators, such as light beacons do not require the human to hold a
device but require a direct line of sight to be perceivable [55]. In contrast to that, haptic
alerts need physical contact in order to work. Whereas simple analog indicators, like
pressure gauges, are also hands-free and again limited by an unobscured line of sight
[70]. For light beacons and haptic alerts, the transmittable message complexity is mostly
limited to safety-critical command messages, simple highlighting messages like in pick-
by-light scenarios, or option messages [55]. Simple analog indicators, on the other hand,
are typically used for sending data messages.

36



2 Research Background

(2) Speakers and Headphones, enable hands-free RTHC and can be worn or have a
fixed location [55]. Therefore, the limiting factor in coverage is mostly the ambient noise
level. Message complexity can range from simple command messages to data messages
and, to some degree, even highlighting messages and option messages are possible [55]

(3) Graphical Displays, are the most common technology used to facilitate RTHC
[70]. With the exception of mobile devices, they do not require to be worn by the user
and allow for hands-free perception. Coverage is again limited to a direct line of sight.
In regard to message complexity, graphical displays are the most versatile technology for
RTHC, as they are capable of basically covering all message types discussed in section
2.5.

(4) Augmented Reality (AR) Devices are a special group of displays capable of
integrating virtual elements into real environments [73]. Depending on whether AR is
achieved via spatial monitors, spatial projectors, hand-held devices, or head-mounted
devices, humans can be required to wear something or use their hands to be able to
perceive [55]. When it comes to message complexity, AR is equally versatile as regular
displays, also covering all message types.

(5) The Robot Embodiment, as communication technology, can be interpreted fol-
lowing Watzlawick’s [51] first axiom and extends beyond the concept of Gustavsson et
al.’s [55] HRI message types as the robot’s intentional or unintentional behavior, appear-
ance, and presence alone can inherently communicate messages such as joy, frustration,
or urgency.
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In this chapter, the state of the art in key areas essential for seamless handling of mid-
task interruptions in HRC are discussed in greater detail. Generally speaking, there
are several fundamental requirements to enable these kinds of interruptions and task
takeovers: (1) The interrupting agent must be able to explicitly or implicitly commu-
nicate the intent to takeover, (2) the interrupted agent must be able to recognize the
intent to takeover (3) the task must be transferred from interrupted to interrupter, (4)
the interrupted must be able to recover from the interruption.

To address these aforementioned requirements, the first subchapter 3.1, explores dif-
ferent methods of how tasks are currently dynamically allocated between humans and
robots, with a special focus on (a) the respective general concepts, (b) how these tech-
niques integrate the handling of mid-task interruptions, and (c) if and how the inclusion
of communication techniques is accomplished. This is followed by the second subchapter
3.2, examining various explicit as well as implicit methods for transferring tasks between
humans and robots.

Methodology

To compile a list of relevant literature a semi-structured literature review, following
the suggestions by Carrera [75], was employed. Utilizing scientific databases such as
ACM Digital Library1, IEEE Xplore2, and SCOPUS3, an initial set of 542 articles was
identified using the following set of keywords: (“task allocat*” OR “task plan*)
AND “human” AND “robot” AND “collabo*”. After removing duplicates, 480
articles remained. In order to perform a suggested initial screening based on the title and
abstract [75], the following inclusion and exclusion criteria are applied to the remaining
articles:

1dl.acm.org
2ieeexplore.ieee.org/
3scopus.com/
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• Only full-text articles are considered for review.

• Only articles accessible via open access or through the TU Wien library are in-
cluded.

• Only papers specifically addressing tabletop HRC are included.

• The numerical relation (see section ??) between human and robot must be one on
one.

• Papers focusing primarily on reviews as well as proceedings are excluded.

• Only studies with a focus on dynamic allocation during runtime are included.

The initial screening narrowed the list of applicable papers down to 31. Following a more
thorough reading process paired with forward and backward search to find additional
literature especially relevant to section 3.2, 26 key articles are selected for in-depth
analysis, representing the major types of task allocation and communication techniques
relevant to this study.

3.1 Dynamic Task Allocation: Readiness for Mid-Task Interruptions

In this section, the state-of-the-art of dynamic task allocation is explored with respect to
how different allocation strategies can support the requirements discussed in the intro-
duction of this chapter and enable fluid responses to dynamic changes within collabor-
ative tasks. Based on the in-depth analysis of the selected articles, four commonly used
dynamic task allocation techniques can be identified: (1) AND/OR Graphs to create a
hierarchical representation of tasks with alternative execution paths (section 3.1.1), (2)
Behavior Trees as modular and reactive behavior model (section 3.1.2), (3) Hierarchical
Task Networks to define decomposable action sequences with specified constraints and
ordering (section 3.1.3), and (4) Markov Decision Processes as a probabilistic framework
for decision-making under uncertainty (section 3.1.4). Given the unpredictable nature
of collaborative work, understanding these techniques is essential for developing systems
that can effectively handle mid-task interruptions, allowing for seamless transitions and
adaptations when unexpected events or changes in human intentions occur.
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3.1.1 AND/OR Graphs

The concept of graph theory has been researched as a fundamental problem-solving pro-
cess since the 17th century, with early renowned contributors such as Euler, Leibniz,
Cauchy, and many more [76]. Within graph theory, AND/OR Graphs (AOG) are a
special group of Directed Acyclic Graphs (DAG) for representing and solving problems
with complex dependencies [77]. Utilizing AOGs, solving a problem (e.g., task alloca-
tion) can, therefore, be viewed as searching a path of minimal cost within the graph [77].
In general AND/OR Graph (AOG) based algorithms can be used for static as well as
dynamic task allocation with the main differentiation of which nodes are included and
when the graph is queried to find the optimal path. Therefore, most static as well as
dynamic techniques include (1) the Task Representation Layer (see figure 3.1) for se-
mantically formalizing the problem at hand and (2) the Task Planning Layer to perform
the necessary calculation to find a preferably optimal solution:

n5

n2 n3n1

n4

h5

n7

n8

h1
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Figure 3.1: AND/OR Graph Representation (based on [78])

(1) Task Representation Layer: To create a semantic representation of the hier-
archical dependencies within a collaborative task, a predefined description is used to
construct a directed acyclic state-based graph [77]. Mathematically, a graph G can be
defined as tuple ⟨N , H⟩, where each node n ∈ N denotes a potential tasks state and each
hyper-arc h ∈ H a transition between states [43]. Additionally, when trying to solve the
task allocation problem, each hyper-arc is associated with a sequence of required actions
A(hi) = (aj, ..., ak) ∈ A [43]. To model a logic AND, a hyper-arc can be used to connect
multiple child nodes NC ⊂ N to a single parent node nP ∈ N [43]. In contrast to
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that, a logic OR is modeled by having multiple hyper-arcs act on a single parent node
[43]. Within the graph G, multiple paths Pi = {ni, ..., nj, hl, ..., hm} can be defined and
associated with the individual cost of nodes and arcs c(Pi) = �j

k1=i c(nk1) + �m
k2=l c(hk2)

to connect the root node nr ∈ N with a set of leaf nodes NL ⊂ N [43]. For dynamic al-
gorithms, the initialization marks all actions A(hi) ∈ A as undone and all nodes (states)
n ∈ N together with all hyper-arcs h ∈ H as unsolved [43].

(2) Task Planning Layer: To solve the problem of task allocation, some AOG
based methods such as proposed by Knepper et al. [79] and Johannsmeier et al. [80]
employ heuristic search algorithms like A* [81] or AO* [82] to directly find the most
suitable path based on the associated costs. While A* is guaranteed to find the optimal
solution, AO* and similar algorithms compromise optimality to reduce the required
computational complexity [79]. In contrast to that, the frameworks by Darvish et al.
[77], [83] and Karami et al. [78] use a breadth-first graph traversal search for selecting
branches to simulate and compare them via a utility function, for example, execution
time. For dynamic approaches, once either the human or robot executes an action ai its
status is changed to done, and after all associated actions A(hi) are done in the correct
order, a hyper-arc hi is marked as solved [43]. The respective sets of solved nodes Ns

and solved arcs Hs can then be used to query the AND/OR graph G to find sets of
currently feasible nodes Nf and hyper-arcs Hf which can then be used to solve the task
allocation problem [43].

To tackle some of the restrictions in regard to computational complexity and flexibility
as well as scalability requirements, more recent expansion of the representation layer of
AND/OR Graphs are hierarchical AOGs by Darvish et al. [83] and branched AOGs
by Karami et al. [78]. Conceptionally, hierarchical and branched AOGs both aim
at reducing the number of relevant nodes and hyper-arcs for online decision-making,
however, they achieve this in fundamentally different ways. Branched AOGs reduce the
effective number of nodes and arcs by introducing additional graphs, which are only
reached and subsequently exited if a set of branching and merging conditions are met
(see figure 3.2a) [78]. In contrast to that, hierarchical AOGs are basically multi-layer
AOGs where lower level graphs have to be completed in order to be able to execute the
next higher level graph (see figure 3.2b) [83]. Each AOG-layer can be used to represent
a different level of granularity within a given process, for example, when assembling a
kitchen cabinet, the first layer could be the assembly of multiple cabinets, the second
layer could be the assembly of a single cabinet and a third layer the preparation of each
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cabinet wall with support brackets [83].
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Figure 3.2: (a) Branched AND/OR Graph (based on [78]), (b) Hierarchical AND/OR
Graph (based on [83])

While AND/OR Graph based algorithms are capable of online re-planning in case of
unexpected failures during the plan execution and aim to decrease the cognitive load
on the human [83], they have been criticized for assuming optimal human collaboration
behavior and limiting human collaborators to passive roles [3]. Additionally, to the au-
thor’s best knowledge, there have not been any publications utilizing AOGs to handle
mid-task interruptions, although concepts such as Karami et al.’s branched AOGs [78]
could potentially be adapted to accommodate the required functionality. While some
of the examined AOG based allocation techniques limited communication to be medi-
ated via a GUI, others used human activity recognition to facilitate a gesture-based
communication

3.1.2 Behavior Trees

Initially developed to enhance the modularity and scalability of Non-Player Characters
(NPCs) in game design, recent research has transferred the concept of Behavior Trees
(BTs) to robotic applications [84]. Not unlike AND/OR Graphs, BTs are represented
as directed rooted trees (see figure 3.3), a special form of Directed Acyclic Graphs [85].
However, their nodes and arcs do not represent potential task states and state trans-
itions, but rather control and execution functionalities. Using the common terminology
of parent and child nodes, every control node must have at least one child node [85]. The
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root control node is the only node without a parent, and leaf nodes without children are
called execution nodes [85]. The control nodes can further be classified as (a) Sequence,
(b) Fallback, (c) Parallel, or (d) Decorator nodes, and the execution nodes as (a) Ac-
tion, or (b) Condition nodes [85]. Utilizing these simple structural elements allows for
straightforward code reuse, incremental functionality design, and efficient testing [85].

The execution of a BT is initiated by the root control node sending signals at a
specific frequency, these signals are propagated over the control nodes and trigger the
so-called ticks at the receiving child nodes, which immediately return either (a) Success,
(b) Failure, or (c) Running, depending on their current status [85]. It’s worth mentioning
that a tick of a child node is only executed if it receives a signal [85]. Table 3.1 shows
the different node types and how they can be evaluated during a tick.

Node
type Symbol Success If Failure If Running If

Sequence → all children succeed one child fails one child is running

Fallback ? one child succeeds all children fail one child is running

Parallel →→ M children succeed N-M children fail neither succeeded
nor failed

Decorator custom custom custom

Action text completed failed to complete currently executing

Condition
✞✝ ☎✆text evaluates to true evaluates to false Never

Table 3.1: Node Types of a Behavior Tree (adapted from [85])

In order to adapt the concept of Behavior Trees to Human-Robot Collaboration and
make the robot adapt to human presence and intent, Fusaro et al. [84] extend the
standard definition of BTs with three custom nodes: The (1) Reactive Fallback node
marked with R? is used to reactively select tasks which the human has not chosen to
execute. The custom decorator (2) KeepRunningUntilSuccess denoted with ⟳ keeps an
action running until it succeeds [84]. Additionally, they introduce a slightly adapted
sequence control node (3) Sequence-Cost indicated by →$ to adapt the tick sequence of
its child nodes online, based on a cost-utility function [84]. To calculate the cost assigned
to each child of a →$ node, they use a triple of (a) duration index, (b) ergonomics index,
and (c) travel distance index [84].
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Figure 3.3: Example Behaviour Tree Representation (based on [85])

Despite using the term “reactive” to describe their method of task planning, [84]’s
proposed Behavior Tree based algorithm can at best be classified as low-level ad-hoc
decision logic to plan the optimal order of robot assigned steps without taking any hier-
archical assembly order into account. Their implementation allows the user to actively
select the step they want to accomplish via a smartphone app and enables the robot to
“reactively” select its actions to minimize the cost-utility function. Hence, similar to the
previously discussed AND/OR Graph based methods, the human is required to expli-
citly follow the chosen task in order for successful collaboration. Furthermore, Fusaro et
al.’s framework [84] does only include human pose estimation as part of the ergonomics
utility index and not to accommodate any higher level communication. Additionally,
HTRC is only modeled via a smartphone as a mediator. However, by implementing more
sophisticated intention recognition algorithms as custom control nodes, the concept of
BTs could potentially be extended to include more complex HTRC as well as RTHC
and the ability of task takeovers midway through execution.

3.1.3 Hierarchical Task Networks

Decomposing huge intangible concepts into smaller more manageable ideas is crucial for
human understanding. While this decomposition can be achieved via several strategies,
hierarchies are commonly used due to their easy interpretability for humans [5]. Hier-
archical Task Networks (HTNs) offer a powerful way to represent and plan complex tasks
by breaking them down into smaller, more manageable subtasks [5]. Unlike state-based
methods such as AND/OR graphs (see section 3.1.1), HTNs are action-based and decom-
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pose tasks into a network of nodes n ∈ N , with each node representing either a primitive
node nx ∈ Nx associated with a directly executable action a ∈ A or a compound node
that can be decomposed even further [3]. However, similar to AOGs and BTs, the parent
and child terminology can be used to define the root node without a parent to represent
the entire task and leaf nodes without children as the directly executable atomic actions
[1]. The remaining nodes incorporate ordering constraints, dictating how these primitive
actions and compound tasks relate to each other during execution [5]. Figure 3.4 depicts
an exemplary hierarchical task network for the assembly of a desktop PC.

Install
Motherboard

desktop assembly

leaf node root node

Assemble main body

Close Hood

Apply Labels to hood

Obtain Label Apply Label

Obtain Green
Label

Obtain Red
Label

Obtain
CPU Fan 

Install CPU
Fan

Insert
CPU Fan

Obtain
Memory

Install
Memory

Insert
Memory

Figure 3.4: Example Hierarchical Task Network (based on [1])

The two most basic types of ordering constraints are, (1) Fully Ordered, where child
nodes must be run based on a fixed execution order, and (2) Partially Ordered, where
child nodes can be executed in an arbitrary sequence even in parallel [3]. Expanding on
these two basic types, the four most common types of ordering constraint introduced
in literature, although not all are used in every publication, are (1) Sequential, (2)
Independent, (3) Parallel, and (4) Alternative [1], [86], [87].

(1) Sequential: Commonly marked with →, sequential ordering is equivalent to a
fully ordered constraint, as it enforces a strict sequence on the execution of its child
nodes [1]. For instance, in a desktop PC assembly task, the subtask “Install CPU fan”
might have child nodes “Obtain CPU fan” and “Insert CPU fan” which must be executed
in that precise order [1].

(2) Independent: Denoted with ⊥, nodes with independent ordering are a subtype
of partially ordered constraints, as the execution of their child nodes can be of arbitrary
order but conditionally not in parallel [1]. For example, sticking to the PC assembly
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use case, although the subtasks “Apply labels to hood” and “Assemble main body” can
be performed in any sequence, independently from each other, the atomic tasks “Apply
lable” and “Close hood” cannot be executed simultaneously [1].

(3) Parallel: Parallel ordering constraints, typically marked with ∥, are conceptually
a special type of independent nodes and allow simultaneous execution of child nodes as
long as additional constraints, like resource availability, are met [1]. In case of resource
unavailability, they can be performed in any order [1]. Again utilizing the example of
the assembly of a desktop PC, “Install CPU fan,” “Install memory,” and “Tape cables”
can be independently installed in any given order or even at the same time.

(4) Alternative: In order to extend the functionality of a HTNs representation cap-
abilities, it can be extended by an alternative operator, denoted with ∨, to model disjunct
subtasks [87]. Within the PC assembly example, this could translate to individualizing
the label color within the “Optain Label” subtask.

With humans typically tending to follow hierarchical structures when executing a
task, recently several papers adopting Hierarchical Task Networks to solve the problem of
task allocation for tabletop human-robot collaboration have been published, for example
by Cheng et al. [1], and Ramachandruni et al. [3]. In 2021, Cheng et al. [1] introduced
their communication-free HTN based approach, which prioritizes robot actions parallel
to human actions, minimizing potential spatial interference. The time optimization-
based planner explicitly leverages parallelism extracted from the hierarchical task model,
leading to smoother, conflict-free collaboration [1]. Additionally, they propose a set of
algorithms to automatically construct the sequential and parallel hierarchical task model
from demonstration, simplifying the system setup procedure [1]. However, as their
planner is encoded with the assumption that humans will always complete sequential
actions consecutively [1], flexibility in scenarios where humans might want to switch
between parallel subtasks based on their preferences or task constraints is limited, and
mid-task interruptions are not accounted for. Moreover, their approach is limited by the
confinement of the planning horizon to only these parallel subtasks and to task time as
a single-objective optimization.

Regarding human-robot interactions, their approach can be used in two modes,
namely (a) command and (b) automation [1]. Unfortunately, the paper does not further
specify how the commands are communicated in command mode. When in automation
mode, their approach is truly free of explicit RTHC and only uses a vision-based non-

46



3 State of the Art

verbal HTRC channel, to implicitly communicate what the human is currently doing
by recognizing human actions. However, by including more channels, Cheng et al.’s
dynamic task allocation technique could potentially benefit from increased capabilities
when it comes to recovering from task interruptions.

Similar to Cheng et al. [1], Ramachandruni et al.’s “UHTP: User-Aware Hierarchical
Task Planning Framework” [3], enables robots to adapt to human actions in real-time
while maintaining the worker’s autonomy without explicit communication. They extend
classical HTN by adding collaborative elements such as agent assignments for atomic
action nodes (ar ∈ Ar, ah ∈ Ah) and decision nodes nd ∈ Nd with probabilities to model
actions executable by either agent [3]. In contrast to [1]’s limited planning horizon,
[3]’s framework optimizes task completion time by minimizing the cost of a combined
plan over the entire remaining task horizon. In order to enable mutual adaption and
generate valid robot plans, the UHTP algorithms continuously monitor human and robot
activities to remove completed or invalid actions from the combined plan and reevaluate
the remaining cost objective, until all nodes are removed from the HTN [3]. However, as
they assume that individual primitive actions can only be performed by either agent and
will always be complete once started [3], their approach is not capable of collaboration
as defined by [34] (see section 2.3), and also not of handling unexpected human actions
outside the task model e.g task takeovers. Additionally, their assumption of flawless
activity recognition might be unattainable in real-world scenarios with sensor noise and
occlusions.

While UHTP is designed to be free of explicit (verbal) communication from either
agent, it requires implicit HTRC of human actions via a vision-based feed-forward action
classification network [3]. However, if the action classification is unable to predict the
human’s goal, verbal as well as non-verbal channels could be used to signal a lack of
understanding or propose alternative actions. Additionally, communication could be
beneficial for negotiating how to handle interruptions or unsuccessful completion of
primitive tasks.

In contrast to most human-aware task planning approaches, assuming a completely
controllable human-agent, Buisan et al. [88], model HRC as interaction between a con-
trollable agent (robot) and an uncontrollable agent (human). Their proposed concept,
depicted in figure 3.5, interconnects the two agent’s individual beliefs, HTN models,
triggers, agendas, and plans [88].
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Figure 3.5: Multi-Agent Hierarchical Task Network exploration based on belief estimates
and communication (adapted from [88])

Each agent is defined as the tuple α = ⟨nameα, σα, Λα, T rα⟩, consisting of (a) the
agents nameα, (b) the state-tuple σα = ⟨dα, πα, sα⟩ with (i) an individual agenda dα, (ii)
a partial plan πα, and (iii) the agents belief sα, combined with (c) a unique HTN action
model Λα = ⟨Opα, Abα, Meα⟩ represented by (i) primitive tasks Opα, (ii) abstract tasks
Abα, and (iii) methods Meα, and last but not least (d) agent inherent triggers Trα [88].

In regard to communication, they only mention that knowledge alignment is achieved
via verbal communication between both agents [88]. However, they do not go into greater
detail to discuss the involved communication channels in consideration of the utilized
modality. Furthermore, they do not address the handling of task interruptions. Although
they mention using trigger functions to represent agent reactions to specific situations
[88], it is unclear how these triggers would manage interruptions to an ongoing task. In
essence, while Buisan et al. [88] lay a foundation for human-aware task planning, the
question of how communication and task interruptions can be handled requires further
research to extend their framework.

3.1.4 Markov Decision Processes

Conceptionally, Markov Decision Processes (MDPs) are an extension of the stochastic
concept of Markov Chains first introduced by Russian mathematician Andrey Markov
in 1906 [89]. Whereas Markov Chains can be utilized as a stochastic representation to
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model a potential state-event-series by assigning a probability for each event that only
depends on the previous state [89], MDPs can be used to enable decision-making and
control functionality within such a time discrete stochastic process where the outcome
is partially random and partially controllable [90], [91]. Early contributions to MDPs
date back to the 1950s and 1960s with influential publications such as “A Markovian
Decision Process” by Bellman [90] and Howard’s book on “Dynamic programming and
Markov processes” [91]. Nowadays, MDPs are employed to solve dynamic problems in
various domains such as manufacturing, robotics, economics, and automatic control.

Within the research on robot planning and decision-making, MDPs are often utilized
to characterize tasks and capabilities due to their expressive graphical representation
and arguably easy understandability [86]. Typically, a MDP framework is represented
as an environment-oriented directed graph with a 4-tuple ⟨S, A, R, P ⟩ [86]. Similar to
AOGs, the domain knowledge and environment get encoded into nodes representing the
possible states (s ∈ S), and directed arcs (edges) connecting the nodes, which are labeled
with actions (a ∈ A) [86]. Additionally, each transition from state s to s′, due to an
action a, is assigned a reward R = Pr(s′|s, a) for transitioning and a dynamic system
probability P = Pr(s′|s, a) indicating the likelihood of arriving at s′ from s when a is
executed [86]. Figure 3.6 depicts a simple MDP for a train that wants to quickly travel
to its destination. Following the just introduced nomenclature this MDP consists of the
three states S = {cold, warm, overheated}, two actions A = {slowdown, gofaster} and
the associated probabilities P and rewards R.

s: overheateds: cool s: warm

a: go faster

R: +1

a: go faster

  a: slow down
a: slow
down 

R: +2

R: +1

R: +1

R: +2

R: -10P: 0.5

P: 0.5

P: 0.5

P: 0.5P: 1.0

P: 1.0

Figure 3.6: Example Markov Decision Process

Despite their general usefulness for dynamic decision making, a major drawback of
standard MDPs is the limitation to observable states [92]. In order to extend the applic-
ation of MDPs for deployments where the agent cannot directly observe the underlying
state of the system, Partially Observable Markov Decision Processes (POMDPs) can
be formulated. In contrast to directly observing the system’s states, POMDPs provide
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a framework to maintain an agent’s belief over possible states by updating the agent
belief based on probabilistic observations [93]. This belief can then be used to select
actions that maximize expected rewards over time, considering the inherent system un-
certainty. Therefore, POMDPs are no longer represented by a 4-tuple, but rather a
9-tuple ⟨S, A, O, T, Z, R, b0, h, γ⟩ [93]. Whereas states S, actions A, and rewards R are
defined analog to MDPs, observations are denoted as o ∈ O, the transition probability
of reaching s′ from s when executing a as T = Pr(s′|s, a), the observation probability
of o′ in state s′ as Z = Pr(o′|a, s′), the initial belief distribution as b0 = Pr(s0), the
finite or infinite planing horizon as h, and the discount factor accounting for how much
previous rewards can influence the current time step as γ ∈ [0, 1] [93].

To enable robotic systems to reason under uncertainty, Roncone et al. [87], util-
ize a combination of HTNs and atomic POMDPs to optimize task completion time
by dynamically assigning roles. Their proposed technique is capable of automatically
transforming each of the HTNs primitive tasks (leaf nodes) into a modular POMDP,
which then exploits written or auditory verbal communication as a means to reduce
uncertainty between both agents by informing about robot intent and asking for hu-
man intent [87]. Additionally, combining HTNs as high-level and POMDPs only for
atomic task representations, improves scalability as the state space only grows linear
[87]. However, their current method requires both agents to follow the agreed-upon role
assignment without mid-action replanning [87], limiting flexibility in dynamic collabor-
ative scenarios. Moreover, the assumption of a “blind” robot that can only rely on acts
of verbal communication to coordinate with its human collaborator might increase the
task execution time and limit the flexibility of real-world applications.

According to Unhelkar et al. [94], excessive communication can result in a decrease
in human-robot team performance. Their framework, CommPlan, enables robots to
make informed decisions regarding if, when, and how communication with its human
partner is appropriate during human-robot collaboration in sequential tasks [94]. They
utilize a combination of (1) a hybrid model specification process, where some parts are
defined by the developer and others are learned, to describe the Robot Decision-Making
Model represented by a POMDP and (2) a execution-time POMDP solver which is used
to select the appropriate robotic actions and communication efforts [94]. The hybrid
model specification of the robots POMDP includes several sub-modules such as (a) the
Task Model described via a Multi-Agent Markov Decision Process (MMDP), (b) the
Communication Capabilities, (c) a novel task- and context-specific non-linear Commu-
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nication Cost Model, (d) a Human Response Model to estimate if and how the human
responds to the robots query, and (e) a Human Action-Selection Model represented by a
Agent Markov Model (AMM) to model sequential human decision making [94]. With the
model specified, the robot utilizes its online POMDP solver to dynamically determine if,
when, and what to communicate during task execution [94]. This involves updating its
beliefs about the human and choosing actions and communications that maximize the
team’s overall reward [94]. Although Unhelkar et al. [94] demonstrate the effectiveness
of their approach in a shared workspace task, they acknowledge that specifying accurate
cost models for various communication types, particularly as communication options
increase, can be challenging. Additionally, while their hybrid approach to modeling hu-
man behavior aims to address the complexity of human-robot interaction, the reliance
on developer-specified probabilities introduces subjectivity and potential inaccuracies in
predicting human responses to robot communication.

Like the previously discussed frameworks, CommPlan does not explicitly incorporate
the possibility of mid-task interruptions. However, utilizing a similar approach to de-
termining if, when, and what to communicate could be useful for handling task takeovers,
as communication might not always be necessary. In regard to utilized communication
channels, CommPlan is designed to be flexible. Although it is demonstrated using
speech, the authors state that it can be equally suitable for other verbal modalities such
as visual signals or text [94].

3.2 Review of Human to Robot Communication Channels

The following section will primarily discuss current state-of-the-art HTRC techniques
that can be used to transmit a command-message in order to initiate a transfer of
a task from a robot to a human. As to the author’s best knowledge, there are no
publications dealing with mid-task interruptions or task takeovers in tabletop HRC
settings, hence, the discussed methods will mostly be related to ad-hoc task allocation
techniques and concepts from other research domains, due to conceptual similarities
and transferability to the problem at hand. Following the distinction between explicit
vs implicit communication, discussed in section 2.6, it is again useful to distinguish
between (1) explicit, where users actively invoke something, and (2) implicit, where the
robot infers human intent based on a pre-defined heuristic and/or the user’s actions [95].
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3.2.1 Explicit

Considering the six technology groups introduced in section 2.6.1, explicit HTRC to
facilitate a transfer of tasks can, in theory, be accomplished via all of them. Below is
an overview of how current research incorporates these. Due to the already discussed
limitation of available literature discussing task takeovers in HRC, it must be mentioned
that some methods have not been validated for the proposed use case. Nonetheless, they
can be considered a useful guideline during the implementation process.

Simple Haptic Control Elements and Buttons

Theoretically, simple elements such as joysticks, levers, (physical or virtual) buttons,
and mouse pads can be used to invoke a mid-task interruption and transfer of task re-
spectively. However, as most of these elements are typically stationary and not wearable
(see section 2.6.1), using such an interface requires the human to first go to some sort of
control panel, e.g. the teach pendant of the robot, to then be able to communicate the
intent to take over. Hence, these elements are typically only considered for simple web
interfaces on mobile devices or in virtual environments. For example, Roncone et al. [87]
and Fusaro et al. [84] both utilize a web interface accessed from a tablet or smartphone
to facilitate HTRC. As opposed to Mahadevan et al. [95], who propose a virtual-reality
menu of soft buttons to allocate objects/tasks from the human to the robot. However,
in contrast to research on driving-task-takeovers for autonomous vehicles, which typic-
ally include physical buttons on the steering wheel to actively request control over the
vehicle at any given time [96], there seems to be no such equivalent to request mid-task-
interruptions for tabletop HRC scenarios, except for pausing or emergency stopping the
robot without context awareness for the robot.

Microphones

Unlike the just discussed simple elements, microphones have been frequently used for
making human-robot collaboration more intuitive by enabling robots to understand and
respond to explicit auditory communication, similar to how we humans interact with
each other [97]. As the transmittable message complexity, discussed in section 2.5,
can include command messages as well as more complex data messages, microphones in
combination with Automatic Speech Recognition (ASR) have been utilized for HTRC to
facilitate explicit ad-hoc allocation techniques where verbal commands such as “Can you
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grab object X at location Y” can be used to allocate tasks to the robot [95]. In addition
to the already, discussed coverage and range of stationary vs wearable microphones (see
section 2.6.1), ASR is primarily affected by (1) the number of simultaneous speakers,
(2) the vocabulary size i.e. the number of recognizable words, and (3) the spectral
bandwidth of trained vs production system [98]. With ASR being considered among
the most complex problems of computer science4, it is a typical example for a Machine
Learning (ML) problem. ASR can in principle be solved using many well-established
ML algorithms such as Artificial Neural Network (ANN), Convolutional Neural Network
(CNN), or Deep Neural Network (DNN) to name only a few [99].

Reverting back to HRC research, Mahadevan et al. [95] for instance, use verbal com-
mands, though in a virtual environment, as a baseline to compare other implicit and
explicit allocation techniques. Similarly, Angleraud et al. [100] use speech recognition
and natural language processing to generate and adapt action plans for joint human-
robot tasks. However, to the author’s best knowledge, current research has not addressed
the possibility of a robot interrupting its task based on the auditory input it receives
mid-task. Instead, the focus has been on designing systems that enable robots to under-
stand human intent and respond accordingly, often in a structured and semi-pre-planned
manner with distinct task boundaries.

Cameras and Motion Sensors

Similar to microphones, cameras and motion sensors are actively being investigated as
means to enable explicit HTRC via gestures [97]. Utilizing the message complexity
classification introduced in section 2.5, cameras and motion sensors are best suited to
facilitate explicit communication for simple command messages through gestures or high-
lighting messages by estimating the object the human is pointing at [101]. In general,
one can distinguish between (a) body gestures, (b) hand and arm gestures, and (c) head
and facial gestures, all of which require different sensory technology and algorithms to
identify, track and classify the perceived explicit gestures [102]. As with ASR, describ-
ing each sensory technology and methodology of gesture identification, tracking, and
classification in greater detail would quickly turn into a thesis of its own. Hence, only a
short summary is provided here:

From the 1980s to the 2000s, early research on sensors to enable recognizing gestures

4www.ibm.com/topics/speech-recognition
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and human motions was primarily focused on glove-based systems [102]. With significant
advancements in image processing, single cameras became more popular from roughly
1995 to 2005 [102]. Since the 2010s, most research has been done utilizing either depth
sensors, wearables such as wristbands, and non-wearables such as radio frequency-based
systems [102]. In order to distinguish and identify gestures either visual features, learn-
ing algorithms, or skeleton models (most common) are typically used [102]. For tracking
gestures over time, early research relied on single-hypothesis algorithms, whereas more
recent research typically involves multiple concurrent hypotheses or advanced techniques
that directly integrate into the identification process [102]. Just like ASR, gesture classi-
fication is a typical example for a ML problem. Hence, in principle it can be solved using
numerous ML algorithms including but not limited to K-Nearest Neighbours (KNN),
Hidden Markov Model (HMM), Support Vector Machine (SVM), Dynamic Time Warp-
ing (DTW), Artificial Neural Network (ANN), Convolutional Neural Network (CNN),
or deep learning [102].

Again focusing on HRC research, Mahadevan et al. [95], for example, propose multiple
explicit gesture-based HTRC techniques for a virtual environment such as pushing an
object toward the robot or into a predefined zone. In contrast to that, Gottardi et
al. [101], suggest a real-world application of a depth camera paired with a CNN, to
recognize and classify a predefined set of gestures such as clapping, raising one hand, or
pointing at a desired location to invoke robot actions such as requesting the next step,
triggering a workspace object detection, and stopping the robot. Likewise, Karami et al.
[78] utilize a vision-based system based on OpenPose [103] to detect human gestures, in
their case, raising either arm to create a branch to the AOG. These branches can then
be used to update a goal pose through kinesthetic teaching or to repeat a process step
[78].

While [78]’s and [101]’s approaches both provide a mechanism for humans to sig-
nal command requests to the robot, their current implementation does not include the
capability to interrupt the robot at any given time. For instance, Karami et al.’s [78]
branching of the main AOG only works at certain nodes of the main graph and Got-
tardi et al.’s [101] user commands are only processed after a primitive action has been
completed.
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Guiding Devices

As mentioned in section 2.3, cobots are by design equipped with collision sensing techno-
logies such as collision-sensitive enclosures or torque monitoring. The torque monitoring
capabilities are tightly integrated with the cobot’s motion control algorithms, as they
need to be able to detect deviations from the expected static and dynamic forces/t-
orques with low latency to ensure safety [104]. The most common strategy called im-
pedance control, simultaneously handles force and position control of the robot [104].
The primary benefits of using torque monitoring-enabled control strategies are (1) the
increased safety due to reduced risks of injuries on collisions [104] and (2) the ability to
directly guide the robot via physical contact between humans and robots during setup
and programming [36]. However, the potential of utilizing these capabilities to facilit-
ate explicit HTRC for deliberate human intervention during a task’s execution remains
largely unexplored.

Brain Computer Interfaces

Recent research advances have shown that Brain Computer Interfaces (BCIs) can be
used to communicate explicit human intent to a robot [105]. The fundamental principle
of BCI lies within the continuous interaction of brain cells and the change in electric
potential they constantly induce in the scalp [106]. By utilizing a electroencephalograph
(EEG), these changes in electric potential can be measured and transformed into signals
which, in turn, can be analyzed to infer explicit human intent [106]. While there are
many different types of BCIs, steady-state visual evoked potential (SSVEP) based BCIs
are often used in HTRC, as they require less training and adaptation for individual
users due to their relatively strong signal compared to other BCI methods [106]. The
fundamentals of SSVEP are electrical signals produced by the brain in response to visual
stimulation at specific frequencies [106]. For example, if a human is looking at an object
flickering at 12 Hz, their EEG signals will peak at 12 Hz [106]. A BCI system can make
use of this phenomenon by attaching different flickering frequencies to distinct objects,
allowing the system to infer which object the human user wants to select by analyzing
their EEG signals [106]. In this way, BCI can provide a way for humans to communicate
simple command and highlighting messages without requiring physical movement.

Like most of the other discussed technologies, BCIs are currently underrepresented
in HRC research when it comes to mid-task interruptions and transfer of task authority
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between human and robot. However, theoretically approaches such as SSVEP could be
adapted to enable task takeovers.

3.2.2 Implicit

Even though explicit HTRC can reliably be used to establish joint actions, it usually
entails a reduction in efficiency as it requires the human to interrupt its current task in
order to explicitly communicate [8]. To address the need for flexibility without sacrificing
efficiency, researchers are exploring implicit techniques inspired by coordination behavior
observed in human collaboration [95]. Unlike explicit HTRC, implicit communication
can not be facilitated by all technology groups discussed in section 2.6.1. This is primar-
ily due to the style of interaction where, for example, simple haptic control elements,
buttons, microphones, and guiding devices all require the user to actively interact. In
contrast, as highlighted by a recent meta-analysis by Arents et al. [97], cameras and
motion sensors are not only perfectly capable of inferring implicit HTRC based on the
motion data they extract, they are also by far the most researched technology to enable
implicit HTRC.

In general, the majority of motion-based techniques, have comparable requirements
to the already discussed explicit gesture-based methods in regards to (1) sensory tech-
nology, (2) identification, (3) tracking, and (4) classification of human motion [102].
Hence, the utilized sensory technology is basically identical, with 3D cameras being
the most common, followed by wearables such as Inertial Measurment Units (IMUs) to
measure accelerations, forces, and other tactile feedback [97]. Previous literature on im-
plicit HTRC methods for tabletop HRC scenarios can roughly be separated in research
focused on (1) action recognition and (2) action / intent prediction. The following para-
graphs aim to give an overview of the state-of-the-art in implicit action recognition and
action/intent prediction algorithms proposed for tabletop HRC settings.

Action Recognition

In collaborative settings, human action recognition plays a crucial role in enabling impli-
cit non-verbal communication between humans and robots [8]. By accurately interpret-
ing human actions, robots can adapt their behavior, and contribute to a more seamless
and efficient collaborative process [8]. Especially within HRC research on ad-hoc as
well as proactive task allocation many techniques based on action recognition have been
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proposed.

Tuli et al. [107], for example, present a novel approach called HAROPP (Human
Activity Recognition On Probabilistic Partition), which utilizes probabilistic spatial par-
titions based on continuous probability density estimates to recognize human activities.
In other words, they propose to enhance activity recognition by fusing the spatial work-
place layout information and human skeleton-based motion data gathered via an Inertial
Measurment Unit (IMU) to map a human worker’s real-time movements to a pre-defined
library of workplace activities and partition the physical space into action sets [107]. Ac-
cording to the authors, utilizing this approach of partitioning the physical space is not
only easier to implement but also provides better explainability, transparency, and in-
terpretability of classification results when compared to other state-of-the-art action
recognition techniques like deep learning [107]. Tuli et al.’s [107] approach could be ad-
apted to handle task takeovers by using probabilistic spatial partitions to recognize when
a human is performing an action within the robot’s workspace. This information could
then be used to trigger a change in the robot’s behavior, such as pausing its current task
or moving out of the way.

Still based on wearable IMUs, Darvish et al. [77] propose a human action recognition
module that classifies human actions by comparing real-time IMU data from wearable
sensors against a set of predefined gesture models [77]. These models are built offline
using Gaussian Mixture Modeling (GMM) and Gaussian Mixture Regression (GMR)
to represent expected movement patterns and their variations [77]. During online op-
eration, the system calculates the statistical likelihood of the observed movement data
matching each gesture model and the likelihood of the observed movement given the
current state within the predefined AOG task model, ultimately selecting the model
with the highest combined likelihood as the recognized action [77]. When the system
recognizes a human action, it updates its internal state within the AOG to reflect the
task’s progress, using this information to guide the robot’s subsequent actions [77]. Even
though Darvish et al.’s approach is not primarily designed to handle mid-task interrup-
tions, its perception pipeline could be adapted to recognize when a human operator
deviates from the expected sequence of actions as defined in the AOG, resulting in the
adaptation of the robots plan without explicit HTRC.

Taking an entirely different direction, Ramachandruni et al. [3] present an activity
recognition module that continuously monitors the human body poses utilizing a depth
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camera. They achieve action classification through a feed-forward neural network trained
on human activity data [3]. The model uses a five-layer architecture with dropout layers
to classify individual frames of the task into six actions: grab parts, attach battery,
attach shell, screw, place drill, and a null class for unknown poses [3]. By observing
the human’s activities, the robot can implicitly understand their actions and maintain a
shared understanding of the task’s progress in order to make decisions that support the
human [3]. However, their perception pipeline is limited due to the assumption of flawless
activity recognition and is not capable of handling unexpected human actions outside
the task model. Despite that, the general approach of utilizing a feed-forward neural
network to detect human actions could be adapted to also recognize motion sequences
associated with the intent to takeover.

Human Intent Prediction

As briefly mentioned in the introduction of this section, another interesting approach to
implicit HTRC is human intent prediction, where multiple intertwined algorithms try
to anticipate future human trajectories and actions in order to proactively choose robot
actions that best complement what the human is doing [3].

In order to drive their communication-free HTN task allocation model [1], Cheng et
al. [108] propose a 3D-skeleton-based “recognition-then-prediction framework” [108] for
anticipating human actions in a collaborative assembly task over longer time horizons.
Their framework allows a robot to not only estimate the duration of both current and
future actions, but also to predict a human worker’s future motion by analyzing the hu-
man’s past and current actions using an algorithm that considers spatial and hierarchical
task information, the observed hand trajectory, and the history of human activities [108].
The human hand trajectories are formulated using a sigma-lognormal model, fitted to
training data offline, and then adapted online, using the observed trajectory, human in-
tentions, and target location, to account for variations in human behavior [108]. Finally,
the updated sigma-lognormal model predicts the trajectory and estimates the action
duration [108]. According to the authors, this predictive capability allows the robot to
collaborate with the human worker in a safer and more efficient manner [108]. Even
though Cheng et al. [108] do not mention if their method is capable of inferring the
intent to interrupt a robot during a task, it seems perfectly capable of doing so with
only minor modifications.
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Recognizing that the efficiency of an assembly/disassembly process is significantly im-
pacted by the movement of the human worker, Lee et al. [109] propose a task planning
algorithm that leverages human intent/action prediction to facilitate implicit communic-
ation between human operators and robots in a collaborative setting. Due to numerous
potential scenarios based on the current relative position of the human, robot, and parts,
predicting future human movement is non-trivial [110]. In order to address these numer-
ous possibilities, the authors leverage a Convolutional Neural Network (CNN) trained on
a dataset of images representing various scenarios [110]. These training images capture
information about the positions of completed tasks, unfinished tasks, the robot, and the
task assigned to the human operator, allowing the CNN to learn spatial relationships
between these elements [110]. The proposed CNN extracts features from these images,
reduces their dimensionality, and processes them to generate a probability distribution
over eight possible movement directions [110]. This distribution is then used to pre-
dict the most likely direction the human operator will move in after completing a task,
enabling the system to anticipate the operator’s actions and optimize task allocation
accordingly [110]. Similar to other discussed sources, Lee et al. [110] do not directly
address how their approach to implicit communication could be used to handle task
takeovers or mid-task interruptions. However, their method of predicting the human
operator’s movements could potentially be adapted to predict the intent to interrupt
based on the human’s movement.

Following a completely different approach, Zhang et al. [2] suggest a fusion-based
spiking neural network to classify human actions and environmental cues to infer im-
plicit communication. Their proposed model integrates multi-channel inputs such as
real-time data on human behavior, robot posture, and the state of the assembly task,
each encoded as spiking signals to predict a human’s need for collaborative action [2].
This prediction then triggers the robot to undertake the necessary collaborative action,
like retrieving and handing over the required tool [2]. The study emphasizes the signi-
ficance of considering temporal aspects and the interdependency of various factors in a
human-robot collaborative environment to facilitate more intuitive and effective inter-
actions [2]. Through experimental validation, Zhang et al. [2] demonstrate that their
method surpasses other prediction models, such as Long Short-Term Memory (LSTM)
and Hidden Markov Model (HMM), in achieving a faster and more human-like response
time in anticipating collaboration requests. By monitoring the same multi-channel in-
puts of human behavior, robot actions, and task state, the model could be trained to
recognize patterns associated with a human intending to interrupt or take over the ro-
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bot’s current task. For example, sudden changes in human movement or interaction
with objects relevant to the robot’s task could be interpreted as signals of an impending
takeover, prompting the robot to yield or pause its actions accordingly.

To foster a more intuitive and seamless collaborative assembly environment, Cramer
et al. [111] formulate a POMDP framework that enables the robot to model the inherent
uncertainty in predicting human intentions. Their approach leverages an intention graph,
a representation of all feasible assembly sequences derived from the product’s CAD data,
effectively encapsulating the designer’s intent [111]. By observing the human’s interac-
tions with components and tools via cameras, the robot utilizes the POMDP to dy-
namically update the probability distribution within the intention graph, highlighting
the most likely assembly path the human is pursuing [111]. This allows the robot to
anticipate the human’s needs and take appropriate collaborative actions, such as fetch-
ing the next required part, without explicit communication and any pre-programmed
instructions [111]. The authors demonstrate the effectiveness of this approach through a
simulated assembly task where the robot, physically simulated by a human, successfully
predicts and supports the human operator’s actions [111]. With the source’s primary
focus on using a POMDP for the robot to infer the human’s assembly intention and
plan collaborative actions, the authors don’t directly address task takeovers or mid-task
interruptions. Therefore, while Cramer et al. [111] provide a foundation for understand-
ing how a robot might predict human intent in collaborative assembly, they do not offer
information on how this approach could specifically handle situations where the human
interrupts the robot mid-task.
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This chapter focuses on the design and implementation of a hypothesis-driven study.
Therefore it builds upon and incorporates the concepts explored in the preceding chapters.
Following Hoffman et al.’s [112] primer for conducting HRI research, the first sub-chapter
4.1 elaborates on the chronological approach of designing and running the experiment.
This is followed by the second sub-chapter 4.2 discussing the key aspects of the imple-
mentation in greater detail, and the third chapter 4.3 elaborating on how the design and
implementation were adapted after running the first pilot experiments.

4.1 Study Design

Owing to the huge variety of HRI research (discussed in chapter 2), there are numerous
scholarly practices one can follow when exploring different HRI aspects. For investigating
how a human perceives and interacts with a robot, conducting empirical research is
often regarded as a crucial step in order to obtain new scientific insights [112]. Following
the best practices of empirical research suggested by Hoffman et al. [112], one or more
research questions must be clearly articulated before conducting any kind of experiment.
For the purpose of the experiments conducted for this thesis, the research question Q4
defined in section 1.2 will guide the empirical study and its design:

Q4.) To what extent do different HTRC channels impact team dynamics, such as per-
ceived team fluency and trust, during task-takeovers?

4.1.1 Participants and Setting

To achieve a broad and diverse sample, word-of-mouth referrals were used to recruit
participants from the general public. Additionally, a laboratory setting was chosen, as
this allows for increased consistency across participants due to better experimental con-
trol and minimized external variables [112]. To further enhance the study’s robustness,
a within-participant design is utilized. This allows each participant to experience all
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conditions while reducing the impact of individual differences and increasing the stat-
istical power of the experiment [112]. In order to mitigate order effects introduced by
the within-participant design, counterbalancing the order of conditions ensures that any
learning, novelty, fatigue, or familiarity effects are evenly distributed across participants
[112]. Additionally, to mitigate order effects introduced by the task itself, participants
completed a trial run to get accustomed to the task, the interface, and the different
modes of interaction.

4.1.2 Research Constructs

A vital part of empirical research are the so-called constructs, which represent theoretical
and abstract ideas directly derived from the research questions [112]. These constructs
can have (a) a causal predictor-outcome relation, where a change in one construct directly
translates to a change in another, or (b) a correlational relationship, where the analysis
only suggests if two constructs are related at all without knowing the direction of the
relationship between them [112]. In accordance with the research question discussed
above, this thesis aims to test the relations between the predictor construct Human to
Robot Communication Channel and outcome constructs associated with team dynamics
such as Team Fluency or Trust in the Robot.

Following [55]’s message classification (see section 2.5), the message required to in-
terrupt the robot and take over its tasks can be categorized as a simple command
message. Therefore, it is sufficient to limit the channel of communication (section 2.6)
to a non-verbal form. Additionally, the modality can be restricted to visual and tactile,
as auditory HTRC modalities often have problems due to the interference of background
noise, and neural modalities such as BCI based communication suffer from drifting sensor
outputs and information redundancy, therefore, requiring advanced signal processing in
order to extract reliable signals (section 3.2). Based on the distinction between explicit
and implicit communication (section 2.6) and the discussion of the state-of-the-art tech-
nologies (section 3.2), the predictor construct is split into three levels: (a) The Baseline
condition, based on a non-verbal tactile channel where participants can interrupt the
robot through the push of a button, (b) the Explicit condition, featuring a non-verbal
tactile channel where interruptions are triggered by physically interacting with the robot,
and (c) the Implicit condition, facilitated via a non-verbal visual channel that infers in-
tent based on the human’s actions. The individual HTRC channels and their respective
implementation are discussed in greater detail in section 4.2.4.
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4.1.3 Hypothesis

After formulating research questions and deriving relevant constructs, the next stage of
empirical research is the development of hypotheses, phrased as affirmative statements
that propose expected relationships between the investigated constructs [112]. The fol-
lowing hypotheses will be tested:

H1: Explicit tactile HTRC will result in greater task fluency compared to the baseline
condition.

H2: Implicit HTRC will result in greater task fluency compared to the explicit condi-
tion.

H3: Participants will exhibit higher trust in robots during explicit and baseline HTRC.

4.1.4 Task Design

Based on the research question, the hypothesis, the chosen context and participant
structure, as well as the selected constructs, designing a feasible task that conforms to
all of the above is not trivial. The first idea of a simple pick-and-place task where the
robot is tasked to move cylindrical mint containers from one tray to another was scraped
due to the lack of a useful task for the human that would occupy the human enough to
not only have them stand by and interrupt the robot at random intervals. The second
idea has the robot place colored items into specific bins while the human ensures that
the items are correctly positioned and makes adjustments if necessary. However, this
idea was also scrapped because it would create a dynamic where the human acts as the
robot’s supervisor rather than working alongside it as a peer (see table 2.3 on authorial
relation [13]).

Keeping in mind the challenges of the first two ideas, the third and final idea evolves
around assembling small Lego blocks in two distinct colors (blue and orange). While
the human is tasked to collect 4 unique parts from a storage location, the robot delivers
the fifth and final part required for assembling a given Lego design. Once human and
robot start collecting, the human is allowed to change their mind and switch to the
other color, but they need to communicate this switch to the robot. Based on the three
levels of the predictor construct, this HTRC can be categorized as follows: (a) In the
explicit condition, participants can interrupt the robot by touching it. (b) In the implicit
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condition, participants can simply reach for the object they want to interact with, and
the robot uses a vision system to detect these human actions and interrupt its current
task if necessary. (c) In the baseline condition, participants can interrupt the robot
through the push of a button.

In order to increase consistency across sessions and participants there is a pseudo-
randomized external cue to trigger participants to change their minds, this helps to
ensure that each session has the same amount of interruptions. If the human chooses to
interrupt the robot’s task, they are required to collect the correct part themselves. Figure
4.1 depicts the ten chosen Lego designs, each with a unique combination consisting of
one 4x2 brick, and four distinct other bricks.

Figure 4.1: Set of Lego Designs

4.1.5 Physical Layout

With the task designed, the next step involves defining the physical layout of the research
setup. The first design iteration of the setup, depicted in figure 4.2, consists of:

(a) Robot: One collaborative robot mounted on the first table at (x, y) = (328, 317)
mm measured from the lower left corner with its base rotated by an angle of 34◦. It
features an advanced motion control interface allowing low-level access to commanding
the robot’s motion and is equipped with force-limiting controllers, making it ideal for
the tasks ahead. The robot’s location allows it to interact efficiently with both the
3D-printed storage slides and the human operator.

(b) Robot Storage: The 4x2 bricks are delivered by the robot and stored separated
by color in two 3D-printed slides, resulting in one pick-up and one drop-off location per
slide (see Figure 4.3).
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Figure 4.2: First Iteration of Physical Layout

drop-off
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Figure 4.3: 3D-printed Slide
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(c) Stereo Camera: In order to equip the robot with spatial vision, a stereo camera
is strategically mounted in the top right corner above the robot’s workspace, providing
a broad field of view. It captures real-time depth information and video, crucial for
tracking the robot’s surrounding environment.

(d) Human Storage: In contrast to the slides for the robot storage, the remaining
seven types of bricks are stored in two dedicated areas on the second table in small color-
separated containers where the human can easily access them. Allowing the human to
quickly retrieve necessary components, thus streamlining the workflow.

(e) PC with Keyboard: To enable the baseline condition, the first design iteration
includes a PC equipped with a keyboard that serves as the robot’s control panel, enabling
a direct and explicit way to interrupt the robot. It is strategically positioned on the far
left of the table to be easily accessible by the human while also requiring a shift of
attention away from the other tasks.

(f) Tablet: Last but not least, the setup includes a tablet PC to visualize instruc-
tions, guide participants through the experiment, and collect survey responses. It is
positioned conveniently for the human operator to view at all times, ensuring that they
can follow the progress of the tasks.

4.1.6 Methods of Evaluation - Variables and Measures

With the general task and its physical layout defined, the abstract constructs can be
operationalized into observable and measurable variables. This involves carefully defin-
ing what each construct means in the selected context and choosing specific methods to
measure the outcome constructs [112].

The outcome constructs trust and team fluency, can primarily be operationalized
using subjective measures. For the purpose of this thesis, a self-reported questionnaire
with 10-point Likert-scale items and one open-ended question is used to assess the par-
ticipants’ perceived fluency and trust after each session with the robot. The selected
questions are based on Hoffmann’s [113] subjective fluency metric scales and grouped
by similarity to get composited indicators directly or indirectly related to fluency an-
d/or trust. The composite score’s reported Cronbach’s α ≥ 0.772 should ensure internal
consistency among the questionnaire items. For researching task interruptions, [113]’s
composite-scales for “Robot-Relative Contribution”, “Improvement” and their “Indi-
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vidual Measures” are suspected of providing little insight and are therefore dropped from
the questionnaire and replaced by an open-ended question and a Likert-scale capturing
how much participants liked a session, reducing the total number of repeated questions
to twenty. Most questions are used without modification, only the first question of the
“Human-Robot Fluency” composite scale is slightly adapted to be more clear. Addi-
tionally, some Likert scales are augmented with additional text to clarify what it means
to strongly disagree or strongly agree. The chosen compound scales and their respective
questions are depicted in table 4.1. In addition to these fluency metric questions, there
are additional post-study questionnaire to capture the participants’ demographics, pre-
ferred mode as well as their overall impressions and thoughts about the experiment (see
table 4.2).

Human-Robot Fluency
• The robot and I worked fluently together.
• The human-robot team’s fluency improved over

time.
• The robot contributed to the fluency of the in-

teraction.
Trust in Robot
• I trusted the robot to do the right thing at the

right time.
• The robot was trustworthy.
Positive Teammate Traits
• The robot was intelligent.
• The robot was committed to the task.
Individual Liking & Open-ended
• How much did you like this specific mode of

interrupting the robot?
• In 1-2 sentences, describe how you perceived

this style of interrupting the robot

Working Alliance - Bond
• I feel uncomfortable with the robot.
• The robot and I understand each other.
• I believe the robot likes me.
• The robot and I respect each other.
• I am confident in the robot’s ability to help me.
• I feel that the robot appreciates me.
• The robot and I trust each other.
Working Alliance - Goal
• The robot perceives accurately what my goals

are.
• The robot does not understand what I am try-

ing to accomplish.
• The robot and I are working towards mutually

agreed upon goals.
• I find what I am doing with the robot confusing.

Table 4.1: Subjective Fluency Metric Items adapted from [113]

Demographics
• What is your age?
• What is your gender?
• What is your occupation?
• How often have interacted with a robot, prior

to this experiment?
Preference
• Which mode of interaction was your favorite?
• Which mode of interaction was your least fa-

vorite?

Open-Ended
• Do you have any additional comments, feed-

back, or thoughts about your experience with
the robot during this experiment? Any insights
on the interaction process, challenges faced, or
suggestions for improvement would be appreci-
ated

Table 4.2: Post Study Questionnaire Items
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4.1.7 Study Protocol

Following the operationalization of constructs into measurable variables, [112] suggests
getting explicit about every aspect of the study’s procedure by outlining a step-by-step
process through which participants engage with the experiment. This helps to ensure
consistency across sessions, minimizes variability, and provides a clear framework for
data collection, task administration, and addressing any issues that might arise [112].
In addition to defining what and how something should happen, this phase also includes
estimating the timing for each of the experiment’s steps. For the purpose of this study
figure 4.4 depicts a short summary of all major steps as well as time estimates for each
of them. The following paragraphs will explain each step in greater detail.

Greeting & Consent
Form

2 min

Introduction & Demo Intermediate
Questionnaire1st Scenario

Intermediate
Questionnaire

2nd Scenario

Intermediate
Questionnaire3rd ScenarioDebrief Post Questionnaire

6 min 8 min 4 min 8 min

4 min8 min4 min4 min2 min

Figure 4.4: Study Procedure and Timing

4.2 Implementation

Besides the study design, the implementation of the system plays a vital role in the
overall success of conducting experimental research. Following the four requirements
to enable task interruptions, introduced in chapter 3, the subsequent sections elaborate
on how these requirements can be implemented to facilitate the study design discussed
in the previous section. First, section 4.2.1 details the general idea of the digital task
representation, followed by section 4.2.2 discussing the how the developed software is
structured and the robot controlled. Then, section 4.2.3 describes how the participants
are guided by the study interface, and section 4.2.4 how the individual communication
channels are implemented.

4.2.1 Digital Task Representation

After establishing the physical layout, the digital representation of the task needs to be
defined. In this context, the discussion of the state-of-the-art in dynamic task allocation
techniques and their readiness for mid-task interruptions (section 3.1) reveals that, while
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some of the discussed techniques are capable of re-allocating tasks, none are specifically
designed to handle situations where a human worker purposefully interrupts the robot
during its current task. Even though some techniques could be adapted to handle mid-
task interruptions, none of the analyzed allocation methods can be directly applied.
Instead, a finite-state-machine approach is chosen due to its conceptual similarity to
conventional robot programming. Besides the conceptual similarities, the utilization of a
finite-state machine allows more complex scenarios with more than one flow of execution.
In addition to deciding on the general programming approach, a decision must also be
made in regard to the utilized programming language. To streamline the development
process, and ensure interoperability among all developed algorithms, Python is chosen
as the primary programming language.

A graphical representation of the implemented finite-state-machine is depicted in
figure 4.5. The individual robot states are visualized as boxes with rounded corners, and
the transitions as arrows, with blue arrows representing automatic transitions and red
arrows user-invoked transitions. Besides the depicted states there are several internal
variables such as (a) active_storgae ∈ (1, 2), to determine whether the robot is supposed
to grasp from the storage holding blue or from the storage holding orange bricks, or
(b) mode ∈ (Explicit, Implicit, Baseline, Demo) to enable/disable some of the robot’s
capabilities based on the active mode.

In total, there are eight states linked by eight transitions. For example, while the robot
is moving toward the active storage’s pick-up location (see figure 4.3) without having
grasped an object, it is in the “moving to active robot storage” state. Upon reaching its
goal destination successfully, the finite-state machine automatically transitions to the
“grasping action @ the active storage” state. However, if an interruption occurs during
this motion, it instead transitions to the moving to home pose state.
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Figure 4.5: Digital Task Representation as Finite-State-Machine

4.2.2 Implemented Software Architecture

To control the robot’s motion, the digital task representation must be equipped with in-
terfaces to directly connect to the robot’s built-in controller. In order to keep the code as
little hardware dependent as possible, the open source Robot Operating System (ROS)
[114] is used as middleware to facilitate communication between different software com-
ponents. It provides standardized interfaces and tools, such as drivers, transformation
libraries, inverse-kinematic solvers, and much more, simplifying robotic development.

Theoretically, any collaborative robot controllable via ROS can be used to explore
the given research questions. Due to its high degree of sensitivity, precision, and ease
of programming, the Franka Emika Panda is a popular choice for experimental setups.
Additionally, the availability of open-source software such as libfranka offers a flexible
platform for experimentation and development with a low-level interface for controlling
the robot in real-time. On top of ROS and libfranka, MoveIt! [115] is utilized for
planning and executing motions. Despite nearing its end-of-life (EOL), ROS remains a
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popular choice for controlling robotic systems. Firstly, in comparison to its predecessor
ROS2, it has far more compatible tools and libraries as well as a larger and more active
community. Secondly, most robot manufacturers provide stable ROS packages to work
with their robots, whereas ROS2 support is often still experimental.

Figure 4.6 depicts a simplified version of the implemented software architecture. Its
main components are (a) the robot and its controller with Franka Control Interface
enabled, (b) a ROS node communicating with the robot to retrieve measurement data
from the robot and send low-level motion commands to the robot, (c) a ROS node with
the tasks digital representation and motion planning capabilities, (d) a ROS node to
handle the vision-based HTRC channel, (e) a ROS node to handle the baseline HTRC
channel, and (f) the anvil uplink to connect the local code to (g) the web app via (h) the
cloud hosted anvil server. The individual HTRC nodes are discussed in greater detail in
section 4.2.4.

Franka Control
Interface (FCI)

Baseline HTRC

Franka Control

Statemachine + Motion Planning

Vision HTRC

Robot

PC with real-time kernel

PC with dedicated GPU

Tablet
Stereo Camera

Cloud

CommandsData

Function Calls

Function Calls 

Function Calls

Send Triggers

Send Triggers

Data

Commands

Figure 4.6: Software Architecture

In principle, all ROS nodes can be run on the same machine, however, due to differ-
ent system requirements in regard to performance and real-time priorities for the node
communicating with libfranka and the vision node, the implemented architecture splits
the discussed nodes on two PCs connected via an Ethernet cable. By default, ROS is
configured as a distributed system allowing nodes to communicate over a network open
to any device. Therefore, communication between individual ROS nodes is not encryp-
ted. In contrast to that, communication between the anvil web app, server, and uplink
must be encrypted as traffic is routed via the public Internet.
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4.2.3 Study Interface

To guide the participants trough the experiment a custom anvil web app is developed.
This web app is responsible for: (a) Showing the instructions of which Lego design to
build. (see figure 4.7a) (b) Relaying commands to the robot, allowing it to resume its
tasks and update the active storage accordingly. (c) Administering the survey by dis-
playing the questions and enabling participants to respond directly within the web app,
while also logging the timing of each response (see figure 4.7b). (d) Handling the task
demonstration process, ensuring that participants become familiar with the tasks. (e)
Demoing the different HTRC channels, by showing a short animation of how it works
and allowing participants to test the mode before beginning with the experiment. (f)
Setting up the experiment, which includes counterbalancing the assignment of scenarios,
randomizing the order of instructions, and pseudo-randomly determining when an in-
terruption should occur. (g) Modifying the base image for the selected Lego design
according to the assigned color. This is necessary as every instruction has only one
image and the colors can be modified as needed once the image is requested. (h) Log-
ging the robot’s actions and associating them with the correct participant, scenario, and
instruction.

(a) (b)

Figure 4.7: (a) Example Instruction Screen, (b) Example Survey Screen,
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4.2.4 Implementation of Communication Channels

In accordance with the discussion above, there are multiple options to implement dif-
ferent HTRC channels to enable mid-task interruptions and task takeovers. Since the
applicable communication channel depends on the active scenario, the following para-
graphs discuss the implementation details for each level of the predictor construct.

Baseline

In order to include the current industry standard of how a human can interact with a
robot, a simple haptic control element is used as a baseline. In contrast to a regular
control interface, however, interrupting the task will not result in a cumbersome restart
procedure as the interruption behavior is set to be the same as for the other scenarios. For
the first design iteration, depicted in figure 4.2, the haptic control element is implemented
as a separate ROS node monitoring for the push of the space key on the PC located on
the left in figure 4.2.

Explicit

As pointed out in section 3.2.1, using the built-in force limiting functionality to commu-
nicate with a cobot is currently under explored in research. The basic idea is quite simple
though, as it enables the human to interrupt a robot’s task by intentionally causing a
collision, effectively signaling the robot to pause, stop, or modify its current task without
the need for additional interfaces. A major drawback of relying on the built-in mechan-
ism of force limiting are the predefined thresholds required for detecting a collision and
the limitation to only be able to detect collisions while the robot is moving. However,
by directly monitoring the active forces on the robot’s end-effector, the thresholds can
be fine-tuned, and the robot can also be enabled to detect haptic interactions while
it is idling. To enable this force monitoring, the finite-state machine is equipped with
a ROS-Subscriber to the robot’s measured external forces and an algorithm to detect
peaks exceeding a certain threshold.

Implicit

Building on the discussion of techniques enabling implicit HTRC (section 3.2.2), vision-
based systems, such as cameras and stereo-cameras, are the preferred technology when

73



4 Study and Implementation

it comes to motion-based non-verbal HTRC. These systems are favored due to their rel-
atively low price point, ease of use, simple installation, and readily available frameworks
to extract relevant features from the stream of images. Additionally, they are capable
of capturing complex motion cues without the need for physical contact or specialized
sensors. Given these advantages, a stereo-vision-based system is implemented.

The vision module runs as a separate ROS node on the PC equipped with a dedicated
GPU (see figure 4.6), once it detects the human intent to interrupt, it sends a trigger
signal to the finite state machine, which then depending on its current state can initiate
the expected interruption behavior of the robot. The implicit technique implemented for
this thesis uses a ZED2 stereo camera1 to monitor the robot’s environment. The camera’s
depth data is processed at runtime by the ZED-SDK, and using a neural network, the
3D skeleton for every human within its field of view is computed. Owing to the physical
setup and study design, the intent-prediction algorithm can be held rather simple. Based
on the skeleton data, a custom algorithm extracts the wrist and elbow key points and
extrapolates a hand key point. This hand keypoint is then used to monitor if the human
is trying to reach for an object. In case any monitored hand key point is within a
predefined zone, the vision node sends the interrupt trigger to the state machine.

4.3 Piloting

After designing the experimental procedure, implementing the required systems, and
before inviting real participants, piloting is an essential phase to refine and validate the
study design [112]. By conducting a pilot study, researchers gain insights that can help
identify unforeseen issues, such as unclear instructions or operational errors, that might
not surface during the planning phase, ultimately ensuring a smoother execution during
the actual study [112]. During the piloting for this study, several design aspects, but
most notably (a) the physical layout and (b) the style of the baseline interruption were
slightly adapted.

(a) Physical Layout: During the piloting sessions, participants reported minor
hesitance when asked to pick blue Lego bricks due to their closer proximity to the robot
(see figure 4.2). The initial layout discussed in section 4.1.5 was optimized for longer
robot trajectories as well as robot motions closer to the human workspace to enable

1www.stereolabs.com/products/zed-2
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quicker interruptions by the human. However, this design choice also led to a non-
symmetric layout as the robot’s mounting position as well as the chosen home pose were
both located on the left end of the table and therefore closer to the human’s workspace
for picking blue Lego bricks (see figure 4.2). In order to maximize the layout’s symmetry
ideally the robot should be remounted, however, since remounting the robot would also
influence other experiments conducted with it and require substantial modifications to
the entire setup a good compromise, still increasing the symmetry, is found by adapting
the robots home-pose as depicted in figure 4.8.

In addition to the layout change to increase symmetry, the positioning of the stereo
camera is also adapted to mitigate false positives, where the vision system interrupts the
robot even though the human did not intend to interrupt it. Further testing revealed
the root cause of these false positives to be linked to the robot partially occluding
one of the human’s hands causing the neural network responsible for extracting the
human skeleton to every now and then fuse this occluded human arm with the robot
and therefore produce false estimations of where and what the human is doing. The
modified position, as well as the new field of view, are depicted in figure 4.8.

(b) Style of Baseline Interruption: Initially, the baseline condition was imple-
mented as a simple press of the spacebar on a keyboard. However, during piloting,
it became obvious that following this approach would lead to distorted results as the
participants were simply waiting for the robot to start moving and would immediately
press the button, with very little effort. Therefore, to make the baseline a bit more
cumbersome the participants are now required to press a virtual button using a mouse.
To further increase the required attention the mouse is programmed to randomly move
away from the button to force a realignment of cursor and button for each interruption.
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Figure 4.8: Second Iteration of Physical Layout
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The following chapter presents the findings of the experimental research, analyzing par-
ticipants’ responses to the questionnaires introduced in section 4.1.6. In total 23 parti-
cipants were recruited to participate. Three of these were used as pilot sessions, there-
fore their responses are excluded, and the reported results are based on the 20 remaining
participants. The first section 5.1 reports the results of the post-study questionnaire,
followed by the second section 5.2 reporting the results of the repeatedly measured sub-
jective fluency metric questionnaire, and the final section 5.3 summarizing the responses
to the open-ended questions.

5.1 Demographics and Descriptive Statistics

The majority of the questions of the post-study questionnaire, such as age, gender, prior
robot experience, and participants’ most and least preferred channel of communication,
can be analyzed via descriptive statistics. To calculate the statistics the open-source
software JASP was utilized.

The recruited participants were, on average, M = 26.3 years old with a standard
deviation of SD = 2.452. 70% identified as female and 30% as male, the remaining
options “non-binary”, and “prefer not to say” were not selected by any participant (see
figure 5.1a). On a scale from one to ten, the self-reported prior experience was on
average M = 2.950 with a standard deviation of SD = 2.724. In regard to preference,
90% reported the implicit, 10% the explicit, and none the baseline as their favored
channel of communication (see figure 5.1b). The most disliked channel was the baseline,
with 65% reporting it as their least favorite, followed by explicit, with 35% picking it
as least preferred (see figure 5.1c). The implicit channel was never chosen as the least
favorite.
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Figure 5.1: (a) Gender Distribution, (b) Favorite Mode, and (c) Least Favorite Mode

5.2 Repeated Measures - Questionnaire

Based on the chosen participant structure (within-participant) (section 4.1.1) and the
three levels of the predictor construct (explicit, implicit, and baseline) (section 4.1.2) the
results of the subjective fluency metric questionnaire can be analyzed with the help of a
Repeated Measurements Analysis of Variance (RM-ANOVA). However, the individual
questions were not analyzed directly. Instead, compound scores, calculated as the mean
of individual ratings, were utilized as input for the analysis. For each compound score,
the assumption of sphericity was tested, and pairwise post hoc analysis using Holm
correction was used to compare individual communication channels where the F-scores
of the RM-ANOVA showed significant deviations. Additionally, using a Helmert coding
contrast, the implicit channel’s mean was compared with the means of explicit and
baseline.
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Human-Robot Fluency

The descriptive statistics for the perceived fluency compound scale are shown in table
5.1 and figure 5.2a. Based on Mauchly’s test [116], the assumption of sphericity was
violated (W (2) = 0.607, X2 = 8.974, p = 0.011, ϵ = 0.718). Therefore, the results
were corrected using Greenhouse-Geisser’s [117] sphericity correction. The calculated
results indicate that perceived fluency differed significantly between HTRC channels with
F (1.436, 27.287) = 5.939, p = 0.013, η2

p = 0.238. The compound value’s distribution is
plotted in figure 5.2b. A pairwise post hoc analysis using Holm correction showed that
while there was no significant difference between explicit-vs-baseline channels (pHolm =
0.479, d = 0.206), perceived fluency was significantly different for implicit-vs-baseline
(pHolm = 0.007, d = 0.944) and implicit-vs-explicit (pHolm = 0.029, d = 0.738) channels.
The calculated Helmert contrast indicated significance with p = 0.002. Based on these
results, the hypothesis H1 must be rejected, whereas H2 can be confirmed.

Communication Channel Mean SD
implicit 8.033 1.213
explicit 6.900 1.734
baseline 6.583 1.611

Table 5.1: Descriptive Statistics for Human Robot Fluency
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Figure 5.2: Human-Robot Fluency: (a) Descriptive Plot with 95% Confidence Intervals,
(b) Compound Score Raincloud Plot
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Trust in Robot

RM-ANOVA results suggested that the human’s trust in the robot did not vary notably
across HTRC channels, with F (2, 38) = 2.512, p = 0.095, η2

p = 0.117. Therefore,
hypothesis H3 must be rejected in favor of its alternative. However, the Helmert contrast
indicated a significant difference between implicit and the other channels with p = 0.033.
The descriptives and raincloud distribution of trust levels are illustrated in table 5.2 and
figure 5.3.

Communication Channel Mean SD
implicit 8.500 1.235
explicit 7.925 1.370
baseline 8.025 1.235

Table 5.2: Descriptive Statistics for Trust in Robot
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Figure 5.3: Trust in Robot: (a) Descriptive Plot with 95% Confidence Intervals, (b)
Compound Score Raincloud Plot

80



5 Results

Positive Teammate Traits

Findings indicated no significant variation for the compound score of positive teammate
traits, with F (2, 38) = 2.500, p = 0.095, η2

p = 0.116. Figure 5.4a and table 5.3 visualize
the descriptive statistics, and figure 5.4b the compound score’s raincloud distribution.
Similar to the trust score, a Helmert contrast reports the positive teammate traits com-
pound value for the implicit condition to be significantly different from the rest with
p = 0.031.

Communication Channel Mean SD
implicit 7.917 1.573
explicit 7.300 1.747
baseline 7.283 1.771

Table 5.3: Descriptive Statistics for Positive Teammate Traits
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Figure 5.4: Positive Teammate Traits: (a) Descriptive Plot with 95% Confidence Inter-
vals, (b) Compound Score Raincloud Plot
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Working Alliance - Bond

The distribution for implicit, explicit, and baseline scores (see Table 5.4 and Figure
5.5a), demonstrated a statistically significant difference with F (2, 38) = 11.788, p ≤
0.001, η2

p = 0.383. Figure 5.5b displays the raincloud distribution pattern. Post hoc ana-
lysis with Holm correction indicated considerable differences between implicit-vs-baseline
(pHolm < 0.001, d = 0.478) as well as explicit-vs-baseline (pHolm = 0.012, d = 0.289) com-
munication channels, implicit-vs-explicit (pHolm = 0.064, d = 0.189) indicated no stat-
istically difference. The Helmert contrast between implicit and the other two channels
was also significant at p ≤ 0.001.

Communication Channel Mean SD
implicit 5.614 1.935
explicit 5.264 1.828
baseline 4.729 1.787

Table 5.4: Descriptive Statistics for Working Alliance - Bond
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Figure 5.5: Working Alliance - Bond: (a) Descriptive Plot with 95% Confidence Inter-
vals, (b) Compound Score Raincloud Plot
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Working Alliance - Goal

In regard to goal alignment, the analysis helped identify no significant differences with
F (2, 38) = 1.031, p = 0.051, η2

p = 0.366. The descriptives are presented in table 5.5 and
figure 5.6a, and the raincloud distribution in figure 5.6b. Unlike the previous compound
values, the goal alignment scores showed no notable difference of means when compared
via a Helmert contrast table.

Communication Channel Mean SD
implicit 4.362 0.805
explicit 4.375 0.988
baseline 4.112 1.157

Table 5.5: Descriptive Statistics for Working Alliance - Goal
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Figure 5.6: Working Alliance - Goal: (a) Descriptive Plot with 95% Confidence Intervals,
(b) Compound Score Raincloud Plot
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Individual Liking

The individual liking scores, demonstrated a statistically significant difference between
conditions (F (2, 38) = 21.442, p < 0.001, η2

p = 0.530). Table 5.6 and figure 5.7 de-
pict the descriptive statistics, and figure 5.7 the distribution of acceptance across chan-
nels. Holm-adjusted post hoc analysis found significant differences between implicit-
vs-baseline (pHolm < 0.001, d = 2.125), implicit-vs-explicit (pHolm < 0.001, d = 1.431),
and explicit-vs-baseline (pHolm = 0.043, d = −0.693). The calculated Helmert contrast
between implicit and the other two channels was significant at p ≤ 0.001.

Communication Channel Mean SD
implicit 8.850 1.309
explicit 5.650 2.796
baseline 4.100 2.337

Table 5.6: Descriptive Statistics for Individual Liking
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Figure 5.7: Individual Liking: (a) Descriptive Plot with 95% Confidence Intervals, (b)
Compound Score Raincloud Plot
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5.3 Open-Ended

To analyze the responses to the open-ended question, participants’ comments were thor-
oughly read to gain a general sense of common themes. The most common themes were
coded for each channel of communication and are shown in Figure 5.8 (a-c).
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Figure 5.8: coded common themes for (a) Implicit, (b) Explicit, and (c) Baseline channels

Overall, participants reported the implicit channel of communication to be intuitive,
comfortable, and as having a good flow. Comments included “it was a fluent interaction”,
“this mode requires least effort and is the smoothest”, or “the flow of the work was
good”. Some participants, however, were a bit scared of the robot - “I found it a little
bit scary” - , and reported being hesitant when prompted to interrupt as they were afraid
of causing a collision - “it seemed like we could collide”. Despite that, the majority of
responses suggest that implicit communication allowed the most fluent and most natural
collaboration.

In contrast to that, while some participants still experienced the explicit scenario as
intuitive, most felt awkward, unpolite, or afraid to damage the robot when asked to
interrupt it by physically touching it. Comments ranged from “it felt a little bit rude
and impolite”, “Rough, not very elegant”, or “a bit brutal but manageable‘” to “it’s
comfortable knowing the robot stops when you want it to”, “Quick and effective”, or “
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it felt more natural‘”. Additionally, some participants noted that they would have liked
to receive more training on how to properly physically interrupt the robot, and if the
robot was more sensitive in detecting interruptions.

The baseline scenario was primarily perceived as an inconvenient extra task that
interrupted the workflow and was uncomfortable due to the requirement to shift attention
toward the mouse and screen. The majority of participants suggested rearranging the
study’s physical layout to bring the mouse closer to their workspace. Even though some
participants noted familiarity with this modality, it was never the preferred channel of
communication. Comments included “it interrupted me in my workflow”, “this way was
uncomfortable”, or “didn’t feel like we are working together”.

5.3.1 Additional Observations

In addition to the quantitative and qualitative data captured with the questionnaire, the
experimenter took notes of additional observations while administering the experiment.
During the explicit condition, the most common observation was people being hesitant
to grasp the correct brick after changing their minds. Some even waited as long as
it took the robot to return to its safe pose before collecting the brick from the robot-
storage. Another interesting observation, seen across all conditions, was people enjoying
it when the robot had to return the already grasped brick, this manifested in participants
waiting to interrupt until the robot had grasped a Lego. During the implicit condition,
this waiting and seeing sometimes turned into participants actively trying to fool the
robot by moving extra fast and just seconds before it would deliver the brick to them.
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As a sub-field of Human-Robot Interaction (HRI), Human-Robot Collaboration (HRC)
largely focuses on the division of labor between humans and robots. Current industry
standards and research typically define task boundaries based on spatial and temporal
separation of humans and robots or based on task interdependencies. However, when
humans and robots collaborate, strict task boundaries can reduce team adaptability and
flexibility, especially when a human needs to interrupt a robot during the execution of a
task. The concept of task takeovers turns out to have not been previously researched in
the domain of HRC. However, lending from other collaborative systems, like autonomous
driving, it can be defined as the dynamic transfer of control between agents. The missing
key components of enabling humans to take over tasks currently executed by a robot are:
(1) a task representation capable of handling interruptions and (2) a way to communicate
the intent to interrupt. This thesis, therefore, intended to bridge this gap by exploring
how interruptions can be handled and how different Human to Robot Communication
(HTRC) channels influence the team dynamics like perceived team fluency and trust
during task takeovers. Specifically, it addressed the following research questions:

Q1.) Which communication theories can be used to model a takeover request?

In order to understand how to effectively communicate a human’s takeover request to a
robot, it turns out to be essential to consider the underlying theoretical communication
framework and the channel used to communicate. Theories on human-robot commu-
nication often draw on human-to-human communication theories such as Watzlawick’s
five axioms [51], Laswell’s linear framework [57], Barnlund’s transactional model [61] or
Kincaid’s convergence model [60] (see section 2.4). The existing research was found to
include various studies on HRI specific frameworks focused on adapting transactional
models to better depict the reciprocal aspect of communication (see section 2.4.4). How-
ever, some researchers like Frijns et al. [21] also argue that with current technologies,
communication between robots and humans can not be symmetrical due to inherent
differences in capabilities. This is especially true for non-humanoid robots which lack
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human-like skills such as displaying and perceiving emotions.

Furthermore, unlike ongoing dialogues that benefit from using concepts of mutual un-
derstanding, feedback loops, and dynamic agent roles, takeover scenarios can be viewed
as a discrete communication of intent and a simple response of acknowledgment, e.g., the
robot interrupting its task. Therefore, this thesis suggests discretizing the required com-
munication for interrupting a robot and aligning it with the linear approach suggested by
Kunold et al. [50], as this allows for simplified modeling and analysis of communication
acts by focusing on clear, actionable exchanges. Applying this framework to the context
of human-robot task takeovers, the human can be seen as a communicator sending an
instrumental message to the robot with the intentional effect of coordinating task-related
actions. At the center of this discrete act of communication, the channel, comprised of
form and modality, can be viewed as crucial in determining how the takeover request
gets communicated.

Q2.) Which channels of communication can be utilized to communicate a
task-takeover request?

As outlined in section 3.2, various channels can be used to convey a human’s takeover
request to a robot. These can generally be categorized as either (1) explicit, where the
human actively invokes something, or (2) implicit, where the robot tries to infer human
intent based on the user’s actions.

Explicit communication was found to be accomplishable via multiple combinations
of form and modality. However, not all of these channels and their respective techno-
logies turned out to be equally suited for deployment. For example, while microphones
could offer a natural verbal-auditive channel, their effectiveness is still highly depend-
ent on factors such as trained vocabulary, the number of speakers, and the level of
background noise. Other channels like a nonverbal-neural, based on BCI technology,
were found to require extensive training and adaptation to each individual user, limiting
their immediate applicability. Similarly, a nonverbal-visual channel based on cameras
or a nonverbal-kinesthetic channel utilizing motion sensors, both designed to detect ges-
tures, turned out to require the user to know and learn which gestures could be used
while also being limited by the available training data. In contrast to these more com-
plex options, a nonverbal-tactile channel facilitated by simple haptic control elements,
although often stationary, was found to be a well-established way of sending command
messages to a robot, e.g., via its teach pendant. Additionally, the use of internal force/t-
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orque monitoring turned out to be a viable, less explored but promising nonverbal-tactile
channel. While modern cobots are known to employ force and torque limiting primarily
to adhere to safety standards, its potential for detecting explicit human input during
task execution appeared to be largely unexplored in research.

Following Watzlawick’s axiom that “one cannot not communicate” [51], the notion
of communication-free collaboration must be reconsidered. Even in implicit interaction
scenarios, human actions serve as communicative signals that the robot must correctly
interpret to ensure successful collaboration. However, unlike explicit HTRC, impli-
cit communication turned out to be limited to certain channels and their respective
technologies. The examination of previous research revealed the most common impli-
cit channels as either (a) nonverbal-visual based on 2D or 3D camera systems or (b)
nonverbal-kinesthetic enabled by motion sensors. Most reviewed implicit techniques
were found to require some sort of machine learning algorithms to analyze human mo-
tion patterns to either recognize and label or predict future human motion. In general,
implicit channels appeared to enable a more natural interaction, as humans can com-
municate without interrupting their workflow. However, they require robust algorithms
to accurately interpret/predict human actions to avoid unintended takeovers.

While the discussed asymmetries in humans and robots allow for structured and
linear communication, they may not always align with human expectations for natural
interaction. This is particularly relevant when using simplified interfaces such as GUIs or
simple buttons, which lack the fluidity of human-like exchanges. Nonetheless, they can
serve as an ideal baseline condition for comparison, as they provide a clear, controlled,
and well-established method for communicating with a robot.

Based on the discussion above, the three different channels (a) baseline, mediated
via a GUI and mouse, (b) explicit, facilitated by physically touching the robot, and (c)
implicit, based on human actions, where chosen to investigate how different Human to
Robot Communication (HTRC) channels affect task takeovers.

Q3.) What are current task allocation techniques, and how do they integrate
task-takeovers and communication?

The analysis of prior literature revealed numerous techniques, none of which have pre-
viously been used for the proposed concept of task takeovers. The four major categories
of dynamic task allocation methods identified were:
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(a) AND/OR Graphs (AOGs): Modern AOGs provide a directed graph repres-
entation of tasks with alternative execution paths capable of online re-planning. Despite
these capabilities, the reviewed techniques must be criticized for assuming optimal hu-
man behavior and limiting humans to a passive role. Moreover, communication in the
analyzed papers was often limited to GUIs or facilitated via gestures. (section 3.1.1)

(b) Behavior Trees (BTs): The concept of BTs originated from game design,
transferred to HRC it offers a modular technique to handle task allocation. While the
analyzed method excels in handling low-level ad-hoc decisions, it lacks the capability to
consider hierarchical orders and human-robot communication. (section 3.1.2)

(c) Hierarchical Task Networks (HTNs): To increase understandability for hu-
mans, HTNs decompose complex tasks into smaller subtasks. In order to optimize task
completion time and minimize spatial interference, the reviewed HTN methods priorit-
ize robot actions parallel to human actions. However, similar to AOGs and BTs, the
examined methods did not account for unexpected human behavior or task takeovers.
In the HTN-based systems, communication was primarily implicit and relied on visual-
nonverbal channels by recognizing or predicting human actions. (section 3.1.3)

(d) Partially Observable Markov Decision Processes (POMDPs): The re-
viewed POMDPs provide a probabilistic framework for decision-making under uncer-
tainty where the (human-robot) system’s state cannot be observed directly. In the
analyzed literature, POMDPs have been utilized to minimize task completion time and
to give robots the capability to reason about when to communicate. However, POMDPs
require numerous assumptions about human behavior and extensive modeling expertise.
Additionally, they have yet to be tested for their applicability to handle task interrup-
tions. (section 3.1.4)

A key limitation of all analyzed techniques was their assumption that once a task
is assigned, it must also be completed, making it difficult to integrate takeovers within
existing frameworks. Even though some task allocation techniques could, in theory,
be adapted to accommodate takeovers, none of the reviewed methods offered a native
mechanism for handling purposeful human interruptions. Consequently, as an alternative
strategy to handle interruptions, a finite-state-machine approach was chosen to speed up
development. In addition to being conceptually similar to standard robot programming,
where multiple commands are sequentially linked, a finite-state machine allows for the
creation of more complex scenarios by constructing a network of states and transitions.
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Q4.) To what extent do different HTRC channels impact team dynamics, such as
perceived team fluency and trust, during task-takeovers?

In order to answer research question Q4 an experimental setup was developed, and a
user study was conducted with a total of 20 participants. The quantitative results of the
experiment suggest considerable differences in how HTRC channels affect task takeovers
(see section 5.2). The implicit channel scored highest in all subjective compound met-
rics, with the explicit channel typically coming in second and the baseline third. The
conducted Repeated Measurements Analysis of Variance (RM-ANOVA) showed stat-
istical significance for the “Human-Robot Fluency”, “Working Alliance - Bond” and
“Individual Liking” scores. Even though it might seem counterintuitive, the remaining
scores “Trust in Robot”, “Positive Teammate Traits”, and “Working Alliance - Goal”
showed no notable effect associated with HTRC channels. This indicates that the level
of trust during the takeover scenario was not influenced by how the human communic-
ated the intention to take over. Similarly, it can be speculated that the robot’s traits,
such as perceived intelligence and commitment to the task, were not affected by the
communication channel.

Overall, the quantitative results align with the qualitative results based on the answers
to the open-ended questions. All findings suggested that the implicit HTRC channel is
not only the most liked channel but also perceived as having the highest team fluency.
One possible explanation for this is the implicit channel’s intuitiveness, as it requires no
training or familiarization, while also being the least disruptive channel to the human’s
workflow, enabling almost a human-co-worker-like dynamic that supports task fluency.
The explicit HTRC channel’s results, on the other hand, were a bit surprising, as it was
generally perceived as less fluent and encountered usability challenges that may have
affected the scores. The primary usability issues seem to stem from participants feel-
ing awkward and rude about physically interrupting the robot. Additionally, the force
thresholds may have been too high, and participants might have lacked sufficient exper-
ience to judge how much force was required. In contrast to that, the baseline HTRC
channel’s poor performance and its overall bad ratings proved to be within expectations,
given the inherent limitations of its design. The fact that almost all participants high-
lighted the inconvenience of having to use a mouse to click a virtual button, emphasizes
how interactions mediated via a GUI disrupt the workflow and require a shift of focus,
thus reducing perceived task fluency.
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6 Discussion

Limitations

Like most experimental research, the generalizability and validity of this study’s results
have several limitations. First of all, the statistical power and transferability are con-
strained by the small sample size of 20 participants. Moreover, the decision to conduct
the experiments in a controlled laboratory setting with a simple Lego® assembly task
can not fully reflect the complexity of real-world scenarios. However, the controlled
laboratory setting and the abstract task of assembling Legos allowed for better isolation
of key variables, minimized external noise, and increased experimental control.

Besides these limitations associated with the study design, it is also necessary to
address a number of technical restrictions. Firstly, the explicit mode suffered from the
robot’s internal force/torque limits being fixed at a relatively high value. Unfortunately,
lowering these thresholds results in random false positives as the robot moves and is
exposed to the dynamic forces imposed by its physical embodiment. For the explicit
condition, the robot’s physical location must be named as an additional limiting factor,
as it caused participants to delay their interruptions until the robot was closer and within
a more convenient proximity to interrupt. Last but not least, the implicit channel’s basic
logic to infer human intent could benefit from enhanced reasoning capabilities.

Future Research

The discussion above highlights the need for future research on how to handle and
communicate task takeovers in collaborative human-robot scenarios. One valuable area
of future research should address the limitations of the study’s design by expanding the
participant pool and exploring more complex and realistic scenarios. This will increase
generalizability and enhance the statistical power and reliability of future findings.

In order to tackle the responsiveness issue caused by the robot’s internal force/torque
limits, future work could look into using ML-enabled algorithms to detect anomalies
instead. This could increase the detection accuracy and make the explicit mode work
faster as the robot would no longer be required to recover from the collision. Similarly,
the implicit channel could be refined through advanced intent recognition and predic-
tion capabilities such as constantly monitoring hand velocity and trajectory to perform
predictions of future hand movements and, for example, only trigger an interruption if
the robot and the human are about to grasp the same object.
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6 Discussion

New dimensions for future work could investigate the long-term effects of different
HTRC channels and examine the impact of varying task complexity. Another possible
area of future research to increase objectivity could be the incorporation of objective
metrics, such as eye tracking, to quantify human attention and cognition during task
takeovers. Moreover, future research could focus on integrating multimodal commu-
nication approaches to offer richer interactions. In addition to these new dimensions,
future work could incorporate a multi-factorial design and combine HTRC with Robot
to Human Communication (RTHC) to explore the reciprocal effects of communication
and provide a more holistic view.
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7 Conclusion

This thesis introduced the research domain of collaborative robotics to the concept of
task takeovers, where a human momentarily interrupts a robot to assume control of its
task. Within a linear framework of human-robot communication, it then explored the
effects of selected Human to Robot Communication (HTRC) channels on team dynamics
such as perceived intelligence, fluency, trust, liking, goal alignment, and human-robot
bond during task takeovers by conducting an experimental user study. Within the
study three HTRC channels were examined: (a) baseline, mediated by an Graphical
User Interface (GUI) on a PC, (b) explicit, facilitated by physical touching the robot,
and (c) implicit, based on inferring intent from human motion.

The analysis of the results suggests that the implicit channel allowed for smoother and
more natural task takeover as it was perceived as significantly more fluent and received
higher individual liking ratings than the other two channels. While the explicit condi-
tion was able to achieve significantly higher individual liking scores than the baseline
channel, no notable difference was observable in regard to perceived fluency. Contrary
to expectations, the trust in the robot was not significantly affected by switching HTRC
channel. This suggests that the human’s trust in the robot’s capabilities to handle a
task takeover might not be linked to the channel used to communicate the intent to
interrupt. Similarly, perceived robot traits such as task commitment and the robot’s
intelligence, appeared to be unrelated to the chosen HTRC channel.

This thesis’ findings provide valuable insights for developing and designing future
robotic systems equipped with intuitive and fluent human-robot interactions capable of
handling frequent interruptions and task takeovers.
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