
Automatische Evaluierung und
Paramter Optimierung für

Retrieval Augmented Generation
Systeme

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Computational Science and Engineering

eingereicht von

Simon König, Bsc.
Matrikelnummer 11702826

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Mitwirkung: Pretitle Forename Surname, Posttitle

Pretitle Forename Surname, Posttitle
Pretitle Forename Surname, Posttitle

Wien, 17. Jänner 2025
Simon König Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Automated evaluation and
parameter optimisation for

retrieval augmented generation
systems

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Science and Engineering

by

Simon König, Bsc.
Registration Number 11702826

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Assistance: Pretitle Forename Surname, Posttitle

Pretitle Forename Surname, Posttitle
Pretitle Forename Surname, Posttitle

Vienna, January 17, 2025
Simon König Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Simon König, Bsc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 17. Jänner 2025
Simon König

v

Abstract

English Abstract
Retrieval-Augmented Generation (RAG) systems connect language models to external
knowledge bases. The rapid advancements in natural language processing (NLP) and
machine learning, particularly transformer-based architectures, have led to the widespread
development of RAG systems. While the field is trending in a research-oriented direction,
the design of such system often remains more of an art than a science. This work aims
to contribute to a more scientific approach for the design and evaluation of such systems.
Recent research has introduced evaluation frameworks that heavily depend on labeled
datasets to provide guidance for RAG system design. However, these frameworks often
fall short in scenarios where labeled datasets are unavailable. This study addresses these
limitations by proposing a lightweight RAG evaluation framework capable of handling
unlabeled datasets. A RAG pipeline is developed and configured using the proposed
evaluation system. The evaluation framework makes use of two complementary scoring
metrics - the lightweight ROUGE metric and the elaborate LLM-judge metric. This
study introduces a novel, ready-to-use RAG evaluation framework and offers general
guidelines for improved RAG system design. Additionally, the RAG Triad approach is
proposed as a method for effectively handling datasets without ground-truth labels. The
findings of this work contribute to the rapidly evolving ecosystem of natural language AI
by offering a robust framework for the evaluation, recommendation and innovation of
RAG systems.

vii

German Abstract
Retrieval-Augmented Generation (RAG)-Systeme verbinden Sprachmodelle mit externen
Wissensdatenbanken. Die rapiden Fortschritte bei der Verarbeitung natürlicher Sprache
(NLP) und maschinelles Lernen, insbesondere transformatorbasierte Architekturen, haben
zur weit verbreiteten Entwicklung von RAG-Systemen geführt. Während das Feld in
eine forschungsorientierte Richtung tendiert, bleibt der Entwurf solcher Systeme oft
eher eine Kunst als eine Wissenschaft. Diese Arbeit soll zu einem wissenschaftlicheren
Ansatz für den Entwurf und die Bewertung solcher Systeme beizutragen. In der jüngeren
Forschung wurden Evaluierungs-Systeme eingeführt, die stark von gelabelten Datensätzen
abhängen, um Anhaltspunkte für den Entwurf von RAG-Systemen zu liefern. Diese
Systeme sind jedoch oft in Szenarien, in denen markierte Datensätze nicht verfügbar sind,
nicht anwenbar. Diese Arbeit adressiert diese Problem und stellt ein leicht gewichtiges
RAG-Evaluierungsframework vor, das auch mit unmarkierten Datensätzen umgehen
kann. Zwei komplementäre Bewertungsmetriken finden Anwerndung in dieser Arbeit, die
leichtgewichtige ROUGE-Metrik und die aufwendige LLM-Judge-Metrik. Diese Studie
stellt ein neuartiges, gebrauchsfertiges RAG-Bewertungssystem vor und bietet allgemeine
Richtlinien für ein verbessertes RAG Design. Zusätzlich wird der RAG-Triad-Ansatz
als Methode zur effektiven Handhabung von Datensätzen ohne „ground-truth labels“
vorgeschlagen. Die Ergebnisse dieser Arbeit tragen zu dem, sich schnell entwickelnden
Ökosystem der natürlichsprachlichen KI bei, indem sie einen robusten Rahmen für die
Bewertung von RAG Systemen liefern.

Contents

Abstract vii
English Abstract . vii
German Abstract . viii

Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 1
1.3 Challenges and aim of thesis . 3

2 Background 5
2.1 Information Storage . 5
2.2 Retrieval . 12
2.3 Augmentation . 15
2.4 Generation . 16

3 Method — Advanced RAG 17
3.1 Query Expansion . 18
3.2 Re-ranking . 19
3.3 Context Expansion . 21
3.4 Source Count . 22
3.5 Language Model Choice . 22

4 Evaluation framework — Evaluating RAG 23
4.1 Performance indicators . 24
4.2 Scoring metrics . 27
4.3 Experiment Design . 29

5 Results 33
5.1 Method influence . 33
5.2 RAG Triad Correlation . 38
5.3 In depth parameter results . 39
5.4 Gold Standard retrieval . 42

ix

5.5 Parameter Permutation Results . 43

6 Conclusions 45
6.1 Re-ranking of Sources . 45
6.2 Query Expansion . 45
6.3 Context Expansion . 46
6.4 Number of Sources . 46
6.5 LLM Choice . 47
6.6 RAG Triad . 47
6.7 Evaluation Framework . 48
6.8 Lessons learned . 48

7 Outlook 49

Appendix I: Results 51
Significance Results . 51
LLM-Judge Evaluation prompts . 53

Appendix II: Software 57
LLMs . 57
Vector index . 59
Versions . 59
Code . 59

Appendix III: Hardware 61

List of Figures 62

List of Tables 63

Bibliography 65

CHAPTER 1
Introduction

1.1 Motivation
The landscape of Large Language Models (LLMs) and associated fields is undergoing rapid
evolution, driven by ongoing advancements and innovations. As LLMs gain relevance
in modern private and business use, the major issues of such models are the lack of
domain-specific knowledge and hallucinations. One of the leading methods to improve
on these problems is Retrieval Augmented Generation (RAG). This approach integrates
retrieval mechanisms with generative natural language models to produce responses which
are domain specific and take into account the most recent developments and changes
within the domain.
This new mechanism opens up vast possibilities, but also proposes a lot of questions.
How can a RAG system be comprehensively evaluated? It is more a methodology than
an algorithm, and thus not trivial to evaluate. What are the objectives in method
optimisation and which subcomponent R, A or G has the greatest impact? The purpose
of this thesis is to investigate methods for evaluating the RAG pipeline itself and to
provide guidelines on system design.

1.2 State of the Art
In the following, a brief summary of current advances in RAG developments is described,
along with an outlook and impact on this thesis. Gao et al. recently provided a
comprehensive overview of the latest developments in RAG ecosystems [GXG+24]. Their
survey encapsulates various methodologies, techniques and applications, shedding light
on the state-of-the-art advancements and potential future directions. The paper outlines
various RAG approaches, generally categorised into three distinct methods:

• Naive RAG

1

1. Introduction

The naive RAG system goes through three main steps: indexing, retrieval, and
generation. It starts by turning different document formats into plain text, breaking
them into smaller parts, and converting these into searchable vectors. When a user
asks a question, it finds the most similar resources, combines them with the user
query and prompts a large language model to generate an answer based on the
learned context. However, the main issues of naive RAG systems are imprecise
retrieval, inaccurate utilisation of the retrieved resources and hallucinations of the
LLM.

• Advanced RAG
The advanced RAG system enriches the naive methodology by a pre-retrieval and
post-retrieval step. During the pre-retrieval process, the main goal is to improve
how the system organizes and understands the original question. This involves
improving the search process by organising data more effectively and modifying
the query to make it clearer. After finding relevant information, it is important
to blend it smoothly with the original question. This might mean reshuffling the
retrieved info to highlight the most important parts and making sure there is no
unnecessary information. These advancements help the system to focus on concise
and important information and avoid context window overflow of the large language
model.

• Modular RAG
The modular RAG architecture improves upon previous versions by being more
adaptable and versatile, incorporating various strategies like adding a search module
or fine-tuning the retriever. It is gaining popularity since it can handle both step-
by-step processing and training the system based upon a specific domain and
task.

In parallel, the need for robust evaluation frameworks and benchmarking standards
within the RAG domain has garnered significant attention. Current RAG evaluations and
benchmark aspects have been proposed by RAGAS and ARES [EJEAS23],[SFKPZ24].
These initiatives aim to facilitate fair comparisons between different RAG systems.

This thesis aims to incorporate the building blocks of both ARES and RAGAS. The
metrics in this thesis are inspired by the ones proposed in ARES and RAGAS, namely
context relevance, answer faithfulness, and answer relevance. While ARES pre-trains
LLM judges along the evaluation process, RAGAS uses computational methods to
evaluate a given system. This work integrates both approaches in to offer a more
streamlined approach. Current RAG evaluation frameworks include RaLLE, focusing
on transparent prompt engineering optimisation [HMN+23], RAGGED concerning the
number of retrieved documents [HSWN24], RagBench introducing the metrics context
utilization and answer completeness [FBS24] and BERGEN, analysing the usability of
datasets for RAG [RDC+24]. They introduce different ideas and methods for evaluating

2

1.3. Challenges and aim of thesis

question-answer systems and retrieval of various kinds. All of the above have been
developed concurrently with respect to this project, hence have similarities to this
framework.

The framework proposed in this thesis tries to offer a different, more lightweight approach,
while also providing a solution for ground-truth-less applications. Additionally, the
building blocks for an advanced RAG system are provided accompanied by the associated
code repository.

1.3 Challenges and aim of thesis
In the following, the current challenges in RAG evaluation are discussed along with
possible solutions proposed in this work.

From naive to advanced RAG

There is limited understanding of the impact of each of the different steps in the RAG
engineering process. RAG usage is not streamlined, and selecting a design for an existing
RAG system offers various possibilities. This work proposes an advanced RAG which is
based on the analysis of the results yielded by the developed evaluation framework. An
advanced RAG system is designed, improving upon the naive RAG design.

Building an evaluation framework

As the field continues to evolve, developing methods to automatically evaluate RAG
systems is crucial to sustain high quality scientific standards. Evaluating a RAG ecosystem
is not straight-forward due to the complex nature of the system. It is also not clear
which metrics are most suitable for addressing the performance of a RAG system. Thus,
a framework will be introduced to systematically evaluate RAG ecosystems based on
appropriate metrics. Current RAG evaluation systems and metrics focus on performance
of complete RAG ecosystems, without diving into specific components or interactions
between them. To address this, the analysis of the pairwise relationship between sub-
systems and their impact on the overall system performance will be the subject of
this thesis. The impact of micro-adjustments to components of the system on the
macro-performance of the RAG environment will be quantified.

Real domain application

When building a question answer system for a specific domain, field or business, there is
rarely a dataset providing ground truth answers. Hence, it is quite difficult to evaluate
such a system, given that RAG system responses cannot be compared to a true answer.
This thesis introduces the RAG Triad as a remedy. The underlying hypothesis postulates,
that when the main components of a RAG system yield positive results based on a metric,
then the overall answer of the system tends to be correct.

3

CHAPTER 2
Background

This chapter is concerned with explaining the basic RAG process schematically. The
naive RAG process shown schematically in figure 2.1 gained popularity shortly after
the rise of LLMs like ChatGPT to general awareness [Ray23]. The basic process is
structured into four parts. (i) First domain data is processed and stored in a vector
index for later retrieval. (ii) Second, the system receives a query/question and retrieves
information from a database. (iii) Third, the query is fused with the retrieved information
via an instructive prompt. (iv) Fourth, based on query, information and prompt, a LLM
produces the final rag output [ZZY+24]. This chapter is concerned about the building
blocks of a RAG system, without talking about possible improvements. An advanced
RAG approach is addressed in the succeeding chapter.

2.1 Information Storage
This section discusses the first rag component, information retrieval. This involves
creating a database, from a given text corpus, data collection or repository. Then, the
retrieval model retrieves information from the pre-built database with respect to the
given query [ZDD+22]. Below is an explanation of how a vector database is designed
and how indexing to the vector database works.

2.1.1 Vector Database — Overview
Vector databases offer several advantages over traditional databases. One key benefit is
fast and accurate similarity search and retrieval, as they can identify the most relevant
data based on vector distance or similarity. This is essential for applications involving
natural language processing, computer vision, and recommendation systems. Traditional
databases, by contrast, rely on exact matches or predefined criteria, which may not capture
the full semantic or contextual meaning of the data. Additionally, vector databases

5

2. Background

Figure 2.1: Naive RAG

are well-suited for handling complex and unstructured data, such as text, images, or
multimedia, which don not conform to the rigid schema of traditional databases. They
convert such data into high-dimensional vectors, preserving key features and attributes.
Vector databases also excel in scalability and performance, managing large-scale, real-
time data processing crucial for modern data science and AI applications [HLW23]. The
main principle of a vector database is vectorization [KKB+23]. It aims at converting
rich, unstructured data like natural language text, image, videos into numerical vectors,
capturing features of the data. Features include language, data size, colours and semantic
meaning among others. Unlike traditional databases where a query might ask for the
number of players on a specific football team, a query to a vector database can, for
example ask, what are the instructions I have to follow when I want to buy a ticket for
a football game. Managing the vector databases has gained a lot of traction recently,
with the advent of vector database management systems (VDBMS) also called vector
indexes. A vector index manages storage and retrieval of the vectorised data efficiently.
Vectors are related inherently by their distance to each other. At the indexing step, each
data point is inserted into a specified data structure. At the retrieval step, naively an
exhaustive search is necessary and the distance between the query vector and all database
vector would be computed. A vector index accelerates this process by using appropriate
data structures. [Tai24].

A vector index manages the vector database on creation, updating and retrieval. This
work uses the open source software Marqo [Mar] to manage a custom vector index. The
underlying engine is provided by Vespa [Ves]. In this tech stack, Marqo serves as high level
interaction interface, allowing embedding-generation, querying and enriched information

6

2.1. Information Storage

retrieval. The Vespa vector index supplies the low level foundation by providing a vector
store alongside an approximate nearest neighbour storage schema.

2.1.2 Database entries - vectors
The database entries are high-dimensional vectors, encode features such as meaning,
word count, sentiment, language, etc. mathematically. The number of dimensions in
each vector can vary from single digits to thousands, depending on the chosen embedding
mechanism. Vectors are typically generated by applying a transformation or embedding
function to an input [CPL19]. The embedding function uses natural language machine
learning models, such as a sentence-transformer models. The process of creating such a
vector embedding of text involves tokenisation and attention. First, a text is tokenised,
meaning it is split up into smaller sub parts. Tokens are similar to words but can also be
syllables or include special characters.

ti = [t1, t2, t3, . . . , tn] = ftokenize(input) (2.1)

where

ti ... The i-th token of the tokenized sequence.

ftokenize(input) ... A function that takes the input text and splits it into a sequence of
tokens.

n: The total number of tokens in the sequence.

Then the tokenized text is parsed by a sentence transformer model and mapped to a
high dimensional vector. The output vector is a numerical representation of the features
of the input text.

vi = gst(ti) (2.2)

where

vi ... The dense embedding vector for the input text

gst(ti) ... A sentence transformer function that takes the token ti and converts it into an
embedding vector

An intuitive view of a vector representation has been formulated by Mikikol et al.
One, algebraic operations can be performed on vector representation. For instance,
when looking for a vector representation of the word “smallest”. One can calculate X
= vector(“biggest”) - vector(“big”) + vector(“small”), where X results in the vector

7

2. Background

Figure 2.2: Simple word as vector source [Tou]

representation for smallest. Second, they found that, when high dimensional word vectors
are trained on a large amount of data, even subtle semantic relationships can be encoded.
An example here is that a vector representation of a city includes information on the
country it belongs to, e.g. Vienna is in Austria or Paris is in France [MCCD13]. These
embeddings enable the computation of distances between data points within the vector
space, analogous to calculating distances in three-dimensional Euclidean space. The
underlying assumption is that if two data points are close to each other in the vector
space, they are similar in semantic meaning [sub].

The main reason for mapping text to a vector is that in a vector space, a distance
metric can be defined. The clear mathematical formulation of distance for finite vector
spaces allows for the calculation of distance between two vectors, with cosine similarity
or variations of it, being the most commonly applied method [PWL23]. This distance
metric is the basis of measuring similarity within high-dimensional vector spaces. The
intuition here is, that if the distance between two points is small, then the difference
in semantic meaning is small. The cosine similarity, like most methods used in NLP
similarity measures, is based on the dot product [Jur24],

dot-product(v, w) = v · w =
N∑︂

i=1
viwi = v1w1 + v2w2 + · · · + vN wN (2.3)

where

v , w ... embedding vectors

8

2.1. Information Storage

N ... vector dimension

where the cosine follows the normalized dot product,

cos(v, w) = v · w
|v||w| =

∑︁N
i=1 viwi√︂∑︁N

i=1 v2
i

√︂∑︁N
i=1 w2

i

(2.4)

measuring the alignment of the two vectors. Intuitively, this can be thought of as
resembling the inner product of two-dimensional vectors, where a perfect alignment
results in an inner product of 1. Whereas, if two vectors are normal to each other, the
result is zero.

2.1.3 Vector database — storage
Once data is converted to vector embeddings, it needs to be stored in a so-called vector
index in order to have efficient information retrieval later. Due to the high dimensionality
of the vector embeddings and the potentially large number of stored vectors n, it would
scale with O(n) to calculate the similarity between a query vector and all stored data
entries. This is where vector database management system or so-called vector indexes
come into place. These systems enable storing vector embeddings in data structures,
providing a trade-off between precision and latency. Some popular algorithms are
Product Quantization [YCX20], [JDS11], Locality-Sensitive Hashing [ZZW+20] and the
Hierarchical Navigable Small World approach [MY18], which creates a hierarchical graph
with fast neighbourhood exploration by building a small world network [Tai24]. The
vector index used in this work uses the latter HNSW approach. The hierarchical navigable
small world (HNSW) algorithm is an k- approximate nearest neighbour algorithm based
on the navigable small word (NSW) approach. [HLW23] The navigable small world
algorithm uses greedy graph routing to select the k nearest neighbours. The hierarchical
extension to the HNSW uses a multi-layer graph, where the one layer contains all data
entries and additional layers contain nested subsets of all elements. The multi-layer graph
resembles the structure of a skip list. When searching for the elements closest to the
element representing the query embedding, a random entry point in the most sparse
(top) layer is selected and then greedily routed to the data point of its friends list which
is closest to the query embedding. Then, edges are traversed in each layer until a local
minimum is found in the most dense (lowest) layer. The k data point closest to the query
data point are returned [MY18] [PWL23]. Figure 2.3 shows an NSW graph, while 2.4
shows the evolved multi-layer HNSW graph, schematically.

2.1.4 Vector database — indexing
All tough multimodal data (strings, image, etc.) can be embedded as vectors, this work
is concerned with exploring the textual data only. Initially, the data is pre-processed.
For the case of textual, the text corpus is divided into smaller segments, or chunks.

9

2. Background

Figure 2.3: NSW, source [Pin]

A chunk is a subsection of a full document; for example, if the document is a single
page, a chunk might correspond to a paragraph. Each chunk is represented as a distinct
vector embedding within the vector database. Importantly, all vector embeddings are
of uniform dimension, regardless of the chunk size. The vector dimension is predefined
when initializing the index. This work uses the flax-sentence-embeddings/all_datasets_v4
_mpnet-base model to create the embeddings [Hug]. This model was chosen based on
[MTMR23] as a trade-off between performance and resource utilisation. The model maps
each chunk to a 768 dimensional vector. Then the embedding is stored in the vector
index using the HNSW algorithm.

Chunking is done to optimise the semantic distinction of each embedded vector. Note
that smaller chunks are not necessarily better, but rather an appropriate, domain
dependent size has to be found. For example, a PDF document containing 10 pages
and information about various topics is likely too large to be encoded with a distinct
and precise semantic meaning and a single word or sentence is probably too small to
capture enough complementary context. Remember that no matter the chunk size, the
embedding vector always has constant size. The aim is to find a chunking mechanism
such that each chunk has a distinct semantic meaning from the surrounding chunks,
while still capturing enough macro context. A chunking example is given in Figure 2.5

A chunking function is applied, to extract chunks from a text corpus. This function takes
in a text document and outputs text chunks, while fulfilling certain criteria. The chunking
strategy determines the size of the chunks and thus also the memory implications. There
are many design choices on how to define this strategy, this work focuses on splitting on

10

2.1. Information Storage

Figure 2.4: HNSW, [Pin]

“separators” while not exceeding a fixed character size for the chunk. A separator is a
special textual character, usually resembling a semantic break in written speech, like the
end of a sentence or a paragraph. Generic configurations used in this work are:

• Maximal number of characters in a chunk: 256

• Separators: “\n\n” “\n” , “ . ” , “ ! ” and “ ? ”

The number of characters is a chunk is not only an important marker in capturing
semantic and related meaning in text, but also has a big impact on the memory footprint
of the application. While the exact memory footprint depends on numerous conditions,
the chunk size is a defining one. Doubling the chunk size, cuts the number of total chunks
which need to be embedded in half and vice versa. Studies have shown, that chunk
character counts of 256 and 512 are among the best performing sizes, with respect to
accuracy, BLEU and ROUGE retrieval [YYM+24]. The output chunks of the chunking
algorithm are subsequently converted to vector embeddings and added to the vector
index., using the HNSW schema.

11

2. Background

Figure 2.5: Chunking

2.2 Retrieval
In the retrieval stage, resources are retrieved from a vector index with respect to a given
user query. The retrieved context should be as similar as possible to the given query. It
is not clear what similar means. The vector index is capable of performing two variants
of look up - i.e. two forms of similarity. First, lexical search based on classical word
matching search mechanisms. Second, semantic search, also called vector or tensor search,
returning results by maximising a semantic similarity measure between the query and
the search corpus.

Lexical similarity is only concerned with matching letters, words, and sentences, whereas
semantic similarity relates a text to another if they are similar in meaning but not
necessarily using the same wording. For example, the word “football” in the North
American region means “American football” whereas “football” in Europe is related to
what is also known as “soccer”. In this case, on the one hand, two articles about football
can have high similarity when only concerning lexical similarity but might talk about
two different sports where the semantic similarity would be significantly lower as the
lexical one. On the other hand, the words football and soccer can have the same semantic
meaning, but the lexical similarity is zero, as illustrated in Figure 2.6. Note that the
semantic similarity is not maximal here, since the word football can have the meaning of
American football and does not have to mean soccer.

The vector index, applied in this work, uses the well studied and widely applied Okapi
BM25 ranking function to perform lexical search. The Okapi BM 25 (BM = best
matching) is a function used by search engines to find the best matches to a given
search query [RZ09]. The function is based on inverse document frequency (IDF), term
frequency (TF) and document length [SMS24]. It scales proportional to the number of

12

2.2. Retrieval

Figure 2.6: Lexical and semantic similarity comparison

exact word matches from words in the query and words in a document. It is defined as,

score(D, Q) =
n∑︂

i=1
IDF(qi) · f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(︂
1 − b + b · |D|

avgdl

)︂ (2.5)

where

D ... document being scored against the query Q.

Q ... The query containing keywords {q1, q2, . . . , qn}.

f(qi, D) ... The term frequency, of or the number of qi in document D.

|D| . . . The length of the document D in terms of total words.

avgdl ... The average document length in the entire collection of documents.

k1 ... parameter controlling term frequency saturation, often set between 1.2 and 2.0.

b ... parameter that adjusts the influence of document length, often set to 0.75.

with the inverse document frequency computed as:

IDF(qi) = ln
(︃

N − n(qi) + 0.5
n(qi) + 0.5 + 1

)︃
(2.6)

where

N ... The total number of documents in the collection.

13

2. Background

Figure 2.7: Lexical Retrieval

n(qi) ... The number of documents that contain the keyword qi.

On the other hand, similarity search is conducted by comparing the pre-indexed vector
representations of the data corpus and the online vector representation of the query. An
embedding of the query is created using an embedding model, as it was done for all data
embedded in the index. The query embedding is projected onto the vector space of the
indexed data corpus. Then an approximate KNN algorithm (HNSW in this work) based
on a distance metric (e.g. cosine similarity) is applied to retrieve k documents similar to
the query [TDVS19].

The vector-database-management-system (VDBMS) at hand allows for retrieval of se-
mantic and lexical resources. One or both can be then be further used in the RAG
system. Up to k semantic and up to l lexical sources are retrieved. In a RAG system, a
number of sources used downstream is defined. Here, the number of sources used later on
by the LLM to generate a system answer is denoted as m. The contextual information
downstream can include either lexical, semantic, both sources.

Sk = {Top k semantic sources} (2.7)

Ll = {Top l lexical sources} (2.8)

Dm = Top m sources from Sk ∪ Ll (2.9)

k + l ≥ m (2.10)

An example configuration is:

14

2.3. Augmentation

• k = 8

• l = 8

• m = 4

In this example the l best lexical and the k best semantic sources are combined to the m
best overall sources which are then further used in the augmentation. It is not clear how
to combine lexical and semantic sources, and also not clear what “best” overall sources
means. In the naive RAG, both are used to an equal extent. Thus, in the example
above, two semantic and two lexical sources are extracted for further use. An innovative
approach is discussed in this work when building an advanced RAG system in the next
chapter. This is what is called a hybrid approach, combining both dense and sparse
retrieval. Both sparse and dense retrieval sources can benefit the search outcome by
leveraging complementary features while making the system more robust to a change in
domain [SMS24] [GXG+24].

Figure 2.8: Semantic retrieval

2.3 Augmentation
A hand-crafted prompt, along with a user query and selected contextual information, is
sent to a large language model (LLM) to generate an answer that integrates information
from the provided contexts. While the query and contexts are automatically selected
based on the user’s input, the design of the prompt itself is tailored by the system
designer. The prompt instructs the LLM on how to integrate contextual information into
its response to the query, using the principles of prompt engineering. This approach leads
the LLM to effectively combine the retrieved resources with respect to the given query,

15

2. Background

promoting relevant answers. As shown in the prompt engineering literature, structuring
prompts in this way is essential for optimising LLM responses [CZLZ24].

The prompt is predefined by the system designer but can be adjusted by the user of the
retrieval-augmented generation (RAG) system to suit specific tasks. This prompt serves
as a template that directs the LLM on how to address the query in light of the retrieved
contexts. In this work, the following generic prompt,

Augment prompt

You are a helpful assistant. Context information is given in the following text.
Use the information from the context instead of pre-trained knowledge to answer
the question. The answer has to mention explicit details, be explanatory and be
short. The answer should refer to the query. If it is a yes or no question, answer
with yes or no and then give a brief reasoning. If the answer is not provided in
the context. You must say that you do not know the answer. Given the context
information and not prior knowledge, answer the following user query: {query}

gives basic guidelines and instruction on how to handle the input and structure the
output.

2.4 Generation
The final step in the RAG process is answer generation, where the prompt, query, and
retrieved sources are combined and sent to a large language model (LLM) to generate a
response to the original query. The response is based on all the design choices made in
the system, the underlying data and the quality of the RAG components. The Large
Language model (LLM) response, which is the answer to the given query, based on
information retrieved from a vector index and fused via an instructive prompt. All LLMs
used to generate answers used in this work are based on the transformer architecture
and are decoder only [Dah24] [VSP+23].

The context window of a large language model (LLM) can act as a significant constraint
in RAG applications. Specifically, it imposes two key limitations. First, the context
window defines the total number of tokens an LLM can process in a single inference step.
Any tokens exceeding this limit are ignored, meaning the model generates responses based
only on the tokens within its allowable context. This restricts the number of retrieved
resources that can be incorporated into the response.

Second, when the LLM processes many resources alongside a complex prompt and
a lengthy query, it may encounter what is known as the lost-in-the-middle problem.
Intuitively, this is similar to a human reader focusing primarily on the beginning and
end of a long text, the LLM may assign less importance to information in the middle
of its input. This issue increases along the number of tokens, potentially leading to a
semantic downgrading of information in the middle portion of the input.

16

CHAPTER 3
Method — Advanced RAG

One of the goals of this work is to move beyond naive RAG to advanced RAG by
introducing enhancements on different levels in the RAG process. In the figure 3.1 the
figure from the previous section 2.1 is augmented with areas of interest. The figure shows
where possible upgrades in the RAG process are identified.

Figure 3.1: Advanced RAG

The advanced RAG pipeline updates the naive RAG pipeline, enriching the RAG ecosys-
tem with additional options. This work discusses the following RAG methods, depicted
in Figure 3.1:

• Query Expansion

17

3. Method — Advanced RAG

• Re-ranking

• Context Expansion

Additionally, the upgraded implementation allows for design choices of various system
parameters, illustrated in Figure 3.1, of which the following are elaborated:

• Number of retrieved sources

• LLM for answer generation

The optimisation paradigms in this work cover two main approaches: (1) improvements in
specific steps, such as methodically selecting sources or enriching contextual information,
and (2) parameter tuning, where specific values are chosen from a set of options. Although
a range of design choices is possible, this study focuses on five key features, outlined and
discussed in detail below.

3.1 Query Expansion

A human written query is possibly not in the optimal shape and form for a language
model to extract the necessary information out of the query [MGH+23]. Thus, the goal
of query expansion is to create additional queries resembling the meaning of the original
query.[GXG+24]. The original query plus the additional queries are then used to retrieve
data from the index. The schematic idea of query expansion is shown in Figure 3.2.

The hypothesis here is that different queries lead to different search results, where the
search results yielded by the add-on queries could be beneficial to answering the original
question. The search space is enlarged, which increases the possibility of retrieving
valuable information. For example, the question, “How many people live in the largest
city of Austria?” might be enhanced by additional questions like “How many people
live in Vienna?”, “What is the population of Austria”, “How many inhabitants does the
largest city of Austria have?”. If query expansion is enabled, the query is initially sent
to a large language model with a prompt giving the LLM instruction on how to create
similar queries. The LLM then returns a list of queries, including the original query.

The following prompt is used to multiply a query:

18

3.2. Re-ranking

Query expansion prompt

You are an information system that helps process user questions. Provide infor-
mation such that a vector-database retrieval system can find the most relevant
documents.

Expand the following query: query to n relevant queries which are close in meaning
but are simplified. Focus on the main topic of the query and avoid unnecessary
details. Focus on nouns and verbs in the query and expand them. Use the same
Python list structure in your answer as in the examples below. The first query in
the list should be the original query.

Here are some examples:

Query: What is the capital of Norway? Example expansion if the number of
queries needed is 2: ["What is the capital of Norway", "City Norway"]

Query: Drugs for cancer treatment? Example expansion if the number of queries
needed is 3: ["Drugs for cancer treatment?", "Cancer drugs", "Health anti-cancer
drugs"]

Query: What positions are there in a football team? Example expansion if the
number of queries needed is 4: ["What positions are there in a football team?",
"Football team positions", "Football team", "Rules in football"]

Structure your response as a Python list of strings, where each string is a query.
The length of the Python list is n. The answer should be just this list and nothing
else.

Here, explanatory rules and simple examples are provided to guide the generator. All
queries are then sent individually to the index and context information is retrieved. The
contexts are then processed further as if they would have been retrieved with just a single
query.

3.2 Re-ranking
Re-ranking means taking the sources retrieved from the vector index with respect to a
given query and ranking them according to a re-ranking mechanism, schematically shown
in Figure 3.3. This ranking is then used to select the most relevant sources for the RAG
system. Sources retrieved from the index are ranked based on a score assigned to each.
These ranked results inform the RAG process. If the number of sources required for the
final answer generation is less than the total retrieved, the re-ranked list serves as a guide
for cut-off selection.

Typically, the combined count of lexical and semantic sources exceeds the number allowed
for downstream use in generating the RAG answer. Determining the optimal mix of
semantic versus lexical sources can be challenging. Without a systematic approach to

19

3. Method — Advanced RAG

Figure 3.2: Query expansion

prioritizing contextual information, the system relies on a predefined balance between
lexical and semantic inputs—often an even split. However, some queries or domains may
perform better with an uneven distribution. By applying a re-ranking mechanism, the
system gains flexibility, allowing context selection to adapt based on the specific task at
hand [GRC+22]. Two main scoring methods are used for re-ranking: semantic re-ranking
and reciprocal rank fusion (RRF).

Semantic re-ranking uses a BERT-based model to assess the similarity between the
query and each context by calculating the distance between vector embeddings. This
model generates a similarity score by comparing each context to the query, and the
contexts are then ranked in order of similarity [NC20].

Reciprocal rank fusion (RRF) integrates two sets of ranked lists—in this case,
semantic and lexical search results. The RRF function maintains the integrity of each
list while combining them into a final ranking. Additionally, if a context appears in both
lists, it is promoted in the final ranking. RRF orders the contexts, generally referred to
as documents, using a straightforward ranking formula [CCB09]:

RRF-score(d ∈ D) =
∑︂
r∈R

1
k + r(d) (3.1)

where:

d ∈ D . . . document d within the set of documents D.

R . . . set of ranked lists or sources from which documents are retrieved.

r(d) . . . rank of document d in a given ranked list r.

k . . . a constant used to prevent division by zero and adjust the weight of rankings.

20

3.3. Context Expansion

Figure 3.3: Re-rank engine

3.3 Context Expansion

Context expansion, also referred to as sentence-window retrieval, involves enriching
a retrieved resource by adding related information. Specifically, when a particular
text chunk is retrieved, the preceding and succeeding chunks are also included. This
approach leverages the improved retrieval performance achieved with smaller text chunks.
Importantly, context expansion does not increase computation during the retrieval phase,
instead, it distributes the computational load to the indexing step. Since chunking
algorithms retrieve only parts of a larger context, including surrounding information can
enhance the relevance of the retrieved data.The surrounding chunks might be farther
away in the vector database than they are in the original text, so they may not appear
in the initial retrieval but could still provide valuable context. Retrieving smaller chunks
also accelerates the process. Context expansion resolves this by adding context to the
retrieved chunk.

The pre- and post-context setup is established during the document chunking stage. As
each chunk, enriched with additional fields as it is being created iteratively by scanning
over the text corpus, as illustrated in Figure 3.4. The additional fields are pre context
and post context. Later, when vector search is applied, the pre- and post-contexts are
automatically included with each retrieved chunk without requiring extra computation
[ENFO24].

21

3. Method — Advanced RAG

Figure 3.4: Context Expansion

3.4 Source Count
The source count indicates the number of sources, after retrieval, that are ultimately used
for answer generation. Although many sources may be retrieved, re-ranked, and enriched,
the source count reflects the actual number of sources utilized in the RAG pipeline.

The number of sources used can significantly affect the quality of the LLM-generated
answer. Too few sources may not provide enough information, while too many can
introduce noise to the context or exceed the context window of the LLM. Consequently,
the number of sources is balanced to ensure the LLM receives the right amount of
information in order to answer the original query and not overflow the LLM. Lexical
sources (k) and semantic sources (l) are combined, ranked, context expanded, and
filtered through a selection process. The top l sources from this process are then used in
downstream tasks. The number of sources l is the source count.

3.5 Language Model Choice
Different models are designed with varying architectures, including differences in layer
design, the number of parameters per layer, the number of layers, attention mechanism
parameters, text embedding methods and size of context window. Additionally, each
model is pre-trained on different datasets, contributing to unique strengths and weaknesses
across LLMs [NKQ+24]. The specific LLM used in the RAG process may vary depending
on the requirements of the task. The LLM selected to answer the original query is the
language model choice.

22

CHAPTER 4
Evaluation framework —

Evaluating RAG

This work introduces a comprehensive evaluation framework for RAG systems, offering
multiple retrieval metrics to support the analysis of various performance indicators.
The framework empowers the evaluation from naive to advanced RAG, by enabling
data-driven decision-making. The framework addresses the system using the following
key performance indicators:

• Correctness: Evaluates whether the RAG system’s answer aligns with the ground
truth.

• Gold standard context matches: Determines if the contextual information
retrieved from the vector index matches the provided gold standard contexts.

• RAG Triad: Assesses whether the system’s sub-results are consistent and in line
with the overall system answer.

The following scoring metrics are applied:

• ROUGE score: Measures the overlap of subsequences in candidate and reference
texts

• LLM-judge: Analyses texts with respect to an instructive and domain specific
prompt

• Recall@k: Calculates the proportion of k retrieved sources over all relevant sources.

23

4. Evaluation framework — Evaluating RAG

A graphic overview shown in Figure 4.1 illustrates the evaluation workflow: starting
with a given dataset, progressing through the RAG pipeline, entering the evaluation
framework and yielding results.

Figure 4.1: Evaluation workflow

4.1 Performance indicators
Evaluating a complex RAG system presents several challenges. It is not obvious how to
approach this evaluation due to multiple intermediate steps and correlated sub-results
that influence each other. Although data preparation, indexing, retrieval, and large
language model (LLM) answer generation are implemented as separate processes, each
part impacts the system’s final outcome. The main challenge, therefore, is determining
how to effectively evaluate both individual components and the overall system. To resolve
this, the following performance indicator are introduced to classify the performance of
the system as a whole along with its subcomponents.

4.1.1 Correctness
Correctness evaluates how well the RAG system answer aligns with the ground truth
answer. While this concept is straightforward, it is challenging to measure, as natural
language allows for semantically identical answers to be phrased differently. The closer
the RAG system’s answer is to the ground truth answer in meaning, the better the RAG
system is performing.

4.1.2 Gold standard context matches
Gold context matches assess how well the retrieved contexts align with a gold standard
set of retrievable contexts. Not all datasets provide gold standard resources, especially in
real-world applications. A match between the ground truth resources and those retrieved

24

4.1. Performance indicators

from the vector database suggests a well-functioning system. Classical retrieval metrics
can be applied here to measure how well ground truth contexts are retrieved from the
vector index. The wording gold standard is chosen to clarify that the metric is not of
ground truth nature. It is more appropriate since the optimal retrieved contexts may
be the gold standard, but they do not have to contain the (full) ground truth. Gold
standard contexts here means, they are deemed “optimal” for answering the question at
hand.

4.1.3 RAG Triad (Context Relevance, Faithfulness, Answer Relevance)
The RAG Triad is a performance indicator addressing the relationships between RAG
subcomponents and intermediate results without relying on ground truth answers or gold
standard resources. The schema is illustrated in Figures 4.2 and 4.3.

The RAG Triad in this work is an evolution, and formalisation, of the RAG Triad idea,
first proposed by truera [Mad]. The Triad hypothesis proposed in this work is that if
all subsystems produce high-quality intermediate results, the overall system answer will
be high-quality accordingly, assuming the originally indexed corpus is accurate. This
is not necessarily true for information management systems and thus requires further
examination and proof [Hua10]. In return, poor intermediate results, yield a low-quality
outcome. The aim is to find a correlation between the overall correctness scores and the
RAG scores across a given dataset.

Figure 4.2: Triad schema

The RAG Triad can be formally defined, let the sets be

• Q: the set of given queries, where each query is denoted as qi.

25

4. Evaluation framework — Evaluating RAG

Figure 4.3: Triad in RAG workflow

• A: the set of answers, generated by the system, where each answer is denoted as ai.

• C: the set of retrieved items or contexts associated with each query, where each
context is denoted as cj , each query has multiple related contexts

• G: the set of given ground truth answers, where each ground truth answer is
denoted as gi.

The evaluation functions are defined as

• Answer Relevance: AR(qi, ai) that measures how relevant an answer ai is to a query
qi.

• Context Relevance: CR(qi, ci) that measures the relevance of a context ci to a
query qi.

• Faithfulness: F(ai, pi) that evaluates how faithful an answer ai is to the contexts it
draws information from ci.

The RAG Triad is computed by summing the maximum scores over all queries qi and
dividing by the number of queries in the dataset:

RAG Triad = 1
|Q|

∑︂
qi∈Q

(︃
max

ci
CR(qi, ci) + AR(qi, ai) + max

ci
F(ai, ci)

)︃
(4.1)

Here:

26

4.2. Scoring metrics

• ∑︁
qi∈Q: The sum over all queries in the dataset.

Using the maximum function here is an arbitrary choice and stated here as an example.
The framework also implements options for substituting maxxi with other options, such
as the arithmetic mean or a function that selects the first element of the set. Here, “first
element” refers to the highest ranked element returned by the RAG pipeline (not by
the evaluation framework). The RAG Triad score aggregates the top scores for context
relevance, faithfulness, and answer relevance across the all queries, providing a measure
of the overall quality of the important sub-results of the RAG pipeline.

Note that the RAG Triad computation does not involve any computation concerning
the ground truth. The hypothesis assumes a correlation between intermediate results
and end result. A possible correlation between the RAG Triad scores and the answer
correctness scores is examined. Here qi is the i − th query and gi is the i − th ground
truth. This study provides insights into potential correlations and evaluates the validity
of the hypothesis.

4.2 Scoring metrics
Quantifying quality in natural language processing and retrieval remains an active
research, with no single generally valid approach. Typically, a combination of sequence
matching and semantic matching techniques is used. In the following, three scoring
metrics are introduced to establish a systematic way of categorizing the results. These
scoring metrics are then applied to evaluate system answer correctness based on a ground
truth, calculate retrieval recall as well as to verify the RAG triad hypothesis.

4.2.1 LLM-judge
An LLM can be utilized to evaluate how well a candidate text (e.g. a RAG answer)
corresponds to a reference text (a given query). Both text segments, along with a tailored
prompt, are input into the LLM in few-shot fashion, which assesses the relationship
between the texts based on the prompt’s instructions. It is important to note that the
LLM-judge metric is computationally expensive compared to the following metrics, since
for every score between any two strings, a new LLM call has to be issued.

The LLM can provide a detailed evaluation of the alignment between a candidate and a
reference text, especially when guided by an instructive prompt. LLM-based judgments
have demonstrated reasonable agreement with human assessments, as noted by Zheng et
al. [ZCS+23].

In contrast, methods based purely on semantic similarity scores or word matching
algorithms apply a uniform rule set when computing a score between two texts, regardless
of task-specific distinctions. LLM-judges, however, allow for customisable comparisons: a
prompt can specify the particular conditions under which two texts should be compared.
For instance, one might prompt the LLM-judge with “Does text A answer the question

27

4. Evaluation framework — Evaluating RAG

posed by Query using the information in text B?” or “Is text B grounded in the content of
text A?” Such instructive prompts enable the metric to adjust to the task while keeping
the underlying language model unchanged.

For each specific task, a customized prompt is designed, combined with the texts to be
evaluated, and then forwarded to the LLM-judge. The LLM returns a score between 1 and
5, with 1 representing the lowest rating and 5 representing the highest. For compatibility
purposes, the score is normalized to a range between 0 and 1 during post-processing.
The prompts to instruct the LLMs on scoring are to be found in the appendix.

4.2.2 ROUGE score
ROUGE, or (Recall-Oriented Understudy for Gisting Evaluation) is a recall focused
metric in the field of natural language processing [Lin04b]. Initially developed for text
summarisation and translation tasks, it compares subsequences of a given text with
respect to a reference text. More precisely, it measures the overlap of n-grams between a
candidate (generated) text and a reference (ground truth) text. All tough there are many
variations of ROGUE scoring, the most common one is ROUGE-n, concerning overlap of
word n-grams.

It is given by the following formula,

ROUGE-N = Countmatch(gramn)
Countref(gramn) (4.2)

where,

• n ... length of the n-gram and

• Countmatch(gramn) ... is the number of n-grams co-occurring in the candidate text
and the reference text and

• Countref(gramn) ... is the number of n-grams occurring in the reference text.

In this work,ROUGE-1 (n=1) recall is used. This metric is chosen because short RAG
answers and ground truths are common, and ROUGE captures these well when n is
small.

The ROUGE score metric offers advantages as a scoring metric compared to semantic
similarity scorers, (such as LLM-judge or cosine similarity based on embeddings), primarily
due to its computation speed. On the one hand, ROUGE scores have shown strong
correlation with human evaluations for translation tasks and text summaries [Lin04b].
On the other hand, studies have shown that ROUGE does not always align with human
summaries, especially on texts with differing length, grammar and wording. Thus,
ROUGE scores have to be related to other metrics in order to check for consistency.

28

4.3. Experiment Design

Alignment of ROUGE scores with human judgment increases for short sentences with
similar wording. This is particularly useful when rating the correctness of RAG answers
compared to a ground truth, since candidate and reference texts tend to be of similar size
[SRBR23] [Lin04a]. Both reference and candidate sentence are processed by the ROGUE
scoring algorithm, yielding a score between 0 and 1.

4.2.3 Scoring Resources with gold standard, recall@k
Retrieved resources are compared against gold standard resources, using recall@k metric,
with Petroni et al. [PPF+21]. In this work, the number of retrieved items is also referred
to as the number of sources or contexts.

Recall@k = |Rk|
|R| (4.3)

where:

• |Rk| is the number of relevant items retrieved within the retrieved k items.

• |R| is the total number of relevant items to the query.

4.3 Experiment Design
This section describes the experiment setup, covering dataset selection, parameter space
choices, and the workflow of the RAG evaluation method.

4.3.1 Datasets
When selecting a dataset for RAG evaluation, memory requirements, time efficiency, and
suitability for the RAG method were considered. To evaluate RAG, the dataset must
include a text corpus that can be indexed, along with a set of questions for querying
the system. To address the system correctness, ground truth answers are necessary.
Additionally, to evaluate retrieval quality with traditional methods, the dataset has to
provide a set of gold standard retrieval documents alongside each question that serve
as ground truth for answering each question. Datasets with these characteristics are
referred to as question-answer-passage datasets. They form a special kind of dataset
class, especially useful for RAG evaluation.

Let C represent the text corpus, where each element ci ∈ C is a document or text passage
in the corpus.

C = {c1, c2, . . . , cn} (4.4)

Let Q represent the set of questions, where each element qi ∈ Q is a question that can be
sent to the system.

Q = {q1, q2, . . . , qm} (4.5)

29

4. Evaluation framework — Evaluating RAG

Let A be the set of ground truth answers corresponding to each question. This is designed
as a set of tuples, where each tuple (qi, ai) pairs a question qi ∈ Q with its correct answer
ai.

A = {(qi, ai) | qi ∈ Q} (4.6)

Set of Ground Truth Documents (Optional): To evaluate retrieval quality, let D represent
a set of ground truth documents. This set is composed of tuples (qi, Di), where Di ⊆ C
is the subset of documents from C that ideally answer question qi.

D = {(qi, Di) | qi ∈ Q, Di ⊆ C} (4.7)

Given these sets, the question-answer-passage dataset QAP is defined as a collection of
tuples, each of which contains a question qi, its ground truth answer ai, and optionally, a
set of ground truth documents Di:

QAP = {(qi, ai, Di) | qi ∈ Q, ai ∈ A, Di ⊆ C} (4.8)

The defined QAP dataset provides all the necessary components for evaluating both
answer and retrieval quality for a given RAG system. The selected datasets have been
crafted for this purpose and can be found in the hugging-face library [Hug24]. The chosen
datasets are:

• Mini-Wiki Dataset The dataset draws its content from a Wikipedia question
answer passage set [SHH08]. It features ground truth answers, but no gold standard
retrieval passages.

• Mini-BioASQ QA Dataset This dataset is derived from the BioASQ-QA dataset
and represents the complete collection for the year 2023. It is a subset of the larger
BioASQ dataset, residing in the biomedical domain from 2014 to 2024 [KNBP23].
It provides ground truth answers, as well as gold standard retrieval passages.

They have the following specifications:

Category Mini-Wiki Mini-BioASQ-QA
Corpus 3000 documents ≃ 18,000 chunks 40,000 documents ≃ 230,000 chunks

Question-Answer 918 QA pairs 4,700 QA pairs

Table 4.1: RAG datasets scope

In recent RAG literature and analyses, datasets deriving from the KILT [PPF+21] corpus
are frequently used. The KILT corpus, in its raw text form (char) demands 29.37 GB of
storage. This expands to approximately 300 GB of memory when indexed as a vector
embedding, based on an estimated six kilobytes per embedding and a factor of two with

30

4.3. Experiment Design

respect to the HNSW data structure. These datasets include the well known Hotpot-
QA [YQZ+18], Truthful-QA [LHE22] and Natural-Questions [KPR+19] among others.
However, these datasets were not chosen for this study due to computational feasibility,
more specifically due to high processing times and vast memory requirements. The
computational resources available in this work are a single Nvidia A16 GPU and a single
Nvidia A40 GPU. The former is in a memory share between the vector index (14 of 16
GB) and the semantic re-ranker (2 of 16 GB). Whereas, the latter A40 GPU is used for
LLM inference, albeit not exclusively for this work. The equipment at hand is sufficient
to carry out meaningful studies, but it does not scale to Nvidia’s A100 and RTX4090
GPUs, which are dedicated to AI computations and are often used when performing
analysis on the KILT datasets. A more detailed overview of the computational resources
available in this project are in Appendix III: Hardware. The memory specifications, for
the KILT corpus and Q-A sets, are given in Table 4.2.

Category KILT
Corpus 6 million Wikipedia pages ≃ 50 million chunks

Question-Answer Trivia-QA: 95,000 QA pairs
Kilt-Natural Questions: 307,000 QA pairs

Table 4.2: KILT dataset scope

4.3.2 Evaluation space

The RAG pipeline was constructed by making specific design choices and parameter
settings. This work focuses on the evaluation space outlined in Table 4.3, detailing the
scope and dimension of each method.

The evaluation process is conducted in two stages. First, a grid search is performed,
considering all possible parameter permutations. Second, a subset of parameters is
identified as having the most potential to reduce hallucinations and improve system
correctness. This subset is then further examined on both full datasets.

RAG design choice Possible Values Dimension
Context Expansion Off, On 2
Number of Sources 1, 2, 3, 4, 5, 6 6
Re-ranking Off, RRF, Semantic 3
Query Expansion Off, 2, 3 3
LLM for Answer Genera-
tion

Llama3.1, Gemma2, Mix-
tral, Llama3.2

4

Table 4.3: Parameter space and dimension

Details and specifications on the examined LLMs can be found in Appendix II: software.

31

4. Evaluation framework — Evaluating RAG

4.3.3 Experiment run
The experiment setup was conducted using the following methodology:

1. Pipeline and evaluation run for subset of the dataset but full RAG parameter space.

2. Determine influential RAG parameters.

3. Run parameter evaluation for full datasets with selected parameter setting to
determine the impact of specific interesting parameters.

4. Run RAG Triad evaluation

5. Run classical retrieval evaluation (gold passages) to determine benefit of re-ranking
method in full Mini-BioASQ dataset.

32

CHAPTER 5
Results

This section presents the results generated by the evaluation framework, capturing the
influence of various parameter settings and design choices in RAG process through
multiple metrics. Two data sources were used in the RAG pipeline, and results were
automatically processed through the evaluation framework.

5.1 Method influence
This subsection examines how variations in RAG methodology impact overall correctness,
retrieval quality, and how sub systems influence each other. It aims at identifying whether
parameter or method changes have a significant impact on the performance of the system
and, if so, quantify the impact. The following sections discuss the influence of each specific
method or parameter, including re-ranking, query expansion, context expansion, and the
number of sources used downstream. The experiments explore the full parameter space,
covering all possible parameter combinations: re-ranking (3 options), query expansion (3
options), context expansion (2 options), and number of sources (6 options), resulting in
a total of 108 parameter combinations.

The results are visualized in histogram plots, filtered according to each method. Each
histogram entry represents a single pipeline and evaluation run. Due to computational
constraints, both datasets were downsampled to 100 query-answer tuples (Wiki) and
query-answer-passage tuples (BioASQ), respectively. The tuples were selected at evenly
spaced intervals to ensure a roughly uniform representation. Experiments for each design
choice were conducted using the Mini-Wiki and Mini-BioASQ datasets and evaluated
with ROUGE-1 recall and LLM-based judges. Thus, four distinct plots to assess the
impact of each parameter on the RAG pipeline were produced. These plots exemplify the
possible types of evaluations by the developed RAG evaluation system. All histogram
plots follow the same structure, the y-axis indicates the frequency of items in each bin,
while the x-axis displays the mean correctness. Here, mean correctness refers to the

33

5. Results

arithmetic mean correctness across all items in a single pipeline run (i.e., a specific
parameter setting).

5.1.1 Re-ranking
The retrieved sources are utilized in one of three ways: directly without re-ranking,
re-ranked using reciprocal rank fusion (RRF), or re-ranked semantically using a sentence
transformer model. In the Mini-Wiki dataset, the choice of re-ranking method significantly
enhances retrieval accuracy, with both re-ranking approaches outperforming the use of
non-ranked sources. Similarly, in the Mini-BioASQ dataset, re-ranking demonstrates
a clear advantage, with an increased improvement compared to retrieval without re-
ranking. Across all datasets and evaluation metrics, semantic re-ranking with a sentence
transformer consistently performs as well as, or better than, RRF re-ranking. The
semantic re-ranker outperforms the RRF re-ranker in most cases, with respect to ground
truth answer correctness. An exception to this trend is observed in the Mini-Wiki dataset
when evaluated with the ROUGE scoring method, where RRF and semantic re-ranking
yield comparable results.

0.60 0.65 0.70 0.75 0.80

0

2

4

6

8

10

12

Mini-Wiki, Rouge-1

Re-rank

Off

Semantic

RRF

0.50 0.55 0.60 0.65 0.70 0.75

0

2

4

6

8

10

12

14

Mini-Wiki, LLM-Judge

Re-rank

Off

Semantic

RRF

0.25 0.30 0.35 0.40 0.45

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Mini-BioASQ, Rouge-1

Re-rank

Off

Semantic

RRF

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Mini-BioASQ, LLM-Judge

Re-rank

Off

Semantic

RRF

Mean Correctness

Fr
e
q
u
e
n
c
y

Figure 5.1: Re-rank - All parameter permutations

34

5.1. Method influence

5.1.2 Query expansion
The impact of query expansion on answer correctness was examined. A query expansion
factor of 1 represents no expansion, where the query is forwarded unchanged. In contrast,
query expansion factors of 2 and 3 generate multiple artificial queries to potentially
enhance retrieval performance. In the Mini-Wiki dataset, query expansion does not
improve correctness for either metric. On the contrary, the results are more closely
aligned with the ground truth when no query expansion is applied. A similar trend is
observed in the Mini-BioASQ dataset, where the differences in correctness between no
expansion and expansion factors of 2 or 3 are negligible.

0.60 0.65 0.70 0.75 0.80

0

2

4

6

8

10

12

Mini-Wiki, Rouge-1

Query Expansion

Off

2

3

0.50 0.55 0.60 0.65 0.70 0.75

0

2

4

6

8

10

12

14

16

Mini-Wiki, LLM-Judge

Query Expansion

Off

2

3

0.25 0.30 0.35 0.40 0.45

0

2

4

6

8

10

Mini-BioASQ, Rouge-1

Query Expansion

Off

2

3

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0

2

4

6

8

10

12

14

Mini-BioASQ, LLM-Judge

Query Expansion

Off

2

3

Mean Correctness

Fr
e
q
u
e
n
c
y

Figure 5.2: Query Expansion - All parameter permutations

35

5. Results

5.1.3 Context Expansion
The impact of context expansion on correctness is consistent across both LLM-based
judges and ROUGE-1 recall metrics, with minor variations between the datasets. In
the Mini-Wiki dataset, enabling or disabling context expansion yields nearly identical
correctness results. Whereas for the Mini-BioASQ dataset, a significant improvement in
correctness is observed for RAG systems when context expansion is enabled. This could
be attributed to the increased complexity of questions and contextual information in
the latter dataset. The Mini-BioASQ dataset includes larger resources compared to the
Mini-Wiki dataset and requires reasoning across multiple resources.

0.60 0.65 0.70 0.75 0.80

0

2

4

6

8

10

12

14

16

Mini-Wiki, Rouge-1

Context Expansion

Off

On

0.50 0.55 0.60 0.65 0.70 0.75

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Mini-Wiki, LLM-Judge

Context Expansion

Off

On

0.25 0.30 0.35 0.40 0.45

0

2

4

6

8

10

12

14

16

Mini-BioASQ, Rouge-1

Context Expansion

Off

On

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0

2

4

6

8

10

12

14

16

Mini-BioASQ, LLM-Judge

Context Expansion

Off

On

Mean Correctness

Fr
e
q
u
e
n
c
y

Figure 5.3: Context Expansion - All parameter permutations

36

5.1. Method influence

5.1.4 Number of Sources
The relationship between the number of sources and answer correctness is illustrated in
the following figures. Correctness shows a strong positive correlation with the number of
sources used to generate the RAG response. For both the Mini-Wiki and Mini-BioASQ
datasets, correctness improves as the number of sources increases. In the Mini-Wiki
dataset, this improvement plateaus at approximately three to four sources. In contrast,
while the increase in correctness for the Mini-BioASQ dataset is less pronounced with
fewer sources, it reaches its peak at around five sources. This difference can be attributed
to the Mini-BioASQ dataset’s greater reliance on reasoning across multiple sources
compared to the Mini-Wiki dataset.

0.60 0.65 0.70 0.75 0.80

0

2

4

6

8

Mini-Wiki, Rouge-1

Number Sources

1

2

3

4

5

6

0.50 0.55 0.60 0.65 0.70 0.75

0

2

4

6

8

10

Mini-Wiki, LLM-Judge

Number Sources

1

2

3

4

5

6

0.25 0.30 0.35 0.40 0.45

0

2

4

6

8

10

Mini-BioASQ, Rouge-1

Number Sources

1

2

3

4

5

6

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0

2

4

6

8

10

Mini-BioASQ, LLM-Judge

Number Sources

1

2

3

4

5

6

Mean Correctness

Fr
e
q
u
e
n
c
y

Figure 5.4: Number sources All parameter permutations

37

5. Results

5.2 RAG Triad Correlation
This section addresses the correlation between correctness and the components of the
RAG Triad. It aims to provide insights into the system by exploring the relationship
between the intermediate outputs of the RAG system, the combined RAG Triad score
(Triad Sum), and the overall correctness scores evaluated by an LLM-judge.

The correlation matrix in Figure 5.5a demonstrates a positive correlation between
correctness and each of the following relations: context relevance (CR), faithfulness,
answer relevance (AR) and the Triad um. Additionally, the scatter plot in Figure
5.5b illustrates the pairwise correlation between context relevance, faithfulness, answer
relevance, Triad Sum and correctness. The size of the data points represents their
magnitude of occurrence in the evaluated data. The x and y-axis show the LLM judgment
score. The regression line for all plots shows a clear positive correlation between the
Variables.

TriadSum CR Faithfulness AR Correct

Tr
ia

d
S
u
m

C
R

F
a
it

h
fu

ln
e
s
s

A
R

C
o
rr

e
c
t

1.00 0.76 0.77 0.84 0.57

0.76 1.00 0.41 0.47 0.38

0.77 0.41 1.00 0.44 0.36

0.84 0.47 0.44 1.00 0.57

0.57 0.38 0.36 0.57 1.00

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Correlation matrix

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TriadSum

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
o
rr

e
c
tn

e
s
s

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

CR

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
o
rr

e
c
tn

e
s
s

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Faithfulness

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
o
rr

e
c
tn

e
s
s

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

AR

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
o
rr

e
c
tn

e
s
s

(b) Scatter plot

Figure 5.5: RAG Triad correlation for Mini-BioASQ and LLM-Judge.

38

5.3. In depth parameter results

5.3 In depth parameter results
This section explores the results for both datasets using two selected RAG methods,
based on the subset results discussed earlier for the downsampled datasets. The primary
objective is to identify the RAG methods with the most positive impact on system
correctness. The experiments are conducted on the full Mini-BioASQ dataset, which
provides 4,012 query-answer-passage triples.

The analysis identifies re-ranking and context expansion as key parameters with the most
significant positive impact on system performance. In contrast, query expansion does not
contribute to performance gain, and the number of sources reaches a plateau at around
3–5 sources. For this evaluation, re-ranking and context expansion are applied while
keeping other RAG system settings fixed as follows:

• Number of sources : 3

• LLM : Mixtral 7x8B

• Query Expansion : Inactive

• Dataset : Mini-BioASQ

• Re-rank: Inactive (when context expansion examined)

• Context Expansion: Inactive (when re-ranking examined)

5.3.1 Re-ranking
The re-ranking mechanism shows an improvement in correctness across both methods
(RRF and semantic), with the semantic re-ranking outperforming the RRF method with
respect to correctness. While the LLM-judge metric, indicates a modest correctness
increase, the ROUGE-1 metric, shown in Figure 5.6 reveals a more significant correctness
increase compared to inactive re-ranking.

5.3.2 Context Expansion
The impact of context expansion integration into the RAG pipeline is presented in Figure
5.7, where the LLM-judge metric and the ROUGE-1 metric are applied, respectively.
The results are consistent across both metrics, demonstrating a significant increase of
correctness for the full Mini-BioASQ dataset.

39

5. Results

Off Semantic RRF

0.0

0.1

0.2

0.3

0.4

Mini-BioASQ, Rouge-1

Off Semantic RRF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Mini-BioASQ, LLM-Judge

Method

C
o
rr

e
c
tn

e
s
s

Figure 5.6: Re-ranking correctness

Off On

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Mini-BioASQ, Rouge-1

Off On

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Mini-BioASQ, LLM-Judge

Method

C
o
rr

e
c
tn

e
s
s

Figure 5.7: Context Expansion correctness

40

5.3. In depth parameter results

5.3.3 LLM Choice
Four models with distinct specification, strengths, and weaknesses were selected for
evaluation. The results, displayed in Figure 5.8 were evaluated by the LLM-judge metric
and the ROUGE-1 recall metric respectively, indicate that the Mixtral model achieves the
highest correctness scores across both methods. In contrast, the Llama3.1 model yields
the lowest performance. The Llama3.2 and Gemma2 alternate their rankings depending
on the evaluation metric. Overall, Mixtral consistently outperforms the other models
under examination, in part due to its greater number of model parameters compared to
the other models.

gemma2 llama3.1 llama3.2 mixtral

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Mini-BioASQ, Rouge-1

gemma2 llama3.1 llama3.2 mixtral

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Mini-BioASQ, LLM-Judge

LLMs

C
o
rr

e
c
tn

e
s
s

Figure 5.8: Model correctness

41

5. Results

5.4 Gold Standard retrieval
This section is focuses on classical retrieval. The impact of re-ranking on the retrieval
performance is illustrated in the figures below. Gold standard retrieval sources are only
available for the Mini-BioASQ dataset, enabling the use of the recall@k metric evaluating
retrieval quality. The plot in Figure 5.9 shows the effect of the re-ranking methods on
recall in retrieval performance. Re-ranking results in a higher recall score compared to
inactive re-ranking, thereby improving retrieval quality. Among the methods, semantic
re-ranking outperforms RRF re-ranking. This is in line with the correctness results
for the dataset, where the semantic re-ranking consistently outperforms reciprocal rank
fusion re-ranking in similar fashion. The overall recall@5 score settles down at around
0.4, this is due to the number of gold standard passages varying from query to query
and often exceeding 5 resources. Additionally, recall metrics on similar datasets in the
literature centre around the same rate.

Off Semantic RRF

rerank

0.0

0.1

0.2

0.3

0.4

0.5

re
c
a
ll
@

k

Figure 5.9: Recall@5, for re-rank methods

42

5.5. Parameter Permutation Results

5.5 Parameter Permutation Results
The tables below summarize the relationship between RAG parameter configurations
and corresponding correctness scores. Each table displays the top 10 entries, sorted in
ascending order by mean correctness. Full tables are provided in the appendix.

For the Mini-Wiki dataset, the RAG pipeline achieves higher correctness scores when
query expansion is disabled. In contrast, for the Mini-BioASQ dataset, enabling query
expansion leads to improved performance. Both datasets show better evaluation results
when either re-ranking option is applied. Systems with context expansion enabled yield
the highest mean correctness across both datasets and scoring methods.

Query Expansion Re-rank Context Expansion Number Sources Mean Correctness
3 RRF On 4 0.685000
2 Semantic Off 6 0.682500
3 Semantic Off 6 0.680000
2 RRF On 3 0.675000
2 RRF On 5 0.672500
2 Semantic Off 4 0.670000
2 Semantic Off 5 0.670000
2 Semantic On 6 0.665000
2 Semantic On 5 0.665000
3 Semantic Off 5 0.662500

Table 5.1: Data: Mini-BioASQ, Metric: LLM-judge

Query Expansion Re-rank Context Expansion Number Sources Mean Correctness
3 Semantic On 6 0.456490
2 Semantic Off 6 0.452220
Off Semantic Off 4 0.450930
3 Semantic Off 6 0.448400
2 Semantic On 4 0.448020
Off Semantic Off 5 0.447600
2 Semantic On 5 0.447550
3 RRF On 6 0.447140
3 Semantic On 5 0.444850
Off Semantic Off 6 0.444770

Table 5.2: Data: Mini-BioASQ, Metric: ROUGE-1

43

5. Results

Query Expansion Re-rank Context Expansion Number Sources Mean Correctness
2 Semantic On 5 0.742500
Off RRF Off 6 0.740000
2 Semantic Off 3 0.737500
Off Semantic Off 6 0.737500
Off Semantic On 4 0.735000
Off RRF Off 3 0.732500
Off RRF On 4 0.730000
Off Semantic On 5 0.730000
Off Semantic On 6 0.725000
3 RRF Off 5 0.720000

Table 5.3: Data: Mini-Wiki, Metric: LLM-judge

Query Expansion Re-rank Context Expansion Number Sources Mean Correctness
Off Semantic On 4 0.828220
Off Semantic Off 6 0.825820
Off RRF Off 6 0.821770
Off RRF Off 3 0.819060
Off RRF On 3 0.816540
Off Semantic On 6 0.815790
Off RRF On 4 0.814130
Off RRF On 6 0.812690
2 Semantic On 5 0.810940
Off RRF Off 5 0.810170

Table 5.4: Data: Mini-Wiki, Metric: ROUGE-1

44

CHAPTER 6
Conclusions

In this section, the results are reviewed, and key takeaways are identified. Notable RAG
methods and the capabilities of the evaluation framework are discussed.

6.1 Re-ranking of Sources
Both re-ranking functions outperform the search results where re-ranking is inactive.
This highlights the positive impact of high quality search results and indicate that both
re-ranking functions perform well when tasked with finding valuable context for a given
query. Both re-ranking methods enhance system correctness compared to inactive re-
ranking. However, the computational costs of both methods differ significantly. Semantic
re-ranking, scales linearly with the number of retrieved resources, as it involves pairwise
comparisons between each resource and the query.

The semantic re-ranking process requires embedding generation and similarity scoring,
making it computationally expensive. In contrast, reciprocal rank fusion (RRF) adds
minimal computation while improving the mean answer correctness, albeit less than
semantic re-ranking. The relative performance of the two methods varies depending on
the dataset and scoring metric used. The evaluation results confirm that both semantic
re-ranking and RRF enhance the system’s answer correctness. These findings show the
importance of adding re-ranking mechanisms into RAG pipelines to improve retrieval
quality and conclusively system answer correctness.

6.2 Query Expansion
The intended benefit of query expansion is to retrieve additional documents by generating
queries similar to the original one. However, this process significantly increases the
number of retrieved resources. For instance, if two additional queries are formulated, the

45

6. Conclusions

total number of queries used for the search becomes three, tripling the volume of retrieved
documents. The resource pool grows rapidly, increasing the complexity of downstream
processing, leading to increased room for selecting the wrong resources while adding
computational cost.

The results indicate that query expansion does not achieve improvements in retrieval
quality. This can be attributed to the additional noise introduced in the expanded pool
of retrieved documents, when selecting which resources, to pass to the LLM for answer
generation. In many cases, no additional useful documents are retrieved, while in others,
the re-ranker struggles to handle the enlarged pool of resources. This can lead to subpar
document ranking. Overall, for the evaluated datasets and domains, query expansion
fails to enhance retrieval.

6.3 Context Expansion
The benefits of context expansion are visible across both datasets. Expanding the context
to include preceding and succeeding text, provides additional information (which is most
probably related), enabling the system to interpret the retrieved resource more accurately
within the broader scope of the original document. Even if the surrounding text added
during context expansion does not directly contain the answer to the query, it can help
the LLM parse the context more accurately. Furthermore, the pre- and post-context
possibly hold crucial information themselves, needed to answer the question. A significant
advantage of context expansion is its low computational cost. The additional context
(pre- and post-text) is added during the indexing phase of the RAG pipeline. Once the
documents are indexed, this expanded context is automatically delivered alongside the
resource hit via semantic or lexical search. The computational overhead for context
expansion is outsourced to the vector index creation. Thus, it’s precomputed, making it
an efficient enhancement to the retrieval process.

6.4 Number of Sources
The number of sources used in retrieval plays a relevant role in system performance, with
clear trade-offs in the number of sources passed on to the LLM for answer generation.
On one hand, retrieving too few sources may result in insufficient information to fully
address complex queries. A low number of sources may lead to incomplete answers,
especially for complex questions that require information from multiple documents. On
the other hand, too many sources can hold redundant information and thus introduce
additional noise. Additionally, conflicting information across multiple documents can
be problematic, in the sense that the downstream LLM is left with a decision on which
information to trust. This is a task the LLM is not designed to perform, as it is instructed
by the RAG system design to avoid subjective judgment. Such cases might lead to system
answers of lower quality. The evaluation results underline the importance of balancing the
number of sources to ensure sufficient information while also limiting noise and conflicting

46

6.5. LLM Choice

information. The outcome of the studies in this work indicate an optimum somewhere
between 3–5 sources.

6.5 LLM Choice

The selection of a large language model (LLM) significantly impacts the performance
of the RAG system, as it serves as the bridge between context retrieval and final
answer generation. It directly touches all components of the RAG pipeline — retrieval,
augmentation, and generation — thus making it an integral part of the RAG system as
a whole. Among the evaluated models, Mixtral7x8 is superior for the examined domains
and datasets. This is likely due to its advanced capabilities in retrieval processing,
question answering, context understanding and efficient mixture of experts architecture.
It also features a greater number of model weights. Note, that no single LLM can be
universally recommended for all tasks and domains. The performance of a specific model
depends heavily on the specific problem requirements — dataset domain, problem size,
data quality and user needs. In conclusion, the active research fields of computational
natural language processing, data science and AI, continuously introduces new models
and is evolving rapidly. The dynamic field of language models thus makes it necessary
to perform extensive testing of specific problems and making design choices based on
evaluation results.

6.6 RAG Triad

The hypothesis of the RAG Triad states that if the intermediate results among the
subcomponents of a RAG system — query, resources, and answer — are sufficiently
correct, then the RAG system yields sufficiently correct answers.

The presented results indicate a strong positive correlation between RAG answer correct-
ness and the RAG Triad sum. Specifically, a high RAG Triad score for a given query is
often associated with a correct answer, while a lower RAG Triad score suggests an incor-
rect answer. This observation holds significant potential for in real-world applications,
since most scenarios do not involve datasets holding ground-truth answers, much less
ground truth retrieval passages. Instead, often a document corpus to be indexed and a
set of typical queries to the system is are provided. The results presented in this thesis
indicate that the RAG Triad can serve as a useful evaluation metric for ground-truth
less datasets. However, further testing across a broader range of domains and varying
datasets is necessary to show the reliability of the approach to strengthen the case of
the RAG Triad hypothesis. Nevertheless, it provides a simple way of computing the
performance of a RAG system in the absence of any ground truth. The RAG Triad
additionally proved scores fur subcomponents of the system. These can be instrumental
in identifying issues when developing a complete RAG system, such as implementation
errors, suboptimal parameter settings, incomplete domain corpora, or problems within

47

6. Conclusions

the retrieval system. In conclusion, the RAG Triad can be a valuable tool for diagnosing
problems within the RAG system.

6.7 Evaluation Framework
The proposed evaluation framework delivers promising results, proposing areas of im-
provement within the RAG process. It is possible to process datasets across multiple
domains and is capable of handling datasets with and without ground truths answers
or documents. The evaluation system can measure the overall RAG system answer
correctness, while also providing results on individual subcomponents of the system via
the RAG Triad.

6.8 Lessons learned
The optimal approach involves providing a small number of high quality resources (3-5)
to the LLM along with the query. The information content of resources throughout
the RAG process is crucial. Re-ranking is pivotal in selecting the resources of highest
quality.Context expansion is an effective and low-cost strategy to enhance retrieved
resources. The RAG Triad offers an alternative to answer correctness computation,
which is of great importance for real-world applications. ROUGE recall produces results
comparable to the LLM-judge metric, while being a cost-effective alternative for evaluation.
Mean correctness scores differ significantly between the two datasets. The Mini-Wiki
dataset yields higher correctness scores on average compared to the Mini-BioASQ dataset.
This discrepancy can be attributed to the complexity of the domains relative to one
another. The Mini-Wiki dataset features a more straightforward corpus and simpler
questions, often requiring fewer sources to generate correct answers. In contrast, the
Mini-BioASQ dataset draws question and answers from a complex biomedical domain,
including specific terminology and queries that often require contextual information from
multiple sources (3+). The Mixtral model outperforms Llama3.1, Llama3. and Gemma2
for the examined datasets. The developed evaluation framework offers multiple evaluation
metrics alongside two scoring metrics to quantify system performance.

48

CHAPTER 7
Outlook

This work presents valuable insights into RAG systems and their evaluation. However,
due to limitations in computational resources, it has several limitations.
First, the designed framework is restricted to text-based question answering tasks. The
system is not concerned with multi-modal data beyond text, nor does it integrate
broader, more adaptable systems, such as graph or agent-based approaches. Second, the
experiments were conducted with a specific set of datasets and large language models.
Further, limitations are the use of a single vector database and a single embedding
model. While these choices present valuable insight, they represent only a small subset
of the available resources in the field. Thus, the analysis offers recommendations and
identifies trends in RAG design but does not provide a comprehensive guide employable
to all scenarios. Third, only a limited number of parameters and methods within the
RAG system were examined within the parameter space. Given the complexity of RAG
systems — with complex components, multiple design choices and parameter settings

— there remains potential to further investigate and optimise. Fourth, the evaluation
framework relies on two semantic scoring metrics, LLM-judges and ROUGE recall, each
with their own limitations and biases. While these metrics provide meaningful results,
other evaluation approaches may capture different nuances and interpretations of the
evaluated texts. Additionally, the RAG triad — as a ground-truth-free evaluation metric

— shows promising results but requires additional testing across diverse datasets, domains,
and languages to establish generalisability. Finally, this work lays the foundation for
research in this field. Future areas of exploration include the evaluation of larger datasets,
additional LLMs and embedding models while adding more resource intensive evaluation
metrics, like human judges.
Concluding, the proposed evaluation framework, together with the analysis on RAG
system design and parameter choices, offers a practical tool for addressing RAG systems.
It offers a ready-to-use framework and recommendations for a RAG system configuration,
providing a reduction in hallucination for resource based answer generation. However,

49

7. Outlook

this work does not and cannot claim to define the “perfect” RAG setup or provide a
universally applicable evaluation framework. Future studies have to be conducted to
explore alternative evaluation methods, delve into diverse domains and examine a wider
range of possible RAG tasks.

50

Appendix I: Results

Significance Results
The ANOVA analysis results are presented, for both datasets and both scoring methods.
The results are from drawn from a grid search across the whole examined parameter
space with 100 elements subsample per dataset.

Method p-value f-value
Number of Sources 0.000002 8.118252
Query Expansion 0.123111 2.139620
Re-rank 0.00000002 26.039115
Context Expansion 0.246011 1.361739

Table 1: ANOVA, Dataset: Mini-BioASQ, Scoring: LLM-Judge

Method p-value f-value
Number of Sources 0.000534 4.850804
Query Expansion 0.831789 0.184520
Re-rank 0.0000002 62.508190
Context Expansion 0.067195 3.424304

Table 2: ANOVA, Dataset: Mini-BioASQ, Scoring: ROUGE-1

51

Method p-value f-value
Number of Sources 0.0000002 50.105502
Query Expansion 0.021014 4.017242
Re-rank 0.011682 4.655856
Context Expansion 0.144764 2.160220

Table 3: ANOVA, Dataset: Mini-Wiki, Scoring: LLM-Judge

Method p-value f-value
Number of Sources 0.000000 24.313682
Query Expansion 0.000060 10.424392
Re-rerank 0.001304 6.964930
Context Expansion 0.386710 0.753897

Table 4: ANOVA, Dataset: Mini-Wiki, Scoring: ROUGE-1

52

LLM-Judge Evaluation prompts

The instructive prompts for the LLM-Judges are given below. The prompts guide the
LLMs to judge with respect to the requested evaluation metric - context relevance,
faithfulness, answer relevance or correctness.

Correctness evaluation prompt

Given the following answer and ground-truth, give a rating from 1 to 5.
Respond with 1 if the answer is not correct based on the ground-truth at all.
Respond with 2 if the answer is slightly correct based on the ground-truth.
Respond with 3 if the answer is moderately correct based on the ground-truth.
Respond with 4 if the answer is mostly correct based on the ground-truth.
Respond with 5 if the answer is completely correct based on the ground-truth.
Your response must strictly and only be a single integer from "1" to "5" and no
additional text.

Adhere to the examples:
If the answer is "yes, the shirt is dark blue" and the ground-truth is "yes", your
response should be "5".
If the answer is "yes" and the ground-truth is "yes", your response should be "5".
If the answer is "The sky is clear and blueish" and the ground-truth is "The sky is
blue", your response should be "4".
If the answer is "The sky is blueish" and the ground-truth is "The sky is blue",
your response should be "4".
If the answer is "The sky is somewhat blue" and the ground-truth is "The sky is
blue", your response should be "3".
If the answer is "The sky is blue with some clouds" and the ground-truth is "The
sky is almost clear", your response should be "3".
If the answer is "The sky is cloudy" and the ground-truth is "The sky is blue",
your response should be "2".
If the answer is "The sky is blue" and the ground-truth is "The sky is clear", your
response should be "2".
If none of the nouns in the answer are present in the ground-truth, the answer is
not correct. Thus, your response should be "1".
If the answer is "yes" and the ground-truth is "no", your response should be "1".
If the answer is "no" and the ground-truth is "yes", your response should be "1".
If the answer is "there is no mention of ... in the given context" and the
ground-truth is "yes" or "no", your response should be "1".
If the answer is "I do not know", your response should be "1".

Here are the Answer: "{answer}" and the ground-truth: "{ground-truth}".

53

Context relevance evaluation prompt

Given the following context and query, give a rating from 1 to 5.
Respond with 1 if the context is not relevant to the query at all.
Respond with 2 if the context is slightly relevant to the query.
Respond with 3 if the context is moderately relevant to the query.
Respond with 4 if the context is mostly relevant to the query.
Respond with 5 if the context is completely relevant to the query.
Your response must strictly and only be a single integer from "1" to "5" and no
additional text.

Adhere to the examples:
If the context is "The pandemic, spanning the whole globe started in 2019." and
the query is "What year did the corona pandemic start?", your response should be
"5".
If the context is "The sky is blue" and the query is "What color is the sky?", your
response should be "5".
If the context is "The sky is blue" and the query is "What is the weather like?",
your response should be "4".
If the context is "Water boils at 100 degrees Celsius" and the query is "What
happens to water at high temperatures?", your response should be "4".
If the context is "The sky is blue" and the query is "What color is the sky usually?",
your response should be "3".
If the context is "Water boils at 100 degrees Celsius" and the query is "At what
temperature does water usually boil?", your response should be "3".
If the context is "The sky is blue" and the query is "What color is the ocean?",
your response should be "2".
If the context is "Water boils at 100 degrees Celsius" and the query is "What is
the boiling point of water in Fahrenheit?", your response should be "2".
If none of the nouns in the query are present in the context, the context is not
relevant and your response should be "1".
If the context is "The sky is blue" and the query is "What color is the grass?",
your response should be "1".
If the context is "The pandemic, was a global event and lead to many deaths." and
the query is "What year did the corona pandemic start?", your response should be
"1".

Here are the Context: "{context}" and the Query: "{query}".

54

Faithfulness evaluation prompt

Given the following context and answer, give a rating from 1 to 5.
Respond with 1 if the answer is not sufficiently grounded in the context at all.
Respond with 2 if the answer is slightly grounded in the context.
Respond with 3 if the answer is moderately grounded in the context.
Respond with 4 if the answer is mostly grounded in the context.
Respond with 5 if the answer is completely grounded in the context.
Your response must strictly and only be a single integer from "1" to "5" and no
additional text.

Adhere to the examples:
If the context is "The sky is blue" and the answer is "The sky is blue", your
response should be "5".
If the context is "Water boils at 100 degrees Celsius" and the answer is "Water
boils at 100 degrees Celsius", your response should be "5".
If the context is "Water boils at 100 degrees Celsius" and the answer is "Water
boils at around 100 degrees Celsius", your response should be "4".
If the context is "The pandemic, spanning the whole globe started in 2019." and
the answer is "The pandemic started in late 2019.", your response should be "4".
If the context is "Water boils at 100 degrees Celsius" and the answer is "Water
boils at a high temperature", your response should be "3".
If the context is "The sky is blue" and the answer is "The sky is somewhat blue",
your response should be "3".
If the context is "The pandemic, was a global event and lead to many deaths."
and the answer is "The pandemic was a significant global event.", your response
should be "2".
If the context is "The pandemic, was a global event and lead to many deaths." and
the answer is "The pandemic caused many deaths.", your response should be "2".
If the context is "Water boils at 100 degrees Celsius" and the answer is "Water
freezes at 0 degrees Celsius", your response should be "1".
If the context is "The pandemic, was a global event and lead to many deaths."
and the answer is "The pandemic started in 2019.", your response should be "1".
If none of the nouns in the answer are present in the context, the answer is not
grounded and your response should be "1".
If the answer is "I do not know" or "there is no mention of ... in the given context",
the answer is not grounded and your response should be "1".

Here are the Context: "{context}" and the Answer: "{answer}".

55

Answer relevance evaluation prompt

Given the following query and answer, give a rating from 1 to 5.
Respond with 1 if the answer is not relevant to the query at all.
Respond with 2 if the answer is slightly relevant to the query.
Respond with 3 if the answer is moderately relevant to the query.
Respond with 4 if the answer is mostly relevant to the query.
Respond with 5 if the answer is completely relevant to the query.
Your response must strictly and only be a single integer from "1" to "5" and no
additional text.

Adhere to the examples:
If the query is "What color is the sky?" and the answer is "The sky is blue", your
response should be "5".
If the query is "At what temperature does water boil?" and the answer is "Water
boils at 100 degrees Celsius", your response should be "5".
If the query is "What is the capital of Germany?" and the answer is "Berlin is a
major city in Germany.", your response should be "4".
If the query is "What is the capital of Germany?" and the answer is "Berlin is a
city in Germany.", your response should be "4".
If the query is "What is the capital of Germany?" and the answer is "Berlin is a
large city.", your response should be "3".
If the query is "How many moons does the Earth have?" and the answer is "The
Earth has at least one moon", your response should be "3".
If the query is "What is the capital of Germany?" and the answer is "Berlin is
known for its history.", your response should be "2".
If the query is "At what temperature does water boil?" and the answer is "Water
boils at its boiling point.", your response should be "2".
If the query is "What year did the corona pandemic start?" and the answer is "The
pandemic, was a global event and lead to many deaths.", your response should be
"1".
If the query is "What is the capital of Germany?" and the answer is "Germany is a
country in Europe.", your response should be "1".
If none of the nouns in the answer are present in the query, the answer is not
relevant, your response should be "1".
If the answer is "I do not know" or "there is no mention of ... in the given context",
your response should be "1".

Here are the Query: " {query}" and the Answer: "{answer}".

56

Appendix II: Software

The foundational building block of this work is natural language software. The integral
parts are presented in this section.

LLMs
This subsection provides a comprehensive overview of the selected large language models
(LLMs), including their specifications and notable features. All models are open-source
and free for personal use. A summary of the examined model and their properties is
provided.

Llama3.1

• Parameter Size: 8.0B

• Quantization Level: Q4_0

• Model: Standard decoder-only transformer

• Pre-training: Trained on web data composed of 50% general knowledge, 25%
mathematics/reasoning, 17% code, and 8% multilingual tokens

• Context Window: 130k tokens

• Developer: Meta

• Info: A lightweight model optimized for low latency [Met24a] .

Llama3.2

• Parameter Size: 3.2B

• Quantization Level: Q4_K_M

• Model: Standard decoder-only transformer

57

• Pre-training: Built on Llama3.1 and enhanced with multimodal training data
(e.g., image-text tuples)

• Context Window: 128k tokens

• Developer: Meta

• Info: A super lightweight model with very low latency [Met24b] .

Mixtral

• Parameter Size: 47B

• Quantization Level: Q4_0

• Model: Sparse mixture-of-experts decoder-only model

• Pre-training: Trained on open web data (specifics unknown)

• Context Window: 32k tokens

• Developer: Mistral AI

• Info: This lightweight model uses a sparse mixture-of-experts approach. During
generation, the feedforward blocks dynamically select from 8 groups of parameters.
A router network chooses two "experts" per token at each layer, reducing latency
and computational cost by utilizing only a fraction of the total parameters for each
token [AI23].

Gemma2

• Parameter Size: 9.2B

• Quantization Level: Q4_0

• Model: Text-to-text decoder-only model

• Pre-training: Trained on 8 billion tokens, including web data, code, and mathe-
matics

• Context Window: 8k tokens

• Developer: Google

• Info: Designed for tasks such as question answering, summarization, and reasoning
[AI].

58

Vector index
The vector index software employed in this work is the open source framework marqo
[Mar]. Marqo serves as a wrapper (management system) for the underlying vector
database structure built on Vespa [Ves].

Two vector indexes were initialised, one for the Mini-BiosQA dataset and another one
for the Mini-Wiki dataset. At its core it uses the sentence transformer "flax-sentence-
embeddings/all_datasets_v4_mpnet-base" [Hug], which is based on the pre-trained
MPnet-base model [Mic]. This pre-trained model is then fine-tuned using a diverse
collection of multiple datasets, mostly from question answer domains, involving around 1
billion sentence pairs. The vector dimension of the embedded documents, i.e. the models
output, is consistently 768. The hierarchical navigable small world (HNSW) graph,
serving as the data structure of the index, is configured with the following parameter
specifications:

• Ef - Construction: 512. This is the length of the dynamic list of the nearest
neighbors during construction. A longer list produces a more accurate index, but
consumes more time and memory.

• M: 16. This parameter controls the maximum static number of nearest neighbor
for each node entry in the graph. Similar to ef-construction, a larger number leads
to an increased memory footprint.

• Ef-Search: 2000. This is a search parameter relevant at retrieval time and can be
set individually for each query. It controls the size of a dynamic list of nearest
neighbors kept during the search process. In the approximate nearest neighbor
algorithm, a larger number indicates a more precise albeit a more resource intensive
search.

Versions

• Marqo: 2.10

• Ollama (LLM manager): 0.4.1

Code
Repository: https://github.com/simon-koenig/RAG

59

Appendix III: Hardware

The vector index, semantic re-ranker and the LLMs were installed on the following GPU
architectures.

Vector index and semantic re-ranker:

• Name: NVIDIA A16

• GPUs: 4 GPUs per card: Each GPU is independent and isolated.

• Memory: 16 GB GDDR6 per GPU: Total of 64 GB across the card.

• CUDA Cores per GPU: 1,792 (7,168 total across 4 GPUs).

• Vector Index: 14 of 16 GB memory

• Semantic Re-ranker: 2 of 16 GB memory

LLMs:

• Name: Nvidia A40

• GPUs: Single GPU

• Memory: 48 GB GDDR6

• CUDA Cores per GPU: 10,752

• Multiple LLMs loaded and infered with by multiple clients simultaneously

61

List of Figures

2.1 Naive RAG . 6
2.2 Simple word as vector source [Tou] . 8
2.3 NSW, source [Pin] . 10
2.4 HNSW, [Pin] . 11
2.5 Chunking . 12
2.6 Lexical and semantic similarity comparison 13
2.7 Lexical Retrieval . 14
2.8 Semantic retrieval . 15

3.1 Advanced RAG . 17
3.2 Query expansion . 20
3.3 Re-rank engine . 21
3.4 Context Expansion . 22

4.1 Evaluation workflow . 24
4.2 Triad schema . 25
4.3 Triad in RAG workflow . 26

5.1 Re-rank - All parameter permutations . 34
5.2 Query Expansion - All parameter permutations 35
5.3 Context Expansion - All parameter permutations 36
5.4 Number sources All parameter permutations 37
5.5 RAG Triad correlation for Mini-BioASQ and LLM-Judge. 38
5.6 Re-ranking correctness . 40
5.7 Context Expansion correctness . 40
5.8 Model correctness . 41
5.9 Recall@5, for re-rank methods . 42

62

List of Tables

4.1 RAG datasets scope . 30
4.2 KILT dataset scope . 31
4.3 Parameter space and dimension . 31

5.1 Data: Mini-BioASQ, Metric: LLM-judge 43
5.2 Data: Mini-BioASQ, Metric: ROUGE-1 43
5.3 Data: Mini-Wiki, Metric: LLM-judge . 44
5.4 Data: Mini-Wiki, Metric: ROUGE-1 . 44

1 ANOVA, Dataset: Mini-BioASQ, Scoring: LLM-Judge 51
2 ANOVA, Dataset: Mini-BioASQ, Scoring: ROUGE-1 51
3 ANOVA, Dataset: Mini-Wiki, Scoring: LLM-Judge 52
4 ANOVA, Dataset: Mini-Wiki, Scoring: ROUGE-1 52

63

Bibliography

[AI] Google AI. Gemma-Modelle von Google AI | Google für Entwickler.

[AI23] Mistral AI. Mixtral of experts, December 2023.

[CCB09] Gordon V. Cormack, Charles L A Clarke, and Stefan Buettcher. Reciprocal
rank fusion outperforms condorcet and individual rank learning methods. In
Proceedings of the 32nd international ACM SIGIR conference on Research
and development in information retrieval, pages 758–759, Boston MA USA,
July 2009. ACM.

[CPL19] Qingyu Chen, Yifan Peng, and Zhiyong Lu. BioSentVec: creating sentence
embeddings for biomedical texts. In 2019 IEEE International Conference on
Healthcare Informatics (ICHI), pages 1–5, Xi’an, China, June 2019. IEEE.

[CZLZ24] Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Un-
leashing the potential of prompt engineering in Large Language Models: a
comprehensive review, September 2024. arXiv:2310.14735 [cs].

[Dah24] Younes Dahami. Understanding How ChatGPT Uses the Decoder-Only
Transformer Architecture, June 2024.

[EJEAS23] Shahul Es, Jithin James, Luis Espinosa-Anke, and Steven Schockaert. RA-
GAS: Automated Evaluation of Retrieval Augmented Generation, September
2023. arXiv:2309.15217 [cs].

[ENFO24] Matouš Eibich, Shivay Nagpal, and Alexander Fred-Ojala. ARAGOG: Ad-
vanced RAG Output Grading, April 2024. arXiv:2404.01037 [cs].

[FBS24] Robert Friel, Masha Belyi, and Atindriyo Sanyal. RAGBench: Explain-
able Benchmark for Retrieval-Augmented Generation Systems, June 2024.
arXiv:2407.11005 [cs].

[GRC+22] Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Ra-
jaram Naik, Pengshan Cai, and Alfio Gliozzo. Re2G: Retrieve, Rerank,
Generate, July 2022. arXiv:2207.06300 [cs].

65

[GXG+24] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi
Bi, Yi Dai, Jiawei Sun, Meng Wang, and Haofen Wang. Retrieval-
Augmented Generation for Large Language Models: A Survey, March 2024.
arXiv:2312.10997 [cs].

[HLW23] Yikun Han, Chunjiang Liu, and Pengfei Wang. A Comprehensive Survey on
Vector Database: Storage and Retrieval Technique, Challenge, October 2023.
arXiv:2310.11703 [cs].

[HMN+23] Yasuto Hoshi, Daisuke Miyashita, Youyang Ng, Kento Tatsuno, Yasuhiro
Morioka, Osamu Torii, and Jun Deguchi. RaLLe: A Framework for Develop-
ing and Evaluating Retrieval-Augmented Large Language Models, October
2023. arXiv:2308.10633 [cs].

[HSWN24] Jennifer Hsia, Afreen Shaikh, Zhiruo Wang, and Graham Neubig. RAGGED:
Towards Informed Design of Retrieval Augmented Generation Systems, Au-
gust 2024. arXiv:2403.09040 [cs].

[Hua10] Xiangji Jimmy Huang, editor. CIKM’10: proceedings of the 19th Interna-
tional Conference on Information & Knowledge Management and Co-Located
Workshops; Oktober 26 - 30, 2010, Toronto, Ontario, Canada. ACM, New
York, NY, 2010.

[Hug] Huggingface. flax-sentence-embeddings/all_datasets_v4_mpnet-base · Hug-
ging Face.

[Hug24] Huggingface. RAG Datasets, June 2024.

[JDS11] H Jégou, M Douze, and C Schmid. Product Quantization for Nearest
Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(1):117–128, January 2011.

[Jur24] Jurafsky. Speech and Language Processing, August 2024.

[KKB+23] Sanjay Kukreja, Tarun Kumar, Vishal Bharate, Amit Purohit, Abhijit
Dasgupta, and Debashis Guha. Vector Databases and Vector Embeddings-
Review. In 2023 International Workshop on Artificial Intelligence and Image
Processing (IWAIIP), pages 231–236, Yogyakarta, Indonesia, December 2023.
IEEE.

[KNBP23] Anastasia Krithara, Anastasios Nentidis, Konstantinos Bougiatiotis, and
Georgios Paliouras. BioASQ-QA: A manually curated corpus for Biomedical
Question Answering. Scientific Data, 10(1):170, March 2023.

[KPR+19] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins,
Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei

66

Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural
Questions: A Benchmark for Question Answering Research. Transactions of
the Association for Computational Linguistics, 7:453–466, November 2019.

[LHE22] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring
How Models Mimic Human Falsehoods, May 2022. arXiv:2109.07958 [cs].

[Lin04a] Chin-Yew Lin. Looking for a Few Good Metrics: ROUGE and its Evaluation.
2004.

[Lin04b] Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries.
July 2004.

[Mad] Lofred Madzou. What is the RAG Triad?

[Mar] Marqo. Marqo | Train and Deploy Embedding Models.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space, September 2013.
arXiv:1301.3781 [cs].

[Met24a] Meta. llama3.1, July 2024.

[Met24b] Meta. llama3.2, September 2024.

[MGH+23] Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query
Rewriting for Retrieval-Augmented Large Language Models, October 2023.
arXiv:2305.14283 [cs].

[Mic] Microsoft. microsoft/mpnet-base · Hugging Face.

[MTMR23] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. MTEB:
Massive Text Embedding Benchmark, March 2023. arXiv:2210.07316 [cs].

[MY18] Yu A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs, August
2018. arXiv:1603.09320 [cs].

[NC20] Rodrigo Nogueira and Kyunghyun Cho. Passage Re-ranking with BERT,
April 2020. arXiv:1901.04085 [cs].

[NKQ+24] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed An-
war, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian.
A Comprehensive Overview of Large Language Models, October 2024.
arXiv:2307.06435 [cs].

[Pin] Pinecone. Hierarchical Navigable Small Worlds (HNSW).

67

[PPF+21] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yaz-
dani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin,
Jean Maillard, Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel.
KILT: a Benchmark for Knowledge Intensive Language Tasks, May 2021.
arXiv:2009.02252 [cs].

[PWL23] James Jie Pan, Jianguo Wang, and Guoliang Li. Survey of Vector Database
Management Systems, October 2023. arXiv:2310.14021 [cs].

[Ray23] Partha Pratim Ray. ChatGPT: A comprehensive review on background, ap-
plications, key challenges, bias, ethics, limitations and future scope. Internet
of Things and Cyber-Physical Systems, 3:121–154, 2023.

[RDC+24] David Rau, Hervé Déjean, Nadezhda Chirkova, Thibault Formal, Shuai Wang,
Vassilina Nikoulina, and Stéphane Clinchant. BERGEN: A Benchmarking
Library for Retrieval-Augmented Generation, July 2024. arXiv:2407.01102
[cs].

[RZ09] Stephen Robertson and Hugo Zaragoza. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Foundations and Trends® in Information Retrieval,
3(4):333–389, 2009.

[SFKPZ24] Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia.
ARES: An Automated Evaluation Framework for Retrieval-Augmented Gen-
eration Systems, March 2024. arXiv:2311.09476 [cs].

[SHH08] Noah Smith, Michael Heilman, and Rebecca Hwa. Question Generation as a
Competitive Undergraduate Course Project, 2008.

[SMS24] Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj Solanki. Blended RAG:
Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic
Search and Hybrid Query-Based Retrievers, August 2024. arXiv:2404.07220
[cs].

[SRBR23] Bianca Steffes, Piotr Rataj, Luise Burger, and Lukas Roth. On evaluating
legal summaries with ROUGE. In Proceedings of the Nineteenth International
Conference on Artificial Intelligence and Law, pages 457–461, Braga Portugal,
June 2023. ACM.

[sub] subramanian. vector-database-benchmark/README.pdf at main ·
sueszli/vector-database-benchmark.

[Tai24] Toni Taipalus. Vector database management systems: Fundamental concepts,
use-cases, and current challenges. Cognitive Systems Research, 85:101216,
June 2024. arXiv:2309.11322 [cs].

68

[TDVS19] Kashvi Taunk, Sanjukta De, Srishti Verma, and Aleena Swetapadma. A
Brief Review of Nearest Neighbor Algorithm for Learning and Classification.
In 2019 International Conference on Intelligent Computing and Control
Systems (ICCS), pages 1255–1260, Madurai, India, May 2019. IEEE.

[Tou] Dave Touretzky. Word Embedding Demo: Tutorial.

[Ves] Vespa. Vespa.ai.

[VSP+23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need, August 2023. arXiv:1706.03762 [cs].

[YCX20] Jiacheng Yang, Bin Chen, and Shu-Tao Xia. Mean-removed product quanti-
zation for large-scale image retrieval. Neurocomputing, 406:77–88, September
2020.

[YQZ+18] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen,
Ruslan Salakhutdinov, and Christopher D. Manning. HotpotQA: A Dataset
for Diverse, Explainable Multi-hop Question Answering, September 2018.
arXiv:1809.09600 [cs].

[YYM+24] Antonio Jimeno Yepes, Yao You, Jan Milczek, Sebastian Laverde, and Renyu
Li. Financial Report Chunking for Effective Retrieval Augmented Generation,
March 2024. arXiv:2402.05131 [cs].

[ZCS+23] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao
Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao
Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging LLM-as-a-Judge with
MT-Bench and Chatbot Arena, December 2023. arXiv:2306.05685 [cs].

[ZDD+22] Hamed Zamani, Fernando Diaz, Mostafa Dehghani, Donald Metzler, and
Michael Bendersky. Retrieval-Enhanced Machine Learning. In Proceedings of
the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 2875–2886, Madrid Spain, July 2022. ACM.

[ZZW+20] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang
Liu, and Christian S. Jensen. PM-LSH: A fast and accurate LSH framework
for high-dimensional approximate NN search. Proceedings of the VLDB
Endowment, 13(5):643–655, January 2020.

[ZZY+24] Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng,
Fangcheng Fu, Ling Yang, Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-
Augmented Generation for AI-Generated Content: A Survey, April 2024.
arXiv:2402.19473 [cs].

69

	Abstract
	English Abstract
	German Abstract

	Contents
	Introduction
	Motivation
	State of the Art
	Challenges and aim of thesis

	Background
	Information Storage
	Retrieval
	Augmentation
	Generation

	Method — Advanced RAG
	Query Expansion
	Re-ranking
	Context Expansion
	Source Count
	Language Model Choice

	Evaluation framework — Evaluating RAG
	Performance indicators
	Scoring metrics
	Experiment Design

	Results
	Method influence
	RAG Triad Correlation
	In depth parameter results
	Gold Standard retrieval
	Parameter Permutation Results

	Conclusions
	Re-ranking of Sources
	Query Expansion
	Context Expansion
	Number of Sources
	LLM Choice
	RAG Triad
	Evaluation Framework
	Lessons learned

	Outlook
	Appendix I: Results
	Significance Results
	LLM-Judge Evaluation prompts

	Appendix II: Software
	LLMs
	Vector index
	Versions
	Code

	Appendix III: Hardware
	List of Figures
	List of Tables
	Bibliography

