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Abstract

Laser processing of surfaces is a powerful method for changing their properties, which can

vary depending on the application. In this thesis, the wetting and icing behavior of a water

droplet on laser-structured surfaces was investigated using numerical methods. A multiphase

solver was extended by various surface tension models and each model was compared with

analytically solvable test cases. Then, the wetting of flat surfaces was simulated in order to

better investigate the interaction between the solid plate and the droplet. The wetting and

icing simulations on laser-structured surfaces were performed with the model that delivered

the best results in the previous tests. According to the results, the surface tension model

can reproduce the modified surface characteristics due to laser processing. It was also found

that both the wetting and icing behavior of the droplet depend on the simulated droplet size.

During the analysis, a droplet diameter was determined at which the results no longer change.

Throughout the work, the influence of numerical parameters such as interface compression

and solid movement restriction was analyzed. In addition, several numerical methods were

tested to obtain more stable and faster simulations.
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Kurzfassung

Die Bearbeitung von Oberflächen mit Laser ist eine leistungsfähige Methode, um ihre Eigen-

schaften zu verändern, die je nach Anwendung unterschiedlich sein können. Im Rahmen der

vorliegenden Diplomarbeit wurde das Benetzungs- und Vereisungsverhalten eines Wasser-

tropfens auf laserstrukturierten Oberflächen mit numerischen Methoden untersucht. Ein

Mehrphasensolver wurde um verschiedene Oberflächenspannungsmodelle erweitert und jedes

Modell mit analytisch lösbaren Testfällen verglichen. Danach wurde die Benetzung von ebe-

nen Oberflächen simuliert, um die Interaktion zwischen der festen Platte und dem Tropfen

besser untersuchen zu können. Benetzungs- und Vereisungssimulationen auf laserstrukturier-

ten Oberflächen wurden mit dem Modell durchgeführt, das in den vorherigen Tests die besten

Ergebnisse geliefert hatte. Laut den Ergebnissen kann das Oberflächenspannungsmodell die

durch die Laserbearbeitung veränderten Oberflächeneigenschaften reproduzieren. Außer-

dem wurde festgestellt, dass sowohl das Benetzungs- als auch das Vereisungsverhalten des

Tropfens von der simulierten Tropfengröße abhängen. Während der Untersuchungen wurde

ein Tropfendurchmesser ermittelt, ab dem sich die Ergebnisse nicht mehr ändern. Im Laufe

der Arbeit wurde der Einfluss von numerischen Parametern wie Grenzflächenkompression

und Bewegungseinschränkung von Festkörpern analysiert. Weiterhin wurden verschiedene

numerische Methoden untersucht, um die Simulationen zu stabilisieren und beschleunigen.
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1 Introduction

The shape and surface area of a liquid droplet greatly influence the heat and mass transfer

in a system. Since surface tension is one of the most relevant factors in determining the

shape of liquids, it is important to carefully model it in multiphase simulations.

Surface tension plays a key role in bubble and droplet formation, and therefore also in

wetting of solid surfaces. A component with a hydrophobic/icephobic surface is often

advantageous if it is in contact with water. One example is the rotor blades of wind

turbines, on which water droplets can attach and freeze. The modified profile and the

increase in mass reduce the efficiency of the wind turbine. In addition, the detachment of

the adhering ice means a safety risk for the surroundings. The aim of surface structuring

can be to completely prevent ice adhesion or to reduce the force required to shear off the

attached ice. In this case, the ice can be removed from the surface by gravity, centrifugal

forces and active de-icing methods such as heating the rotor blades.

Furthermore, surface tension is essential in all applications with a free-surface liquid phase,

with a mixture of several liquid phases, and with phase changes. Welding processes are

good examples of the importance of surface tension. The heat released by the source melts

the solid phase and a liquid pool forms, which then evaporates. During a welding process,

all three force components discussed in this work occur, which are related to surface tension.

The forces due to curvature act on the curved liquid surface and form the melt pool. The

Marangoni forces result from the large temperature gradients at the liquid-gas interface.

Since there are at least three phases, the triple line forces are essential for modeling the

correct contact angles.

In the present work, interactions between water droplets and laser-structured surfaces are

investigated numerically. One possibility is to simulate the wetting using only two phases

(water and air). In this case, the solid surface is not modeled directly and is represented

by a contact angle boundary condition [1]. The method works and enables the analysis

of surfaces with different wetting conditions. However, the contact angle is a user-defined

parameter and not a result of the surface tension force balance. Additionally, excluding the

surface from the simulations also means that the local interactions between the droplet and

the surface cannot be observed. Therefore, it is important to include the laser-structured

surface in the simulations and to obtain contact angles using surface tension values from

the literature.
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The investigations of the present work are based on the master’s thesis by Skrna [2].

Skrna examined the wetting behavior of liquids on laser-structured surfaces. Although

the experiments showed hydrophobic wetting, the simulations predicted a contact angle of

around 90◦. In addition, Skrna’s simulations were computationally expensive. Therefore

the volume of the droplet was reduced compared to that used in the experiments. The aim

of the present work is to analyze and improve the numerical treatment of surface tension to

get closer to the experimental results. Furthermore, phase changes are also included in the

simulations to model icing on laser-structured surfaces.

The biggest challenge in simulating such a phenomenon is the different scales of the water

droplet and the structures of the surface. Between the droplet diameter and the surface

structures used in the experiments referred to in this work, there is a factor of around 27.

This means that the resolution of the surface structures at least one droplet diameter wide

requires high computational costs. In addition, the complexity of surface tension modeling

depends on the number of phases in the system. For two phases, the surface tension force

is always well defined by the one interface between the phases, and the modeling is usually

straightforward. Simulations with three or more phases get more difficult, because regions

where several phases meet need particular consideration.

The thesis consist of two main parts: the theoretical background and the evaluation of the

simulation results. The first part starts with an introduction to the underlying principles

of surface tension and wetting of solid surfaces (Chapters 2 and 3). In Chapter 4, the

governing equations and the numerical methods of solving them are presented, then the

numerical formulation of the surface tension force is introduced. In Chapter 5, it is shown

how the surface tension force can be included in the solver algorithm. In the second part

of the thesis (Chapter 6), the simulation results are discussed. First, the freezing of water

and the developed surface tension force models are compared to analytically solvable test

cases (Sections 6.2 and 6.3). Afterwards, wetting on flat and laser-structured surfaces is

simulated (Sections 6.4 and 6.5). Finally, the most complex simulations, icing phenomena

on laser-structured surfaces are presented (Section 6.6).
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2 Surface Tension

In this chapter, the phenomenon of surface tension is explained from a molecular point of

view based on the work by Rapp [3].

2.1 Intermolecular Forces

In a material, the molecules are surrounded by other ones which attract the actual molecule

due to chemical bonds. These cohesive forces are evenly distributed around the molecule

and hold the material together. That means that the intermolecular forces are balanced,

and the resulting net force is zero if the molecule is in the bulk of the material. However,

surface molecules have neighbors only on the inner side (see Figure 2.1). Therefore, a net

force pointing inward is observed acting on the surface molecules. In liquids, this force leads

to the deformation of the surface.

Figure 2.1: Schematic illustration of imbalanced intermolecular forces at the surface [4].

Increasing the surface area needs energy because of moving molecules from the volume

to the surface. Thus, having less surface molecules with unbalanced cohesive forces is a

thermodynamically more stable state with lower energy. That is why each system strives to

minimize its surface area. In case of liquids, this results in a change in shape.

2.2 Free Surface Energy

The term free surface energy stands for the energy that is required to create surface area

in a system. Its unit is Jm−2 which also explains the definition. This property depends on

the surrounding material. If the other material can replace the missing chemical bonds, the

intermolecular forces are more balanced, and the net force is also smaller. For that reason,

the free surface energy of a material is expressed in relation to a reference material that

surrounds the actual material. It is practical to take air as the reference material, as it is

the case very often.
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Since free surface energy is the result of the missing cohesive forces of the neighboring

molecules, it is higher for a material with strong bonds. On the one hand, metals have high

free surface energies, because they are held together by strong primary bonds. On the other

hand, polymers have lower free surface energies, since they are characterized by weaker

secondary bonds.

In the literature, the expression ”free surface energy” refers to solid materials. While for

liquids, the term ”surface tension” is used with the unit Nm−1. It is important to emphasize,

that the two quantities describe the same physical phenomenon and have the same unit.
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3 Wetting and Contact Angle

If a fluid interacts with a solid, forces are acting between the surface molecules of the two

phases. These molecules find candidates on the surface of the other phase that take the

place of their missing neighboring molecules. Depending on the free surface energy of the

solid and the surface tension of the fluid, various behaviors of the fluid can be observed on

the surface. This phenomenon is called the wetting behavior of the liquid. On the one hand,

if it is energetically unfavorable to spread on the surface, the fluid aims to form a sphere,

just like it does if it is not in contact with a surface. On the other hand, if it is energetically

favorable to interact with the solid, the fluid spreads all over the surface. It can be observed

that the fluid yields to minimize its surface area if an energetically more favorable scenario

is available.

3.1 Young’s Equation

When the liquid interacts with the solid in a surrounding fluid (usually a gas), the three

phases form a triple line where they meet. The angle between the liquid and the solid is

referred to as the contact angle, as shown in Figure 3.1.

Figure 3.1: Contact angle θ and free surface energies σij between the phases i and j at the
triple line in case of a liquid droplet on a solid surface.

The contact angle θ in a system of three phases is described by Young’s equation:

cos θ =
σSG − σSL

σLG

, (3.1)

where σSG is the free surface energy of the solid with respect to the gas phase. Similarly,

σLG stands for the surface tension of the liquid with respect to the gas phase. Finally, σSL

denotes the free surface energy between solid and liquid. In general, σSL can be expressed

as a function of σSG and σLG. The calculation of σSL depends on the materials and their

cohesive forces at the interface. In the present work, two methods for determining σSL

are discussed. First, if only dispersion forces interact at the interface, and second, if both

dispersion and polar forces occur.

5



3.1.1 Only Dispersion Forces

Dispersion forces arise due to the attraction between fluctuating dipoles. These kinds of

interactions are present between all types of molecules and atoms. The assumption that

intermolecular forces are only dispersion forces applies to most metals [2]. Therefore, it is

convenient to use this for modeling liquid metal, e.g. in a welding process. In this case, σSL

is calculated as follows [5–7]:

σSL = σSG + σLG − 2
√
σSGσLG . (3.2)

The two equations combined lead to

cos θ =
σSG − σSG − σLG + 2

√
σSGσLG

σLG

=
−σLG + 2

√
σSGσLG

σLG

= −1 + 2

√
σSGσLG

σLG

= −1 + 2

!
σSG

σLG

.

(3.3)

Depending on the ratio σSG to σLG, different contact angles can be observed, which can

be assigned to two main wetting conditions. For contact angles 0◦ ≤ θ < 90◦, the liquid

wets the surface. In case of water, the surface is then called hydrophilic. For contact angles

90◦ < θ ≤ 180◦, the liquid does not wet the surface. In case of water, the surface is then

called hydrophobic. Figure 3.2 illustrates the possible wetting scenarios.

In general, hydrophilic surfaces have higher free surface energies, while hydrophobic surfaces

have lower free surface energies. For a given surface, a liquid with lower surface tension

makes the surface more wettable, while a liquid with higher surface tension results in a less

wettable surface. If the free surface energy of the solid is equal to the surface tension of the

liquid, complete wetting takes place. In contrast, if the free surface energy of the solid is

close to zero, no wetting occurs.

Table 3.1: Effect of the ratio σSG to σLG on the wetting behavior of the liquid.

σSG to σLG contact angle wetting behavior

1
4
< σSG

σLG
≤ 1 0◦ ≤ θ < 90◦ hydrophilic

0 ≤ σSG

σLG
< 1

4
90◦ < θ ≤ 180◦ hydrophobic
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Figure 3.2: Different contact angles and corresponding wetting behaviors of a liquid droplet
on a solid surface. From left to right: superhydrophilic, hydrophilic, hydrophobic, and
superhydrophobic.

Equation 3.3 is useful for modeling a case with a certain contact angle without any physical

meaning. σSG and σLG can be varied to obtain the preferred contact angle. This way, all

kinds of wetting conditions can be investigated to validate surface tension models.

3.1.2 Dispersion and Polar Forces

Generally, intermolecular forces also consist of hydrogen bonds, dipole interactions, and

metallic bonds in addition to dispersion forces (superscript D) [6]. Owens, Wendt, Rabel

und Kaelble (OWRK) considered all these forces as polar forces and extended the free surface

energy of solids and the surface tension of liquids by the polar component (superscript P ) [2,

7]:

σSG = σD
SG + σP

SG , (3.4)

σLG = σD
LG + σP

LG . (3.5)

According to the OWRK method, when calculating σSL, the geometric mean of the polar

components is also subtracted from the sum of σSG and σLG, analogously to the dispersion

components:

σSL = σSG + σLG − 2
�
σD
SGσ

D
LG − 2

�
σP
SGσ

P
LG . (3.6)

If the ratio σD
SG/σ

P
SG is equal to the ratio σD

LG/σ
P
LG, the resulting contact angle and wetting

condition correspond to those listed in Table 3.1. In contrast to the method with only

dispersion forces, the OWRK method enables σSG values larger than σLG. However, it is

only possible if solid and liquid are of different character (dispersive, polar). This is exactly

the case at the ice-water interaction. In ice, dispersion forces are dominant, while water is

of polar character, as discussed later in Section 6.6.
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3.2 Analytical Solution for Small Bond Numbers

An analytical solution describing the wetting phenomenon exists, which returns the base

diameter, the height and the liquid-gas interface area of the droplet as a function of the

contact angle [8]. The derivation requires two main assumptions:

• The solid surface needs to be flat

• The effect of gravity is insignificant and therefore negligible

The first assumption is important, because the effect of viscous dissipation on rough surfaces

is difficult to include in an analytical solution. The second assumption enables the droplet

shape to be a spherical cap. The effect of gravity can be neglected for droplets with small

Bond numbers, which reads

Bo =
ρgD2

0

σLG

≪ 1 , (3.7)

where ρ, g, D0, and σLG denote density of the liquid, gravitational acceleration, initial

droplet diameter, and surface tension of the liquid with respect to gas, respectively. The

Bond number (named after the English physicist Wilfrid Noel Bond), also called the Eötvös

number (named after the Hungarian physicist Loránd Eötvös), indicates the ratio between

volume forces and surface tension forces. A small Bond number means that surface tension

has the dominant role and the shape of the droplet can be assumed to be spherical. In this

case, the nondimensional parameters of the droplet read [8]

db(θ) =
2 sin θ

[(1− cos θ)2(4 + 2 cos θ)]1/3
, (3.8)

h(db) =

 3

 
1

2
+

d6b
64

+

!
1

4
+

d6b
64

+
3

 
1

2
+

d6b
64

−
!

1

4
+

d6b
64

− d2b
2

1/2

, (3.9)

A(db) =
3

 
1

2
+

d6b
64

+

!
1

4
+

d6b
64

+
3

 
1

2
+

d6b
64

−
!

1

4
+

d6b
64

− d2b
4

, (3.10)

where θ, db, h, and A denote contact angle, base diameter, height, and liquid-gas interface

area of the droplet, respectively. d and h have been nondimensionalized by the initial

diameter D0, while A by the initial sphere area πD2
0.

Figure 3.3 shows the functions rb = db/2 and h over θ. The base radius rb is zero for no

wetting (θ = 180◦) and tends to infinity for complete wetting (θ = 0◦). The droplet height

h is 1 for no wetting (θ = 180◦), which means the droplet retains its original spherical

shape with diameter D0. h vanishes for complete wetting (θ = 0◦) which corresponds to

intuitive expectations. The two functions have an intersection point at θ = 90◦ with a value
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of 3
√
2/2 ≈ 0.63. This means that the droplet becomes a hemisphere for θ = 90◦, while the

volume remains the same, therefore the diameter of the hemisphere is larger than the initial

diameter D0.

0 30 60 90 120 150 180
0

1

2

3

Figure 3.3: Nondimensional base radius rb and height h of the droplet over contact angle θ,
according to Equations 3.8 and 3.9.

Figure 3.4 shows the function A over θ. As expected, the liquid-gas interface area is 1 for

no wetting (θ = 180◦) and goes to infinity for complete wetting (θ = 0◦). The function has

a minimum at θ = 90◦ with a value of 22/3/2 ≈ 0.79, which corresponds to the liquid-gas

interface area in the case of the hemisphere.

0 30 60 90 120 150 180
0

1

2

3

4

5

Figure 3.4: Nondimensional liquid-gas interface area A of the droplet over contact angle θ,
according to Equation 3.10.

The analytical solution for small Bond numbers is useful for evaluating experimental and

simulation results. If the assumption Bo ≪ 1 applies, the contact angle can be determined

from the width and height of the droplet. This method is more accurate and more convenient

than fitting tangential lines to the liquid-gas interface at the triple line.
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4 Mathematical Modeling

The simulation of wetting including the solid surface requires a multiphase flow model. In

order to reproduce real physical phenomena, it is necessary to use multiphase models in

simulations of many engineering processes. In general, multiphase flow is the simultaneous

flow of two or more phases. However, in numerical fluid dynamics, the expression is used

for three or more phases. The reason for this is that three or more phases need a different

computing technique to solve the governing equations. In this work, a mixture model is

applied, where the equations are solved for a mixture of N phases. In the mixture model,

the material properties are averaged according to the local phase distribution, while the

velocity, pressure, and temperature fields are the same for all phases.

In Section 4.2, the governing equations are presented, which in general cannot be solved

analytically. Therefore, a numerical approach, the Finite Volume Method (FVM) is used to

solve these partial differential equations. In this chapter, the concept of FVM is introduced,

and the mathematical formulation of surface tension is explained in detail.

4.1 Numerical Methods

In fluid dynamics, partial differential equations can be solved using many numerical

methods. They all have their advantages compared to the others. In most cases, the actual

physical problem determines whether a method is accurate, stable, and fast enough.

One of these methods is the Finite Volume Method, which is based on the idea of control

volumes. The domain, where the physical problem is investigated, is divided into a mesh

with a finite number of control volumes, also called cells. A cell is a region in space with a

surface through which the fluid can flow. By solving the equations in the cells and ensuring

the exchange of information between them, the conservation of mass, momentum, and

energy is fulfilled. The surfaces between the cells are called faces, which are also essential

for solving the equations.

After the mesh exists, the partial differential equations are integrated over each cell to obtain

algebraic equations. At this point, it is practical to transform volume integrals into surface

integrals with the divergence theorem of Gauss. As an example, for the volume integral of

the divergence of the velocity field, it reads�
V

∇ · u dV =

�
S

u · n dS , (4.1)

where u and n denote velocity field and the unit vector pointing outwards to the surface
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S that encloses the volume V . Since cells consist of a finite number of faces, the surface

integral is represented by a sum of face values. As a consequence for the example, the

volume integral of the velocity divergence over a cell can be calculated as the sum of the

fluxes through the faces. After the algebraic equations are created, they are linearized and

solved iteratively. A detailed description of the FVM is provided here [9].

The simulations were performed using OpenFOAM [10], an open-source software based on

the Finite Volume Method to solve mainly fluid dynamical problems. OpenFOAM consists

of several built-in solvers, each of which is suitable for solving a certain problem. However,

one of the biggest advantages of OpenFOAM is that the user has access to the source code.

Therefore, the user can implement new models or even create new solvers.

4.2 Governing Equations

The continuity equation governing mass conservation for each phase reads

∂ρi
∂t

+∇ · (ρiu) = ρ̇i,s , (4.2)

where u and ρi denote velocity of the mixture and partial density of phase i, respectively.

Among other phenomena, freezing of water is also investigated in this work. For that

reason, the source ρ̇i,s is introduced on the right hand side, which stands for the change in

ρi due to solidification. If the phase is not involved in phase change, the term is omitted.

The Navier-Stokes equation governing momentum conservation for the mixture of phases

reads
∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ − SB + SD + fst , (4.3)

where p, ρ, and τ denote pressure, density, and viscous stress tensor of the mixture,

respectively. The sources SB, SD, and fst stand for gravitational force, solid movement

restriction term, and surface tension force, respectively. SB and SD are discussed directly,

while the modeling of the surface tension force fst is explained in the following sections.
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The gravitational force SB is modeled as

SB = gΔh∇ρ , (4.4)

where g, and Δh denote the gravitational acceleration and the height difference measured

from a reference height.

The solid movement restriction term SD depends on the solid volume fraction according to

the Carman-Kozeny equation [11]:

SD = − µ

Aperm

α2
S

(1− αS)3 + δ
u , (4.5)

where αS, and µ denote the solid volume fraction and the dynamic viscosity of the

mixture, respectively. Aperm represent the permeability area of the mixed region, and

δ is a small constant, so the denominator does not become zero for αS = 1. SD has a

small effect if the non-solid phases are dominant and holds the phases stronger for larger

solid volume fractions. It is necessary because the cells involved in freezing consist of

a mixture of ice, water, and air. While water and air move according to the momen-

tum equation, ice is a solid phase that should remain where it has formed. Since the cell

has one velocity for all phases, SD ensures that both conditions are fulfilled at the same time.

Energy conservation is ensured by two equations. The convective transport of energy reads

∂Hi

∂t
+∇ · (Hiu) = Ḣi,s , (4.6)

where Hi denotes the energy of phase i. Similarly to the continuity equation, the change in

energy due to solidification is modeled by the source Ḣi,s on the right hand side.

The conductive heat transfer is calculated as

∂(ρcpT )

∂t
= ∇ · (λ∇T ) , (4.7)

where T , cp and λ denote temperature, specific heat capacity, and thermal conductivity of

the mixture, respectively.

A detailed description of the governing equations can be found in the work by Zenz et al. [12].
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4.3 Surface Tension Tensor

The following section is based on the work by Ruiz-Gutiérrez et al. [13].

In general, the stress-based surface tension tensor can be expressed as

T = −σ(I− n̂⊗ n̂)δ(S(x)) , (4.8)

where σ denote surface tension, S is the surface with unit normal vector n̂ where surface

tension is active. δ(S(x)) represents the surface density function which is the Dirac delta

function for an ideal infinitely sharp interface. The term (I−n̂⊗n̂) = t̂(1)⊗ t̂(1)+ t̂(2)⊗ t̂(2) is

a projection operator onto the tangential plane of the interface with the unitary vectors t̂(1)

and t̂(2). For example, an interface normal to the x direction has n̂ = (1, 0, 0), therefore the x

component of the tensor vanishes and only the other two components remain. Consequently,

applied to a vector a, the tensor term removes the component of a along n̂:

(I− n̂⊗ n̂)a = a− (n̂ · a)n̂ . (4.9)

The surface tension tensor can be decomposed into a parallel component to the interface

T∥ = t̂ ·T · t̂ and a normal component to the interface T⊥ = n̂ ·T ·n̂. With these components,

surface tension between two phases can be defined:

σ =

� ∞

−∞
(T∥ − T⊥) dx . (4.10)

The integral formulation enables the application of the surface tension concept to smeared

interfaces.

Since the surface tension tensor is determined for each interface, expression 4.8 can be

converted into a formulation for each phase pair ij:

Tij = −σij(I− n̂ij ⊗ n̂ij)δ
(S)
ij , (4.11)

where n̂ij points towards phase i. The divergence of the surface tension tensor represents

its spatial variation and provides the surface tension forces fst acting on the interface (also

proposed by Gueyffier et al. [14]). Before the divergence, the surface tension tensors of all

phase pairs are summed to obtain common forces for the mixture:

fst = −∇ ·
�

N"
i=1

N"
j=i+1

Tij

�
= ∇ ·

�
N"
i=1

N"
j=i+1

σij(I− n̂ij ⊗ n̂ij)δ
(S)
ij



. (4.12)

13



The surface tension force is continuous along a phase pair, but has a jump on the triple line,

where the phase pairs meet. The jump is proportional to the surface tension coefficient of

the phase pair, and therefore it is responsible for the realization of the contact angle. In

the following, this formulation of the surface tension force is referred to as the tensor-based

model.

4.4 Numerical Representation of the Dirac Delta

The Dirac delta function δ(x) is zero everywhere except at the origin, where it is infinitely

large:

δ(x) =

∞ , if x = 0 ,

0 , if x ̸= 0 .
(4.13)

The function δ(x) can be interpreted as the limit of the zero-centered normal distribution:

δ(x) = lim
a→0

φ(x) = lim
a→0

1

a
√
π
e−x2/a2 . (4.14)

The density function of the normal distribution, φ(x) (see Figure 4.2) is the derivative of the

cumulative distribution function F (x) (see Figure 4.1) which ranges from zero to one:

F (x) =
1

2

	
1 + erf

�
x√
a

��
. (4.15)
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Figure 4.1: Cumulative distribution function F (x) of the normal distribution with a = 0.5,
a = 1, a = 2, according to Equation 4.15.
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Figure 4.2: Probability density function φ(x) of the normal distribution with a = 0.5, a = 1,
a = 2, according to Equation 4.14.

In multiphase simulations it is convenient to use the gradient of a field that takes values

between zero and one over a few mesh cells. The simplest such field is the phase volume

fraction α:

δ
(S)
ij = |∇αij| . (4.16)

Because of the finite resolution of the domain and the inevitable numerical diffusion, the

gradient of the phase volume fraction is never infinite. The surface tension force between

two phases is active only on the common interface. For that reason, the phase volume fraction

gradient is calculated using both gradients weighted with the opposite phase volume fraction:

∇αij = αj∇αi − αi∇αj . (4.17)

This way, the gradient exists only on the interface of the phase pair and points towards phase

i. The unitary normal vector of the interface is defined as the normalized shared gradient

introduced previously:

n̂ij =
∇αij

|∇αij| . (4.18)
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4.5 Vector-Based Surface Tension Model

4.5.1 Derivation of the Vector-Based Model

The derivation is based on the work by Ruiz-Gutiérrez et al. [13].

The vector-based surface tension force is derived starting from Equation 4.12:

fst = ∇ ·
�

N"
i=1

N"
j=i+1

σij(I− n̂ij ⊗ n̂ij)|∇αij|



=
N"
i=1

N"
j=i+1

∇ · [σij(I− n̂ij ⊗ n̂ij)|∇αij|]

=
N"
i=1

N"
j=i+1

σij∇ · (I− n̂ij ⊗ n̂ij)|∇αij|+ |∇αij|(I− n̂ij ⊗ n̂ij)∇σij

=
N"
i=1

N"
j=i+1

σij∇ · (|∇αij|I− n̂ij ⊗∇αij) + |∇αij|(I− n̂ij ⊗ n̂ij)∇σij .

(4.19)

During the derivation, first the distributive property of the divergence operator, then the

product rule for multiplication was used. For a scalar ψ and a tensor A this reads

∇ · (ψA) = ψ∇ ·A+ (∇ψ) ·A
= ψ∇ ·A+A∇ψ .

(4.20)

The first term on the right-hand side in Equation 4.19 can be further rewritten as follows:

∇ · (|∇αij|I− n̂ij ⊗∇αij) = ∇ · (|∇αij|I)−∇ · (n̂ij ⊗∇αij)

= ∇|∇αij| − ∇αij(∇ · n̂ij)− (n̂ij · ∇)∇αij

=
∇(∇αij · ∇αij)

2|∇αij| − ∇αij(∇ · n̂ij)− (n̂ij · ∇)∇αij

= n̂ij × (∇×∇αij)−∇αij(∇ · n̂ij) .

(4.21)

During the derivation the following vector calculus identities were used (for vectors a, b):

∇ · (a⊗ b) = b(∇ · a) + (a · ∇)b , (4.22)

1

2
∇(a · a) = (a · ∇)a+ a× (∇× a)

= |a|∇|a| .
(4.23)
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The last step is substituting the gradient of a phase pair in the first term on the right-hand

side of Equation 4.21. With ∇αij = αj∇αi − αi∇αj

∇×∇αij = ∇× (αj∇αi − αi∇αj)

= ∇× (αj∇αi)−∇× (αi∇αj)

= αj∇×∇αi + (∇αj)× (∇αi)− αi∇×∇αj − (∇αi)× (∇αj)

= (∇αj)× (∇αi)− (∇αi)× (∇αj)

= (∇αj)× (∇αi) + (∇αj)× (∇αi)

= 2(∇αj)× (∇αi) .

(4.24)

Here, the following vector calculus identities were used (for a scalar ψ, and vectors a, b):

∇× (ψa) = ψ∇× a+ (∇ψ)× a , (4.25)

∇× (∇ψ) = 0 , (4.26)

a× b = −b× a . (4.27)

All the previous derivations and transformations summarized lead to the final expression of

the vector-based surface tension model:

fst =

N"
i=1

N"
j=i+1

−σijκij∇αij� �� �
Curvature force

+ |∇αij |(I− n̂ij ⊗ n̂ij)∇σij� �� �
Marangoni force

+2σij(∇αi ×∇αj)× n̂ij� �� �
Triple line force

 , (4.28)

where κij = ∇ · n̂ij is the curvature of the interface.
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4.5.2 Interpretation of the Terms

Equation 4.28 consists of three different terms. These are the one due to curvature, the

one considering the local variations of surface tension (Marangoni force), and the one

representing the forces on the triple line, where three phases meet.

Curvature Force

fst,curv,ij = −σijκij∇αij (4.29)

with curvature κij = ∇· n̂ij. The first term in Equation 4.28 is responsible for the curvature

of the interface and corresponds to the continuum surface force model by Brackbill et al. [15].

In two-phase models with constant surface tension σ, only this term occurs, and the surface

tension force consists of exclusively this expression. Furthermore, the forces due to curvature

are proportional to surface tension and the phase pair gradient. Because of the negative sign

and the definition of the divergence operator, the curvature forces can point towards both

phase i and j. Generally formulated, the term works against the curved interface, which

means it aims to straighten the interface. Figure 4.3 shows the curvature forces on the

liquid-gas interface of a liquid droplet.

Figure 4.3: Curvature forces on the liquid-gas interface in case of a water droplet on a flat
solid surface. Color blue refers to the solid surface, white to the water droplet, and red to the
surrounding air. The black contour marks the liquid-gas boundary, where αL = αG = 0.5.
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Marangoni Force

fst,Mar,ij = |∇αij|(I− n̂ij ⊗ n̂ij)∇σij (4.30)

The second term in Equation 4.28 considers the local surface tension variations which

is represented by the gradient of surface tension in the formulation. In most cases, this

variation is due to the temperature dependence of surface tension [16], but variations due

to concentration differences in a solution also influence this term [3]. Therefore, simulations

with potentially large temperature gradients should include this term.

Alternatively, the term can be also written in the form (see Equation 4.9)

fst,Mar,ij = |∇αij| [∇σij − n̂ij (∇σij · n̂ij)] . (4.31)

Both formulations show the functionality of the Marangoni term. The first one uses the

previously introduced projection tensor which takes the components of the surface tension

gradient tangential to the interface. The second one computes the components of the

surface tension gradients normal to the interface and subtracts them from the surface

tension gradient. Although the two expressions look different, they are identical and can be

derived mathematically from each other. The differentiation serves only as a guide to the

interpretation.

Figure 4.4 shows the Marangoni forces due to temperature gradient. The forces are tangential

to the interface and lead to deformation of the liquid surface.

Figure 4.4: Marangoni forces in case of a two-phase flow. Marangoni forces act on the
liquid-gas interface due to a linearly decreasing temperature field from left to right. The
black contour marks the liquid-gas boundary, where αL = αG = 0.5.

An analysis of the influence of the Marangoni forces in laser material processing can be found

in the paper by Zhang et al. [17].
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Triple Line Force

fst,trl,ij = 2σij(∇αi ×∇αj)× n̂ij (4.32)

The last term in Equation 4.28 only plays a role where the gradient vectors of the two

phases are not parallel to each other. Only in this case, the cross product between the two

phase gradients is non-zero. This happens exactly on the triple line, where the contribution

of a third phase becomes relevant. Another cross product with n̂ij ensures that the resulting

vectors are tangential to the interface. Moreover, the term is proportional to surface tension.

Therefore, the triple line forces set the correct contact angle ratios between the phases.

Figure 4.5 shows the triple line forces of a droplet wetting a hydrophobic surface. The free

surface energy of a hydrophobic surface is small compared to the surface tension of the liquid,

which leads to small forces on the solid-gas interface, while the forces on the liquid-gas and

solid-liquid interfaces are larger.

Figure 4.5: Triple line forces in case of a water droplet on a hydrophobic surface. Color blue
refers to the solid surface, white to the water droplet, and red to the surrounding air. The
black contour marks the liquid-gas boundary, where αL = αG = 0.5. fst,trl,SG points to the
right, fst,trl,LG points diagonally upwards, fst,trl,SL points to the left.
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4.6 Surface Tension Decomposition

In general, the surface tension coefficient σij is not a material parameter of one of the two

phases, but a property of the interaction between two phases. The idea of surface tension

decomposition is to consider surface tension forces for every phase separately, rather than

for phase pairs [18, 19].

In particular, in a three-fluid system the surface tension coefficients σ12, σ23, σ13 can be

transformed into the phase specific surface tension coefficients σ1, σ2, σ3. In order to stay

consistent with the phase-pair formulation, following decomposition relations are necessary

to be satisfied:

σ12 = σ1 + σ2 , (4.33)

σ23 = σ2 + σ3 , (4.34)

σ13 = σ1 + σ3 . (4.35)

From this system of equations, σ1, σ2, σ3 can be expressed as

σ1 =
1

2
(σ12 + σ13 − σ23) , (4.36)

σ2 =
1

2
(σ12 + σ23 − σ13) , (4.37)

σ3 =
1

2
(σ23 + σ13 − σ12) . (4.38)

It is important to emphasize that σi is not a property of phase i, because it depends on the

surface tension coefficients of all three phase pairs.

With these phase specific coefficients the tensor-based surface tension model (T)

fT
st = ∇ ·

�
N"
i=1

N"
j=i+1

σij(I− n̂ij ⊗ n̂ij)|∇αij|



(4.39)

becomes

fTd
st = ∇ ·

�
N"
i=1

σi(I− n̂i ⊗ n̂i)|∇αi|



, (4.40)

while the newly introduced vector-based surface tension model (V)

fV
st =

N"
i=1

N"
j=i+1

[−σijκij∇αij + |∇αij |(I− n̂ij ⊗ n̂ij)∇σij + 2σij(∇αi ×∇αj)× n̂ij ] (4.41)
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turns into

fVd
st =

N"
i=1

[−σiκi∇αi + |∇αi|(I− n̂i ⊗ n̂i)∇σi] . (4.42)

The formulations using surface tension decomposition have the advantage that they contain

the gradient of a single phase instead of the gradient between two phases. In contrast to

the phase pair gradients, these single phase gradients are continuous within the domain.

Therefore, the triple line force term vanishes in both expressions and the contact angles are

represented by the ratio between the phase specific surface tension coefficients.

Surface tension decomposition works also for two phases. In this case, the decomposition

leads to the trivial solution σ1 = σ2 = σ12/2. Thus, there is no particular reason to introduce

the method for two phases. For more than three phases, the system of equations gets over-

determined, as the number of phase pairs is larger than the number of phases [20].

In summary, the method of surface tension decomposition is beneficial, because the underly-

ing equations get simpler. However, it can only be used to solve three-phase problems. The

method can also serve to validate the general models that are valid for N phases.
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5 Numerical Implementation

This chapter presents the algorithm used for solving the governing equations and describes

numerical methods for including surface tension force into the solver. In addition, an impor-

tant numerical parameter of multiphase flows, interface compression is also introduced.

5.1 Pressure-Velocity Coupling

As already discussed in Section 4.1, the partial differential equations that describe fluid

flows are transferred into linearized algebraic equations. When solving these, the coupling

of mass and momentum equations needs special treatment. In the following, one of the

algorithms to manage this coupling, the so-called PISO algorithm is explained based on [21].

In fluid mechanics, to establish pressure-velocity coupling, two equations have to be solved,

the Navier-Stokes equation and the continuity equation, governing momentum and mass

conservation, respectively. For the sake of simplicity, the concept of the PISO algorithm is

derived and presented for an incompressible fluid. A detailed description of the compressible

PISO algorithm can be found in the work by Miller et al. [22]. In the incompressible case,

without any sources, the governing equations have the following form:

∂u

∂t
+∇ · (uu)−∇ · (ν∇u) = −∇p , (5.1)

∇ · u = 0 , (5.2)

where u, p, and ν refer to velocity, pressure and kinematic viscosity. For numerical purposes,
the equations are discretized and linearized, e.g. with the Finite Volume method. As the
result of that, the equations become matrix equations. The momentum equation rewritten
this way leads to following expression:

Mu = −∇p , (5.3)
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

u = −∇p , (5.4)

whereM consists of all discretization coefficients of u. In order to obtain velocity, multiplying

both sides with M−1 is one possibility. It is often used as an initial estimate for the velocity

with the pressure gradient from the last iteration step. This method is called the momentum

predictor stage. However, M is a matrix without any exceptional properties (e.g. not

diagonal).
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That means, inverting M takes a lot of time and is computationally inefficient. Therefore,
it is convenient to decompose M as follows:

Mu = Au−H(u) = −∇p , (5.5)
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗


� �� �

M

u =


∗

∗
∗

∗


� �� �

A

u+


∗ ∗

∗ ∗
∗ ∗

∗ ∗

u

� �� �
−H(u)

= −∇p , (5.6)

where Au is a linear term in u with the diagonal coefficients of M in A. H(u) consists of

all remaining terms and is a function of u and eventually other sources. Since M is known,

A is also known and H(u) can be calculated as follows:

H(u) = Au−Mu . (5.7)

However, the velocity field which is calculated in the momentum predictor step, and solves

the momentum equation, does not satisfy the continuity equation. For that reason, the

continuity equation is considered in the algorithm as follows. After multiplying Equation 5.5

by A−1 it reads

u− A−1H(u) = −A−1∇p . (5.8)

Then, taking the divergence of both sides leads to an expression that includes the continuity

equation:

∇ · u−∇ · (A−1H(u)) = −∇ · (A−1∇p) . (5.9)

Since ∇ · u = 0 (continuity equation), the pressure equation remains:

∇ · (A−1∇p) = ∇ · (A−1H(u)) . (5.10)

The expression for the velocity (momentum corrector) is derived from Equation 5.8:

u = A−1H(u)− A−1∇p , (5.11)

where the pressure gradient is the result of the pressure equation. The new velocity field now

satisfies the continuity equation, but not anymore the momentum equation. Hence, H(u) is

updated using the new velocity according to Equation 5.7. After that, the pressure equation

and the momentum correction are solved again. This iterative method is called the PISO

algorithm. In order to achieve convergence, it is desirable to pass through the equation set

at least two times per time step.
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The steps of the PISO algorithm summarized:

1. Solve momentum predictor (Equation 5.3)

2. Calculate and invert A

3. Calculate H(u) (Equation 5.7)

4. Solve the pressure equation (Equation 5.10)

5. Correct velocity (Equation 5.11)

6. Repeat steps 3.-5. (2-3 times)

7. Go to next time step

5.2 Introducing Surface Tension Force in the Pressure-Velocity

Coupling

In the previous section, the PISO algorithm without any sources was explained in detail.

This section discusses the possible ways for extending the momentum equation with the

surface tension force as a source term.

The incompressible momentum equation in this case reads

∂u

∂t
+∇ · (uu)−∇ · (ν∇u) = −∇p+ f̃st (5.12)

with the density specific surface tension f̃st = fst/ρ. The continuity equation remains

unchanged.

5.2.1 Surface Tension Force with the Momentum Terms

The first method is where the source is written to the left-hand side of the momentum
equation and is added to the terms containing velocity:

Mu− f̃st =


∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

u− f̃st = −∇p . (5.13)
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In contrast to the case without a source term, Mu− f̃st is decomposed as Au−H(u), not
only Mu:

Au−H(u) =


∗

∗
∗

∗


� �� �

A

u+


∗ ∗

∗ ∗
∗ ∗

∗ ∗

u− f̃st

� �� �
−H(u)

= −∇p . (5.14)

Therefore, f̃st is added to H(u) which is then calculated as follows:

H(u) = Au−Mu+ f̃st . (5.15)

All subsequent equations and calculations that depend on H(u) (pressure equation, momen-

tum corrector) remain as in the case without a source term.

5.2.2 Surface Tension Force with the Pressure Gradient

In the second method, the left-hand side of the momentum equation is unaffected and H(u)

also remains unchanged compared to the case without source term:

Mu = Au−H(u) = −∇p+ f̃st . (5.16)

However, the pressure equation is different, because the starting equation has an extra term.

After following the same derivation way and restructuring the equation while using the

distributive property of the divergence operator, the pressure equation is expressed as

∇ · (A−1∇p) = ∇ · (A−1H(u) + A−1f̃st) . (5.17)

For the same reason, a term proportional to surface tension force is added to the momentum

corrector as well:

u = A−1H(u)− A−1∇p+ A−1f̃st . (5.18)

Because of numerical efficiency and accuracy, OpenFOAM uses fluxes to evaluate the di-

vergence of the fields in the pressure equation. The flux is a face field and is calculated as

follows:

φ = Sf · uf = Sf · (A−1H(u))f − Sf · A−1
f ∇pf + Sf · A−1

f f̃st,f (5.19)

with the vector Sf normal to the face with the magnitude equal to the face area and uf the

velocity field evaluated on the faces (the subscript f refers to a face field). Consequently, if

the surface tension force as a vector field is interpolated to the faces, it can be added to the

pressure equation as a flux.
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The term including the surface tension force can also be calculated differently. OpenFOAM

provides a surface normal gradient method, which calculates the gradient of a scalar field ψ

normal to the cell face as follows:

∇⊥ψ = nf · (∇ψ)f , (5.20)

where nf is the face unit normal vector.

The surface-normal shared phase gradient calculated this way reads

∇⊥αij = αj,f∇⊥αi − αi,f∇⊥αj . (5.21)

The surface normal gradient is a scalar field, therefore the surface tension force calculated

this way is also a scalar field. Because of the structure of the surface tension force terms,

this method works only for the curvature forces:

f̃st,curv,f = −σfκf∇⊥α . (5.22)

When using this method, the surface tension coefficient and the curvature need to be in-

terpolated to the faces. The scalar surface tension force multiplied with the magnitude of

the face area vector |Sf | can be added to the flux and the surface tension force term can be

written as

Sf · A−1
f f̃st,f = |Sf |A−1

f f̃st,curv,f . (5.23)

5.3 Interface Compression

The distribution and advection of phases in a velocity field is described by the following

conservation equation:

∂ρi
∂t

+∇ · (ρiu) = ∇ · (αi(1− αi)ρiur) , (5.24)

where the relative velocity ur is defined as

ur = −cα|u| ∇αi

|∇αi| , (5.25)

while the term that comes from solidification is excluded for simplicity.

For numerical purposes, an artificial term on the right hand side in Equation 5.24 is

introduced, which aims to maintain a sharp interface. The factor αi(1 − αi) ensures that

the compression is only active on the diffuse interface. Note that it is zero for an infinitely
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sharp interface, i.e. for a step in the volume fraction αi. The direction of ur is determined

by the relevant phase gradient, therefore the compression acts orthogonal to the interface.

The value of cα can be adjusted by the user to control the influence of interface compression.

Interface compression is calculated individually for each phase. However, it makes only

sense if the phase can move freely, i.e. on interfaces without solid. For that reason, interface

compression is modified in a way that it is only applied between liquid and gas phases.

Modeling of the interface compression this way reduces the unphysical artificial velocities at

solid interfaces and leads to more stable and accurate results.

As shown in Figure 5.1, the effect of interface compression depends on cα. In general, values

between 0 and 1.5 work in most cases. However, for a small cα, the solution is distorted by

numerical diffusion, since the discontinuity of the phases as a discrete property is described

by a continuum model. This leads to a smeared interface between the phases. In contrast,

cα > 1.5 cause artificial velocities and the desired functionality is no longer guaranteed.

Figure 5.1: Comparison of cα = 0 (left) and cα = 1 (right) for the dam break case [23].

Another option that provides sharp interfaces is the geometric interface reconstruction

(isoAdvector). However, it only works for two phases and incompressible flows. Since the

models in the present work are developed for simulations of material processing, where a

compressible flow of more than two phases occurs, the method mentioned above is not con-

sidered as a solution to the problem.
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6 Results

In this chapter, the simulation results are evaluated. First, an overview of the different

surface tension force models is provided. Afterwards, the phase change and surface ten-

sion models are verified with analytically solvable test cases. Then, wetting on flat and

laser-structured surfaces is investigated, followed by simulations of icing on laser-structured

surfaces.

6.1 Surface Tension Models Used in the Simulations

The simulations were carried out with four different surface tension models. These were the

tensor-based model (T), the decomposed tensor-based model (Td), the vector-based model

(V1), and the modified vector based model (V2). The implementation of the four models

and the differences between them are introduced in the following sections.

6.1.1 Tensor-Based Model (T)

As already mentioned in Section 4.3, the tensor based model can be expressed as follows:

fT
st = ∇ ·

�
N"
i=1

N"
j=i+1

σij(I− n̂ij ⊗ n̂ij)|∇αij|



. (6.1)

The resulting vector field is added to the momentum terms, as laid out in 5.2.1.

6.1.2 Decomposed Tensor-Based Model (Td)

The decomposed tensor-based model is derived from the tensor-based model. Instead of

phase pairs, this model is formulated for each phase. Therefore, the expression contains the

phase specific surface tension coefficients and the single phase gradients according to 4.6:

fTd
st = ∇ ·

�
N"
i=1

σi(I− n̂i ⊗ n̂i)|∇αi|



. (6.2)

The surface tension force is applied to the momentum terms.
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6.1.3 Vector-Based Model (V1)

As shown in 4.5.1, the vector-based model is derived from the tensor-based model, and reads

fV
st =

N"
i=1

N"
j=i+1

−σijκij∇αij� �� �
Curvature force

+ |∇αij |(I− n̂ij ⊗ n̂ij)∇σij� �� �
Marangoni force

+2σij(∇αi ×∇αj)× n̂ij� �� �
Triple line force

 (6.3)

with κij = ∇ · n̂ij, the curvature of the interface. Similar to the tensor-based models, the

surface tension force is added to the momentum terms.

6.1.4 Modified Vector-Based Model (V2)

In the modified vector-based model, the forces due to curvature are calculated using the

surface normal gradient method. Then, the curvature forces are added to the pressure

gradient, and are included in the pressure-velocity coupling as a flux, according to 5.2.2.

Marangoni and triple line forces are still interpreted as momentum terms.

6.2 Two-Phase Stefan Problem

Later in this work, freezing of water droplets will be investigated. To validate phase changes,

especially solidification, the two-phase Stefan problem was simulated, which is described in

the following.

In the one-dimensional case, a semi-infinite liquid slab is considered with a temperature above

melting temperature. On the front, a temperature below melting temperature is imposed,

constantly cooling the slab, as shown in Figure 6.1. The density in the frozen and liquid

regions was chosen to be the same (ρS = ρL = ρ), so that no convection occurs in the liquid,

only diffusion.

Figure 6.1: Initial conditions of the two-phase Stefan problem.

The heat conduction equation in the frozen region reads

∂T

∂t
=

λS

ρcp,S

∂2T

∂x2
, x < X(t) . (6.4)
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The heat conduction equation in the liquid region reads

∂T

∂t
=

λL

ρcp,L

∂2T

∂x2
, X(t) < x . (6.5)

The initial condition is the liquid temperature:

T (x, 0) = TL > TM . (6.6)

The boundary conditions read

T (0, t) = TS < TM , (6.7)

lim
x→∞

T (x, t) = TL . (6.8)

The Stefan condition at the phase front connects the two regions:

ρLfusion
dX(t)

dt
= λS

∂T

∂x

####
X(t)−

− λL
∂T

∂x

####
X(t)+

, (6.9)

where Lfusion denotes the latent heat of fusion.

6.2.1 Analytical Solution

The position of the phase front can be derived analytically [24]:

X(t) = 2λSt

√
αSt with αS =

λS

ρcp,S
, (6.10)

where αS denotes the thermal diffusivity of the solid.

The parameter λSt can be determined by solving the following equation numerically, e.g.

with the Newton-Raphson method:

StS

exp(λSt
2)erf(λSt)

− StL�
αS

αL
exp

�
λSt

2 αS

αL

�
erfc

�
λSt

�
αS

αL

� = λSt

√
π . (6.11)

The parameters StS and StL are the Stefan numbers of the solid and the liquid, respectively:

StS =
cp,S(TM − TS)

Lfusion

, StL =
cp,L(TL − TM)

Lfusion

. (6.12)

The functions erf(x) and erfc(x) denote the error function and the complementary error

function, respectively.
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6.2.2 Simulation

In the simulations, a one-dimensional, 10 mm long domain was used with 800 cells. That

means that the cell size was 12.5 µm.

Table 6.1 contains the material properties and temperatures used in the simulations. All

material properties and temperatures correspond to those used later in the simulations with

icing of laser-structured surfaces in Section 6.6.

Table 6.1: Material properties and temperatures applied in the two-phase Stefan problem.

Property Value Unit

Density ρ 1000 kg m−3

Specific heat capacity (solid) cp,S 2050 J kg−1 K−1

Specific heat capacity (liquid) cp,L 4220 J kg−1 K−1

Thermal conductivity (solid) λS 2.22 W m−1 K−1

Thermal conductivity (liquid) λL 0.56 W m−1 K−1

Solid temperature TS -30 ◦C

Liquid temperature TL 1 ◦C

Melting temperature TM 0 ◦C

Latent heat of fusion Lfusion 3.34 ·105 J kg−1

Figure 6.2 compares the analytical solution and the simulation results. The simulation is in

good agreement with the analytical solution, no noticeable differences can be identified.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.2: Analytical and simulated phase front positions X over time of the two-phase
Stefan problem.
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Plotting the absolute error (Figure 6.3) shows that the simulation underestimates the an-

alytical solution only by a few micrometers. Knowing that the cell size was 12.5 µm, the

absolute error is always smaller than one cell. The error is larger at the beginning, when the

phase front moves faster and converges to zero afterward.
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0
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Figure 6.3: Absolute error of the simulated phase front position over time of the two-phase
Stefan problem.
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6.3 Two-Phase Marangoni Driven Flow

This numerical test case aims to validate the curvature and Marangoni forces using two

phases. The liquid in a two-dimensional cavity is driven by Marangoni forces due to surface

tension gradients. This is achieved by using a linearly decreasing temperature field from the

left to the right wall. The surface tension between liquid and gas is set to decrease with

increasing temperature. Therefore, Marangoni forces directed to the right act on the liquid

surface. A possible initial configuration of the problem is shown in Figure 6.4 with the phase

distribution and walls of different temperatures.

Figure 6.4: Initial phase distribution and wall temperatures of the two-phase Marangoni
driven flow.

6.3.1 Analytical Solution

An analytical solution derived by Sen and Davis [25] exists which is valid for an incom-

pressible steady-state flow without gravity. For a liquid with initial depth to width ratio

A = D/W , the dimensionless stationary liquid depth h = H/D as a function of the dimen-

sionless position x (xleft = −0.5, xright = 0.5) reads

h = 1− AC

16

	
x(4x2 − 3) +

4

3
m(12x2 − 1)

�
+O(A2) . (6.13)

The parameter C denotes the normalized capillary number:

C =
dσ

dT

TH − TC

σrA3
, (6.14)

where dσ/dT , TH , TC and σr denote derivative of surface tension at reference temperature,

temperature at the hot wall, temperature at the cold wall and surface tension at reference

temperature, respectively. The reference temperature is Tr =
1
2
(TH − TC).
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m is a parameter proportional to the slope of the liquid surface at the walls:

m =
tan(θ − π

2
)

A2C
, (6.15)

where θ denotes contact angle. Accordingly, m < 0 means hydrophilic wetting, while m > 0

represents hydrophobic wetting. m = 0 corresponds to θ = 90◦, the transition between

hydrophilic and hydrophobic wetting.

O(A2) refers to the higher order terms. If the liquid slot is shallow, A is small, and therefore

the higher order terms in Equation 6.13 can be neglected. Furthermore, the derivative of h

with respect to x provides more information about the behavior of the solution:

h′ =
AC

16

�
12x2 − 3 + 32mx

�
. (6.16)

The liquid depth h has an extremum where h′ = 0, which results in following x1 and x2

values:

x1,2 = −4

3
m±

√
64m2 + 9

6
. (6.17)

For hydrophilic surfaces (m < 0), h has one minimum in the range −0.5 < x < 0. For

hydrophobic surfaces (m > 0), h has one maximum in the range 0 < x < 0.5. For m = 0,

h has one minimum and one maximum at the boundaries, i.e. at x = −0.5 and x = 0.5,

respectively.

6.3.2 Simulation

Table 6.2 contains the parameters used in the simulations.

Table 6.2: Parameters of the two-phase Marangoni driven flow investigated in this work.

Property Value Unit

Initial liquid depth D 0.2 m

Liquid width W 1 m

Aspect ratio A 0.2 -

Temperature at left wall TH 60 ◦C

Temperature at left wall TC 50 ◦C

Reference temperature Tr =
1
2
(TH − TC) 55 ◦C

Surface tension at reference temperature σr 0.01 N m−1

Surface tension derivative dσ
dT

4 · 10−5 N m−1 K−1

Normalized Capillary number C 5 -

Contact angle θ 90 ◦

Slope parameter m 0 -
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The slope parameter m is set to zero in the simulations. In this case, the analytical solution

is symmetrical and has its extrema at the boundaries.

Figure 6.5 shows the stationary solution with the temperature gradient and the velocity

vectors. As expected, Marangoni forces at the liquid-gas interface drive the flow to lower

temperatures. A vortex is observed with the highest velocities at the liquid surface.

Figure 6.5: Steady-state temperature and velocity fields obtained from simulation of the
two-phase Marangoni driven flow. The white lines show the streamlines in the liquid, the
black lines mark the initial liquid depth.

As shown in Table 6.3, the analytical solution according to Sen and Davis without higher

order terms is a deflection of 12.5 mm on both walls. The table also contains the simulations

performed by Francois et al. [26] and Saldi [27], both using 100 cells in x direction, thus a

cell size of Δx = 10 mm, similar to the present work.

Table 6.3: Comparison of analytical and simulated liquid depths at the hot and cold walls.

References Depth at hot wall (mm) Depth at cold wall (mm)

Sen and Davis, 1982 (analytical) 187.5 212.5

Francois et al., 2006 (simulation) 187 209

Saldi, 2012 (simulation) 187 208

tensor-based model T 187.57 211.69

vector-based model V1 187.92 211.54

modified vector-based model V2 188.38 211.28
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All three surface tension models predict the liquid depth with great accuracy. Compared

to the results of Francios et al. and Saldi, they perform well especially on the cold

wall, where the liquid surface increases. The vector-based models underestimate deflection

slightly more than the tensor-based model, but the relative error is less than 1% on both sides.

In order to check the influence of the cell size, the simulations were also run with Δx = 5

mm. Figure 6.6 shows the deflections on both walls for Δx = 10 mm and Δx = 5 mm. In

general, all three models deliver more accurate results and the tendencies are the same as

for Δx = 10 mm.

5 10
11

11.5

12

12.5

13

D
e
fl
e
c
ti
o
n
 m

a
g
n
it
u
d
e
 (

m
m

)

Figure 6.6: Dependence of deflection magnitude on the cell size for the three surface tension
models.
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6.4 Droplet on Flat Surface

The main purpose of the flat surface simulations was to test and validate curvature and

triple line forces. The aim of each simulation was to reach steady state conditions, where

the droplet lies still on the surface and the prescribed contact angle has established.

6.4.1 Simulation Settings

When a spherical droplet is dropped onto the surface from a certain height, the dynamic

process leads to trapped air under the droplet [2]. Therefore, the starting configuration in

this work was a cube with a side length of 2 mm lying on the surface, as shown in Figure 6.7.

This droplet volume corresponds to that used in the experiments and enables the observation

of real water droplet sizes. In the figure, color blue refers to the solid surface, white to the

water droplet, and red to the surrounding air. This color code is applied for all subsequent

figures.

Figure 6.7: Cube-shaped initial droplet to prevent trapped air under the droplet.

The figure also contains mesh cells. To reduce the number of cells and thus the simulation

time, dynamic refinement was used around the liquid phase. That means that cells with

a value of αL in a certain range were refined, e.g. between 0.1 and 0.9. This leads to a

refinement only at the liquid surface, where surface tension forces act and higher mesh

resolution is necessary.

The droplet material was set to be water with density of ρ = 1000 kg/m3, kinematic viscosity

of ν = 10−6 m2/s and surface tension of σLG = 0.0728 N/m. These material properties and

the corresponding droplet diameter resulted in a Bond number of Bo = 0.83. That means

that the analytical solution for small Bond number is not perfectly applicable to validate the

following simulations. However, since all simulations with the laser-structured surface were
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performed with smaller Bond numbers, the Bond number of 0.83 serves as a good comparison

to see the validity range of the analytical solution.

6.4.2 Surface Tension Coefficients

To investigate different wetting conditions and contact angles, the free surface energy of

the solid surface was varied. It is convenient to use the method for only dispersion forces,

because the one unknown σSG can be expressed via σLG and θ (Equation 3.3):

σSG = σLG
(cos θ + 1)2

4
. (6.18)

Then, the free surface energy between solid and liquid is calculated as a function of σLG and

σSG (see Equation 3.2):

σSL = σSG + σLG − 2
√
σSGσLG . (6.19)

Test simulations of three different contact angles were run. Hydrophilic wetting was repre-

sented by θ = 30◦, hydrophobic wetting by θ = 150◦ and the transition between them by

θ = 90◦. Table 6.4 shows the surface tension and free surface energy values of the three

cases. According to Young’s equation, for a given liquid, hydrophilic surfaces have small

values of σSL, while hydrophobic surfaces have small values of σSG compared to the other

two. For θ = 90◦, σSG equals σSL to achieve balance of the triple line forces.

Table 6.4: Surface tension and free surface energy coefficients to achieve the given contact
angles.

contact angle θ (◦) σLG (N/m) σSG (N/m) σSL (N/m)

30 7.28 ·10−2 6.34 ·10−2 3.27 ·10−4

90 7.28 ·10−2 1.82 ·10−2 1.82 ·10−2

150 7.28 ·10−2 3.27 ·10−4 6.34 ·10−2

6.4.3 Effect of Interface Compression

Since the cube as initial shape has a contact angle of θ = 90◦, this contact angle was

the easiest to start with. Therefore, the first attempts were performed with θ = 90◦. These

simulations showed that the vector-based models depend on the value of cα used for interface

compression (Section 5.3). Figures 6.8 and 6.9 show the width and height of the droplet over

time. It can be seen that both quantities oscillate without damping if interface compression

is larger than 0.6. With cα = 0.6 it was possible to obtain a stationary solution that oscillates

minimally compared to the dimensions of the droplet. Therefore, cα = 0.6 was used for the

flat surface simulations. The side effect of the small interface compression value is reflected

in the diffuse interface, which spans over more cells than it would with a larger value of cα.

39



Note that cα = 0.6 is the best value for obtaining a steady-state solution, but not necessarily

the physically right value. If the goal was to investigate the dynamic droplet behavior, a

larger cα might fit better with the experimental results.
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Figure 6.8: Dependence of droplet width w over time on the interface compression cα.
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Figure 6.9: Dependence of droplet height h over time on the interface compression cα.
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6.4.4 Tensor-Based Models

First, the three simulations were run with the tensor-based model (T). Figures 6.10a, 6.10c

and 6.10e (left column) show the results. In the figures, the magenta and green lines refer

to the base diameter and the droplet height calculated using Equations 3.8 and 3.9. These

values are valid for Bo ≪ 1. The current Bond number is 0.83, which can lead to droplets

with slightly less height and more base diameter.

(a) θ = 30◦, tensor-based (T) (b) θ = 30◦, decomposed tensor-based (Td)

(c) θ = 90◦, tensor-based (T) (d) θ = 90◦, decomposed tensor-based (Td)

(e) θ = 150◦, tensor-based (T) (f) θ = 150◦, decomposed tensor-based (Td)

Figure 6.10: Steady-state droplet shapes of the tensor-based models with the liquid boundary
αL = 0.5 marked by the black contour. The magenta and green lines refer to the theoretical
base diameter and droplet height, respectively.
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The inaccuracy of the tensor-based model is immediately recognizable. For hydrophilic

surfaces, the actual contact angle is larger, while for hydrophobic surfaces it is smaller than

the theoretical contact angle. The model provides 45◦ instead of 30◦ (see Figure 6.10a) and

135◦ instead of 150◦ (see Figure 6.10e). The problem does not occur at 90◦ and the results

match the theoretical solutions quite well. A detailed analysis of the problems with respect

to curvature and triple line forces is provided in Appendix A, where the inaccuracies of the

tensor-based model are explained using simple cases.

The inaccuracy of the tensor-based model can be corrected using the surface tension de-

composition method (Td). It works for these cases, because there are only three phases.

Unlike the shared phase gradient, the single phase gradients end at the domain boundary.

These continuous functions without any jump ensure the correct handling of the triple line.

The contact angle is generated due to the ratio between the phase specific surface tension

coefficients. Table 6.5 contains these coefficients calculated from the values of Table 6.4.

The value of σS is negative in all three cases. As the solid interface is straight, this value is

insignificant. However, σL and σG show the wetting scenario. σG is dominant for hydrophilic

wetting, while σL is larger for hydrophobic wetting, and the two are equal for a contact angle

of 90◦.

Table 6.5: Decomposed surface tension coefficients to achieve the given contact angles.

contact angle θ (◦) σS (N/m) σL (N/m) σG (N/m)

30 -4.55 ·10−3 4.88 ·10−3 6.79 ·10−2

90 -1.82 ·10−2 3.64 ·10−2 3.64 ·10−2

150 -4.55 ·10−3 6.79 ·10−2 4.88 ·10−3

Figures 6.10b, 6.10d and 6.10f (right column) show the results with surface tension

decomposition. The steady-state droplet shape looks better and is more consistent with the

theoretical one.

However, there is another problem that applies to both models and generally characterizes

the tensor-based models. When averaging the maximum velocities of each time step over

time, an interesting tendency can be observed. As Table 6.6 shows, the average velocity is

unphysically high for small contact angles and decreases with larger contact angles. The

high velocities typically occur in the gas phase and seem to be proportional to the surface

tension coefficients acting on the gas phase. These coefficients are always larger for small

contact angles.
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Table 6.6: Averaged maximum velocities of the tensor-based models for the three contact
angles.

umax (m/s)

contact angle θ (◦) tensor-based (T) decomp. tensor-based (Td)

30 11.30 9.16

90 3.97 3.94

150 0.93 0.94

6.4.5 Vector-Based Models

The three simulations were also run with the vector-based models. The results using the

original vector-based model (V1) are shown in Figures 6.11a, 6.11c and 6.11e (left column).

The result using the modified vector-based model (V2) can be seen in Figures 6.11b, 6.11d

and 6.11f (right column). Both models are very accurate and are in good agreement with

the theoretical base diameter and height of the droplet. They are very similar, however,

the modified vector-based model provides smoother interfaces. Looking at the averaged

maximum velocities (Table 6.7), it is clear that the high velocities of the tensor-based models

do not occur using the vector-based models. Moreover, the modified vector-based model has

even smaller velocities compared to the original vector-based model.

Table 6.7: Averaged maximum velocities of the vector-based models for the three contact
angles.

umax (m/s)

contact angle θ (◦) vector-based (V1) modified vector-based (V2)

30 0.82 0.28

90 0.66 0.65

150 0.75 0.18
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(a) θ = 30◦, vector-based (V1) (b) θ = 30◦, modified vector-based (V2)

(c) θ = 90◦, vector-based (V1) (d) θ = 90◦, modified vector-based (V2)

(e) θ = 150◦, vector-based (V1) (f) θ = 150◦, modified vector-based (V2)

Figure 6.11: Steady-state droplet shapes of the vector-based models with αL = 0.5 marked
by the black contour. The magenta and green lines refer to the theoretical base diameter
and droplet height, respectively.
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6.5 Droplet on Laser-Structured Surface

Skrna [2] performed experiments on laser-structured stainless steel surfaces. In the following

simulations, surface number 3 from that work was used, which is shown in Figure 6.12. The

surface was generated using a femtosecond laser system with a spot diameter of 50 µm. More

details can be found in the work by Fürbacher et al. [28].

(a) Top view

(b) Side view

Figure 6.12: The laser-structured surface used in the simulations.

6.5.1 Surface Tension Model

Because the modified vector-based model (V2) worked very well in the flat surface sim-

ulations, this model was chosen for the laser-structured surface simulations. However, the

equation of the surface tension force was slightly modified. The reason for this was the curved

solid surface, where the curvature forces were to be excluded. Since surface tension models

calculate forces acting at the interface between two phases, both phases are accelerated and

the velocities in the non-solid phase become high. Therefore, curvature forces were calcu-

lated only at the liquid-gas interface. The surface tension force used for the laser-structured
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surface reads

fst = −σLGκLG∇αLG� �� �
Curvature force

+
N"
i=1

N"
j=i+1

2σij(∇αi ×∇αj)× n̂ij� �� �
Triple line force

(6.20)

with N = 3 in this case. Note that such a restriction is not possible with a surface tension

model where the contribution of forces due to curvature to the overall surface tension forces

is not separately recovered, e.g. with the tensor-based model.

6.5.2 Surface Tension Coefficients

In general, it is not obvious to find the surface tension coefficients for the laser-structured

simulations. In case of flat surfaces, they are derived from the experimentally measured

contact angle. Laser-structured surfaces, on the other hand, have a global and a local

contact angle. The global contact angle depends on the geometry of the surface and can

be obtained during an experiment, while the local contact angle is formed at the triple line

and is not easy to determine. Simulations handle surface tension locally, thus it is necessary

to find the local contact angle. A good procedure would be to determine the local contact

angle from a flat surface experiment and set the corresponding surface tension coefficients

in the laser-structured simulations.

Skrna observed that the contact angle also depends on when it was measured. It was found

that the contact angle is different if the wetting is investigated directly after the production

of the surface or after a certain period of time. The reason for that is that laser-structured

surfaces absorb hydrocarbons from the surrounding air, which change hydrophilic surfaces to

hydrophobic ones [28]. To avoid chemical effects, Skrna applied a 5 nm thin layer of platinum

to both the flat and the laser-structured surfaces. Since the simulations were compared

with experiments and water has a significant polar surface tension component, the OWRK

method (Equation 3.6) was used to calculate the free surface energy between solid and liquid.

The dispersion and polar surface tension components of water and the surface coated with

platinum, and the free surface energy between them are listed in Table 6.8.

Table 6.8: Dispersion and polar components of water and the laser-structured surface, and
the resulting free surface energy between them.

σD
LG (N/m) σP

LG (N/m) σD
SG (N/m) σP

SG (N/m) σSL (N/m)

2.18 ·10−2 5.10 ·10−2 3.17 ·10−2 1.30 ·10−3 3.69 ·10−2

46



6.5.3 Simulation

Simulations were performed with three different droplet diameters: 200 µm, 400 µm and 800

µm. Table 6.9 contains initial diameter, volume and Bond number of the three cases.

Table 6.9: Initial diameter, volume, and Bond number of the three simulations.

initial diameter D0 (µm) volume V0 (µl) Bond number

200 4.19 ·10−3 5.39 ·10−3

400 3.35 ·10−2 2.16 ·10−2

800 2.68 ·10−1 8.62 ·10−2

These droplet diameters were chosen for numerical reasons. Due to the difference in size

between surface structure and droplet diameter, the simulation of the largest droplet

consisted of cells with 5 different sizes (see Figure 6.13), resulting in a total cell number of

around 10.7 million.

The experiments were performed with a droplet volume of 10 µl (D0 = 2.67 mm). That

means that the droplet diameter should have been increased by a factor of 3.34 in order

to reproduce the experiments. Note that simulating a larger droplet needs a larger surface

area and therefore more cells. Moreover, the time needed to perform simulations is further

increased because the steady state is obtained later.

Figure 6.13: Refinement levels of the simulation with the largest droplet.
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The Bond number was small in all three cases, so the droplet was expected to form a spherical

cap (valid for Bo ≪ 1). However, the Bond number increases with the droplet diameter,

which means that the droplets are not completely analogous. The steady-state solutions of

the three simulations are shown in Figure 6.14.

(a) D0 = 200 µm (b) D0 = 400 µm

(c) D0 = 800 µm

Figure 6.14: Steady-state droplet shapes on the laser-structured surface of the three simu-
lations with αL = 0.5 marked by the black contour.

The goal of the study was to observe the droplet size dependency of the resulting contact

angle. Because the droplet was not absolutely symmetrical on the surface, the contact angle

was measured in three different planes, which were rotated around the vertical axis. The

contact angles were evaluated using the analytical solution for small Bond numbers. First,

the height h, the width w and the base diameter db were measured in each plane, then the

mean value was calculated. Table 6.10 contains the ratio height to base diameter h/db and

the ratio width to base diameter w/db of each droplet. A contact angle was determined from

each ratio. The two contact angles are given as a range in Table 6.11.
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Table 6.10: Height to base diameter ratios and width to base diameter ratios of the three
droplets.

initial diameter D0 (µm) height to base diam. h/db width to base diam. w/db

200 0.75 1.04

400 0.88 1.15

800 0.83 1.14

Table 6.11: Comparison of contact angles resulting from experiments and simulations. The
lower and upper bounds of the range in case of the simulations were determined from h/db
and w/db, respectively.

flat
(experiment)

laser-str.
(experiment)

D0 = 200 µm
(simulation)

D0 = 400 µm
(simulation)

D0 = 800 µm
(simulation)

θ (◦) 93.2 155.2 [106,113] [120,121] [118,119]

The results show that the local contact angle of 93.2◦ leads to a larger global contact

angle purely due to the surface geometry. However, the experimentally determined contact

angle of the laser-structured surface is considerably larger than that found in the simulations.

The contact angles evaluated from h/db and w/db are significantly different for the smallest

droplet. The reason for that is that the influence of the surface structure is larger in this

case and the shape of the droplet is more dependent on the local structure of the surface.

For the two larger droplet diameters, the two contact angles are similar, and increasing the

droplet size affects the contact angle only slightly.

It should be mentioned that the Bond number increases with the droplet diameter. That

means that gravity is more dominant for larger droplets, and the shape of the droplet is not

exactly a spherical cap. Therefore, determining the contact angle from h/db and w/db for

even larger droplets would lead to smaller contact angles, although the actual contact angle

remains the same.
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6.6 Icing on Laser-Structured Surface

If the temperature of the laser-structured surface is below melting temperature (0◦), the

water freezes to the plate. This phenomenon makes the simulations more complex, because

equations of heat conduction, heat convection, and phase change also need to be solved.

In the following, the simulation results of icing are presented on the same laser-structured

surface as before.

The aim of the icing simulations was to investigate and understand the solidification process

on laser-structured surfaces. Moreover, the focus was on the resulting steel-ice interface area,

which is strongly related to the adhesive forces and therefore to the forces required to remove

ice from the surface. This is important because if the force needed is low, the ice can fall

off due to the forces occurring in the system, e.g. gravity, centrifugal force. Otherwise, the

ice can become a larger block and damage its environment if it finally separates from the

surface.

6.6.1 Material Properties

The material properties used in the simulations are listed in Table 6.12. It is important to

emphasize the difference in density between ice and water, which leads to expansion during

freezing.

Table 6.12: Material properties applied in the icing simulations.

Property Value Unit

Density (ice) ρI 916.2 kg m−3

Density (water) ρW 1000 kg m−3

Specific heat capacity (ice) cp,I 2050 J kg−1 K−1

Specific heat capacity (water) cp,W 4220 J kg−1 K−1

Thermal conductivity (ice) λI 2.22 W m−1 K−1

Thermal conductivity (water) λW 0.56 W m−1 K−1

Melting temperature TM 0 ◦C

Latent heat of fusion Lfusion 3.34 ·105 J kg−1

Since the underlying numerical model is a mixture model, several phases share one cell.

Therefore, the material properties of the phases present need to be averaged locally in each

cell. The most important material property in this respect is thermal conductivity, as it has

a significant influence on the results of icing simulations. The reason for this is the thermal

conductivity of air (0.02 W/mK), which is considerably smaller than that of ice and water.

In this work, two averaging methods are introduced and used.
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In case of arithmetic averaging, thermal conductivity is averaged proportional to the phase

volume fractions. This method is useful in the forming ice layer under the droplet. During

freezing, small air particles remain in the cells filled mainly with ice, which reduce the thermal

conductivity only slightly when arithmetic averaging is applied. In contrast, if the air phase

volume fraction is larger, e.g. in cells filled with water and air around the droplet, arithmetic

averaging is no longer valid. In these cells, harmonic averaging should be used, which shifts

the averaged thermal conductivity towards that of air. For these reasons, a mixed averaging

method depending on the phase volume fraction of air was used in the simulations:

λarithmetic =
N"
i=1

αiλi , if αair ≤ 0.5 , (6.21)

λharmonic =

�
N"
i=1

αi

λi

�−1

, if αair > 0.5 . (6.22)

6.6.2 Surface Tension Model

The surface tension model was the modified vector-based model (V2) as in the simulations

without freezing (Equation 6.20). The only difference was that having N = 4 phases (steel,

ice, water, air) instead of 3 leads to a number of phase pairs of 6 instead of 3. Curvature

forces were only included at the water-air interface. However, when calculating the triple

line forces, some restrictions were necessary.

First, the triple line forces of all phase pairs with water (steel-water, ice-water, water-air)

were considered completely, as water was the most important phase in terms of droplet shape

and contact angle formation. Second, the triple line forces of the phase pair steel-ice were

neglected. This was crucial, because during freezing, the steel-ice triple line forces would

also act in cells shared by ice, water, and air. In these cells, the solid movement restriction

term is weaker than in fully solid cells, which would lead to an unnecessary movement of

the phases. Third, the triple line forces of the steel-air and ice-air phase pairs were only

calculated in cells that contained at least some water. At an interface between two phases,

∇α1 and ∇α2 are parallel and the cross product results in a zero vector, therefore the triple

line forces are zero. However, if three phases are present and none of them is water, e.g.

at the steel surface after a layer of ice has formed, triple line forces occur. These forces

accelerate both ice and air in already frozen regions. Note that the triple line forces of the

steel-air and ice-air phase pairs are important in the formation of the water contact angle

and cannot be neglected completely. The threshold value above which these forces were

included in the calculation was αW = 10−3.
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6.6.3 Surface Tension Coefficients

The surface tension coefficients of water and the laser-structured surface were the same as

in the previous simulations. The dispersion and polar components of free surface energy of

ice were evaluated by Kloubek [7] by analyzing several different experiments. It was found

that ice, unlike water, has a nonpolar character. The components of the three phases are

summarized in Table 6.13. Based on the components, the local contact angle between steel

and water was 93.2◦, and 24.5◦ between ice and water.

Table 6.13: Dispersion and polar components of water, the laser-structured surface, and ice.

σD
W (N/m) σP

W (N/m) σD
S (N/m) σP

S (N/m) σD
I (N/m) σP

I (N/m)

2.18 ·10−2 5.10 ·10−2 3.17 ·10−2 1.30 ·10−3 9.46 ·10−2 1.14 ·10−2

6.6.4 Interface Detection

The interfaces between two phases were identified from their volume fractions. Both phase

volume fractions were linearly interpolated on the cell faces and multiplied with each other.

Two phase pairs were of key importance when analyzing the freezing of the droplets, the

steel-water (SW ) and the steel-ice (SI) interfaces:

ISW = αS,f · αW,f , ISI = αS,f · αI,f . (6.23)

The steel-water interface function was used to find the point when there is no more water

in contact with the surface and thus a full ice layer has formed. The steel-ice interface

function contributed to determining the steel-ice interface area. Figure 6.15 illustrates two

examples on the steel surface. In multiphase simulations, the boundary of a phase is marked

at α = 0.5. This value corresponds to an interface function value of 0.125 (see Figure 6.15).

Figure 6.15: Example cases of calculating the steel-water interface function ISW and the
steel-ice interface functions ISI as defined in Equation 6.23.
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6.6.5 Effect of Solid Movement Restriction

As discussed in Section 4.2, the original equation of the solid movement restriction term has

the form

SD,1 = − µ

Aperm

α2
S

(1− αS)3 + δ� �� �
k1

u . (6.24)

Modeling the term in this way resulted in significant diffusion of ice at both the ice-water

and ice-air interfaces (see Figure 6.17a). For that reason, the term was modified by applying

the square root function instead of the square function in the numerator:

SD,2 = − µ

Aperm

√
αS

(1− αS)3 + δ� �� �
k2

u . (6.25)

Since the solid volume fraction is in the range 0−1, this modification led to a larger value of

SD, especially in cells with a small ice volume fraction. Figure 6.16 illustrates the functions

k1 and k2, i.e. SD without the contributions of µ, Aperm, and u.
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Figure 6.16: Original (k1) and modified (k2) solid movement restriction terms over the solid
phase fraction.

Figure 6.17 compares the results with the two solid movement restriction terms. Indeed,

SD,2 reduces the diffusion around ice, both towards water and air. As a consequence, less

diffusion also means that the phase boundary αI = 0.5 is further up and therefore the

steel-ice interface area is smaller.
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(a) SD,1 (b) SD,2

Figure 6.17: Dependence of the ice diffusion on the choice of the solid movement restriction
term.

Figure 6.18 shows the resulting interface area in the x direction with SD,1 and SD,2. Note

that when choosing a function for SD, a compromise must be made. On the one hand, if

SD is too large for small αS values, the fluid flow is also affected by it. On the other hand,

if SD is too small, the solid phases diffuse strongly.
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Figure 6.18: Steel-ice interface area in x direction ASI,x over time for the two solid movement
restriction terms.

54



6.6.6 Simulation

As in the previous section, simulations were performed with three different initial droplet

diameters: 200 µm, 400 µm and 800 µm. The initial temperature of the laser-structured

surface was −30◦C, while it was 1◦C for both water and air to prevent applying melting

temperature as an initial condition.

During the simulation, the maximum of the steel-water interface function was measured.

When this function drops to zero, there are no cells adjacent to the steel cells consisting of

any water. That means that a full ice layer has formed at this point. The analysis of the

simulation results is demonstrated on the example of the smallest droplet with D0 = 200

µm. Figure 6.19 shows the maximum of the steel-water interface function in the domain

and the steel-ice interface area in the x and y directions. The maximum of the steel-water

interface function drops to zero at 5 ms. It can be seen that the steel-ice interface areas are

constant after this point. The projection of the area in the x direction is smaller than in the y

direction, which is due to the difference in the surface structure in the two directions resulting

from the laser manufacturing process (see Figure 6.12a). The directional dependence of the

steel-ice surface area is an interesting observation from the simulations and an important

aspect to consider when applying the laser-structured surface to a component.
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Figure 6.19: Maximum of the steel-water interface function ISW and steel-ice interface area
ASI in x and y directions of the smallest droplet over time.

55



Table 6.14 contains the simulation results, while Figure 6.20 illustrates the phase distribu-

tions for all three droplet diameters. The time for the formation of a full ice layer increases

with the diameter, following an approximately linear correlation. The reason for this is that

the energy of the droplet scales with D3
0, while the contact area where it is conducted into

the solid scales with D2
0.

The steel-ice interface area also grows linearly with the diameter in both directions. That

means that the interface area decreases in relation to the droplet size (see Table 6.15), i.e.

there is relatively less ice in the dimples, as shown in Figure 6.20. This tendency was also

observed in the simulations without freezing. Less contact area also means less heat transfer

between steel and water, and later between steel and ice. Moreover, the temperature of the

laser-structured surface is less affected by the higher droplet temperature.

Table 6.14: Time for formation of a full ice layer, and steel-ice interface areas in x and y
directions of the three simulations.

initial diameter D0

(µm)
time for formation
of a full ice layer τ

(ms)

steel-ice interface
area in x direction

ASI,x (mm2)

steel-ice interface
area in y direction

ASI,y (mm2)

200 5 0.028 0.036

400 10 0.076 0.093

800 15 0.183 0.219

Table 6.15: Steel-ice interface areas in x and y directions of the three simulations in relation
to the initial droplet surface area A0.

initial diameter D0

(µm)
ASI,x/A0 ASI,y/A0

200 0.219 0.286

400 0.151 0.184

800 0.091 0.109

The ice layer that has formed at time τ has a thickness of around 50 µm in all cases (see

Figure 6.20). This thickness corresponds to a larger ice to water volume ratio for the smallest

droplet than for the larger droplets. Figure 6.20 also shows the phenomenon observed in

the simulations without freezing: The smallest droplet is more affected by the local surface

structure, which can be recognized by the uneven freezing phase front. In case of the larger

droplets, the local surface irregularities can be neglected with regard to the droplet size

which results in a symmetrical freezing process.
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(a) D0 = 200 µm (b) D0 = 400 µm

(c) D0 = 800 µm

Figure 6.20: Ice volume fraction after the formation of a full ice layer on the laser-structured
surface of the three simulations with αW = 0.5 marked by the white contour, αS = 0.5
marked by the black contour, and αI = 0.5 marked by the magenta contour.
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7 Conclusion and Outlook

The goal of this study was to investigate different surface tension models and their numerical

implementations in a multiphase solver. Two models, the tensor-based and the vector-based

models were analyzed in detail. However, it was shown that their modifications and the

numerical way of adding the surface tension force to the governing equations affect the

results. One of these surface tension force models was found to be very accurate and

applicable for simulating wetting and freezing of water droplets on laser-structured surfaces.

During the analysis, important characteristics of the surface tension force models were

observed. The tensor-based model can be used if the solid surface is not extremely

hydrophilic or hydrophobic. This inaccuracy is not dominant and can be neglected

if other physical phenomena are more significant, e.g. in more dynamic processes.

The vector-based model performed better when simulating extreme wetting conditions.

Another advantage of the vector-based model was that the surface tension force con-

sists of three terms with actual physical meaning. That means that surface tension forces

on curved solid interfaces and undesired phase pairs could be excluded from the calculations.

The simulations of wetting on laser-structured surfaces were compared to experiments. It

was an interesting observation that the geometry of the surface affects the resulting wetting

condition. As a consequence, different local and global contact angles were observed.

The local contact angle was that according to Young’s equation (Equation 3.1), while

the global contact angle was measured from a distance, without looking at the surface

geometry. Although the local contact angle predicted neutral wetting, the global contact

angle corresponded to a hydrophobic condition. However, the simulations underestimated

the contact angles measured in the experiments. The reason for this may be that the droplet

size was smaller in the simulations than in the experiments. The simulation of a larger

droplet could be possible, but it would require a lot of computational capacity and time.

Moreover, the test cases showed that the contact angle no longer increases above a certain

droplet size. Thus, simulating even larger droplets will probably not solve the problem.

An other possible reason may be the influence of the laser production process on the free

surface energy of steel. To avoid this effect, a platinum coating was applied to the surfaces.

The thickness of the coating could influence the results. It should be evenly distributed to

exclude any chemical effects caused by the laser production, which is a challenging task for

complex surface structures. In the future, these effects should be analyzed in order to gain

a clearer understanding of the mechanism. Lastly, the resolution of the surface structure

should be mentioned. For numerical reasons, the surface was simplified and smoothed after

scanning. During this process, the surface roughness and small features were eliminated,

resulting in a more regular surface than in reality. In future simulations, the influence of a
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more detailed surface structure should be analyzed in detail.

As a next step, the robustness of the simulation should be investigated systematically.

Changing the initial position of the droplet in both the horizontal and vertical directions

would serve as a good test to check if there are any inconsistencies in the modeling. Fur-

thermore, the wetting and icing simulations should be run with the real droplet dimensions.

The mesh of such a simulation would consist of around 100 million cells and would take

several weeks to complete on the computer architecture used in the present work. For this

purpose, the use of a scientific cluster with several hundred processors could be a suitable

solution. However, once the contact angle was determined with a high-resolution simulation,

and the actual laser-structured surface geometry is not important, it can be excluded from

the simulation domain and replaced by a contact angle boundary condition. Therefore, the

number of phases would be one less, and the number of cells would also decrease enormously.

There are many interesting tests regarding the wetting of water droplets, which could

be performed using the developed models. First, the dynamic process of the droplet

movement should be examined. Comparing the simulations with high speed recordings from

experiments would help to better understand and validate the simulations. Second, wetting

on an inclined solid surface is of key importance [28]. In reality, most cases occur on inclined

surfaces, where gravity plays a different role and strongly influences the wetting and icing of

the surface. Third, droplet impact with an initial velocity leads to more complex physical

phenomena. At a certain velocity, the droplet may even disintegrate.

Similar to wetting, the icing of laser-structured surfaces also has a great potential. All of the

tests mentioned above could be performed at a surface temperature below zero to induce

freezing of the droplet. In addition, it would be interesting to see whether the surface area

between steel and ice decreases further for larger droplets. As for wetting, a comparison

with experiments would be beneficial. These investigations would contribute to the further

development of the models and provide a more detailed insight into the physical processes.
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A Appendix: Analysis of the Tensor-Based Model

Starting from the surface tension tensor, surface tension force can be calculated as (Sec-

tion 4.3)

fT
st = ∇ ·

�
N"
i=1

N"
j=i+1

σij(I− n̂ij ⊗ n̂ij)|∇αij|



. (A.1)

This formulation has some disadvantages that will be intuitively shown in this section. In

the following examples, the focus is on the liquid-gas interface, where the surface tension

forces can be evaluated as

fT
st,LG = ∇ · [σLG(I− n̂LG ⊗ n̂LG)|∇αLG|] . (A.2)

A.1 Curvature Forces

This problem is demonstrated using a two-dimensional sharp 90 degree corner between two

phases (liquid and gas) shown in Figure A.1. This example corresponds to an extreme case

of a water droplet surrounded by air. The small rectangle represents the area of interest

where the detailed numerical analysis is performed in the following.

Figure A.1: Example case for the demonstration of curvature forces.

The rectangle consists of 3 cells both in x and y directions. Figure A.2a shows the volume

fractions of liquid and gas. The phase gradients ∇αL and ∇αG can be calculated from the

phase fractions. In numerical analysis, the method of central differences is suitable for the

approximation of discrete derivatives. In this two-dimensional case for the scalar field α it

reads

∇α =

�
∂α
∂x
∂α
∂y



≈

�
αi+1−αi−1

2Δx
αj+1−αj−1

2Δy



(A.3)

with the cell indices i and j in x and y directions, respectively. In case of square cells

Δx = Δy.
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From ∇αL and ∇αG the shared phase gradient ∇αLG can be calculated using Equation 4.17:

∇αLG = αG∇αL − αL∇αG . (A.4)

Figure A.2b illustrates the shared phase gradient, that represents the surface density

function and thus also the liquid-gas interface. Therefore, surface tension forces should act

only in these cells.

Using the previously obtained fields, the surface tension tensor on the liquid-gas interface

TLG = σLG(I− n̂LG⊗ n̂LG)|∇αLG| can be evaluated. The unitary normal vector n̂LG of the

interface is calculated as the normalized shared phase gradient according to Equation 4.18.

Figure A.2c shows the resulting surface tension tensor field.

Finally, the surface tension force is the divergence of the surface tension tensor:

fT
st,LG = ∇ ·TLG . (A.5)

In the same way as the gradient, the divergence operator is also approximated by the method

of central differences:

∇ ·TLG =

∂Txx

∂x
+ ∂Txy

∂y

∂Tyx

∂x
+ ∂Tyy

∂y

 ≈
Txx,i+1−Txx,i−1

2Δx
+

Txy,j+1−Txy,j−1

2Δy

Tyx,i+1−Tyx,i−1

2Δx
+

Tyy,j+1−Tyy,j−1

2Δy

 . (A.6)

Figure A.2d shows the resulting surface tension force. Because of the numerical approxi-

mation of the divergence operator, an undesirable spurious force occurs in the top left cell

acting on the gas phase. The magnitude of the force is the same as the one acting on the

interface.
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(a) Phase fractions αL, αG (b) Shared phase gradient ∇αLG

(c) Surface tension tensor TLG (d) Surface tension force fT
st,LG

Figure A.2: Steps of the numerical analysis of the droplet case with the tensor-based model.
Vectors are scaled by their magnitude. In (d), the spurious force occurs in the top left cell
acting on the gas phase. For a more diffuse interface, the magnitude of the spurious forces
is smaller.

Swapping the two phases results in a slightly different physical phenomenon. The case shown

in Figure A.3a corresponds to e.g. a gas bubble in liquid. Because of the definition of the

shared phase gradient, its vectors are opposite to the previous case. Since the operation

n̂LG ⊗ n̂LG remains the same when n̂LG is rotated by 180◦ and the magnitude of the shared

phase gradient |∇αLG| is also unchanged, the surface tension tensor TLG = σLG(I− n̂LG ⊗
n̂LG)|∇αLG| and therefore the surface tension force fT

st,LG are the same for the two cases

(see Figure A.2d and Figure A.3d). However, the spurious force in the top left cell acts on

the liquid phase.
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(a) Phase fractions αL, αG (b) Shared phase gradient ∇αLG

(c) Surface tension tensor TLG (d) Surface tension force fT
st,LG

Figure A.3: Steps of the numerical analysis of the bubble case with the tensor-based model.
Vectors are scaled by their magnitude. In (d), the spurious force occurs in the top left cell
acting on the liquid phase. For a more diffuse interface, the magnitude of the spurious forces
is smaller.

In general, when analyzing the treatment of curvature forces, following main features of the

tensor-based model can be identified. The spurious forces act on the convex side of the

curved interface. Besides, they occur in each cell adjacent to a curved interface. This is a

problem because curvature in real simulations is represented by several cells (unlike in the

previous simple examples), causing spurious forces in each of them. Additionally, as the

magnitude of the spurious forces depends on the jump in the shared phase gradient, sharper

interfaces cause larger spurious forces.
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A.2 Triple Line Forces

An effect similar to the curvature problem arises at the triple line. The inaccuracy of the

model regarding the triple line forces is demonstrated by the example of the liquid-gas

interface, since surface tension forces on this interface are essential for the correct calculation

of the contact angle.

In the example, a two-dimensional flat hydrophilic surface is considered where the contact

angle is 45◦. The liquid-gas interface is not curved, therefore there are no surface tension

forces due to curvature. Figure A.4 illustrates the distribution of the phases and a small

rectangle around the triple point for the numerical analysis.

Figure A.4: Example case for the demonstration of triple line forces.

The rectangle consist of 4 cells horizontally and 3 cells vertically. Figure A.5a shows the

volume fractions of solid, liquid, and gas. Cells with αL = 0.5 and αG = 0.5 are introduced

on the liquid-gas interface to better represent the 45◦ contact angle.

As shown in Figure A.5b, the shared phase gradient points towards the liquid phase. Its

magnitude is larger in the mixed cells, while smaller in the surrounding cells, corresponding

to the surface density function described in Section 4.4. Note that the discrete approach

extends the gradients also for cells beside the interface, i.e. for cells with only one phase.

The first cell row in Figure A.5b shows what the liquid-gas gradient looks like away from

the solid. However, near the solid, the gradient is affected by the solid cells and no longer

follows the desired 45◦ angle.

Figure A.5c shows the surface tension tensor in each cell. Because of the multiplication by

|∇αLG|, the tensor only takes values where the magnitude of the shared phase gradient is

non-zero.
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Figure A.5d shows the surface tension force on the liquid-gas interface. As a result of the

shared phase gradient distorted by the solid phase, surface tension force in the middle cell row

is not perfectly directed into the liquid-gas interface. In addition, the discrete approximation

of the divergence operator causes spurious forces in the first cell row. Note that surface

tension force vanishes in all cells apart from those shown in the figure, because the surface

tension tensor components are either zero or are the same at least in two neighboring cells.

(a) Phase fractions αS , αL, αG (b) Shared phase gradient ∇αLG

(c) Surface tension tensor TLG (d) Surface tension force fT
st,LG

Figure A.5: Steps of the numerical analysis of hydrophilic wetting with the tensor-based
model. Vectors are scaled by their magnitude.

Steps of the numerical analysis of the bubble case with the tensor-based model. Vectors are

scaled by their magnitude. In (d), the spurious force occurs in the top left cell acting on

the liquid phase. For a more diffuse interface, the magnitude of the spurious forces is smaller.

Because of the definition of the contact angle, swapping the liquid and the gas phases corre-

sponds to θ = 135◦ (see Figure A.6a). Figure A.6b shows the shared phase gradient, which

consists of vectors opposite to the 45◦ case. For the reasons explained in the previous section,

the surface tension tensor and the surface tension force are the same as for θ = 45◦. This
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behavior of the triple line forces generally applies to the contact angles θ1 and θ2 = 180◦−θ1.

(a) Phase fractions αS , αL, αG (b) Shared phase gradient ∇αLG

(c) Surface tension tensor TLG (d) Surface tension force fT
st,LG

Figure A.6: Steps of the numerical analysis of hydrophobic wetting with the tensor-based
model. Vectors are scaled by their magnitude.

Because of the direction of the spurious forces, the resulting contact angle tends to be

larger for a hydrophilic surface compared to the theoretical one, while it gets smaller for

a hydrophobic surface. An additional difference is that in case of hydrophilic surfaces, the

spurious forces act on the gas phase, while in case of hydrophobic surfaces the liquid phase

is accelerated. Since the density of the gas is lower than that of the liquid, higher velocity

values may be obtained for hydrophilic surfaces.

As a consequence of the numerical issues mentioned above, the tensor based surface tension

model reproduces hydrophilic and hydrophobic contact angles incorrectly. The error can be

neglected around θ = 90◦ but gets worse as the contact angle is reduced or increased. These

characteristics of the tensor-based model are shown later in Section 6.4, where wetting on

flat surfaces is investigated.
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