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Kurzfassung

Scheduling ist ein wichtiger Aspekt in der industriellen Arbeit. Von der Zuweisung von
Aufträgen an verschiedene Maschinen bis hin zu Schichtplänen für Mitarbeitern müssen
effiziente Pläne erstellt werden, um Anforderungen abzudecken und Arbeitsvorschriften
einzuhalten. Für kleine Unternehmen können solche Pläne zwar noch händisch erstellt
werden, es ist jedoch schwierig, dabei den Überblick über alle Anforderungen nicht zu
verlieren. Daher gibt es verschiedene Methoden, wie beispielsweise Constraint Program-
ming und heuristische Suche, die diesen Prozess automatisieren können. Obwohl sie
(optimale) Pläne erzeugen können, die den Problemspezifikationen entsprechen, kann
es passieren, dass Interessenvertreter inkompatible Spezifikationen vorgeben oder dass
sie mit dem resultierenden Plan nicht zufrieden sind und eine bessere Lösung verlangen.
Sollte ein Programm keine Lösung finden, ist es wichtig die Gründe dafür anzugeben.
Dadurch werden die Spezifikationen, die zur Unlösbarkeit beitragen, identifiziert und
Lockerungen der Anforderungen vorgeschlagen, durch die das Problem lösbar wird. Auch
wenn ein passender Plan für ein Problem gefunden wird, ist nicht garantiert, dass er den
Vorstellungen der Interessenvertreter entspricht. Daher ist es wünschenswert, mehrere
Pläne zu produzieren, die Vorteile für unterschiedliche Aspekte bieten. Dadurch ist es
möglich, verschiedene Lösungen zu vergleichen und zu analysieren, welche Kompromisse
gemacht werden müssen, um eine Lösung in einem bestimmten Aspekt zu verbessern.
In dieser Arbeit untersuchen wir das Rotating Workforce Scheduling Problem, für das wir
zwei Ziele verfolgen: (1.) Die Entwicklung eines Frameworks, das Erklärungen für Instan-
zen mit inkompatiblen Spezifikationen generiert, und (2.) die Nutzung von heuristischen
Methoden, um viele verschiedene Lösungen zu generieren und zu analysieren. Dadurch
erhalten wir Einblicke in Synergien und nötige Kompromisse zwischen Spezifikationen.
Wir implementieren beide Frameworks und evaluieren diese auf Benchmarks des Rotating
Workforce Scheduling Problems. Wir zeigen wie Minimal Correction Sets verwendet
werden können um Erklärungen für unlösbare Problem-Instanzen und Konfigurationen zu
erzeugen. Zu diesem Zweck führen wir eine Fallstudie und Experimente durch die zeigen,
dass Erklärungen effizient generiert werden können. Ausserdem untersuchen wir grosse
Mengen an Lösungen, die wir mit unserem zweiten Ansatz generieren. Wir zeigen, dass
diese Lösungsmengen effizient generiert und wie diese dargestellt werden können. Mittels
der Lösungen können wir die Beziehungen zwischen Anforderungen unterschiedlicher
Instanzen analysieren. Zuletzt evaluieren wir verschiedene Modifikationen des base-line
Ansatzes und vergleichen diese mit dem aktuellen State-of-the-art.
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Abstract

Scheduling is a highly relevant aspect of industrial work. From assigning jobs to machines
in a time-saving manner to creating shift plans for employees in different fields of work;
schedules have to be created to ensure efficiency, cover requirements and adhere to
working regulations. While schedules for smaller-scale companies can still be designed
manually, keeping track of all constraints and preferences is often a notoriously difficult
job. Therefore, different methods that automatise this process, such as Constraint
Programming and Heuristic Search, can be employed. However, while they are able to
produce (optimal) plans in terms of the problem specification, stakeholders might demand
incompatible specifications or not be content with a resulting plan, wanting a ”better
solution”. If no solution can be found, it is important to explain which specifications
contribute to infeasibility and how the problem can be relaxed to provide a solution. If
a feasible plan can be provided, it is not necessarily accepted by all the stakeholders.
Therefore, it can be advantageous to provide multiple solutions with qualities in different
aspects. This allows us to compare different solutions and to analyse which compromises
have to be made in order to further improve a solution in a certain aspect.
In this thesis we study the Rotating Workforce Scheduling Problem, for which our
aim is two-fold: (1.) to develop a framework that generates explanations for instances
with incompatible constraints and (2.) to use heuristic methods to provide and analyse
multiple different solutions at once. This allows us to gain insights into conflicting
constraints, synergies and necessary trade-offs between constraints. We implement
frameworks for both aims and perform computational studies of their performances
on RWS benchmarks. We show how Minimal Correction Sets can be used to provide
explanations for infeasible instances and problem configurations. To do so, we perform a
case study as well as experiments on (real-life) instances that reveal that explanations
can be efficiently generated. Additionally, we study large sets of solutions generated by
our second approach. We show that these sets of solutions can be generated efficiently
and how they can be displayed. Using our resulting solutions we analyse the relationships
between constraints for different instances of the problem. Lastly, we also compare and
contrast modifications of the base-line approach and compare them to the current state
of the art.
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CHAPTER 1
Introduction

In many industries, shift schedules are used to regulate the working times of employees.
When creating such shift plans, one usually has to take into consideration many constraints
and preferences from different parties, resulting in a highly constrained problem.

In workforce scheduling, adhering to workplace regulations and reducing costs are often
employers’ primary interests. However, the resulting schedules provide the structure for
a significant part of the employee’s lives. Many different versions of such problems have
been addressed over the years (Ernst et al. 2004; Van den Bergh et al. 2013; De Bruecker
et al. 2015). While traditionally the focus has been on reducing cost, a growing body of
work on employee well-being (Dall’Ora et al. 2016) shows the importance of incorporating
these aspects. It is known that effects like fatigue due to bad workplace conditions impact
not only economic costs of companies (Rosekind et al. 2010) but also lead to severe
consequences in both psychological and physiological health of individuals (Lock, Bonetti,
and Campbell 2018; Gärtner et al. 2018), including a higher risk for certain diseases
and disorders (Moreno et al. 2019), and reduced social contacts with family and friends
(Arlinghaus et al. 2019). Therefore, practical guidelines (Health and Safety Executive
2006) and metrics have been proposed to evaluate risk-related characteristics (Folkard and
Lombardi 2006; Folkard, Robertson, and Spencer 2007). Petrovic, Parkin, and Wrigley
2021 presented case studies on personnel planning focusing on the impact of including
well-being aspects in the objective function for heuristic optimisation approaches. Shifts
are created by minimising a weighted sum of violations of undesired characteristics, like
working weekends, long night shift stints, and others.

Scheduling problems with many constraints and optimisation goals are often solved
using different methods or solvers. Many of these approaches have successfully been
implemented in practice. However, two prominent problems can arise when solving the
problem using classical approaches such as Constraint Programming or (Meta-)Heuristic
Methods.
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1. Introduction

1. The method is unable to find a solution. There are two reasons why this can occur.
Either the solver did not find a solution within the specified limits, or a solution
does not exist, as the specified instance is over-constrained. In any case, when a
stakeholder wants a solution to their problem instance, it is generally not enough
to tell them that "there is no solution". Instead, it is important to explain why no
solution could be found and how the problem can be resolved.

2. The approach yields a solution that matches the stakeholder’s specifications. In
this case, we expect the stakeholders to accept the solution. However, there is
no guarantee that implicit preferences that are obvious to the stakeholder but
not to the algorithm are met. Therefore, a stakeholder might ask for "a better
solution". Hence, it can be helpful to provide multiple solution options and to
explain trade-offs that have to be made when a solution is improved in a specific
aspect.

Our aim in this thesis is to develop methods that can address these two problems for the
Rotating Workforce Scheduling Problem (RWS). We implement and test our approaches
considering six soft constraints that aim to improve schedules for employee well-being.
We formalise the concrete goals of this thesis, which are twofold, as follows.

1. Develop a framework which can be used to solve and explain the Rotating Workforce
Scheduling Problem under different configurations. For this purpose, we use
Constraint Programming. The goal is to obtain a solution to a problem instance
and its configuration. If the specified input is unsatisfiable, explanations should be
provided which allow the user to understand the cause of infeasibility and resolve it.
Using this framework, we can not only tell a stakeholder that there is no solution
but also explain why this is the case and how it can be resolved.

2. Study the Rotating Workforce Scheduling Problem in a true multi-objective setting.
We want to use and adapt Pareto Simulated Annealing to provide sets of non-
dominated solutions. Using this, we want to study relationships between constraints
and derive synergies and conflicts. This allows us to offer multiple solutions of
equal quality to stakeholders instead of one solution that might not fit their
implicit preferences. Additionally, we can predict what trade-offs must be made if
a stakeholder wants to improve a solution in a specific dimension.

The main contributions of this thesis are the implementation of both approaches for the
Rotating Workforce Scheduling Problem (RWS). Additionally, we perform case studies
and computational evaluations on RWS benchmarks in order to analyse the performance
and impact of our methods.

We test our Constraint Programming implementation using different solvers. We compare
the individual results and find that the choice of the solvers for finding explanations in
the form of Minimal Correction Sets (MCSs) is crucial. However, using the best solver
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combinations, we were able to obtain positive results. We show that explanations in
the form of MCSs can efficiently be found for unsatisfiable RWS instances under the
satisfaction version of the problem. Additionally, we present how different preferences on
constraints can be considered when providing explanations in the form of MCSs. We also
consider feasible RWS instances with optimisation goals. Here, we test the feasibility of
threshold combinations on the optimisation goals. We find that we can efficiently identify
conflicting goals, especially for smaller instances. For larger instances, we do not always
obtain optimal explanations; however, for most instances, we can get some explanation.

While an analysis of optimisation goals using MCSs does not yield precise results on their
relationships, we can obtain them with our Pareto Simulated Annealing (PSA) framework.
We provide a deep analysis of the trade-offs and synergies between optimisation goals
on instances of different sizes. Additionally, we compare adaptions of the original PSA
algorithm that improve our implementation for the RWS problem. Lastly, we compare our
results with a state-of-the-art approach and show where the strengths of our algorithm
lie.

This thesis is structured as follows. We give an overview of related work in Chapter 2.
Next, we given the Problem Definition for the Rotating Workforce Scheduling Problem
(RWS) in Chapter 3 followed by the description of the corresponding constraint model in
Chapter 4. Our main contributions are explainability results in Chapter 5 and results for
our multi-objective approach in Chapter 6. We conclude the thesis with a summary of
our work as well as ideas for future work in Chapter 7.
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CHAPTER 2
Related Work

We cover related work on the Rotating Workforce Scheduling as well as on the topics
of explanability for scheduling and Pareto Simulated Annealing. We discuss general
ideas, algorithms as well as implementations and studies that are relevant to the work we
present. Since we cover related work in multiple fields, we present it in different sections.

2.1 Rotating Workforce Scheduling
The Rotating Workforce Scheduling (RWS) problem can be classified as a single-activity
tour scheduling problem with non-overlapping shifts and rotation constraints (Baker 1976).
Over the years, several approaches have been used to solve the problem, including use in
commercial software for almost 25 years (Musliu, Gärtner, and Slany 2002). Initially,
only the satisfaction version of the problem was studied, where only hard constraints
need to be fulfilled. A complete method based on constraint programming (CP) was
introduced by Musliu, Schutt, and Stuckey 2018 and further extended by Kletzander,
Musliu, Gärtner, et al. 2019, in particular by introducing several optimisation goals used
in practice, turning the satisfaction problem into an optimisation problem. The CP
method was used in an instance space analysis by Kletzander, Musliu, and Smith-Miles
2021, leading to the creation of new instances to better cover the transition between
feasible and infeasible instances. The current state-of-the-art approach is a branch&cut
(b&c) framework by Becker, Schiffer, and Walther 2022, which reduces the runtime
substantially compared to previous methods for the satisfaction version and a limited set
of optimisation goals.

2.2 Explainability
Explainability for infeasible problems is an essential field of study, which is gaining
prominence in many areas. Most notable are SAT-solving, Linear or Integer Programming,
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2. Related Work

and Constraint Programming. In general, two primary forms of Explainability are of
interest, namely (a) finding a maximal part of the problem that is satisfiable, i.e. the
MAX-SAT problem, or as in our case, the problem of finding Maximal Satisfiable Subsets
(MSS). When dealing with MSSs, we often also provide the complement of an MSS,
namely the Minimal Correction Set, which consists of the constraints that need to be
removed in order to obtain an MSS. On the other hand, (b) we are often interested in the
cause of infeasibility, i.e. finding the minimal unsatisfiable core or, in our case, Minimal
Unsatisfiable Subset (MUS). For many fields, algorithms exist that return a single MSS
or MUS. These often build on the general idea of growing (shrinking) mechanisms that
start with a satisfiable (unsatisfiable) subset of the problem and test whether the addition
(removal) of constraints still yields a satisfiable (unsatisfiable) subset. Doing these tests
iteratively and adding (removing) the corresponding constraints eventually yields an
MSS (MUS). However, few algorithms can efficiently enumerate all or at least more than
one MSS/MUS.

2.2.1 Proposed Algorithms

there are tailored approaches for Linear Programming (Van Loon 1981; Gleeson and Ryan
1990) and Numerical Constraint Satisfaction Problems (Martínez Gasca et al. 2007), but
they can not easily be generalised. An early general approach was CAMUS (Liffiton and
Sakallah 2005; Liffiton and Sakallah 2008; Liffiton and Sakallah 2009), which makes use
of the hitting set relation between MUSs and MCSs. In the first phase, all MCSs are
computed, followed by the second phase where all minimal hitting sets of the set of MCSs
are computed and returned, which correspond precisely to the MUSs. While this approach
shows promising results in some cases, the number of MCSs can be exponential in the
size of a problem instance, making the first phase of the algorithm intractable. Therefore,
while CAMUS can enumerate all MUSs efficiently for some instances, it fails to report a
single MUS on others. To circumvent this problem and report MUSs incrementally, the
Dualize and Advance Algorithm (DAA, Bailey and Stuckey 2005) was developed. This
algorithm also uses the hitting set relation between the constraint sets. However, the
goal is to produce the first MUS faster and to use an incremental approach. To this end,
MSSs are grown, and their complement (MCS) is added to the set of MCSs found. In the
next step, the minimal hitting sets of the MCSs found so far are computed. If a hitting
set is unsatisfiable, it is a MUS and given as output. Otherwise, the hitting set is the new
seed from which the next MSS will be grown. For enumerating all MUSs, DAA performs
considerably worse than CAMUS. Additionally, DAA often struggles with providing the
first MUS since a lot of memory is needed in order to compute the intermediate hitting
sets.

Since it is often not feasible to enumerate all MUSs and as CAMUS and DAA are often
unable to return at least a single MUS, Liffiton and Malik 2013 focus on efficiently
enumerating some MUSs. The authors propose the MARCO algorithm, which should
provide the first MUS in roughly the same time t as the best algorithm designed for
computing a single MUS. In addition, any following MUS should be returned as quickly as

6



2.2. Explainability

possible (roughly after a period of t). MARCO stands for Mapping Regions of Constraint
Sets, as the algorithm builds on a boolean formula map which simulates a mapping
function f(P(C)) �→ {0, 1} which maps each subset of the constraints to 1 iff the subset
has not yet been evaluated in terms of satisfiability. The algorithm starts with an empty
map formula. In each iteration, a model of map is calculated, from which the set of
constraints that are true in the model are extracted. If this set of constraints is satisfiable,
it is grown to an MSS, which is returned. The map formula is combined with a clause
over all constraints not in the MSS. (Intuitively: all subsets of the MSS are satisfiable
hence to obtain a new MSS, at least one constraint not in the current MSS must be
present) If this set of constraints is not satisfiable, it is shrunk to an MUS, which is
returned. The map formula is combined with a clause over all negated constraints in the
MUS. (Intuitively: all supersets of the MUS are unsatisfiable; hence, to obtain a new
MUS, at least one constraint in the current MUS must not be present) The MARCO
algorithm uses two solvers: one solver for growing and shrinking (i.e. repeatedly testing
the satisfiability of constraint sets) and a second solver (map-solver) to generate models of
the map formula. For the second solver, incremental solving techniques are advantageous.
A computational study (Liffiton and Malik 2013) showed that compared to CAMUS and
DAA, MARCO can provide at least one MUS/MSS in a timely manner. CAMUS can
often find more MUSs on an instance. In comparison, MARCO can find MUSs on twice
as many instances as CAMUS. It provides the first MUS considerably faster, making
MARCO the best algorithm for finding (some) MUSs in a reasonable time.

2.2.2 Application to Scheduling Problems

To our knowledge, the use of Minimal Unsatisfiability Sets (MUS) as the main form of
explanation for a concrete scheduling problem has not been studied yet. However, a
general approach based on Abstract Argumentation has been proposed for the explanation
of scheduling problems (Čyras, Letsios, et al. 2019). This work was extended by a concrete
implementation called Schedule Explainer including a graphical user interface (GUI)
which allows for interactive explanations (Čyras, Lee, and Letsios 2021). The system is
designed for makespan scheduling and gives explanations for infeasibility, efficiency of a
schedule, and for unmet fixed decisions which are provided by the user.

Agrawal, Yelamanchili, and Chien 2020 developed Crosscheck, an explainable scheduling
tool tested for the Mars 2020 Rover Mission. Their work again includes a GUI where
the schedule can be visualised. The problem studied consists of a set of activities, each
with their own constraints that need to be scheduled. For activities which failed to be
scheduled explanations are given by the tool. The explanations given indicate which
constraints of the specific activity and which global constraints need to be relaxed in
order to schedule the activity.

7



2. Related Work

2.3 Constraint Programming

Our focus for using Explainability lies in the field of Constraint Programming (CP). It
allows us to directly model the problem at hand as a set of constraints over decision
variables. Therefore, in our case, a MUS, MCS or MSS is a subset of all constraints.
Since many problems can be modelled and solved using Constraint Programming many
different solvers are available. However, most of them adhere to their own modelling
language, making comparisons between solvers cumbersome. In order to circumvent
this problem, Nethercote et al. 2007 introduced MiniZinc as a standard CP modelling
language that allows the integration of multiple different solvers. Leo and Tack 2017
introduced the FindMUS solver for MiniZinc which builds on the MARCO algorithm
and provides MUSs, making the generation of explanations and debugging available in
MiniZinc.

While MiniZinc is prominent for modelling Constraint Programs, we decided to use the
CPMpy (Guns 2019) Python library to model our problem. In comparison to MiniZinc,
the constraints can be directly modelled in Python, and the model as well as results can
be directly processed further. Additionally, CPMpy allows the use of a range of different
solvers and provides tools to directly generate explanations within the framework. In
their workshop Bleukx, Guns, and Tsouros 2024 show how different forms of explanations
can be provided for the Nurse Rostering Problem using CPMpy. The library provides
an implementation of MARCO which can be used with the desired solvers. It allows
for the generation of a single MUS/MCS/MSS and even supports finding an optimal
MUS/MCS/MSS according to preferences given for the constraints.

2.4 Pareto Simulated Annealing

While other multi-objective methods such as NSGA-II (Deb et al. 2002) exist, we here
focus only on Pareto Simulated Annealing. The Pareto Simulated Annealing Algorithm
was originally proposed by Czyżak and Jaszkiewicz 1997. It extends the application of
Simulated Annealing (SA, Kirkpatrick, Gelatt, and Vecchi 1983) to the multi-objective
setting. SA is based on observations in statistical mechanics. An initial solution is modified
iteratively, where modifications are accepted according to the metropolis criterion, which
depends on a decreasing temperature such that with time, fewer worsening changes
are accepted. For PSA, multiple initial solutions are run with Simulated Annealing,
exchanging information on properties of the other solutions such that a large part of
the search space is covered. In contrast to SA, Pareto Simulated Annealing yields a set
of non-dominated solutions instead of a single solution. This is especially useful when
multiple optimisation goals are of interest, which are traditionally combined in a weighted
sum to obtain a single objective.

8



2.4. Pareto Simulated Annealing

2.4.1 Implementation for Scheduling Problems
Pareto Simulated Annealing and variants of the algorithm has been used to solve many
multi-objective scheduling problems, e.g. in work by Suresh and Mohanasundaram
2006; Duh and Brown 2007; Hamm, Beißert, and König 2009; Jarosław, Czesław, and
Dominik 2013. Additionally, different variants of algorithms for multi-objective Simulated
Annealing were discussed in a review by Amine 2019. We will discuss two specific
applications of PSA to scheduling problems in detail. These are of interest as they
propose modifications to PSA that we make use of. Drexl and Nikulin 2008 apply Pareto
Simulated Annealing to the Airport Gate Assignment Problem, and they are the first to
consider a multi-objective variant of the problem. The authors propose that PSA can be
enhanced by restarting bad solutions, a concept that we apply in our implementation. In
this case, solutions which are stuck in a part of the search space for a specific time are
replaced by a fresh solution. Mischek and Musliu 2024 use Pareto Simulated Annealing
in a decision support system for the Test Laboratory Scheduling Problem. For their
implementation of PSA the authors enforce that no objective may be disregarded during
the optimisation of the many constraints at hand. This is done by enforcing a minimum
weight for each constraint in the weight vector guiding the search of the solution.
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CHAPTER 3
Problem Definition

In the Rotating Workforce Scheduling (RWS) Problem, pre-defined shift types are
considered. These have to be assigned to employees according to several constraints so as
to form a complete schedule over multiple weeks. The assignment of shift types to certain
employees and days must adhere to the required demand. Additional restrictions are
given in the form of minimal and maximal lengths for sequences of shifts and limitations
to consecutive shift assignments. In many applications, a rotating schedule, where
each employee rotates through the same sequence of shifts with different offsets, is a
preferred way of scheduling. We distinguish between hard and soft constraints, where
hard constraints must be met and soft constraints are optional objectives that optimise
the solution. We provide a formal definition of the problem and introduce new soft
constraints that focus on employee well-being.

3.1 Formal Definition
For the general problem definition of RWS we build on definitions and notation that
have been introduced previously (Musliu, Gärtner, and Slany 2002; Musliu, Schutt, and
Stuckey 2018). An instance of the Rotating Workforce Scheduling problem is given by
the following formulation.

n Number of employees.

d Length of the schedule. The total length of the planning period is n · d, as
each employee rotates through all n rows. We set d = 7, corresponding to
the number of days in a week.

A Set of work shifts (activities), enumerated from 1 to m. We consider
instances with 2 or 3 shifts where shift 3 is a night shift. A day off is
denoted by a special activity O with numerical value 0, A+ = A ∪ {O}.

11



3. Problem Definition

T Temporal requirements matrix, describing the demand. An m × d-matrix
where each element Ti,j corresponds to the number of employees that need
to be assigned shift i ∈ A at day j.

ℓw, uw Minimal and maximal length of blocks of consecutive work shifts.

ℓa, ua Minimal and maximal lengths of blocks of consecutive assignments of shift
a for each a ∈ A+.

F2, F3 Sequences of shifts of length 2 and 3 that are forbidden in the schedule (e.g.
N D, a night shift followed by a day shift). This is typically required due
to legal or safety concerns.

The task is to construct a cyclic schedule S, represented as an n × d-matrix, where each
Si,j ∈ A+ denotes the shift or day off that employee i is assigned during day j in the
first period of the cycle.

Example 3.1. Assume we have n = 4 employees and plan for a length of d = 7 days.
A resulting schedule must have length 4 · 7. The set of shifts A consists of a day
(D), afternoon (A) and night (N) shift. Days off are denoted by −. The demand T
is specified such that one employee needs to be assigned each each shift for all days
except Sundays where no afternoon shift (A) is required. We want employees to work
ℓw = 5 to uw = 7 days in a row. Additionally, a block of work free days should be of
length ℓ− = 2 to u− = 3. Consecutive assignments of day and afternoon shifts should
span over ℓD = ℓA = 2 to uD = uA = 5 days. Night shift spans on the other hand are
limited to ℓN = 2 to uN = 3 days. We forbid day shifts after an afternoon shifts as
well as day or afternoon shifts after night shifts (F2, F3). A sample schedule for this
problem can be found in Table 3.1. This schedule is in use for a month (4 weeks). In
the first week employee 1 covers the shifts from row 1, employee two the shifts from
row 2 and so forth. In the following week all employees rotate to the next row, i.e.
employee 1 covers the shifts from row 2, etc. and employee 4 covers the shifts from
row 1. This rotation is performed until all employees have rotated through the whole
schedule (4 weeks).

Empl. Mon Tue Wed Thu Fri Sat Sun
1 D D D D N N -
2 - - A A A A N
3 N N - - D D D
4 A A N N - - -

Table 3.1: Example of a rotating workforce schedule
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3.2 Hard Constraints
In total we consider ten hard constraints that are defined as follows:

hoverlap A day must have at most one shift a ∈ A+ assigned.

hminon A sequence of working days must span over at least ℓw days in a row.

hmaxon A sequence of working days must span over at most uw days in a row.

hminoff A sequence of off days must span over at least ℓO days in a row.

hmaxoff A sequence of off days must span over at most uO days in a row.

hminshift A sequence of working days consisting only of shift a must span over at
least ℓa days, for each shift a ∈ A.

hmaxshift A sequence of working days consisting only of shift a must span over at
most ua days, for each shift a ∈ A.

hforbidden Any sequences in F2 must not occur in the schedule S.

hforbidden3 Any sequences in F3 must not occur in the schedule S.

hcircular Any forbidden sequence must not span over the last and first day in the
schedule S.

3.3 Soft Constraints
We also consider optimisation variants of RWS and extend the soft constraints introduced
by Kletzander, Musliu, Gärtner, et al. 2019 with further objectives to be minimised.
These aim to increase the well-being of employees and to meet applicable best practices of
Britain’s national regulator for workplace health and safety (HSE) shift work guidelines
(Health and Safety Executive 2006). We address the following best practices.

BP1 Where shifts are long (> 8 hours), for night shifts and for shifts with
early morning starts, it may be better to set a limit of 2-3 consecutive
shifts.

BP2 In general, limit consecutive working days to a maximum of 5-7 days
and make sure there is adequate rest time between successive shifts.

BP3 Build regular free weekends into the shift schedule.

13
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Using these guidelines we formulate the soft constraints. We address BP1 by the constraint
sN>3 . BP2 is implemented by sℓdev . Lastly, BP3 is addressed by three constraints already
introduced by Kletzander, Musliu, Gärtner, et al. 2019 namely sww, sdmax and sdrms .
Additionally we propose sNww to broaden the definition of free weekends. The resulting
six soft constraints to be minimised are defined as follows.

sN>3 Minimise the number of consecutive night shifts exceeding 3.

sℓdev Minimise the squared deviation of working sequence lengths to 5.

sww Minimise the number of working weekends. A weekend is free if Saturday
and Sunday are off. Otherwise, it is a working weekend.

sdmax Minimise the maximum distance dmax between consecutive free weekends
(dmax = n + 1 if no weekend is free).

sdrms Minimise the root mean of squared distances between weekends
�

1/n
�n

i=1 d̂2
i ,

where d̂i is the distance minus 1 to the next free weekend if weekend i is
free, and n otherwise.

sNww Minimise the number of working weekends, where a weekend is only consid-
ered free if there is additionally no night shift on Friday.

3.4 Problem Solutions
A solution x to an RWS instance consists of a cyclic schedule S of dimensions n × d that
assigns shifts from A+ to each employee and day.

Given an instance I of the RWS problem we can set the (potentially empty) set of soft
constraints S to be considered. This configuration determines which soft constraints are
optimised. Additionally, we have the option of using thresholds to set bounds on the
desired soft constraints.

A solution x to a problem instance, given its configuration, is evaluated over the set of
hard constraints H and its set of soft constraints S using the violation vector v(x). With
each constraint c ∈ H ∪ S we associate a violation vc(x) that indicates how often c is
violated in the solution. Using this, we can define the following.

Definition 3.1 (Feasibility). Let x be a solution of an instance I with hard constraints
H. Then x is called feasible if vh(x) = 0 for all h ∈ H.

14
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Definition 3.2 (Optimalility). Let x be a solution of an instance I with soft con-
straints S. Then x is called optimal if x is feasible and �

s∈S vs(x) is minimal.

When dealing with true multi-objectivity instead of a summed objective, optimality of a
solution needs to be redefined. In this case, we consider Pareto-optimality. A solution
x is Pareto-optimal if it is not dominated by any solution x′ in the solution space, as
defined below.

Definition 3.3 (Dominance). Let x be a solution of an instance I with soft constraints
S. Then x is called non-dominated if x is feasible and there is no (known) solution
x′ ̸= x of I st. vc(x′) ≤ vc(x) for all c ∈ H ∪ S and vc(x′) < vc(x) for at least one
c ∈ H ∪ S.

When working with thresholds on soft constraints, we additionally define a constant
threshold vector t(x) which must be taken into account. Thresholds can be defined for
any soft constraint s ∈ S in the current configuration. For a solution x of an instance
configuration with thresholds, we additionally define the following.

Definition 3.4 (Acceptability). Let x be a solution of an instance I with soft
constraints S and thresholds t. Then x is called acceptable if x is feasible and
vs(x) ≤ ts(x) for all s ∈ S where a threshold is set.
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CHAPTER 4
Constraint Modelling

The Rotating Workforce Scheduling problem (RWS) has been solved using a constraint
model in MiniZinc1 using only hard constraints (Musliu, Schutt, and Stuckey 2018) and
some soft constraints (Kletzander, Musliu, Gärtner, et al. 2019). We build on the previous
formulations and adapt them using the Python library CPMpy2 from Guns 2019. We
additionally implement further soft constraints that have not yet been considered. In
the following, we give a high-level description of how the hard and soft constraints are
implemented.

We represented a solution (i.e. a schedule) as a one-dimensional list S of length n · d,
where each entry Si is an element of A+ for all i ∈ {1, . . . , n · d}. As the schedule is cyclic
and workdays are always allowed following a day off, we can define the first entry S1 as a
working day and the last entry Sn·d as a day off. This allows for easier computation of
subsequent constraints. However, we need to define an offset o ∈ [0, d) that indicates at
which position in S the solution schedule S starts. For the sake of simplicity, we omit
offset and modulo calculations for the schedule when describing the constraints.

We distinguish three different types of constraints: definitions, hard bounds and soft
bounds. Definitions amount to the way the constraints are defined and implemented.
The hard and soft bound constraints are used to provide explanations for infeasible
configurations.

For hard constraints we introduce decision variables representing the demand of workers
per day and shift and minimal and maximal values for block lengths. These decision
variables have restricted domains. For demand and minimal block lengths, the domain is
[0, . . . , val], where val corresponds to the value of the data (i.e. T, ℓw, ℓ0, ℓ1 etc.) given
in the input instance. For maximal block lengths, the domain is [val, . . . , n · d], where val
is again the value of the corresponding data input (i.e. uw, u0, u1 etc.). To enforce that

1https://www.minizinc.org/
2https://github.com/CPMpy/cpmpy
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4. Constraint Modelling

the decision variables correspond exactly to the value they represent, we introduce what
we call hard bounds. For each variable representing demand or minimal block lengths,
we introduce up to 5 separate bounds as shown below.

vi ≥ j ∀j ∈ {max(0, i − 5), i} (4.1)

where i represents the demand of a day and shift or a minimal block length. Analogously,
for maximal block lengths up to 5 separate bounds are introduced.

vi ≤ j ∀j ∈ {i, min(i + 5, n · d)} (4.2)

where i represents a maximal block length. This allows us to give more precise information
on how an infeasible configuration must be altered to regain feasibility, i.e we know by
how much we need to relax a certain numerical input, not only that it needs to be altered.

The soft bounds correspond to the thresholds set in the configuration. For each soft
constraint s we again use a decision variable vs that represents its value. The soft bounds
for constraints with specified thresholds then correspond to the following.

vs ≤ ts (4.3)

where ts is the threshold value set on soft constraint s.

To ensure that the demand is met by our schedule S we introduce the following constraints,
that force the equality of the demand of each shift and day and the sum of corresponding
entries in S. The constraints are given below.

∀i ∈ {1, . . . , d}

∀a ∈ A

�n−1�
j=0

S[7 ∗ j + i] = Ta,i



(4.4)

We will now show how the hard and soft constraints are modelled with the corresponding
decision variables introduced above.

4.1 Hard Constraints
For each of the ten hard constraints, we describe how we enforce its correctness and
calculation.

The hoverlap constraint does not need to be modelled explicitly, as we represent the
schedule using the list S, where each entry is assigned a value from A+.

We model hminon by enforcing for each first day i of a working block, that the following
ℓw − 1 days are working days as well. This amounts to the following constraint.

∀i ∈ {1, . . . , n · d}

(S[i] ∈ A ∧ S[i − 1] ̸∈ A) →

∀j ∈ {0, . . . , ℓw − 1}(j > vℓw ∨ S[i + j] ∈ A)


(4.5)

18



4.1. Hard Constraints

In a similar manner the hmaxon constraint can be modelled. We ensure for each first day
i of a working block that at least one of the days between i + ℓw and i + uw − 1 is not a
working day.

∀i ∈ {1, . . . , n · d}

(S[i] ∈ A ∧ S[i − 1] ̸∈ A) →

∃j ∈ {max(0, ℓw − 5), . . . , min(uw, n · d)}(j ≤ vuw ∧ S[i + j] ̸∈ A)


(4.6)

The formulations for hminoff and hmaxoff follow in the same manner as above.

∀i ∈ {1, . . . , n · d}

(S[i] = O ∧ S[i − 1] ̸= O) →

∀j ∈ {0, . . . , ℓO − 1}(j > vℓO
∨ S[i + j] = O)


(4.7)

∀i ∈ {1, . . . , n · d}

(S[i] = O ∧ S[i − 1] ̸= O) →

∃j ∈ {max(0, ℓO − 5), . . . , min(uO, n · d)}(j ≤ vuO ∧ S[i + j] ̸= O)


(4.8)

Following the same schema we can define hminshift and hmaxshift.

∀a ∈ A


∀i ∈ {1, . . . , n · d}

(S[i] = a ∧ S[i − 1] ̸= a) →

∀j ∈ {0, . . . , ℓa − 1}(j > vℓa ∨ S[i + j] = a)
�

(4.9)

∀a ∈ A


∀i ∈ {1, . . . , n · d}

(S[i] = a ∧ S[i − 1] ̸= a) →

∃j ∈ {max(0, ℓa − 5), . . . , min(ua, n · d)}(j ≤ vua ∧ S[i + j] ̸= a)
�

(4.10)

For hforbidden we internally model forbidden sequences in a way that allows us to access
the set of all shifts that may not follow a shift s.

Example 4.1. Let F2 = {⟨2, 1⟩ ⟨3, 1⟩ ⟨3, 1⟩} then F2[1] = {}, F2[2] = {1} and
F2[3] = {1, 2}.

In general, no shift is forbidden after a day off. This allows us to model the hforbidden

constraint as follows.

∀a ∈ A


∀i ∈ {1, . . . , n · d}

S[i] ̸= a ∨ ∀a′ ∈ F2[a](S[i + 1] ̸= a′)

�
(4.11)
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Note that in the implementation we only consider shifts a where F2[a] is not empty.

Lastly, we model hforbidden3 for which we consider each triple f = (f0, f1, f2) in F3 as
follows.

∀f ∈ F3


∀i ∈ {1, . . . , n · d}


∃j ∈ {0, 1, 2}(S[i + j] ̸= fj)

�
(4.12)

4.2 Soft Constraints
We will now describe the implementation of the soft constraints. The soft constraints are
not constraints in the classical sense but rather count the violations of certain properties
within a solution. We, therefore, model the soft constraints as an equality constraint
that sets the corresponding decision variable vs equal to the number of violations of the
constraint. For some computations, we need additional decision variables that allow us
to count the violations. Since decision variables should preferably be restricted to a small
domain, we try to find tight lower and upper bound calculations for their domains.

Example 4.2. We know that the number of working weekends must be at least 0
and can be at most the number of all weekends. However, this is a relatively loose
bound, especially for larger instances. Therefore, taking the demand into account we
are able to further tighten the lower bound to allow for more efficient modelling and
solving.

For sN>3 we use the decision variable vN>3 with lower bound 0 and an upper bound of	�d
i=1 T3,i

ℓ3



· max(0, |u3 − 3|) (4.13)

As not all instances have night shifts, we distinguish two cases. If the instance has no
night shifts we set vN>3 = 0. Otherwise we define the constraint as follows.

vN>3 =
n·d�
i=1

1∀j∈{0,...,3}(S[i−j]=3) (4.14)

Here 1 is an indicator variable, i.e. its value is 1 if ∀j ∈ {0, . . . , 3}(S[i − j] = 3) is true
(evaluates to 1) and 0 otherwise. In our implementation this does not need to be modelled
explicitly as boolean expressions can directly be treated as 0 or 1 valued integers.

The sℓdev constraint can not be modelled directly. We therefore introduce an additional
decision variable Son which is a list of the same dimensions as the schedule S that allows
us to count the lengths of working sequences.
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Example 4.3. For a schedule S = [1, 1, 2, 3, 3, 0, 0, 1, 1, 0] the corresponding sequence
Son is defined as [1, 2, 3, 4, 5, 0, 0, 1, 2, 0], i.e. for each day i that corresponds to a
working day Son[i] = n indicates that day i is the nth working day of the current
sequence of working days.

We model Son as a decision variable list of length n · d that can take values from 0 to uw.
As we fixed the first day of S to be a working day and the last day to be a day off we can
safely set Son[1] = 1. For the remaining entries we make use of the following constraint.

Son[i] =
�

0 if S[i] = 0
Son[i − 1] + 1 else

∀i ∈ {2, . . . , n · d} (4.15)

Using Son we can now model the sℓdev constraint. We use the decision variable vℓdev with
lower bound 0 and an upper bound given by	�

a∈A
�d

i=1 Ta,i

ℓw



· max(|5 − ℓw|, |5 − uw|)

�2

We model the constraint as an equality, again using an indicator variable 1.

vℓdev
=

n·d−1�
i=1

1Son[i] ̸=0∧Son[i+1]=0 · (5 − Son[i])2 (4.16)

In order to model the soft constraints involving working weekends we make use of a
decision variable that keeps track of free weekends. We introduce the boolean variable
list Woff of length n that indicates for each weekend if it is free. To model this we use the
following constraint.

Woff [i] = (S[7 ∗ i − 1] = 0 ∧ S[7 ∗ i] = 0) ∀i ∈ {1, . . . , n} (4.17)

We can now easily model the sww constraint using the decision variable vww which has a
lower bound of max(�a∈A Ta,6,

�
a∈A Ta,7) and an upper bound of n as follows.

vww = n −
n�

i=1
1Woff [i] (4.18)

For sNww we extend the notion of working weekends to the case where Friday night shifts
are considered too. For instances without night shifts we can set sNww equal to sww. For
all other instances, we can use information from Woff to define a new boolean variable list
WNoff that indicates whether a weekend is free and has no night shifts on Friday. The
entries of WNoff are defined by the following constraint.

WNoff [i] = (S[7 ∗ i − 2] ̸= 3 ∧ Woff [i]) ∀i ∈ {1, . . . , n} (4.19)
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Using this we can now model sNww with the decision variable vNww that has an upper
bound of n and a lower bound given by

max(
�
a∈A

Ta,6 − b,
�
a∈A

Ta,7 − 1ℓO>1 · b, T3,5) (4.20)

where b = max(T3,5 − �
a∈A\F2[3] Ta,6, 0) indicates the number of free Saturdays that are

"blocked" by a Friday with a night shift. Using this additional variable we are able to
further tighten the lower bound compared to the general working weekends constraint.
We can now model hNww analogously to hww as follows.

vNww = n −
n�

i=1
1WNoff [i] (4.21)

For the soft constraints concerned with the distance between free weekends, we introduce
a new decision variable. We use the decision variable list Wdist that indicates for each
weekend the distance to the next free weekend. To handle the case where no weekend is
free we use the following constraint.

(0 =
n�

i=1
Woff [i]) → Wdist[n] = 1 (4.22)

We instantiate all other entries with constraints as follows.

Wdist[i] =
�

0 if Woff [i + 1]
Wdist[i + 1] + 1 else

∀i ∈ {1, . . . , n} (4.23)

Using this we can model sdmax using the corresponding decision variable vdmax . The
upper bound for vdmax is n + 1 while the lower bound is

n − 1
n − max(�a∈A Ta,6,

�
a∈A Ta,7)


(4.24)

This allows us to model the equality for the sdmax constraint.

vdmax = max(Wdist) + 1 (4.25)

For the last constraint, sdrms , we again need an auxiliary list variable. We introduce
WRdist that stores the values d̂i used to define sdrms . In order to define WRdist we make use
of Wdist as follows.

WRdist [i] =
�
Wdist if Woff [i + 1]
n else

∀i ∈ {1, . . . , n} (4.26)

We can now use vdrms to model the sdrms constraint. The variable vdrms has an upper
bound of n3 and a more intricate lower bound

n2 · (n−wmax)+


n

wmax


−1

2
·

wmax − (n % wmax)


+


n

wmax

2
· (n % wmax) (4.27)
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where wmax = n − max(�a∈A Ta,6,
�

a∈A Ta,7) is the maximal number of free weekends.
We can now define the equality that models the sdrms given below.

vdrms =
�

1
n

�
WRdist [i]2 (4.28)

Since many solvers do not support floating point operations we only consider the sum of
squared distances within the model and evaluate the rooted mean outside of the model.
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CHAPTER 5
Explaining Infeasibility

When employing algorithms to solve problems, it can happen that the algorithm cannot
come up with a solution. This can be due to a lack of resources (e.g. timeout, memory
overflow) or incorrect implementations. We are, however, interested in the case where
algorithms cannot solve a problem because it is infeasible. Some algorithms can prove
the infeasibility of a problem instance. However, even if we know that a problem is
not solvable, we do not yet know why this is the case. Especially when working with
stakeholders, simply stating that "there is no solution" is not enough. Therefore we are
interested in explaining infeasibility. We can do so by providing explanations in different
formats that isolate the reasons why a problem cannot be solved.

We will focus on three main explanation components, that allow us to understand what
causes infeasibility, which part of the specified problem is solvable and what needs to be
adapted to regain feasibility.

To do so, we implemented a Constraint Programming approach to the Rotating Workforce
Scheduling Problem (RWS). Using our implementation we can provide explanations for
infeasible configurations of RWS instances.

5.1 Explanations using Constraint Sets

We distinguish three types of Constraint Sets that provide explanations for infeasibility.
Given a problem that is defined over a set of constraints C, we define the following.

Definition 5.1 (MUS). Let M ⊆ C. Then M is a Minimal Unsatisfiable Set (MUS)
if M is unsatisfiable and for each c ∈ M it holds that M \ {c} is satisfiable.
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Minimal Unsatisfiability Sets help to determine where a conflict lies within a given set
of constraints. Using MUSs we can explain which constraints cannot be satisfied in
combination.

Definition 5.2 (MSS). Let M ⊆ C. Then M is a Maximal Satisfiable Set (MSS) if
M is satisfiable and for each c ∈ C \ M it holds that M ∪ {c} is unsatisfiable.

Maximal Satisfiability Sets depict the subset-maximal set of constraints which are feasible.
Using MSSs we can explain which parts of the problem are not conflicting and do not
need to be modified to regain feasibility.

Definition 5.3 (MCS). Let M ⊆ C. Then M is a Minimal Correction Set (MCS) if
M = C \ M ′, where M ′ is a MSS.

Minimal Correction Sets give us the set of constraints that need to be removed from C
in order to restore feasibility. Removing only parts of an MCS from C will not restore
feasibility. Using MCSs we can directly provide information on how the problem must be
modified and relaxed to be solvable. The resulting problem from such a modification is
an MSS of the original set of constraints.

The relationships between the set of all constraints (unsatisfiable problem) and the
different constraint sets that we introduced are depicted in Figure 5.1. We see the
hitting-set relation of the MUS and MCS as well as the complement relation of the
MSS and MCS. Together the MSS and MCS form the set of all constraints, i.e. the
unsatisfiable problem.

Figure 5.1: Relationship between unsatisfiable problem, MUS, MSS and MCS.

Using the above definitions we are able to give different kinds of explanations that allow
stakeholders to understand what causes infeasibility and how feasibility can be restored.
Even though all three forms of explanations can be useful, we focus on MCSs in our work
since MCSs allow us to give explicit directions to stakeholders on which changes need to
be made to their problem configuration in order to find a solution.
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5.2 Explanations for Satisfaction Configurations
We used FairSubset (Ortell, Switonski, and Delaney 2019) in the online tool provided1

to extract a representative set of 50 instances from a total of 1843 infeasible instances.
These benchmarks were introduced by Kletzander, Musliu, and Smith-Miles 2021. For
these instances, infeasibility was shown using MiniZinc. Some instances were proven
infeasible later using branch&cut. As a case study, we additionally constructed a simple
infeasible instance based on a feasible real-world instance.

5.2.1 Case Study
We present a case study for a small artificial instance in order to show how Minimal
Correction Sets (MCS) can be retrieved for problems with incompatible hard constraint
configurations. We define the instance as follows, where the demand T is given in 5.1.

n = 4

d = 7

A = {1, 2, 3}
[ℓw, uw] = [4, 7]

[ℓ0, u0] = [1, 4]

[ℓ1, u1] = [2, 7]

[ℓ2, u2] = [2, 7]

[ℓ3, u3] = [1, 3]

F2 = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩}
F3 = {}

Shift Mon Tue Wed Thu Fri Sat Sun
1 2 1 1 1 1 2 2
2 1 1 1 1 1 1 1
3 1 1 1 1 2 0 0

Table 5.1: Daily demand T for instance0 over all three shift types.

While the demand never exceeds the total amount of workers, and the remaining parame-
ters are reasonably set, this instance is not feasible. Our framework using ortools (Perron
and Furnon 2024) as a general solver can detect infeasibility within roughly 0.1 seconds.
Using MARCO with the z3 solver (De Moura and Bjørner 2008) as general solver and
ortools as a map solver we can enumerate all 462 Minimal Correction Sets (MCS) within
roughly 2.5 minutes. The sizes of the MCSs vary from 2 constraints up to 11.

To restore feasibility of the instance, we need to choose a singular MCS and remove its
constraints from the problem specification. Since we are faced with a large number of
MCSs, choosing one is not straight-forward. Choosing an MCS should be done according
to the preferences of stakeholders. While some might be interested in the smallest amount
of changes, others may want to keep the demand intact. Using such preferences, we
can use weights to give priorities to different constraints. Given a total weight function

1https://delaney.shinyapps.io/FairSubset/
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w : C �→ N that maps every constraint to a natural number we can find optimal MCSs.
An MCS is optimal if the sum of the weights of its constraints is minimal.

Looking at our case study, we can apply different weight functions to express preferences
over the constraints. Some examples of preferences and weighted functions are given
below.

Example 5.1 (Minimal Size). Assume we are interested in a minimal-sized MCS.
We can employ w(c) = 1 ∀c ∈ C to equally weight all constraints. An example of a
resulting MCS is {T3,F ri ≥ 2, uw ≤ 7}. This means that by reducing the demand on
Fridays for shift 3 from 2 to only 1 shift and only requiring an upper bound of 8 on
working sequences we can restore feasibility.

Example 5.2 (Only Demand). Assume we are interested in a smallest MCS where
only the demand should be changed. We can use the weight function that assigns
w(c) = 1 ∀c ∈ Cdemand and w(c) = 10 for all other constraints. An example of a
resulting MCS is {T1,Mon ≥ 2, T3,F ri ≥ 2}. This means that by reducing the demand
on Fridays for shift 3 and on Mondays for shift 1 from 2 to only 1 shift we can restore
feasibility.

Example 5.3 (No Demand). Assume we are interested in a smallest MCS where
the demand should not be changed. We can use the weight function that assigns
w(c) = 10 ∀c ∈ Cdemand and w(c) = 1 for all other constraints. An example of a
resulting MCS is {ℓ0 ≥ 2, T3,F ri ≥ 2}. We see that the resulting MCS still contains a
constraint regarding the demand. Even for increased weights for demand constraints
we always get a MCS where a demand constraint is mentioned. This means that we
can not restore feasibility unless the demand is changed.

5.2.2 Computational Study
We tested our framework on 50 infeasible instances by comparing approaches using
different solvers. We evaluated results from MARCO, which generates all Minimal
Correction Sets (MCS), as well as results for providing optimal MCSs.

We performed our experiments on a cluster with Ubuntu 22.04.2 LTS with 2× Intel Xeon
CPU E5-2650 v4 (2.2GHz, 12 physical cores, no hyperthreading). We ran our experiments
using Python 3.11. We employed the solvers ortools (v9.11, Perron and Furnon 2024),
z3 (v4.13, De Moura and Bjørner 2008), Exact (v2.1, Elffers and Nordström 2018) and
pysat (v1.8, Ignatiev, Morgado, and Marques-Silva 2018).

Each run was given a 1h timeout to prove the unsatisfiability of the instance using ortools.
We additionally used a 1h timeout for providing explanations. Employing a timeout
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5.2. Explanations for Satisfaction Configurations

on MARCO and finding an MCS might result in suboptimal MCSs, meaning that the
resulting set of constraints is a Correction Set, but not necessarily subset minimal. If an
MCS was provided before the timeout, minimality is guaranteed. Each run additionally
had a memory limit of 16’384 megabytes.

solver failed proof memory limit MCS found #MCS found
z3-ortools 24% 0% 20% 100
z3-pysat 24% 8% 18% 51
Exact-ortools 24% 0% 16% 62
Exact-pysat 24% 0% 16% 64

Table 5.2: Comparison of running MARCO with the respective configuration. Percentages
of instances in relation to all 50 instances are given for failed proofs of infeasibility, memory
limit exhaustion and cases where MCSs could be found. Additionally, the total number
of MCSs found is indicated.

We first evaluated MARCO using z3 or Exact as primary solvers and ortools or pysat as
map solvers. This yields a total of four solver combinations. Full results can be found in
the Appendix in Tables 1, 2, 3, and 4. A summary of our findings is depicted in Table
5.2. We observe that 24% (12 out of 50) of instances can not be proven unsatisfiable
within the one hour time limit. Even if no proof of unsatisfiability was be found, we
performed the MARCO algorithm. However, no solver combination could provide MCSs
using MARCO for these instances within the time limit. For the combination z3-pysat we
observe that the runs for 4 instances ran out of memory. No other solver combination had
this issue. When we compare the percentage of instances for which MCSs could be found,
the configuration z3-ortools was able to find MCSs for a total of 10 out of 50 instances.
In total, using this configuration yielded 100 MCSs over all instances. For 7 out of the
10 instances z3-ortools found at least as many MCSs as all other solvers. Additionally,
only one instance (instance 1798) that was solved by another solver (z3-pysat) was
not solved by z3-ortools. When comparing the time MARCO used on the instance for
both algorithms, we find that z3-pysat ran 2 minutes longer, while z3-ortools aborted
at the 60 minute mark. In comparison to z3-ortools, Exact performed worse with two
instances less for both ortools and pysat. However, while the Exact approaches could
find MCSs for fewer instances than z3-pysat, Exact was able to provide more MCSs in
total. Therefore, it is hard to compare these remaining three configurations especially
because each configuration was able to solve at least one instance that none of the other
two configurations could solve. Additionally, for some instances the number of MCSs
found varied highly between the approaches. For example, using Exact-ortools provided
17 MCSs on instance 83 while none of the other two approaches could find any MCS.
Using Exact-pysat yielded 27 MCSs on instance 456 while Exact-ortools could not find
any MCS and z3-pysat only 3. Lastly, for instance 5720, Exact-pysat could find only
3 MCSs, Exact-ortools 9 and z3-pysat 19 MCSs. These examples show that while the
configurations performed worse that z3-ortools, they are hard to compare with each
other.
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solver MCS found mean size stdv size mean time stdv time

base ortools 100% 1.86 1.23 1933.88 1581.96
Exact 18% 2.78 1.40 3162.28 1427.61

minimal ortools 100% 1.88 1.24 1897.67 1590.07
Exact 18% 2.78 1.48 3172.28 1434.20

no demand ortools 100% 1.92 1.38 1983.00 1610.62
Exact 18% 3.11 1.85 3168.04 1423.33

Table 5.3: Comparison for finding any MCS (base) minimal-sized MCS (minimal) or
MCS without demand (no demand) within 1h using ortools or Exact. Percentage of
instances for which an MCS was found, mean size of MCS and run times are indicated.

We could not enumerate MCSs using MARCO for a majority of the instances. However,
we are usually only interested in a single MCS and do not need to enumerate all of them
especially as this is computationally more expensive. We, therefore, focus on finding a
single MCS using different weight configurations as introduced in the case study. The
full results of the runs can be found in the Appendix in Tables 5, 6, and 7. A summary
of the results can be found in Table 5.3. We compare results for finding any MCS (base),
i.e. no weight function, minimal MCS (minimal), i.e. w(c) = 1 ∀c, and minimal MCS
without demand (no demand), for which we set a weight of 100 on demand constraints
and a weight of 1 on all remaining hard bounds. We observe that ortools is able to find
an MCS for each instance over all configurations, even for the 24% of instances where no
proof of infeasibility could initially be generated. In contrast, Exact only finds an MCS
for 9 out of 50 instances for each configuration. We also observe that the mean time used
by ortools is roughly 30 minutes, which is half of the 1h timeout. In fact, only 40% of
instances ran for the whole hour, indicating that the optimal MCS could be found for
60% of the instances. Additionally, for half of the instances that ran for the whole hour
an MCS of size one could be found, indicating that they must also be subset optimal. In
comparison, Exact could only solve 18% of the instances, which were all solved before
the timeout of one hour. However, compared to ortools, Exact took roughly 10 times
more time to provide an MCS. In the best case, Exact was about 4 times slower and in
the worst case around 25 times slower than ortools. This clearly shows that ortools is not
only able to provide MCSs for all instances but is also considerably faster than Exact.

We compare the sizes of MCSs found by ortools under the base, minimal or no demand
configuration in Figure 5.2. We observe that there is no big difference in the sizes of
MCS. However, when comparing the base and minimal configurations, we observe that
the sizes of MCSs are the same for each instance except instance 3966. For this instance,
an MCS of size 3 was found for the minimal configuration, but a true subset of size
2 for the base and no demand case. For all configurations, the instance was run until
a timeout, indicating that under the minimal configuration a non-minimal correction
set was returned. For the no demand case, we observe that for two instances an MCS
of size 6 was provided (instead of sizes 4 and 5). In both cases, these were found in
about 10-15 seconds, indicating their optimality. When comparing with the MCS found
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for the base and minimal case, we find that the MCSs contained a demand constraint.
Additionally, MCSs for four other instances contained demand bounds for the base and
minimal configuration. In each case, a MCS of the same size without demand bounds
could be found.
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Figure 5.2: Histogram comparing sizes of MCS found using ortools for base, minimal
and no demand MCS.

Lastly, we want to analyse if there is a relation between the MCS sizes and the coordinates
of the instances within the x-y plane that was introduced by Kletzander, Musliu, and
Smith-Miles 2021. We depict the sizes of MCS found by ortools and Exact for the base
case mapped to the x-y space in Figure 5.3. As a reference all infeasible instances are
depicted in the back. Here darker areas indicate a higher density of instances. The space
is configured such that instances on the upper-left (inner) border are close to feasible
instances, the centre area consists of hard infeasible instances and the lower-right (outer)
border consists of instances which are clearly infeasible. We observe that Exact is not
able to find MCSs for the hard centre area but mostly for clearly infeasible instances.
These instances tend to have very large MCSs which is consistent with the fact that
they are clearly infeasible. For the upper left area, which consists of instances that are
very similar to feasible instances, MCSs are rather small. This is coherent, as only a few
changes are necessary to gain a feasible instance. For the centre area consisting of hard
infeasible instances we observe MCSs of differing sizes.
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Figure 5.3: Visualisation of MCS sizes for ortools and Exact in infeasible x-y space for
base MCS.

5.3 Explanations for Optimisation Configurations
We now want to analyse feasibility of configurations using thresholds on soft constraints
for feasible instances. We want to test whether threshold combinations still allow for
acceptable solutions. If not, we provide MCSs as explanations for infeasibility. To this
end, we consider 20 feasible real-life instances of different sizes.

In order to determine suitable thresholds for each dimension we first determined the opt(s)
and avg(s) value for each soft constraint s and instance i. The opt(s) value corresponds
to the expected violation of s for instance i if s is the only optimisation goal. On the other
hand, avg(s) corresponds to the expected violation of s if the sum of all soft constraint
violations is set as the optimisation goal. We determined these values by running each of
the 20 instances once optimising the sum of all soft constraints and once for each of the
soft constraints, considering only a single soft constraint as the optimisation goal. We
performed 5 runs per configuration using ortools. The best of five opt and avg values can
be found in the Appendix in Tables 8 and 9. For the avg values, we took results from
the runs with the least summed objective. If optimality of the objective could be proven,
we show the values in green, and if optimality could not be proven, the corresponding
values are shown in red.

We compared our optimal values opt with objective values obtained by Kletzander, Musliu,
Gärtner, et al. 2019 for the same benchmark set. The authors use a MiniZinc model of
the problem and solve the instances with the Chuffed solver (Chu et al. 2018), also using
a timeout of one hour. We compared the objective values of the four soft constraints
that are used by the authors as well. For the working weekends constraint sww, we could
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prove optimal objectives for 5 additional instances and found a better objective value for
instance 11, which is the only instance where our approach could not prove optimality.
Similarly, for working weekends including Friday night sNww , we proved optimality for
4 additional instances and again found a better objective for instance 11, which was
again the only instance where we could not prove optimality. For the maximal weekend
distance sdmax , our approach could not prove optimality for instance 11, while Kletzander
et al. could. However, we obtained the same objective value, indicating that the optimal
objective was found but optimality could not be proven within the time limits. While we
could not prove optimality for any additional instances, we were able to find solutions
within the time limit for instances 15 and 20, which Chuffed failed to do. Lastly, for
sdrms , we could also not prove optimality on any new instances. However, we found better
objective values for three instances and were again able to find a solution within the time
limit for instance 15, which Chuffed was not able to do.

Using the opt and avg values we can implement thresholds of the following form: Reduce
constraint s1 by x% compared to the average value and increase constraint s2 by at most
10% . This is implemented as follows. Given a factor f(s) ∈ [−1, 1] by which the value of
the soft constraint s should be decreased or increased, we can calculate the threshold t(s)
using the following.

t(s) = max

opt(s), avg(s) + ⌈d(s) · |f(s)|⌉ · sgn

�
f(s)



where sgn( ) is the sign function and d(s) is the distance between avg(s) and opt(s)
(and 1 if avg(s) = opt(s)). We decided on this formulation for rounding for multiple
reasons. First of all, rounding is necessary as we deal with integer valued soft constrains.
Secondly, traditional rounding always rounds up/down in the same direction for positive
and negative numbers, i.e. 0.6 will be rounded to 1 and -0.6 will be rounded to 0. However
as we use positive and negative factors to set a threshold relative to the average value, we
want thresholds with the same absolute distance to the average value (mirrored rounding),
i.e. for avg = 0 and d = 1 a factor +/-0.6 should result in +/-1. Lastly, we use ceiling
rounding as we want a difference of at least 1 to the average value for thresholds with a
factor other than 0.

Example 5.4 (Threshold). Let us consider instance 1. For the length deviation
constraint we have an optimal value opt(sℓdev ) = 5 and an average value avg(sℓdev ) =
17. Assume we want to reduce the length deviation by 50% while not increasing the
number of working weekends (sww) by more than 20%, we get a configuration with
the following thresholds. We have d(sℓdev ) = |17 − 5| = 12 and f(sℓdev ) = −0.5. This
results in t(sℓdev ) = 17 + ⌈12 · 0.5⌉ · −1 = 17 − 6 = 11. For the working weekends
we have d(sww) = 1 (as opt(sww) = avg(sww) = 7) and f(sww) = +0.2. This yields
t(sww) = 7 + ⌈1 · 0.2⌉ · 1 = 8.

We are interested in finding a soft constraint threshold configuration that will lead
to infeasibility. This allows us to evaluate the MCSs provided for these infeasible
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configurations and to learn which combinations of soft constraints are the most conflicting.
For this purpose, we look at six different threshold configurations. We test for each
soft constraint reducing its violation by 100% (i.e. setting the threshold to opt) while
increasing each of the remaining 5 soft constraints by at most 10%. In the following, we
identify the configuration by the constraint that is reduced to the optimum. I.e. reduced
sww refers to the configuration where f(sww) = −1 and f(s) = 0.1 for all remaining soft
constraints. For each of these configurations, there are two MCSs, namely one MCS
consisting of the reduced constraint s and one MCS which is a subset of the remaining
constraints. Intuitively, there is a solution with v(s) = opt(s) = t(s), so that removing
at most all of the other thresholds must yield a solution. On the other hand, we know
that there exists a solution with v(s′) = avg(s′) ≤ t(s′) for all s′ ̸= s, since we have
f(s′) = 0.1. Therefore removing the threshold on s must also yield a solution.

As we are interested in which constraints stand in conflict with the reduced constraint
we generate MCSs with a weight function w(s) = 10 if s is being reduced and w(s′) = 1
for all s′ ≠ s. We again use ortools to solve our instances within a 1h time limit. If the
configuration on the instance was proven unsatisfiable or its status is not known (i.e.
neither a solution was found nor a proof of unsatisfiability), we proceed to finding an
MCS with the weight function specified above comparing ortools and Exact. The detailed
results for each configuration can be found in the Appendix in Tables 10,11,12,13,14, and
15. We discuss the summarised results in Table 5.4. For each configuration of reduced soft
constraint we depict the percentage of instances that could be solved feasibly or optimally
(sat/opt), instances for which a proof of infeasibility was found (unsat) as well as the
percentage of instances for which neither was the case (unknown/?). For unsatisfiable
and unknown instances, we proceed by generating MCSs using either ortools or Exact.
We observe that with ortools we are able to find (potentially suboptimal) MCSs even
for the unknown instances. For each of the configurations, ortools can find an MCS for
all instances except one that are either unsatisfiable or unknown. This one instance is
usually instance 15, which has been proven hard to solve and in one case instance 20,
which is the largest instance and therefore inherently difficult to solve. In comparison,
Exact mostly fails to find an MCS even for some instances that are proven unsatisfiable.

reduced sat opt unsat ? mcs ortools mcs Exact
sN>3 40% 30% 5% 25% 25% 0%
sℓdev 5% 20% 25% 50% 70% 10%
sww 35% 35% 0% 30% 25% 0%
sdmax 5% 30% 15% 50% 60% 10%
sdrms 15% 30% 5% 50% 50% 5%
sNww 30% 35% 0% 35% 30% 0%

Table 5.4: Results for finding MCSs with thresholds of using ortools or Exact. Percentages
of instances where solutions were found (sat/opt) and where no solution was found
(unsat/?) are indicated. Percentages of instances where ortools or Exact could find an
MCS under 1h are also given.
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While ortools shows promising results we must keep in mind that by using the timeout
of 1h we are not guaranteed that the resulting MCS are indeed subset optimal. In
fact, ortools mostly uses the whole hour for computing the MCS. The only exceptions
are instances 1,2 and 8 for which shorter runtimes of roughly 10 to 20 seconds apply.
Additionally, for instance 3 and 14 an MCS can be found in 350 and 1720 seconds,
respectively, but only for the configurations where length deviation is reduced. We also
expect runtimes below one hour for finding an MCS for other small instances such as
instances 4 to 7. However, these instances remain feasible under all configurations, as
their opt and avg values typically coincide or differ only by one.

To evaluate the influence of the soft constraints on each other, we evaluate how often a
constraint s′ is mentioned in a MCS for the configuration reducing s. A visualisation of
this can be found in Figure 5.4. We depict the constraint to be reduced on the x-axis and
the relative occurrences of constraints in MCSs on the y-axis. We count the occurrences in
an MCSs in percentages relative to the total number of MCSs found for this configuration.
As multiple constraints can occur in one MCS the summed percentages in each column do
not necessarily sum up to 100%. We observe that the night shift constraint (sN>3) occurs
the least often in a conflict set. The length deviation constraint (sℓdev ), on the other
hand, occurs very often in an MCS. In fact, almost every MCS for reducing distances
between weekends (sdmax , sdrms) contains the length deviation constraint as part of the
problem. However, if we compare how often the weekend distance constraints occur in
an MCS for reducing length deviation, we find that while sdmax occurs in roughly 70% of
the MCSs, the sdrms constraint is only problematic in about 50% of MCSs. In general,
we observe that there is not necessarily a direct correspondence between the percentage
with which constraint s′ occurs in MCSs when reducing s and the percentage with which
constraint s occurs in MCSs when reducing s′.
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Figure 5.4: Heat map indicating the percentage of occurrences of a constraint in an MCS
for a configuration using thresholds.
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CHAPTER 6
Providing Multiple Solutions

Previously, the Rotating Workforce Scheduling (RWS) problem was mainly solved with
methods that generated a single solution. While this can be sufficient, sometimes
stakeholders are not content with the solution. In this case, an iterative process of
refining the problem specification or tuning weights for soft constraints needs to be
started. To circumvent this process, we are interested in generating many non-dominated
solutions from which the decision-maker can select a suitable solution. If no solution
that matches the stakeholder’s preferences can be found, it is still possible to learn about
trade-offs between different objectives. This allows us to show what combinations of
preferences are possible and which goals are not realisable. To achieve this, we adapt the
Pareto Simulated Annealing (PSA) framework (Czyżak and Jaszkiewicz 1997) for RWS to
generate sets of solutions that approximate the Pareto fronts in different multidimensional
objective spaces.

We implement and adapt the general PSA framework for the RWS problem. A pseudo-
code description of the algorithm can be found in Algorithm 6.1. We will now describe
the steps of the algorithm in detail, indicating the corresponding lines in Algorithm 6.1

6.1 Algorithm Description
PSA performs Simulated Annealing (SA) runs in parallel with a set of generating solutions
G while keeping a non-dominated solutions archive S. Initially, k distinct generating
solutions are constructed, for example using a construction heuristic (line 2). All non-
dominated construction solutions are added to the solution archive S (line 4). The
algorithm performs iterations as long as no aborting condition is fulfilled, for example,
timeout or iteration limit (line 5). In each iteration, a move is applied to every solution
x ∈ G, generating neighbouring solutions (line 11). A new solution y that is generated is
compared to the current set of non-dominated solutions S (line 12). The set S is updated
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according to the hard constraint violations and soft objectives of y. If y is not dominated
by any solution, it is added to S, and any solution dominated by y is removed.

The applied move is accepted, resulting in the replacement of x by y as generating
solution in G if one of the following applies:

• y is added to the set of non-dominated solutions S. (This criterion was added and
is not proposed in the original implementation.) (line 13)

• y dominates x. (line 15)

• with probability sl (given in Equation 6.1), which depends on the current tempera-
ture t. (line 17)

sl(x, y, t) = min


1, e
�

c∈H∪S
λc(x)·(vc(x)−vc(y))

t


(6.1)

Each solution x has its own weight vector λ(x), which is updated in each iteration
(line 22). This should lead to solutions diverging into different directions within the
solution space and should allow for better coverage of the space. For each solution x,
the closest neighbouring solution x′ ∈ S which is not dominated by x is determined.
This is classically done by comparing the absolute distance in terms of violations of two
solutions, i.e. ∥v(x)−v(x′)∥1. The weights of x are updated for each constraint c ∈ H∪S
according to the violations of solution x′ using the update factor α (see Equation 6.2).

λc(x) =
�

λc(x) · α if vc(x) ≤ vc(x′)
λc(x)/α otherwise

(6.2)

We additionally propose an alternative approach to updating the weight vectors, where
the closest neighbour is determined by comparison of the weight vectors, i.e. x′ such that
∥λ(x) − λ(x′)∥1 is minimal. This can lead to a more diverse distribution of solutions in
the search space, especially when considering a small number of dimensions.

Lastly, the weight vectors are normalised such that the sum of weights equals 1. We
enforce a minimum weight of 0.001, an addition recently introduced by Mischek and
Musliu 2024. This ensures that every constraint is still relevant during the search.

A further modification, initially proposed by Drexl and Nikulin 2008, consists in restarting
generating solutions x ∈ G (line 19). For this variant of PSA, solutions x which have
not contributed new solutions to the set of non-dominated solutions S for r consecutive
iterations, are replaced by a random solution from S. The aim of this addition is to
replace ’bad’ generating solutions with new generating solutions that are more promising.
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Algorithm 6.1: Parallelised implementation of Pareto Simulated Annealing
including modifications

Input: Instance I,
number of generating solutions k,
abortion criteria a,
restart frequency r,
weight update policy w,
weight update factor α,

Result: Non-dominated solution set S

1 Function Main(I, k, a, r, w, α):
2 G ← init(I, k)
3 S ← {}
4 update_pareto(S, G)
5 while ¬ abort(a) do
6 map(G, r, w, α, apply_iteration)
7 end
8 return S

9
10 Function apply_iteration(x, r, w, α):
11 y ← move(x)
12 update_pareto(S, y)
13 if y ∈ S then
14 x ← y
15 else if dominates(x,y) then
16 x ← y
17 else if random([0, 1])<sl(x, y, t) then
18 x ← y
19 else if no_contribution(x)≥ r then
20 x ← random(S)
21 end
22 update_weights(x, w, α)
23 return
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6.2 Computational Study
We now present the application of PSA to the RWS problem. These results have been
presented at the Multi-Objective Decision Making Workshop1 (MODeM) of the 27th
European Conference on Artificial Intelligence2 (ECAI 2024) under the title Towards
Multi-Objective Optimisation for Rotating Workforce Scheduling.

We performed our experiments on the same cluster as the Explainability experiments. The
PSA algorithm was implemented in Python 3.9 and run with the fast PyPy3 interpreter.

We evaluate our approach on three different real-life RWS instances4 of different size and
difficulty. The first instance (instance 10) only considers n = 27 employees, while the
second (instance 15) and third (instance 20) deal with 64 and 163 employees. As initial
construction solutions, we use solutions generated using the branch&cut (Becker, Schiffer,
and Walther 2022) approach.5 This ensures that all our construction solutions are feasible,
allowing us to concentrate on the optimisation towards soft constraints. Additionally,
this ensures that all solutions added to the set of non-dominated solutions are feasible, as
no infeasible solution can dominate a feasible solution. For our experiments, we use k = 8
generating solutions, which should allow for a good trade-off between runtime and quality
of the solution set (Czyżak and Jaszkiewicz 1997). Additionally, all experiments are run
with a starting temperature t = 1, cooling factor β = 0.999 and 1 million iterations.
When the temperature falls below 10−5, t is reheated to the starting temperature of
1. We use a fixed weight of 5 for hard constraints and update weights only for soft
constraints using the factor α = 1.05. The initial soft constraint weights are chosen at
random for each generating solution.

For the application of moves, we consider PeriodIntervalSwaps. An application swaps
two intervals of length 1 to 7 (number of days) that differ by a period of 7, meaning
two sequences of consecutive shifts are swapped between two employees. Thereby, the
number and type of shifts assigned to each day remain the same, as only shifts between
the same days of the week are swapped.

We have conducted brief experiments, including all of the proposed soft constraints.
Based on the most conflicting constraints, length deviation (sℓdev), working weekends
(sww) and weekend distance (sdmax), we have decided to focus on the quality of the
solutions for the 3-dimensional case.

The quality of the generated solution is evaluated by using the hypervolume metric. The
hypervolume indicates the percentage of the multidimensional objective space which is
dominated by the approximated Pareto front. The size of the whole objective space is
determined by the ideal(min) and anti-ideal (max) points. The dominated space spans

1https://modem2024.vub.ac.be/
2https://www.ecai2024.eu/
3https://www.pypy.org/
4https://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/
5https://github.com/tribec/bac-rwsp
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sℓdev sww sdmax

instance [min, max] [min, max] [min, max]
10 [ 1, 48] [ 12, 18] [1, 18]
15 [20, 154] [ 45, 54] [3, 54]
20 [ 2, 962] [120, 163] [3, 164]

Table 6.1: Ranges from ideal to anti-ideal points for soft constraints on different instances.

from the anti-ideal point to the approximated front. The (anti-)ideal point in every
dimension is given minimal (maximal) violation value of the corresponding constraint
that a solution can have. The ideal points for sww and sℓdev were calculated using
the branch&cut framework by Becker, Schiffer, and Walther 2022, to which we added
the squared length deviation minimisation. The anti-ideals for sww and sℓdev could be
determined by using the branch&cut approach, too, but by aiming to maximise the
violation. Lastly, the ideal for sdmax is given by the ratio between working and free
weekends ⌈ min(sww)

n−min(sww)⌉, while the anti-ideal points correspond to the anti ideal of sww

(except for instance 20 where no weekend is free in the worst case). The ideals (max)
and anti-ideals (min) for the three dimensions and instances can be found in Table 6.1.
We have used these points for the calculation of the normalised hypervolume (further
referred to simply as hypervolume).
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6.2.1 Visualising Solutions
We use parallel coordinate plots to visualise the approximated fronts. This allows
stakeholders to investigate individual solutions while providing insights into correlations
between different constraints. The plot can be studied interactively by filtering regions
for each dimension. Thereby only solutions which satisfy the filters in all dimensions
are shown. This shows clearly which trade-offs have to be made in which dimensions
when a stakeholder wants to improve a specific objective. Such a plot for instance 20 can
be found in Figure 6.1. Each line corresponds to a non-dominated solution, indicating
the violation values by the intersection with the corresponding axis. The solutions are
colour-coded with respect to the length deviation dimension.

Figure 6.1: Approximated Pareto front with 305 solutions after 1M iterations for instance
20 with all dimensions, making weight updates according to closest violation neighbours

These plots also make it possible to filter solutions in an interactive manner. Examples
of filters for instance 20 can be found in Figure 6.2. By applying filters on the axis of
different dimensions, all solutions not matching the criteria are greyed out. This allows
stakeholders to specify their preferences and to observe which solutions remain. In Figure
6.2a, a filter is set that allows only solutions with violations of sℓdev in the range from 26
to about 70. As a result, we can clearly see that any solution adhering to that criteria
will have at least 137 working weekends. In Figure 6.2b, a filter is set on the number of
working weekends, allowing at most 132 working weekends. Additionally, the weekend
distance is limited to about 20. This results in solutions that will have violations in the
sℓdev dimension of at least 120.

For instance 20, we can observe that while the number of working weekends, working
weekends including Friday night and equal distance between free weekends show a strong
correlation, the length deviation constraint seems to be in conflict with optimising free
weekends.
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6.2. Computational Study

(a) Filter on length deviation (sℓdev).

(b) Filter on working weekends (sww) and weekend distance (sdmax)

Figure 6.2: Filtered approximated Pareto front with 305 solutions after 1M iterations for
instance 20 with all dimensions, making weight updates according to closest violation
neighbours.
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6. Providing Multiple Solutions

For instances 10 and 15, we provide similar plots which can be found in Figure 6.3 and 6.4,
respectively. While we can observe a conflicting relation between the weekend distance
(sdmax and the length deviation (sℓdev) for instance 10, it is more difficult to pinpoint
conflicting constraints directly.

Figure 6.3: Approximated Pareto front with 52 solutions after 1M iterations for instance
10 with all dimensions, making weight updates according to closest violation neighbours

Figure 6.4: Approximated Pareto front with 88 solutions after 1M iterations for instance
15 with all dimensions, making weight updates according to closest violation neighbours
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We validate our observations using the sample Pearson correlation coefficient r(dim1, dim2).
We compared the dimensions length deviation, working weekends and weekend distance
for all three instances. For this we took the violation vectors for each non-dominated
solution generated by runs considering all dimensions and making weight updates using
closest-violation neighbours. Table 6.2 shows that while the correlations of the objectives
differ for each instance, a general tendency of negative correlation can be observed. In
addition, each instance provides a strong negative correlation for a different combination
of the three dimensions.

instance r(sℓdev , sww) r(sww, sdmax) r(sdmax , sℓdev)
10 -0.368 0.109 -0.736
15 -0.013 -0.414 -0.201
20 -0.873 -0.134 -0.179

Table 6.2: Sample Pearson correlation coefficients for three objectives.

6.2.2 Testing Improvements
In addition to showing how Pareto Simulated Annealing can be used for RWS to provide
stakeholders with multiple solutions, we want to investigate if adaptions of the general
algorithms can lead to a better performance. We therefore evaluate which of the
modifications introduced before help to provide better solution sets. Additionally, we
compare the PSA approach to the state-of-the-art branch&cut approach.

Weight Neighbors

Our motivation for introducing weight-neighbour weight updates stems from the obser-
vation, that for the 2-dimensional case the weight vectors of the generating solution
converged toward 1 in one of the dimensions. This led to solutions which mostly optimised
only one of the two dimensions. As a result, only few non-dominating solutions could be
found that optimise both constraints in equal manner. When using weight-neighbour
updates this gap could be closed. However, fewer solutions that mainly optimise one of
the constraints could be obtained. A visualisation of the observation for instance 20 and
the dimensions length deviation and working weekends can be found in Figure 6.5. Com-
paring the hypervolume for all three instances over 10 runs considering length deviation
and working weekends, yielded similar average hypervolume for both weight updating
procedures. Nevertheless, we investigated both approaches also for multi-dimensional
cases.
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Figure 6.5: Combined solution sets over 10 runs using closest weight and violation
neighbour for weight updates for instance 20. The solutions are given in the min/max
normalised space over both dimensions.

Restarting Solutions

We calculated exact 2D Pareto fronts for sww and sℓdev with the ε-constraint method
using the branch&cut (b&c) approach. There, the optimisation of sℓdev is converted into
a constraint with an upper bound starting from its ideal iteratively optimising sww while
increasing the constraint bound stepwise, until the ideal of sww is hit. This could be
performed within a couple of minutes runtime. A visualisation of this front compared to
a Pareto front approximation using PSA with weight-vectors to determine the closest
neighbouring solution can be found in Figure 6.6. The generating solutions are given as
arrows, directed in the direction within the 2-dimensional space toward which they are
optimising. It can be observed that while the solution set generated with b&c provides
better solutions for length deviation and working weekend constraints, weekend distance
violations are comparably high.

We evaluated the hypervolume for the different configurations of PSA over all three
instances, considering the length deviation, working weekends and weekend distance
constraints. For each configuration, 10 runs were performed using the same random
generator seeds for the different configurations. The hypervolume is calculated with
regard to the ideal (min) and anti-ideal (max) for each of the three dimensions. The
development of the average hypervolume when restarting solutions after a certain number
of non-improvement iterations (consecutive iterations where a solution does not contribute
to the set of non-dominated solutions) can be found in Figure 6.7. As a reference, the
average hypervolume for random weight updates, where weights are assigned at random
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6.2. Computational Study

in each iteration, as well as the average hypervolume for classical weight updates using
the weight or violation vectors to determine closest neighbours, are indicated.

0 50 100 150 200

120

125

130

135

140

145 Current Solutions
non-dominated
generating

Support Points
min
b&c

10

20

30

40

50

60

weekend dist

length deviation

w
or

ki
ng

 w
ee

ke
nd

s

Figure 6.6: Approximated Pareto front over 3 dimensions after 1M iterations for instance
20. The 2-dimensional ideal and non-dominated solutions using b&c are given as reference.
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Figure 6.7: Comparison of hypervolume for random and classic weight updates with
spline hypervolume for restarting approach.
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It can be observed that frequent restarts (after 10 to 1k non-improvement iterations)
lead to worse hypervolume. This can be explained by the fact that multiple generating
solutions can be replaced by the same non-dominated solutions, leading to a lack of
variety within the generating solutions. However, by increasing the threshold on non-
improvement iterations, the hypervolume can be increased compared to the classical PSA
approach. For instances 15 and 20, restarting after 10k non-improvement iterations leads
to better results than for a threshold of 100k iterations, where the hypervolume tends to
decline. In contrast, the hypervolume for instance 10 can hardly be increased by using
the restarting method. This implies that a suitable threshold depends on the instance but
should not be set too low, as this reduces the diversity among the generating solutions.

instance configuration hv - avg hv - max hv - stdv t[h]
10 random 0.736 0.748 0.009 1.160

classic-v 0.743 0.757 0.008 1.307
classic-w 0.749 0.755 0.004 1.343
restart-v10 0.580 0.678 0.074 1.760
restart-w100k 0.751 0.757 0.005 1.406
b&c 0.561

15 random 0.553 0.644 0.050 1.575
classic-v 0.580 0.648 0.037 1.726
classic-w 0.570 0.663 0.054 1.758
restart-v10 0.340 0.497 0.067 2.370
restart-v10k 0.682 0.838 0.082 1.659
b&c 0.782

20 random 0.715 0.750 0.014 2.261
classic-v 0.746 0.796 0.024 2.425
classic-w 0.769 0.794 0.017 2.481
restart-v10 0.694 0.741 0.019 3.360
restart-w10k 0.795 0.841 0.024 2.597
b&c 0.872

Table 6.3: Average, max and standard deviation for hypervolume and average runtime
over 10 runs for different PSA configurations. Weight update configuration (v/w) and
restart thresholds (10, 10k, 100k) are indicated. Hypervolume of b&c is given as reference.

In Table 6.3 the average, maximal and standard deviation for the hypervolume over the
10 runs for different PSA configurations are given. For restarting runs, the configurations
with the best and worst average hypervolume are indicated. Again, it is evident that
choosing the threshold is crucial since low thresholds lead to worse hypervolume than the
approach using no restarting and random weight updates. In addition to the hypervolume,
the average runtime over 10 runs for the PSA procedure is given. It can be observed that
the configuration using random weight updates takes the least runtime. This is obvious,
as no closest neighbour must be determined to update weights, hence decreasing the
number of comparisons that have to be made. However, random weight updates lead to
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worse hypervolume than the classical approach. It can also be observed that frequent
restarts (after 10 iterations) increase the runtime while high thresholds for restarting
yield only slightly increased runtimes compared to the classic approach but can improve
the hypervolume of the obtained solution sets. This indicates that rare restarting is a
feasible addition to the classical implementation of PSA.

Comparing the performance of the presented approaches to the branch&cut reference
points calculated with the ε-constraint method, we observe that while PSA can provide
solution sets with more hypervolume for instance 10 and for some runs on instance
15, it is outperformed by branch&cut on instance 20. Since the b&c approach can not
explicitly optimise weekend distance, we also analyse the mean violation for the best
PSA configuration and b&c over the non-dominated solutions. The results can be seen
in Table 6.4.

instance configuration sℓdev sww sdmax

10 restart-w100k 7.02 12.89 8.18
b&c 2.25 13.25 12.75

15 restart-v10k 33.84 47.79 11.34
b&c 23.55 47.22 17.33

20 restart-w10k 51.04 130.51 16.52
b&c 22.98 130.84 41.70

Table 6.4: Mean values for three objectives comparing PSA configurations with highest
avg hypervolume to branch&cut (b&c).

As expected, the branch&cut approach has difficulties in optimising sdmax , especially in
comparison to the PSA configurations. While the results for sww are very similar for both
algorithms, b&c yields better results for sℓdev , which is to be expected as this objective
can be optimised using branch&cut.

These results show that while the hypervolume provides a good general indication of the
quality of the solution sets, this does not allow for insights on the individual dimensions.
We have shown that branch&cut provides very good solutions considering local objectives
such as length deviation or working weekends. However, PSA can outperform branch&cut
on non-local properties. In general, PSA with the right configuration manages to produce
results comparable with branch&cut, while it also benefits from the initial feasible
solutions provided by the b&c solver. Therefore, interesting future work would be a
further hybridisation of both by (re-)starting PSA from partially optimised branch&cut
solutions.
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CHAPTER 7
Conclusion

We have proposed two frameworks for the extended Rotating Workforce Scheduling
Problem (RWS) that includes several novel soft constraints. We tackle the scenarios
where (1.) no solution can be found by an algorithm and (2.) if the stakeholder is not
content with a solution and requires a better one.
To do so, we created a constraint model of the RWS problem using CPMpy. We showed
how soft and hard constraints as well as thresholds can be modelled. This model was
then used for providing explanations. Using a small example we showed how Minimal
Correction Sets (MCS) can be generated and how preferences can be specified to obtain
preferred MCSs. We first conducted experiments on infeasible RWS instances. While
using MARCO to enumerate all Minimal Correction Sets (MCS) did not yield the best
results, we could employ ortools to provide MCSs in under an hour for all infeasible
instances. In a second step, we tested threshold combinations for soft constraints on
feasible instances. While we could not find optimal MCSs especially for larger instances,
we were generally able to provide MCSs in cases where no solution could be found. While
some inferences could be made regarding conflicting soft constraints, no clear image of
the relationships between soft constraints could be established.
We therefore used the second approach to evaluate this further. To do so, we implemented
the Pareto Simulated Annealing (PSA) algorithm and proposed different modifications
and adaptions of the algorithm which we evaluated on three instances of varying difficulty.
We showed how large sets of solutions can be represented, allowing a stakeholder to
choose among them. Additionally, we were able to determine the most conflicting
constraints for the instances at hand. Lastly, we evaluated modifications of the PSA
algorithm and their influences on the solution set. We studied the influence of using
closest weight neighbour updates in the 2-dimensional space (length deviation and
working weekends). While the hypervolumes obtained were very similar, we observed
that using the closest weight-neighbours generates better compromising solutions, while
violation-based updates enhance solutions favouring one of the dimensions. We have
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shown that sporadically resetting generating solutions that do not contribute to the set
of non-dominating solutions can improve the hypervolume compared to the classical PSA
approach. Additionally, these sparse resets do not increase runtime significantly. Lastly,
we compared our approach to the current state-of-the-art branch&cut. While PSA could
not consistently outperform branch-and-cut, it yielded substantially better results for
the non-local weekend distance objective.

In the future, it would be interesting to further evaluate our constraint model. Testing
the performances of other solvers as well as running experiments with higher time-outs,
could yield new insights. Additionally, large-scale testing on bigger benchmark sets could
be performed. In a next step, the development of a graphical user interface that provides
explanations and highlights problematic regions of a schedule could be addressed.

Regarding Pareto Simulated Annealing, it would be interesting to further analyse how PSA
and branch&cut compare on other (non-local) constraints and to improve our approach by
making use of the strengths that b&c provides. It would be interesting to use parameter
tuning to determine optimal configurations, to investigate how instance characteristics
influence suitable configurations, and what other metrics should be considered to evaluate
solution quality. Finally, we also want to validate our results on a larger set of benchmark
instances.
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instance t(p) status t(mcs) #mcs min(mcs) max(mcs)
instance83 1.5 unsat 3,860.1 7 1 2
instance109 352.7 unsat 3,787.0 0
instance100 2.0 unsat 3,685.5 1 1 1
instance163 2.1 unsat 33.0 3 1 1
instance446 2.7 unsat 3,626.7 0
instance456 0.4 unsat 5,084.5 15 4 8
instance512 3,600.5 ? 3,612.2 0
instance684 470.0 unsat 3,622.8 0
instance753 0.8 unsat 3,800.8 5 2 7
instance1245 731.6 unsat 3,732.7 0
instance1279 3,600.5 ? 4,373.6 0
instance1490 2,225.7 unsat 3,616.6 0
instance1628 42.6 unsat 3,706.5 0
instance1705 3,600.1 ? 3,672.1 0
instance1757 1.1 unsat 49.7 5 2 4
instance1798 44.2 unsat 3,616.1 0
instance1807 0.3 unsat 22.9 9 4 8
instance1921 6.5 unsat 3,652.7 0
instance1950 105.0 unsat 3,640.7 0
instance2190 704.6 unsat 3,791.0 0
instance2465 3,600.5 ? 3,771.0 0
instance3125 19.4 unsat 3,619.4 0
instance3143 3,600.3 ? 3,789.2 0
instance3328 63.1 unsat 3,644.7 0
instance3377 3,600.1 ? 3,869.2 0
instance3819 0.2 unsat 3,636.5 11 5 8
instance3966 1,712.5 unsat 3,649.8 0
instance4014 3,600.7 ? 5,302.2 0
instance4098 3,600.2 ? 3,643.5 0
instance4194 3,600.3 ? 6,246.3 0
instance4500 8.0 unsat 3,661.5 0
instance4519 3,600.5 ? 6,321.0 0
instance4583 338.3 unsat 4,100.8 0
instance4602 1.6 unsat 5,066.4 0
instance4700 295.7 unsat 4,059.1 0
instance4720 0.2 unsat 3,610.6 39 4 8
instance4725 2,640.8 unsat 3,657.3 0
instance4759 9.3 unsat 3,666.1 0
instance4763 8.9 unsat 4,521.2 0
instance4779 232.3 unsat 4,011.6 0
instance4953 3,600.9 ? 4,395.6 0
instance5018 3,600.4 ? 3,784.2 0
instance5043 727.8 unsat 3,651.1 0
instance5363 338.7 unsat 3,609.6 0
instance5486 351.7 unsat 3,635.9 0
instance5621 1,404.2 unsat 3,878.8 0
instance5706 20.8 unsat 3,725.6 0
instance5756 1,157.8 unsat 3,620.6 0
instance5833 642.3 unsat 4,042.5 0
instance5965 1.6 unsat 1,543.9 5 2 4

Table 1: Number and sizes (min/max) of MCSs found using MARCO with z3-ortools.
Time needed to prove unsatisfiability (t(p)) and time used by MARCO to find MCSs
(t(mcs)) are given in seconds.
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instance t(p) status t(mcs) #mcs min(mcs) max(mcs)
instance83 1.33 unsat 4,548.35 0
instance109 340.90 unsat 3,609.37 0
instance100 1.95 unsat 4,039.20 1 1 1
instance163 1.69 unsat 42.69 3 1 1
instance446 2.50 unsat 5,497.43 0
instance456 0.35 unsat 3,832.63 3 4 8
instance512 3,600.28 ? 3,605.04 0
instance684 363.51 unsat 3,614.55 0
instance753 0.90 unsat 3,693.39 0
instance1245 833.92 unsat 3,612.23 0
instance1279 3,600.36 ? 3,618.64 0
instance1490 2,184.09 unsat 3,606.10 0
instance1628 47.91 unsat 3,609.91 0
instance1705 3,600.10 ? 3,608.79 0
instance1757 1.06 unsat 41.97 5 2 4
instance1798 56.55 unsat 3,745.49 1 1 1
instance1807 0.30 unsat 12.27 9 4 8
instance1921 6.25 unsat 4,110.33 0
instance1950 126.80 unsat 3,608.69 0
instance2190 627.08 unsat 3,611.73 0
instance2465 3,600.45 ? 3,617.04 0
instance3125 25.34 unsat 3,609.53 0
instance3143 3,600.47 ? 3,619.66 0
instance3328 61.33 unsat 3,615.91 0
instance3377 3,600.21 ? 3,621.56 0
instance3819 0.23 unsat 3,641.16 5 6 8
instance3966 465.54 unsat oom 0
instance4014 3,600.80 ? oom 0
instance4098 3,240.80 ? 3,620.38 0
instance4194 3,600.38 ? 3,621.94 0
instance4500 7.82 unsat 3,657.90 0
instance4519 3,600.85 ? 3,624.73 0
instance4583 388.69 unsat 3,618.74 0
instance4602 1.47 unsat 4,192.59 0
instance4700 304.13 unsat 3,620.92 0
instance4720 0.16 unsat 3,613.48 19 4 8
instance4725 2,733.95 unsat 3,611.60 0
instance4759 10.04 unsat 3,624.28 0
instance4763 8.79 unsat 3,622.61 0
instance4779 176.15 unsat oom 0
instance4953 3,600.15 ? 3,625.11 0
instance5018 3,600.20 ? 3,621.28 0
instance5043 984.96 unsat 3,610.99 0
instance5363 426.07 unsat 3,604.69 0
instance5486 222.66 unsat 3,608.06 0
instance5621 1,750.51 unsat 3,616.71 0
instance5706 20.57 unsat 3,626.51 0
instance5756 436.25 unsat 3,614.63 0
instance5833 377.50 unsat oom 0
instance5965 1.24 unsat 2,477.94 5 2 4

Table 2: Number and sizes (min/max) of MCSs found using MARCO with z3-pysat.
Time needed to prove unsatisfiability (t(p)) and time used by MARCO to find MCSs
(t(mcs)) are given in seconds.
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instance t(p) status t(mcs) #mcs min(mcs) max(mcs)
instance83 1.40 undsat 3,709.59 17 1 2
instance109 522.48 undsat 4,518.76 0
instance100 1.95 undsat 4,185.92 0
instance163 1.56 undsat 230.22 3 1 1
instance446 2.73 undsat 4,209.52 0
instance456 0.35 undsat 3,763.95 0
instance512 3,600.20 ? 6,746.63 0
instance684 514.47 undsat 3,605.44 0
instance753 0.84 undsat 375.06 9 2 9
instance1245 707.26 undsat 6,720.89 0
instance1279 3,600.34 ? 4,100.50 0
instance1490 2,219.42 undsat 4,034.37 0
instance1628 52.18 undsat 5,443.56 0
instance1705 3,600.22 ? 7,158.63 0
instance1757 1.18 undsat 375.68 5 2 4
instance1798 37.79 undsat 4,669.38 0
instance1807 0.30 undsat 37.90 9 4 8
instance1921 6.90 undsat 6,682.55 0
instance1950 123.39 undsat 6,790.32 0
instance2190 645.07 undsat 6,548.42 0
instance2465 3,600.12 ? 4,508.70 0
instance3125 24.03 undsat 4,623.30 0
instance3143 3,600.37 ? 5,603.14 0
instance3328 104.77 undsat 4,818.86 0
instance3377 3,600.53 ? 4,000.19 0
instance3819 0.24 undsat 5,583.24 5 6 8
instance3966 510.80 undsat 4,620.91 0
instance4014 3,600.62 ? 4,236.21 0
instance4098 3,600.19 ? 3,943.36 0
instance4194 3,600.31 ? 6,001.61 0
instance4500 8.42 undsat 6,657.30 0
instance4519 3,600.43 ? 3,918.49 0
instance4583 594.78 undsat 5,869.79 0
instance4602 1.55 undsat 3,940.67 0
instance4700 236.60 undsat 3,906.29 0
instance4720 0.16 undsat 3,676.22 9 4 7
instance4725 1,738.82 undsat 5,424.51 0
instance4759 10.38 undsat 4,570.36 0
instance4763 9.03 undsat 4,445.01 0
instance4779 196.31 undsat 4,728.98 0
instance4953 3,600.28 ? 5,131.26 0
instance5018 3,600.83 ? 6,876.46 0
instance5043 550.72 undsat 3,915.78 0
instance5363 401.88 undsat 3,741.47 0
instance5486 322.07 undsat 4,673.47 0
instance5621 1,588.55 undsat 4,402.29 0
instance5706 22.37 undsat 6,150.29 0
instance5756 411.31 undsat 6,105.48 0
instance5833 584.22 undsat 6,587.46 0
instance5965 1.34 undsat 605.90 5 2 4

Table 3: Number and sizes (min/max) of MCSs found using MARCO with Exact-ortools.
Time needed to prove unsatisfiability (t(p)) and time used by MARCO to find MCSs
(t(mcs)) are given in seconds.
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instance t(p) status t(mcs) #mcs min(mcs) max(mcs)
instance83 1.34 unsat 3,747.70 0
instance109 291.00 unsat 3,666.38 0
instance100 1.63 unsat 3,654.77 0
instance163 2.26 unsat 662.36 3 1 1
instance446 2.84 unsat 3,991.10 0
instance456 0.38 unsat 4,823.08 27 4 8
instance512 3,600.19 ? 3,625.54 0
instance684 556.87 unsat 3,919.40 0
instance753 0.81 unsat 178.96 9 2 9
instance1245 758.91 unsat 3,842.86 0
instance1279 3,600.38 ? 3,879.07 0
instance1490 2,077.87 unsat 3,634.01 0
instance1628 53.48 unsat 3,700.36 0
instance1705 3,600.19 ? 3,786.17 0
instance1757 1.07 unsat 341.29 5 2 4
instance1798 42.67 unsat 3,646.24 0
instance1807 0.31 unsat 39.82 9 4 8
instance1921 7.05 unsat 3,801.61 0
instance1950 200.35 unsat 3,845.37 0
instance2190 626.83 unsat 3,667.33 0
instance2465 3,600.19 ? 3,770.23 0
instance3125 19.40 unsat 3,788.61 0
instance3143 3,600.34 ? 3,730.69 0
instance3328 64.85 unsat 3,683.87 0
instance3377 3,600.79 ? 3,774.72 0
instance3819 0.23 unsat 7,060.15 3 6 8
instance3966 1,889.03 unsat 3,718.84 0
instance4014 3,601.02 ? 3,835.49 0
instance4098 3,600.42 ? 3,749.44 0
instance4194 3,600.43 ? 3,687.57 0
instance4500 7.26 unsat 4,445.38 0
instance4519 3,600.99 ? 3,923.40 0
instance4583 401.34 unsat 3,892.82 0
instance4602 1.50 unsat 5,634.08 0
instance4700 461.36 unsat 3,998.29 0
instance4720 0.16 unsat 3,688.84 3 4 7
instance4725 1,847.39 unsat 3,720.01 0
instance4759 10.43 unsat 4,799.08 0
instance4763 8.74 unsat 4,534.43 0
instance4779 175.54 unsat 3,736.37 0
instance4953 3,600.61 ? 4,007.52 0
instance5018 3,600.49 ? 4,257.87 0
instance5043 821.22 unsat 3,907.67 0
instance5363 287.23 unsat 3,630.51 0
instance5486 697.03 unsat 3,691.82 0
instance5621 1,487.23 unsat 3,939.52 0
instance5706 20.06 unsat 3,724.51 0
instance5756 734.30 unsat 3,830.63 0
instance5833 576.05 unsat 3,697.26 0
instance5965 1.29 unsat 649.22 5 2 4

Table 4: Number and sizes (min/max) of MCSs found using MARCO with Exact-pysat.
Time needed to prove unsatisfiability (t(p)) and time used by MARCO to find MCSs
(t(mcs)) are given in seconds.
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instance t(p) status t(ortools) s(ortools) t(Exact) s(Exact)
instance83 1.17 unsat 10.85 1.0 123.19 1.0
instance109 292.65 unsat 774.54 1.0 3,644.75
instance100 2.02 unsat 28.77 1.0 3,640.38
instance163 1.76 unsat 19.80 1.0 375.42 1.0
instance446 2.76 unsat 135.12 2.0 3,666.68
instance456 0.35 unsat 9.77 4.0 89.15 4.0
instance512 3,600.85 ? 3,609.41 1.0 3,632.67
instance684 495.38 unsat 3,626.98 2.0 3,807.52
instance753 0.82 unsat 8.92 2.0 71.32 2.0
instance1245 680.33 unsat 2,299.95 1.0 3,770.08
instance1279 3,600.32 ? 3,627.68 1.0 3,689.51
instance1490 2,606.27 unsat 2,084.13 1.0 3,624.84
instance1628 47.09 unsat 153.87 1.0 3,659.05
instance1705 3,600.42 ? 3,616.81 1.0 3,771.75
instance1757 1.11 unsat 13.04 2.0 245.02 2.0
instance1798 30.86 unsat 46.06 1.0 3,642.86
instance1807 0.30 unsat 8.23 4.0 31.04 4.0
instance1921 6.81 unsat 3,628.30 4.0 3,702.36
instance1950 116.71 unsat 184.77 1.0 3,854.59
instance2190 792.97 unsat 1,241.41 1.0 3,672.85
instance2465 3,600.36 ? 3,633.48 2.0 3,764.51
instance3125 30.04 unsat 3,618.70 2.0 3,824.02
instance3143 3,600.24 ? 3,638.04 1.0 3,767.36
instance3328 57.13 unsat 161.58 1.0 3,693.62
instance3377 3,600.29 ? 3,650.62 2.0 3,980.51
instance3819 0.23 unsat 17.04 5.0 243.13 5.0
instance3966 1,792.74 unsat 3,649.21 2.0 3,833.23
instance4014 3,600.20 ? 3,654.78 3.0 4,169.27
instance4098 2,888.00 unsat 3,648.54 1.0 3,958.14
instance4194 3,600.26 ? 3,639.11 2.0 3,817.34
instance4500 7.88 unsat 3,645.35 4.0 3,894.54
instance4519 3,600.87 ? 3,653.48 1.0 4,800.12
instance4583 586.86 unsat 3,634.12 2.0 3,697.86
instance4602 1.50 unsat 2,607.11 5.0 3,634.24
instance4700 230.27 unsat 788.57 1.0 3,931.90
instance4720 0.16 unsat 8.09 4.0 35.09 4.0
instance4725 1,535.46 unsat 1,943.55 1.0 3,725.86
instance4759 9.80 unsat 3,656.99 5.0 4,543.62
instance4763 8.50 unsat 923.55 2.0 4,091.60
instance4779 165.15 unsat 790.19 1.0 3,742.10
instance4953 3,600.60 ? 3,646.18 1.0 3,988.69
instance5018 3,600.27 ? 3,650.85 1.0 3,951.99
instance5043 683.22 unsat 2,195.01 1.0 3,756.32
instance5363 425.01 unsat 427.64 1.0 3,629.78
instance5486 711.54 unsat 1,568.08 1.0 3,701.19
instance5621 1,515.91 unsat 3,633.32 1.0 3,749.45
instance5706 21.65 unsat 3,651.30 3.0 3,723.70
instance5756 304.33 unsat 463.77 1.0 3,747.08
instance5833 645.56 unsat 1,358.31 1.0 3,863.16
instance5965 1.27 unsat 9.00 2.0 139.42 2.0

Table 5: Results for finding any MCS. Time for unsat proof t(p) and status are indicated.
Run times (1h bound) for finding an MCS using ortools/Exact (t(ortools)/t(Exact)) and
size of the MCS are given (s(ortools)/s(Exact)).
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instance t(p) status t(ortools) s(ortools) t(Exact) s(Exact)
instance83 1.36 unsat 10.69 1.0 122.65 1.0
instance109 438.95 unsat 841.09 1.0 3,660.28
instance100 2.16 unsat 28.41 1.0 3,638.75
instance163 1.97 unsat 17.79 1.0 376.49 1.0
instance446 2.97 unsat 184.04 2.0 3,758.44
instance456 0.35 unsat 10.30 4.0 90.16 4.0
instance512 3,600.28 ? 3,609.58 1.0 3,649.50
instance684 541.71 unsat 3,626.90 2.0 3,752.14
instance753 0.85 unsat 8.14 2.0 73.06 2.0
instance1245 867.76 unsat 1,881.04 1.0 3,736.99
instance1279 3,600.44 ? 3,627.32 1.0 3,779.74
instance1490 2,180.28 unsat 2,044.53 1.0 3,655.53
instance1628 34.83 unsat 127.40 1.0 3,659.15
instance1705 3,600.26 ? 3,616.85 1.0 3,771.03
instance1757 1.21 unsat 11.62 2.0 240.41 2.0
instance1798 27.90 unsat 54.83 1.0 3,654.20
instance1807 0.30 unsat 6.64 4.0 31.08 4.0
instance1921 6.43 unsat 3,628.50 4.0 3,776.70
instance1950 79.78 unsat 164.89 1.0 3,809.63
instance2190 708.81 unsat 1,183.62 1.0 3,750.29
instance2465 3,600.27 ? 3,632.98 2.0 3,810.23
instance3125 16.79 unsat 3,618.76 2.0 3,647.67
instance3143 3,600.21 ? 3,638.24 1.0 3,820.05
instance3328 62.07 unsat 194.74 1.0 3,745.68
instance3377 3,600.48 ? 3,651.35 2.0 3,981.34
instance3819 0.24 unsat 15.82 5.0 244.24 5.0
instance3966 1,662.00 unsat 3,649.93 3.0 3,927.78
instance4014 3,600.18 ? 3,654.98 3.0 4,196.56
instance4098 3,010.58 unsat 3,574.67 1.0 4,065.44
instance4194 3,600.25 ? 3,639.54 2.0 3,828.13
instance4500 8.30 unsat 3,645.81 4.0 3,824.86
instance4519 3,600.80 ? 3,654.92 1.0 4,778.65
instance4583 989.98 unsat 3,633.96 2.0 3,745.19
instance4602 1.71 unsat 2,575.39 5.0 3,634.24
instance4700 294.78 unsat 834.78 1.0 3,924.59
instance4720 0.16 unsat 7.23 4.0 35.16 4.0
instance4725 1,916.69 unsat 1,991.60 1.0 3,731.77
instance4759 10.13 unsat 3,656.62 5.0 4,669.58
instance4763 9.11 unsat 1,299.46 2.0 4,233.79
instance4779 160.79 unsat 619.54 1.0 3,697.79
instance4953 3,600.30 ? 3,646.43 1.0 4,049.18
instance5018 3,601.07 ? 3,648.71 1.0 3,918.10
instance5043 855.02 unsat 1,953.33 1.0 3,657.46
instance5363 342.21 unsat 431.52 1.0 3,636.83
instance5486 827.02 unsat 526.60 1.0 3,701.58
instance5621 1,731.82 unsat 3,633.38 1.0 3,727.82
instance5706 21.77 unsat 3,654.00 3.0 3,724.10
instance5756 412.53 unsat 433.09 1.0 3,719.86
instance5833 578.39 unsat 1,070.59 1.0 3,810.36
instance5965 1.51 unsat 11.56 2.0 139.70 2.0

Table 6: Results for finding minimal MCS. Time for unsat proof t(p) and sta-
tus are indicated. Run times (1h bound) for finding an MCS using ortools/Exact
(t(ortools)/t(Exact)) and size of the MCS are given (s(ortools)/s(Exact)).
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instance t(p) status t(ortools) s(ortools) t(Exact) s(Exact)
instance83 1.20 unsat 10.37 1.0 105.33 1.0
instance109 437.01 unsat 842.96 1.0 3,658.63
instance100 1.81 unsat 27.95 1.0 3,659.96
instance163 1.85 unsat 18.91 1.0 322.91 1.0
instance446 2.84 unsat 45.45 2.0 3,696.33
instance456 0.35 unsat 10.13 6.0 70.70 6.0
instance512 3,600.09 ? 3,609.79 1.0 3,643.51
instance684 512.51 unsat 3,627.37 2.0 3,777.99
instance753 0.85 unsat 8.74 2.0 90.77 2.0
instance1245 635.10 unsat 1,657.73 1.0 3,812.10
instance1279 3,600.29 ? 3,627.37 1.0 3,697.04
instance1490 1,893.08 unsat 2,155.51 1.0 3,645.06
instance1628 50.25 unsat 127.58 1.0 3,666.80
instance1705 3,600.19 ? 3,616.84 1.0 3,741.20
instance1757 1.11 unsat 13.47 2.0 285.83 2.0
instance1798 27.82 unsat 61.34 1.0 3,656.44
instance1807 0.31 unsat 6.94 4.0 23.16 4.0
instance1921 6.89 unsat 3,628.75 4.0 3,727.96
instance1950 110.40 unsat 199.59 1.0 3,718.99
instance2190 740.06 unsat 1,262.69 1.0 3,861.75
instance2465 3,600.21 ? 3,633.35 2.0 3,815.25
instance3125 26.93 unsat 3,618.70 2.0 3,708.89
instance3143 3,600.24 ? 3,637.85 1.0 3,842.77
instance3328 59.13 unsat 197.43 1.0 3,686.99
instance3377 3,600.97 ? 3,653.18 2.0 4,016.43
instance3819 0.23 unsat 14.54 6.0 357.10 6.0
instance3966 2,124.70 unsat 3,649.57 2.0 3,909.72
instance4014 3,600.63 ? 3,654.44 3.0 4,134.20
instance4098 3,600.60 ? 3,648.73 1.0 4,044.56
instance4194 3,600.60 ? 3,640.35 2.0 3,856.79
instance4500 7.87 unsat 3,646.98 4.0 3,805.11
instance4519 3,601.05 ? 3,653.01 1.0 4,621.55
instance4583 395.05 unsat 3,633.72 2.0 3,897.94
instance4602 1.62 unsat 3,323.34 5.0 3,629.70
instance4700 296.83 unsat 868.36 1.0 3,758.34
instance4720 0.16 unsat 7.13 4.0 39.08 4.0
instance4725 1,447.76 unsat 2,672.91 1.0 3,757.00
instance4759 10.33 unsat 3,656.25 5.0 4,589.43
instance4763 8.79 unsat 3,433.60 2.0 4,016.62
instance4779 141.52 unsat 557.44 1.0 3,748.71
instance4953 3,600.87 ? 3,647.38 1.0 4,082.17
instance5018 3,601.07 ? 3,652.01 1.0 4,046.49
instance5043 817.22 unsat 1,015.01 1.0 3,717.21
instance5363 394.43 unsat 308.77 1.0 3,629.61
instance5486 790.87 unsat 2,124.69 1.0 3,680.65
instance5621 1,697.96 unsat 3,633.66 1.0 3,763.71
instance5706 19.75 unsat 3,651.94 3.0 3,782.00
instance5756 363.46 unsat 555.99 1.0 3,696.68
instance5833 498.66 unsat 1,189.38 1.0 3,741.04
instance5965 1.48 unsat 10.63 2.0 163.60 2.0

Table 7: Results for finding minimal MCS without demand constraints. Time for unsat
proof t(p) and status are indicated. Run times (1h bound) for finding an MCS using
ortools/Exact (t(ortools)/t(Exact)) and size of the MCS are given (s(ortools)/s(Exact)).
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instance val(sℓdev) val(sww) val(sdmax) val(sdrms) val(sNww) val(sN>3)
instance1 5 7 5 8.11 7 0
instance2 10 6 3 7.44 6 5
instance3 2 12 5 14.38 12 0
instance4 24 10 5 11.52 11 0
instance5 8 6 4 8.19 9 2
instance6 8 5 4 6.07 7 3
instance7 20 18 6 22.91 18 0
instance8 6 4 3 8.06 6 0
instance9 16 12 2 23.75 18 1
instance10 1 12 3 18.02 15 0
instance11 10 23 5 26.32 23 0
instance12 14 12 4 15.55 12 0
instance13 3 18 4 20.84 18 0
instance14 5 9 4 10.90 11 0
instance15 35 45 8 53.69 55 2
instance16 0 20 4 24.12 21 0
instance17 1 22 4 26.97 22 0
instance18 0 30 4 39.91 30 0
instance19 56 85 4 101.00 85 0
instance20 11 120 5 139.86 120 0

Table 8: Best optimal values for soft constraints per instance over five runs of one hour.
The optimal values val(s) are given, where val(s) indicates that optimality was proven
and val(s) indicates that only feasibility was proven within the time limit.
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instance val(sℓdev) val(sww) val(sdmax) val(sdrms) val(sNww) val(sN>3)
instance1 16 7 5 8.11 7 0
instance2 17 6 4 7.48 6 5
instance3 12 13 5 14.38 13 2
instance4 24 11 5 11.52 11 0
instance5 8 9 4 8.19 9 2
instance6 8 7 4 6.07 7 3
instance7 20 18 6 22.91 18 1
instance8 6 6 5 8.06 6 2
instance9 20 18 4 23.76 18 5
instance10 18 16 4 18.04 16 1
instance11 33 24 6 26.90 24 0
instance12 48 12 4 15.55 12 0
instance13 19 18 5 20.84 18 0
instance14 13 11 4 10.90 11 0
instance15 47 60 15 56.61 60 10
instance16 24 21 5 24.14 21 0
instance17 27 22 5 26.99 22 0
instance18 20 31 6 39.91 31 2
instance19 132 91 9 104.52 91 0
instance20 96 124 10 141.61 124 0

Table 9: Best avg value combinations for soft constraints per instance over five runs of
one hour. The optimal values val(s) are given, where val(s) indicates that optimality
was proven and val(s) indicates that only feasibility was proven within the time limit.
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instance t(p) status t(or) mcs(or) t(ex) mcs(ex)
instance1 29.91 opt
instance2 26.05 opt
instance3 3,600.12 sat
instance4 75.31 opt
instance5 27.91 opt
instance6 1.30 opt
instance7 3,600.17 sat
instance8 2.62 unsat 12.71 [vℓdev ] 3,640.79
instance9 3,600.24 ? 3,628.35 [vℓdev ] 3,758.40
instance10 3,600.22 sat
instance11 3,600.18 sat
instance12 3,600.13 sat
instance13 3,600.12 sat
instance14 2,946.90 opt
instance15 3,600.26 ? 3,639.08 3,711.77
instance16 3,600.14 sat
instance17 3,600.15 sat
instance18 3,600.26 ? 3,632.65 [vNww] 3,727.32
instance19 3,600.57 ? 3,669.66 [vℓdev , vdrms , vww, vNww] 3,915.38
instance20 3,600.50 ? 3,697.52 [vdrms , vdmax , vNww, vℓdev , vww] 4,168.26

Table 10: Results for finding minimal MCS for reduced max night shift (sN>3) constraint.
Time for unsat proof t(p) and status are indicated. Run times for finding an MCS using
ortools/Exact (t(ortools)/t(Exact)) and MCS are given (mcs(or)/mcs(ex)).
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instance t(p) status t(or) mcs(or) t(ex) mcs(ex)
instance1 6.57 unsat 20.06 [vdmax ] 128.62 [vdmax ]
instance2 21.23 unsat 20.61 [vdmax ] 882.49 [vdmax ]
instance3 335.55 unsat 352.66 [vdmax ] 3,654.62
instance4 86.74 opt
instance5 23.24 opt
instance6 1.10 opt
instance7 3,600.23 sat
instance8 64.88 opt
instance9 3,600.21 ? 3,629.73 [vℓdev ] 3,749.75
instance10 3,600.21 ? 3,616.48 [vdrms , vdmax ] 3,764.59
instance11 3,600.48 ? 3,617.31 [vℓdev ] 3,647.22
instance12 3,600.17 ? 3,609.62 [vℓdev ] 3,636.34
instance13 3,600.64 ? 3,613.94 [vdmax ] 3,687.95
instance14 824.57 unsat 1,719.29 [vdmax ] 3,660.23
instance15 3,600.38 ? 3,639.05 3,717.20
instance16 493.70 unsat 3,616.94 [vNww, vdmax , vww, vdrms ] 3,670.72
instance17 3,600.26 ? 3,615.76 [vww, vNww, vdmax , vdrms ] 3,684.34
instance18 3,600.20 ? 3,632.99 [vℓdev ] 3,792.49
instance19 3,600.60 ? 3,669.99 [vww, vdmax , vNww, vℓdev , vdrms ] 3,789.42
instance20 3,600.85 ? 3,698.52 [vdrms , vdmax , vNww, vℓdev , vww] 3,857.27

Table 11: Results for finding minimal MCS for reduced length deviation (sℓdev ) constraint.
Time for unsat proof t(p) and status are indicated. Run times for finding an MCS using
ortools/Exact (t(ortools)/t(Exact)) and MCS are given (mcs(or)/mcs(ex)).
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instance t(p) status t(or) mcs(or) t(ex) mcs(ex)
instance1 39.86 opt
instance2 23.76 opt
instance3 3,600.64 sat
instance4 87.81 opt
instance5 30.27 opt
instance6 0.86 opt
instance7 3,600.26 sat
instance8 55.96 opt
instance9 3,600.23 ? 3,628.42 [vℓdev ] 3,806.40
instance10 3,600.26 sat
instance11 3,600.23 ? 3,617.45 [vℓdev ] 3,684.54
instance12 3,600.15 sat
instance13 3,600.39 sat
instance14 2,588.11 opt
instance15 3,600.24 ? 3,638.53 [vdmax , vww] 3,741.26
instance16 3,600.18 sat
instance17 3,600.15 sat
instance18 3,600.23 ? 3,632.78 [vℓdev ] 3,796.35
instance19 3,600.44 ? 3,669.27 [vdmax , vww, vdrms , vNww] 3,849.75
instance20 3,600.57 ? 3,698.47 4,186.24

Table 12: Results for finding minimal MCS for reduced working weekends (sww) constraint.
Time for unsat proof t(p) and status are indicated. Run times for finding an MCS using
ortools/Exact (t(ortools)/t(Exact)) and MCS are given (mcs(or)/mcs(ex)).
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instance t(p) status t(or) mcs(or) t(ex) mcs(ex)
instance1 30.90 opt
instance2 0.77 unsat 6.85 [vℓdev , vN>3 ] 149.76 [vℓdev , vN>3 ]
instance3 3,600.55 ? 3,610.24 [vℓdev ] 3,675.97
instance4 87.67 opt
instance5 29.72 opt
instance6 1.13 opt
instance7 3,600.18 sat
instance8 2.91 unsat 17.62 [vdrms , vℓdev , vNww] 2,786.49 [vdrms , vℓdev , vNww]
instance9 323.86 unsat 3,628.98 [vN>3 , vℓdev ] 3,839.06
instance10 3,600.20 ? 3,616.81 [vℓdev ] 4,012.93
instance11 3,600.28 ? 3,617.27 [vℓdev ] 3,655.37
instance12 3,145.23 opt
instance13 3,601.03 ? 3,613.72 [vℓdev ] 3,669.95
instance14 1,586.60 opt
instance15 3,600.43 ? 3,638.64 3,731.92
instance16 3,600.21 ? 3,617.13 [vℓdev ] 3,846.99
instance17 3,600.21 ? 3,615.77 [vℓdev ] 3,643.36
instance18 3,600.23 ? 3,633.06 [vww, vNww, vdrms ] 3,692.31
instance19 3,600.44 ? 3,669.52 [vℓdev , vww, vdrms , vNww, vdmax ] 3,846.23
instance20 3,600.50 ? 3,697.49 [vNww, vdrms , vℓdev , vww, vdmax ] 3,973.54

Table 13: Results for finding minimal MCS for reduced weekend distance (sdmax) constraint.
Time for unsat proof t(p) and status are indicated. Run times for finding an MCS using
ortools/Exact (t(ortools)/t(Exact)) and MCS are given (mcs(or)/mcs(ex)).
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instance t(p) status t(or) mcs(or) t(ex) mcs(ex)
instance1 30.71 opt
instance2 0.80 unsat 6.86 [vℓdev , vN>3 ] 181.93 [vℓdev , vN>3 ]
instance3 3,601.06 sat
instance4 63.35 opt
instance5 17.75 opt
instance6 1.26 opt
instance7 3,600.17 sat
instance8 63.11 opt
instance9 3,600.39 ? 3,628.36 [vN>3 , vℓdev ] 3,789.98
instance10 3,600.19 ? 3,616.60 [vℓdev ] 3,855.50
instance11 3,600.61 ? 3,618.11 [vdrms ] 3,680.59
instance12 3,600.12 sat
instance13 3,600.18 ? 3,613.75 [vℓdev ] 3,639.29
instance14 1,166.20 opt
instance15 3,600.25 ? 3,638.32 3,689.52
instance16 3,600.19 ? 3,616.59 [vℓdev ] 3,906.66
instance17 3,600.25 ? 3,615.67 [vℓdev ] 3,662.81
instance18 3,600.26 ? 3,632.85 [vdrms , vℓdev ] 3,730.29
instance19 3,600.41 ? 3,669.24 [vww, vNww, vdmax , vℓdev , vdrms ] 3,936.24
instance20 3,600.49 ? 3,701.61 [vℓdev , vdmax , vNww, vdrms , vww] 4,140.76

Table 14: Results for finding minimal MCS for reduced root mean squared weekend
distance (sdrms) constraint. Time for unsat proof t(p) and status are indicated. Run
times for finding an MCS using ortools/Exact (t(ortools)/t(Exact)) and MCS are given
(mcs(or)/mcs(ex)).
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instance t(p) status t(or) mcs(or) t(ex) mcs(ex)
instance1 40.42 opt
instance2 18.30 opt
instance3 3,600.31 ? 3,610.19 [vdmax ] 3,678.52
instance4 77.15 opt
instance5 32.26 opt
instance6 2.75 opt
instance7 3,600.43 sat
instance8 68.05 opt
instance9 3,600.43 ? 3,628.69 [vℓdev ] 3,815.23
instance10 3,600.13 sat
instance11 3,600.22 ? 3,617.59 [vNww] 3,668.63
instance12 3,600.13 sat
instance13 3,600.14 sat
instance14 2,505.51 opt
instance15 3,600.32 ? 3,638.81 3,770.18
instance16 3,600.17 sat
instance17 3,600.14 sat
instance18 3,600.29 ? 3,632.85 [vNww] 3,732.25
instance19 3,600.43 ? 3,669.42 [vdmax , vdrms , vNww, vℓdev , vww] 3,810.38
instance20 3,600.48 ? 3,697.94 [vdmax , vℓdev , vww, vNww, vdrms ] 4,162.70

Table 15: Results for finding minimal MCS for reduced working weekends with friday
night (sNww) constraint. Time for unsat proof t(p) and status are indicated. Run
times for finding an MCS using ortools/Exact (t(ortools)/t(Exact)) and MCS are given
(mcs(or)/mcs(ex)).
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