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Abstract

This thesis presents a tight-binding study of the formation of the spin-resolved
electronic energy band structure of both bulk and thin-film bismuth. We derive
the matrix representation of the bulk bismuth Hamiltonian, incorporating spin-
orbit coupling, the Bychkov-Rashba effect, and the Zeeman effect. We investigate
the spin-polarized surface states that emerge at the bismuth-vacuum interface.
Our calculations reveal that these surface states exhibit a significant decay length
of 40 nm into the bulk, leading to a strong dependence of the system’s dispersion
on film thickness due to tunneling and hybridization effects between adjacent
interfaces.

Our study also highlights several phenomena associated with topological materials.
In the symmetric case of the Bychkov-Rashba effect, we identify the emergence
of a gapped Dirac fermion in the electron pockets near the Fermi level, perpen-
dicular to the high-symmetry line Γ −M . Furthermore, we demonstrate that an
asymmetric Bychkov-Rashba effect allows for the closing and shifting of this gap
in momentum space by tuning the ratio of the electric fields at the top and bottom
surfaces, suggesting the potential for a tunable spin current in a spin-field-effect
transistor (Spin-FET) device.

We identify the magnitude and ratio of the electric fields at the top and bottom
surfaces, respectively, where the Dirac fermion aligns with the Fermi level at the
time-reversal-invariant momentum (TRIM) point Γ. Finally, we propose how these
theoretical predictions could be tested through in operando electrostatic spin ma-
nipulation using spin- and angle-resolved photoemission spectroscopy (SARPES).





1 Introduction

Figure 1.1: Left: A bismuth hopper
crystal exhibiting the stairstep crystal
structure and iridescent colors, which
are produced by interference of light
within the oxide film on its surface.
Right: A 1 cm3 cube of unoxidised bis-
muth metal. From [34].

Bismuth, the heaviest stable ele-
ment in the periodic table, has
been a subject of large interest in
condensed matter physics and ma-
terials science due to its excep-
tional electronic properties. Ini-
tially recognized for its strong dia-
magnetism, bismuth became pop-
ular for its thermoelectric proper-
ties, particularly due to its high See-
beck coefficient, as highlighted by
Dresselhaus [35]. Its significance
grew further following the discov-
ery of topological matter in 2007
[18].

One of bismuth’s most remarkable properties is its exceptionally strong spin-orbit
coupling (SOC) of λ = 1.5 eV, the highest among all stable elements [21]. This
intrinsic feature makes it a promising candidate for spintronics, a field that seeks
to exploit electron spin rather than charge for information processing and storage.
Spintronic research aims to develop energy-efficient, high-speed electronic devices
by leveraging the spin degree of freedom. Unlike conventional transistors that rely
solely on charge transport, spintronic devices manipulate spin states, reducing
power consumption and enabling novel computing architectures [23, 6]. Bismuth’s
unique electronic structure - characterized by low carrier density and high mobility
- further enhances its suitability for such applications.
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Beyond its role in spintronics, bismuth is integral to the study of topological ma-
terials. Bi-based compounds, such as topological insulators (Bi1-xSex and Bi2Te3),
exhibit robust surface states protected by time-reversal symmetry, facilitating
dissipationless spin transport [10]. These materials are key candidates for next-
generation quantum computing and low-energy electronics.

Due to its exceptional spin-orbit coupling, topological characteristics, and po-
tential for energy-efficient spintronic applications, bismuth continues to be a key
material in modern electronics and quantum research. Future studies will explore
Bi-based heterostructures and novel quantum phases, further establishing its de-
velopment in spintronic and quantum technologies.

This thesis presents a tight-binding calculation of both the bulk properties of an
infinite bismuth crystal and the semi-infinite limit of an N -layer thin film. The
aim is to gain deeper insight into the electronic structure of bismuth, particularly
in low-dimensional and topological systems.

Chapter 2 provides an overview of the crystallographic properties and electronic
structure of bismuth. Chapter 3 introduces the theoretical framework used in this
study. The first part of the chapter discusses the tight-binding formalism and the
key symmetries of the crystal structure, which give rise to interesting physical phe-
nomena. Furthermore, it explains the implementation of various physical effects,
such as spin-orbit coupling, the Zeeman effect, and the Bychkov-Rashba effect,
within the tight-binding approach. The second part of Chapter 3 focuses on the
concept of topological matter, providing the theoretical background necessary to
interpret the results. Chapter 4 presents the findings of the calculations, analyzing
the obtained data and discussing their implications. Finally, an outlook is given
on how the theoretical results could be verified in future experiments.

By combining tight-binding calculations with a topological perspective, this work
aims to contribute to the understanding of bismuth’s electronic properties and its
potential applications in modern spintronic and quantum technologies.

4



2 Theory

2.1 The Crystal Structure of Bismuth

The crystalline structure of bismuth exhibits rhombohedral symmetry, with a
space group R3m, typical for group V semimetals, like Sb or GaSb. Each atom
has three nearest neighbors and three second nearest neighbors slightly farther
away, forming a distinct zigzagged bilayer structure of atoms perpendicular to
the [1 1 1] direction (see Figure 2.1(c)). Additionally, there are six third nearest
neighbors hexagonally arranged in a plane with the central atom.

The bonding within each bilayer is stronger than that between bilayers, and each
bilayer connects to the next via the second-nearest neighbors, creating the layered
arrangement. Within the unit cell there are two atoms, the second atom positioned
in the neighboring bilayer.

Figure 2.1(a) illustrates the rhombohedral system and its three high-symmetry
axes C1, C2, C3. The trigonal axis (C3) aligns with the origin of the three lattice-
spanning vectors, a1, a2, a3. Perpendicular to this axis lies the binary axis (C2)
and the bisectrix (C1). The bisectrix (C1) and the trigonal axis (C3) span a mirror
plane. The Crystal possesses inversion symmetry, a characteristic relevant to spin-
orbit splitting effects, discussed in Section 2.4.2. Due to the threefold symmetry of
the trigonal axis, the binary and bisectrix axes, as well as the mirror plane, appear
three times [15].
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If we choose Cartesian coordinates such that the binary (C2) axis is x̂, the bisectrix
(C1) axis is ŷ and the trigonal (C3) axis is ẑ, then the three primitive lattice vectors
are given by

a1 =

(
−1

2
a,−

√
3

6
a,

1

3
c

)

a2 =

(
1

2
a,−

√
3

6
a,

1

3
c

)

a3 =

(
0,

√
3

3
a,

1

3
c

) (2.1)

These vectors are shown in Figure 2.1(a) as green arrows. Each pair of primitive
lattice vectors encloses the rhombohedral angle α. The relative position of the two
atoms in the unit cell is given by

d1 = (0, 0, µ)c

d2 = (0, 0, 1− µ)c
(2.2)

where µ is the internal displacement parameter. The vectors from the central atom
to its nearest neigbhors are ai − d1 with i ∈ {1, 2, 3}, to the second neighbors
ai + aj − d1, with i ̸= j ∈ {1, 2, 3} and to the third neighbors ai − aj, with
i ̸= j ∈ {1, 2, 3}.

The inter-bilayer and intra-bilayer spacings are given by

dinter = c(µ− 1/3) = 1.5910Å,

dintra = c (2/3− µ) = 2.3413Å
(2.3)

The crystal structure parameters at 4.2K can be read in Table 2.1.
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Figure 2.1: (a) Rhombohedral unit cell (green dashed lines). The crystal system
can also be described with a hexagonal unit cell (pink dashed lines). The primitive
lattice vectors a1,a2,a3 are shown with green arrows. The three Cartesian axes are
(C1, ŷ), (C2, x̂), (C3, ẑ). The relative position of the second atom in the basis is given by
the vector d1 and d2 respectively. The first, second and third neighbors to the central
atom are indicated through numbers. The third neighbors (six in total) lie in plane with
the central atom. (b) Side perspective of the crystal structure, highlighting its distinct
bilayer nature. The interlayer distance is 2.35Å and the intralayer distance is 1.59Å.
(c) Top view of the crystal. The different layers are colour-coded accordingly.

The three corresponding reciprocal lattice vectors to a1, a2, a3 are defined through

bi · aj = 2πδij, (2.4)

and are given by

b1 =
2π

a
(−1,−1/

√
3, a/c),

b2 =
2π

a
(1,−1/

√
3, a/c),

b3 =
2π

a
(0, 2/

√
3, a/c).

(2.5)
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Table 2.1: Crystal structure parameters of Bi at 4.2K [21].

Lattice constants a (Å) 4.5332

c (Å) 11.7967

Rhombohedral angle α 57.35◦

Internal displacement parameter µ 0.4682

Distance to the next basis atom d1 (Å) 5.5232

Nearest-neighbor distance d′ (Å) 3.0624

Next-nearest-neighbor distance d′′ (Å) 3.5120

2.2 The Brillouin Zone of the rhombohedral

Structure

The Brillouin zone of the rhombohedral structure, constructed using the Voronoi
method on the reciprocal lattice, closely resembles the Brillouin zone of an FCC
lattice, similar to that of silicon. However, bismuth has a lower symmetry due to
the specific rhombohedral angle α = 57.35◦ and displacement parameter µ = 0.46.
In contrast, an ideal FCC lattice has parameters of α = 60◦ and µ = 0.5 which
contribute to its higher symmetry.

The coordinates of the high-symmetry points within the Brillouin zone, usually
straightforward to calculate, are modified by the rhombohedral angle α.
Table 2.2 lists the high-symmetry points in the first Brillouin zone that are most
relevant for this thesis. The coordinates of these points depend directly on the
rhombohedral angle α [27].

η =
1 + 4 cosα

2 + 4 cosα
, ν =

3

4
− η

2
(2.6)
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×b1 ×b2 ×b3 ×b1 ×b2 ×b3

0 0 0 Γ η ν ν U

1/2 1/2 0 X 1/2 1/2 1/2 T

1/2 0 0 L ν 0 −ν M

Table 2.2: The fractional coordinates of high symmetry points within the rhombohedral
structure are presented. From Ref. [27], the author has adopted the nomenclature of
these symmetry points.

Figure 2.2 shows a schematic sketch of the Brillouin zone. In summary, there
are six rectangular faces with their high symmetry points X situated centrally,
six larger hexagonal faces with central high symmetry points L, and two slightly
smaller hexagonal faces with central high symmetry points T .

Figure 2.2: The Bulk Brillouin zone of Bismuth. The Γ − T line corresponds to the ẑ

= [1 1 1] direction in real space. The red dashed line indicates the path in k-space used
for the bulk tight-binding calculations. The Plot was generated with the tools from Ref.
[12, 33]
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2.2.1 Thin Film Brillouin Zone of Bismuth(111)

The Brillouin zone of a thin film corresponds to the projection of the bulk Bril-
louin zone onto the (111)-surface, as shown in Figure 2.3. Photoemission spectra
collected at normal emission sample the Γ− T direction. The L and X point get
projected onto the M point of the 2D Brillouin zone.

Figure 2.3: The bulk Brillouin zone of bismuth projected onto the (111) surface along
with the coordinate system in k-space for the 2D system. The surface Brillouin zone
exhibits threefold rotational symmetry and contains three mirror planes. Adapted from
Ref. [3].
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2.3 Tight-Binding Formalism

The tight-binding method is a one-electron model that is used to explain the
formation of energy bands in crystals. As the name suggests, this model is suitable
for materials where outer electrons remain relatively localized, or "tightly bound",
around individual atoms. It is less suitable for cases where electrons are delocalized
across the system. Consequently, the tight-binding approach is particularly useful
for modeling the electronic bands of covalently bonded materials, where electron
wave functions can be approximated by localized atomic wavefunctions at each
atomic site.
The starting point is the summation of all atomic Hamiltonians Hat pertaining to
isolated atoms at site Rj. In addition, we consider the influence of neighboring
atoms within a crystal lattice as a small perturbation in the atomic potential,
represented by the term ΔU .

Ĥ =
∑
j

Ĥj
at +ΔU (2.7)

Considering that the perturbation is small, the atomic wave functions |ϕn(r−Rj)⟩
that solve

Ĥj
at |ϕn(r−Rj)⟩ = En |ϕn⟩ (2.8)

where En is the Energy corresponding to the n-th orbital |ϕn⟩, are used to construct
the wave functions at the site Rj

|φat(r−Rj)⟩ =
∑
n

cjn|ϕn(r−Rj)⟩ (2.9)

The solution to the total Hamiltonian for an arbitrary lattice, such as that of
bismuth, is given by a Bloch wave function.

|ψm
k ⟩ =

1√
Nj

∑
j

exp(ik ·Rj)|φat(r−Rj − δm)⟩ (2.10)
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Here, Nj represents the total number of primitive unit cells in the sublattices
(j = 1, ..., NBasis ≡ 1, 2 for bismuth) in the crystal; k = p/ℏ denotes the crystal
momentum of the electron; Rj is the real-space vector pointing to the site j; and δm

is the displacement vector separating the two basis atoms within the unit cell (cf.
Equation 2.2). The complete solution for the crystal arises from the periodicity
and symmetry of the system, as it must satisfy Bloch’s theorem

|Ψk(r)⟩ =
NBasis∑
m=1

um(k)ψm
k (r) (2.11)

We can now solve the Schrödinger equation

⟨Ψk|Ĥ|Ψk⟩ = ε⟨Ψk|Ψk⟩ (2.12)

The scalar product ⟨Ψk|Ψk⟩ accounts for the fact that Bloch wave functions are
not necessarily normalized. Inserting Equation (2.11) in the Schrödinger equation
yields

∑
m,m′

u(m)∗(k)
[>

ψm
k

|||Ĥ|||ψm′
k

<
− ε

>
ψm
k |ψm′

k

<]
u(m′)(k) = 0 (2.13)

which implies the secular equation

det(Hk − εSk) = 0 (2.14)

In case the atomic orbitals form an orthonormal basis Sk = ⟨ψm
k |ψm′

k ⟩ = δm,m′

Equation (2.13) becomes the solution of the static Schrödinger equation

Ĥk|un(k)⟩ = εn(k)|un(k)⟩ (2.15)

Here, the periodic Hamiltonian H is replaced by the Bloch Hamiltonian Hk, and
the Bloch wave functions are substituted with the Bloch states |um

n (k)⟩ where
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|un(k)⟩ =

,,,,,,,

u
(1)
n (k)

...
u
(m)
n (k)

...
u
(Nbasis)
n (k)

3333333
≡

(
u
(1)
n (k)

u
(2)
n (k)

)
(2.16)

Notice that the index n refers to the n-th eigenstate that is associated with the
energy band εn, while the index m denotes the sublattice component, which is
m = 2 for bismuth.
Consider the following orthogonality property, which plays a crucial role in the
geometric and topological characterization of Bloch bands in Section 2.7. While
the orthogonality of Bloch wave functions at different wave vectors k and k′ is
ensured by the plane-wave factors,

⟨ψk|ψk′⟩ = δk,k′

this is not generally true for the Bloch states,

⟨u(k)|u(k′)⟩ ̸= δk,k′

This lack of orthogonality enables the definition of an evolution for Bloch states
within a neighborhood in their associated Hilbert space when exploring the vicinity
of a specific wave vector in reciprocal space - something that is not possible for
the orthogonal Bloch wave functions. Calculating the matrix elements of Hk in
Equation 2.13 is one of the most demanding steps. We can split each matrix
element into the sum

⟨ψm
k |Ĥ|ψm′

k ⟩ = ⟨ψm
k |Ĥat|ψm′

k ⟩+ ⟨ψm
k |ΔU |ψm′

k ⟩ (2.17)

By substituting our solution from Equation (2.10) into the first term of Equa-
tion (2.17) - for brevity, we define ϕjm

n ≡ ϕn(r−Rj − δm), where the superscript
denotes only spatial dependencies and the subscript only energy-related ones - we
obtain the expression
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⟨ψm
k |Ĥat|ψm′

k ⟩ = 1

Nj

∑
j,j′,n,n′

cj∗n cj
′
n′e

ik(Rj′−Rj)⟨ϕj,m
n |Ĥat|ϕj′,m′

n′ ⟩

= c2nEn +
1

Nj

∑
j ̸=j′,n,n′

cj∗n cj
′
n′e

ik(Rj−Rj′ )En′⟨ϕj,m
n |ϕj′,m′

n′ ⟩

= c2nEn +
1

Nj

∑
j ̸=j′,n,n′

cj∗n cj
′
n′e

ik(Rj−Rj′ )En′αj,j′,m,m′
n,n′

(2.18)

The overlap integral between different atomic wave functions is given by

αn,n′ =

∫
dr ϕn(r−Rj − δm)

∗ϕn′(r−Rj′ − δm′) (2.19)

which corresponds to the matrix elements of Sk. These elements are set to zero,
as we neglect the (exponentially suppressed) overlap between atoms at different
lattice sites. Performing the same calculation for the second summand in (2.17)
we obtain

⟨ψm
k |ΔU |ψm′

k ⟩ = 1

Nj

∑
j,j′,n,n′

cj∗n cj
′
n′e

ik(Rj′−Rj)⟨ϕj,m
n |ΔU |ϕj′,m′

n′ ⟩ (2.20)

=
∑
n,n′

c∗ncn′⟨ϕj,m
n |ΔU |ϕj,m

n′ ⟩+ 1

Nj

∑
j ̸=j′,n,n′

cj∗n cj
′
n′e

ik(Rj′−Rj)⟨ϕj,m
n |ΔU |ϕj′,m′

n′ ⟩ (2.21)

=
∑
n,n′

c∗ncn′βn,n′ +
1

N

∑
j ̸=j′,n,n′

cj∗n cj
′
n′e

ik(Rj′−Rj)tn,n′ (2.22)

where tn,n′ denotes the transfer (hopping) integral, and βm,n represents a lattice
contribution

βn,n′ =

∫
dr ϕn(r)

∗ΔUϕn′(r) (2.23)

tn,n′(R) =

∫
dr ϕn(r−Rj − δm)

∗ΔUϕn′(r−Rj′ − δm′) (2.24)

The lattice contribution βn,n′ can be used as an additional fitting parameter.
However, because we assume that the perturbation ΔU is very small, βn,n′ is
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typically set to zero. Larger values of βn,n′ would imply a stronger perturbation,
for which the tight-binding formalism breaks down. We further assumed that
the electrons are tightly bound (localized), meaning their wave functions decay
rapidly with increasing distance |R|. This allows us to restrict the summation
in Equation (2.22) to a smaller finite range. For simple systems, summing over
only the nearest neighbors is often sufficient. In this work, however, we include
contributions up to the third-nearest neighbors.

In theory, the calculations are completed, but fitting experimental data to such an
extensive parameter space is challenging. The number of fitting parameters grows
with the inclusion of more orbitals and atoms in the unit cell. For bismuth, we use
one s orbital and three p orbitals per atom, with two atoms in the basis. When
including spin, the Hamiltonian becomes a 16× 16 matrix, resulting in 1

2
(16 · 16)

fitting parameters. Fortunately, there already exists a solution to this problem.

2.3.1 Slater-Koster Two-Center Approximation

In their famous paper from 1954 [30] Slater and Koster introduced an elegant
method to drastically reduce the number of fitting parameters. Instead of calcu-
lating every individual two center integral

tn,n′ = ⟨ϕj,m
n |ΔU |ϕj′,m′

n′ ⟩ (2.25)

from Equation 2.22, we can express it as a linear combination of σ and π bonds,
corresponding to their respective bonding directions, as illustrated in Figure 2.4.

In order to express (2.25) as a linear combination of the bonds σ and π, we need
to project |ϕn⟩ onto {|ϕn,σ⟩ , |ϕn,π⟩} using the projector

-Pn = |ϕn,σ⟩ ⟨ϕn,σ|+ |ϕn,π⟩ ⟨ϕn,π| (2.26)

and take the resulting ⟨ϕm,σ|ΔU |ϕn,σ⟩, ⟨ϕm,π|ΔU |ϕn,π⟩ as new fit parameters.
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Figure 2.4: (a) Illustration showing how the overlap between two p orbitals can be
represented as a linear combination of σ and π bonds. (b) Schematic depitction of the
used set of orbitals. The color denotes the sign of the wavefunction (blue for positive
and red for negative). The s orbital doesn’t change in sign. Adapted from Ref. [7].

Mixed terms like ⟨ϕm,σ|ΔU |ϕn,π⟩ are zero due to symmetry. The result reads as

⟨ϕm|ΔU |ϕn⟩ = ⟨ϕm|P̂mΔUP̂n|ϕn⟩
= ⟨ϕm|ϕm,σ⟩⟨ϕm,σ|ΔU |ϕn,σ⟩⟨ϕn,σ|ϕn⟩
+ ⟨ϕm|ϕm,π⟩⟨ϕm,π|ΔU |ϕn,π⟩⟨ϕn,π|ϕn⟩

= aVmnσ + bVmnπ

(2.27)

where a and b are known constants, calculated by the projection of atomic orbitals
onto the bonding-orbitals. Vmnσ & Vmnπ are the new fit parameters [7]. The ad-
vantage is that the parameters Vmnσ & Vmnπ only depend on the distance between
sites, but not on the direction, which removes the dependence of the direction of
the fitting parameter. This allows us to set one Vmni for each neighbor-distance.
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2.4 Symmetries and Spin-Orbit Coupling

The following section is based on the lecture notes "Introduction to Quantum
Mesoscopic Transport and Topological Matter" by Prof. Mark Oliver Goerbig [10],
which were kindly provided to the author. His lecture notes offer an excellent
introduction to the topic of topological matter.

2.4.1 Kramer’s Theorem and Time-Reversal Symmetry

Kramer’s theorem states that electrons, or more generally fermions with half-
integer spin, occur in pairs in time-reversal systems.

Let’s briefly review the fundamental properties of time-reversal symmetry. Under
time reversal, time t transforms as t → −t, while position r remains unchanged,
r → r. In quantum systems, these quantities correspond to observables, which
are represented by Hermitian operators that act on states within a Hilbert space.
Consequently, transformations, including time reversal, are also represented by
operators, which act on these observables.
Under a time-reversal transformation T , an observable O and its corresponding
eigenstate |ψ⟩ transform as follows

O′ = TOT−1

|ψ′⟩ = T |ψ⟩
(2.28)

If we let T act on the spin-1/2 Bloch bands described by the time-reverse symmetric
Hamiltonian H(k, s), where k denotes the crystal momentum of the electrons and
s =↑, ↓ the spin orientations, we find

TH(k, ↑)T−1 = H(−k, ↓) = H(k, ↑)
T |ψ(k, ↑⟩ = |ψ(−k, ↓⟩

(2.29)
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Figure 2.5: Illustration of Kramer’s theorem for bands with a time-reverse-symmetric
Hamiltonian. Generally, the two fold degeneracy is lifted, with exception of the time-
reversal-invariant-momenta (TRIM), where the two spin branches (blue for spin up ↑ and
red for spin down ↓). The TRIM are the Γ and points G/2 at the edge of the Brillouin
zone. The branches respect the symmetry E(k, ↑) = E(−k, ↓). From Ref. [10].

As a consequence, the eigenstates |ψ(k, ↑⟩ and |ψ(−k, ↓⟩ yield the same energy,

E(k, ↑) = E(−k, ↓) (2.30)

This symmetry is depicted in Figure 2.5, where the energy bands are generally split
and the two-fold degeneracy is lifted. However, there are special points - called
time-reversal-invariant-momenta (TRIM) - within the first Brillouin zone, where
the bands are necessarily twofold degenerate. One obvious point is the Γ point at
k = 0, where E(0, ↑) = E(0, ↓). We can generalize this fact by recalling that the
spectrum is periodic in reciprocal space and that two points are equivalent if they
are related by the reciprocal lattice vector G,

k → k+G, E(k, s) = E(k+G, s) (2.31)

The bands have crossing points at the wave vectors

kTRIM = −kTRIM +G ⇔ kTRIM =
G

2
(2.32)

which equals to the edge of the Brillouin zone.
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2.4.2 Spin-Orbit Coupling and Inversion Symmetry

In order to lift the spin degeneracy as described and let the spin-up electrons
move differently in the crystal than spin-down electrons, we need to introduce
a spin-dependent hopping parameter to our total tight-binding Hamiltonian in
Equation (2.7). This is achieved by considering spin-orbit coupling (SOC).

An electron with crystal momentum k⃗ moving in an electric field E⃗ caused by
atomic nuclei, experiences a internal magnetic field B⃗int in its rest frame

B⃗int ∝ E⃗ × k⃗ (2.33)

The energy of a magnetic moment µ⃗ in a magnetic field is given by

H = −µ⃗ · B⃗int (2.34)

where µ⃗ = 1
2
gµBσ⃗. This leads to

HSOC ∝ σ⃗ · (E⃗ × B⃗int) = σ⃗ · (∇⃗V × B⃗int) (2.35)

where σ⃗ = (σ̂x, σ̂y, σ̂z) denotes the spin orientation of the moving electron. We
assume that the atomic potential is spherically symmetric and we can use

∇⃗V =
∂V

∂r

r⃗

r
(2.36)

Substituting this expression into (2.35), we can rewrite the Hamiltonian

HSOC ∝ 1

r

∂V

∂r
σ⃗ · (r⃗ × k⃗) = λSOC

(
σ⃗ · L⃗

)
(2.37)

where we used the definition of the angular momentum L⃗ = r⃗× k⃗ and introduced
the spin-orbit coupling strength λSOC as an additional fitting parameter. A detailed
derivation of the matrix elements for the SOC Hamiltonian is provided in Appendix
5.1, where each step of the calculation is elaborated for clarity.
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The SOC Hamiltonian respects the time-reversal symmetry, given by THSOCT
−1 =

HSOC, because it is proportional to the product of the electron spin and angular
momentum, both of which are odd under the time-reversal transformation, while
the atomic potential V remains even.

The coupling strength λSOC increases with heavier atoms due to the dependence
of the atomic potential gradient V on the atomic number Z. Although bismuth
exhibits a very large SOC coupling (λSOC = 1.5 eV), no band splitting is observed
in bulk calculations [21]. This lack of splitting is a direct consequence of bulk
inversion symmetry [15], as discussed in Section 2.1. In systems with inversion
symmetry the energy at point k⃗ is equal to the energy at point −k⃗ without influ-
encing the electrons spin s

E(k⃗, s) = E(−k⃗, s) (2.38)

Combining time-reversal symmetry and inversion symmetry, we end up with

Time reversal symmetry´ ´´ ´
E(k, ↑) = E(−k, ↓) = E(−k, ↓) = E(k, ↓)´ ´´ ´

Inversion symmetry

(2.39)

resulting in bands without spin splitting. A detailed analysis of spin-orbit splitting
on surfaces, where the inversion symmetry is broken, will follow in Section 2.6.2.

2.4.3 Zeeman Effect

The fact that each energy band is doubly degenerate makes a numerical analysis
of spin projections along a specific path in the Brillouin zone impossible. In the
numerical analysis, each band appears with a non-continuous spin flipping.

We can circumvent this issue by applying an artificial external magnetic field to
compensate for the not occurring spin-orbit (SOC) splitting, as depicted in Figure
2.6. In reality, this could be achieved by depositing Bi onto a magnetic substrate,
such as Ni. The following derivation is adapted from Griffiths’ book "Introduction
to quantum mechanics" [11].

20



Figure 2.6: Spin projection onto the ẑ-axis of the valence band along an arbitrary path
before (left) and after (right) applying a weak external magnetic field B⃗ext. Although
spin-orbit coupling (SOC) is taken into account, the band remains two-fold degenerate
due to bulk inversion symmetry. This is reflected in the non-continuous spin flipping.
The degeneracy is lifted when a magnetic field is applied, leading to a continuous spin
change along the path.

When an atom is placed in a uniform external magnetic field B⃗ext, the electron
experiences an energy shift

Hz = −(µ⃗l + µ⃗s) · B⃗ext (2.40)

where µ⃗s = −(e/m)S⃗ is the magnetic moment of the electrons spin and µ⃗l =

(e/2m)L⃗ the magnetic moment corresponding to its orbital motion, which leads
to

Hz =
e

2m
(L⃗+ 2S⃗) · B⃗ext (2.41)

In case the external magnetic field is much smaller than the internal field,
B⃗ext ≪ B⃗int, the Zeeman effect can be viewed as a small perturbation to HSOC in
Equation (2.37).
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Weak-Field Zeeman Effect

Figure 2.7: In
the presence of
SOC, L⃗ and S⃗ are
not individually
conserved. They
precess around
the conserved
total angular
momentum J⃗ .

When the external magnetic field B⃗ext is much smaller than the
internal magnetic field B⃗int, the appropriate quantum numbers
are n, l, j, and mj. However, ml and ms are no longer good
quantum numbers because, due to spin-orbit coupling (SOC),
the orbital angular momentum L⃗ and spin angular momentum S⃗

are not conserved independently. Using first-order perturbation
theory, the Zeeman correction to the energy is given by

⟨n, l, j,mj|ĤZ |n, l, j,mj⟩ = e

2me

B⃗ext · ⟨L⃗+ 2S⃗⟩ (2.42)

To find the expectation value we need to simplify this expres-
sion, using the identity

L⃗ = J⃗ − S⃗ ⇒ L⃗+ 2S⃗ = J⃗ + S⃗ (2.43)

which allows us to express the Zeeman correction in terms of the total angular
momentum operator J⃗ and S⃗, eliminating L⃗ from the expression. Although we do
not directly know the expectation value of S⃗, it can be determined as follows: Since
L⃗ and S⃗ precess (see Figure 2.7) around the vector of total angular momentum J⃗ ,
the time-averaged expectation value of S⃗ is simply its projection along J⃗

S⃗average =
J⃗ · S⃗
J2

J⃗ (2.44)

To find J⃗ · S⃗, we square the identity for L⃗ from (2.43):

L2 = J2 + S2 − 2J⃗ · S⃗,
⇒ J⃗ · S⃗ =

1

2
(J2 + S2 − L2).

(2.45)
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From which follows

⟨J⃗ + S⃗⟩ = ⟨
(
1 +

J⃗ · S⃗
J2

)
· J⃗⟩ = ⟨

(
1 +

Ĵ2 + Ŝ2 − L̂2

2Ĵ2

)
· J⃗⟩ (2.46)

=

[
1 +

j(j + 1) + 3/4− l(l + 1)

2j(j + 1)

]
⟨J⃗⟩ (2.47)

The term in the square brackets is called Landè g-factor, gj. If we now choose
the ẑ-axis along which we apply the magnetic field B⃗ext = (0, 0, B⃗ext

z ), we can
immediately calculate the zeemann correction

EZ = µBgjB
ext
z mj (2.48)

where µB = eℏ/2m = 5.788 × 10−5eV/T is the Bohr magneton and mj is the
expectation value of the total angular momentum projected onto the ẑ-axis. A
detailed derivation of the matrix elements for the Zeeman Hamiltonian is provided
in Appendix 5.2, where each step of the calculation is elaborated for clarity.

To apply this approach, we must estimate what constitutes a weak magnetic field.
Consider an electron orbiting the nucleus, generating a magnetic field due to the
resulting current. The magnetic field, B, at a distance r from the nucleus is given
by:

B =
1

4πϵ0

e

mc2r3
L (2.49)

where e is the electron charge, m is the electron mass, c is the speed of light, and
L represents the angular momentum of the electron.
To estimate the magnitude of B, we substitute the Bohr radius, r = a0, and set
L = ℏ, obtaining B ≈ 12T. In comparison, Earth’s magnetic field, B = 10−4 T,
is much smaller. Thus, Earth’s magnetic field can be considered a weak external
field, which will be used for the further analysis.
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2.5 Basis Change

To carry out calculations on bulk and surface bismuth, we must first note that
the Hamiltonian for the spin-orbit coupling (SOC), HSOC, and the Hamiltonian
for the Zeeman correction, HZ , are defined in different Hilbert spaces from the
tight-binding Hamiltonian, HTB.

While the tight-binding Hamiltonian is defined based on real atomic wave func-
tions, the SOC Hamiltonian uses complex atomic wave functions as its basis and
the Zeeman Hamiltonian is defined using total angular momentum eigenstates as
its basis.

These differences in basis make it necessary to perform a basis transformation
on HSOC and HZ to align them with the basis of HTB. This transformation is a
standard problem in linear algebra, which we solve by expressing vectors of the
old basis bj ∈ B in terms of vectors in the new basis b′

i ∈ B′

bj =
n∑

i=1

tijb
′
i (2.50)

where each element bj is mapped through a linear combination of b′
i. The coeffi-

cients t1j, . . . , tnj form the j-th column of the change-of-basis matrix

TB
B′ =


t11 · · · t1j · · · t1n
... . . . ... . . . ...
tn1 · · · tnj · · · tnn

 (2.51)

Its inverse
(
TB
B′
)−1

= TB′
B describes the change of basis from B′ back to B. Our

approach is as follows: we first transform the basis of HZ to match that of the
SOC Hamiltonian and add it to HSOC. Then, we perform a basis transformation
on this combined Hamiltonian to align it with the basis of HTB, resulting in the
final Hamiltonian:

H = HTB + T nlm
xyz ·

(
HSOC + T J

nlm ·HZ · (T J
nlm

)−1
)
· (T nlm

xyz

)−1 (2.52)
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2.5.1 Clebsch-Gordan Coefficents

In the first step, we focus on the expression

T J
nlm ·HZ · (T J

nlm

)−1 (2.53)

from Equation (2.52), where we aim to express the matrix elements of the Zeeman
correction in terms of complex atomic wave functions.

For the basis of HZ , we have chosen the eigenstates of the total angular momentum,
|n, l, j,mj⟩, which we will abbreviate as |j,m⟩ for simplicity.
In the basis of complex atomic wave functions , the electron has a defined orbital
angular momentum l = 1, 2 (6s and 6p orbitals) and a fixed spin s = 1/2. We
denote the eigenstates of this basis as |n, l,ml, s,ms⟩, or simply |ml,ms⟩, where
−l < ml < l and −s < ms < s.

As stated in Equation (2.50), we want to express a vector |j,m⟩ as a linear com-
bination of |ml,ms⟩ to find the coefficients for the transformation matrix. This is
achieved using the projection P̂

P̂ =
l∑

ml=−l

s∑
ms=−s

|ml,ms⟩ ⟨ml,ms| (2.54)

where we derive

|j,m⟩ =
l∑

ml=−l

s∑
ms=−s

⟨ml,ms|j,m⟩ |ml,ms⟩ =
l∑

ml=−l

s∑
ms=−s

C(j,m|ml,ms) |ml,ms⟩

(2.55)

The coefficients C(j,m|ml,ms), referred to as Clebsch-Gordan coefficients, are the
same as those defined in Equation (2.51).
To construct this linear combination of eigenstates, we will use the properties of
the operators Ĵ , L̂, and σ̂, as well as the ladder operators L̂± and σ̂±, which
were previously used to calculate the matrix elements of the SOC Hamiltonian in
Section 5.1.
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We will use the following relations:

L̂2|ml,ms⟩ = l(l + 1)|ml,ms⟩, L̂z|ml,ms⟩ = ml|ml,ms⟩ (2.56)

σ̂2|ml,ms⟩ = s(s+ 1)|ml,ms⟩, σ̂z|ml,ms⟩ = ms|ml,ms⟩ (2.57)

as well as

L̂± |ml,ms⟩ =
√
l(l + 1)−ml(ml ± 1) |ml ± 1,ms⟩

σ̂± |ml,ms⟩ =
√
s(s+ 1)−ms(ms ± 1) |ml,ms ± 1⟩

(2.58)

L̂z |ml,ms⟩ = ml |ml,ms⟩
σ̂z |ml,ms⟩ = ms |ml,ms⟩

(2.59)

Calculating the Clebsch-Gordan Coefficients

Starting from the extremal state, defined by Ĵ+|jmax,mmax⟩ = 0

with Ĵ+ = L̂+ + σ̂+, we have a well defined relation of the eigenstates in the two
Hilbert spaces

|jmax,mmax⟩ = |ml = l,ms = s⟩ (2.60)

with eigenvalues:

Ĵz |jmax,mmax⟩ = (L̂z + σ̂z) |ml = l,ms = s⟩
= (l + s) |ml = l,ms = s⟩
= (l + s) |jmax,mmax⟩
= mmax |jmax,mmax⟩

(2.61)

and
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Ĵ2 |jmax,mmax⟩ = (L̂+ σ̂)2 |ml = l,ms = s⟩
= (L̂2 + σ̂2 + 2L̂ · σ̂) |ml = l,ms = s⟩
= (L̂2 + σ̂2 + L̂+σ̂− + L̂−σ̂+ + 2L̂zσ̂z)|ml = l,ms = s⟩
= (L̂2 + σ̂2 + 2L̂zσ̂z)|ml = l,ms = s⟩
= (l(l + 1) + s(s+ 1) + 2ls) |jmax,mmax⟩
= (l + s) ((l + s+ 1)) |jmax,mmax⟩
= jmax(jmax + 1) |jmax,mmax⟩

(2.62)

where we derive the important relations mmax = l + s and jmax = l + s.

The state |jmax,mmax − 1⟩ = |l + s, l + s− 1⟩ can be obtained by applying Ĵ−:

Ĵ−|j,m⟩ =
√

j(j + 1)−m(m− 1)|j,m− 1⟩ (2.63)

⇒ Ĵ−|jmax,mmax⟩ =
√

2(l + s)|jmax, jmax − 1⟩ (2.64)

Using Ĵ− = L̂− + σ̂−, we find

Ĵ−|jmax, jmax⟩ = (L̂− + σ̂−)|ml = l,ms = s⟩
=

√
2l|ml = l − 1,ms = s⟩+

√
2s|ml = l,ms = s− 1⟩

(2.65)

Comparing the coefficients of Equation (2.64) and Equation (2.65) we find

|jmax, jmax − 1⟩ =
√

l

l + s
|ml = l − 1,ms = s⟩+

√
s

l + s
|ml = l,ms = s− 1⟩

We continue this procedure repeatedly until we achieve m = −jmax. This approach
enables us to determine all necessary coefficients for

|jmax,m⟩, −jmax ≤ m ≤ jmax (2.66)
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Next, we want to find the states |jmax − 1,m⟩ where −|jmax − 1| ≤ m ≤ jmax − 1.
Through m = ml +ms, we see that the maximum value m = jmax − 1 = l + s− 1

must be a linear combination of |ml = l,ms = s − 1⟩ and |ml = l − 1,ms = s⟩.
This state must be orthogonal to |jmax, jmax − 1⟩. We write the state as

|jmax − 1, jmax − 1⟩ = α|ml = l − 1,ms = s⟩+ β|ml = l,ms = s− 1⟩, (2.67)

with the normalization condition |α|2 + |β|2 = 1. Calculating the inner product
with |jmax, jmax − 1⟩, we find

0 = ⟨jmax, jmax − 1|jmax − 1, jmax − 1⟩ = α

√
l

l + s
+ β

√
s

l + s
(2.68)

Solving for α and β using the orthogonality condition together with the normal-
ization condition, we obtain:

α =

√
s

l + s
, β = −

√
l

l + s
(2.69)

Thus, we can express the state |jmax − 1, jmax − 1⟩ as

|jmax − 1, jmax − 1⟩ =
√

s

l + s
|ml = l − 1,ms = s⟩ −

√
l

l + s
|ml = l,ms = s− 1⟩

From this state, we can obtain all other states |jmax−1,m⟩ by applying the lowering
operator J− as before, where

−(jmax − 1) ≤ m ≤ (jmax − 1) (2.70)

Following the same procedure, we calculate the states |jmax − 2,m⟩, and so on.
After several iterations, we reach j = jmin, at which point the constructed states
span the entire Hilbert space.
An explicit calculation of the Clebsch-Gordan coefficients for the transformation
matrix is provided in Appendix 5.3.1, where each step of the calculation is detailed
for clarity.
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2.5.2 From Complex to Real Atomic Wave Functions

After the transformation of the Zeeman correction into the basis of complex atomic
wave functions, we can address the term

T nlm
xyz ·HSOC · (T nlm

xyz

)−1 (2.71)

from Equation (2.52). Now we must find the transformation T nlm
xyz from the com-

plex atomic wave functions ψn,l,mχms = |n, l,ml,ms⟩ to real atomic wave functions.
In this context, we represent the spin-dependent component of the wave function
by χ. The basis for our complex wave functions was defined as follows

BSOC =
{|s, 0, 1

2
⟩ , |s, 0, -1

2
⟩ , |p, -1, 1

2
⟩ , |p, 0, 1

2
⟩ , |p, 1, 1

2
⟩ , |p, -1, -1

2
⟩ , |p, 0, -1

2
⟩ , |p, -1, -1

2
⟩}

where we have omitted the principal quantum number n = 6 for brevity. Following
the Condon-Shortley phase convention [9] the relation between complex and real
atomic orbital functions is given by

ψreal
nlm =

������������

i√
2

(
ψn,ℓ,−|m| − (−1)mψn,ℓ,|m|

)
for m < 0

ψn,ℓ,|m| for m = 0

1√
2

(
ψn,ℓ,−|m| + (−1)mψn,ℓ,|m|

)
for m > 0

(2.72)

For the 6s-orbitals the relation is trivial, since l = ml = 0

ψ6,0,0χms = ψreal
6,0,0χms

:= |s,ms⟩ (2.73)

For the 6p-orbitals, the real wave functions are defined as follows

ψreal
6,1,0χms = ψ6,1,0χms

:= |pz,ms⟩
ψreal
6,1,1χms =

1√
2
(ψ6,1,−1 − ψ6,1,1)χms

:= |px,ms⟩

ψreal
6,1,−1χms =

i√
2
(ψ6,1,−1 + ψ6,1,1)χms

:= |py,ms⟩
(2.74)
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Here we define our new basis in real atomic wave functions

BTB =

{
|s, 1

2
⟩, |s, -1

2
⟩, |px, 1

2
⟩, |py, 1

2
⟩, |pz, 1

2
⟩, |px, -1

2
⟩, |py, -1

2
⟩, |pz, -1

2
⟩
}

From equations (2.73) and (2.74), the coefficients of the corresponding eigenstates
can be arranged as column vectors in a matrix. As described in Equation (2.51),
this yields the inverse of the (sub-)transformation matrix

(
tnlmxyz

)−1
=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0
√

1
2

i√
2

0 0 0 0

0 0 0 0 1 0 0 0

0 0 -
√

1
2

i√
2

0 0 0 0

0 0 0 0 0
√

1
2

i√
2

0

0 0 0 0 0 0 0 1

0 0 0 0 0 -
√

1
2

i√
2

0



��������������������������������´ ´´ ´
Coefficients of |l,ml,ms⟩



|s, 0, 1
2
⟩

|s, 0, -1
2
⟩

|p, -1, 1
2
⟩

|p, 0, 1
2
⟩

|p, 1, 1
2
⟩

|p, -1, -1
2
⟩

|p, 0, -1
2
⟩

|p, 1, -1
2
⟩


(2.75)

Consequently, by inverting
(
tnlmxyz

)−1 the (sub-)transformation is given as

⇒ tnlmxyz =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0
√

1
2

0 -
√

1
2

0 0 0

0 0 - i√
2

0 - i√
2

0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0
√

1
2

0 -
√

1
2

0 0 0 0 0 - i√
2

0 - i√
2

0 0 0 0 0 0 1 0


(2.76)

30



Expanding the matrix to account for the second atom in the unit cell, we find

T nlm
xyz =

[
tnlmxyz 0

0 tnlmxyz

]
(2.77)

Using the transformation matrix, we can convert the spin-orbit coupling matrix
hSOC from Equation (5.11). The explicit matrix representation of hSOC in the
basis of real atomic wave functions is given by

tnlmxyz · hSOC · (tnlmxyz

)−1
=

λ

2
·



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −i 0 0 0 1

0 0 i 0 0 0 0 −i

0 0 0 0 0 −1 i 0

0 0 0 0 −1 0 i 0

0 0 0 0 −i −i 0 0

0 0 1 i 0 0 0 0


xyz

(2.78)

Including the second atom in the unit cell, we derive

HSOC =

[
hSOC 0

0 hSOC

]
xyz

(2.79)
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2.6 Modeling and Tight-Binding Calculations

2.6.1 Infinite Bismuth Crystal (Bulk)

We are now fully equipped to perform the tight-binding calculations for the elec-
tron energy band structure of bulk bismuth. By applying the procedures outlined
above to the crystal structure of bismuth, as described in Section 2.1, we construct
the tight-binding matrix for the bulk crystal.

In doing so, we follow the formulations and notations provided by Liu and Allen
[21]. Their model, which employs a third-neighbor tight-binding approach includ-
ing spin-orbit coupling, has proven highly successful in describing the electronic
properties of Bi and Sb. This model reproduces the key features near the Fermi
surface that are critical for describing the small overlap between the valence and
conduction bands.

The inclusion of interactions up to third neighbors is necessary for two important
reasons. First, the combination of first- and second-neighbor interactions is re-
quired to properly capture the symmetries of the system, particularly the bonding
between the [1, 1, 1] bilayers. Second, the distances d1 and d2 between neighboring
atoms are very similar (see Table 2.1), making the second-neighbor interaction
significant. Since only the s- and p-orbital states contribute to the valence and
conduction bands, we limit the basis to these orbitals. The basis set we use to
represent the matrix is given by:

BTB =
{|si, ↑⟩, |si, ↓⟩, |pix, ↑⟩, |piy, ↑⟩, |piz, ↑⟩, |pix, ↓⟩, |piy, ↓⟩, |piz, ↓⟩}

Here, i = 1, 2 refers to the two atoms in the unit cell, and ms = ±1/2 ≡ ↑, ↓
denotes the spin states. Using this set of basis vectors, we introduce four Slater-
Koster parameters - Vssσ, Vspσ, Vppσ, Vppπ - for each neighbor interaction and the
on-site energies Es, Ep. Including the spin-orbit coupling parameter λSOC, this
results in a total of 15 parameters. The values of the tight-binding parameters are
provided in Table 2.3.

32



Es Ep λSOC

On-site energies -10.906 -0.486 1.5

Hopping parameters Vssσ Vspσ Vppσ Vppπ

1st -0.608 1.320 1.854 -0.600

2nd -0.384 0.433 1.396 -0.344

3rd 0 0 0.156 0

Table 2.3: Tight-binding parameters in [eV ] for Bi. From Ref. [21]

Using the primitive vectors a1, a2, a3 and the displacement vector d1 from Section
2.1, we can now construct the total 16× 16 Hamiltonian matrix

H = HTB +HSOC =

[
HAA HAB

HBA HBB

]
(2.80)

with HAA = HBB and HAB = H†
BA. The matrix HAB includes all contributions

from the first and second neighbors of the central atom, while HAA encompasses
contributions from the third neighbors, along with the eigenenergies εi and spin-
orbit coupling. This can be formulated as follows

HAA =
3rd NN∑

i

hi
AA + δijεj + hSOC

HAB =
1st NN∑

i

hi
AB−1´ ´´ ´

:=HAB−1

+
2nd NN∑

i

hi
AB−2´ ´´ ´

:=HAB−2

(2.81)
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Figure 2.8: Left: Schematic representation of the interactions in bulk Bi. Right: Same
as left but from the top view.

Figure 2.8 depicts a schematic representation of all the interactions in the bulk
crystal. The explicit elements of the 8 × 8 matrices HAA and HAB can be found
in the Appendix 5.4. By determining the factors introduced in the Appendix for
each k = (kx, ky, kz) and diagonalizing the matrix H, the electronic band structure
of a Bi single crystal can be calculated.

As explained in Section 2.4, this Hamiltonian does not account for surface effects,
as it is based on an infinite crystal model. Consequently, no spin-split bands are
observed due to the absence of inversion-symmetry breaking. To address this, a
symmetry-breaking term must be added to the total Hamiltonian to reveal spin-
split Bloch bands.
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2.6.2 Thin Bismuth Film

To analyze the surface effects of a thin bismuth film, we exploit the bilayered
structure of its crystal. This structure arises due to the arrangement of Bi atoms,
where the first-neighbor distance along the ẑ-direction (1.59Å) is smaller than the
second-neighbor distance (2.39Å).

The Hamiltonian introduced by Liu and Allen is decomposed into three parts
based on neighbor contributions [26], as illustrated in Figure 2.9. Each layer
consists of a central atom and its six third-nearest neighbors.

To describe the system, the Hamiltonian can be expressed as follows:

• In-plane interaction: Each layer includes an in-plane interaction term,
which appears along the diagonal of the total Hamiltonian. This term cor-
responds to Hplane = HAA from Liu and Allen’s formulation (Section 2.6.1)
and includes the spin-orbit coupling.

• Interlayer and intralayer coupling: The off-diagonal elements couple the
layers within the bilayer structure. The term HAB from Liu and Allen is split
into:

1. Intralayer interaction, Hintra = HAB−1, accounting for first-neighbor
contributions.

2. Interlayer interaction, Hinter = HAB−2, including second-neighbor con-
tributions.

To construct the total Hamiltonian, we begin with the topmost layer and couple
it to the next layer using the intralayer interaction HAB−1. The subsequent layer,
which forms an adjacent bilayer, is then coupled via the interlayer interaction
HAB−2. It is important to note that the second-neighbor interaction is defined in
the positive C3 = ẑ = (111) direction (see Figure 2.9). To extend this interaction
into the negative direction, we use its hermitian conjugate (daggered expression).
By repeating this process, we construct the total Hamiltonian layer by layer.
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Figure 2.9: Schematic representation of the bilayer (BL) structure of bismuth along
the (111) direction, highlighting the interactions within this arrangement. The central
atom (at origin) forms parallel planes with its six third-nearest neighbors (blue). The
bilayer structure arises from the differing distances to its neighbors. The first-neighbor
atoms are closer and contribute to forming the bilayer. The second-neighbor atoms are
located in the adjacent bilayer. The interactions within this structure are represented
by green lines: HAA corresponds to in-plane interactions, HAB−1 describes intra-layer
interactions, and HAB−2 accounts for inter-layer interactions. Note that HAB−2 acts in
the positive ẑ = (111) - direction.

The total Hamiltonian for a thin film containing N bilayers is represented as a
16N × 16N matrix:

H =



HAA HAB−1

H†
AB−1 HAA H†

AB−2

HAB−2 HAA HAB−1

. . . . . . . . .

HAB−2 HAA HAB−1

H†
AB−1 HAA


(2.82)

where HAA represents the in-plane interaction, and HAB−1 and HAB−2 describe
the intralayer and interlayer couplings, respectively. The Hamiltonian is now a
function of k = (kx, ky), as the loss of translational symmetry in the ẑ-direction
modifies the k-space description accordingly.
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2.6.3 The Bychkov-Rashba Effect and its Tight-Binding

Formulation

The Bychkov-Rashba model [5] qualitatively explains the lifting of spin degeneracy
in a two-dimensional (2D) electron gas caused by a perpendicular electric field.
The effect arises when an electric field, typically caused by structural asymmetry,
such as surfaces or interfaces, interacts with an electron’s spin via spin-orbit cou-
pling.

Building on the work of Petersen and Hedegård [25], Ast and Gierz [2] derived
an sp-tight-binding formulation for the Bychkov-Rashba effect in two-dimensional
systems. In this context, surface atoms experience a potential gradient ξ along the
ẑ-direction. The absence of inversion symmetry ensures the electric field interacts
asymmetrically with electronic states, producing the Rashba effect.
The effect can be described by the additional Hamiltonian:

Hξ = ξz = Honsite
ξ +Hneigh

ξ (2.83)

where the contributions are divided into an on-site term, Honsite
ξ , and a nearest-

neighbor term, Hneigh
ξ .

On-site Contribution of Hξ

The matrix elements for the on-site Hamiltonian are given by:

[
Honsite

ξ

]
ij
= ⟨ψj|ξz|ψi⟩ = ξ⟨ψj|r cos θ|ψi⟩ ∝ ⟨ψj|rY 0

1 (θ, φ)|ψi⟩ (2.84)

In the last step, we used the relationship cos θ =
√

4π
3
Y 0
1 (θ, φ), which expresses

the cosine function in terms of spherical harmonics. This allows the angular part
of the integrals to be expressed using Gaunt coefficients [8].
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The properties of the Gaunt coefficients impose the following selection rules: the
matrix elements are nonzero only when Δl = ±1 and Δm = 0. Furthermore,
orbitals with m ̸= 0 are linear combinations of spherical harmonics (as shown
in Equation (2.72)). Consequently, even for some cases where Δm = 0, certain
matrix elements cancel out. With these selection rules, the only nonzero matrix
element is the spz-element.

We define the empirical parameter γsp for the spz interaction as

γsp = ξ⟨s|z|pz⟩ ≡ ξ

∫
drψ∗

s(r)zψpz(r) = −a0ξ
n∗(1 + 2n∗)

2
√
3(Z − s)

(2.85)

where n∗ is the effective principal quantum number, Z is the atomic number, s is
the screening charge, and a0 = 0.529Å is the Bohr radius (for details see Ref. [29]).
The increase with n∗ can be understood by the increasing spatial extension of the
wave function, so that it becomes more sensitive to the effects of the potential
gradient [2].

Nearest-Neighbor Contribution of Hξ

The matrix elements for the nearest-neighbor contribution are expressed as:

[
Hneigh

ξ

]
ij
=

n.n.∑
m

eikRmξ ⟨ψi|r cos θ|ψj(Rm)⟩ (2.86)

These integrals require numerical evaluation, even for simple hydrogen-like wave-
functions. However, we can identify nonzero matrix elements and their angular
dependence using directional cosines. For a true 2D system, as in bismuth layers,
the tight-binding matrix for the neighboring contribution in the basis:

BTB =
{|si, ↑⟩, |si, ↓⟩, |pix, ↑⟩, |piy, ↑⟩, |piz, ↑⟩, |pix, ↓⟩, |piy, ↓⟩, |piz, ↓⟩}
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is given by:

Hneigh
ξ =

n.n.∑
m

ξeikRm



0 0 0 0 γsp1 0 0 0

0 0 0 0 0 0 0 γsp1

0 0 0 0 uγpp1 0 0 0

0 0 0 0 vγpp1 0 0 0

γsp1 0 −uγpp1 −vγpp1 0 0 0 0

0 0 0 0 0 0 0 uγpp1

0 0 0 0 0 0 0 vγpp1

0 γsp1 0 0 0 −uγpp1 −vγpp1 0


(2.87)

where n.n. denotes the summation over next neighbors Rm = ai − aj, with
i ̸= j ∈ {1, 2, 3} that lie in the same plane as the central atom (see Section 2.1).
The parameters u and v are the directional cosines of the vector Rm along the x̂-
and ŷ-axes, respectively.

The parameters γsp1 and γpp1 are defined as

γsp1 = ⟨ψs,ms|z|ψpz(Rx),m
′
s⟩ ≡ δms,m′

s

∫
drψ∗

s(r)zψpz(r−Rm · êx)

γpp1 = ⟨ψpx ,ms|z|ψpz(Rx),m
′
s⟩ ≡ δms,m′

s

∫
drψ∗

px(r)zψpz(r−Rm · êx)
(2.88)

where Rx = Rm ·êx is the nearest neighbor distance in the x̂ direction. It should be
noted that matrix elements with different (same) parity between orbitals transform
even (odd) under the exchange of indices [2]

Eji(−Rm) = (−1)|l−l′+1|Eij(Rm) (2.89)
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Saito et al. used this formulation of the Bychkov-Rashba Hamiltonian from Equa-
tion (2.83) and added it to the uppermost and lowermost layer Hamiltonian HAA

from Equation (2.82) [26].

Note that for the lowermost layer, the Bychkov-Rashba Hamiltonian undergoes a
sign change due to the electric field pointing in the negative ẑ-direction. We derive
the final Hamiltonian

H =



HAA +Hξ HAB−1

H†
AB−1 HAA H†

AB−2

HAB−2 HAA HAB−1

H†
AB−1 HAA H†

AB−2

. . . . . . . . .

HAB−2 HAA HAB−1

H†
AB−1 HAA −Hξ


(2.90)

Saito et al. used solely the nearest-neighbor contributions while disregarding the
on-site contributions, successfully reproducing the surface band dispersion [26].
Their study utilized the empirical parameters γsp1 = 0.45 eV and γpp1 = −0.27 eV.
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2.7 Topological Matter

The following sections are closely based on the lecture notes "Introduction to
Quantum Mesoscopic Transport and Topological Matter" by Prof. Mark Oliver
Goerbig [10], which were kindly provided to the author. His lecture notes offer an
excellent introduction to the topic of topological matter.

So far we have reviewed the fundamental aspects of the band structure formed
by electrons in a periodic lattice, as determined by the underlying atomic crystal.
Bloch’s theorem in the context of the tight-binding formalism provides a frame-
work for deriving its spectrum, which consists of energy bands. These energy
bands can be interpreted as the energy levels of the tight-binding Hamiltonian,
varying continuously with the wave vector k. The wave vector serves as a good
quantum number due to the lattice’s discrete translational symmetry.

In addition to the valuable information typically associated with band structure,
Bloch bands also encode a distinct type of insight of geometric and topological
nature. This insight becomes particularly relevant when we focus on a single
band and vary the electron’s eigenstate adiabatically, ensuring no transitions
occur between bands. Despite this restriction, other bands remain present and
interact with the chosen band through a coupling described by the Berry curvature.

The Berry curvature, derived from the geometric phase acquired by the electron’s
wave function during adiabatic evolution, reveals profound topological properties.
A key quantity it provides is the Chern number, a topological invariant crucial for
understanding the phenomenon of topological matter.

In the following sections, we will develop the foundational concepts needed to
describe phase transitions from a topological perspective. These ideas will be
applied to relativistic electrons, known as massive Dirac fermions, which offer a
natural framework for qualitatively describing topological insulators.
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Figure 2.10: Illustration of the continuous deformation of a coffee mug into a doughnut

A natural question that arises in the context of topology in condensed matter is:
where does topology play a role in phase transitions? In mathematics, a well-
known example often used to illustrate topology is the equivalence of a doughnut
and a coffee mug. Mathematically, it is possible to continuously deform a doughnut
into the shape of a coffee mug without making any cuts, as illustrated in Figure
2.10. Both objects share a key characteristic: the number of holes. This property
is preserved during the deformation process, making it a topological invariant -
a quantity that remains unchanged (topologically protected) under continuous
transformations. Importantly, this invariant is an integer, as partial holes are not
possible.

In physics, phase transitions are often described using an order parameter. For
example, the phase transition in ferromagnets can be characterized by the total
magnetization M(r). Below a critical temperature Tc, microscopic magnetic mo-
ments align in such a way that the isotropy of the macroscopic magnetization
is broken, resulting in a net magnetization M(r) = M0. However, this order
parameter provides only a global description of the system. Locally, within small
regions of the system, deviations from the order parameter can occur.

Now, consider a simple 2D ferromagnet with a magnetic monopole at position r.
To describe this defect, we place a Gaussian surface around the monopole. In 2D,
this surface is a closed curve (loop) that encloses the defect. We map each vector
describing the evolution along the closed loop S1 to a corresponding vector of the
magnetization M(r). The magnetization vector, in turn, resides on another closed
curve S1

M (a unit circle representing the direction of the magnetization).
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Figure 2.11: Illustration of the mapping from the space S1 → S1
M : In (a), the green

loop encloses the defect, represented by a vortex, which is characterized by a non-zero
winding in (b). The brown loop in (a), on the other hand, can be continuously shrunk
to a point in (b), indicating zero winding. Meanwhile, the orange loop in (c) represents
an anti-vortex in (b), characterized by winding in the opposite direction.

Mathematically, we map one compact space (postion of r) to another compact
space (magnetization M)

M : S1
r → S1

M (2.91)

This mapping is also classified by an topological invariant integer π1(S
1
r ) = Z. We

can analyse this mapping by the illustration in Figure 2.11. The brown loop in
2.11(a) doesn’t enclose the defect. In the picture of the magnetization in 2.11(b)
the path doesn’t explore the unit circle and thus can be contracted to a single
point, which results in zero windings around the circle. The green path however
fully encloses the defect, which in the image of the circle S1

M equals a closed path
in a counter-clockwise direction. We can thus assign the integer +1, a so-called
vortex, to the loop. Analogously the loop from 2.11(c) encloses a anti-vortex with
the invariant −1. Notice that there are vortices larger/smaller than ±1. In this
case the topological defect covers the circle S1

M several times. The number of
windings corresponds exactly to the topological invariant π1(S

1
r ) = Z, analogous

to counting the number of holes in the doughnut-coffee mug analogy.
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2.7.1 Berry Phase, Connection and Curvature

The starting point of the discussion is the solution of our Bloch-Hamiltonian H(k),
the Bloch-states un(k) from Equation 2.15

Ĥ(k)|un(k)⟩ = εn(k)|un(k)⟩ (2.92)

We will now show that the eigenstates un(k) can be interpreted as maps from the
first Brillouin zone Kd - which is compact and isomorphic to a d-dimensional torus
due to the periodicity of the reciprocal lattice - to the compact space of spinor
states associated with the Hilbert subspace En of the n-th band

|un(k)⟩ : Kd → En (2.93)

The space of spinor states is compact as well, since Bloch states are inherently
periodic. We are particularly interested in the evolution of the states un(k) along
closed paths. Displacing the state by a small increment dk yields

|un(k+ dk)⟩ = |un(k)⟩+∇k |un(k)⟩ · dk ≡ |un(k)⟩+ |∇kun⟩ · dk (2.94)

We consider the adiabatic evolution of an electron along a closed path C in recipro-
cal space. This implies that the electron traverses the path over a sufficiently long
time T , ensuring that no transitions occur between the energy band of interest
and adjacent energy bands. The total evolution time T must satisfy:

T ≫ min[εi(k)− εj(k)]

ℏ
(2.95)

If the initial state at t = 0 is located at k0, then the wave function is given by

|ψ(t = 0)⟩ = |un(k0)⟩ (2.96)

At any later time, the state evolves as

|ψ(t)⟩ = eiγ(t)|un(k(t))⟩ (2.97)

The time evolution of the parametrized k-path is governed by the Schrödinger
equation
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Ĥ(k(t))|ψ(t)⟩ = iℏ
d

dt
|ψ(t)⟩ (2.98)

Expanding the right-hand side, we find

iℏ
d

dt
|ψ(t)⟩ = iℏ

[
γ̇|un(k(t))⟩+ k̇ · |∇kun(k(t))⟩

]
eiγ(t) (2.99)

The left-hand side becomes

Ĥ(k(t))|ψ(t)⟩ = eiγ(t)εn(k(t))|un(k(t))⟩ (2.100)

Multiplying both sides by ⟨un(k(t))|, we obtain

γ̇ = ik̇ · ⟨un(k(t))|∇kun(k(t))⟩ − 1

ℏ
εn(k(t)) (2.101)

Integrating this expression over the interval t = 0 to t = T , we find

γ(T )− γ(0) =

∫ T

0

dt k̇ · i⟨un(k(t))|∇kun(k(t))⟩ − 1

ℏ

∫ T

0

dt εn(k(t)) (2.102)

Using the parametrized path k(t), this can be rewritten as

γ(T )− γ(0) =

∫
C

dk · A⃗n(k)− 1

ℏ

∫ T

0

dt εn(k(t)) (2.103)

The second term represents the dynamic phase, which we no longer consider here.
The first term represents a geometric phase acquired during the evolution along
the closed path C. This geometric phase is known as the Berry phase

Γ(C) =

∫
C
dk · A⃗n(k) (2.104)
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Here, the integrand A⃗n(k) = i⟨un(k)|∇kun(k)⟩, known as the Berry connection,
resembles a vector potential, but in reciprocal space.

A natural question is whether there exists an analog of a "topological magnetic
field" in reciprocal space, derived from the curl of the Berry connection, and what
its meaning is. The answer is yes and it is known as the Berry curvature, defined
as

B⃗n(k) = ∇k × A⃗n(k) = i⟨∇kun| × |∇kun⟩ (2.105)

2.7.2 Chern Number

The Berry curvature enables the definition of a topological invariant. Drawing a
parallel to electromagnetism, we can compute the magnetic flux through the first
Brillouin zone, called the Berry flux

Φ(C) =
∫
C
dk · A⃗n(k) =

∫
K
d2k B⃗n(k) (2.106)

where C is a curve enclosing the first Brillouin zone K. Using Stokes’ theorem,
we transform the line integral to a surface integral. This transformation is valid
if a global gauge for the Berry connection can be defined. However, in non-trivial
cases, such a global gauge cannot be found. Singularities in the Berry connection,
analogous to magnetic monopoles, result in quantized flux through a closed surface
around the monopole

Φ(C) = 2πCn (2.107)

where Cn ∈ Z is the topological invariant called the Chern number. The Chern
number classifies topological phases and phase transitions. Since it is an inte-
ger, it cannot change continuously. In the next section, we apply this formalism
to massive Dirac fermions to identify the mechanisms driving topological phase
transitions and demonstrate its application to the bismuth crystal system.
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Figure 2.12: Band inversion at the L-point near the Fermi level: (a) shows the spin
projection along the ẑ-direction for the band structure of bulk Bi, calculated using the
tight-binding parameters provided by Liu and Allen [21]. By varying the parameter V ′

ssσ

from V ′
ssσ = −0.384 eV to V ′

ssσ = −0.210 eV, the gap parameter Δ = 0 vanishes, as shown
in (b). Further adjusting V ′

ssσ to V ′
ssσ = −0.150 eV [24] reopens the gap, resulting in the

same band gap as in (a) but with inverted bands.

2.7.3 Berry Curvature of a massive Dirac Fermion

We begin with a simple 2D two-band model, as most N -band systems can be
decomposed into multiple two-band subsystems. Consider the low-energy Hamil-
tonian for gapped graphene with a direct band gap of 2Δ at k = 0. In the vicinity
of the band gap the two bands are described by the Hamiltonian

Hξ(k) = ℏv(ξkxσx + kyσy) + Δσz =

(
Δ ξℏv(kx + iξky)

ξℏv(kx − iξky) −Δ

)
(2.108)

where ξ = ±1 is the valley index and v is the Fermi velocity. At k = 0, the
off-diagonal terms vanish, reducing the Hamiltonian to

H(k = 0) =

(
Δ 0

0 −Δ

)
(2.109)

Band Inversion

This formulation allows us to define band inversion, which occurs when the gap
parameter Δ changes sign, passing through Δ = 0. This value marks the topolog-
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ical phase transition, as we will now demonstrate.

It is worth noting that the Hamiltonian described in Equation (2.108) is highly
simplified. In practice, the gap parameter can have various sources.

Ohtsubo, Perfetti, and Görbig showed that by slightly modifying the tight-binding
parameter V ′

ssσ, the band structure for bulk Bi from Liu and Allen [21] can be
reproduced. This modification results in a band inversion at the L-point [24],
which is crucial to the emergence of the non-trivial topological phase in bismuth,
as we will demonstrate later. The band inversion of Bi is shown in Figure 2.12
illustrating the change of the parameter V ′

ssσ.

When comparing the simplified toy-model Hamiltonian in Equation (2.108) with
the Hamiltonian shown in Table 5.1, it becomes evident that V ′

ssσ also appears on
the main diagonal. However, it is not the sole contribution to this matrix element,
Vssσ also contributes to the matrix element driving the band inversion.

The Hamiltonian from Equation (2.108) can be rewritten as

Hξ(k) = ε(k)

(
cos θ ξ sin θe−iξφ

ξ sin θeiξφ − cos θ

)
(2.110)

where ε(k) =
√
Δ2 + ℏ2v2k2, k = |k|, and

cos θ =
Δ

ε(k)
, sin θ =

ℏvk
ε(k)

, tanφ =
ky
kx

(2.111)

From the Hamiltonian’s eigenstates

|||uξ
λ=+

<
=

(
cos θ

2

ξ sin θ
2
eiξφ

)
,

|||uξ
λ=−

<
=

(
−ξ sin θ

2
e−iξφ

cos θ
2

)
(2.112)
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we compute the Berry connection, A⃗λ,ξ(k) = i⟨uξ
λ(k)|∇ku

ξ
λ(k)⟩. Here λ = ±1

denotes the upper and lower branch of the energy band. The Berry connection
reads as

⟨uξ
+|∇ku

ξ
+⟩ = iξ sin2

(
θ

2

)
∇kφ, ⟨uξ

−|∇ku
ξ
−⟩ = −iξ sin2

(
θ

2

)
∇kφ (2.113)

Combining these expressions gives

A⃗λ,ξ(k) = −ξλ sin2

(
θ

2

)
∇kφ = −ξλ

2
(1− cos θ)∇kφ (2.114)

Using the Berry connection, we calculate the Berry curvature

B⃗λ,ξ(k) = ∇k × A⃗λ,ξ(k) =
λξ

2
∇k cos θ ×∇kφ (2.115)

From Equation (2.111), we compute ∇k cos θ and ∇kφ, leading to the Berry cur-
vature, which has only a ẑ-component

B⃗z
λ,ξ(k) = −λξ

2

ℏ2v2Δ
(Δ2 + ℏ2v2k2)3/2

= −λξ sgn(Δ)

2

λ2
c

(1 + λ2
ck

2)3/2
(2.116)

where we have defined the characteristic length

λC =
ℏv
|Δ| =

ℏ
mDv

(2.117)

The characteristic length has a very particular interpretation in the case of a
Dirac fermion: It is the Compton length of relativistic quantum mechanics in
condensed matter. The Compton wavelength is typically expressed as λ = h/m0c,
where m0 is the electron’s rest mass and c is the speed of light. A photon with
this wavelength has energy E = hc

λ
= m0c

2, which equals the rest energy of an
electron. This implies that a photon with this wavelength possesses enough energy
to create an electron-positron pair. In the context of condensed matter physics, the
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speed of light c is replaced by the Fermi velocity v. Thus, the analogous Compton
wavelength in condensed matter is given by λC = h

2mDv
, where mD is the effective

mass of the Dirac fermion. A photon with this wavelength has sufficient energy to
promote an electron to the conduction band, leaving behind a hole in the valence
band. Continuing to calculate the Berry flux to obtain the Chern number we find

Γ(k) =

∫
|k′|≤k

d2k′B⃗λ,ξ(k) = −λξ sgn(Δ)

2
2πλ2

C

∫ k

0

dk′k′ 1

(1 + λ2
Ck

′2)3/2

= −λξ sgn(Δ)π

(
1− 1√

1 + λ2
Ck

2

) (2.118)

We compute the Berry flux along a circular path of radius k, and the total flux is
obtained by taking the limit as k → ∞, followed by dividing the resulting Berry
flux by 2π

C̃λ,ξ =
Γ(k → ∞)

2π
= −1

2
λξsgn(Δ) (2.119)

Figure 2.13: Berry flux for a massive Dirac fermion is shown for characteristic lengths
λ = 2a (left) and λ = 8a. The function is highly concentrated around k = 0, with a
characteristic spatial extent of approximately 1/λ.
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Here, we encounter an intriguing result that at first glance seems to contradict
our earlier arguments. Specifically, we find that the total flux, C̃, which resembles
a Chern number, is a half-integer. This appears paradoxical since we previously
argued that half-integer invariants do not exist. However, the flux is not required
to be an integer in this case because it is calculated for a Dirac fermion in the
continuum limit, where the first Brillouin zone is replaced by the non-compact
space R2.

This calculation remains valid since the Berry curvature is localized within a region
of size 1/λ ≪ 1/a, where a is the characteristic lattice constant in reciprocal space,
as illustrated in Figure 2.13. Importantly, a Dirac fermion contributes ±1/2 to
the Chern number. Since the Chern number must be an integer when calculated
over the entire first Brillouin zone, this implies that Dirac fermions must always
occur in pairs within periodic band structures.

The Chern number of a band is determined by summing the half-integer contribu-
tions from all valleys ξ, as given by

Cλ =
∑
ξ

C̃λ,ξ = −λ

2

∑
ξ

ξ sgn(Δξ) (2.120)

This expression clearly shows that for a non-zero Chern number and consequently
a non-trivial phase, the gap parameter Δξ must change sign between different
valleys ξ.
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2.7.4 Topological Phase Transition in Terms of a half Chern

Number

We can now articulate what is meant when referring to different topological phases.
Two topological phases are considered distinct if their Chern numbers differ. Since
the Chern number is an integer, it cannot change continuously during a transition
between two different topological phases. We have observed that the Chern num-
ber can be modified by altering the half-Chern numbers associated with a Dirac
fermion. Specifically, this occurs when the gap parameter for one valley, denoted
ξ, changes sign, while the gap parameter for the opposite valley, −ξ, remains
unchanged. This leads to a difference of ΔCλ,ξ = 1.
Regions with a Chern number Cλ,ξ = 0 are referred to as trivial insulators, whereas
regions with Cλ,ξ ̸= 0 are known as Chern insulators. The requirement for a gap
closing implies the presence of massless Dirac fermions, as the lower and upper
bands must touch at a single point, leading to vanishing diagonal elements.

2.7.5 Bulk-Boundary Correspondence

We have learned about the essential role of the gap parameter in describing a topo-
logical insulator. However, our toy Hamiltonian from Equation (2.108) describes
an infinite system without boundaries. If we modify the system by including a term
that accounts for its finite size, we observe interesting effects at the boundary. This
phenomenon is known as bulk-boundary correspondence.
The presence of a boundary allows us to modify the gap parameter, which is crucial
for describing a topological phase transition, as discussed in Section 2.7.4. This
approach assumes a smooth interface between a topological material and a trivial
one, such as the vacuum, as illustrated in Figure 2.14.
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Figure 2.14: Schematic illustration of a Dirac quantum well. The interface is located
at x = 0 with width l2. The gap parameter varies smoothly according to Δ(x) =

Δ0 tanh(x/l2). The second interface is located at x = −L, with width l1.

Initially, we consider only one interface at x = 0, while also noting the second in-
terface at x = −L for a sample of width L. For the variation of the gap parameter,
simple interpolation formulas can be chosen, yielding

Δ(x)ξ =

����������
−Δ0 for x → −∞

Δ0 tanh
(

x
l2

)
for x ∈ [− l2

2
, l2
2

]
Δ0 for x → ∞

(2.121)

Now, our Hamiltonian from Equation (2.108) becomes

Hξ
edge = ℏv(ξkxσx + kyσy) + Δ(x)ξσz =

(
Δξ(x) ℏv(ξkx − iky)

ℏv(ξkx + iky) −Δξ(x)

)
(2.122)

Due to the variation of the gap in the x̂-direction and the non-commutativity
[x, kx] = i, the x-component of the wave vector is no longer a good quantum
number. As a result, we expect a set of 1D bands in the ŷ-direction, each labeled
by a discrete quantum number n, associated with quantization in the x̂ direction.
To diagonalize the Hamiltonian, we need to exchange the Pauli matrices σz and
σy. This can be achieved by the unitary transformation U = exp(iπσx/4), which
rotates the spin axes by π/2 around the x̂-axis.
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The transformed Hamiltonian is

Hξ′
edge = UHξ

edgeU
−1 =

(
ℏvky ℏvξkx + iΔξ(x)

ℏvξkx − iΔξ(x) −ℏvky

)
(2.123)

Near x = 0, we can linearize the gap parameter as Δ(x)ξ ≈ Δ0x/l2. This gives

Hξ′
edge =

(
ℏvky ℏv(ξkx + ix/l2S)

ℏv(ξkx − ix/l2S) −ℏvky

)
(2.124)

Here, the length lS is defined as

lS =

√
l2ℏv
Δ

=
√
l2λC (2.125)

This length represents the geometric average of the interface width and the effective
Compton length, as defined in Equation (2.117). The off-diagonal elements of
the new Hamiltonian resemble ladder operators, like in the case for a quantum
harmonic oscillator with

â =
ls√
2
(kx − ix/l2S), â† =

ls√
2
(kx + ix/l2S) (2.126)

The Hamiltonian can be rewritten as

Hξ=+
edge = ℏv

(
ky

√
2 â†
lS√

2 â
lS

−ky

)
, Hξ=−

edge = ℏv

(
ky −√

2 â
lS√

2 â†
lS

−ky

)
(2.127)

for ξ = −1. The energies of the Hamiltonian read as

Eξ
λ,n =

��
λℏv

√
k2
y + 2n/l2s for n ̸= 0

ξℏvky for n = 0

(2.128)

where n is the eigenvalue of the number operator N̂ = â†â, that is proportional to
the eigenstate |n⟩.
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The n = 0 state is the most important edge state. It is chiral because its group
velocity in the ŷ-direction, which is perpendicular to the interface, is determined
by the valley ξ, where the gap undergoes a sign change across the interface.

vy =
1

ℏ
∂Eξ

n=0

∂ky
= ξv (2.129)

This state depends solely on the intrinsic properties of the material and is indepen-
dent of the specific modelling of the interface. In contrast, for states with n ̸= 0,
the width of the interface l2 plays a significant role. The n = 0 state, however,
is resilient to the exact shape of the interface because it is determined only by
the gap inversion in the valley ξ. Since this state necessarily crosses the energy
gap at the edge, it is topologically protected. This is the concept of bulk-boundary
correspondence.

The states with n ̸= 0 are known as Volkov-Pankratov states (VP-states), named
after the Soviet physicists Volkov and Pankratov. These surface states only exist
if the minimum energy at ky = 0 is smaller than the gap parameter Δ. Otherwise,
the edge states would be "over-occupied" by bulk states, as illustrated in Figure
2.15. This requirement can be expressed through the following condition

ℏv
√
2n

ls
< Δ (2.130)

With the expression from Equation (2.125 ) this yields

2n <
l2
λC

=
l2Δ

ℏv
(2.131)
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Figure 2.15: Illustration of the bulk-boundary correspondence. The chiral state n = 0

(black dashed line) and the massive Volkov-Pankratov states for n = 1, 2, 3 are depicted.
Left: The minimum energy at k = 0 of the Volkov-Pankratov state n = 3 is smaller than
the gap parameter Δ, satisfying the condition from Equation (2.131). Therefore three
VP-bands are visible. Right: The condition is not met, and states n > 1 are occupied
by bulk states.

If we now consider a ribbon of width L, a second chiral state appears at the edge lo-
cated at x = −L. In this case, the gap parameter varies as Δ(x) = −Δ0 tanh(

x+L
l1

),
and its linearization is given by −Δ0

x+L
l1

.

This yields the same result as in the previous case, but with a minus sign in the
off-diagonal terms. Consequently, the ladder operators â and â† are exchanged.
As a result, the sign of the dispersion also changes, leading to

Eξ = −ξℏvky (2.132)
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Helical Edge States of a Topological Insulator with Time-Reversal
Symmetry

Our Hamiltonian from Equation (2.122) does not satisfy time-reversal symmetry.
To enforce this symmetry, the Hamiltonian must fulfill the condition specified in
Equation (2.29)

T−1H(−k, ↓)T = H(k, ↑) (2.133)

This is accomplished by extending the Hamiltonian to a 4× 4 matrix

H =

(
H↑(k) 0

0 H↓(k)

)
(2.134)

where T−1H↓(−k)T = H↑(k). It can be shown that the 2×2 matrices Hs(k) must
take the form

Hξ,s(k) = ℏv(ξskxσx + kyσy) + Δ(x)σz (2.135)

where s = ±1 represents the spin of the Bloch state. This form ensures that
the Hamiltonian respects time-reversal symmetry. If we consider spin-up electrons
experiencing a gap inversion at the valley ξ = +1 and spin-down electrons at the
valley ξ = −1, the interface at x = 0 is described by

Hedge
s=+ = ℏv

(
ky

√
2 â†lS√

2 âlS −ky

)
and Hedge

s=− = ℏv

(
ky −√

2 â†lS√
2 âlS −ky

)
(2.136)

This yields the dispersion

Es
x=0(k) = sℏvky, for n = 0 (2.137)

which has a spin-dependent group velocity in the ŷ-direction. Note that the same
arguments as in the previous case apply, where a second interface at x = −L

generates a second helical state with

57



Es
x=−L(k) = −sℏvky, for n = 0 (2.138)

In the context of time-reversal symmetric systems, an interface between a topolog-
ical material and a trivial insulator (such as vacuum) creates a pair of edge states
propagating in opposite directions along the edge, with their chirality locked to the
electron’s spin orientation. This pair of states with opposite chiralities is commonly
referred to as helical edge states.

Figure 2.16: Schematic band structure of a topological insulator with time-reversal
symmetry, satisfying E↑(k) = E↓(−k). There are two pairs of edge states (four in total).
On the edge at x = 0 (solid lines), the states exhibit opposite spin orientations and
therefore possess opposite chiralities, referred to as helical edge states. At the opposite
edge, x = −L (dashed lines), the chirality is inverted. From Ref. [10].
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2.8 Topological Classification of Semimetals

The topological classification was originally developed for insulators, where the
Fermi level always lies within a bulk gap separating the valence and conduction
bands at every wave vector in the first Brillouin zone. Here, this framework is
justified to a semimetal, which has overlapping energy bands yet maintains a gap
at each wave vector in the first Brillouin zone. The bandstructure of a semimetal
can be continuously transformed into an insulator via

H(k) → H ′(k) = H(k) + ϵ(k)I (2.139)
where H(k) is the matrix representation of the Bloch Hamiltonian. The energy
function ϵ(k) shifts all energy bands in such manner that one obtains a bulk
insulator. To preserve time-reversal symmetry, ϵ(k) must satisfy ϵ(k) = ϵ(−k).
The function ϵ(k) can be interpreted as a pseudo Fermi surface, an imaginary
energy surface lying between adjacent energy bands that cross the true Fermi level
[24, 37]. Most importantly, adding ϵ(k)I does not affect the eigenstates, leaving
the topological invariants, such as the Chern number at time-reversal-invariant
momenta (TRIMs), unchanged. Thus, semimetals can be classified topologically
in the same way as insulators, provided the pseudo Fermi surface is used instead of
the physical Fermi level. This construct simplifies the classification of semimetals,
though in insulators, the pseudo Fermi surface coincides with the actual Fermi
surface.

To illustrate this concept with respect to the surface state behavior, Figure 2.17
depicts four typical cases, corresponding to a topological insulator (a), a non-trivial
semimetal (b), a trivial band insulator (c) and a topologically trivial semimetal (d).
In the case of a topological insulator with time-reversal symmetry (TRS), there
are necessarily surface states (solid black lines) that connect the projected bulk
valence and conduction band and that cross the Fermi level (dashed black line) an
odd number of times. The scenario in (a) shows three Fermi-level crossings, which
can be reduced to a single crossing by continuously lowering the lower surface state
(SS). The associated Z2 invariant corresponds to the parity of these crossings and
remains conserved under all TRS-perturbations affecting the SS.
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Figure 2.17: For a detailed discus-
sion see the text. Adapted from Ref.
[24].

This topological insulator (TI) is
smoothly connected, via the trans-
formation from Equation (2.139), to
the semimetallic case shown in Figure
2.17(b). Here, part of the bulk con-
duction band (BCB) shifts below the
Fermi level near the TRIM Λa, form-
ing an electron pocket, while part of
the bulk valence band (BVB) moves
upward around Λb, forming a hole
pocket. Since transformation does not
affect the topological classification, the
semimetal retains the same classifica-
tion as the original TI. However, the
topological invariants must now be de-
fined relative to the pseudo Fermi sur-
face (red dotted line in Figure 2.17(b)).
The number of SS crossings with this

pseudo Fermi surface remains an odd integer, related to the Z2 invariant, ensuring
a continuous SS connection between the BVB and BCB.

Similarly, a topologically trivial semimetal is one that is continuously connected
to a trivial band insulator (Figure 2.17(c)). In this case, four SS crossings with the
Fermi level exist, but TRS perturbations or continuous deformations can reduce
them to two or zero. When defined with respect to a pseudo Fermi surface (red
dotted line in Figure 2.17(d)), this even parity is preserved, though it provides no
insight into crossings with the true Fermi level.
Finally, as with the insulating cases (a) and (c), there is no continuous TRS con-
nection between the topological semimetal (b) and the trivial semimetal (d) unless
band crossings between the BVB and BCB occur. This corresponds to a gap
closing in the insulating case, accompanied by a band inversion at the crossing
point.
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2.9 Quasi 3D Topological Insulators and Surface

States

Until now, we have explored the essential concepts and abstract mechanisms
underlying a non-trivial two-dimensional material. With this foundation, we are
equipped to study a remarkable Hamiltonian, as proposed by Zhang, Kane, and
Mele [36], that describes topological matter in three dimensions. This Hamiltonian
is a specialized form of the Dirac equation, which inherently describes a fermion
and respects both time-reversal symmetry and the space group symmetry R3m of
the bismuth’s crystal structure.

Here we want to emphasize that in condensed matter physics, the components
of the wave function of the Bloch Hamiltonian represent the respective weights
on the underlying atomic orbitals as well as the physical spin. In contrast, the
components of the three-dimensional Dirac equation - apart from the spin-1/2
descpription - are more abstract, lacking a direct physical interpretation and al-
lowing a degree of arbitrariness in their definition [10].

The Hamiltonian under consideration describes a massive Dirac fermion with a
mass given by m = Δ/v2 and satisfies the Clifford algebra. Its explicit form is

H(k) = Δ(z)τz ⊗ I+ hvkzτy ⊗ I+ hvτx ⊗ (kyσx − kxσy)

=

,,,,
Δ(z) 0 −ihvkz hv(ky + ikx)

0 Δ(z) hv(ky − ikx) −ihvkz

ihvkz hv(ky + ikx) −Δ(z) 0

hv(ky − ikx) ihvkz 0 −Δ(z)

3333
(2.140)

Here, the Pauli matrices τi correspond to superpositions of atomic orbitals, while
the matrices σi represent the electron spins, which arise due to strong spin-orbit
coupling and v represents the Fermi velocity.
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We will now discuss Lu and Görbig’s solution [22] of this Hamiltonian for a thin
film of topological matter sandwiched between two trivial insulators, such as vac-
uum. This setup is similar to the scenario discussed in the previous section (see
Figure 2.14). For the sake of simplicity, we again begin with a single boundary
located at z = 0, which Lu and Görbig named the Dirac-quantum well.

Single Dirac Quantum Well

While the exact form of the gap parameter Δ(z) remains unknown, they assumed
that it changes smoothly enough that it can be linearized within the interface
region z ∈ [−l, l]. The description of a topological material implies that the gap
parameter changes its sign across the interface.

Δ(z) =

−Δ0 for z → −∞
Δ0 for z → +∞

(2.141)

where Δ0 > 0 is half of the bulk gap. Again we must replace kz → −i∂z because
of the non-commutativity with Δ(z). To simplify the analysis, it is convenient to
work in the Weyl-basis, obtained via the unitary transformation T = exp (iπτy/4),
which exchanges the roles of τx → τz and τz → −τx. The transformed Hamiltonian
THT † |ψ⟩ = E |ψ⟩ is then solved for the eigenstates

|ψ⟩ =
(
χ+(z)

χ−(z)

)
(2.142)

which are four-component spinors that are itself an orthogonal direct sum of two
two-component spinors χλ with chirality λ = ±1. The result is a set of two
differential equations

(E2 − ℏ2v2k2
∥)χλ = [Δ(z) + λℏv∂z][Δ(z)− λℏv∂z]χλ (2.143)
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where k2
∥ = k2

x + k2
y. Interestingly, this equation can be rewritten into a 1D

Schrödinger-like equation

(E2 − ℏ2v2k2
∥)χλ = Ẽ2

λχλ =
(−ℏ2v2∂2

z + Vλ(z)
)
χλ (2.144)

with a confining potential

Vλ(z) = Δ(z)2 + λℏv∂zΔ(z) (2.145)

which itself depends on the chirality λ. Note that solving for E is equivalent to
solving

Ẽ2
λ ≡ E2 − ℏ2v2k2

|| (2.146)

The spectrum of Ẽλ must be non-negative. Furthermore, the physical dimension
of Ẽλ is that of a squared energy, making it a purely auxiliary quantity, referred
to by Lu and Görbig as virtual energy.
The dispersion relation at the surface, which links virtual energies to real energies,
is then given by

E = Eα,λ(k∥) = α
√

Ẽ2
λ + ℏ2v2k2

∥ (2.147)

where α = ±1 denotes the band index. So the squared Hamiltonian in the
Weyl basis yields two decoupled Schrödinger equations for a quantum well with
a chirality-dependent potential Vλ. The plane-wave motion in the x̂ŷ-direction is
independent of the quantized motion in the ẑ-direction, reducing the 3D problem
to a simpler 1D problem.

Locally, within the region z ∈ [−l, l], where the gap parameter can be linearized
as

Δ(z) =

������
−Δ0 for z < −l

Δ0
z
l

for z ∈ [−l, l]

Δ0 for z > l

(2.148)
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the Hamiltonian from Equation (2.144) matches that of a 1D quantum harmonic
oscillator. By substituting Δ0/v

2 → 2m and v/l → ω/2, we obtain

Ẽ2
λ

Δ0

χλ =

(
− ℏ2

2m
∂2
z +

1

2
mω2z2 + λ

ℏω
2

)
χλ (2.149)

which describes the quantum harmonic oscillator with a chirality-dependent energy
shift. The spectrum of this Hamiltonian is given by

Ẽ2
λ

Δ0

= ℏωc

(
n+

1 + λ

2

)
or Ẽλ =

√
2ℏv
Δ0l

(
n+

1 + λ

2

)
Δ0 (2.150)

where n ≥ 0. Analyzing this result, we find that there exists exactly one zero
(virtual) energy mode, Ẽλ=−1 = 0, for n = 0 with chirality λ = −1. States with
n > 0 are the previously discussed Volkov-Pankratov states. Fermions with λ = +1

cannot be confined in the region z ∈ [−l, l] and therefore tunnel out. This becomes
clearer when considering the zero (virtual) energy solution at k∥ = 0. In this case,
known as the Jackiw-Rebbi argument [17, 28], one of the terms on the right-hand
side of Equation (2.143) must vanish

[Δ(z)− λℏv∂z]χ0
λ(z) = 0 (2.151)

which yields a massless Dirac fermion with real energy dispersion E(k∥) = ±ℏvk∥.
As in the previous section, the dispersion for the massless Dirac fermion is robust
against the exact shape of the interface. The ground state in the single Dirac
quantum well is thus the topological massless surface state. The solution of Equa-
tion (2.151) can be obtained directly by integration, assuming the gap parameter
Δ(z) is integrable

χ0
λ(z) ∼ exp

[
λ

ℏv

∫ z

z0

dz′Δ(z′)
]

(2.152)

Here, z0 is chosen such that Δ(z0) = 0. As the solution for λ = +1 cannot be
normalized, the physical surface state solution is given by λ = −1.
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For the functional form of the gap parameter from Equation (2.148), the solution
is given by

χ0
λ(z) ∼

e−z2/2ξl for |z| < l

e−|z|/ξ for |z| > l
(2.153)

This shows a crossover from a Gaussian behaviour within the region of the interface
to an exponential decay outside. The intrinsic length scale

ξ =
ℏv
Δ0

(2.154)

characterizes the rate of exponential decay outside the Dirac quantum well.
Finally, note that a more general gap function, given by a corrective term δ(z),
does not alter the derived functional form of the solution as long as this term is
bounded and rapidly converges to zero outside the interface, for |z| > l.

Double Dirac Quantum Well

We consider a topological insulator of width L sandwiched between two trivial
insulators, where the gap function is given by

Δ(z) =

������������������

Δ0 if z < −L
2
− l

−Δ0

l

(
z + L

2

)
if z ∈ [−L

2
− l,−L

2
+ l

]
−Δ0 if z ∈ [−L

2
+ l, L

2
− l

]
Δ0

l

(
z − L

2

)
if z ∈ [

L
2
− l, L

2
+ l

]
Δ0 if z > L

2
+ l

(2.155)
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Solving Equation (2.144) now modifies to the spectrum due to hybridization of
the states caused by tunneling between the two Dirac quantum wells. In addition
to the bound states of the wells, Equation (2.144) always permits plane-wave
bulk solutions for energies above the bulk gap. Consequently, the hybridization of
surface states involves not only direct tunneling between the bound states of the
two Dirac quantum wells but also tunneling processes via bulk states at energies
above the gap.

The energy spectrum of the surface states is expected to closely resemble that of
a single Dirac quantum well. The deviation in energy, denoted as ±ΔEn, can be
determined using the virtual energies Ẽ, given by

ΔEn =
║║║|Ẽ| − |En(k∥ = 0)|

║║║ (2.156)

for each chirality λ = ±1. The most notable consequence is the opening of a
gap for the n = 0 state. This state is no longer protected by the Jackiw-Rebbi
argument, as the gap function now has the same sign at both limits, z → ±∞. As
a result, a zero-energy solution no longer exists and the energy shifts by ±ΔE0,
which manifests as a mass gap in the spectrum,

Eα,n=0(k∥) = α
√
ΔE2

0 + ℏ2v2k2
∥ (2.157)

In contrast, the massive Volkov-Pankratov states experience an energy splitting of
±ΔEn,

Eα,n(k∥) = α
√(

En(k∥ = 0)±ΔEn

)2
+ ℏ2v2k2

∥ (2.158)

as a result of quantum tunneling between the two Dirac quantum wells and the
consequent hybridization of their states.
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3 Results

3.1 Bulk Calculation

Using the parameters outlined in Section 2.6.1, the bulk calculation was carried
out numerically. The resulting band structure for the bulk crystal is shown in
Figure 3.1. Bismuth is a semi-metal, meaning it lacks a true band gap. The
conduction band (CB) and valence band (VB) overlap, with the VB crossing
the Fermi level near the T point and the CB at the L point. As a result, the
Fermi surface comprises small electron and hole pockets, leading to a low carrier
concentration of 3× 1017 cm−3 for both charge carriers [21].

Figure 3.1: The computed band structure of bulk Bi is presented, along with the cor-
responding k-path in the first Brillouin zone.
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The band gap at the T point is approximately 370 meV, whereas at the L point,
it is around 14 meV. An inversion of the valence and conduction bands at this k

point would alter the topological order of bismuth, as described in section 2.7.3.
In other words, the symmetry (parity) of the wave functions in the highest valence
band at the L point determines the Z2 topological character of Bi.

The small bulk band gap of only 2Δ0 = 14 meV at the L point, which projects
onto the M point of the 2D Brillouin zone, is expected to result in a very large
intrinsic decay length, as described by Equations (2.117) and (2.154). The Fermi
velocity was determined from the bulk band structure (see Figure 3.2) with

vF = ∇kEn(k)|kF (3.1)

where n = 10, evaluated at the Fermi wave vector kF near the L point. The
calculated Fermi velocity is vF = 2.8 eVÅ, which leads to a decay length of

ξ =
vF
Δ0

=
2.8eV Å
0.007eV

= 400Å ≡ 40nm (3.2)

Note that at this length, the function in Equation (2.153) decreases by a factor of
1/e ≈ 0.37, which still corresponds to a substantial tunneling probability. Only
for thicknesses greater than 184 nm (468 BL) does the probability drop to 0.01.
This length scale is comparable to the findings of density functional theory (DFT)
calculations in Ref. [1], where the authors demonstrated that bismuth films ex-
ceeding 1000 BL can be considered bulk-like.

Due to the crystal’s inversion symmetry, each band is doubly degenerate, as out-
lined in Section 2.4. However, at the surface, this symmetry is broken, leading
to spin-polarized surface states, which is discussed in the next section. Project-
ing the Γ − L path onto the (111) plane corresponds to the Γ − M path in the
two-dimensional Brillouin zone (see Figure 2.3).
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Figure 3.2: The group velocity was computed from the tenth band, E10(k). The k-path
in the first Brillouin zone is shown in Figure 2.2.

3.2 Thin Film Calculation

With the Hamiltonian from Section 2.6.2, the band structure for a free stand-
ing slab of Bi(111) along the M -Γ-M direction was computed, where kx = 0.
Figure 3.3 presents the spin-resolved band structure for a 16-bilayer (BL) thick
slab. The eigenstates of the 16N × 16N Hamiltonian consist of 16N elements,
where N is the number of bilayers. Each i-th block of 16 elements represents the
contribution of the atomic orbitals from the i-th bilayer.

The relative contribution of the i-th bilayer to the band structure is determined
by computing the relative opacity of each eigenvalue, proportional to the abso-
lute square of the corresponding 16-element block (and the desired projection),
normalized by the total sum over all 16N elements. Figure 3.3(a) shows the con-
tribution from the topmost bilayer, while Figure 3.3(b) presents the contribution
from the 8th bilayer. This analysis confirms that the bands crossing the Fermi
energy correspond to surface states.
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Figure 3.3: The Figure illustrates the sx projection of the band structure for Pz orbitals
in a 16-bilayer thick Bi(111) slab under a weak magnetic field applied along the ẑ-
direction. In (a), the projection is taken from the 0th (topmost) bilayer. In (b), the
projection is taken from the 8th bilayer, highlighting the surface character of the two
bands that cross the Fermi energy.

The surface states are double degenerated due to the system’s mirror symmetry,
which results from the presence of two equivalent interfaces. This results in a dis-
continuous spin flip in the spin projection of the band structure (see Figure 2.6).
By applying a weak external magnetic field of 1 × 10−4 T along the ẑ-direction,
the degeneracy is lifted, causing the bands to slightly split. This enables a spin-
resolved analysis.

The upper branch of the surface states in Figure 3.3 forms a hexagonal electron
pocket around Γ, labelled as S1. Additionally, six teardrop-shaped hole lobes,
denoted as S2, and six ellipsoid-shaped electron pockets, labelled as S3, emerge
from the lower and upper branches, respectively. This result is consistent with
ARPES measurements reported in Refs. [24, 32, 4].

Setting the surface hopping parameters to γsp = γpp = 0 results in the disappear-
ance of the S2 structures, as shown in Figure 3.4.
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Figure 3.4: The Fermi surface of a 16 BL thick slab of Bi(111) is shown, with (a)
corresponding to γsp = γpp = 0 and (b) to γsp = −0.45 eV and γpp = 0.27 eV. These
results highlight the crucial role of surface states in shaping the Fermi surface. The
coordinates of the Γ point are Γ = (0, 0)Å−1, while the M point is located at M =

(0, 0.8)Å−1.

3.2.1 Bilayer Dependence

Change in the Fermi Surface

Figure 3.5 shows a comparison of the band structures of Bi slabs with different
thicknesses. The projected bulk bands were computed using the bulk Hamiltonian
of Liu and Allen by iterating through all kz values in the first Brillouin zone for
each dk along the path from Γ to L. At each step, the maximum and minimum
eigenvalues were taken to represent the valence and conduction bands, respectively.

For thicknesses below 5-6 BL, the surface state dispersion does not develop the
electron pocket S3. Additionally, when the thickness is reduced below 4 BL, the
hole pocket S2 disappears. At 8 BL, the band structure exhibits all characteristic
features S1, S2, and S3. For thicknesses beyond 8 BL, the sizes of S1 and S2 remain
stable, whereas the electron pocket S3 grows with increasing thickness and extends
towards the M point. This behavior aligns with ARPES measurements reported
in Refs. [14, 13, 32].
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Figure 3.5: The figure shows the band structure of the sx-projected Pz orbitals under a
weak magnetic field of 1× 10−4 T applied in the ẑ-direction (for spin-resolved analysis).
The layer-dependent dispersion of spin-resolved surface states is presented for different
thicknesses: 4 BL (a), 10 BL (b), 25 BL (c), and 50 BL (d). For thicknesses of 6 BL or
less, no spin polarization is observed. Below 4 BL, the hole pocket S2 vanishes. Beyond
8 BL, the dispersion of surface states for structures S1 and S2 remains unchanged, while
S3 extends further towards M with increasing thickness. At 10 BL, the surface states
begin to develop a stable polarization, which diminishes towards the M point. As the
thickness increases, the polarization stabilizes near M . Additionally, the other bands
progressively merge with the projected bulk bands (pink area) as thickness increases.

Spin Polarization of Surface States

Figure 3.5 further shows that the surface states exhibit a spin polarization above
8 BL, which, however, decreases towards the M point. At the M point the bands
are Kramer-degenerate. As the thickness increases, the polarization becomes more
stable in the vicinity of the M point, which aligns with the findings of Takayama
et al. [32].
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In their study, scanning tunneling microscopy and electron diffraction experiments
suggested that the coupling between the Bi film and the Si(111) substrate is rela-
tively weak due to the presence of a disordered wetting layer at the interface. This
implies that the Bi film behaves as a nearly free-standing layer. In this scenario,
the Bi/Si interface can be considered an additional surface where surface states
- referred to as Rashba states in their work - emerge, similar to those on the
vacuum-side surface. These two surface states exhibit opposite spin orientations.

For sufficiently thick Bi films, the two surface states remain independent, and
their wave functions do not hybridize. However, as the thickness decreases, the
wave functions from the top and bottom surfaces begin to overlap and hybridize,
leading to a mixing of spin states. In the thin-film limit, strong hybridization
significantly reduces the observed spin polarization, explaining the general trend
of polarization dependence on thickness.

However, Takayama et al. reported the absence of Kramers degeneracy at the M

point, along with an increased energy gap in thinner films - discussed in the next
section - which indicates a strong hybridization effect.

Although the reduction in spin polarization in thin films could be attributed to
the simultaneous observation of top- and bottom-surface states - given the finite
photoelectron escape depth - this factor alone does not fully account for the ob-
served behavior. In the experiment, the escape depth was approximately 20–40 Å,
while the thinnest film measured around 30 Å (8 BL).

Their theoretical calculations assuming fully polarized spins predict a spin polar-
ization of approximately 0.4–0.65, which contrasts sharply with the experimentally
observed negligible spin polarization at 8 BL. This discrepancy underscores the cru-
cial role of hybridization in the reduction of polarization. Moreover, the decrease
in polarization is already noticeable at a thickness of 20 BL, suggesting that the
decay length of the surface-state wave function extends to at least 20 BL.
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Linear Dispersion

The electron pocket S3 exhibits a linear dispersion perpendicular to the ky-
direction along the Γ − M path. Figure 3.6 shows a gapped Dirac-fermion-like
dispersion, as discussed in Section 2.9. The gap decreases slightly as the number
of bilayers increases, a trend that has been experimentally confirmed [32]. Inter-
estingly, Takayama et al. reported that the massive Volkov-Pankratov (VP) states
- being referred to as quantum well states by Takayama - remain visible even up
to 40 BL.

Figure 3.6: The blue line in (a) indicates the scan direction (ky = 0.5 Å−1) used to
obtain the dispersion shown in (b) and (c). The figure presents the sy-projected Pz

orbitals under a weak magnetic field of 1×10−4 T applied along the ẑ-direction for spin-
resolved analysis. Results are displayed for 20 BL in (a) and for 40 BL in (b), showing that
the energy gap remains nearly unchanged. Additionally, the massive Volkov-Pankratov
states are present but lie within the projected bulk bands (pink area).
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Although these states lie within the projected bulk bands, they can still be ob-
served. As the film thickness decreases, the top of the highest VP states shifts
downward, while the energy separation between VP states increases.

3.2.2 Asymmetric Bychkov-Rashba Effect

So far, we have discussed the symmetric case of the Bychkov-Rashba effect, which
corresponds to a free-standing bismuth slab in vacuum. However, a more realis-
tic scenario involves a bismuth film deposited on a substrate. In this case, the
potential gradient and the resulting electric field ξ are reduced compared to the
free-standing case due to the presence of the substrate at one of the interfaces.

Introducing an asymmetric electric field at the two surfaces lifts the spin degener-
acy of the surface bands. Previously, a weak magnetic field was required to break
this degeneracy and enable a spin-resolved analysis. However, breaking the mirror
symmetry between the two surfaces causes the surface bands to disperse differently.

Figure 3.7 presents the band dispersion along the Γ−M path for different ratios
of the bottom and top electric field magnitudes, ξbottom/ξtop, while keeping the
top electric field constant. While the dispersion of the surface states on the top
layer remains unchanged, the surface states on the bottom layer exhibit noticeable
modifications, though they reconverge towards the M point. The property of the
of the spin polarization in the x̂ - direction remains, as before.

We first explore the effects of controlling the electric field, leaving the discussion
of its implementation for later. Adjusting the electric field modifies the electronic
structure of the thin film. Figure 3.8 shows the band structure for the ratio
ξbottom/ξtop = 2

3
.

As mentioned, the dispersion of the surface states in the topmost layer remains
unchanged, while the surface states at the lower interface disperse in such a way
that they cross at ky = 0.32 Å−1. At the crossing point, a massless Dirac fermion
emerges, polarized along sy and oriented perpendicular to ky.
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Figure 3.7: The band structure of a 16 BL thick Bi slab is shown for different ratios of
the electric field ξbottom/ξtop. The top electric field is kept constant, while the bottom
electric field is varied with the following ratios: 1 (blue), 0.9 (orange), 0.7 (green), and
0.5 (pink; note that the top band is mostly covered by the green line). As a result, the
two initially double-degenerate surface bands split into four distinct bands. Note that the
dispersion of the top surface states remains unchanged and is therefore entirely covered
by the blue bands.

This behavior is illustrated in (c), which shows the dispersion along kx = −0.3 to
0.3 Å−1.

In the vicinity of the crossing point, the spin-up polarized bands appear inverted.
The contribution from the lowermost layer exhibits a discontinuous transition to
another surface band near the crossing point.

Notably, the position in k-space of this Dirac point can be tuned by varying the
electric field ratio. This suggests the possibility of selectively shifting the Dirac
fermion toward or away from the Fermi level. For ξbottom/ξtop = 0.759, the Dirac
point shifts to the Fermi level at ky = 0.159 Å−1, as shown in Figure 3.9.
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Figure 3.8: The band structure for ξbottom/ξtop = 2
3 is shown. While the dispersion in

the topmost layer (a) remains unchanged along Γ−M , the dispersion in the lowermost
layer (b) is modified. The spin-polarized bands cross at ky = 0.32 Å−1. At this crossing
point, an sy-polarized massless Dirac fermion emerges perpendicular to ky, as shown in
(c) along kx = −0.3 to 0.3 Å−1. (d) presents a magnified view of (b), highlighting the
region around the crossing point. In this vicinity, the contribution from the lowermost
layer appears to cause a band inversion.

Figure 3.9: The band structure for ξbottom/ξtop = 0.759 is shown. The dispersion at the
top (a) remains unchanged. At the crossing point ky = 0.159 Å−1 in (b), an sy-polarized
massless Dirac fermion emerges at the Fermi level perpendicular to ky, as illustrated in
(c) along kx = −0.3 to 0.3 Å−1.
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Figure 3.10: A massless Dirac fermion emerges at the Γ-point when the ratio
ξbottom/ξtop is 1.31. The pink region represents the projected bulk band structure. The
surface states are spin-polarized, with sx polarization along the Γ–M path shown in (a)
and sy polarization as illustrated in (b) along kx = −0.3 to 0.3 Å−1.

For a larger bottom electric field, with ξbottom/ξtop = 1.31, the Dirac fermion
residing on the bottom surface can be tuned to the Fermi level at the Γ-point, as
shown in Figure 3.10. Additionally the surface state is also spin-polarized along
the sy direction along kx.

The illustration suggests that adjusting the surface electric fields externally could
induce a phase transition to a genuinely non-trivial topological semimetal.
In the following section, we will discuss how these electric fields can be implemented
and their effects experimentally verified.
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4 Conclusion

In our model, the electric field is not explicitly included but implicitly affects the
fitting parameters γsp and γpp (see Section 2.6.3). The electric field ξ appears in the
Bychkov-Rashba Hamiltonian (Equation 2.83) and is expected to affect the matrix
elements in a linear way. The electric field at a metal surface can be estimated
using the material’s work function and its Debye length [31]

E ≈ Φ

λDeb
(4.1)

For bismuth, the work function is ΦBi = 4.34 eV [20] and the Debye length, as
calculated by Hong et al., is λDeb = 10 nm [16], resulting in an intrinsic electric
field of E = 0.434 eV/nm. The potential difference along the [111] direction
within a single primitive unit cell (see Table 2.1) at the surface is given by φ =

(0.434 eV/nm) × (1.17967 nm) = 0.512 eV. This result is surprisingly close to the
fitted parameters γsp and γpp reported in Ref. [26]. Hong et al. studied how an
applied electric field affects a thin Bi(111) film in a metal-insulator-semiconductor
(MIS) structure. With a bias voltage of V = 0.7 V, they found that 0.1 V drops
across the Bi layer, corresponding to an applied electric field of E = 0.1 eV/nm.
Furthermore, they showed that the Debye length showed little change with the
gate voltage, remaining constant. A gate voltage of 10 V [31] would lead to an
external electric field of E = 0.14 eV/nm - strong enough to influence the spin-
polarized bands near the Fermi level, as discussed. In theory, bismuth possesses
the necessary properties for the realization of a spintronic-device. An alternative
approach to constructing this device involves placing a bismuth layer between
two materials with strongly different work functions. This configuration creates a
non-tuneable asymmetry in the electric field.
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Figure 4.1: Schematic illustration
of the gated sample layout used for
operando SARPES measurements by
Krempaský et al. Adapted from Ref.
[19].

A approach to experimentally
verify this theoretical predic-
tion in operando has already
been demonstrated by Krem-
paský et al. [19]. In their
study, they achieved electro-
static spin manipulation in fer-
roelectric α-GeTe and multifer-
roic Ge1-xMnxTe under operando
conditions. Their results con-
firmed that electrostatic spin
control in Rashba semiconduc-
tors is possible through fer-
roelectric polarization rever-
sal.

The gated sample structure used for these measurements consists of a protective
Se cap covering the α-GeTe or Ge1-xMnxTe epilayers, with a Au mesh serving
as the top electrode. The bottom electrode is formed by the conductive InP
substrate, which is grounded via the sample holder. As shown in Figure 4.1, after
in situ desorption, the Se cap adheres to the underside of the Au mesh, creating
a quasi-insulating contact between the Au gate and the semiconducting α-GeTe.

An alternative approach involves predepositing an Al2O3 layer onto the Au mesh
to enhance dielectric insulation. This modification allows for the application of
higher bias voltages. The data showed that part of the applied voltage drops
between the Au mesh and the GeTe film (≈ 0.2 V), while the remaining voltage
(≈ 1.4 V) is distributed across the 200-nm-thick film.
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Summary

In this work, we provided a detailed description of the calculation of bismuth’s
electronic structure. We examined its crystallographic structure, discussed the
key symmetries involved in the calculations, and analyzed their effects.

Furthermore, we derived and solved the Hamiltonian for bulk bismuth. Building
on this, we extended the model to the semi-infinite case, deriving the Hamiltonian
for an N -layer bismuth slab. By analyzing the band structure, we identified spin-
polarized surface states.

Through this process, we explored fundamental concepts in the theory of topologi-
cal matter. Equipped with this knowledge, we were able to interpret the generated
data. Assuming that bismuth is topologically non-trivial, the band structure al-
lows for the emergence of a massless Dirac fermion, which can be shifted in k-space
depending on the ratio of the electric fields at the top and bottom of the bismuth
slab.

This insight suggests the possibility of a Spin-FET, a fascinating theoretical device
that could serve as the foundation for spintronics.

In the Conclusion, we outlined a potential experimental approach using state-of-
the-art methods to investigate the predicted effects of an asymmetric electric field,
which give rise to intriguing physical phenomena.
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5 Appendix

5.1 Matrix Elements of the Spin-Orbit Coupling

Hamiltonian

To integrate HSOC into our tight-binding Hamiltonian, we will now explicitly
calculate its matrix elements.

First, we address the term σ⃗ · L⃗ = L̂xσ̂x + L̂yσ̂y + L̂zσ̂z from equation (2.37). We
can rewrite it using ladder operators as follows:

L̂+ = L̂x + iL̂y, L̂− = L̂x − iL̂y,

σ̂+ = σ̂x + iσ̂y, σ̂− = σ̂x − iσ̂y.
(5.1)

These operators shift the quantum numbers ml and ms by ±1. We use a basis of
complex atomic wavefunctions, which we will denote as |n, l,ml, s,ms⟩ = |ml,ms⟩
for brevity, where l = 0, 1, 2, . . . , n; ml = −l,−l + 1, . . . , l; s = 1

2
; and ms = ±1

2
.

Considering the product

L̂+σ̂− + L̂−σ̂+ = 2(L̂xσ̂x + L̂yσ̂y), (5.2)

we nearly obtain the desired form. Adding L̂zσ̂z gives

σ⃗ · L⃗ =
1

2
(L̂+σ̂− + L̂−σ̂+) + L̂zσ̂z. (5.3)
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The eigenvalues of these operators are straightforward to calculate:

L̂± |n, l,ml, s,ms⟩ =
√

l(l + 1)−ml(ml ± 1) |n, l,ml ± 1, s,ms⟩ ,
σ̂± |n, l,ml, s,ms⟩ =

√
s(s+ 1)−ms(ms ± 1) |n, l,ml, s,ms ± 1⟩ ,

(5.4)

L̂z |n, l,ml, s,ms⟩ = ml |n, l,ml, s,ms⟩ ,
σ̂z |n, l,ml, s,ms⟩ = ms |n, l,ml, s,ms⟩ .

(5.5)

As the Bi bands consist of 6s and 6p orbitals, we limit the basis BSOC to include
only these orbitals. For the 6s orbital (l = 0), all matrix elements are zero, so we
limit the basis only to 6p orbitals B6p

SOC =
{|−1, 1

2
⟩ , |0, 1

2
⟩ , |1, 1

2
⟩ , |−1,−1

2
⟩ , |0,−1

2
⟩ , |−1,−1

2
⟩},

where subscripts indicate ml values. This basis covers only one atom in the unit
cell; a second atom will later extend the matrix.
Evaluating the matrix elements

HSOC
ij = ⟨i|ĤSOC |j⟩, (5.6)

for equation (5.3) with i, j ∈ BSOC , we note that the terms in the bracket require
eigenstates differing by Δml = ±1 and Δms = ∓1, while L̂zσ̂z only requires read-
ing of the quantum numbers of the eigenstates and multiplying them. Applying
these rules, we find

⟨i|L̂−σ̂+|j⟩ =



0 0 0 0
√
2 0

0 0 0 0 0
√
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


BSOC

(5.7)

⟨i|L̂+σ̂−|j⟩ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0√
2 0 0 0 0 0

0
√
2 0 0 0 0


BSOC

(5.8)
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⟨i|L̂zσ̂z|j⟩ =



−1/2 0 0 0 0 0

0 0 0 0 0 0

0 0 1/2 0 0 0

0 0 0 1/2 0 0

0 0 0 0 0 0

0 0 0 0 0 −1/2


BSOC

(5.9)

giving a total sub-Hamiltonian

hSOC =
λSOC

2



−1 0 0 0
√
2 0

0 0 0 0 0
√
2

0 0 1 0 0 0

0 0 0 1 0 0√
2 0 0 0 0 0

0
√
2 0 0 0 −1


BSOC

(5.10)

Extending the basis to 6s orbitals

BSOC =
{
|0, 1

2
⟩ , |0, -1

2
⟩´ ´´ ´

6s−orbitals

, |-1, 1
2
⟩ , |0, 1

2
⟩ , |1, 1

2
⟩ , |-1, -1

2
⟩ , |0, -1

2
⟩ , |-1, -1

2
⟩
}

we get

hSOC =
λSOC

2



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0
√
2 0

0 0 0 0 0 0 0
√
2

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0
√
2 0 0 0 0 0

0 0 0
√
2 0 0 0 −1


BSOC

(5.11)

Considering the second atom in the unit cell, the total SOC Hamiltonian is

HSOC =

[
hSOC 0

0 hSOC

]
BSOC

(5.12)
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5.2 Matrix Elements of the Zeeman Hamiltonian

To evaluate the matrix elements of the Zeeman Hamiltonian, we begin with equa-
tion (2.48)

hZ = µBgjB
ext
z ⟨Ĵz⟩ (5.13)

as introduced in Section 2.4.3. We use the total angular momentum eigenstates
|n, l, j,mj⟩ as our basis to evaluate the matrix elements, where the quantum num-
bers take the values l = 0, 1, 2, . . . , n; j = 1

2
, 3
2
, . . . ; mj = −j,−j + 1, . . . , j.

The specific basis chosen for the calculation is:

BZ =
{|s, 1

2
, 1
2
⟩ , |s, 1

2
, -1

2
⟩ , |p, 3

2
, 3
2
⟩ , |p, 3

2
, 1
2
⟩ , |p, 3

2
, -1

2
⟩ , |p, 3

2
, -3

2
⟩ , |p, 1

2
, -1

2
⟩ , |p, 1

2
, 1
2
⟩}

where we omit the quantum number n for brevity.

Since the matrix representation of hZ in this basis is diagonal, we can directly
assign the eigenvalues mj to the corresponding eigenstates. However, note that
the Landé factor gj depends on the values of l and j. Specifically, for s-orbitals,
gj = 2, and for p-orbitals, gj = 4

3
.

By placing the eigenvalues mj on the diagonal and applying the appropriate Landé
factors, we obtain the Zeeman Hamiltonian matrix:

hZ =
µBB

ext
z

3



3 0 0 0 0 0 0 0

0 -3 0 0 0 0 0 0

0 0 6 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 -2 0 0 0

0 0 0 0 0 -6 0 0

0 0 0 0 0 0 -2 0

0 0 0 0 0 0 0 2


BZ

(5.14)

Considering the second atom in the unit cell, the total Zeeman Hamiltonian is

HZ =

[
hZ 0

0 hZ

]
BZ

(5.15)
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5.3 Basis Change

5.3.1 Clebsch-Gordan Coefficents

For the basis of HZ , we choose the eigenstates of the total angular momentum,
represented as |n, l, j,mj⟩. For simplicity, we abbreviate these states as |j,m⟩.
The complete basis is given by

BZ =

{
|s, 1

2
,
1

2
⟩ , |s, 1

2
,−1

2
⟩ , |p, 3

2
,
3

2
⟩ , |p, 3

2
,
1

2
⟩ , |p, 3

2
,−1

2
⟩ , |p, 3

2
,−3

2
⟩ , |p, 1

2
,−1

2
⟩ , |p, 1

2
,
1

2
⟩
}

In complex atomic wave functions the electron is characterized by a well-defined
orbital angular momentum l, which takes the values l = 1 or l = 2, and a fixed
spin at s = 1

2
.

The eigenstates in this basis are written as |n, l,ml, s,ms⟩, or more concisely as
|ml,ms⟩. Here, the quantum numbers ml and ms are in the the ranges:

−l ≤ ml ≤ l, −s ≤ ms ≤ s.

The complete basis is given by

BSOC =

{
|s, 0, 1

2
⟩ , |s, 0, -1

2
⟩ , |p, -1, 1

2
⟩ , |p, 0, 1

2
⟩ , |p, 1, 1

2
⟩ , |p, -1, -1

2
⟩ , |p, 0, -1

2
⟩ , |p, -1, -1

2
⟩
}

Starting with the p-orbitals, we first consider the extremal state |j = 3
2
,m = 3

2
⟩,

which is defined by J+|jmax,mmax⟩ = 0. In this case, jmax and mmax are given by
jmax = mmax = l + s = 1 + 1

2
= 3

2
.

This state is uniquely given by

|j = 3

2
,m =

3

2
⟩ = |ml = 1,ms =

1

2
⟩ (5.16)
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If we apply Ĵ− to this state, we obtain on one hand:

Ĵ−|j = 3

2
,m =

3

2
⟩ =

√
3|j = 3

2
,m =

1

2
⟩ (5.17)

and on the other hand, using Ĵ− = L̂− + σ̂−

L̂− + σ̂−|ml = 1,ms =
1

2
⟩ =

√
2|ml = 0,ms =

1

2
⟩+ |ml = 1,ms = −1

2
⟩ (5.18)

Thus, we have the relation:

|j = 3

2
,m =

1

2
⟩ =

√
2

3
|ml = 0,ms =

1

2
⟩+

√
1

3
|ml = 1,ms = −1

2
⟩ (5.19)

Upon applying the operator Ĵ− once again to this state, we acquire on one side:

Ĵ−|j = 3

2
,m =

1

2
⟩ = 2|j = 3

2
,m = −1

2
⟩ (5.20)

and on the other side, using Ĵ− = L̂− + σ̂−

(L̂− + σ̂−)

(√
2

3
|ml = 0,ms =

1

2
⟩+

√
1

3
|ml = 1,ms = −1

2
⟩
)

=

√
2

3
(L̂− + σ̂−)|ml = 0,ms =

1

2
⟩+

√
1

3
L̂−|ml = 1,ms = −1

2
⟩

=

√
4

3
|ml = −1,ms =

1

2
⟩+

√
2

3
|ml = 0,ms = −1

2
⟩+

√
2

3
|ml = 0,ms = −1

2
⟩

=
2√
3
|ml = −1,ms =

1

2
⟩+ 2

√
2

3
|ml = 0,ms = −1

2
⟩

(5.21)

Therefore, we have relation:

|j = 3

2
,m = −1

2
⟩ =

√
1

3
|ml = −1,ms =

1

2
⟩+

√
2

3
|ml = 0,ms = −1

2
⟩ (5.22)
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By applying Ĵ− once more, we find on one side

Ĵ−|j = 3

2
,m = −1

2
⟩ =

√
3|j = 3

2
,m = −3

2
⟩ (5.23)

and on the other side, using Ĵ− = L̂− + σ̂−

(L̂− + σ̂−)

(√
1

3
|ml = −1,ms =

1

2
⟩+

√
2

3
|ml = 0,ms = −1

2
⟩
)

=

√
1

3
σ̂−|ml = −1,ms =

1

2
⟩+

√
2

3
L̂ =− |ml = 0,ms = −1

2
⟩

=

√
1

3
|ml = −1,ms = −1

2
⟩+

√
4

3
|ml = −1,ms = −1

2
⟩

=
√
3|ml = −1,ms = −1

2
⟩

(5.24)

Thus, we have

|j = 3

2
,m = −1

2
⟩ = |ml = −1,ms = −1

2
⟩ (5.25)

Next, we consider the states |j = 1
2
,m⟩ for p-orbitals. The maximum value of m

is m = 1
2
. Therefore, the state |j = 1

2
,m = 1

2
⟩ must be a linear combination of

|ml = 1,ms = −1
2
⟩ and |ml = 0,ms =

1
2
⟩. We write this as

|j = 1

2
,m =

1

2
⟩ = α|ml = 1,ms = −1

2
⟩+ β|ml = 0,ms =

1

2
⟩ (5.26)

This state must be orthogonal to

|j = 3

2
,m =

1

2
⟩ =

√
2

3
|ml = 0,ms =

1

2
⟩+

√
1

3
|ml = 1,ms = −1

2
⟩ (5.27)

Thus:

0 = ⟨j = 3

2
,m =

1

2
|j = 1

2
,m =

1

2
⟩ =

√
1

3
α +

√
2

3
β (5.28)
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This implies β = − 1√
2
α and with α2 + β2 = 1, we obtain:

|j = 1

2
,m =

1

2
⟩ =

√
2

3
|ml = 1,ms = −1

2
⟩ −

√
1

3
|ml = 0,ms =

1

2
⟩ (5.29)

Repeating the procedure by applying Ĵ−, we have on one hand:

Ĵ−|j = 1

2
,m =

1

2
⟩ = |j = 1

2
,m = −1

2
⟩ (5.30)

and on the other hand:

(L̂− + σ̂−)

(√
2

3
|ml = 1,ms = −1

2
⟩ −

√
1

3
|ml = 0,ms =

1

2
⟩
)

=

√
2

3
L̂−|ml = 1,ms = −1

2
⟩ −

√
1

3
(L̂− + σ̂−)|ml = 0,ms =

1

2
⟩

=

√
4

3
|ml = 0,ms = −1

2
⟩ −

√
2

3
|ml = −1,ms =

1

2
⟩ −

√
1

3
|ml = 0,ms = −1

2
⟩

=

√
1

3
|ml = 0,ms = −1

2
⟩ −

√
2

3
|ml = −1,ms =

1

2
⟩

(5.31)

Thus, we have:

|j = 1

2
,m = −1

2
⟩ =

√
1

3
|ml = 0,ms = −1

2
⟩ −

√
2

3
|ml = −1,ms =

1

2
⟩ (5.32)

For the s-orbitals the extremal state, defined by Ĵ−|jmax = 1
2
,mmax = 1

2
⟩ = 0, we

once more find the unique relation

|j = 1

2
,m =

1

2
⟩ = |ml =

1

2
,ms =

1

2
⟩ (5.33)
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Applying Ĵ−, we have

Ĵ−|j = 1

2
,m =

1

2
⟩ = (L̂− + σ̂−)|j = 1

2
,m = −1

2
⟩ (5.34)

|j = 1

2
,m = −1

2
⟩ = |ml =

1

2
,ms = −1

2
⟩ (5.35)

The coefficients of the corresponding eigenstates can be organized into column vec-
tors and combined into a matrix. This matrix represents the (sub-)transformation
matrix, tJnlm, as described in equation (2.51), which is used for the basis change
specified in equation (2.53).

tJnlm =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0
√

1
3

0 0 -
√

2
3

0 0 0
√

2
3

0 0 -
√

1
3

0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0
√

2
3

0 0
√

1
3

0 0 0
√

1
3

0 0
√

2
3

0



��������������������������������´ ´´ ´
Coefficients of |l,ml,ms⟩



|s, 0, 1
2
⟩

|s, 0, -1
2
⟩

|p, -1, 1
2
⟩

|p, 0, 1
2
⟩

|p, 1, 1
2
⟩

|p, -1, -1
2
⟩

|p, 0, -1
2
⟩

|p, 1, -1
2
⟩


(5.36)

As in previous calculations we must expand the matrix to account for the second
atom in the unit cell

T J
nlm =

[
tJnlm 0

0 tJnlm

]
(5.37)

91



5.4 Matrix Elements of the Bulk Hamiltonian

The total Hamiltonian H is divided into two sub-matrices, HAA and HAB, whose
explicit elements are shown in Table 5.1. These sub-matrices are functions of gi,
which contain all the terms of the form exp (ik ·Rn), depending on the set of
neighbors considered.
The gi terms are grouped based on the type of neighbor interactions as follows:

• g0 − g12: first-neighbor interactions,

• g13 − g25: second-neighbor interactions,

• g26 − g31: third-neighbor interactions.

The explicit expressions for g0 − g12 are given by:

g0 = eik·(a1−d) + eik·(a2−d) + eik·(a3−d)

g1 =
[−e−ik·(a1−d) + eik·(a2−d)

]
cosα

g2 =
[
eik·(a1−d) + eik·(a2−d) − 2eik·(a3−d)

]
cos β

g3 =
[
eik·(a1−d) + eik·(a2−d) + eik·(a3−d)

]
cos γ

g4 =
[
eik·(a1−d) + eik·(a2−d)

]
cos2 α

g5 = g0 − g4

g6 =
[−e−ik·(a1−d) + eik·(a2−d)

]
cosα cos γ

g7 =
[
eik·(a1−d) + eik·(a2−d) + 4eik·(a3−d)

]
cos2 β

g8 = g0 − g7

g9 =
[
eik·(a1−d) + eik·(a2−d) + eik·(a3−d)

]
cos2 γ

g10 =
[
eik·(a1−d) + eik·(a2−d) + eik·(a3−d)

] (
1− cos2 γ

)
g11 =

[
eik·(a1−d) + eik·(a2−d) − 2eik·(a3−d)

]
cos β cos γ

g12 =
[−e−ik·(a1−d) + eik·(a2−d)

]
cosα cos β
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With a1, a2, a3, and d defined in Section 2.1, the parameters cosα, cos β, cos γ

represent the direction cosines of the vector a2 − d, from the central atom to one
of the nearest-neighbor atoms.

The functions g13 − g25 can be obtained by substituting:

• the set of first-neighbor vectors ai − d for i ∈ {1, 2, 3}

• with the set of second-neighbor vectors ai + aj −d, for i ̸= j, i, j ∈ {1, 2, 3},

as well as using the direction cosines of a1 + a3 − d.

For the set of third neighbors, ai − aj, with i ̸= j, i, j ∈ {1, 2, 3}, the functions
g26 − g31 are defined as follows:

g26 = eik·(a1−a2) + eik·(a2−a1) + eik·(a2−a3) + eik·(a3−a2) + eik·(a1−a3) + eik·(a3−a1)

g27 = eik·(a2−a1) − eik·(a1−a2) +
1

2

[
eik·(a2−a3) − eik·(a3−a2) − eik·(a1−a3) + eik·(a3−a1)

]
g28 =

√
3

2

[
eik·(a3−a2) − eik·(a2−a3) + eik·(a3−a1) − eik·(a1−a3)

]
g29 = eik·(a1−a2) + eik·(a2−a1) +

1

4

[
eik·(a2−a3) + eik·(a3−a2) + eik·(a1−a3) + eik·(a3−a1)

]
g30 =

3

4

[
eik·(a2−a3) + eik·(a3−a2) + eik·(a1−a3) + eik·(a3−a1)

]
g31 =

√
3

4

[−eik·(a2−a3) − eik·(a3−a2) + eik·(a1−a3) + eik·(a3−a1)
]

It should be noted that matrix elements with the same (different) parity between
orbitals transform even (odd) under the exchange of indices [2]

Eji(−Rn) = (−1)|l−l′|Eij(Rn).
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H
A
A
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↓⟩
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|p1 y
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|p1 z
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σ

0
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7
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E

s
+
g 2

6
V

′′ ss
σ

0
0

0
g 2

7
V

′′ sp
σ

g 2
8
V

′′ sp
σ

0

|p1 x
↑⟩
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σ
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E

p
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9
V

′′ p
p
σ
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′′ p
p
π
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1
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p
σ
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V
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π
)
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0

0
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|p1 y
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V
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σ

0
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1
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−
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p
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p
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6
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