
DIPLOMARBEIT

Automatische Quantifizierung der
Ausrichtung torischer

Intraokularlinsen basierend auf Visual
Computing und Deep Learning

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Biomedical Engineering

eingereicht von

Ing. Christoph Baumann, BSc.
Matrikelnummer 11907101

ausgeführt am Institut für Stochastik und Wirtschaftsmathematik
an der Fakultät für Mathematik und Geoinformation
der Technischen Universität Wien

Betreuung
Betreuer: Privatdoz. Dipl-Ing. Dr. Zsolt Saffer

Wien, 19. Jänner 2025
Christoph Baumann Zsolt Saffer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





DIPLOMA THESIS

Automatic quantification of toric
intraocular lens orientation based on
visual computing and deep learning

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Biomedical Engineering

by

Ing. Christoph Baumann, BSc.
Registration Number 11907101

conducted at the Institute of Statistics and Mathematical Methods in Economics
to the Faculty of Mathematics and Geoinformation
at the TU Wien

Advisor
Advisor: Privatdoz. Dipl-Ing. Dr. Zsolt Saffer

Vienna, January 19, 2025
Christoph Baumann Zsolt Saffer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Ing. Christoph Baumann, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. Jänner 2025
Christoph Baumann

v





Danksagung

Ich danke meinem Betreuer Privatdoz. Dipl.-Ing. Dr. Zsolt Saffer für seine Unterstützung
beim Verfassen dieser Arbeit – sein Feedback war stets hilfreich und inspirierte mich,
ein besserer wissenschaftlicher Autor zu werden. Er nahm mich bereitwillig als seinen
Diplomanden auf, obwohl ihm die vorherigen Umstände nicht vertraut waren. Er widmete
mir Stunden seiner Zeit, selbst wenn sein Zeitplan voll war – nicht jeder würde bis spät
an der Universität bleiben, nur um eine Arbeit zu korrigieren.

Ich möchte meine Dankbarkeit Dr. Marcus Lisy aussprechen, der mir meinem Betreuer
empfahl und mir wertvolle medizinische Einblicke gab, die ich ohne ihn nicht gehabt
hätte.

Ebenso möchte ich meiner Familie danken, die mich mit Anregungen unterstützte und
die gesamte Arbeit Korrektur gelesen hat. Die Diskussionen mit meinem Vater Wolfgang
gaben mir eine Richtung, wenn kein klarer Weg erkennbar war. Die Gespräche mit meiner
Mutter Barbara halfen mir, jegliche Zweifel an mir selbst und meinen Fähigkeiten zu
überwinden. Das Zusammenleben mit meinen Brüdern Johannes und Thomas machte
das Schreiben einfacher – sie leisteten mir Gesellschaft und hatten stets ein offenes Ohr
für mich. Ich bin dankbar, sie zu haben; sie könnten nicht besser sein.

Zusammen mit meinem engen Freund Peter Blohm begann ich, diese Arbeit zu entwickeln.
Sein anfängliches Interesse am Thema half, einen Einstieg zu finden, und seine – beinahe
genialen – Erkenntnisse machten die Lösungsfindung erheblich einfacher. Die Zeit, die er
in die Vorbereitung dieser Arbeit investierte, werde ich nicht vergessen. Einen besseren
Freund kann man sich nicht wünschen.

Ich möchte meiner Verlobten Amila danken, die mich in jeder erdenklichen Weise un-
terstützt hat. Ihre konstruktiven Vorschläge und Ideen waren stets hilfreich und sie war
mein Kompass auf der Reise des Schreibens dieser Arbeit. Wenn sie in meiner Nähe war,
fiel mir das Schreiben und Programmieren viel einfacher und jegliche Unsicherheit oder
Zögern verschwanden. Ihre unerschütterliche Unterstützung hielt das gesamte Jahr über
an, das ich für diese Arbeit benötigte, und ließ keinen Moment nach. Selbst wenn ich bis
weit nach Mitternacht schrieb, war sie für mich da und zeigte mir den Weg nach vorn.
Ohne sie wäre diese Arbeit nicht fertiggestellt worden.

vii





Acknowledgements

I thank my advisor Privatdoz. Dipl-Ing. Dr. Zsolt Saffer for aiding me to write this thesis
- the given feedback was always useful and it helped me to become a better scientific
writer. He happily accepted me as his advisee, despite being unfamiliar with the previous
circumstances. He gave me hours of his time even when his schedule was busy - not
everyone would stay at university late just to correct a thesis.

I want to express my gratitude to Dr. Marcus Lisy for connecting me with my advisor
and giving me practical medical insight, which I would not have without him.

I also want to thank my family for supporting me with valuable insights and proof-reading
the whole thesis. The discussions with my father Wolfgang gave me a sense of direction,
when no clear path was evident. Talking to my mother Barbara helped me to remove
any doubts I had in myself and in my abilities. Living with my brothers Johannes and
Thomas made writing easier - they kept me company and always had an open ear for me.
I am thankful for having them, they could not be any better.

Together with my close friend Peter Blohm we started developing this thesis. His interest
in the topic in the beginning aided in finding a starting point and his - close to genius -
insights made finding a solution much easier. The time he put into preparing this thesis
is not forgotten and one cannot ask for a better friend.

I want to thank my fiancee Amila for supporting me in every way imaginable. Her
constructive insights and fresh ideas were always helpful and she was my compass through
the journey of writing this thesis. When she was around, writing and programming was
much easier and any hesitation or uncertainty disappeared. Her unwavering support was
consistent for the whole year it took me to write this thesis and did not falter for even a
second. Even if writing took me way after midnight, she was there for me and pointed
out the way ahead. Without her this thesis would not have been completed.

ix





Kurzfassung

Bei der Durchführung einer Kataraktoperation wird die natürliche Linse durch eine
künstliche ersetzt, wodurch die Möglichkeit besteht, eine Hornhautverkrümmung mithilfe
torischer Intraokularlinsen zu korrigieren. Die Wirksamkeit dieser Linsen hängt von
ihrer präzisen Ausrichtung ab. Allerdings kann sich die torische Intraokularlinse in den
Wochen/Monaten nach der Operation drehen. Diese postoperative Rotation verringert
die Korrekturwirkung der torischen Intraokularlinse erheblich.

Derzeitige Methoden zur Beurteilung der Rotation sind manuell, zeitaufwendig und
oft ungenau. Diese Arbeit entwickelt und evaluiert zwei automatisierte Methoden zur
Beurteilung der Rotation — eine auf Computer Vision basierende sowie eine Deep-
Learning-basierte Methode — mit dem Ziel, die Rotation der Linse präzise zu bestimmen.
Die Methoden wurden anhand eines Datensatzes von Bildern von 130 Patienten getestet
und ihre Genauigkeit mit manuellen Messungen von Ärzten verglichen. Die Deep-Learning-
basierte Methode erreichte eine Vorhersagegenauigkeit von weniger als 6 Grad für mehr
als 82% der Bilder. Diese Methode basiert auf einem standardisierten ResNet18-Modell,
das zusätzlich explizit extrahierte Merkmale nutzt.

Dieser Ansatz kann in einem Klassifikator-Setting mit einem entsprechend gewählten
Schwellenwert auf den postoperativen Intervallen von 1 Stunde bis zu 6 Monaten nach der
Operation etwa 50% der angenommenen pathologischen Fälle mit einer Linsenrotation
über 2 Grad erkennen. Dieses vorläufige Ergebnis muss mit einem größeren Patientenda-
tensatz weiter validiert und spezifiziert werden. Dies zeigt jedoch bereits die Machbarkeit
einer vollständigen Automatisierung des Beurteilungsprozesses der Linsenrotation mit
angemessener Genauigkeit.

Darüber hinaus legen die Ergebnisse nahe, dass die Deep-Learning-Methode weiter
verbessert werden kann und ein hohes Potenzial besitzt, die Vorhersagegenauigkeit und
damit die praktische Anwendbarkeit weiter zu steigern.
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Abstract

When cataract surgery is performed, the natural lens is replaced with an artificial one,
which offers the opportunity to correct astigmatism using toric intraocular lenses. The
effectiveness of these lenses depends on their precise orientation. However the toric
intraocular lens can be rotated in the following weeks/months after the operation, due
to currently not clarified reasons. This postoperative rotation significantly reduces the
corrective power of the toric intraocular lens.

State of the art methods for assessing rotation are manual, time-consuming and often
inaccurate. This thesis develops and evaluates two automated candidate assessing
methods — using a computer vision-based and a deep learning-based approach — in
order to determine lens rotation accurately. The methods were tested on a dataset
of images of 130 patients and their accuracy was compared to manual measurements
performed by physicians. The deep learning-based approach achieved a prediction
accuracy of less than 6 degrees for more than 82% of the images. This is based on
a standardized ResNet18 model, which also uses explicitly extracted features. This
approach can detect approximately 50% of the assumed pathological cases, having a lens
rotation above 2 degrees, when used in a classificator setting with a properly set threshold
on the postoperative intervals between 1 hour up to 6 months after the operation on
the considered image set. This preliminary result must be justified and specified on an
image set with a higher number of patients. This demonstrates the feasibility of fully
automating the lens rotation assessment process with appropriate accuracy.

In addition, the results suggest that the deep learning method can be further improved
and has high potential to improve the prediction accuracy and therefore the practical
usability of it.
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CHAPTER 1
Introduction

Astigmatism is a phenomenon in the human eye that significantly impacts vision experi-
ence by inducing blurred vision. It is normally caused by an asymmetric distribution of
the refractive power of the cornea of the eye. This leads to uneven focus of the incoming
parallel light rays, causing them to not converge at a single point on the retina [SSF13].
When treating cataracts, astigmatism can be reduced by implanting special artificial
lenses, called toric intraocular lenses (toric IOLs). These lenses remove the refractional
error introduced by the cornea, again focusing the light on a single point. Due to the
asymmetric nature of the toric IOLs, movements of the lens can worsen its effectiveness,
again inducing severe blurred vision. Especially rotation of the IOL is critical; one degree
of rotation can already cause 3.3% reduction in the correctional effect, completely losing
the benefit at 30 degrees of rotation [SMS94].

Currently, there are no fully automatic solutions for measuring this rotation, based
on optical microscope images. The task can be conceptualized as an issue of image
classification or regression. For this class of problem, specialized artificial neural nets
(ANNs) - namely convolutional neural networks (CNN), a type of deep learning (DL) -
have been shown to be effective. The goal of this thesis is to develop a fully automated
algorithm based on DL that can detect and measure the rotation of a toric IOL between
several given images taken with a biomicroscope.

1.1 Medical context

This section introduces the main medical problems relevant for this thesis and several
medical imaging techniques. It should give an overview of commonly used tools and
specify the medical side of the problem.
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1. Introduction

1.1.1 Medical imaging
For a better understanding of how 2D- and 3D-images in computer vision and machine
learning are generated, common medical imaging techniques used in ophthalmology (a
medical discipline dealing with diseases of the eye) are introduced. In the following, we
explain their use in different medical fields and give a brief description on them:

• Digital photographs are used to store images mainly for documentation purposes.
Taking photographs and comparing them at different points in time has been widely
adopted in fields like dermatology, where it is crucial to observe the development of
possible melanomas over time [QTJ+15]. These kinds of image are also available
when examining patients with a biomicroscope in an eye examination.

• Ultrasound utilizes acoustic waves with a frequency of more than 20kHz to
visualize parts of the body, that cannot be properly examined by other means. This
includes visualizing soft and deep-seated tissues, but also flow rate measurements
and 3D-images can be generated [Lei07]. In ophthalmology, ultrasound of the eye
is performed in situations where the optical path to the anatomy of interest is
obfuscated, for example due to hemorrhaging or a clouded lens [Sou09].

• Computed tomograpahy (CT) is a method to generate a 3D representation
of a scanned body part. It is based on X-rays taken at different angles, which
are combined to form a 3D model. It is commonly used in preventative care, for
example detecting tumors in the lung, brain, or eyes [Gar02].

• Magnetic resonance imaging (MRI) is based on strong magnetic fields and
radio pulses, to generate 3D images of examined body parts. It is slower than
CT imaging, but has certain advantages, such as a lower radiation dose and a
higher image quality. In ophthalmology it is used to diagnose orbital lesions or
retinoblastomas [ISD12].

• Optical coherence tomography (OCT) can be used to obtain micrometer-
resolution 3D images of tissues, by utilizing interferometry of light [HSL+91]. In
ophthalmology, it is used to visualize the front third of the eye or the retina at
the back of the eye. Therefore, it can be used in the diagnosis of a multitude of
diseases, like glaucomas [GT13] or macular degeneration [KPL+12].

Due to the optical and anatomical properties of the eye, digital images of slit lamp
microscopy and optical coherence tomography are the main ways of gathering information
when implanting intraocular lenses [LWK+17]. Techniques such as magnetic resonance
imaging and ultrasound can also provide insight in certain circumstances but are used
mainly to identify different diseases of the optical apparatus, for example, the detection
and description of retinoblastomas [dJdGN+14].

Slit lamp microscopy is one of the simplest and most powerful ways to diagnose medical
conditions in ophthalmology. For one, it is used to identify a variety of diseases; on

2



1.1. Medical context

Figure 1.1: Biomicroscope with optical path. 1: Light source. 2: Examiner side ocular.
3: Adjustable base. Source: [TPT+20]

the other hand, it produces digital images that can be compared over long periods of
time, enabling advanced diagnostic methods. Understanding the device used to take
the pictures provides deeper insight into the applicability of slit-lamp microscopy in
ophthalmology. The instrument enabling this method is called a biomicroscope, pictured
in Figure 1.1. It is made of a bright light source attached to a microscope. The light source
can be focused or de-focused by the operator (to a thin line, hence the name slit lamp)
depending on the performed procedure. It is located above or below the microscope and
the light path is guided directly to the patient’s eye with a semitransparent mirror. The
light is then reflected back towards the mirror, where it is passed through the microscope
and to the examiner. There exists a multitude of optical adapters that allow one to
take pictures with an attached camera sensor simultaneously while performing routine
inspections with a conventional ocular. This enables a basic assessment of the extent of
the disease while documenting it at the same time. Depending on the configuration of
the slit lamp device, different parts of the eye can be examined. For example, the retina
and optic nerve in the back of the eye can be evaluated with fundoscopy. In a different
configuration, the front part of the eye can be observed, which is especially useful when
diagnosing a cataract. Usually, these kinds of image are retroilluminated, meaning that
the illumination of the lens is provided by the reflection of emitted light on the fundus
(back) of the eye. Additional ambient light can be introduced to also slightly illuminate
the iris and the sclera. An example of such an image can be seen in Figure 1.2.

3



1. Introduction

1.1.2 The problem of toric lens rotation

To better understand the problems that arise with toric IOLs, the underlying medical
condition and treatment methods are explained.

Cataracts are diseases in the field of optometry that cloud the lens and make it less
transparent, causing a significant reduction in the quality of vision and therefore the
quality of life of the patient. The most widely available remedy is cataract operation, a
surgical method that is performed mainly on a day-patient basis (119, 987 surgeries in
Austria in 2021 [Eur23]). In this procedure, the clouded lens is removed and an artificial
intraocular lens (IOL) is implanted. An implanted lens can be seen in Figure 1.2. If a
toric IOL is implanted, not only is the lens clouding removed but the preoperative corneal
astigmatism of the patient can be corrected, resulting in improved postoperative vision.
Due to the patient-specific magnitudes of astigmatism and possible other medical factors,
a individualized evaluation of the severity of astigmatism is needed, which is performed
using optical and tomography-based methods. They produce a set of measurements from
which the appropriate power of the toric IOL can be determined [FR20].

Due to the asymmetric nature of astigmatism, the orientation of the toric IOL significantly
affects the residual astigmatism. The lens movement can be caused by intraoperative
misalignment or postoperative rotation due to trauma or physical strain. Especially
rotation is critical, because, as previously mentioned, each degree of rotation can cause
a 3.3% reduction in the correctional effect of the toric IOL [SMS94]. Thus, physicians
need an accurate measurement method to detect these rotations and react to them in an
appropriate way.

1.2 Problem statement

Commonly used methods for measuring the rotation of toric IOLs are still semi-automated
[SSS+21] or the evaluation is performed completely manually with the help of a slit lamp.
The proposed semi-automated methods require high-quality images and a significant
amount of manual labor to find the change in rotation. In addition, it takes a lot of time
and skill to operate the slit lamp microscope itself to capture sharp and well-illuminated
images that include all necessary details. Furthermore, commonly used manual methods
using the slit lamp only have an accuracy of 5 degrees, which significantly reduces
the quality of the measurements, although there are newer methods that reduce the
measurement error to around 0.5 degrees [MSK11].

Currently, there is no fully automated method available that determines the change in
rotation of the lens over time after toric IOL implantation. There is a need for developing
such an algorithm in order to demonstrate the rotational stability of newly developed
toric IOLs making patient care more efficient and enabling further research based on large
volumes of processed images. Such research can target to investigate the dependency of
change in rotation on type of toric IOL and other relevant factors. In addition, manual
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1.3. The goal of the thesis

Figure 1.2: Slit-lamp photograph of eye with implanted IOL, 4 months after implantation

measurements can introduce human errors and inconsistencies, depending on the level of
expertise of the grader and image quality.

1.3 The goal of the thesis
The aim of the work is to allow full automatic processing of retroilluminated slit lamp
photographs to detect and measure the grade of postoperative toric IOL rotation. Novel
algorithms are aimed to be developed that automatically generate fast and reliable
results with high accuracy, comparable to the best available traditional methods, with
the additional benefit of providing very high repeatability between tests. In addition,
automatic methods eliminate the need for manual evaluation performed by medical
personnel and save valuable time for physicians. While for medical diagnosis the rotation
angle is the main interest, additional information such as the position of the center of
the lens can be beneficial for further medical and research purposes.

As these measurements are repeated to assess the change in lens orientation, the technical
aspects of the measurement method are not the only relevant factor. The test-retest
reliability of these methods also depends on the consistency of the labeling of the patient
photos performed by medical personnel and the quality of patient photos [SSS+21].
Automated methods can help reduce these variances and are also able to achieve more

5



1. Introduction

robust measurements.

An overarching goal is to establish preventive measures by identifying candidate causes of
rotation of toric intraocular lenses. This can be done by checking the correlation between
the hypothesized candidate causes and the size of the rotation of the toric intraocular
lenses. The findings can then be used to take preventive measures. However, the target
of this thesis is not to identify these candidate causes themselves. Instead, it aims to
provide the necessary tools to automatically assess the rotation of the toric lens.

1.4 Research questions
The research questions are as follows:

• RQ1: Can the predictive accuracy of a fully automated computer vision based
method for assessment of the toric IOL rotation without deep learning achieve a
level of quality equivalent to those of a manual data analysis method as performed
by medical professionals?

• RQ2: Which deep learning (DL) architecture performs best for automatic assessment
of toric IOL rotation?

• RQ3: Can a deep learning dominated algorithm outperform a traditional computer
vision algorithm in terms of predictive accuracy for the assessment of the toric IOL
rotation?

All in all, the thesis results in a set of images automatically labeled with the lens rotation
in degrees by a computer vision and DL algorithm that can determine lens positioning of
retro-illuminated images. Investigating methods for quality awareness is a key-interest, in
order to enable doctors to rely on predictions and be aware of when manual supervision
of a certain measurement is needed.

1.5 Approach
Two approaches are explored as possible processing algorithms: A computer vision (CV)
based processing pipeline and a DL based algorithm. The dataset used for DL based
algorithms can be augmented, which enables the improvement of the predictive accuracy
of the DL based methods. The validation part of the thesis gives an indication on how
well the algorithms perform and how different methods compare to each other with
respect to run-time and accuracy. The workflow of this thesis can be described by the
following steps:

1. Literature review: Background information is gathered on possible approaches
and existing methods, to serve as a theoretical basis.

6



1.6. Structure of the work

2. Purely computer vision based assesment: A computer vision algorithm is
developed that automatically detects the difference of the angles and the rotational
position of a given image pair.

3. Label generation: A computer vision algorithm is developed that automatically
detects lens angle and position for any given image in the data set. This algorithm
is based on the previously conceived computer vision algorithm.

4. Creation of the labeled images: The labeling algorithm is used on a large
dataset to generate a set of labeled images needed for training and testing of DL
approaches. The algorithm enables automatic processing, so there is no need for
labeling by medical personnel, which saves valuable time of doctors and reduces
variances. These images can additionally be augmented to simulate nonoptimal
image conditions, such as obfuscation of parts of the image.

5. DL dominated algorithm: A combination of visual computing pre- and post-
processing algorithms with a DL algorithm for calculating the lens position on
an image is devised. The DL algorithm is based on a convolutional neural net
(CNN) architecture, designed and implemented by training and testing it on labeled
images. The DL algorithm is only used to detect the lens angle of a single image
automatically; it has to be post-processed with a CV algorithm to detect the lens
angle difference of any image pair.

6. Comparison of the methods: The labeling algorithm and the DL-dominated
method are compared to the semi-automated method [SSS+21]. The benchmark
test, including all developed algorithms, is evaluated by the help of applying selected
regression metrics.

1.6 Structure of the work
First, the relevant medical background is introduced, where the focus is on physical
phenomena, relevant anatomy, structure of artificial lenses, and existing methods used in
cataract surgery and ophthalmology. In Chapter 3, the visual computing algorithms are
introduced. The chapter is structured according to the order in which they arise in the
experiments. The next chapter gives a background on CNNs. Chapter 5 deals with the
experiment design and discusses all the necessary factors needed to establish the four
algorithm flows. In addition, it provides the specification of the concrete experiments
based on the four algorithms introduced in the previous chapter. Finally, the results of
the experiments are presented and discussed, and the research questions are answered.
The thesis ends with conclusions and possible future steps, with additional content in
the appendix.
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CHAPTER 2
Medical background

To clarify the challenges faced in this work, we give an introduction to the medical
background. In particular, studies addressing medical image techniques are explored
and surgical procedures are explained, including relevant anatomical structures and
phenomena. Moreover, a review of existing research works on the assessment of IOL
rotations is given.

2.1 Visual computing in medicine
First, existing conventional algorithms in the field of visual computing are briefly discussed.
This should provide an overview of methods that are similar to the algorithms that are
used in this thesis. They contain valuable input to understanding the problem of IOL
rotation detection and establishing possible solutions for it.

2.1.1 Visual computing algorithms in various medical areas
There are several applications of computer vision algorithms that do not use machine
learning in medicine. For example, a common problem that has been solved is the
automated counting of various types of blood cells. It uses methods such as corner
detection and feature extraction to gather information on microscopic images of a blood
sample. Most importantly, it can count the number of cells present in a given sample
in very little time, which makes time-consuming counting by hand obsolete [IPS20]
[CSS+20].

The presence of visual computing methods does not always have to be immediately
noticeable; for example, de-noising and contrast enhancement algorithms are used to
refine the image quality of X-rays and improve general interpretability. There are novel
approaches that utilize mathematical and CV methods to achieve this goal while reducing
the potentially harmful radiation dose in X-Ray imaging [LLC+20][AASIK23].
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2. Medical background

It could even be considered that the implementation of the Radon transform that generates
a 3D model from individual images taken by a CT machine is a simple visual computing
algorithm. The basis for this algorithm, a mathematical function, was developed before
the emergence of CT machines as a mathematical concept without practical application.
Only decades later, it was discovered that it can be used to "overlay" X-Ray images taken
from various angles to generate a 3D image [Kal00][Rad17].

These algorithms that rely only on computer vision provide a first feeling of what can
be achieved with medical imaging. They illustrate common methodologies, such as
edge/circle detection and contrast enhancement, which serve as a basis for avenues that
can be utilized when looking for a solution to this thesis’ problem.

2.1.2 Visual computing algorithms in ophthalmology

There have been advances in ophthalmology using visual computing algorithms that do
not use machine learning. Automatic evaluation of the quality of retinal images is an
application that can be useful in determining whether the image quality of an image
is high enough to be used in diagnostics [LGB+01]. Another use of visual computing
algorithms is to improve low-quality retinal images that have been poorly illuminated
[ZWB23]. This shows that CV techniques have been successfully used to solve problems
in the field of ophthalmology.

2.2 Deep learning (DL) for image processing in medicine

In recent years, many machine learning and deep learning based algorithms have been
used for image processing in medicine. The core concepts of such methods are introduced
in later chapters; this section provides an overview of common DL based applications
and clarify their relevance.

2.2.1 DL algorithms for image processing in various medical areas

Segmentation and image classification have been used to detect liver lesions [LBK+18]
or to detect tuberculosis on chest radiographs [RKK+20]. These methods rely on deep
learning to identify regions of unusual or known-to-be-malignant tissue. They are often
used in combination with manual examinations, to combine computer knowledge with
practical expertise of medical specialists.

There are also use-cases for image processing over multiple appointments, for example
monitoring malignant melanoma on skin photographs [GB19]. The most important
aspect of a proper diagnosis is tracking the changes in nevi over time. Such trackings
were already used before the development of advanced deep learning algorithms. Hence,
such tracking-based detection enables the training of DL based algorithms resulting in
high accuracy. Such algorithms are already used in real-world settings.
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2.3. DL based image classification for cataract

Some authors combine already existing computer vision algorithms with deep learning
approaches, such as more sophisticated counting of different types of blood cells. Such
combined algorithms work with different types of cells that are automatically marked
and classified, further improving the speed of cell count assessments and increasing the
amount of information gathered [CTH22].

All of these algorithms show that DL methods can outperform existing CV methods, and
their combinations can lead to improved solutions. In addition, DL-based algorithms can
be built on already existing data, indicating that physicians have little to no additional
manual work to enable their development.

2.2.2 DL algorithms for image processing in ophthamology
Various methods from the field of artificial intelligence and machine learning are already
being investigated for various uses in ophthalmology. Many algorithms use fundus images
to determine diseases. An example is the automatic detection of glaucoma disease in
images of the eye fundus, where a specialized deep learning algorithm classifies those
images to contain signs of glaucoma or not [Abb17]. Another case in which retinal
fundus images are used is the detection and classification of diabetic retinopathy. In this
study, the algorithm employed classifies if it suspects retinopathy or not, similarly to the
previously mentioned article [GL17].

Diseases such as macular degeneration can also be detected based on fundus images, but
researchers are also exploring methods that use OCT. This implies that certain diseases
can be detected with multiple different methods based on varying image types. This
field has been explored in multiple studies and current algorithms based on convolutinal
neural networks (CNNs) yield results with high diagnostic accuracy [LBL17][LSW+23].

However, there are not only deep learning methods for diagnosing patients, but also
algorithms that help to determine the right treatment options for these diseases. For
example, in cataract surgery the optical properties of the implanted artificial lens have
to be calculated so that they properly restore the patient’s vision. This procedure is
known as the IOL power calculation, where a multitude of methods have been explored
and compared. Machine learning and deep learning based methods are one of the most
reliable methods in certain cases, e.g., researching formulas for IOL power calculations
[SCG24] [Grz21].

All of these papers lead to the conclusion that DL-based approaches are beneficial for the
field of ophthalmology, being employed a variety of use cases. To remain at the forefront
of academic research, it is crucial to consider DL-based methodologies to enhance both
the quality of diagnosis and the quality of treatment.

2.3 DL based image classification for cataract
There have been a multitude of papers exploring deep learning methods to detect and
classify cataracts based on fundus images. Almost all researched works use a form of
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convolutional neural networks to process scaled photographs. These networks are often
custom-designed and have different performance characteristics and goals. They are a
good example of how deep learning can be used to reduce the workload on physicians and
perform studies on large sets of data that might not be properly processable manually
[ZNX+19] [DZQY17] [KCA+22]. This topic is very close to the task discussed in this thesis;
thus, their content is of high relevance and serves as a source of possible methodologies
that can be applied in the algorithms developed.

2.4 Surgical background for implanting IOLs
Not only are existing methods concerning DL and CV important, but also the commonly
used surgical routines can provide insight into the topic. In this section, the medical
details of how cataracts are treated and how an IOL is implanted in order to correct
astigmatism are discussed. In addition, an overview of the anatomy of the eye and the
relevant type of IOL used in this thesis is specified.

2.4.1 Surgical procedure to treat cataracts
The underlying medical procedure used to treat cataracts is surgery, in which the clouded
lens is removed and instead an artificial lens is implanted. For the commonly used
sutureless procedure, one or more small incisions are made on the outer side of the pupil,
where the surgical instruments are inserted. The lens capsule is then opened with a
scalpel, resulting in a circular opening, also visible in the slit lamp photograph (see Figure
2.1). The original lens is then emulsified with the help of ultrasonic waves and removed
with a suction tool. Afterwards, the folded artificial lens is inserted into the opened lens
capsule, where it unfolds itself. If the IOL is implanted to correct astigmatism, then in
the last step, the artificial intraocular lens is moved, so it is centered and the rotation
corresponds to the preoperatively determined rotation value [Mal08]. This procedure
can cause irritation and bleeding of the conjunctiva, possibly obfuscating the underlying
sclera vessels. This can lead to problems when assessing the lens rotation, because the
view of important landmarks - namely corkscrew vessels - can be blocked by irritated
vessels of the conjunctiva.

The lens can move after implantation, for example, due to trauma or infection, reducing
visual clarity for the patient. If the patient and the physician deem rotation being too
large, additional surgery is needed to correct the position of the IOL [SKBK22]. Rotation
is particularly problematic, because small changes can already cause deterioration of
optical performance and worsen patient satisfaction, due to asymmetric optical properties
of toric IOLs [SMS94]. To avoid unnecessary surgeries, methods are needed to accurately
assess rotational changes over time.

When the eye of a patient is examined in follow-up appointments, the pupil is usually
enlarged with drugs such as tropicamide or phenylephrine [SSS+21] to improve lens
visibility. Without any of the drugs, the pupil has a smaller diameter, and the markings
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Figure 2.1: Anatomy of the eye, containing following parts: (1): The considered type of
artificial toric intra-ocular lens (2): Immovable vessel of the sclera (3): Movable vessel of
the conjunctiva (4): Sclera (5): Markings on the surface of the artifical IOL (6): Purkinje
reflex (7): Iris (8) Border of the opening of the lens capsule

on the IOL may not be fully visible. In addition, the change in diameter can affect
algorithms that take into account the relation of pupil size to eyeball.

2.4.2 Relevant anatomy of the eye after implanting IOL

There are several anatomical structures that are important for measuring IOL rotation:
The pupil containing the toric IOL, surrounded by the iris and the sclera („white of the
eye“) containing immovable blood vessels, and lastly the transparent conjunctiva overlaid
on the sclera containing small movable blood vessels. A detailed view can be seen in
Figure 2.1.
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2. Medical background

Figure 2.2: Purkinje reflections (marked red)

2.4.3 Purkinje reflections

A physical phenomenon used in various algorithms is the reflection of the microscope-
light-source in different parts of the eye: There can be up to four very bright spots in
a slit lamp photograph of the eye, called Purkinje reflections (see Figure 2.2). Each
reflection is created at an optical boundary and has a different intensity and location,
depending on the origin of the reflection (see Figure 2.3). This includes reflections at
the front and back of the lens and the cornea. At least one point is always located and
visible within the circumference of the pupil, if viewed from the front [GK16]. This fact
can be utilized to improve algorithm performance when searching for the location and
size of the pupil.

2.4.4 Structure of IOLs

In this study, the single-piece Clareon Toric IOL (Alcon, Fort Worth, TX) with three dot
markings on opposite sides of the lens is used exclusively (see Figure 2.4). In general, this
type of artificial toric intraocular lens has two main components: The optical lens itself
and the so-called haptics, which are used to secure the lens in place. Usually there are
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Figure 2.3: Diagram of purkinje reflections. Source:[Com15]

also markings located on the lens, which indicate the current position and rotation. The
haptics and markings have a fixed position relative to each other. The haptics and the
lens itself can have different shapes and materials, depending on the manufacturer and
the desired characteristics [ZLC+16]. The haptics themselves are either only partially or
not visible in slitlamp photographs of the eye.

2.5 Manual method for determining lens rotation
A semi-automated method, that determines angular rotation over time, is based on
a custom manual method that uses the "Rotix" program [SSS+21]. The process of
determining the difference of lens rotation is described as follows:

„To evaluate the true rotation of the IOL, all pictures recorded at the follow-
ups are imported into the custom-made software “Rotix.” The Rotix program
[. . . ] automatically calculates the axis between 2 lines drawn by the observer.
First, the observer defines 2 nonmovable critical landmarks on the sclera. [. . . ]
Then, a connecting line is drawn between 2 landmarks. In a second step, the
observer defines the IOL axis. This second line can either be drawn between
the toric axis markings or between the axilla or shoulders of the haptic base of
the IOL. The axilla is defined as the transition zone between the optic and the
haptic. In IOLs where the transition zone is rather flat and no clear distinction
between optic/haptic transition can be made, a stencil of the IOL should
be overlaid on the IOL via Photoshop. At each follow-up, the same critical
landmarks identified at the end of surgery are compared to the IOL axis. The
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Figure 2.4: Clareon Toric IOL (Alcon, Fort Worth, TX) Source:[Alc24]

software automatically calculates the axis difference between the 2 connecting
lines [. . . ]. The software then automatically calculates the difference between
the axes of follow-up 1 and follow-up 2, 3, et cetera.“[SSS+21]

"Follow-ups" in the context of the quotation refer to sequential photographic images of
the same eye that have been taken at appointments over the course of 6 months. This
method has been used to generate rotational differences as labels for the dataset, which
serves as a comparison basis for this study (see Section 5.5 for more details).

There are also other methods present, which utilize optical coherence tomography, relying
on more specialized equipment, such as the IOLMaster 700 (Carl Zeiss, Germany). These
methods give accurate results; however, the equipment needed is expensive and is not
always available or used in follow-ups to assess rotational stability [OOS+21].

2.6 Review of research on assessment of IOLs rotation
Current research, which compares the rotation of the toric IOL for different lenses, uses
mainly methods based on slitlamp photographs [KFSN14], (enhanced) manual detection
[MSK11], or semi-automated methods [SSS+21]. Typically, IOL orientation is evaluated
at several timepoints: For example, postoperatively or on day 1, month 1, month 3
and month 6 [KFSN14]. This results in an evaluation of at least 4 images per patient,
sometimes with several hundred patients needed for a comparable study. Due to the fact
that they are done manually/semi-automated [Wen21][WB10][SSM+20], a huge workload
is created for the medical personnel.
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There exists research that measures toric IOL rotation and other metrics with shallow
feed-forward neural nets, but these algorithms need additional tomographic data to work
efficiently [LSC+23]. Computer vision/machine learning approaches that only use image
data from optical photographs have not yet been implemented. There are propositions
to use convolutional neural networks, but there are no specific studies that implement
this kind of software [LMY24].

17





CHAPTER 3
Visual computing background

In this thesis, a computer vision algorithm is used that combines out-of-the-box compo-
nents with a custom algorithm that is interfaced with pre- and post-processing steps to
detect the angular rotation of an artificial toric IOL. This section aims to explain the
pre-existing components, provide an overview of the methods used, and describe how
physiological phenomena are utilized.

3.1 Preprocessing
Preprocessing can be divided into two parts: First, general preparations are needed
to assign identifiers to individual images and videos and second, bring all data into a
common image format. The second step includes extracting images from intra-operational
video footage and splitting the names of all files into its components. Afterwards, an
image-specific preprocessing step is performed to create a copy of the images in a different
color space and resize them to a common resolution. In the following, we will describe
the second preprocessing step.

3.1.1 Extracting images from video
In the given data set, the footage of the freshly operated eye (footage tagged with the
timepoint "OP") is given as a video between 10 seconds and 2 minutes and 52 seconds
long. The videos come with a frame rate of 25 image frames per second (FPS). With the
proposed algorithms, only pictures can be processed; therefore, several frames per video
must be extracted and saved as image files.

The main challenge in this process is the presence of artifacts created by quick movements
of the eye (see Figure 3.1) in the video. Presumably, they are present due to the so-called
interlacing[Sch30], or are introduced as deinterlacing artifacts[DHB98]. They are an issue
for the algorithm used, because important landmarks for detecting the lens angle can be
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3. Visual computing background

distorted and made unrecognizable. If there is little to no difference between frames, no
interlacing artifacts should be visible. To extract images that have as few artifacts as
possible, a heuristic method is employed to detect the presence of significant movements.
This is done by converting each frame to the HSV-space (see Section 3.1.3) and building
the difference in brightness (encoded in the V-channel) for any given frame in the video
(c) to its previous frame (p) and the next frame (n):

Δpi,j = |pi,j − ci,j |
Δni,j = |ni,j − ci,j | (3.1)

i and j represent each individual pixel in the image. If little movement is present, the
difference in brightness is close to zero, and if large movements are present, the difference
in brightness is large. The sum of the total changes indicates the amount of movement
compared to the previous and next frame, which is described by the variable s:

s =
�
i,j

Δpi,j + Δni,j (3.2)

The images with the smallest sum of changes in brightness s are chosen as potential
candidates with fewer artifacts. For these candidates, it is checked whether the pupil
mask can be calculated (see Chapter 3.2) to ensure that the pupil is not obstructed by
surgical tools, which block the view of the lens in some frames. Two different lens-finding
algorithms were utilized to calculate the possible position and size of the pupil. If both
algorithms agree that the center is approximately at the same position (max. 100 pixels
apart), the frame is considered to show an unobstructed view of the lens and thus it is
usable.

The five images that have the lowest score s and pass this test are chosen as samples for
further processing. If any of those five images has a score that is ten times higher than
the with the lowest s, they are discarded and not used. This ensures that the images are
of similar quality. A limitation of the algorithm can be other video artifacts like blocking,
which introduces changes in brightness that could be interpreted as movement. Thus,
images could have been removed that had little to no interlacing artifacts included.

3.1.2 Splitting the file names
The next preparation step is the extraction of the patient ID, information on the location
of the eye (OS - oculus sinister - left eye, OD - oculus dexter - right eye), sequence
number, and point in time of picture taken. This information is stored inside the filename,
encoded in the format "[ID]_[OS|OD]_[Time]_[Sequence number].tif". For example the
file "001_OD_1w_1.tif" is interpreted as patient with ID 001, right eye, photo taken
at 1 week after operation, first picture taken at that point in time. The patient IDs
are integer values that range from 001 to 130. The point in time where the follow-up
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Figure 3.1: Cropped video frame with interlacing artifacts

appointment was performed, also called a "timepoint" in this thesis, can be one of the
following:

• OP - intra-operational picture

• 1h - taken 1 hour after operation

• 1w - taken 1 week after operation

• 1m - taken 1 month after operation

• 4m - taken 4 months after operation

• 6m - taken 6 months after operation

This information is extracted by removing the extension of the file name and splitting
the rest of the string at the "_" character.
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3.1.3 Preprocessing steps for individual images
First, a conversion to the HSV color space is performed for each image. Except for
possible rounding errors, the conversion does not reduce or alter the given information;
it simply changes the color space in which the image is represented. Instead of having a
channel for each primary color (Red, Green, Blue), the information is stored as Hue,
Saturation and Value. This is useful in later steps because image features such as the
pupil and the blood vessels are more distinguishable from the background in the HSV
color space. The conversion for each pixel happens under the following formula:

V ← max(R, G, B) (3.3)

S ←
�

V −min(R,G,B)
V if V ̸= 0,

0 otherwise
(3.4)

H ←

����������

60(G−B)
V −min(R,G,B) if V = R
120+60(B−R)

V −min(R,G,B) if V = G
240+60(R−G)

V −min(R,G,B) if V = B

0 if R = G = B

(3.5)

All images are rescaled to match a common resolution. Especially images extracted from
videos need this resizing, because the videos are provided in a resolution of 1280x720px,
whereas almost all other images have a resolution of 1720x1143px. The rescaling is
done with the opencv function "resize", using bicubic interpolation [Key81]. The ratio of
scaling sr is calculated by dividing the smaller components of the resolutions:

sr = 1143/720 = 1.5875 (3.6)

This ratio is then used to resize the image, resulting in a resolution of 2032x1143px. To
match the common resolution of 1720x1143px, both from left and right sides 156px are
cut off, 312px in total.

3.2 Masking pupil and vessel area
For some steps of the algorithm, only certain regions of the photo are important; namely,
the pupil of the eye and the white of the eye, which therefore must be extracted. They
compose a disjunct partition of the eye, thus this extraction means a separation. The
separation is performed by means of two masks (one for the pupil, one for the sclera),
which have the same dimension as the base image. They indicate when a pixel is part of
the pupil or sclera (=white of the eye) with a boolean value at each position. Calculating
the mask for the pupil accurately is important due to multiple reasons. The mask of
the sclera is based directly on the pupil mask, and the center point and radius of the
pupil are used in several calculations. Two algorithms for finding the pupil are defined: A
color-based segmentation algorithm and another one that applies a specialized type of the
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3.2. Masking pupil and vessel area

Hough transform, called Circle-Hough-Transform (CHT) [Hou60][Bal81]. Both of these
methods yield three outputs: The center of the pupil (given by x and y coordinates),
the radius of the pupil, and a mask that covers the pupil, represented as a logical array.
These methods are chosen, because of the very specific anatomical structures of the eye:
For one, the healthy iris and the pupil have an almost circular shape [Kol95], which makes
Circle-Hough transform based detection and segmentation possible. This transform is
designed to find circles in an image. In addition, the retina is reflecting parts of the
incoming light back, giving it a yellow to orange hue. This phenomenon partially depends
on the light source used, but is mainly dependent on the blood vessels in front of the
retina and the specific pigments (including melanin) present in the retinal tissue [YZL21].
This enables detection and segmentation with the help of color/hue thresholding [BGK15].
The purkinje reflexes are used in both algorithms to verify that the pupil has been found.

3.2.1 Pupil masking based on Circle-Hough-Transform
The Circle-Hough-Transform is based on knowledge of the approximate diameter of
the pupil, measured in pixels. Therefore, the method with the given parameters is
only applicable to this specific dataset and has to be adjusted when processing images
taken with a different resolution or zoom level. The Python library "opencv" has an
out-of-the-box method called "HoughCircles", which implements the circle detection. To
ensure good performance, several parameters need to be set appropriately:

• minRadius and maxRadius: This represents the interval of possible pupil radii.
It is set to I = [180, 316].

• param1 and param2: These parameters represent the edge detection thresholds,
as described in the Canny algorithm [Can86]. The lower value always represents
the lower bound for the Canny edge detection, and the higher value the higher
bound. The values have been set at p1 = 50 and p2 = 87

• dp: Represents the inverse ratio of the resolution used internally to the resolution
of the image. It is set to dp = 1.3, meaning that the resolution of the original image
is reduced by this factor. This increases the robustness of the algorithm by merging
circular structures that are located close to each other.

• minDist: The minimum distance between circles. Set to the same value as
minRadius, so that only a minimum amount of overlap is allowed.

The function is applied to the V channel of the HSV image, resulting in a set of possible
circles, represented as pairs of centers (coordinates with components cx and cy) and radius
r. The first entry is kept as the result, because the "HoughCircles" function sorts the result
by confidence in circularity. If no circle was found, the image is considered unprocessable.
The mask of the circle found, Mh, a logical array with the same dimensions as the original
image, is then generated with the following formula:
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Figure 3.2: Pupil mask overlaid on original image generated by Hough Transform

Mh
x,y :=

�
True, if(x − cx)2 + (y − cy)2 ≤ r2

False, otherwise
(3.7)

An example of a resulting mask can be seen in the Figure 3.2.

3.2.2 Pupil masking based on color
A method for detecting the pupil independently of the size of the picture is based on the
orange-to-yellow hue of the pupil. The parameters and its description for this function
can be found in Table 3.1. As first step, a Boolean mask of the image in the HSV space
(given as HSV ) is created with the following formula:

Mij :=
�

True, if hsv_lower < HSVij < hsv_upper

False, otherwise
(3.8)

Possible artifacts of the generated image mask are removed with the help of morphological
operations: First, the mask is eroded with a circular kernel sized 5 × 5 and then dilated
with a circular kernel sized 30 × 30. Then, the contours of this mask are detected, and
approximately circular shapes are extracted based on these contours. This extraction is
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3.2. Masking pupil and vessel area

Parameter name Value
(H,S,V) Description

hsv_lower (5,100,100) Lower bound for color detection
hsv_upper (25,255,255) Upper bound for color detection

hsv_avg_lower (4,66,66) Value for accepting the proposed circle - lower bound
of average pixel value

hsv_avg_upper (25,255,255) Value to accept the proposed circle - upper bound of
the average value of pixels in the solution

hsv_max_std (20,78,100) Value for accepting the proposed circle - highest stan-
dard deviation for pixels values in the calculated circle

bright_spot_min 254 Lowest value for detecting Purkinje Reflections

Table 3.1: Parameters for detecting pupil size by color

performed with the "findContours" method of the "opencv" library, which returns a list
of possible contours. They are then processed with the "minEnclosingCircles" function to
find a circle around the detected contours. Afterwards, the circular shapes are filtered by
the following criteria:

• The pupil is always fully on the image; Circles, that are not fully inside the image
are discarded

• The pupil has to have a minimum size; all circles that have a diameter that is
smaller then 10% of the largest image dimension are discarded

• The pupil always has a bright orange hue; If there are too many other colors inside
the circle, it is discarded. This is checked by calculating the average HSV channel
values and the standard deviation. If they are not in between the parameters
hsv_avg_lower, hsv_avg_upper and hsv_max_std they are discarded.

• The pupil contains purkinje reflections (bright white spots); There must be a few
pixels that have a saturation and brightness of more than bright_spot_min.

If multiple masks pass those criteria, the best mask is chosen by taking into account that
the purkinje reflections must be approximately near the center of the circle. The mask
is chosen, where the center has the least distance to the average position of pixels that
have a saturation and brightness of more than bright_spot_min. The resulting center
and radius are used to calculate the mask M c as shown in equation 3.7.

3.2.3 Combination of CHT and color based masking
The algorithms mentioned above can be combined to improve the results. One method
would be to calculate the mask with both algorithms and compare the output of each.
Only masks with high overlap are used (intersectional method). Another way would be
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to calculate the mask with one algorithm and only if it produces no result, the second
algorithm is used (union method). The intersectional method would produce masks that
have a very high probability of marking only the pupil. The union method can be useful
if one algorithm yields high-quality results but cannot be applied properly to each image.
The second algorithm would act as a back-up in this case. In this thesis, whenever mask
generation was applied, the union method was used. The CHT algorithm was called first,
because of the suspected higher quality of masks.

3.2.4 Masking the sclera
The sclera mask, which marks the white of the eye around the pupil, is calculated by
utilizing the anatomy of the eye: The approximate diameter of the eyeball, and thus
the sclera, is 25mm [BGV14]. The diameter of the dilated pupil under the influence of
commonly used drugs, such as tropicamide, is approximately 8mm [LGVSC17]. This
fact is used to calculate an approximate mask and the corresponding center cx and cy

and radius r for the sclera, based on a previously computed pupil mask M c or Mh. The
radius of the sclera mask rs is calculated by multiplying the radius of the pupil mask r by
an extension factor fe = 2.1. This factor is lower than the ratio of the sclera to the pupil
(= 25/8 = 3.125), because parts of the sclera are obfuscated by anatomical structures,
such as the eyelids. The mask M s is then calculated as in equation 3.7, using the sclera
radius rs and the center of the pupil mask cx and cy. Additionally, the pupil mask itself
is subtracted from Ms, resulting in an annulus-shaped mask, as seen in Figure 3.3.

3.3 Finding potential points and triplets
Figure 3.4 shows an explanation of finding points and triplets in flowchart form. The goal
of this step is to find groups of points that have the same coordinates as the dot-markers
of the image (see (5) in image 2.1). Specifically, three points on one side of the IOL
are searched for; only in the next steps these so-called triplets are combined to find the
orientation of the lens.

3.3.1 Finding potential marker points
Feature extraction is based on identifying key points on an image, starting with detecting
edges on the image using image filters such as Canny or Sobel. The generated edges can
be linked, resulting in corners that are the basis of the features. The quality of the corners
can then be measured and its surroundings can be described with a response function
[HS+88]. Various algorithms, such as SIFT[Low04b], SURF[BETV08], ORB[RRKB11]
and KAZE[ABD12] address this process differently, employing varying techniques to
detect, measure, and describe features in images. In this thesis, advanced algorithms are
utilized that support local image descriptors: Specifically, the KAZE algorithm and its
accelerated version AKAZE [AS11] are used. They are chosen because of their superior
speed and focus on detecting natural boundaries while simultaneously reducing noise,
enabling the detection of small features in the image. In addition, parameters such as
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Figure 3.3: Sclera mask overlaid on original image

the number of octaves (refers to the logarithmic scale spaces created by progressively
downsampling the image to detect features across multiple resolutions) and diffusivity
are adaptable, enabling the fine-tuning of the results.

This algorithm has a single HSV image as input. For the image, the possible coordinates
of the markers are calculated using the AKAZE algorithm. The number of octaves
and layers was set to one, resulting in simple diffusion on the full-scale image. Other
algorithms that detect points on an image could be used as well, and might even lead to
better results. However, the AKAZE algorithm with the given settings performs well
enough and has usable results. The detection itself is performed on the "V" channel
of the HSV image, because the contrast present between the background and marker
spots is high on this channel. The maximum amount of points returned by AKAZE
(max_points) must be set, as well as the sensitivity to the features (feature_threshold).
An example image together with the resulting marker points can be seen in Figure 3.5.
It is visible that the AKAZE algorithm produces many points that are not the markers
of the lens. All of these points at other locations can be considered noise and have to be
removed by applying pertinent information.
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3. Visual computing background

HSV-Image

AKAZE corner detection

V-Channel

Distance Matrix

Distance Filter

Calculation of triplet candidates

Candidate filter

Possible marker positions ("triplets")

Image feature points

Minimum and maximum distance

Boolean distance matrix

Candidate list

Minimum angle and minimum ratio of shorter sides

Figure 3.4: Part 1 of Process flow for single image processing: Triplet generation

3.3.2 Identifying triplet candidates

For removing points considered noise, a distance matrix is built up, whose elements
represent the distance between all candidate points. The distance between each point
pairs is calculated by applying the algorithm distance s.

disti,j =



(xj − xi)2 + (yj − yi)2 (3.9)

where xi, yi and xi and yi are the x and y coordinates of the points i and j, respectively.

This matrix is then transformed into a Boolean matrix, D whose i and j components
represent the connectivity between the respective points. An element has the value "True"
if the distance of the corresponding two points is in between a maximum (max) and a
minimum (min) distance. An interval of distances is used due to the imprecision of the
AKAZE algorithm.
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3.3. Finding potential points and triplets

Figure 3.5: V-Channel of HSV-image with possible marker positions (blue)

Di,j :=
�

True, if min < distij < max

False, otherwise
(3.10)

The next step is to calculate groups of three points having the correct appearance to
be a potential part of the markings on each side of the lens. Such possible three-point
groups are designated as "triplets" in this thesis. These triplets always have a constant
distance from each other and are located on a straight line.
Triplets can be constructed by accessing all points that are one step apart, which is done
by extracting the indices where the value is "True" in D:

i, j := indices where Dij = True (3.11)

In addition, a third point is added to the triplet if it is in range of either of those points.
These points are found by the operation:

k := indices where Djk ∨ Dik = True (3.12)

If three such points exist, it is checked if all points have different positions and the two
smaller distances have approximately the same value to ensure that a triplet is eligible
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3. Visual computing background

min 11.3
max 20

min_triplet_angle 170◦

max_points 217
leg_ratio 0.4

feature_threshold 3e − 9

Table 3.2: Parameters for triplet generation

(the maximum relative difference is defined by leg_ratio). In addition, it has to be
checked if all points are located on a straight line. This is done by applying the law of
cosines and calculating the largest angle. a, b, and c are the Euclidean distances between
the points i, j and k:

η := arccos(a2 + b2 − c2

2ab
) (3.13)

If it is above a certain threshold (η > leg_ratio), the triplets form a line, and it is
assumed that it is straight enough for further processing. All triplets that are verified
this way are considered to have the proper geometric properties to be part of the real
markers and are therefore used in the next calculation steps as potential candidates.

The values of the parameters applied in this thesis can be found in Table 3.2.

3.4 Calculating potential line candidates
To further reduce the amount of noise and find the correct triplets, the specific arrangement
of the six markers is considered. All must be located on a straight line, and the groups of
three points must be at least a minimum distance apart. The input to this algorithm is
multiple triplets, given as sets of three x-y coordinates. The result consists of combinations
of triplets (called triplet pairs) that have the required characteristics to describe the
position of the markers. An overview of the calculation of the possible line candidate is
given in Figure 3.6.

All triplets are compared pairwise; for two triplets to form an eligible line, the triplets
must have at least a minimum distance (given by the parameter min_big_distance).
The average position of the points between the triplets is calculated and used to build
a distance matrix that describes the average distance between each triplet. From this
matrix, possible candidates can be found by checking if the distance is large enough.
These candidates are then further filtered by checking if the regression lines through
each individual triplet have approximately the same slope/angle (given by the parameter
angle_similarity). If that is the case, the total loss of a triplet pair is calculated by
summing the squared orthogonal distance of each point to the regression line of the other
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3.4. Calculating potential line candidates

Possible marker positions ("triplets")

Calculate regression line and average position
for each triplet

Distance matrix for average triplet position

Distance filter Minimum distance between triplets

Angle filter Maximum angle difference

Loss calculation

Triplet pairs with loss values

Figure 3.6: Part 2 of Process flow for single image processing: Triplet matching

triplet. This describes how well a line fits the given points. The squared orthogonal
distance is defined as

δ⊥((x, y), s, i) := (y − s ∗ x − i)2

s2 + 1 (3.14)

where s and i represent the respective slope and intercept of a line. The approximate
center of the lens is denoted as c, which is composed of a x and y coordinate (result from
mask calculation, see Section 3.1).

In addition to that, the orthogonal distance of the center point of the lens to each one of
the regression lines is also added to this loss (see equation 3.15). Then the total loss (L)
for a given triplet pair a and b (each consisting of three unique points) is calculated as:

L :=
3�

k=1
δ⊥(ak, sb, ib) +

3�
k=1

δ⊥(bk, sa, ia) + δ⊥(c, sb, ib) + δ⊥(c, sa, ia) (3.15)
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min_big_distance 290
angle_similarity 6.8◦

loss_cutoff 8400

Table 3.3: Parameters for triplet matching

sa and ia represent the slope and intercept of the regression line for triplet a, and sb and
ib represent the slope and intercept of the regression line for triplet b.

This results in a list of possible triplet pairs with their respective loss. If the loss exceeds
a cutoff value, it is ignored and not used in further processing (cutoff value given by
loss_cutoff). The used parameter values can be found in Table 3.3

3.5 Determination of the best line
The goal is to find the line chosen from a set of possible candidate triplet pairs that has
the highest probability of correctly describing the position of the lens. The slope and
intercept of a pair can always be constructed by calculating the linear regression for the
six points that make up the triplet pair. There are several ways to determine the line
that is closest to the markings. Those methods are described in this section.

3.5.1 Choosing line by best regression
The simplest way to choose the best triplet pair is to take the pair of triplets with the
lowest loss (from calculation 3.15). A regression line is fitted through all six points,
resulting in a single line describing the position of the lens. The steps taken can be found
in Figure 3.7.

3.5.2 Choosing line by best regression over multiple images
Due to the fact that there is more than one image captured at each timepoint, a
comparison algorithm can be derived which utilizes the triplet pair information of all
images. All images taken at the same time must be very similar, and their lens rotation
α across them must be constant, because the images were taken only seconds after each
other. However the eye can move between images taken after each other, resulting in an
image rotation β. Therefore this image rotation (see Section 3.6) must be eliminated
by applying a image synchronization Δβ to get comparable images with respect to the
position of the markers. Triplets that really do describe the lens markers can be found
in all of those images at the same coordinates - triplet pairs that only occur in a single
image are more likely to be random noise. Filtering those reduces the influence of random
noise on the final result and enhances the reliability of the resultant data. The algorithm
that accomplishes this is described in more detail in this subsection.

First, all images taken at the same timepoint (e.g. all images of Patient 001 at 1h)
have to be processed with the previous steps, so that they all have possible triplet pairs.
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3.6. Image alignment/registration

Pick triplet pair with lowest loss

Regression with all six points

Slope, intercept and angle

Triplet pairs with loss values

Figure 3.7: Part 3 of Process flow for single image processing: Choosing best line

Triplet pairs with a very high loss are discarded, and only those with a small loss are
considered. Then an image synchronization is performed for all images, so that they
are oriented consistently. This image alignment is done relative to an arbitrarily chosen
reference image from the pool of images taken at that timepoint to simplify calculation.
This results in a transformation matrix for each image that is used to transform the
points into the same coordinate space, simulating the effect that the lenses are always
located at the same coordinates.

The transformed points are then scored; all points that are within a certain distance of
each other (bounded by a parameter called binning_size) are considered to describe the
same feature in the image. If a point is detected in multiple images at the same location,
it is a real image feature and less likely random noise, and its score will be higher than
points that have only been found in a few or only in a single image. In the end, the sum
of the scores of each triplet pair is calculated, and the triplet pair with the highest score
is taken as a result. If there are multiple triplet pairs with the same score, the pair with
the lowest loss is taken. Finally, a regression line is fitted through the triplet pair, which
serves as the result.

3.6 Image alignment/registration
Image registration is the process of aligning the images of a patient to each other so that
there are no influences such as head rotation or movement present. This alignment is
represented by a transformation matrix that describes translation, scale, and rotation.
Other kinds of affine transformations, such as shearing or reflection, are not important,
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Figure 3.8: Image alignment example. Lower image needs to be rotated 180◦ to match
the upper image. The overlayed images can be seen on the right (green: lower image;
purple: upper image

because the images were always taken with the same camera equipment in the same
setting. The main difference is the positioning of the head of the patient (slight rotation
and translation possible) and the distance of the camera ocular to the position of the eye
(slight scale differences). An example of an image registration can be seen in Figure 3.8.

Similarly to the manual method (see Section 2.5), the registration algorithm is designed
to identify blood vessels that are used as landmarks to match the same vessel between
two pictures. This is done by matching key-points of the images that are generated
with the help of KAZE[ABD12] and AKAZE[AS11]. The same settings as previously
discussed were used, the number of octaves and layers was set to one, resulting in simple
diffusion on the full-scale image. The detection itself is performed on the "G" channel of
the RGB image because it proveides high contrast present between the background and
blood vessels. The maximum amount of points returned by AKAZE (max_points) must
be set, as well as the sensitivity of the features (feature_threshold). For calculating the
feature-correspondence of a pair of pictures of the same eye, the FLANN (Fast Library
for Approximate Nearest Neighbors) algorithm is used [ML09]. This algorithm has a
parameter, called the "Lowe’s ratio", which serves as a measure to control false positive
feature matches [Low04a].
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3.7. Calculation of image rotation difference

Lowe’s ratio 0.85
max_points 500

leg_ratio 0.4
feature_threshold 1e − 10

tecc 0.3

Table 3.4: Parameters for choosing the best line

The registration is always performed for a pair of images. The previously generated sclera
mask is used to focus the algorithm on features on the sclera, so that the registration
is independent of the lens position or any other image features that might skew the
result. The AKAZE algorithm is applied first on both images, with their respective
sclera mask applied. The resulting keypoints and descriptors are then matched with the
FLANN algorithm. This results in pairs of points that are considered to describe the
same feature in each image. These pairs of points are passed to an estimation function
(built into the opencv library, called estimateAffinePartial2D), which calculates the affine
transformation matrix. This function excludes wrong matches based on a RANSAC
detection of outliers [FB81] and refines the matrix based on the Levenberg-Marquardt
optimization method. This results in a transformation matrix in the form

t :=


t0|0 t0|1 t0|2
t1|0 t1|1 t1|2

�
(3.16)

The elements t0|0, t0|1, t1|0 and t1|1 encode rotation and scale, t0|2 and t1|2 translation. It
is then checked, if the result is usable by calculating the similarity between the pictures
after applying the transformation matrix to one of the images. For this purpose, the
enhanced correlation coefficient ecc is used [GE08]. If the absolute value of ecc is close
to one, the images are very similar. If it is close to zero, almost no similarities are found.
The threshold tecc, which must be exceeded for an image pair to pass, has to be set rather
low (approx. to 0.3), so that slight differences in the image are allowed. This is necessary,
because images taken at different timepoints might differ in details, but should look very
similar in general.

3.7 Calculation of image rotation difference

The calculation of the rotational difference is the final step in the processing pipeline. As
input, it needs the marker angle γ of each image and the transformation matrix between
image pairs. It yields the pairwise difference of lens angles for each timepoint. Due to
the registration step, the lens angle difference Δα can be easily computed by subtracting
the marker angles of each image and adding the registration rotation. For each pair
of pictures, the image rotation Δβ is extracted from the registration matrix using the
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formula:

Δβ = atan(
t1|0
t0|0

) (3.17)

given the transformation matrix t.

3.7.1 Application of image rotation difference to calculate lens angle
difference

In this thesis, we look for the lens angle difference Δα. Since α, the angle of the lens,
cannot be directly measured, it must be derived indirectly via measuring γ, called marker
angle. It is defined as

γ := α + β (3.18)

where α is the lens angle and β is the rotation of the whole image (caused by head
rotation of the patient). Since the absolute head rotation of a patient is not known, only
the difference in head position between two images can be calculated (as explained in
Section 3.7). Therefore, the lens angle difference can be derived in the following way for
an image pair I1 and I2:

Δα := αI2 − αI1

Δβ := βI2 − βI1

Δα = γI2 − βI2 − (γI1 − βI1)
Δα = γI2 − γI1 − βI2 + βI1

Δα := γI2 − γI1 − Δβ

(3.19)

γI1 and γI2 are the rotational results of the images from previous steps, which can be
calculated by applying the atan function to the slope of the regression line. The resulting
angle Δα is the value of interest for physicians.

Alternatively, a calculated line can also be rotated by applying the transformation matrix
t to the calculated regression line of the image I2. This method has the benefit that not
only the angle is transformed, but also the intercept and slope itself are transformed onto
the compared image. For this method, two points on the line have to be chosen. The
points are then multiplied by the transformation matrix, resulting in the transformed
points. These points can then be used to calculate the rotated slope and the new intercept
of the line, by solving the linear equation system y = x ∗ s + i. The angle γt

I2 is derived by
converting the slope to the required angle, using the atan function. Lastly, the rotational
difference can be calculated directly with the formula:

Δα = γt
I2 − γI1 (3.20)
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3.8. Cleaning results

Figure 3.9: Example graph before (left) and after processing (right). Blue: γ measure-
ments; Green: Calculated Δα below threshold t1; Red: Calculated Δα above threshold
t1

3.8 Cleaning results

The cleaning algorithm can be used to enhance the results after processing all images
using any algorithm. It needs all angular differences between image pairs (Δα) as input.
The algorithm removes entries that seem to be wrong by utilizing different heuristic
methods, which are described in this section. Two different approaches are discussed,
named intra-timepoint and inter-timepoint cleaning.

These methods can be best explained by viewing the given data as a simple graph made
up of nodes and edges. Each node represents a single image (with a measurement αI),
the undirected edges represent a measurement (Δα, calculated with the equation 3.19 or
3.20) between a pair of images.

3.8.1 Intra-timepoint cleaning

The base assumption is that all measurements Δα should be zero when comparing images
of a patient that have been taken at the same time. If a measurement is over a certain
threshold Δα > t1, it is considered faulty. This value is set to 3◦ in execution. Due
to the fact that Δα is generated by comparing the rotations of two images (γI1 and
γI2), a node with many faulty measurements attached to it has probably been wrongly
evaluated. Therefore, the algorithm iteratively removes all nodes (measured γ values),
deleting the node with the most faulty edges connected to it in each iteration until no
faulty connections are left. If a node is deleted, all connected edges (correct and faulty
ones) are also removed, thus ignoring the measurements Δα, which are based on a faulty
measurement γ. When there is an equal number of suspected faulty edges connected to
two different nodes, the one that will be deleted is chosen randomly. An iteration of this
process on an example data set can be seen in Figure 3.9.
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3.8.2 Inter-timepoint cleaning
A different method for cleaning the result is a generalized method of the previously
described cleaning algorithm. Instead of relying only on measurements taken at the same
timepoint, measurements taken at different timepoints are also considered. The fact that
the lens rotation Δα for a patient between two appointments is constant is utilized. The
main problem is that there is no previously known value for the "true" rotation between
timepoints. Thus, it must be estimated by taking the average µ of the Δα values between
all pairs of timepoints. Calculating the standard deviation σ of these sets, the accuracy
of the guess can be assessed: A standard deviation higher than a certain threshold t2
indicates that the calculated Δα values do not agree on a certain estimation. This value
t2 is set to 1.1 in execution. Therefore, all values where Δα − µ ≥ t2 are considered
faulty. Then all images with the most faulty measurements are iteratively deleted, as
described in Section 3.8.1.

3.8.3 Comparing measurements to given labels
The problem of not knowing the "true" value could also be circumvented by using the
labels provided by medical professionals (denoted as φΔα). The algorithm would work
like the one mentioned in Section 3.8.2, with the exception that the mean µ would not
have to be calculated; the value of µ is determined by manual measurements (µ = φΔα).
Then, all values could be deemed faulty that are too far away from this chosen "true"
measurement. This value is set to 1◦ in execution. The drawback of this method is the
need for manually labeled values, which might not be readily available.
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CHAPTER 4
Convolutional neural networks

background

In this chapter an introduction to a special type of an Artificial Neural Network (ANN),
known as a Convolutional Neural Network (CNN) is given. CNNs have been contin-
uously researched since their introduction in 1990 and have been applied to various
applications, especially in picture classification, and improved in numerous scientific
works [HHHJ90][LBBH98][GWK+18]. In the following, we briefly discuss their typical
architecture, design, and limitations. After the relevant evaluation metrics are reviewed
and a description of the specific network used in this thesis is given. At the end, a
detailed explanation of the necessary data preparation is provided.

4.1 Typical architecture of CNNs
In general, ANNs are algorithms that process data (like images) by combining it with pre-
trained parameters, called weights. This combination includes multiplication, summation,
and the application of a nonlinear activation function, but more complex algorithms can
also be applied. These calculations are performed multiple times in sequence, always
reusing previously calculated information. In the end, there is a set of output variables
that can be interpreted depending on the task that the net should solve. ANNs usually
consist of layers, representing architecture units realizing some abstraction level. In the
following, we briefly discuss typical layers of a CNN.

4.1.1 Convolutional layer
CNNs are specialized ANNs that are based on utilizing so-called convolutions as math-
ematical operations. The application of convolutions in a CNN can be interpreted by
the help of a window (called kernel k) that is moved over the input with a given step
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4. Convolutional neural networks background

Figure 4.1: Visualization of a single step in convolution. Source: [VCB+23]

size (known as a "stride"). At each step, all elements of the inputs that are inside the
window are multiplied by the corresponding weight of the window. The resulting values
are then summed, so that a singular new value is generated. The individual result
values are inserted in the same order as read from the input [DM11]. A visualization
of this convolution for one step can be seen in Figure 4.1. The values of kernel k are
trainable parameters, meaning that they act as weights that can be changed in training
with algorithms mentioned below. Usually, a group of kernels of the same size, applied
to the same input make up a convolutional layer. For each kernel of this layer, an
output is generated. In many CNN architectures, multiple convolutional layers are used
subsequently, always using the output of the previous layer as their input.

4.1.2 Fully connected layer
Another core part of CNNs are the fully connected layers. These layers consist of a fixed
number of neural units, each of which has the full output of the previous layer as input.
For each node, there exists a weight for each input to it, which is multiplied by the input
itself - all the resulting values are summed and passed through an activation function,
which is explained below [VCB+23]. A schematic of a fully connected layer can be seen
in Figure 4.2 - the formula used in this image can be found in equation 4.1. The inputs
are labelled with I, the activation function is f and the weights are written as wij , where
i is the index of the input and j the index of the node.

Ok = f(
n�

i=1
wik ∗ Ii) (4.1)
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4.1. Typical architecture of CNNs

Figure 4.2: Fully connected layer with ReLu activation function

4.1.3 Output layer
The output layer generates the final output for an ANN. This means that after it, no
additional layers are present. For classification tasks, the output layer consists of multiple
neural units, while for regression tasks, there is only one output. In this thesis, we use a
CNN with a single output variable that is interpreted as the angle of a lens in an image.

4.1.4 Activation function
Usually, an activation function is used to introduce non-linearity in the neural network.
This change enables ANNs to realize more complex discrimination functions and thus
model more complex patterns of a given dataset. Without nonlinearity, only a small
subset of problems can be solved. A commonly used activation function is ReLu, which
mitigates issues such as the problem of vanishing gradients by setting all negative output
values to zero. This enables learning for CNN architectures consisting of many layers.

4.1.5 Pooling layer
Max-pooling and average-pooling are multidimensional downsampling methods, which
reduce the resolution of a given input. Similarly to convolutional layers, both methods
require a window that determines the size of the region that is processed. This window
is moved over the input with a given step size (known also as a "stride"), which can be
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Figure 4.3: Example for max-pooling with a window size of 2 and a stride of 2. Source:
[Aph15a]

adjusted according to the required output resolution. The difference between the two
methods is that, in each step, max-pooling takes the maximum value in a given region,
and average-pooling calculates the average of all values currently in the window. This
value is then used as an output for the current window position. Spatial information is
preserved, because each result is inserted into the output matrix in the same order as
the input is processed [VCB+23]. An example of max-pooling can be seen in Figure 4.3.

4.1.6 Flatten layer
To convert a matrix of higher dimension to a one-dimensional vector, a flatten layer is used.
It usually is located between the output of a convolutional layer and the input of a dense
layer. The reason for this is that most software libraries have generic implementations
for those types of layers, which require specific input shapes; due to the multidimensional
outputs of convolutional layers and the requirement for one-dimensional inputs for dense
layers, the flatten layer is needed. Therefore, this layer is of technical nature and does
not change the contents of the inputs, but only the arrangement of it.

4.1.7 Dropout layer and Batch normalization
A dropout layer realizes a method to temporarily disable a percentage of neural units so
that they are not effective in the network. These neural units are chosen newly in each
training iteration, resulting in the usage of all neural units with with enough training
iterations, but not all at the same time. The dropout layer is effective only for training
the network. This layer is used to improve the generalization ability of the CNN model
by preventing overfitting [SHK+14].

Another method that can be used to improve training performance is batch normalization.
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4.2. Design of the CNN algorithm

Figure 4.4: Typical image processing CNN structure. Pooling corresponds to subsampling
in the picture. Additional batch-normaliation layers and dropout layers are not shown.
Source: [Aph15b]

This layer is designed to process inputs in groups called batches, enabling the simultaneous
handling of multiple images. Within each batch, the mean and variance of the inputs
are calculated. These values are used to normalize the data, transforming it to have a
mean of zero and a standard deviation of one. This normalization ensures that the input
values are on a consistent scale. After normalization, the data is rescaled and shifted
using parameters that are learned during training. These parameters allow the model to
restore its representational power, ensuring that it can still capture the complexities of
the data after normalization.

By normalizing the inputs in this way, the layer reduces a phenomenon known as
covariance shift, where changes in the input distribution can disrupt the learning process.
This reduction in shift reduces the need to constantly adapt to varying input distributions.
As a result, the training process is better regularized, meaning it becomes less prone to
overfitting and noise. In addition, this method improves the efficiency of training, leading
to faster and more stable convergence of the model parameters [IS15].

4.2 Design of the CNN algorithm
A typical CNN architecture usually consists of a combination of the layers mentioned
above. Their structure has to be carefully chosen on the basis of the task that has to be
solved. An overview of how commonly used CNNs are generally structured can be seen
in Figure 4.4.

To properly use a CNN or ANN for solving a given task, two things have to be done:
In training, the weights of are gradually changed so that the network is better able to
calculate the results closer to the real value. In testing, the performance of the trained
net is evaluated on data that the network has never seen before. There is an optional
third part called validation, which is used to change parameters that are not directly used
in the network, but still changes the networks’ behavior and performance. This is known
as hyperparameter tuning, which, for example, is an adjustment of the number of neural
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units in each layer. After performing these tasks, the generated net with the calculated
weights can be used on any input data and is usually interfaced with automatic pre- and
postprocessing algorithms.

Training an ANN is the way to gradually increase the accuracy of the network by
adjusting the weights. The basis for this procedure is a training set, consisting of input
data i and target data φ. In the ideal case, an ANN should calculate the exact same
value as the target φ given a certain input i. When creating a new ANN, the weights
are often randomly initialized and in most cases the output of an ANN o will not be
close to the desired target φ. To achieve a closer match, the weights must be gradually
adjusted so that a given input produces an output closer to φ. This weight change can be
performed with different optimization methods explained below; although the methods
are commonly based on the results of a procedure called backpropagation, which uses
gradients to change each weight parameter, based on the difference in φ and o [Roj96].
This training process is repeated over the same training set in so-called epochs and
adjusts the weights based on the error of each iteration.

To measure how large the difference between an output o and the target φ (the error) is,
a loss function is defined. There are many different types of loss function for regression
tasks, such as the mean absolute error MAE or the mean squared error MSE. In this
thesis, the Huber loss was taken, which combines aspects of MAE and MSE. More
specifically, this function has a parameter δ, where |o − t| > δ is scored with MAE and
all other differences are scored with MSE. This makes it more robust to outliers and can
improve training performance [CEL+23].

The weight change in each iteration is determined by an optimization function. The goal
of these functions is to try to change the weights in such a way that the error gets as
small as possible in as little time as possible. A widely used optimization function is
called Adam [KB14]. This optimization method builds on the results of backpropagation;
on the basis of these results, it calculates the amount of change in individual weights.

4.3 Limitations of CNN
There are limitations of ANNs that must be taken into account when planning the
structure of an ANN. Here is a list of the ones relevant to this thesis:

• Necessary amount of data: For an ANN to learn important features properly,
large amounts of data are needed. This can easily surpass the available information,
especially if the ANN is large in size and many trainable weights are present. If it is
not possible to collect enough data, more data have to be generated by augmenting
the already existing training set. The consequence of having little data is poor
accuracy or overfitting.

• Overfitting: Usually, overfitting can be observed when test accuracy is significantly
lower than the training accuracy. It implies that the network learned how to identify
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specific images of the training data, but is not able to generalize the "knowledge"
of the the training due to samples that it has never seen before. This renders
the result unusable, because the network cannot be used on new data. There are
several ways to reduce the impact of overfitting, for example with dropout layers
or introduction of noise in an augmented dataset.

• Computational cost: Nowadays, even consumer GPUs are able to train relatively
large models in a short amount of time. Nevertheless, it is always easy to worsen the
performance to the point of uselessness by increasing the network size, because the
computational cost does not scale linearly with network size. In addition, more data
points or more complex inputs also significantly worsen performance. Therefore,
special care has to be taken in the design of a network and in the preparation of
training data. When done correctly, training time can be reduced significantly (e.g.
to a few hours instead of days or weeks).

• Imbalanced target distribution: When performing regression tasks, it can
happen that the distribution of training data lacks uniformity. The predominance
of certain values results in poor generalization of the trained network to data that
alters from this distribution. This can be alleviated with methods like resampling,
like domain specific augmentations.

All of these factors cannot be viewed independently; if, for example, overfitting occurs,
increasing the amount of data might lead to training times that are no longer acceptable.
Therefore, when designing a CNN these limitations have to be considered carefully and
balanced properly.

Designing a CNN, an ANN with a specific type of architecture, introduces several further
limitations:

• Poor generalization to out-of-distribution data: If data is supplied that does
not come from the distribution the network was trained on, the CNN can perform
considerably worse. This can for example include different lighting conditions or
differing image quality. This can only be fixed by including images from other
sources - increasing the variety of image data provided alleviates this problem.

• Limited ability to capture spatial relationships: CNNs focus on local features
through their convolutional filters. They are not designed to capture global context
or features that are far apart in given input images. This problem can be alleviated
by performing hyper-parameter tuning and therefore customizing the given CNN
model by altering its structure, which can improve the ability to capture global
spatial relationships.
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Figure 4.5: Utiliezd block in ResNet18. Source: [HZRS15]

layer name output size 18-layer
conv1 112×112 7×7, 64, stride 2

conv2_x 56×56 3×3 max pool, stride 2

conv3_x 28×28


3×3, 128
3×3, 128


×2

conv4_x 14×14


3×3, 256
3×3, 256


×2

conv5_x 7×7


3×3, 512
3×3, 512


×2

1×1 average pool, 1-d fc
FLOPs 1.8×109

Table 4.1: ResNet18 architecture. Building blocks are shown in brackets, with the
numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and
conv5_1 with a stride of 2. Source: [HZRS15].

4.4 CNN-Model: ResNet

In this thesis, the smallest standard model of the ResNet family has been used as CNN
model. It is called ResNet18 [HZRS15]. Its structure can be seen in Table 4.1. The
mentioned building block for ResNet18 consists of two convolutional layers, with the
ReLu function applied after the first layer. After the second layer, the input of the block
is added to the output, which is called the residual connection. Subsequently, ReLu is
performed, and downsampling in the form of MaxPool occurs. A diagram of the block
can be seen in Figure 4.5
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4.5. Data preparation

Compared to the original model, two things have been adapted to fit the task at hand.
First, the output was changed to contain only one output variable. This is due to the
goal of training the net to perform regression, which in turn means that this output
variable will be the slope / angle of the lens. Additionally, in different experiments, one
to four input channel are used, which encode the RGB image with an additional layer
encoding important lens features. Due to ResNet18 having only three channels as input
by default, the first convolutional layer "conv1" has to be changed to accommodate the
appropriate number of channels as input.

4.5 Data preparation
The utilized ResNet CNN needs images with a resolution of 224x224px. Additionally,
only the lens is of interest for the CNN, features like the sclera are not important for this
step. The location of the pupil is extracted with the help of the pupil mask, as described
in Section 3.2 and the whole image is cut so that only the pupil is visible. Due to the fact
that the size of the lens slightly differs in each photograph, a resizing of the image has
to be carried out. Additionally, augmentation and encoding of additional information
("important" points) is performed, which is described in the following sections.

The result of the preprocessing is either a 4-channel or 3-channel ".png" images with
corresponding labels. The data is split into a training set (∼ 65% of images), a test set
(∼ 20% of images) and a validation set (∼ 15% of images). To ensure that the test and
validation sets contain pictures that the CNN was not trained on, the data is split with
respect to ID. The data of each patient are always fully contained in one of the sets.

4.5.1 Augmentation

Augmentation is needed, so that the model can properly learn how to identify important
landmarks to determine the lens rotation. Without augmentation, the diversity in given
data can possibly be too low and therefore the performance of the CNN is not ideal. This
can be seen in the top plot in Figure 4.6 - certain marker angles are not present in the
source data. To fix this issue rotation augmentation is applied. Image rotation is needed,
so that every possible marker position is represented in the dataset. Without it, certain
marker positions might be overrepresented, because artificial lenses are often implanted
in a particular orientation. Therefore, a rotation sampled from a uniform distribution
in the interval of ]0◦, 180◦[ is applied to the image and the corresponding label. The
difference in distribution can be seen in Figure 4.6.

4.5.2 Encoding additional information

Certain information known from the CV algorithm can be utilized, in order to focus
the neural net on potentially interesting points. These interesting points are derived
from the result of the AKAZE algorithm of Section 3.3 and can be seen in Figure 3.5.
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4. Convolutional neural networks background

Figure 4.6: Density histogram comparing rotation distribution φγ with and without
augmentation

The possible marker spots generated with AKAZE serve as feasible candidates for lens
markers, which, in turn, are used to determine rotation.

To make this information usable for CNNs, an additional channel is generated for each
image. This channel has the same dimension as the image itself (224x224px). It encodes
regions of interest and can have values ranging from 0-255 (8 bit), where 255 represents
regions of high interest, and 0 represents regions that should be ignored. It is either
stored alongside the original RGB color channels as a fourth channel, or it can be encoded
into the RGB channels themselves. For the latter, each RGB value is divided by 255 and
multiplied by the corresponding mask value. This can have unwanted side-effects due to
removing information on the original channels, therefore a fourth channel is used instead.

The points of interest are encoded onto the additional channel as x-y coordinates. Due to
each marker on the lens having a certain diameter, it makes sense to mark all pixels in a
region around each point as interesting. This can be achieved by using a scaled Gaussian
kernel; this kernel has the value one in the center and falls off with a given intensity. The
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4.5. Data preparation

Figure 4.7: Original image next to generated mask.

kernel can be adjusted by providing a standard deviation σ and an odd-numbered size s.
All kernel values can be multiplied by a value p, which describes the intensity of the pixel
with the highest value, normally the center pixel. All other pixels have lower intensities
and decrease in value the further away they are from the center. This kernel is generated
for each point of interest and added to an all-zero mask poi. If two kernels overlap, the
larger value is taken as the intensity of the pixel. The peak value p can be set uniformly
to 255. The result of the algorithms can be seen in Figure 4.7.

A possible improvement is to take into account that the chosen corner detection algorithm
AKAZE creates many points of interest on the rim of the lens, which are not as interesting
for detecting the relevant markings on the lens. Therefore these points have to be
eliminated their intensity has to be reduced: It is assumed that most points that are
on the rim of the lens are almost at the border of the lens image, because of the way
masking is performed. Based on this knowledge, a distance matrix is created between all
points of interest. Then, a histogram is created from this distance matrix. All peaks on
the histogram that are larger than a certain threshold are then calculated and the peak
with the largest distance is taken as the approximate radius of the lens. All points that
are close to this distance are considered to be part of the lens rim and therefore not as
important. They get a peak value p = 0. Linear interpolation is used to increase the
value to p = 255 over a small distance.
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CHAPTER 5
Experiments

The goal in this chapter is to show how the previously discussed methods are combined
to form full algorithms, which serve as a basis for the experiments conducted. The
focus is put on explaining which steps are taken in each algorithm, therefore giving a
clear picture on their structure, inputs and outputs. Additional information is provided
on limitations of the algorithms, utilized libraries, and specific parameters used in the
respective algorithms. Experiments are defined by stating their goals and the questions
that are answered. The name of the experiments consists of the same letter as the
corresponding base algorithm.

5.1 Algorithm A: Computer vision based marker angle
calculation

The basis for this computer vision (CV) algorithm is the detection of the markings on
the lens: Each lens has exactly six dots, sitting on a straight line in a very specific
pattern (see Figure 2.1). This algorithm predicts the angle of the straight line relative to
a horizontal line. This angle is denoted by γ and named marker angle subsequently. The
basic idea is to find those dots and fit a straight line through them. The main obstacle
is the noise present in the image: Due to the markings being very small, they are not
easily distinguishable from other points considered as random background noise for any
automated method. Therefore, an algorithm had to be devised that could exclude noise
from the calculation and rank the found lines by quality. This algorithm is described
in this section and can be seen in Figure 5.1. An approach was chosen that processes
each image in isolation. Other approaches, such as working with multiple images at once
could also be considered, but are not used due to their expected suboptimal performance.
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1. Preprocessing

2. Masking pupil
and sclera

3. Finding
points and triplets

4. Locating triplet
pair candidates

5a. Find best line on
single image

Output γ

Figure 5.1: Algorithm A: Calculating γ based on single images

5.1.1 Structure
This section introduces the processing steps of this algorithm. The numbering of the
steps is equal to the numbering seen in Figure 5.1. Algorithm A requires unaltered videos
and images as an input and yields a marker angle γ for each individual input. If in any
step processing fails, a result is returned that indicates that the given image cannot be
processed.

Step 1 | Preprocessing

• Input: Raw images and videos

• Output: Identifiable images with common size and in HSV space

• Detailed description: Section 3.1

Preprocessing takes care of parsing all data into a common format and adding proper
identifiers. The input consists of videos and images, with different resolutions, which
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5.1. Algorithm A: Computer vision based marker angle calculation

are converted into the same file format and common image resolution. Subsequently,
the images are also converted to the HSV color space; both RGB and HSV color space
representations are stored and used in later steps.

Step 2 | Masking pupil and sclera

• Input: Preprocessed images

• Output: Preprocessed images with corresponding binary pupil and sclera masks

• Detailed description: Section 3.2

The pupil- and the sclera mask are generated in this step. The pupil mask describes
the location and size of the pupil; it consists of a center and a radius, which are used
to generate a circular binary array indicating which pixels are part of the pupil. The
sclera mask is calculated based on the pupil mask and describes the vessel area, i.e.
which part of the image contains the sclera ("white of the eye"). The results are stored
alongside their corresponding image. In this thesis, the method combining both CHT
and color-based masking is applied.

Step 3 | Finding points and triplets

• Input: HSV images with corresponding pupil mask

• Output: Triplets

• Detailed description: Section 3.3

Based on the image content inside the pupil, points that indicate possible locations of the
lens markers are calculated. These points are then filtered by geometric criteria, such as
distance and alignment, and used to form groups of points having exactly three members,
called triplets.

Step 4 | Locating triplet pair candidates

• Input: Triplets

• Output: Triplet pair candidates, that could describe the real lens markers with
corresponding loss values

• Detailed description: Section 3.4
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The triplets are screened to find pairs that could potentially describe the six lens markers.
These lens markers must be located on a straight line, so the main part of this step is
to discern which pairs of triplets also lie approximately on a straight line. In addition,
further filter criteria, like a minimum distance between triplets, are applied to focus the
results on fewer possible combinations. For each triplet pair, a loss value is calculated
based on the position of the two triplets compared to the position of the center.

Step 5a | Find best line on single image

• Input: Triplet pair candidates, that could describe the real lens markers with
corresponding loss values

• Output: A line in the form of intercept, slope and marker angle γ

• Detailed description: Section 3.5.1

The triplet pair with the lowest loss value is dedicated to be the best triplet pair.
Subsequently, the slope and intercept of the line formed by the six distinct points that
comprise the best pair in relation to the center of the pupil, are calculated. The marker
angle γ can be calculated by applying the atan function to the slope of this line.

5.1.2 Experiment
This experiment aims to investigate the accuracy of the γ prediction, by using algorithm
A. One overreaching goal is to assess whether algorithm A is suitable for estimating γ to
serve as a basis for the calculation of the lens angle difference Δα (see Equation 3.19). In
addition, it is examined whether the prediction accuracy of algorithm A is high enough
to be used for automatic generation of γ labels, which are necessary to train a CNN
model (see algorithm B).

To assess the feasibility of the given algorithm, the calculated marker angle γ is compared
to the manually generated target angles φγ . For this analysis, the difference between γ
and φγ is calculated according to formula 6.4. The resulting value, called marker angle
error, is denoted by ϵγ . It is checked with the help of various histograms how this error
is distributed. Key metrics, such as the mean absolute error (MAE) are calculated on a
timepoint basis, to identify timepoints that have a lower error then others. Lastly, it is
checked if the precision of the algorithm is dependent on the measured value γ.

5.2 Algorithm B: DL dominated marker angle calculation
The main part of Algorithm B is a CNN model (modified ResNet18), which can calculate
the marker angle γ based on a 3 channel RGB image input. These images only contain
the pupil of the eye - other parts of the images are removed in preprocessing steps.
Optionally explicit feature extraction is also applied, resulting in features that are put in
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5.2. Algorithm B: DL dominated marker angle calculation

1. Preprocessing and
masking pupil

3. Marker angle calculation
with ResNet18 model

Output γ

2. Creation of additional
4th channel

Figure 5.2: Algorithm B: Calculating γ with a DL based algorithm based on single images.
Step 2 is needed when using an additional 4th channel.

an additional 4th channel. This explicit feature extraction is based on CV methods for
finding potential marker points, which was already used in algorithm A. Using explicitly
extracted features reduces the complexity of the applied CNN model, since the CNN
is exempted from the task of identifying the necessary features. Thus, using explicit
features makes it possible to perform experiments on hardware with lower processing
capabilities.

5.2.1 Structure

This section introduces the processing phases of this algorithm. The numbering of the
steps is equal to the numbering seen in Figure 5.2. Algorithm B requires unaltered videos
and images as an input and yields a marker angle γ for each individual input. If in any
step processing fails, a result is returned that indicates that the given image cannot be
processed.

Step 1 | Preprocessing and masking pupil

• Input: Raw images and videos

• Output: Preprocessed images with corresponding binary pupil mask

• Detailed description: Sections 3.1 to 3.2 and Section 4.5 for CNN specific prepro-
cessing
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This step consists of the steps one and two of Algorithm A. In the course of additional
data preparation, the pupil is cropped and the image size is set to 224x224px by rescaling.

Step 2 | Creation of additional 4th channel (optional)

• Input: Preprocessed images with corresponding binary pupil mask

• Output: Preprocessed images in a 224x224px resolution and additional 4th channel

• Detailed description: Section 4.5

This step utilizes CV methods (as used in step 3 of algorithm A) to generate candidate
marker points. For each image, these points are then encoded onto an additional 4th
channel, which serves as an additional input to the CNN.

Step 3 | Marker angle calculation with ResNet18 model

• Input: Preprocessed images in a 224x224px resolution and optional additional
channel

• Output: Marker angle γ for each image

• Detailed description: Sections 4 and 5.7.

The CNN model is trained with manually generated lables called φγ . The model has to
be pre-trained before it can be used to determine marker angles. The used CNN training
approaches are explained in Subsection 5.7. The ResNet18 is choosen to be used as CNN
model.

5.2.2 Experiment
The goal of the experiments of algorithm B is to investigate the accuracy of γ prediction by
using algorithm B. Several different versions of algorithm B are carried out to determine
the version with the highest prediction accuracy. For this reason, the different algorithm
versions are compared in terms of their MAE value on a timepoint basis. The method
with the lowest MAE is then selected for γ prediction for the calculation of the lens
angle difference Δα in algorithm D. The tested algorithm versions with correspondingly
adapted and trained ResNet18 models are as follows:

• (1) 3-channel input data: No preprocessing, RGB image as input

• (2) 4-channel input data: 4th channel is also fed into CNN
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5.3. Algorithm C: Computer vision based image rotation calculation

• (3) 4-channel input data: A modified 4th channel is fed into the CNN, which is
created from the 4th channel by removing points on the rim of the lens as described
in Section 4.5

• (4) 2-channel input data: One randomly chosen color channel and the additional
4th channel are used

• (5) 1-channel input data: Only the additional 4th channel is used

Similarly to algorithm A, the calculated marker angles γ are compared to the manually
generated marker angles φγ ; the difference between γ and φγ , the error ϵγ , is calculated
as defined in algorithm A. The same key metrics, histograms and MAE are used again
on a timepoint basis. This enables to select timepoints with lower marker angle errors.
It is also checked, if the algorithm is dependent on the measured value γ.

5.3 Algorithm C: Computer vision based image rotation
calculation

Image registration or synchronization is the process of aligning pairs of images to
each other, so that externally induced rotations (caused by slight head movement) are
eliminated when comparing images to each other. This process can also be called "image
rotation". The amount of image rotation between the images is expressed by image
rotation angle Δβ, which represents the angle at which one image has to be rotated
so that it becomes the same position as the other image. The anatomical structure
that serve as concrete reference points are corkscrew vessels present in the sclera. They
are visible in all images and remain relatively constant in appearance and location over
multiple appointments. Therefore, this algorithm focuses on finding these vessels in the
sclera and aligning them. Possible hurdles are the presence of irritated conjunctiva vessels
or other objects that block the direct observation of the underlying corkscrew vessels.

5.3.1 Structure
This section introduces the processing steps of this algorithm. The numbering of the
steps is equal to the numbering seen in Figure 5.3. Algorithm C requires unaltered videos
and images as an input and results in an image rotation angle Δβ for each pair of images.
If the rotation synchronization fails, no result is returned and the pair is deemed not
synchronizable with this algorithm.

Step 1 | Preprocessing and masking sclera

• Input: Raw images and videos

• Output: Preprocessed images with corresponding binary sclera mask
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1. Preprocessing and
masking sclera

2. Determine rotational difference
of image pairs

Output Δβ

Figure 5.3: Algorithm C: Calculating Δβ with a CV based algorithm, based on pairs of
images.

• Detailed description: Section 3.1 and 3.2

This algorithm needs the preprocessed and masked images as input; therefore, Steps 1
and 2 of algorithm A have to be applied to the raw images and videos, to make them
usable for this algorithm.

Step 2 | Determine rotational difference of image pairs

• Input: Preprocessed and masked image pairs of the same patient

• Output: Transformation matrix for the image pair describing the rotation between
them, being equivalent with specifying the image rotation angle Δβ

• Detailed description: Section 3.6

The determination of rotational difference of image pairs is based on location and the
appearance of the sclera. Notable landmarks of the sclera (usually large corkscrew vessels)
are determined and matched if their local surroundings are similar enough. This results
in pairs of matching points that can be used to calculate a transformation matrix, which
describes how a set of points of one image can be moved to have the same coordinates as
the same points on the other image. Thus, the transformation matrix includes the same
information as the image rotation angle Δβ. If no match is found between two images,
or the synchronization drops below a certain quality, no output is generated and the pair
is marked as unprocessable.

5.3.2 Experiment
The goal of this experiment is to evaluate the accuracy of the computer vision based
image rotation calculation algorithm C. This is done by comparing the calculated image
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rotation values Δβ to the manually generated labels φΔβ, i.e. by assessing the image
rotation angle error ϵΔβ . Note that the labels φΔβ are computed from φγ and φΔα as

φΔβ = (φγI2 − φγI1) − φΔα (5.1)

5.4 Algorithm D: DL dominated lens angle difference
calculation

Algorithm D combines the best version of algorithm B with the image synchronization
method of algorithm C, to calculate the lens angle difference Δα for an image pair. The
CNN model works on any image in isolation and produces the marker angle γ for each
input. The lens angle difference Δα is computed from the equation

Δγ = Δα + Δβ (5.2)

in the last step of the algorithm as

Δα = Δγ − Δβ = (γI2 − γI1) − Δβ (5.3)

5.4.1 Structure
A flowchart describing this algorithm can be seen in Figure 5.4. It is a combination of
algorithm B and C, with an additional last step to calculate the lens angle difference
Δα. This algorithm takes the unaltered videos and images as input and results in the
lens angle difference Δα. Cleaning is an optional step that can improve the accuracy
of Δα results after all calculations have been done. It works by removing images with
hypothesized faulty measurements. However, it is not investigated further in this thesis.

Step 1 | Preprocessing and masking pupil and sclera

• Input: Raw images and videos

• Output: Preprocessed images with corresponding binary pupil and sclera masks

• Detailed description: Sections 3.1 to 3.2 and Section 4.5 for CNN model specific
preprocessing

This step consists of the Steps 1 and 2 of Algorithm B and and Step 1 of Algorithm C. In
addition to cropping the images to a 224x224px resolution, a copy of the original image
is created that is used in Step 3 (rotation calculation). The cropped version is passed to
the CNN used in Step 2.
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1. Preprocessing and masking
pupil and sclera 2. Marker angle calculation

with ResNet18 model

3. Determine rotational
difference of image pairs

4. Calculate lens angle
difference

Based on single image

Based on image pairs

5. Cleaning results

Output Δα

Output γ

Output Δβ

Figure 5.4: Algorithm D: Calculating Δα with a DL based algorithm. Steps 1 and 2 are
based on single images, steps 3 and 4 are based on pairs of images. Step 5 (cleaning) is
optional.

Step 2 | Marker angle calculation with ResNet18 model

• Input: Preprocessed images in a 224x224px resolution and optional additional
channel

• Output: Marker angle γ for each image

• Detailed description: Sections 4 and 5.7.

This step is equal to Step 3 of algorithm B. The trained and adapted ResNet18 CNN,
that performs best in algorithm B, is used to calculate the marker angle γ on test images.
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5.4. Algorithm D: DL dominated lens angle difference calculation

Step 3 | Determine rotational difference of image pairs

• Input: Preprocessed and masked image pairs of the same patient

• Output: Transformation matrix for each image pair describing the rotation, being
equivalent with specifying the image rotation angle Δβ

• Detailed description: Section 3.6

This step is equal to Step 2 of Algorithm C.

Step 4 | Calculate lens angle difference

• Input: Transformation matrix (specifying Δβ) and calculated marker angles γI1
and γI2

• Output: Lens angle differences Δα on image pairs

• Detailed description: Section 3.7

Images are always compared pairwise; Δα can be computed from γI1 and γI2 of the
individual images and Δβ by using formula 5.3.

Step 5 | Cleaning by comparing images (optional)

• Input: Lens angle differences Δα on image pairs and marker angles γI1 and γI2 of
individual images

• Output: Cleaned lens angle differences

• Detailed description: Section 3.8.1

Cleaning is the process of removing wrongly calculated angle differences by applying
pertinent information about them. One method, named intra-timepoint cleaning, relies
on the fact that the rotation of a lens does not change much in the course of the same
examination; therefore, all images that were taken at the same timepoint should have the
values of lens angles close to each other. If α of some images differs significantly from
their mean value, then they are removed.
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5.4.2 Experiment
The experiment uses algorithm D without cleaning, to calculate Δα. The goal of this
algorithm is to evaluate the prediction accuracy of the DL dominated lens angle difference
calculation.

The quality of the lens angle difference Δα is evaluated by comparing it to the corre-
sponding labels φΔα. The resulting error is called ϵΔα, which is calculated based on the
Formula 6.4. Moreover, it is analyzed if certain combinations of timepoints have a higher
accuracy than others. Additionally, a patient specific analysis is performed, to explore
possible weak points and limitations of the given algorithm.

5.5 Data
5.5.1 Images and videos
The data used in the experiments consist of pictures and videos of 130 patients. The
videos were taken directly after the surgery and are saved in an interlaced 1280x720
pixel format with a color depth of 24 bits. The pictures were taken some time after the
surgery (1 hour, 1 week, 1 month, 4 months/6 months) and are present in a 1720x1143
TIF format with a color depth of 24 bits. For every patient and timepoint, there are 1 to
5 unique images available. The intra-operational videos vary in length, most of them
being approximately 1 minute long. The pictures were taken with a Nikon D70s camera,
connected to a special macroscopic objective.

The data contains images of the human eye (left and right), lit with a slit-lamp. All of
the images give an unobstructed view of the sclera and the dilated pupil containing the
artificial lens (for an example, see Figure 1.2). In the videos, several surgical tools are
visible that at some point obstruct the view of the eye and its features.

5.5.2 Labels
The manually measured angle difference labels provided by medical professionals (denoted
by φΔα) are given in a comma-separated format, where each line represents a patient.
The structure of the table of labels can be seen in Table 5.1. In each line the ID of the
patient and the lens angle difference for all possible timepoints are given. The timepoint
at operation, 1 hour, 1 week, 1 month, 6 months after the operation is denoted by OP, 1h,
1w, 1m, 6m respectively. For example, the values in 1m_to_6m describes the lens angle
difference for an image pair at 1 months and 6 months after the operation. Non-sucessive
timepoint combinations, such as 1h to 1m, are not directly present in the label file, but
they can be calculated by summing values that follow each other. For example, 1h to 1m
can be calculated by adding the value for 1h_to_1w and 1w_to_1m.

Another type of label that was manually created by the author (not by medical profes-
sionals) for this work are the lens marker labels (denoted by φγ). They are only used in
evaluating the prediction accuracy of algorithms A and B. Each image has its own label,
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5.5. Data

ID OP_to_1h 1h_to_1w 1w_to_1m 1m_to_6m . . .
001 1.54 0.98 0.90 0.19 . . .
002 0.25 0.57 0.66 0.96 . . .

...
...

...
...

...

Table 5.1: φΔα values as given by medical professionals (partial data shown).

as it can be seen in Table 5.2. The φγ labels were generated with a custom program that
allows a human grader to pick two points on an image. The script automatically calculates
the slope, intercept, and angle of a line through the two points. These two points must
be the markers of the lens, preferably, points on opposite sides of the lens. The results
are then stored in a .csv file. Note, that the coordinate system used to calculate the
lens angles have its origin in the top left corner with the y axis being positive in the
down direction. Therefore, if the angles have to be interpreted in a standard Cartesian
coordinate system, the sign of the angles in the .csv file must be multiplied by -1.

Image name Angle in ◦

001_OD_OP_1.tif 61.35
001_OD_1h_1.tif −18.58
002_OS_OP_1.tif 90.0

...
...

Table 5.2: φγ values generated by manual process (partial data shown).

The labels discussed previously can be used to derive the labels that describe the image
rotation angle (denoted by φΔβ). This calculation is given in Equation 5.1. Based on
this equation, a label can be created for each image pair I1 and I2. A sample of the
calculated values is visible in Table 5.3.

Image 1 Image 2 Angle in ◦

001_OD_OP_1.tif 001_OD_1h_1.tif −78.29
001_OD_OP_1.tif 001_OD_1h_2.tif −76.8
001_OD_1h_1.tif 001_OD_1m_1.tif 3.61

...
...

...

Table 5.3: φΔβ labels calculated with formula 5.1 (partial data shown).
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5.5.3 Data Evaluation
This section provides an analysis of the labels of the medical professionals φΔα. This
gives an insight in the magnitude of the lens angle difference between the timepoint pairs
and enables to determine the interval where the rotation of the lens is most probable.

The distribution for the lens angle difference φΔα can be seen in Figures 5.5 and 5.6.
It can be observed, that for all successive timepoint pairs, 90% of the labels are inside
an interval from −2◦ to 2◦, indicating that the lenses of most patients have not rotated
significantly. This interval gets smaller the later a timepoint combination is (e.g. OP_1h
has 90% of measurements inside an interval of approx. −1.9◦ to 1.9◦, whereas 1m_6m
has an interval of −0.83◦ to 0.83◦). This indicates that the lens is more susceptible to
rotation in the interval after the operation, than at later timepoints. The highest lens
angle difference arises at the timepoint pair "1h_1w". This timepoint pair has very few
images pairs (approx. 3.8%) that have a label that is outside the interval of −3◦ to 3◦.
For all subsequent successive timepoint pairs, all labels are inside this interval.

The histograms shown in Figure 5.6 can be understood as being derived by summing
the labels of successive timepoint pairs. For example, 1h_6m can be constructed by
summing the values for each patient of the successive timepoint pairs 1h_1w, 1w_1m
and 1m_6m. Due to this summing, the non-successive timepoints have a higher variance.
In addition, all non-successive combinations that use 1h_1w in their summing, have at
least 4.6% of the labels outside of the interval of −3◦ to 3◦.

Timepoint pair Mean Mean of absolute values
OP_1h 0.05 0.86
OP_1w -0.34 1.22
OP_1m -0.38 1.30
OP_6m -0.38 1.33
1h_1w -0.39 1.06
1h_1m -0.40 1.27
1h_6m -0.43 1.22
1w_1m -0.03 0.47
1w_6m -0.03 0.49
1m_6m -0.00 0.38

Table 5.4: φΔα distribution for timepoint pairs

In Table 5.4 it is shown that the difference between OP and 1h is small; so the interval
where the rotation of the lenses is most probable starts later than OP. It can be concluded
from table 5.4 that the interval with the highest rotation of lens is "1h_6m".

5.5.4 Limitations
The data provided includes only pictures of eyes with a certain type of lens. Images of
other lens types with other types of markers and lens haptics are not present in the data
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5.5. Data

Figure 5.5: Distribution of label data φΔα per successive timepoint combination - bin-
width 2◦
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5. Experiments

Figure 5.6: Distribution of label data φΔα per non-successive timepoint combination -
bin-width 2◦
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5.6. Parameters for visual computing steps

set. In addition, the same microscope and camera were used for all provided images
not taken during surgery (marked "1h", "1w", "1m", "6m"). They were shot at the same
resolution with the same lighting and camera settings. The intra-operational videos
(timepoint "OP") were shot under different lighting conditions and camera settings than
all other pictures. Furthermore, some manual measurements could not be performed due
to poor visibility of lens features or image quality. They are set to a NaN value in the
label file.

5.6 Parameters for visual computing steps

In this section, all parameters for steps that utilized a visual computing algorithm are
listed. For each of them, the Table 5.5 provides a short content description and a reference
to the section/table, in which it is explained.

Step Context Reference

Masking Used in finding pupil and sclera mask Section 3.2 and
Table 3.1

Triplet finding Used in calculating possible triplets Table 3.2
Line candidate calculation Used for filtering triplet candidates Table 3.3
Rotations synchronization of
image pairs

Used for aligning a pair of images to
each other Table 3.4

Cleaning Used in enhancing result in post-
processing Section 3.8

Table 5.5: Parameters for visual computing processing steps

5.7 CNN model parameters

A CNN model is used in Algorithm B and D as part of the processing pipeline. Specifically,
a modified ResNet18 network was selected (see Section 4.4). To extract the image area
containing the pupil and prepare the training set and test set, several preprocessing steps
are performed, ensuring that the images and targets are prepared in the correct format
(see Section 4.5). The parameters under which the experiments were performed can be
seen in Table 5.6. The preprocessing and cleaning parameters are identical to those used
in the CV algorithm.

5.8 Python libraries used

The most important Python libraries and their versions are listed in Table 5.7.
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5. Experiments

Parameter Description
CNN Network Architecture modified ResNet18

Batch Size Fixed at 128 for all experiments, due to hardware
limitations.

Optimizer Type Adam used for all experiments.
Loss function Huber loss with a δ of 10.
Training iterations 50
Number of augmentations 128 per image

Table 5.6: CNN parameters

Library name Version Description
pytorch 2.3.1+rocm6.0 Machine learning library
torchvision 0.18.1+rocm6.0 Computer vision based machine learning library
numpy 2.1.0 Library for efficiently processing matrices and arrays
matplotlib 3.9.1 Plotting library
opencv-python 4.10.0.84 Computer vision library
pandas 2.2.2 Data analysis and management library
scipy 1.14.0 Fundamental optimization and interpolation library

Table 5.7: Essential python libraries used

5.9 Hardware
The hardware used for conducting the experiments is specified as:

• CPU: AMD Ryzen 7 5800X

• RAM: 32GB DDR4 SDRAM

• GPU: ASUS DUAL RX 6700XT

• SSD: 128GB+ M.2 SSD

68



CHAPTER 6
Results and discussion

This chapter is structured according to the algorithms and the corresponding experiments.
After showing the results of the experiments, a comparison between the algorithms is
given, and questions related to those comparisons are answered.

A test set of the CNN model including 23 patients is used to interpret the results of
experiments A, B and D, so that they can be compared to each other. These patients
were randomly chosen; the patient’s data is consistent across all experiments and consists
of the same images and labels in all experiments. Utilizing the same set of patients
enables one to compare the performance of the algorithm variance, i.e. the experiments.
The number of images present per patient at the different appointments (timepoints) is
given in Figure 6.1. Additionally, the data of all 130 is evaluated for experiment A and C.

The following experiments use the lens angle difference error ϵΔα, which is given by

ϵΔα := |Δα − φΔα| (6.1)

The image rotation error ϵΔβ describes the error at measuring the image rotation angle
and is given by

ϵΔβ := |Δβ − φΔβ | (6.2)

Finally, the marker angle error ϵγ describes the error when measuring the marker angle
and is given by

ϵγ := |γ − φγ | (6.3)
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6. Results and discussion

Figure 6.1: Image count per patient per timepoint for limited test-set

Standardization of angle difference from −90◦ to 90◦

To evaluate the error of an output, a specific metric for the given problem has to be
introduced. Due to dealing with lines located on a circle, a standard method has to be
adjusted. In this thesis, the absolute error is taken as the basis for an output o and a
target φ:

ϵ = |o − φ| (6.4)

The problem is that this simple difference between o and φ is not always the smallest
possible angular difference between intersecting lines. Due to the fact that o and φ are
angular values that represent the slope of a line across the lens (a circle), there exist
mirrored angles that can be interpreted as describing the same line (see Figure 6.2). To
calculate the smallest possible angle, these mirrored angles have to be calculated by
shifting them by 180 degrees:

om = (o + 180◦) mod 360◦

φm = (φ + 180◦) mod 360◦ (6.5)
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Figure 6.2: Calculated angle o and labelled angle φ and the corresponding mirrored
versions om and φm

To obtain the smallest possible angular difference, all possible combinations would have
to be explored. This can be simplified by not checking combinations that would yield
already calculated values, so the following formula is applied:

ϵ = min(|o − φ|, |o − φm|, |φ − om|, |om − φm|) (6.6)

This implies that the absolute error can be at most 90◦, because this is the maximum
angle difference of two intersecting lines. The result of formula 6.6 can be used as input
for the Huber-loss function.

Evaluation metric

To score a multitude of measurements at once, the mean absolute error (MAE) is
introduced. It is defined in equation 6.7, where n denotes the number of samples and
epsilon is the error defined above.

MAE := 1
n

�
i

ϵi (6.7)

Another tool to evaluate the different algorithm are histograms, which denote the
distribution of the values and errors. In combination, MAE and histograms can describe
distributions in detail and provide a straightforward number to compare the different
algorithms. A key benefit of these evaluation metrics is that they work with any kind
of distribution, in contrast to other commonly used evaluation values like t-values or
z-scores, which require a underlying normal distribution. In addition, the metrics can be
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6. Results and discussion

easily understood in the medical context, since absolute deviations are used to determine
the change in lens rotation.

6.1 Algorithm A: Computer vision based marker angle
calculation

The prediction accuracy was assessed by applying algorithm A to all labeled images. The
evaluation was performed individually for each timepoint. The fraction of images with
an error ϵγ below 3◦ can be found in Table 6.1, alongside the number of images processed
and the corresponding mean absolute error. The histograms describing the distribution
of γ per timepoint can be seen in Figure 6.3.

OP 1h 1w 1m 6m
< 3◦ 0.34 0.41 0.57 0.54 0.43
> 3◦ 0.66 0.59 0.43 0.46 0.57

Images 372 384 370 366 343
MAE 29.96 26.06 20.75 19.86 21.32

Table 6.1: Ratio of ϵγ errors smaller and larger than 3◦, image count and MAE (mean
absolute error) for experiment A

It can be observed, that the error ϵγ is centered around a MAE of 27.14 (=MAE of all
images), with the timepoint having the smallest MAE at 1m and the largest at OP. The
distributions in Figure 6.3 look very similar, all having some of the errors below 3◦ and a
large number of errors uniformly distributed above that threshold.

Figure 6.4 shows γ with their respective label φγ for all images in all timepoints. If the
two values coincide, their error ϵγ is low and they are located at the image diagonal. If
a bias towards a certain angle existed (e.g. the algorithm would have a systematically
higher error for a certain marker rotation), the line would not be straight, but have a
deviation at certain intervals; due to the fact that this line is (disregarding the noise)
very straight, no bias can be observed. One noticeable fact is the gap between 25◦ and
50◦ and −40◦ and −55◦ on the y-axis. The number of labels is significantly lower in
these intervals, therefore a bias in this area cannot be ruled out.

The CNN model test-set consists of the images of 23 randomly selected patients. These
patients together with the number of available images of different timepoints can be seen
in Figure 6.1. To enable comparison with algorithm B, Table 6.2 describes the fraction
of images with an ϵγ error below 3◦ for the CNN model test-set. Therefore, the counts
are lower and the results slightly differ from the analysis above.
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6.1. Algorithm A: Computer vision based marker angle calculation

Figure 6.3: ϵγ distribution for experiment A per timepoint - bin-width 3◦
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6. Results and discussion

Figure 6.4: 2D histogram comparing the calculated marker angle γ and the corresponding
label φγ for experiment A
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6.2. Algorithm B: DL dominated marker angle calculation

OP 1h 1w 1m 6m
< 3◦ 0.46 0.44 0.38 0.39 0.40
> 3◦ 0.54 0.56 0.62 0.61 0.60

Images 70 70 65 72 63
MAE 25.28 23.39 30.88 31.71 24.30

Table 6.2: Ratio of ϵγ errors smaller and larger than 3◦, image count and MAE (mean
absolute error) for experiment A, for limited test set to enable comparison with algorithm
B

6.2 Algorithm B: DL dominated marker angle calculation
To assess the prediction accuracy of algorithm B all images contained in the test-set of
the CNN model were processed. This is necessary, because the other images were used
to train the CNN. Testing the model on the training set does not yield representative
results, due to the network potentially recognizing the images and exactly reproducing
the wanted labels. As in algorithm A, the evaluation is performed individually for each
timepoint.

First, the best performing algorithm version has to be established. The most straight-
forward way is to compare the mean absolute errors of the algorithm versions to each
other. The one, where the error is lowest consistently across all timepoints, is considered
the best one and will be further analyzed. As seen in Table 6.3, the algorithm version
(3) has the lowest MAE at most timepoints. Therefore, a model with a 4-channel input,
that consists of a RGB image and an additional modified 4th channel is used for further
evaluation in this section and for evaluating Algorithm D. The additional 4th channel
is created by finding feature points with a CV algorithm and processed by removing
certain points that are on the rim of the lens, as described in Section 4.5. Table 6.3 also
shows that timepoint OP consistently has a much higher MAE, compared to all other
timepoints. This is an indication that the images of OP are different from images at
all other timepoints; this can be explained by the fact, that OP images were extracted
from a video taken during surgery and therefore have different lighting conditions and
worse image quality. This drop in quality can potentially be caused by a lower resolution
of the videos and temporal artifacts, caused by the video compression algorithms. Due
to this inconsistency, all images from OP cannot be directly compared to images at all
other timepoints and have to be analyzed separately. Therefore, they are excluded from
further analysis in Algorithm B.

The fraction of measurements with an error ϵγ below 3◦ and 4◦ can be found in Table 6.4,
alongside the number of images processed and the corresponding mean absolute error,
per timepoint. The histograms describing the distribution of γ per timepoint can be seen
in Figures 6.5 and 6.6.

It can be observed, that the error ϵγ is approximately in the magnitude of 3◦. Images of
timepoint 1h have a slightly elevated MAE of 3.46, all other images have a consistent
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6. Results and discussion

Figure 6.5: ϵγ distribution for experiment B, method (3) per timepoint - bin-width 3◦
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6.2. Algorithm B: DL dominated marker angle calculation

Figure 6.6: ϵγ distribution for experiment B, method (3) per timepoint - bin-width 2◦
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6. Results and discussion

Method OP 1h 1w 1m 6m Total
(1) 53.31 29.63 26.98 24.92 25.49 32.27
(2) 19.06 3.97 4.86 2.24 4.04 6.92
(3) 10.73 3.46 2.88 2.68 2.88 4.58
(4) 13.02 7.24 6.44 5.1 4.5 7.33
(5) 22.11 6.8 7.14 7.23 7.1 10.19

Table 6.3: MAE values for differently prepared training data and varying ResNet18
structure. The methods referenced can be found in Section 5.2

1h 1w 1m 6m
< 3◦ 0.8 0.78 0.81 0.78
> 3◦ 0.2 0.22 0.19 0.22
< 4◦ 0.87 0.85 0.85 0.94
> 4◦ 0.13 0.15 0.15 0.06

Images 70 65 73 63
MAE 3.46 2.88 2.68 2.88

Table 6.4: Ratio of ϵγ errors smaller and larger than 3◦ and 4◦, image count and MAE
for experiment B, method (3)

MAE of 2.68 to 2.88. Table 6.4 shows that approximately 80% of images have an error
below 3◦ for all timepoints and approximately 85% to 94% of images have an error below
4◦, depending on the timepoint.

Figure 6.7 shows the measurements γ with their respective label φγ . For all images of
the test set for all timepoints except OP, the error ϵγ is low and they are located at the
image diagonal. In general, the observed line is straight, but the region where γ ranges
from −90◦ to −75◦ shows some irregularities. The measurements there are not located
on a straight line, but have a higher variance. Due to the wrapping of the angles from
−90◦ to 90◦, a larger amount of images have a measurement of slightly lower than 90◦,
instead of −90◦. This could point to a systematic issue with marker angles that are
measured at that wrapping boundary - due to the error still being rather low, this artifact
can be ignored, a further investigation is not needed in this thesis. Furthermore, a gap
between 50◦ and 75◦ and −50◦ and −75◦ on the y-axis is visible. The number of labels
is significantly lower in these intervals, therefore a bias in this area cannot be ruled out.
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6.2. Algorithm B: DL dominated marker angle calculation

Figure 6.7: 2D histogram comparing the calculated total lens angle γ and the corre-
sponding label φγ for experiment B, method (3) without images from timepoint OP -
bin-width 3◦
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6. Results and discussion

6.3 Algorithm C: Computer vision based image rotation
calculation

Due to investigating pairs of images, the number of measurements created by this
algorithm is considerably larger than the previous algorithms. In theory, there exist
13726 unique image pairs - for 7923 a Δβ value was calculated.

1h_1w 1h_1m 1h_6m 1w_1m 1w_6m 1m_6m
1.18 1.5 1.7 0.65 0.89 0.75

Table 6.5: MAE for timepoint pairs without OP

OP_1h OP_1w OP_1m OP_6m
2.02 3.45 2.75 3.3

Table 6.6: MAE for timepoint pairs containing OP

The MAE of ϵΔβ can be seen in Table 6.5 and 6.6 for timepoint pairs with and without
OP. When comparing Table 6.5 and Table 6.6 the MAE for all timepoint pairs containing
OP are larger than all other pairs. Similar to algorithm B, this is an indication that the
images of OP are different from images at all other timepoints; this can be explained
by the fact, that OP images were extracted from a video taken during operation and
have a different lighting condition and worse image quality. This drop in quality can
potentially be caused by a lower resolution of the videos and temporal artifacts, caused by
the video compression algorithms. This reduces the image clarity of important landmarks
and hinders proper functioning of algorithm C. Due to this inconsistency, the timepoint
pairs containing OP cannot be compared to all other timepoint pairs. Therefore, they
are excluded from any further analysis in Algorithm C. The histograms showing the
distribution of ϵΔβ can be found in Figure 6.8. The fraction of ϵΔβ values below 2◦ are
listed in Table 6.7 for the different timepoint pairs.

1h_1w 1h_1m 1h_6m 1w_1m 1w_6m 1m_6m
ϵΔβ < 2◦ 0.89 0.78 0.79 0.96 0.95 0.97
Images 798 783 699 943 883 836

Table 6.7: ϵΔβ < 2◦ for Algorithm C

All investigated timepoint pairs have a consistent processable count between 699 and 943
and a MAE in the interval of 0.65 to 1.7. The MAE is slightly elevated for timepoint
pairs containing "1h", the percentage of images where ϵΔβ < 2◦ is reduced to around 80%.
This is also confirmed by the histograms, where those combinations are more spread out
than those not containing "1h". A cause for this phenomenon can be inaccuracies in the
labels for timepoint 1h in either φγ or φΔα from which the φΔβ labels are derived.

It can be concluded that if an image pair can be processed and it does not contain
images from the "OP" pool, the algorithm produces Δβ measurements that are very
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6.3. Algorithm C: Computer vision based image rotation calculation

close to the labels φΔβ . All in all, more than 95% of image pairs can be processed with a
corresponding error ϵΔβ lower than 2◦ for the timepoint pairs "1w_1m", "1w_6m" and
"1m_6m".
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Figure 6.8: ϵΔβ distribution for experiment C - timepoint pairs
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6.4. Algorithm D: DL dominated angle difference calculation

6.4 Algorithm D: DL dominated angle difference
calculation

Similar to algorithm C, pairs of images are investigated in this experiment. In theory
there exist 2619 unique image pairs in the test set - for 1487 a Δα value was calculated.
For reasons explained in algorithms B and C, images that were made during timepoint
OP are not analyzed for this algorithm. The MAE of ϵΔα for different timepoint pairs
are listed in Table 6.8.

1h_1w 1h_1m 1h_6m 1w_1m 1w_6m 1m_6m
3.49 5.67 3.52 3.84 3.13 3.08

Table 6.8: MAE for timepoint pairs

1h_1w 1h_1m 1h_6m 1w_1m 1w_6m 1m_6m
ϵΔα < 6◦ 0.82 0.79 0.89 0.82 0.88 0.87
Images 146 145 132 185 162 157

Table 6.9: ϵΔα < 6◦ with image counts for Algorithm D

Table 6.8 show that all timepoint pairs have a consistent processable count between 132
and 185 and a MAE in the interval of 3.08 to 5.67. The histograms of the investigated
timepoint pairs can be seen in Figure 6.9. The fraction of ϵΔα values below 6◦ is shown in
Table 6.9 for the different timepoint pairs. The MAE is slightly elevated for the timepoint
combination "1h_1m", the percentage of images where ϵΔα < 6◦ is reduced by 5 to 10%.
This is also confirmed by the histograms, where pairs including timepoint "1h" are more
spread out than those not containing "1h".

In Figures 6.10 and 6.11 a patient specific analysis can be seen. Figure 6.10 classifies ϵΔα

in three ranges and indicates cases with several irregularities. Figure 6.11 shows error
causes for several timepoint pairs, mainly for cases in which ϵΔα is high. As it can be
observed, the main causes of the error is an inaccurate marker angle calculation (ϵγ),
especially if the corresponding ϵΔα error is large. Δα values that are closer to 3◦ usually
have a larger image rotation error ϵΔβ, or it is caused by both γ and Δβ being slightly
inaccurate. In conclusion, 79% to 89% of the measured lens angle differences Δα are 6◦

or closer to the labels φΔα provided by medical professionals, depending on the timepoint
pair.
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Figure 6.9: ϵΔα distribution for experiment D - bin-width 3◦
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6.4. Algorithm D: DL dominated angle difference calculation

Figure 6.10: The range of ϵΔα for different timepoint pairs for experiment D is indicated
by the colors green, yellow and red in increasing order. Red cells mark consistent results
that produce a large ϵΔα. White cells can be interpreted as inconsistent Δα results or no
results for this combination. "-" means no measurement was possible, "?" means no value
available due to lack of label data.
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Figure 6.11: Error causes for several timepoint pairs for experiment D. See Figure 6.10
for corresponding ϵΔα errors.
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6.4.1 Noticeable images
The goal of this section is to determine, why more errors are accumulated for some
patients. For this reason, the patients that consistently show inaccurate or inconsistent
results in Table 6.10 are analyzed and potential limitations of the algorithm are derived.
Sample images for each patient can be seen in Figure 6.12.

• Patient 037 has partially obfuscated lens markers, which worsens prediction
accuracy. Additionally, the patient has a multitude of small blood vessels, which
could affect the ability of the registration algorithm to properly align the images.
Larger blood vessels that are more constant in size, as are present in other patients,
seem to produce better results.

• Patient 077 has partially obfuscated markers. This reduces prediction accuracy,
and some algorithms cannot process missing markers properly or are dependent on
multiple markers being visible.

• Patient 080 has badly visible markers at one side across multiple images.

• Patient 089 shows a irregularly shaped pupil, more oval than circular. This breaks
the assumption that pupils are always circular in shape, and these pictures are not
deemed processable. In addition, it shows poor focus and obfuscated markings,
which decrease the quality of the result.

• Patient 111 has suboptimal results, because markers are partially obfuscated and
the number of images is on the lower side.

• Patient 124 shows a multitude of small blood vessels, which could affect the ability
of the registration algorithm to properly align the images.

These facts lead to several limitations that apply to the all algorithms similarly:

• Missing markers severely impact the performance of the algorithms. In addition,
there is a physical limit to the potential accuracy achievable with the given image
quality and lens type (see Figure 6.13). With all markers perfectly visible, two
lines could be drawn that intersect all marker points, but their angles differs by
approximately 1.2◦. When completely removing one side of the markers, this
difference rises to 17.2◦, making accurate predictions impossible.

• When the small blood vessels of the conjunctiva are visible due to irritation, image
rotation cannot be performed as accurately anymore.

• Irregularly shaped pupils can be a problem for detecting the image mask properly.
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Figure 6.12: Samples of badly processable images

88
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Figure 6.13: Sketch visualizing the maximum angular error of a line drawn that is fully
inside the markers. Top shows maximum error using six markers, bottom maximum error
using three markers on one side.
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6.5 Performance considerations
The performance discussed in this chapter is based on the CNN model test-set. Comparing
Tables 6.10 and 6.11 it can be observed that algorithm A and B have roughly the same
speed. The main part of time spent in the calculations is always the alignment of the
images (algorithm C), which is derived from the fact that all combinations of images are
compared, drastically increasing the number of iterations. This can be concluded from
Table 6.12. Performance of algorithm D can be derived by combining the runtimes of
algorithms B and C.

Step Mean standard-
deviation

Min Max

Preprocessing (Step 1-2) 1.43s 0.86s 0.52s 3.57s
Process time (Step 3-5a) 0.67s 0.27s 0.23s 1.17s

Table 6.10: Processing time per patient for experiment A

Step Mean standard-
deviation

Min Max

Preprocessing (Step 1-2) 1.52s 0.92s 0.55s 3.6s
Process time (Step 3) 0.93s 0.35s 0.31s 1.5s

Table 6.11: Processing time per patient for algorithm B

Step Mean standard-
deviation

Min Max

Image alignment time 60.73s 27.8s 12.08s 121.82s

Table 6.12: Processing time per patient for algorithm C

A benefit of algorithm B that is not utilized in the comparison at hand is the fact that
the process time (step 3 of algorithm B) rises slower when more images are added, due
to parallelism capabilities of CNN models. This is in contrast to algorithm A, where the
runtime scales linearly with each image added. However, it has little impact on algorithm
D, which combines algorithm B and C, because the runtime is dominated by the image
alignment steps.

The performance of the CNN training used in algorithm B and D depends mainly on
the number of iterations performed, but training generally finishes in 8 to 12 hours with
the given hardware. In theory this could be sped up significantly with newer and faster
hardware, thus only a rough estimate is given for context.
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CHAPTER 7
Conclusion

The concluding chapter summarizes the key insights derived from the experiment data
and analysis. By reviewing the primary objectives, this chapter aims to answer the
research question and address potential limitations and areas for future research. The
main parts in this section are composed of comparing the results of algorithms A and
B, evaluating the DL dominated algorithm D on predicting lens angle differences and
recommending when the algorithms can be used in a practical setting.

7.1 Comparison of computer vision based and DL
dominated algorithms for predicting γ

In this section, algorithms A and B are compared to each other. To enable comparison,
the accuracy of the γ measurements is used. Focus is placed on the best performing
experiments with respect to accuracy (lowest MAE and highest ratio of processable
pictures with an error ϵγ < 3◦). Other experiments are mentioned if they have a
significant benefit, like e.g. computational speed. In addition, all versions of algorithm B
are compared and discussed.

Timepoint OP is excluded from the evaluation since the number of samples processable
is much lower and the data is not comparable. Almost all DL dominated algorithms -
as discussed in algorithm B and shown in Table 6.3 - outperform the computer vision
algorithm A. Therefore, if using the best performing version (3) of algorithm B, it can be
said that the DL dominated algorithm has considerably better performance; it has an
almost 10 times smaller MAE of approximately 3 and the histograms for experiment B
lack the uniformly distributed error component, meaning that most errors are closely
grouped around zero. In addition, the histograms demonstrate that the fraction of
samples below a ϵγ threshold of 3◦ is around 80% for algorithm B and only around 40%
for algorithm A.
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Comparing the different versions of algorithm B yields insight, which part of the input is
more important for good performance: Version (1) shows, that a 3-channel input of the
image without additional feature information performs in the same magnitude as the
visual computing based algorithm A. If only the additional 4th channel is used (version
(5)), the MAE diminishes, implying that the algorithm extracts key information from
the encoded image features. Combining the additional 4th channel with one randomly
chosen color channel lowers the MAE slightly (version (4)), but the effect is larger when
supplying the CNN with all three color channels and the unaltered additional 4th channel
(version (2)). When noise points are removed from the 4th channel, the accuracy further
increases leading to version (3) having the lowest overall MAE.

This leads to the summarizing conclusions that:

• Algorithm A is not appropriate for γ prediction due to its low prediction accuracy
(approx. 40% of ϵγ are less than 3◦)

• Algorithm B is better than algorithm A in terms of prediction accuracy

• Version (3) of algorithm B has the highest prediction accuracy, which can be
characterized as

– 78% - 81% of ϵγ less than 3◦ depending on the timepoint
– Most of the error (85% - 94%) falls below 4◦, depending on the timepoint (the

best value is 94% for 1m)

Based on the above, algorithm B should be used for computing the marker angle γ in
algorithm D.

7.2 Assessing algorithm C for image rotation calculation
Before being able to assess the lens angle differences Δα of algorithm D, the image
rotation quality Δβ of algorithm C must be investigated. This enables the analysis of
the individual components composing the angle difference error Δα.

Again, timepoint OP has to be excluded since the number of samples processable is much
lower and the data is not comparable. In experiment C it can be seen, that ϵΔβ for the
majority of timepoint pairs have a MAE between 0.65 and 1.7. The fraction of images
that have a ϵΔβ < 2◦ is at least 95%, except timepoint pairs where one of the images
is taken at timepoint "1h". The percentage drops by approximately 5% to 10% there.
This indicates that the error introduced by image rotation is very small for comparisons
"1w_1m", "1w_6m" and "1m_6m" and a bit larger for all timepoints containing "1h".
This leads to the conclusion that the achieved prediction accuracy with this algorithm is
approximately 2◦.
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7.3 Evaluating of the DL dominated algorithm D to
calculate lens angle differences

This section aims to evaluate the prediction accuracy of a DL dominated algorithm D for
measuring the angle difference Δα.

Due to the fact that timepoint OP has a much higher MAE in algorithm B and C, it
is excluded from the analysis of algorithm D. The experiment shows, that algorithm D
has consistent results when comparing inter-timepoint combinations. It should be noted
that images taken directly one hour after operation (timepoint "1h") cannot be processed
as accurately as images taken at other timepoints. For either case, a large amount of
samples (75% to 84%, depending on the timepoint pairs) have an error that is smaller
than 6◦. It can be seen from the distribution of the medical labels of the lens angle
differences (see Table 5.4 in Section 5.5.3) that the highest lens angle difference arises
between 1h and 6m and 1h and 1m. Therefore, these are most appropriate for detecting
the rotation of the lens. For these timepoint pairs, the proportion of cases having medical
labels outside -2 to 2 degrees and detected angles outside (-2 - 2), (-5 - 5) and (-8 - 8)
degrees, respectively, are shown in table 7.1.

|φΔα| > 2◦ |Δα| > 2◦ |Δα| > 5◦ |Δα| > 8◦

1h_1m 10% 55% 20% 10%
1h_6m 11.1% 44.4% 5.6% 0%

Table 7.1: Proportion of pathological cases |φΔα| > 2◦ and detected angles |Δα| > 2, 5
and 8 degrees respectively

It is evident from tables 6.8, 6.9 and 7.1 that the lens angle difference error is smaller
for 1h_6m than for 1h_1m. Therefore, we continue the evaluation for the case 1h_6m.
The following tables show the number of images with true positive, false positive, true
negative and false negative for the cases Δα higher than 2, 5 and 8 degrees, respectively.

From these three evaluated cases, the case with |Δα| < 5◦ shows the best performance.
It has 0 false positives and only one false negative.

1h_6m |Δα| < 2◦ |Δα| > 2◦

|φΔα| < 2◦ 9 7
|φΔα| > 2◦ 1 1

Table 7.2: Number of cases in the case |Δα| < 2◦

1h_6m |Δα| < 5◦ |Δα| > 5◦

|φΔα| < 2◦ 16 0
|φΔα| > 2◦ 1 1

Table 7.3: Number of cases in the case |Δα| < 5◦
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1h_6m |Δα| < 8◦ |Δα| > 8◦

|φΔα| < 2◦ 16 0
|φΔα| > 2◦ 2 0

Table 7.4: Number of cases in the case |Δα| < 8◦

7.4 Practical usability of the algorithm in the medical field
The analysis of algorithm D shows, that in general the algorithm can be used to generate
consistent results when measuring the rotational change of a IOL for a patient. Some
limitations have to be given: The images cannot be compared to images taken during
surgery (timepoint OP) due to consistently worse performance.

For practical usage the timepoint pair 1h_6m is recommended since

• the lens angle difference between OP and 1h is negligible

• 1h_6m has one of the highest lens angle differences, giving the highest chance to
detect it

• 1h_6m has a smaller lens angle difference error than the case 1h_1m

The prediction accuracy of algorithm D is approx. 6 degrees, the lens rotation can be
considered pathological for this thesis when the lens angle difference is higher than 2
degrees. The best performance for practical usage can be achieved by using algorithm D
in a classificator setting above and under the threshold 5◦. Using 5 degrees instead of 2
degrees can be explained by the MAE being in the magnitude of 3 degrees (see Table
6.8). As shown in Table 7.3 the achieved classification performance is characterized as:

• Accuracy of 94.12%

• Precision of 100%

• Recall of 50%

Therefore, algorithm D can detect 50% of the pathological cases for the considered image
set. However, this is only a preliminary result due to the low number of pathological cases
and therefore further investigations are necessary. This is the most important practically
usable result of this thesis.

7.5 Discussion of the research questions
This section focuses on explicitly answering Research Questions 1-3. Based on the
previous sections, it should provide a differentiated view on the question and give
an answer outlining possible drawbacks, limitations, and possible further steps if the
conclusion is not definitive.
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7.5.1 RQ1: Can the predictive accuracy of a fully automated
computer vision based method for assessment of the toric IOL
rotation without deep learning achieve a level of quality
equivalent to those of a manual data analysis method as
performed by medical professionals?

Experiments based on algorithm A have shown that the CV algorithm produces mea-
surements with a large error for more than half of the images. Therefore, the algorithms
can neither be used to generate labels to train CNNs, nor directly in an algorithm that
calculates the lens angle difference.

The main limitations are the high sensitivity to noise and certain preconditions that have
to be met. If only some of the six markers are visible in an image, or the picture was not
taken under ideal circumstances, algorithm A (the CV algorithm) fails to produce proper
results. This cannot be fixed easily, since the whole algorithm is based on the assumption,
that all six markers are clearly visible. Therefore, a CV algorithm has limited potential
for the given lens type.

7.5.2 RQ2: Which deep learning (DL) architecture performs best for
automatic assessment of toric IOL rotation?

As seen in experiment B, the DL architecture ResNet18 can perform best with utilizing
explicit feature extracting, i.e. utilizing all three channels of any given image with
additional 4th channel information about the possible location of the lens markers. The
main caveat is that the comparisons were conducted only on a very limited range of
variants of a single standard model (ResNet18).

7.5.3 RQ3: Can a deep learning dominated algorithm outperform a
traditional computer vision algorithm in terms of predictive
accuracy for the assessment of the toric IOL rotation?

A deep learning dominated algorithm B outperforms a CV algorithm A, as seen in
experiments with algorithms B and A. Additionally, the experiment with algorithm
D shows that involving a DL based algorithm B produces results that can be used to
estimate the lens angle difference with approximately 6 degrees prediction accuracy.

7.6 Limitations and further research
The DL dominated approach has potential that has not been leveraged yet. Since
only ResNet18, a small out-of-the-box CNN, has been explored in this study, it seems
reasonable to assume that a different type of CNN model could improve results. As
specific next steps, a larger model can be trained when having more test data and faster
hardware; more specialized or custom CNN models could potentially increase the quality
by utilizing a tailored structure and layer parameters adjusted to the problem at hand.
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For this, hyper-parameter tuning is a viable strategy that has not been applied yet. In
addition, approaches that have image pairs as input should be explored, because they
might improve accuracy.

Another avenue of improvement could be the use of an improved or different image-
rotation calculation (image registration) algorithm. The current approach has a low error
for processable samples, but cannot produce results for all images. A method that can
deal better with slight differences in images could yield more results with a high quality,
which would be beneficial for improving algorithms C and D.

Images made with other camera equipment and lighting settings worsen the performance
of the algorithms, given the used fixed set of parameters. In the analyzed dataset, this
applies to all images made in OP - compared to other images, they have a lower prediction
accuracy. A possible approach to improve results for images at timepoint OP is to gather
more images that can be used in training a CNN model, more data can be extracted
from the video of the operation. In the experiments performed in this thesis, five frames
have been extracted at most - depending on the amount of artifacts and length of the
video, many more are available. The additional frames would provide more data for
CNN training, which can improve the ability of the network to generate results of higher
accuracy for intra-operational videos. The prediction accuracy for this timepoint might
be limited by the quality of the videos - the motion artifacts and compression algorithm
used could prevent better results, a different method of capturing the source videos might
be needed.

A different topic that has not been explored yet is the use of adjusted algorithms for
lenses of different manufacturers. Especially if more distinct markers are present, the
proposed methods could yield reliable results and might come even closer to human level
of precision. The adjustments that would have to be done are expected to be rather
small, especially when adapting neural networks; therefore, research in this direction
seems promising.

7.7 Final remarks
In conclusion, the general approach for finding and comparing the rotation of the toric
IOL has been found and some fundamental steps were taken in the right direction.
The prediction accuracy of the algorithm can be still significantly improved and there
are promising ways for doing that. Such enhancements would decrease the error to a
minimum level, so that the algorithms devised can be used for any patient. To accomplish
this, more research should focus on improving CNN and optimizing out-of-the-box CV
methods.

This work serves as a solid foundation for future research, providing domain-specific entry
points into computer vision and deep learning. It introduces various approaches that
enable fully automated development of deep learning algorithms for finding the orientation
of toric IOLs. The utilized methods are open to improvements and not limited to their
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current state. Further development and refinements will lead to software that reduces
workload for medical personnel, especially in research where a large number of patients
have to be processed. This may lead to faster testing and more thorough and precise
analysis of available IOL products, which is beneficial for patients and manufacturers
alike.
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Ethical considerations

Due to the dataset being identical to the reference [SSS+21], the same ethical considera-
tions apply:

„Patients referred for monolateral or bilateral cataract surgery were included
in the study. The prospective clinical trial included 130 eyes of 68 patients.
In all eyes, a nontoric hydrophobic acrylic single-piece IOL was implanted.
Patients provided written informed consent prior to the study. All study
procedures adhered to the tenets of the Declaration of Helsinki. The local
ethics committee of the Medical University of Vienna approved the study
(EK 1433/2018) and the study was registered to a public clinical trial registry
(NCT03803852).“[SSS+21]

The data was only provided pseudonymized and is treated confidentially. Only randomly
chosen images of the eyes are used as reference figures in this study, and the full dataset
is not released along with the study.
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