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English Abstract

Functional magnetic resonance imaging (fMRI) is a non-invasive method for map-
ping brain activation patterns. For investigating the representation of visual space
on the visual cortex, population receptive field (pRF) mapping is a state-of-the-art
fMRI approach. However, the fitting procedure employed by that technique is com-
putationally expensive because of the typically large number of parameters that need
to be fitted. In 2019, DeepRF, a method to accelerate the pRF fitting procedure
using deep learning algorithms, was introduced, and results showed it to be able
to achieve benchmark results at speeds more than three orders of magnitude faster
than the conventional method. In this thesis, the machine learning model devised
by the original authors of DeepRF was rebuilt as SnapRF to overcome limitations
in the original approach and enable fair comparisons with a reference method. In
doing so, improvements were introduced to the model in regards to user control
and training procedures. Results of thorough tests and comparisons of SnapRF with
standard analysis software have shown SnapRF to be capable of comparable per-
formance at speeds two magnitudes faster than the reference method, albeit with
results more prone to error. Possible pitfalls such as suboptimal visual stimulus
design were identified and discussed. Additionally, a new noise model based on a
principal component analysis (PCA) of resting-state fMRI data was introduced and
shown to hold promise for future simulation and empirical studies. Importantly,
this thesis shows that no ”one-size-fits-all” approach is recommended in regards to
DeepRF training parameters and instead, careful analysis and comparison of results
is emphasized as the most important part of employing the method. Additionally,
the thesis includes suggestions for further experiments and research directions that
could facilitate the establishment of the DeepRF approach as a standard method in
pRF mapping.
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Deutsche Kurzfassung

Die funktionelle Magnetresonanztomographie (fMRT) ist eine nicht-invasive Metho-
de zur Untersuchung von Hirnaktivitätsmustern. Population receptive field (pRF)
mapping ist eine standardmäßig angewandte fMRT Methode, um die Repäsentation
des visuellen Feldes im visuellen Kortex zu untersuchen. Die konventionelle Methode
zur Optimierung des Mappings ist jedoch aufgrund der großen Zahl der Parame-
ter rechnerisch aufwändig und langsam. DeepRF ist eine Methode zur Beschleuni-
gung der Optimierung unter Zuhilfenahme von Deep Learning Algorithmen, die 2019
veröffentlicht wurde. Erste Ergebnisse zeigten, dass diese Methode den Prozess um
mehr als drei Größenordnungen beschleunigen kann. In dieser Diplomarbeit wurde
das DeepRF Modell als SnapRF nachgebildet, um Limitationen des ursprünglichen
Zugangs zu überwinden und um faire Vergleiche mit einer Referenzmethode zu
ermöglichen. Im Zuge dessen wurde das Modell in Bezug auf Kontrollmöglichkeiten
und Training-Prozeduren erweitert. Die Resultate gründlicher Tests sowie Verglei-
che mit der Referenzmethode zeigen, dass SnapRF vergleichbare Ergebnisse bei mehr
als zwei Größenordnungen kürzeren Rechenzeiten erbringen kann. Allerdings zei-
gen die mit SnapRF gewonnenen Parameterabschätzungen höhere Abweichungen als
die mittels Standardanalyse erhaltenen Ergebnisse. Mögliche Fallstricke an denen
die Methode scheitern kann, wie etwa suboptimalem Design der visuellen Stimuli,
wurden identifiziert und hervorgehoben. Weiters wurde ein neues Rausch-Modell
eingeführt, das auf einer Hauptkomponentenanalyse (PCA) von resting-state fMRT
Daten basiert. In dieser Arbeit wird gezeigt, dass dieses Modell hohes Potential für
den Einsatz in zukünftigen Simulationen und Studien an empirischen Datensätzen
hat. Ein besonders nennenswertes Ergebnis dieser Arbeit zeigt, wie wichtig ein auf
spezifische Anwendungen maßgescheiderter Zugang beim DeepRF-Zugang ist, da nur
dann die Vorteile der Methode voll zu Tragen kommen. Um DeepRF als neue Stan-
dardmethode für pRF Mapping zu etablieren, müssten weitere Experimente und
Untersuchungen angestellt werden, für die Empfehlungen in dieser Arbeit gegeben
werden.
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1 INTRODUCTION

1 Introduction

This thesis is based on the work conducted at the Center for Medical Physics and
Biomedical Engineering of the Medical University Vienna. The aim was to test
and expand the limits of currently available machine learning methods for analyzing
functional magnetic resonance (fMRI) data, in particular the representation of the
visual space in the human visual cortex. To that end, the DeepRF method developed
by Thielen et al. in 2019 [1] was reimplemented as SnapRF and expanded with new
functionalities and features.

DeepRF is a deep learning framework that is trained with simulated functional
magnetic resonance imaging (fMRI) data to analyse responses of the visual cortex
to visual stimuli. The original authors of the method showed an increase in analysis
speed by over three orders of magnitude compared to standard analysis software.
Such an increase represents a significant reduction in necessary computing power
and thus might be able to save large amounts of energy. In addition, the approach
holds promise for resolving two important issues the standard approach harbours
that are related to the fitting of cortical responses to visual stimuli.

In particular, the following research questions were investigated:

❼ How does DeepRF compare to standard analysis software on simulated data
with known ground truth?

❼ How reproducible are DeepRF results across multiple measurements of single
subjects compared to standard analysis results?

❼ How does DeepRF compare to standard analysis software on empirical data
from multiple subjects?

These research questions were tackled by comparing different implementations
of SnapRF to the standard analysis software package mrVista on simulated data,
in-house empirical datasets, and a large external empirical dataset. In these ex-
periments, a clear focus was put on fairness of comparison and applicability under
different experimental conditions.

This first chapter of the thesis aims to familiarize readers with the history and
most important concepts underlying the thesis, and thus provide the necessary tools
for appreciating its content and implications. The specifics of DeepRF and the
extensions to it implemented in this thesis as SnapRF are detailed in chapter 2,
together with descriptions of other software and the datasets used in the thesis.
The results of the comparative studies conducted over the course of this thesis can
be found in chapter 3, and their discussion in chapter 4. Finally, conclusions from
the work performed in this thesis including recommendations for further directions
of research are given in chapter 5.
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1.1 Nuclear Magnetic Resonance (NMR) 1 INTRODUCTION

1.1 Nuclear Magnetic Resonance (NMR)

The phenomenon of nuclear magnetic resonance (NMR) is the manifestation of a
fundamental process that occurs in the interaction of nuclear magnetic dipole mo-
ments with external magnetic fields. As this section is meant to provide readers
with a quick review of the most important topics for understanding this thesis, we
shall only recount the basic facts and results here. Detailed derivations and precise
descriptions of the processes involved in NMR can be found in references [2], [3] and
[4].

Every elementary particle possesses spin. This vector-like quantity can be thought
of as an intrinsic angular momentum. As described by quantum theory, spin val-
ues are not arbitrary, but instead quantized and their magnitudes may only take
on multiples of the reduced Planck constant, � = h

2π
, where h ≈ 6.626 · 10−34 Js.

The absolute spin values of particles of the same type are constant and cannot be
changed. The direction of the spin, however, is random until measured, a defining
feature of quantum theory.

Importantly, the magnetic dipole moment of a particle is intimately related to its
spin. For a spin-1

2
particle, such as a proton or an electron, the relationship between

the two is given by

µ = g
q

2m
S, (1.1)

where g is a particle-specific constant, q the particle’s charge, m its mass, and S its
spin. From here on out, bold letters shall represent vector-like quantities. Thus, it
follows from Eq. (1.1) that the magnetic moment of a particle always points in the
direction of its spin. Therefore, when describing the interaction of magnetic fields
and particles, spin and magnetic moment go hand in hand and the respective terms
are used interchangeably in the following discussions.

The peculiar behaviour of particle spin described above was first uncovered ex-
perimentally by Otto Stern and Walther Gerlach in the seminal Stern-Gerlach Ex-
periment (SGE) of 1922 [5] via the deflection of a beam of silver atoms in an in-
homogeneous magnetic field (Fig. 1). The inhomogeneous field used in the SGE
was produced by an electromagnet with poles shaped as an edge and a groove. In

Figure 1: Experimental setup for the Stern-Gerlach Experiment (adapted from [6]).
Silver atoms are emitted from a furnace (1) and are collimated into a beam of
atoms (2) before entering an inhomogeneous magnetic field (3). Quantum mechanics
predicts a splitting of the beam into two separate components (4) while classically
a broadening of the beam on the detector screen is expected (5).

2



1 INTRODUCTION 1.1 Nuclear Magnetic Resonance (NMR)

classical physics, where the atoms are thought of as small dipoles with random orien-
tation, a broadening of the incoming beam of atoms by the inhomogeneous magnetic
field would have been expected. What was shown, however, was the splitting of the
incoming beam into two discrete bands, as predicted by quantum theory (Fig. 2).

Figure 2: Experimental evidence for spin quantization of silver atoms in an inho-
mogeneous magnetic field [5]. In the scale below, 20 units are equal to 1 mm.

The asymmetry between the two bands observed in the result stems from the
configuration of the poles, where atoms passing close to the edge of the upper magnet
experienced a stronger force than those farther away. The meeting points of the
bands likewise stem from the pole configuration, as the inhomogeneity is strongest
in the center of such a field. The finite width of the bands is due to the thermal
distribution of velocities of the atoms, as faster atoms spent less time in the field and
were thereby deflected by smaller amounts than slower ones, leading to a broadening
of the bands on the detector screen. At the time the SGE was conducted, spin
was not known yet, and physicists at the time believed that the experiment had
proven quantization of orbital angular momentum. However, as Otto Stern realized
magnetic birefringence should have been observed as well if this was the case [7].
Therefore, this interpretation could not fully describe the features seen in the results,
a problem which was resolved by the introduction of spin in 1925 [8].

The introduction of particle spin opened up a plethora of new and exciting things
to probe: To study spin flips, variations of the SGE were employed with three
consecutive magnetic fields [9, 10]. In these, the first and third field would split
incoming beams, while the second would flip the spin of particles going through it
after being deflected by the first field. Theoretical descriptions of these experiments
[11][12] could not account for all of the observed spin flips, however. Isidor Isaac
Rabi recognized the error lay in the fact that nuclear spin had been disregarded up

3



1.1 Nuclear Magnetic Resonance (NMR) 1 INTRODUCTION

until then [13].

In composite particles, such as nucleons or atomic nuclei, the spins of the con-
stituent particles add up. Even though Eq. (1.1) suggests no magnetic moment to
be present for neutral particles (where q = 0), neutrons do in fact exhibit one, ow-
ing to their composite nature of three charged quarks. The Pauli exclusion principle
states that two spin-1

2
particles of the same kind may not occupy the same state,

i.e. may not be equal in all quantum numbers. This is the reason for the stability
of atomic matter: In an atom, for a given energy level and orbital momentum, two
bound electrons may only occupy the same state if their spins are antiparallel along
a given axis. Such combinations of paired electrons do not exhibit magnetic dipole
moments. That’s why macroscopic paramagnetism, which results from coupling of
electron magnetic dipole moments in a solid, only exists in materials with unpaired
electrons in their constituent atoms. In the shell model of atomic nuclei, protons and
neutrons pair off similarly to electrons in atoms, and so fill their respective energy
shells. It thus follows that nuclear magnetic moments can only exist in nuclei with
an odd number of protons, and/or neutrons.

In Rabi’s insight not to disregard nuclear spin, he further realized that experi-
ments could be used to directly measure not only the magnitude of nuclear magnetic
moments, but also their relative orientation to the nuclear spin. He set out to do so
and refined the three-stage SGE by considering the effects of an intermediate field
oscillating in time with constant frequency. This line of research was undertaken on
instigation by Cornelius Jacobus Gorter [14–16], who tried to discover NMR by a
change of heat capacity of a substance in resonance with an oscillating field.

Earlier, we said that the absolute spin value of a particle is random along any
axis until measured. What exactly constitutes a measurement has been the subject
of much debate since the inception of quantum mechanics. What is undoubtedly
understood, though, is that the presence of an external magnetic that is much
stronger than the magnetic moment of a particle constitutes a measurement of the
particle’s magnetic moment along the external field axis. Therefore, the absolute
spin value along the axis of the field is constant. The value along any other axis,
however, remains random. Let the external field point along the z axis and be of the
form B0 = B0z, where z is the unit vector in z direction. This external field may
either be homogeneous or inhomogeneous (spatially varying). Before the presence
of the external field, all spin orientations relative to z are equal in energy. In an
external field, however, this so-called degeneracy is resolved, so that the energy of a
given particle is determined by the direction of its spin. Spins parallel to the external
field have lower energy than those antiparallel to the field. This is known as the
Zeeman effect. Magnetic dipole moments experience a torque in such a field, causing
them to precess around the field axis in a phenomenon called Larmor precession (see
Fig. 3).

A frequently invoked analogon for this behaviour is that of a spinning top in the
earth’s gravitational field, though a more intuitive one is a bicycle wheel gyroscope
suspended from a string. Demonstrations of such a configuration can be found
aplenty online, and readers are encouraged to search for them. The frequency of
precession is called the Larmor frequency and is proportional to the acting external
field. For our particle in the magnetic field it is given by

ω0 = −γB0. (1.2)

4



1 INTRODUCTION 1.1 Nuclear Magnetic Resonance (NMR)

Figure 3: Larmor precession of a nuclear spin around an external field with preces-
sion frequency ω0 (adapted from [17]).

The proportionality factor γ is called the gyromagnetic ratio of the particle carrying
the dipole moment, and is given by

γ = g
q

2m
. (1.3)

Recall that we already encountered this ratio in Eq. (1.1). Every isotope has a
unique gyromagnetic ratio. It can be positive or negative, determining the sense of
rotation in the precession. For external magnetic field strengths of the order of 1 T,
the Larmor frequencies of NMR-active nuclei lie in the radiofrequency (RF) range
(MHz).

Rabi first conducted theoretical investigations into oscillating fields applied to
molecular beams in 1937 [18], and then experiments together with Jerrold Zacharias,
Sidney Millman and Polykarp Kusch in 1938 and onwards [14, 19] (Fig. 4). When
the frequency of the oscillating field is close to that of the Larmor precession of the
nuclear magnetic moment of an atom in an external field, the resonance condition for
absorption of energy from the oscillating field is fulfilled and the magnetic moment of
the nucleus is changed, so that the atom is not refocused onto the detector screen. As
the resonance condition is dependent on the Larmor frequency of spin precession in
the inhomogeneous fields, there are two possibilities for achieving it: One can either
keep the oscillating field at a constant frequency and vary the static fields slowly
by changing the current through the electromagnets, or equivalently keep the static
field strengths constant and vary the frequency of oscillation. Rabi and collaborators
used the first method, while today it is common practice to use static external and
varying oscillating fields. The first direct experimental evidence for NMR can be
seen in Fig. 5. At the right combination of field strength and oscillation frequency,
a sharp drop in refocused particles is visible.

5



1.2 NMR in Bulk Matter 1 INTRODUCTION

Figure 4: Schematic of Rabi’s magnetic resonance method setup [19]. Magnets A
and B create inhomogeneous magnetic fields with anti-parallel gradients, magnet C
creates the oscillating field. The solid curves represent paths of molecules without
change of magnetic moments in the apparatus. The dashed curves represent paths
of molecules whose magnetic moments were changed in the excitatory field of the C
magnet. Such molecules are not refocused onto the detector.

Figure 5: First observation of nuclear magnetic resonance [14]. At the resonance
condition, a sharp drop in beam intensity at the detector is visible, as molecules are
not refocused onto the detector screen.

1.2 NMR in Bulk Matter

The observation of NMR in non-gaseous matter was first reported in 1946 indepen-
dently by Edward Purcell [20] and Felix Bloch [2, 21]. To appreciate this effect,
let us consider a sample of 1 g of water in an external magnetic field B0 = B0z
pointing in z direction. Water molecules contain two hydrogen nuclei, which each
contain one proton, resulting in two nuclear magnetic moments per molecule. In
contrast, the most common isotope of Oxygen, 16O, does not feature a nuclear mag-
netic moment. Let Sz be the z-component of a nuclear spin. If Sz is positive, i.e.
parallel to the field, the nuclei’s energy is lower than it would be with the opposite,
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1 INTRODUCTION 1.2 NMR in Bulk Matter

antiparallel orientation. We shall denote the former state as |1�, the latter as |2�.
Their energies, E1 and E2 thus obey E2 > E1. In the system’s ground state, which
is defined as a state with minimum energy, all nuclear spins occupy state |1�. In
thermal equilibrium at room temperature, however, a significant portion of hydro-
gen nuclei will occupy state |2�. The ratio between their occupancies is related to
their energy difference. This difference, ΔE, is given by

ΔE = E2 − E1 =
�ω0

2
−
�
−�ω0

2

�
= �ω0. (1.4)

According to the Boltzmann distribution, the ratio of occupancy is

n1

n2

= exp

�
ΔE

kBT

�
, (1.5)

where ni is the number of nuclei in state |i�, kB is the Boltzmann constant and T the
system’s temperature. For protons at room temperature (T = 300 K) in an external
field of 1 T, the difference in occupancy is only about seven in a million. Still, as
there are around 6.7 × 1022 hydrogen nuclei in 1 g of water, this small majority of
nuclei in state |1� is enough to result in an appreciable net magnetization M0 of the
sample in direction of the external field. The net magnetization is static, however,
and is therefore not directly measurable.

To measure the magnetization, and thereby the nuclear magnetic moment of the
hydrogen nuclei, the system must be brought out of equilibrium. This is achieved
by applying an oscillating RF magnetic field, B1 along a direction perpendicular
to B0. Recall that if the oscillation frequency is close to the Larmor frequency
of precession of the nuclear spins, energy from B1 can be absorbed by the nuclei,
thereby bringing the system out of thermal equilibrium.

In the experiments by Rabi et al. described in the previous chapter, the os-
cillating field acted only briefly on the particles, whereas now we shall investigate
the effects of longer application. Through absorption, nuclei from state |1� will be
excited to state |2�. In addition, nuclei in state |2� will be stimulated to emission
of radiation at the same frequency, leading to more absorption. Therefore, the net
magnetization along z will decrease. Another effect induced by the RF field in the
nuclear spin system is that of phase-coherence. Originally in the external static field,
all spins precess around the field direction with the same frequency. Their phases,
however, are randomly distributed. The field B1, oscillating with the Larmor fre-
quency of precession, forces the spins to precess in phase. This can be understood by
analogon of children on swings: Suppose two children of equal weight are swinging
side by side on swings of the same length, and therefore with the same frequency,
but different phases. If simultaneous pushed were supplied to both children at the
resonance frequency, both will soon swing in phase (Fig. 6). In NMR, this phe-
nomenon is called forced precession. The consequence of these effects is a rotation
of the axis of precession for all phase-coherent spins, which leads to a tipping of
the net magnetization vector towards the traverse plane. The changing orientation
of the net magnetization can be measured, as a varying magnetic field induces a
voltage in a suitable receiver coil.

In a frame of reference that is rotating with the Larmor frequency around the z
axis, the individual spins do not precess, but are stationary. In this picture, the RF
field is static, so that the nuclear spins align along an axis that is a superposition

7



1.3 Relaxation Mechanisms 1 INTRODUCTION

Figure 6: Establishment of phase coherence between children of swings through
pushes applied at the resonance frequency.

of the two external static field axes. Thus, the tipping of the magnetization can be
understood in a straightforward way (Fig. 7).

Figure 7: Tipping of the net magnetization vector in a coordinate system rotating
with the Larmor frequency [17].

Mathematically, the behaviour of the magnetization vector can be described with
the Bloch equation first introduced in [2]. The angle by which the magnetization
tips is dependent on the time the RF field is active and its strength, and is called
the flip angle, defined by

ϕ = γ · B1 ·ΔT. (1.6)

It is therefore possible to define pulse lengths that correspond to specific flip angles
for specific nuclei, such as π

2
-pulses that flip the magnetization 90◦, or π-pulses that

flip the magnetization 180◦.

1.3 Relaxation Mechanisms

In the previous discussions, a few assumptions were made without explicitly men-
tioning them. Let us now make these explicit: First we assumed uniform external
fields throughout our system. In practice, magnetic field uniformity within a sam-
ple of inhomogeneous and anisotropic matter is very difficult to achieve, and per-
fect uniformity an impossibility. Therefore, the Larmor frequency is not constant
throughout the system, but varies in space. Second, we assumed external fields as

8



1 INTRODUCTION 1.3 Relaxation Mechanisms

the only sources changing the orientation of nuclear spins. For this to hold, the as-
sumptions of negligible contributions from atomic electrons, neighbouring nuclei and
thermal effects must me made. In practice, all of these are invalid, which manifests
in relaxation processes.

After deviation from equilibrium and cease of the excitatory RF field, the nuclear
spin system will naturally regain thermal equilibrium. Thus, the net magnetization
will realign itself in the direction of B0. Various processes contribute to this relax-
ation, and they are most commonly described by the longitudinal relaxation rate T1

and the transverse relaxation rate T2.
The establishment of the magnetization in z direction (the direction of the static

external field) is described by an exponential growth (Fig. 8). This growth occurs
both when a sample is placed in a static external magnetic field and when a nuclear
spin system in an external field is brought out of equilibrium by a resonant RF field.
The growth of net magnetization in direction of B0 can be written as

Figure 8: Relaxation or recovery of longitudinal magnetization Mz after a
π
2
excita-

tion pulse of the resonant RF field or after exposure to a static external magnetic
field, respectively [17].

M z(t) = M0

�
1− exp

�
− t

T1

��
, (1.7)

where M0 points in direction of B0 as described earlier. From Eq. (1.7) it can be
seen that T1 is defined as the time after which the longitudinal magnetization has
regained 1− 1

e
≈ 63% of its equilibrium value.

T1 can then be measured by a method called inversion recovery (IR): Suppose
the excitatory RF field is deactivated at a time t = 0 after a π-pulse that flipped the
net magnetization into −z direction. Applying a π

2
-pulse some time after the initial

π-pulse results in a signal that is proportional to the strength of magnetization in
z direction at that time. Repeating the experiment multiple times with different
intervals between the pulses allows calculation of T1. The associated microscopic
processes that enable the observed relaxation are collectively called T1 relaxation,
longitudinal relaxation or spin-lattice relaxation. The latter term indicates that the
energy of excited nuclei is dissipated to their surroundings (the ”lattice”). Processes

9



1.3 Relaxation Mechanisms 1 INTRODUCTION

that contribute to this relaxation include collisions and electromagnetic interactions
between molecules [2].

Let us next consider the decay of transverse magnetization Mxy after a π
2
-pulse,

which can be described by an exponential decay of the form

Mxy(t) = Mxy(0)exp

�
− t

T ∗
2

�
. (1.8)

It follows that T ∗
2 is defined as the time it takes for the transverse component of the

magnetization to decay to 1
e
≈ 37% of its value Mxy(0) just after disturbance from

equilibrium (excitation). This decay is called the free induction decay (FID). Trans-
verse relaxation occurs through fundamentally different processes than longitudinal
relaxation. T ∗

2 can be decomposed into different contributions:

1

T ∗
2

=
1

T2

+
1

T �
2

. (1.9)

Here, T2 describes contributions from spin-spin interactions that lead to dephas-
ing after the forced precession, while T �

2 describes effects from external field inho-
mogeneities, which also lead to a loss of phase coherence, as locally varying field
strengths lead to spatial variation of the Larmor frequency. T2 can be measured
independently of T ∗

2 by making use of a phenomenon termed spin-echo, which was
first described in 1950 [22]. After excitation, the transverse magnetization decays
over time due to statistical relaxation effects (T2) and local field inhomogeneities
as described above (T �

2). In the spin-echo approach a second pulse is applies, this
time however with a flip angle of π. This second pulse flips all spins along the
transversal axis and thus compensates for any phase changes from field inhomo-
geneities. This leads to a resurgence of transverse magnetization which is referred
to as a ”spin echo” (Fig. 9). Improvements to the method can be achieved if the

Figure 9: Occurrence of free induction decay after one π
2
pulse and a spin echo after a

second rephasing pulse that reverses dephasing due to magnetic field inhomogeneities
(adapted from [23]).

pulses are applied along perpendicular transverse axes, as this reduces the influence
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of diffusion effects on the measurements of T2 [24]. The so-avoided effects of local
B0 inhomogeneities mainly stem from field distortions near interfaces between tis-
sues of different magnetic susceptibilities and the presence of paramagnetic atoms
or molecules.

A similar technique to that of spin echoes described above is that of gradient
echoes, which were first reported on in 1960 [25]. These can be achieved by applying
a dephasing magnetic field gradient after an initial RF pulse, which is then reversed
so that the decoherence due to the applied inhomogeneous field is reversed, resulting
in an echo signal in a pickup coil (Fig. 10).

Figure 10: Emergence of a gradient echo after reversing a dephasing magnetic field
gradient (adapted from [26]).

By creating multiple echoes (spin or gradient) in a row, T2∗ can be measured
accurately as the later echo intensities get progressively smaller solely due to T2∗
relaxation effects (Fig. 11).

Figure 11: Measurement of T2∗ with a train of gradient echoes created through
application of dephasing (De) and rephasing (Re) gradients after excitation with an
RF pulse with a flip angle of α (adapted from [27]).
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In general, T1 and T2 of a given sample of matter are not the same, and T2 ≤ T1.
Importantly, T1 and T2 cannot be given for a single spin, but always refer to a
ensemble of many spins, as they are time constants of statistical processes. In
human biological tissues, typical values for T1 are between 0.3 and 2 seconds, while
typical T2 values are below 0.3 seconds [28].

1.4 Magnetic Resonance Imaging (MRI)

The concept of magnetic resonance imaging (MRI) was first described in 1973, and
already then the potential for imaging biological systems was recognized [29, 30].
Today, the technique is widely used in basic brain research and diagnostic medicine.
Because of the abundance of water in our bodies, the nucleus most widely used for
imaging purposes is that of the hydrogen atoms in water molecules. To produce an
image instead of a measurement of bulk magnetization, the signal from all hydrogen
nuclei in the body has to be collected in such a way as to be sensitive to position. The
most straightforward way of doing so is introducing a linear magnetic field gradient
to the external static field, so that the external field B spatially varies in strength
from one end of the MRI scanner to the other. Thereby, the Larmor frequency of the
nuclei of interest varies in that direction as well, so that nuclei inside specific slices
of the body in the scanner perpendicular to the field axis can be excited selectively.
This ensures that the signal acquired in the imaging process can only originate from
this slice. To achieve a second dimension of imaging, another magnetic field gradient
is applied during measurement of a specific slice perpendicular to the slice-encoding
gradient. This additional gradient is called the frequency encoding gradient and
alters the Larmor precession of nuclei depending on their position in the selected slice
along the direction of the gradient. Finally, to achieve three-dimensional localization,
a third gradient is applied perpendicular to the previous two during measurement.
This gradient is called phase-encoding and features an amplitude varying in time.
While the gradient is active, it affects the phase of the precessing nuclei within
the band delineated by slice and frequency encoding gradients. The phase shifts
acquired by the nuclei persist after the phase encoding gradient is deactivated, which
allows localization after the nuclei return to equilibrium, where they precess with
the Larmor frequency of the other two gradient fields, but locally varying phase
shifts (Fig. 12). Measuring the same frequency-encoded band of voxels for multiple
phase shifts allows the delineation of a three dimensional region of space, which is
commonly called a voxel. Typical MRI systems are able to achieve voxel sizes of
below 1 mm3. Additional cues for the localization of voxels can be extracted from
the signal strength, as receiver coils close to a given voxel receive a higher signal
intensity from that voxel than coils with a greater distance to the voxel [31].

MR images of a given slice are not recorded in three dimensional real space,
but instead in a space spanned by spatial frequencies, which is called k-space [33].
There exists no point-to-point mapping between the real space and k-space, as every
point in k-space contains information on all voxels in the real space. Transformation
of signals from one space to the other is possible via Fourier transformations. To
understand this relationship, consider the decomposition of a complex sound wave
into a spectrum of amplitudes at different frequencies via a Fourier transform. In
the same way, a complex image can be decomposed into a spectrum of planar wave
amplitudes at different spatial frequencies. Central parts of k-space correspond to
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Figure 12: Schematic representation of how overlapping frequency and phase en-
coding magnetic field gradients in a selected slice define three-dimensional voxels of
space that can be selectively measured (adapted from [32]). At step 0, the phase
encoding gradient is not active, and the resulting measured signal S0(t) is a linear
combination of the signals from voxels A and B. At step 1, the phase of voxel B was
shifted by 180◦ relative to voxel A by the phase encoding gradient, and the measured
signal S1(t) is the difference between the two individual signals. The combination
of measurements allows the calculation of individual voxel signals.

low spatial frequencies. These contain information about image contrast in the real
space. High spatial frequencies, on the other hand, correspond to edges and finer
features in the image and are associated with points in the periphery of k-space
(Fig. 13).

Figure 13: Central parts of k-space (a) encode general features like contrast in images
(b), while peripheral parts (c) encodes details but little contrast (d) (adapted from
[33]). Arrows represent Fourier transforms between k-space and real space and vice-
versa.

The order of when and how RF pulses, magnetic field gradients and readouts are
applied or performed is called an imaging sequence. In 1977, echo planar imaging
(EPI) was introduced [34] as a measurement sequence for achieving short acquisition
times. It is still in use today and works by first exciting a given slice and then
periodically switching the polarity of a strong frequency encoding gradient. Between
readouts, a weak phase encoding gradient is activated for a short time. The combined

13



1.4 Magnetic Resonance Imaging (MRI) 1 INTRODUCTION

effect of these modulations is the quick traversal of k-space, where the frequency
encoding repeatedly sweeps from one edge to the other and the phase encoding
”jumps” the readout up another line of the slice each time it is active, so that
the readout is performed in a rectangular motion (Fig. 14). Measurement of one
slice therefore requires only one RF pulse, as the signals measured are formed by
gradient echoes resulting from the traversal process. This enables acquisition times
of ≤100 ms per slice. Today, it is possible to excite multiple slices at the same time
with specially formed RF pulses which reduces the overall measurement time even
further. The slices so measured in parallel can be decomposed using the receiver
characteristics of different coil elements in phased array coils [35].

Figure 14: Rectangular motion through k-space in the echo planar imaging (EPI)
technique [36].

In chapter 1.3, we encountered T1 and T2 relaxation mechanisms that govern the
decay of forced precession and the return to thermal equilibrium after disturbance
by an RF pulse. We discussed T1 and T2 differ from one tissue to another and how
they can be measured. This has proven useful for producing images by making the
image contrast dependent on relaxation time, to enable differentiation of different
tissues and discover abnormal regions for diagnostic purposes (Fig. 15).

Figure 15: T1 and T2 weighted images of the same brain slice [37].
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1.5 BOLD Contrast

Functional magnetic resonance imaging (fMRI) has enabled researchers to investi-
gate the processes occurring in the brain when subjects are performing a given task,
such as grasping something. It has further allowed the identification of connections
between different areas within the brain from a functional point of view, instead of
a purely anatomical one.

Brain activity is accompanied by changes in cerebral blood flow (CBF) and cere-
bral blood volume (CBV). When a subject is presented with a stimulus, such as
a picture or a sound, the stimulus will be processed in certain areas of the brain.
At sites on the cortex where information about the stimulus is processed, neuronal
activity is evoked and arterial blood flow is increased. This relationship was investi-
gated by means of positron emission tomography (PET) in the 1980s, where it could
be shown that more arterial blood is supplied to an active region than needed, even
though the spatial resolution of the method was inherently limited [38–40].

To make the changes in CBF visible with MRI, the magnetic properties of blood
itself had to be leveraged. Recall that we encountered T2∗ in chapter 1.3 and saw it is
influenced by magnetic inhomogeneities. These inhomogeneities may arise from ex-
ternal fields, interfaces between tissues with different susceptibilities, or local atomic
or molecular magnetic fields. Paramagnetic molecules are a major source of the lat-
ter. One approach of visualizing CBF with MRI was to make use of a paramagnetic
MRI contrast agent that would dissolve in blood, thereby enabling the study of the
distribution and flow of blood via a series of EPI images [41–46]. In such measure-
ments, accumulation of the contrast agent in a tissue (through an increase in blood
flow) would enhance relaxation of nearby protons, thereby increasing relaxation-
weighted MRI signals. Another idea was using the intrinsic magnetic properties of
red blood cells. Already in 1936, the different magnetic properties of oxygenated
and deoxygenated hemoglobin were shown [47]: While the former is diamagnetic,
the latter is paramagnetic. Venous blood, which has a higher concentration of de-
oxygenated hemoglobin than arterial blood, therefore shortens T2∗ relaxation. As
we have just discussed, however, arterial blood flow to a region on the cortex in
response to its activation is increased by more than necessary to replenish the site
with oxygen, so that the concentration of oxygenated hemoglobin increases. Thus,
the signal in a T2∗ weighted image increases after neuronal activation. The first
evidence of this effects in NMR was published in 1982 [48]. Eight years later, it
was shown that these effects, which were named blood oxygenation level depen-
dent (BOLD) contrast, could be used to make the change of CBF following neural
activation directly visible [49]. A conclusive interpretation of the BOLD signal as
stemming from neuronal activation was achieved in 2001 [50]. BOLD contrast is to
this day the standard method of investigating task-related brain activity and func-
tional brain connectivity. Using EPI, sections of the brain can be repeatedly imaged
with a short repetition time (TR), making it possible to record a three-dimensional
”movie” of changes in CBF.

The increase in blood flow does not happen instantaneously, but instead follows
the so-called hemodynamic response function (HRF), which is characterised by a
maximum about five seconds after stimulation and a dip below baseline after the
signal decrease. This can be understood as an oversupply of nutrients to an active
region and a reduction of supply after the need of the region has been met. It can be
modelled in a number of ways, though the most common is the so-called canonical
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HRF given by a difference between two gamma distributions (Fig. 16):

HRFcanonical = g(x, p1, w1)− a · g(x, p2, w2), (1.10)

where pi refers to the peak position and wi to the width of the respective gamma
distribution

g(x, p, w) =
xp−1e−x/w

Γ(p) · wp
. (1.11)

Figure 16: Normalized canonical hemodynamic response function (HRF) that mod-
els the increase in bloodflow to an active brain region following a short stimulus.

Standard analysis of fMRI data always requires a model of the response evoked
by the task at hand. Usually, assumption of linear relationships between input
stimulus and neuronal activity and between neuronal activity and the measured
response is valid [51–53]. In such a model, the neuronal activity can be inferred via
deconvolution of the input stimulus and the output response. fMRI measurements
are not absolute, so instead the brain activity evoked by a task is compared to a
baseline measurement, so that the difference between the two states can be given in
percent signal change or arbitrary units.

1.6 Visual Processing in the Human Brain

The human visual cortex is located on the back of our brain, in the occipital lobe.
Visual input travels from the retina through the optic nerve and the lateral geniculate
nucleus (LGN) to the primary visual cortex (V1) (Fig. 17). This area is situated
in and around the calcarine sulcus, one of the deepest inward folds of the brain.
There, a direct mapping from visual space to neurons exists, in which the input
from the left hemifield is processed on the right hemisphere, and input from the
right hemifield is processed on the left hemisphere. Additionally, the neurons on the
cortex are organised in such a way that neighbouring neuronal populations respond
to neighbouring sections of the visual field. This property, called retinotopy, was
first uncovered in the late 1870s from experiments on dogs and monkeys [55]. It
was found that removal or injury of certain regions of the cerebral cortex of those
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Figure 17: The visual pathway in humans, shown from the retina to the visual cortex
[54]. Note the contralteral endpoints for left and right hemifields, respectively.

animals resulted in the loss of processing of visual input. By studying the effects
of incomplete removal of these areas, which we now know encompassed the visual
cortex, it was shown for the first time that a direct mapping from visual field to the
cortex exists [56] (Fig. 18). Further, evidence for cortical magnification was found
in the fact that more of the cortex area encoded for the central part of the visual
field than for similarly sized areas of the peripheral visual field [57].

The first evidence for retinotopic organisation of the visual cortex in humans
came from studies of brain lesions suffered by soldiers in the Boxer uprising of 1900
and the Russo-Japanese war of 1904-1905 [58], as well as from those fighting in
World War I [59, 60]. From these investigations, the first maps of the representation
of visual field on the human primary visual cortex were constructed (Fig. 19).

Further understanding of the visual system was gained from animal studies con-
ducted on primates, most notably macaques. In these studies, responses could be
measured at the single neuron level via implanted electrodes, enabling the delin-
eation of receptive fields in visual space to which single neurons respond to. The
receptive field of a neuron is defined as a region in visual space in which a visual
stimulus evokes a response in that neuron.

The applicability of fMRI to investigating the cortical representation of visual
space was first demonstrated with so-called travelling wave experiments [61, 62].
In these, participants viewed a periodic stimulus of expanding concentric rings on a
screen and brain activity in the visual cortex was continuously recorded. The results
showed a periodic wave of neural activity, corresponding to the periodic activation
pattern with a constant phase-shift in time (Fig. 20). Over the years since, fMRI
became a state-of-the-art method for mapping the neuronal organization of the
visual cortex.
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Figure 18: Retinotopic maps of a dog created by Munk in the late 1870s [56]. The
maps show the reorganization of the optic nerves at the optic chiasm (Ch) and
the contralateral endpoints for input from the left an right hemifields, respectively.
Additionally, the retinotopic organization of visual space on the visual cortex is
shown.

Figure 19: One of the first retinotopic maps in humans, created by Holmes in 1944
from lesion studies of soldiers [60]. The retinotopic organization of the visual cortex
is shown both in eccentricity and polar angle for the right visual hemifield.
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Figure 20: Periodic stimulus (a) evokes observed wave of neural activity (b) [63].

When combining such travelling wave experiments with a second set of measure-
ments obtained with a rotating wedge stimulus, the measured responses could be
analysed to extract those stimulus positions in the visual field that produced the
greatest signal per voxel [64, 65]. However, as each voxel contains a multitude of
neurons that each have their own receptive field, the position in visual space that
elicits the greatest overall signal for a voxel does not describe the extent of the cor-
tical representation of visual space fully. To take this into account, a population
receptive field (pRF) must be introduced that corresponds to the extended area of
visual space that a population of neurons in the visual cortex encodes [66].

1.7 Population Receptive Field (pRF) Mapping

In 2008, pRF mapping was introduced as a method for estimating the retinotopic
organization in the visual cortex and has since become the standard approach for
investigating this property [65].

The standard assumption for the shape of a pRF is a two dimensional Gaussian
with two parameters for center position (x, y) and one for its width (σ), or equiv-
alently two parameters for eccentricity (ecc) and polar angle (ϕ) and one for width
(σ). The standard method of pRF mapping works by assuming a general linear
model (GLM) to describe the fMRI measurement signal of a voxel as a sum of a
predictable response to a stimulus and measurement noise. The original mapping
procedure consists of a two-step fitting process, where at first a rough grid search
is performed for every second voxel, in which its timecourse is compared to a large
host of computer-generated timecourses. In the second step, a finer fit is performed
by applying an optimization algorithm to voxels where more than some threshold
(usually 10-15 %) of variance could be explained in the first step, with the previously
found rough parameter estimates as starting points. In these fitting procedures, the
residual sum of squares (RSS) between prediction and measured fMRI timecourse is
minimized. Since its first publication, the method has been extended in numerous
ways, either to include more complex pRF shapes or other fitting procedures [67–69].

In pRF mapping experiments, subjects are instructed to fixate a point on a
projector screen in the middle of their visual field. To track attention levels, the
point changes colour periodically and subjects are instructed to push a button each
time they recognize the colour changed. While subjects are fixating their gaze, high-
contrast flickering stimuli move across the screen. The stimuli can be any shape,
though the two forms most often used are (a) a combination of a rotating wedge
and an expanding ring and (b) sweeping bars that move from side to side with some
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rotation applied to their direction after each pass (Fig. 21).

Figure 21: Typical stimuli used in pRF mapping experiments [70].

In the original design, the bar stimulus is tilted by 45◦ after each pass of the
visual field and its direction reversed: First it sweeps from left to right (L-R), then
from down right to up left (DL-UR), followed by a sweep from up to down (U-D),
and so on (Fig. 22). After each diagonal sweep, a blank period is inserted. After
eight sweeps and a final blank period, a full run is complete. Thus, each quadrant
of the visual field is stimulated eight times in this design. The blank periods help in
the analysis, as they reduce overlap of two consecutive stimulations. The location
and shape of pRFs can then be inferred from the acquired fMRI timecourses by
knowledge of the stimulation paradigm, i.e. the temporal and spatial order of the
stimulation events.

Figure 22: Sweeping bar stimulus used in pRF mapping experiments (adapted from
[70]).

An important criticism of traditional pRF mapping is the fact that the two-step
fitting procedure may miss local RSS minima for voxels by first discarding every
second timecourse. Further, in measuring the goodness-of-fit as the RSS between
prediction and measurement, a bias towards fitting noise rather than signal may
be introduced in measurements with low contrast-to-noise ratios (CNRs), as the
method is highly sensitive to outliers in the data (Fig. 23).

In 2019, DeepRF was proposed as a new technique for pRF mapping without the
limitations of the original method, based on a deep learning procedure that greatly
improves the speed of pRF mapping [1]. DeepRF is the focus of this thesis and is
described in more detail in chapter 2.2.
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Figure 23: Simulated timecourses for the same voxel with different noise levels. Note
the peaks introduced by the higher noise that may be fitted as signal.

1.8 Neural Networks and Deep Learning

Today, machine learning, neural networks, deep learning and artificial intelligence
are widely known and recognized terms. This chapter aims to call the most im-
portant aspects of these interconnected topics into mind, so as to enable readers a
comprehensive understanding of the methods used in this thesis.

Machine learning (ML) describes any procedure in which a computer program
is trained to perform a given task on some unseen data. Such a task may be as
conceptually simple as distinguishing pictures of cats from pictures of houses or as
complex as safely steering a car through traffic. If a program is able to successfully
perform the task on new datasets it was not trained upon, it is said to be able
to generalize. It is useful to think of the output of such a program in terms of a
model with free parameters that need to be fitted to a given task via a training
procedure. Commonly, data in ML is described in terms of features and labels:
when we see a cat, we assign it the label ”cat” based on a collection of features - a
certain size, certain facial features, the presence of a tail, specific sounds it produces,
and so on. Correct categorization is typically the goal of ML. The fitting process
for a ML model can be formulated as the minimization of an objective function,
often called the loss function. This point of view - with models, data and loss -
naturally leads to the notions of underfitted and overfitted models: An underfitted
model may not have enough free parameters to accurately capture the details of all
necessary features to make good predictions for labels, or it may instead not have
had enough datapoints in training. Conversely, an overfitted model may have too
many free parameters, so that it eagerly learns all features of the training data, but
cannot generalize to other data with different features. The aim of training a model
is to strike a balance between these two extremes. Strategies that are employed to
prevent over- and underfitting are generally known as regularization techniques.

For training a model, there are a number of training paradigms to choose from,
and none is optimal for every end. They can broadly be categorized into supervised
and unsupervised learning strategies. In supervised learning, the data used for
training has known labels which the model should learn to predict based on the
features of the datapoints. In unsupervised learning, no labels are supplied to the
model, so instead the model must learn to find some underlying structure in the
features to sort the data. Even though there exist a multitude of other strategies in
ML, these two represent the most widely used and important ones for classification
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tasks.
All models used in this thesis are trained with supervised learning, and make use

of so-called training and validation datasets in training: Models learn relationships
between features and labels from training data, and are subsequently tested on
unseen validation data. This procedure is repeated until the predictive error on the
validation data converges. The performance on training and validation data over
time can be used as a way to monitor overfitting: If the predictive error on the
training set decreases, but increases on the validation set, overfitting has occurred.
A technique to prevent this is called early stopping, which halts the training process
if a given condition is met, for example if the validation error starts rising. A
complete step of training and validation stages is called a training epoch.

Artificial neural networks (ANNs) are a type of model used in ML applications.
They are constructed from layers of artificial neurons that are interconnected. If
connections are only present in forward direction, i.e. from layers closer to the input
to layers closer to the output, we speak of a feedforward network. Layers that are
not directly connected to either the input or the output of the model are called
hidden layers. The architecture of ANNs has been heavily inspired by the neuronal
organization of the brain, and there exist many similarities between them.

At its most basic implementation, an artificial neuron performs a weighted sum-
mation of inputs and applies a nonlinear function to the result (Fig. 24). In bio-

Figure 24: Artificial neuron that applies a nonlinear function to a weighted sum of
inputs.

logical neurons, dendrites conduct electrical signals to cell nuclei, from where action
potentials may be activated to send a signal via an axon to a synapse, where the
signal can be transmitted to further neurons (Fig. 25). In artificial neurons, the
dendrites can be identified with the weighted connections. In terms of the ML
model from before, the weights applied to inputs by individual artificial neurons are
the free parameters to be adjusted in training. The activation function of artificial
neurons is the nonlinearity, and its output is forwarded to any other neuron it is
connected to, just as in the brain. Artificial and biological neurons may also include
a negative bias or activation threshold that must be overcome for a neuron to ”fire”,
i.e. to send an output signal. It was shown in 1989 that feedforward ANNs with
a nonlinear activation function and as few as a single hidden layer (Fig. 26) act
as universal approximators for piecewise linear functions [71, 72]. How well a given
function can be approximated depends on the number of artificial neurons.
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Figure 25: Schematic representation of a biological neuron in the brain.

Figure 26: Artificial neural network (ANN) constructed from layers of artificial
neurons (ANs), with one input layer, a single hidden layer, and one output layer.

Convolutional neural networks (CNNs) are a class of ANNs that have tradition-
ally found application in image recognition tasks. Their most important feature is
the presence of convolutional layers, where multi-dimensional inputs are convolved
with a filter kernel that moves over the input (Fig. 27). For regions on the edge of
an image, where the filter would not have enough values for the convolution process,
values are inserted in a procedure known as padding (Fig. 28). From the plethora of
padding options, the most commonly used are repeating the outermost values of the
array or introducing constant values along the edges. Since the filter moves over
the whole input, neighbouring artificial neurons in the next layer receive input from
neighbouring sections of the input, akin to the property of retinotopy in the visual
cortex (chapter 1.6). The inputs of neighbouring neurons overlap because of the de-
sign of the filter, which enables the recognition of connected features. The overlap
is determined by the filter width and the stride length employed for traversing the
input. In this way, the convolution kernel acts akin to a population receptive field
when the input is two-dimensional (chapter 1.7). The second core feature of CNNs
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Figure 27: Schematic representation of a layer with a convolutional kernel filter in
a convolutional neural network (CNN) (adapted from [73]).

Figure 28: Schematic representation of padding before convolution in a CNN
(adapted from [73]). Padding can be used to increase the image size (a) or to
keep it the same (b) after convolution with a filter kernel.

is the existence of pooling layers, which reduce the input size. In this way, redun-
dancy in the input is reduced and the model is made more resilient to variations in
the input. The most commonly used pooling strategies are max pooling, where the
maximum value of a subsection of the output of the previous layer is projected onto
a smaller area of the next layer, and average pooling, where instead the average of
the subsection is used (Fig 29).

In CNNs, the filter kernels themselves are optimized in training. Therefore, the
layer weights and the values of the individual convolutional filter kernels are the
model parameters on which the loss function depends.

Up until relatively recently, the training of deep CNNs (DCNNs), where the
number of hidden layers is greater than about ten, has been notoriously difficult
[74]. In such network architectures, a number of non-trivial problems may arise,
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Figure 29: Schematic representation of pooling operations in a convolutional neural
network (CNN).

the most pressing of which are connected with the calculation of gradients in train-
ing. Gradient-based approaches in training are commonly used as they allow the
incremental adjustment of parameters: Every parameter is adjusted by an amount
proportional to the derivative of the loss function with respect to that parameter.
The proportionality is called the learning rate of a training procedure, which is one
of several so-called hyperparameters in training.

The process of adjusting parameters in ANNs is most commonly done via back-
propagation of error, which is equivalent to the chain rule of derivation: The output
of later layers depends on the output of earlier layers. Therefore, the partial deriva-
tive of the loss function with regards to the output of any layer depends on how later
layers affect the output. In backpropagation, the partial derivatives of the loss func-
tion with regards to individual parameters are thus calculated from the latest layer
backwards to avoid calculating single derivatives multiple times. Due to the process
of multiplying derivatives, early layer weights may receive smaller and smaller up-
dates for classical sigmoid activation functions like tanh(x), where the gradient is
in the interval of [−1, 1]. If the resulting gradients get too small, learning halts and
no meaningful progress can be made. This is referred to as the vanishing gradient
problem. If some parameters are too large instead, their updates may exponentially
increase, leading to the so-called exploding gradient problem. Today, both of these
problems can be largely avoided by using other activation functions like the recti-
fied linear unit (ReLU), defined as f(x) = max(0, x) (Fig. 30), normalized weight
initialization schemes and batch normalization of input data [75–78]. DCNNs with
these improvements have shown to reach or even surpass human level performance
on some image recognition tasks [79].

As these problems were tackled, another problem emerged: Through various
experiments, it became clear that adding more and more layers led to saturation
effects in model accuracy, with worse performance of deeper models than shallower
ones [80]. This behaviour, known as the degradation problem, is not obvious from
a theoretical standpoint, as additional layers could in principle just act as identitiy
mappings if the model already found a local minimum of the loss function with fewer
layers. This, however, is not observed.

One of the first successful approaches to solving the degradation problem was the
introduction of residual neural networks (ResNets) in 2016, which feature feedfor-
ward identity mapping connections between individual layers (Fig. 31) [81]. There-
fore, only a residual mapping must be fitted in training these models, and vanishing
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Figure 30: Different nonlinear activation funtions.

Figure 31: Schematic representation of a block of layers in a residual neural network
(ResNet) with identity skip connection [81]. The output of such a building block is
given by the sum of the functions applied by the layers and the input to the layers
itself.

layer weights do not lead to a degradation of performance, as flow of information
is not unrestricted through the inherent identity skip connections. Theoretical in-
vestigations into this architecture revealed them to behave more like ensembles of
shallow networks than a single deep network, so that only relatively short paths con-
tribute to the model performance, and removal of single layers after training does
not impact the results strongly [82].
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2 Materials and Methods

2.1 mrVista

The Matlab toolbox mrVista (https://github.com/vistalab/vistasoft) is developed
and maintained by the Vista (vision, image science and technology applications)
lab at Stanford University, California, USA. It includes functionalities for analyzing
anatomical as well as functional MRI data. The toolbox is the de-facto gold standard
in the field of pRF mapping, and thus was used as a reference pRF analysis tool for
this thesis. All datasets were analyzed with the prfanalyze-vista docker container of
the pRF validation framework [83], version 2.3.1 with default settings. This means
that a coarse to fine fit was performed by mrVista as described in section 1.7. As
a search radius, mrVista considers pRF center locations within twice the stimulus
extent.

The fitting process employed by mrVista is the multi-stage minimization of the
RSS between a timecourse and the model prediction to extract optimal pRF pa-
rameters described in chapter 1.7. This standard pRF mapping approach is notably
only valid for symmetric noise sources, such as gaussian or white noise, and outliers
in the data such as those due to subject motion might greatly influence results based
on least squares optimization.

2.2 DeepRF and SnapRF

DeepRF is a deep learning framework originally proposed in 2019 [1]. Its goal is to
enable faster and possibly more accurate pRF mapping compared to standard anal-
ysis software. To that end, a deep neural network is trained on artificially generated
fMRI data with known ground truth. In keeping the terminology from chapter 1.8,
the true pRF parameters of the synthetic data can be identified as the labels the
network should learn to predict from the features of fMRI timecourses. As input,
noisy artificial fMRI data generated with the stimulus used in the pRF mapping
experiments of interest is given to the network. While the training procedure may
take up to several hours on a graphical processing unit (GPU), the application of a
trained model on a set of empirically gathered fMRI data containing several thou-
sand voxels can be achieved within seconds. Importantly, only one network needs
to be trained per stimulus.

The original authors of the method tested it on a single empirical dataset as
well as on simulated data and compared the pRF mapping results from DeepRF
with those of popeye, a python implementation of the standard approach. However,
the simulated data in these investigations was generated in the exact same way as
the artificial data with which DeepRF was trained, thereby introducing a significant
bias towards DeepRF that was not corrected for. In addition, the simulated data
used for training and performance evaluation was not realistic in the sense that it
featured unrealistically low noise levels and non-physiologically large pRF sizes. For
the empirical dataset, the popeye results were taken as reference, and reproducibility
of results on empirical data was not examined. Further, only one stimulus was used
for all experiments, so that the influence of stimulus design on DeepRF performance
was not investigated.

In this thesis, the entire DeepRF pipeline was rebuilt in order to enable fair
comparisons of the method with a reference method and to investigate its merits
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on multiple datasets. This process also helped in gaining a deeper understanding of
the approach and to introduce minor bugfixes and include various extensions and
improvements to the method. To distinguish the reimplementation from the original
DeepRF, the new version of the method written for this thesis shall be called SnapRF
in all following descriptions in reference to the high speed afforded by the approach.

In SnapRF, the training and testing procedures were made entirely BIDS (Brain
Imaging Data Structure) compliant. Further, a comprehensive logging procedure
was introduced to document every step and output in the extensive model pipeline
for documentation and debugging purposes. For training and testing the model, new
call procedures were implemented in the form of json (Javascript object notation)
scripts where all relevant parameters can be easily and flexibly set. For the network
architecture, a 50 layer ResNet was used, as the original authors found such an
architecture to perform best in comparison with others. CNNs are mostly used in
image recognition tasks, and therefore the convolutional and pooling layers, as well as
the kernel filters, are two-dimensional. Since fMRI timecourses are one-dimensional,
the ResNet used in DeepRF and SnapRF employs one-dimensional convolutions and
pooling operations. These can be thought of as smoothing operations or extractions
of relevant features from the timecourses, such as peaks and their relative positions.
For adaptive adjustments of learning rates during training, the popular Adam [84]
optimization algorithm was used, as in the original implementation. In training,
early stopping was introduced as a regularization technique and to reduce excessive
GPU usage. Control over whether to make use of the technique was given to users
in the json call script.

For training DeepRF and SnapRF models, artificial fMRI data must be generated
with known ground truth. Models for the pRF shape, the HRF, and the noise sources
present during measurement are necessary in order to calculate fMRI responses to
a visual stimulus. In DeepRF, the pRF shape is modelled as a two-dimensional
Gaussian, in the same way as in the original pRF mapping approach. This shape
was also chosen for SnapRF.

The original DeepRF can only generate pRF center position within the extent
of the input stimulus. In SnapRF, the model was modified to allow the generation
of pRF center positions outside of that area. This was done in order to enable fair
comparisons with the standard pRF mapping analysis software mrVista, which has
a search radius of twice the stimulus radius. Control over the maximum eccentricity
allowed for center locations was given to users in the json call script.

All pRF parameters for the signal in SnapRF were drawn from uniform distri-
butions. The values for x and y could range from anywhere in the specified area
within and around the stimulus. Combinations where the resulting center would lie
outside of the stimulus were rejected and redrawn. The pRF size parameter could
take on values from the smallest value possible within the stimulus resolution to a
given maximum value.

In the original DeepRF, the upper limit for pRF sizes is given by the stimulus
radius. Not only would a voxel with such a large pRF size receive input from almost
anywhere in the area of visual field covered by the stimulus, thereby making it
difficult to fit, but such a voxel would also be non-physiological: Mean pRF sizes
in V1 have been shown to follow a linear relationship with eccentricity in various
datasets [65, 85]. These findings suggest an upper limit of mean sizes below 6◦ when
extrapolated for the eccentricities considered in this study. Therefore, pRF sizes
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were restricted to a maximum of 6◦ in SnapRF, independently of the stimulus, as
this size should be adequate to model even the largest pRF sizes found in V1.

The hemodynamic response of a voxel to optical stimulation is modelled by
convolution between an HRF and the result of a multiplication between the Gaussian
pRF and the stimulus for every generated voxel. Before this operation, the stimulus
is downsampled in SnapRF to a resolution of 101×101 pixels to reduce the necessary
computing power. While a classical pRF is described by three parameters, DeepRF
and SnapRF allow for a fourth: An HRF delay. In training, delay values in seconds
within a given symmetrical range around zero would be randomly generated from a
uniform distribution and added to the modelled HRFs. This adds another parameter
in optimization.

In addition to the HRF used in the original program, another HRF used by
mrVista was implemented in this thesis to extend the capabilities of the method
(Fig. 32).

Figure 32: Comparison of HRFs used by DeepRF and mrVista to model stimulation
at T ime = 0. Both HRFs have been used for this thesis.

For adding noise to the signal, the CNR parameter is used to set the level of
noise. In SnapRF, this parameter is sampled from a uniform distribution, while
DeepRF samples from an exponential distribution of values.

DeepRF uses noise models from the neuRosim toolbox [86], which was developed
to facilitate comparability between fMRI simulation studies in an effort to estab-
lish a standard approach for the field. The toolbox includes various functions for
generating noise one might encounter in fMRI measurement data.

In the original DeepRF, noise is modelled as follows:

❼ System noise is modelled by white noise with a Gaussian distribution

❼ Physiological noise, such as the one induced by respiratory and cardiac activity,
is implemented as a sum of two cosine waves of constant frequencies 0.2 Hz
and 1.17 Hz

❼ Task-dependent noise is modelled as additional white noise during times when
the stimulus is within a simulated voxel’s pRF
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❼ To account for signal drift over time due to low-frequency fluctuations in the
scanner, a sum of cosine functions with frequencies in the range between the
repetition frequency (TR) of the measurement and 128 seconds is used (the
latter being inherited from the SPM toolbox, where 128 seconds is the default
high-pass filter cutoff)

❼ To model temporal correlation between different points in time, an autoregres-
sive process of first order is implemented

In SnapRF, the physiological noise described above was diversified to capture a
more realistic distribution of cardiac and respiratory processes. To that end, fre-
quencies for heart and breathing rate are drawn from uniform distributions between
the intervals of [1.0, 2.0) Hz and [0.25, 0.4) Hz, respectively, for every simulated
voxel. These values are chosen to represent average resting heart and breathing
rates. Additionally, randomisation was introduced in the phases of the modelled
cosine waves. All other noise functions were left as they were, except for minor
bugfixes in the low-frequency noise component.

In addition to these changes to the neuRosim noise models, a completely new
noise model was developed in this thesis for use in data generation to enable fair
comparisons between SnapRF and mrVista. This new model is based on a principal
component analysis (PCA) of resting-state (RS) fMRI data, and thus called the RS
noise model. RS fMRI is a field of neuroscience concerned with investigating the
processes happening in the brain during rest. By focussing on a small seed region and
examining correlations between activations there and in other regions, the technique
can be used to study connectivity in the brain. We assume that RS data can be
treated as noise for the purpose of training SnapRF models, as RS data heavily
features the noise components present in the brain during scanning and notably no
task-evoked activations. The RS noise model used a normal distribution of weights
for the combination of RS principal components (PCs), and white noise added on
top. The parameters of the normal distribution of weights are taken from the PCA as
well. Since the noise components and their relative contributions to the overall noise
present in fMRI measurements are dependent on scanner, field strength, repetition
time (TR), measurement sequence and site, the RS data was gathered from different
studies using different scanners, sequences and field strengths, conducted in different
MRI centers, so as to average out any effects specific to certain studies.

Table 2 at the end of this chapter gives an overview of the RS datasets used for
the RS noise model.

Training performance of DeepRF and SnapRF models is evaluated based on the
mean squared error (MSE) between predicted and true pRF parameters during
validation phases in training. In terms of the generic model introduced in chapter
1.8, the MSE can be interpreted as the loss to be minimized in training. As such,
in all following descriptions the model training performance is given in terms of the
MSE validation loss.

For every empirical dataset used in the thesis, eight different SnapRF models
were trained. This was done to investigate the influence of training parameters
on model testing performance. The parameter combinations used in training per
dataset can be seen in Table 1. To distinguish the models from one another, they
are given names based on the training parameters. As names, a combination of
three letters is used to identify the models: The first letter indicates the noise type
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(’N’ for neuRosim, ’R’ for RS noise), the second the HRF (’D’ for DeepRF, ’V’ for
mrVista), and the third whether an HRF delay was trained (’y’ for delay, ’n’ for zero
delay).

Table 1: SnapRF models trained per dataset.

Model Noise Type HRF Delay Range [s]

NDn neuRosim DeepRF 0
NVn neuRosim mrVista 0
RDn RS noise DeepRF 0
RVn RS noise mrVista 0
NDy neuRosim DeepRF [−2, 2]
NVy neuRosim mrVista [−2, 2]
RDy RS noise DeepRF [−2, 2]
RVy RS noise mrVista [−2, 2]

DeepRF and SnapRF use z-score normalization for the generated artificial data
in training, so that a baseline signal without stimulation is zero. Therefore, em-
pirically gathered data with non-zero baseline values need to be normalized in the
same way before application of DeepRF. This functionality is included in the newly
implemented testing procedure, so that no manual normalization of input data is
necessary before application of SnapRF.

The following table details the RS datasets used for the RS noise model. In
the column titles, ”subs” refers to the number of subjects, ”runs” to the number
of measurements gathered per subject, ”voxels” to the number of voxels acquired,
”volumes” to the length of each acquisition, ”TR” to the repetition time of measure-
ment between two consecutive scans of the same voxel, ”TE” to the time between
initial excitation and measured echo signal, ”FA” to the flip angle of magnetization,
”B” to the external static field strength, ”R” to the isotropic resolution, ”Scanner”
to the scanner used for acquisition, ”Center” to the institution where the scans were
performed, and ”Sequence” to the measurement sequence used. All datasets were
gathered from openneuro.org.

Table 2: Openneuro datasets used for RS noise models.

Dataset subs runs voxels volumes TR [s] TE [ms] FA B [T]

ds001168 1 4 143360 300 4.0 26.0 70 7
ds001168 21 84 1146880 300 3.0 17.0 70 7
ds001454 24 48 147456 195 2.0 30.0 71 3
ds001566 1 1 778752 430 1.55 N/A N/A N/A
ds001728 1 1 102400 277 1.5 25.0 70 3
ds002156 1 16 131072 196 2.5 15.1-55.9 80 3
ds002766 1 47 147456 818 2.2 27.0 90 3
ds002766 3 153 453600 1636 1.1 33.0 84 3
ds004787 5 128 405000 240 2.5 12.9-70.9 77 3
ds004787 1 3 819200 300 2.5 30.0 77 3
ds004787 4 17 1228800 300 2.5 30.0 77 3
ds005069 1 1 159744 225 2.0 30.0 90 3
ds005072 1 1 159744 225 2.0 30.0 90 3
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Table 2: Openneuro datasets used for RS noise models (Continuation).

Dataset R [mm] Scanner Center Sequence

ds001168 0.75 Siemens Magnetom MPG, Leibniz EPI31 2D
ds001168 1.5 Siemens Magnetom MPG, Leibniz 2D
ds001454 3.0 Siemens Skyra Princeton GE EPI
ds001566 N/A N/A N/A N/A
ds001728 N/A Siemens TrioTim Penn State SLEIC EP-SK
ds002156 N/A GE Discovery MR750 NIH FMRIF EP-RM
ds002766 4.0 Siemens TrioTim Washington University EP-SK
ds002766 N/A Siemens PrismaFit Washington University EP-SK
ds004787 N/A GE Discovery MR750 NIH FMRIF EP-RM
ds004787 N/A GE Discovery MR750 NIH FMRIF EP-RM
ds004787 N/A GE Discovery MR750 NIH FMRIF EP-RM
ds005069 N/A GE Discovery MR750 UESTC EP-GR-SS
ds005072 N/A GE Discovery MR750 UESTC EP-GR-SS

2.3 Simulated Data

For comparisons between SnapRF and mrVista with known ground truth, a dataset
was created with artificially generated data. The data was generated using the
fMRI timecourse models and parameter distributions described in chapter 2.2. As
SnapRF is trained with data created in the same fashion, this introduces an inherent
bias in comparisons. To reduce this asymmetry, the dataset was created with the
RS noise model described earlier, and only SnapRF models trained with neuRosim
noise models were tested on the data. Therefore, the SnapRF models applied on the
artificially generated data had no prior knowledge of the noise structure in the data.

The stimulus used for data creation and model training will be described in
chapter 2.4. For data generation, center locations with eccentricities up to twice the
stimulus radius were allowed, the mrVista HRF was used and the HRF delay was
set to zero for all voxels. In total, 10,000 voxels were generated.

2.4 Stimsim24 Dataset

The Stimsim24 dataset was acquired at the Center of Excellence for High-field MRI
at the Medical University Vienna by David Linhardt and Luna Müller-Hartburg. It
features anatomical and functional data from two healthy subjects (25f, 23m), with
30 pRF mapping runs over five sessions each. For this study, only functional data
from the primary visual cortex (V1) was used. The data was acquired on a 3 T
Siemens PrismaFit MRI scanner (Siemens Healthineers, Erlangen, Germany) with
the lower part of a 64 channel head coil and the CMRR multiband EPI sequence
(Center for Magnetic Resonance Research, Department of Radiology, University of
Minnesota, USA). The sequence parameters were TE = 38 ms, TR = 1 s, voxel size
= 1.5 mm isotropic, 30 slices parallel to the calcarine sulcus, 10 percent slice spacing,
multiband factor = 3, flip angle = 55◦, 240 volumes per run. The stimulus used for
the pRF mapping experiments had a width of 1.6◦ and occupied the central 18◦ of
visual field. It jumped by 0.8◦ after each TR. The temporal pattern of stimulation is
a modification of the original sweeping bar design described in chapter 1.7. Instead
of a 45◦ rotation after each sweep, the sweeping axis is rotated 135◦, so that it sweeps
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first from left to right (L-R), then from down left to up right (DL-UR), followed by
a sweep from down to up (D-U), then from down right to up left (DR-UL), and so
on (Fig. 33). As in the original configuration, blank periods are inserted after each
diagonal sweep. In this design, the time between two consecutive stimulations of
any quadrant is increased, so that the responses will show less overlap than in the
original design. After eight sweeps and a last blank period, a single run is complete.

Figure 33: Sweeping bar stimulus used in the Stimsim24 dataset (adapted from [70]).

For denoising, NORDIC [87] (noise reduction with distribution corrected PCA)
was applied to the functional data. The following paragraph was generated by
fMRIPrep and details the preprocessing steps taken after denoising.

Anatomical and functional data was preprocessed using fMRIPrep 23.1.4 [88,
89], which is based on Nipype 1.8.6 [90, 91]. A total of 12 fieldmaps were found
available per subject. A B0-nonuniformity map (or fieldmap) was estimated based
on two (or more) echo-planar imaging (EPI) references with topup [92]. A total of
12 T1-weighted (T1w) images were found per subject. Anatomical preprocessing was
reused from previously existing derivative objects. For each of the 72 BOLD runs
found per subject (across all tasks and sessions), the following preprocessing was per-
formed: First, a reference volume and its skull-stripped version were generated by
aligning and averaging 3 single-band references (SBRefs). Head-motion parameters
with respect to the BOLD reference (transformation matrices, and six correspond-
ing rotation and translation parameters) are estimated before any spatiotemporal
filtering using mcflirt [93]. The estimated fieldmap was then aligned with rigid-
registration to the target EPI reference run. The field coefficients were mapped
on to the reference EPI using the transform. BOLD runs were slice-time corrected
to 0.441s (0.5 of slice acquisition range 0s-0.882s) using 3dTshift from AFNI [94].
The BOLD reference was then co-registered to the T1w reference using bbregister
(FreeSurfer) which implements boundary-based registration [95]. Co-registration
was configured with six degrees of freedom. First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep. Several
confounding time-series were calculated based on the preprocessed BOLD : framewise
displacement (FD), DVARS and three region-wise global signals. FD was computed
using two formulations following Power (absolute sum of relative motions, [96]) and
Jenkinson (relative root mean square displacement between affines, [93]). FD and
DVARS are calculated for each functional run, both using their implementations in
Nipype [96]. The three global signals are extracted within the CSF, the WM, and the
whole-brain masks. Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction (CompCor) [97]. Principal components
are estimated after high-pass filtering the preprocessed BOLD time-series (using a
discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal
(tCompCor) and anatomical (aCompCor). tCompCor components are then cal-
culated from the top 2% variable voxels within the brain mask. For aCompCor,
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three probabilistic masks (CSF, WM and combined CSF+WM) are generated in
anatomical space. The implementation differs from that of Behzadi et al. in that
instead of eroding the masks by 2 pixels on BOLD space, a mask of pixels that
likely contain a volume fraction of GM is subtracted from the aCompCor masks.
This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg
segmentation, and it ensures components are not extracted from voxels containing
a minimal fraction of GM. Finally, these masks are resampled into BOLD space and
binarized by thresholding at 0.99 (as in the original implementation). Components
are also calculated separately within the WM and CSF masks. For each Comp-
Cor decomposition, the k components with the largest singular values are retained,
such that the retained components’ time series are sufficient to explain 50 percent
of variance across the nuisance mask (CSF, WM, combined, or temporal). The re-
maining components are dropped from consideration. The head-motion estimates
calculated in the correction step were also placed within the corresponding confounds
file. The confound time series derived from head motion estimates and global sig-
nals were expanded with the inclusion of temporal derivatives and quadratic terms
for each [98]. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standard-
ized DVARS were annotated as motion outliers. Additional nuisance timeseries are
calculated by means of principal components analysis of the signal found within
a thin band (crown) of voxels around the edge of the brain, as proposed by [99].
The BOLD time-series were resampled into standard space, generating a prepro-
cessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and
its skull-stripped version were generated using a custom methodology of fMRIPrep.
The BOLD time-series were resampled onto the following surfaces (FreeSurfer re-
construction nomenclature): fsnative, fsaverage. All resamplings can be performed
with a single interpolation step by composing all the pertinent transformations (i.e.
head-motion transform matrices, susceptibility distortion correction when available,
and co-registrations to anatomical and output spaces). Gridded (volumetric) resam-
plings were performed using antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other kernels [100]. Non-gridded
(surface) resamplings were performed using mri vol2surf (FreeSurfer).

2.5 NYU Retinotopy Dataset

The NYU retinotopy dataset was acquired at the Center for Brain Imaging of the
New York University [85]. It contains anatomical and functional data of 44 healthy
subjects and was acquired on a 3 T Siemens Prisma scanner (Siemens Medical Solu-
tions, Erlangen, Germany) with a Siemens 64 channel head coil. For this study, only
functional data from the primary visual cortex (V1) was used. For each subject, be-
tween four and 12 pRF mapping runs were acquired using a multiband EPI sequence
with TE = 37 ms, TR = 1 s, voxel size = 2 mm3, flip angle = 68◦, 192 volumes per
run. The sweeping bar stimulus of 3.1◦ width occupied the central 24.8◦ of visual
field and is similar to the original design used in [65], except for the diagonal sweeps,
which only sweep over half of the screen (Fig. 34). After every TR, the bar jumped
1.033◦. Therefore, every quadrant of visual field receives six stimulations in this de-
sign, as opposed to eight in the original. Additionally, the background revealed by
the bar aperture did not consist of a high contrast checkerboard pattern, but instead
of an assortment of natural images (e.g. faces, plants, animals) at multiple scales on
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Figure 34: Sweeping bar stimulus used in the NYU retinotopy dataset (adapted from
[70]).

top of a pink noise background (Fig. 35). The images were changed three times per
second. This background was chosen for comparability with the HCP retinotopy
dataset, which uses the same images and noise background as such textures were
produce high signal-to-noise ratios (SNRs) in higher visual areas [101].

Figure 35: Background consisting of natural images over pink noise revealed by the
stimulus aperture in the NYU retinotopy dataset.

The following paragraph was generated by fMRIPrep and details the preprocess-
ing steps taken by the original authors.

Anatomical and functional data was preprocessed using fMRIPrep 20.0.1 [88,
89], which is based on Nipype 1.4.2 [90, 91]. T1-weighted (T1w) anatomical im-
ages were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection
[102], distributed with ANTs 2.2.0 [103], and used as T1w-reference throughout the
workflow. The T1w-reference was then skull-stripped with a Nipype implementa-
tion of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs
as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w
using fast [104]. Brain surfaces were reconstructed using recon-all [105], and the
brain mask estimated previously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-
matter of Mindboggle [106]. Volume-based spatial normalization to one standard
space (MNI152NLin2009cAsym) was performed through nonlinear registration with
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antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w refer-
ence and the T1w template. The following template was selected for spatial nor-
malization: ICBM 152 Nonlinear Asymmetrical template version 2009c [107]. For
each of the 12 BOLD runs found per subject (across all tasks and sessions), the
following preprocessing was performed. First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep. A B0-
nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar
imaging (EPI) references with opposing phase-encoding directions, with 3dQwarp
[94] (AFNI 20160207). Based on the estimated susceptibility distortion, a corrected
EPI reference was calculated for a more accurate co-registration with the anatom-
ical reference. The BOLD reference was then co-registered to the T1w reference
using bbregister (FreeSurfer) which implements boundary-based registration [95].
Co-registration was configured with six degrees of freedom. Head-motion parameters
with respect to the BOLD reference (transformation matrices, and six corresponding
rotation and translation parameters) are estimated before any spatiotemporal filter-
ing using mcflirt [93]. BOLD runs were slice-time corrected using 3dTshift from
AFNI 20160207 [94]. The BOLD time-series were resampled onto the following
surfaces (FreeSurfer reconstruction nomenclature): fsnative, fsaverage. The BOLD
time-series (including slice-timing correction when applied) were resampled onto
their original, native space by applying a single, composite transform to correct for
head-motion and susceptibility distortions. These resampled BOLD time-series will
be referred to as preprocessed BOLD in original space, or just preprocessed BOLD.
The BOLD time-series were resampled into standard space, generating a prepro-
cessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and
its skull-stripped version were generated using a custom methodology of fMRIPrep.
Several confounding time-series were calculated based on the preprocessed BOLD :
framewise displacement (FD), DVARS and three region-wise global signals. FD and
DVARS are calculated for each functional run, both using their implementations in
Nipype [96]. The three global signals are extracted within the CSF, the WM, and
the whole-brain masks. Additionally, a set of physiological regressors were extracted
to allow for component-basednoise correction CompCor [97]. Principal components
are estimated after high-pass filtering the preprocessed BOLD time-series (using a
discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal
(tCompCor) and anatomical (aCompCor). tCompCor components are then calcu-
lated from the top 5% variable voxels within a mask covering the subcortical regions.
This subcortical mask is obtained by heavily eroding the brain mask, which ensures
it does not include cortical GM regions. For aCompCor, components are calculated
within the intersection of the aforementioned mask and the union of CSF and WM
masks calculated in T1w space, after their projection to the native space of each
functional run (using the inverse BOLD-to-T1w transformation). Components are
also calculated separately within the WM and CSF masks. For each CompCor de-
composition, the k components with the largest singular values are retained, such
that the retained components’ time series are sufficient to explain 50 percent of
variance across the nuisance mask (CSF, WM, combined, or temporal). The re-
maining components are dropped from consideration. The head-motion estimates
calculated in the correction step were also placed within the corresponding confounds
file. The confound time series derived from head motion estimates and global sig-
nals were expanded with the inclusion of temporal derivatives and quadratic terms
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for each [98]. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standard-
ised DVARS were annotated as motion outliers. All resamplings can be performed
with a single interpolation step by composing all the pertinent transformations (i.e.
head-motion transform matrices, susceptibility distortion correction when available,
and co-registrations to anatomical and output spaces). Gridded (volumetric) resam-
plings were performed using antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other kernels [100]. Non-gridded
(surface) resamplings were performed using mri vol2surf (FreeSurfer).
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3 Results

In order to answer the questions posed in chapter 1 concerning fair comparisons with
standard analysis tools and the assessment of the reproducibility of results, SnapRF
and mrVista were applied on the three different datasets described in chapter 2.3-2.5:
(1) Simulated data, (2) Stimsim24 data, (3) NYU retinotopy data. The datasets were
chosen specifically because their properties made them well suited for investigating
different aspects of the research questions.

In this chapter, the SnapRF training performance and comparisons between
SnapRF and mrVista pRF mapping results are presented for all datasets. Even
though SnapRF is agnostic to variance-explained during training and testing, this
metric was calculated for every voxel of every dataset after application of SnapRF. In
pRF mapping experiments, voxels with variance-explained below a certain threshold
are usually discarded before analysis of results. This is done because pRF fitting
models will always give an estimate, no matter the signal content of a voxel. There-
fore, the same was done for SnapRF results.

As described in chapter 2.2, eight SnapRF models were trained per empirical
dataset with different training parameters (see Table 1). All of those models were
then tested on all pRF measurement files of the empirical datasets and variance-
explained was calculated for all voxels of those files. In a next step, rank-sums
were calculated independently for the mean and median variance-explained values
per measurement file, and for the number of voxels above a 0.1 variance-explained
threshold. Finally, the resulting rank-sums were again ranked per measure (mean
variance-explained, median variance-explained, number of voxels) and a last rank-
sum was calculated from the ranks of the models in that assessment (see Tables
5 and 6). The SnapRF model so chosen as best for an empirical dataset was then
compared to mrVista.

3.1 SnapRF Training Parameters and Testing Performance

Before method comparison on the datasets, the SnapRF training and testing perfor-
mance was evaluated to guide the choice of training parameters and to examine the
model’s speed depending on dataset size.

To set a sensible learning rate for training the model, three different values were
compared by means of MSE loss in training (Fig. 36). The results of this comparison
showed a learning rate of 0.001 to converge faster and to lower minimum loss values
than the others. Therefore, this value was chosen for all experiments reported herein.

To adjust the level of noise in training, the mean variance-explained values be-
tween the pure and noisy timecourses of 1000 voxels for different CNR values was
calculated (Fig 37). From these calculations, it is apparent that the newly imple-
mented RS noise model is comparable to the neuRosim noise model in noise level,
though the average variance-explained values are a little smaller for the RS noise
model. In DeepRF, an exponential distribution of CNR values between 0.5 and 2.0
were used. This range in CNR corresponds to average variance-explained values
between 50 and 95 percent. In SnapRF, a uniform distribution of CNR values was
used and control over the CNR range was given to users in the json call script. For
the experiments reported herein, CNR values between 0.15 and 1.0 were used, which
corresponds to average variance-explained values between 10 and 80 percent. This
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was done so as to make the training timecourses more realistic, as in actual pRF
mapping measurements very few if any voxels at all have variance-explained values
as high as the ones used in the original DeepRF training data. Further, the lower
bound chosen for this thesis of 10 percent variance-explained corresponds to a cutoff
often employed in pRF mapping analyses.

Figure 36: SnapRF MSE validation loss for different learning rates (LR) showing a
model with a learning rate of 0.001 converging faster and to lower loss values than
with other learning rates.

Figure 37: Mean variance-explained values of 1000 voxels for different SnapRF CNR
values and noise models showing comparable.

When testing a trained model on a dataset to obtain the SnapRF parameter
estimates, an almost linear relationship between the number of voxels to analyze
and the time taken for testing can be observed (Fig. 38). The measured pure
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testing times (without writing results to file) for two different simulated datasets
are listed in Table 3.

Figure 38: Almost linear relationship between number of voxels in a test set and
the time taken for applying SnapRF in seconds.

Table 3: SnapRF pure testing times on simulated data.

Number of Voxels Set 1 Pure Test Time [s] Set 2 Pure Test Time [s]

103 0.254 0.243
104 1.737 1.819
105 16.862 17.653
106 167.903 174.725

3.2 Results on Simulated Data

For testing SnapRF on the simulated dataset, a model was trained with neuRosim
noise models and the Stimsim24 stimulus (Fig. 39). In training, data with eccentric-
ities of up to twice the stimulus radius was generated, the mrVista HRF was used
and the HRF delay was set to zero, in an effort to establish maximum comparability
between SnapRF and mrVista.

In contrast to the empirical datasets, this dataset provides the unique opportu-
nity of direct assessment of pRF mapping errors. After creation of the dataset, the
SnapRF-NVn model and mrVista were applied and the time necessary for application
was taken: Testing mrVista on the 10,000 simulated voxels took about 2296 seconds,

41



3.2 Results on Simulated Data 3 RESULTS

Figure 39: MSE validation loss of model used for evaluation of SnapRF on simulated
data converging towards a value close to 1. This is a higher loss than in the original
DeepRF results but expectedly so due to higher noise and larger search radius in
training SnapRF.

while SnapRF took only about 12 secods for the same task (Table 4). In both of
these times, writing the mapping results to output files is included, which increases
the total testing time almost ten-fold for SnapRF (see pure testing times in Table 3).
Still, this represents a 191-fold increase in testing speed for getting usable results in
comparison to mrVista.

Table 4: SnapRF and mrVista testing times on simulated dataset.

Number of Voxels SnapRF Test Time [s] mrVista Test Time [s]

104 12 2296

After testing the models, the errors between predictions and true parameters
were calculated and plotted in dependence of eccentricity, pRF size, and variance-
explained (Fig. 40). For every calculated error, moving percentiles were calculated
with a Gaussian filter kernel as a window.
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Figure 40: PRF estimate errors for mrVista and SnapRF-NVn on 10,000 simulated
voxels in dependence of eccentricity, pRF size, and variance-explained. Moving
percentiles are also plotted.
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3.3 Results on Stimsim24 Dataset

For the Stimsim24 dataset, the SnapRF model RVn proved best by metric of rank-
sums described in the introduction to this chapter: First, all models were compared
in terms of mean and median variance-explained values as well as in terms of the
number of voxels above a variance-explained threshold of 0.1 per measurement file.
From these comparisons, rankings were performed for each file and the ranks over all
files and comparisons added. This left three total values per model which were again
ranked individually and these ranks were then added up to give the final ranking
of a model (see Table 5). In training, the SnapRF-RVn model reached an MSE Loss
close to two, which is higher than in the original DeepRF results but not alarmingly
so (Fig. 41).

The Stimsim24 dataset provided the unique opportunity to test reproducibility
of empirical pRF mapping results because it contains a large number of measure-
ments for single subjects. To that end, all 30 measurement runs were averaged to
create a single average run per subject. This has the effect of greatly increasing the
signal-to-noise ratio (SNR) in comparison to single runs. To verify whether SnapRF
is capable of reliably reproducing retinotopy, eccentricity estimates on the average
run were plotted onto the inflated brain surface (Fig. 42 and 43). To compare the
inter-method reproducibility of estimates, direct voxel-wise comparisons of pRF es-
timates between mrVista and SnapRF were conducted on the averaged run (Fig. 44).
To assess inter-measurement reproducibility, the mean deviations of pRF estimates
across the thirty runs from the pRF estimates on the single average run were then
calculated and the estimates on the average run were taken as ”ground truth” values
with respect to each method (Fig. 45).

Table 5: Variance-explained Rank-Sums for SnapRF Models on the Stimsim24
Dataset.

Model Rank-Sum Mean Rank-Sum Median Rank-Sum Cutoff Rank-Sum Total

RVn 393 (1) 381 (1) 558 (4) 6
NDy 468 (3) 463 (3) 220 (2) 8
NVy 438 (2) 397 (2) 749 (8) 12
RVy 531 (4) 557 (6) 543 (3) 13
RDy 574 (6) 633 (7) 208 (1) 14
NVn 533 (5) 507 (4) 616 (6) 15
NDn 591 (7) 555 (5) 690 (7) 19
RDn 618 (8) 653 (8) 562 (5) 21
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Figure 41: MSE validation loss of model used for evaluation of SnapRF on the
Stimsim24 dataset showing convergence to a value below 2. This is higher than in
the simulation study, likely owing to the different type of noise used in training.

Figure 42: Comparison of eccentricity estimates of mrVista (top) and SnapRF-RVn
(bottom) on the inflated brain surface of subject 001 for the averaged run.
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Figure 43: Comparison of eccentricity estimates of mrVista (top) and SnapRF-RVn
(bottom) on the inflated brain surface of subject 002 for the averaged run.

Figure 44: Voxel-wise comparison of pRF estimates of mrVista and SnapRF-RVn
on averaged run for both Stimsim24 subjects. Only voxels with variance-explained
> 0.1 for both methods are plotted. Blue voxels are from the left hemisphere, and
orange voxels from the right hemisphere.

46



3 RESULTS 3.3 Results on Stimsim24 Dataset

Figure 45: Mean pRF estimate deviations over 30 runs from estimates on averaged
run in dependence of eccentricity, pRF size, and variance-explained of averaged run
estimates. Data for both subjects of the Stimsim24 dataset were pooled. Moving
percentiles are plotted additionally.
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3.4 Results on NYU Retinotopy Dataset

As before, the model used for analysis of the NYU dataset was chosen by means
of rank-sums of variance-explained mean, median and quantity above a threshold
values per measurement file. These rank-sums were then themselves ranked and
these final ranks added together, which showed the SnapRF-RDy model to perform
best (see Table 6). In training, the model reached an MSE Loss close to seven, which
is significantly higher than models trained with the Stimsim24 stimulus, indicating
less predictive power of this trained model than in the other datasets (Fig. 46).

The NYU retinotopy dataset is well suited to assess the inter-method repro-
ducibility across multiple subjects, as it features data from 44 participants. To
facilitate the comparison, the measurement files were first averaged per subject,
then the pRF mapping methods were applied on the native brain surfaces. Af-
terwards, these results were interpolated onto the fsaverage surface with freesurfer
mri surf2surf. From these, median subject estimate maps were calculated and these
were compared voxel-wise between mrVista and SnapRF (Fig. 47 top panels). Ad-
ditionally, group-average timeseries were calculated from the measurement files av-
eraged per subject. To do so, these were interpolated onto the fsaverage surface
and then averaged over all subjects. Then, mrVista and SnapRF were applied to
the group-average timeseries. On these results, too, the voxel-wise reproducibility
between the methods was compared (Fig. 47 bottom panels).

Table 6: Variance-explained Rank-Sums for SnapRF Models on the NYU Retinotopy
Dataset.

Model Rank-Sum Mean Rank-Sum Median Rank-Sum Cutoff Rank-Sum Total

RDy 1933 (1) 2019 (1) 1589 (1) 3
RVy 2223 (2) 2030 (2) 2285 (2) 6
NVn 2621 (3) 2437 (3) 3335 (6) 12
NDy 2996 (5) 3076 (5) 2342 (3) 13
RVn 2942 (4) 2985 (4) 3419 (7) 15
NDn 3125 (6) 3238 (6) 2637 (5) 17
RDn 3500 (8) 3497 (8) 2390 (4) 20
NVy 3204 (7) 3262 (7) 4511 (8) 22

48



3 RESULTS 3.4 Results on NYU Retinotopy Dataset

Figure 46: MSE validation loss of model used for evaluation of SnapRF on the NYU
retinotopy dataset reaching lowest values of about 7, which is much higher than
in previous datasets, indicating less predictive power of the trained model in this
dataset.

Figure 47: Comparison of SnapRF-RDy and mrVista voxel-wise median subject pRF
mapping results (top) and group-average pRF mapping results (bottom) on the NYU
retinotopy dataset. Only voxels with variance-explained > 0.1 for both methods are
plotted. Blue points are voxels from the left hemisphere, and orange ones from the
right hemisphere.
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4 Discussion

Comparing the DeepRF approach with conventional pRF mapping software poses a
problem that cannot be easily resolved. This arises from the different approaches
used by the tools to estimate the parameters of the pRF model on real data. While
DeepRF is trained to capture parameters directly from a voxel’s timecourse, standard
analysis methods perform a multi-step optimization with the goal of maximizing
variance-explained by their choice of parameters. It is central to note here that
DeepRF has no knowledge of variance-explained at any point, neither in training nor
in testing. On the other hand, mrVista relies on variance-explained to quantify the
goodness of parameter fits.

Since DeepRF is trained with artificially generated data with known ground truth,
testing it on data that is generated in the same way will always lead to a bias com-
pared to a software agnostic to the input data. Testing it on empirical data, however,
makes comparison difficult because DeepRF does not optimize for the parameter used
to quantify goodness-of-fit. DeepRF could of course be implemented to optimize for
variance-explained. However, this would result in a model that fits noise rather
than ground truth, exemplifying Goodhart’s law that a measure ceases to be useful
when it becomes a target to optimize for [108]. It is conceivable that in high noise
settings, a DeepRF model may fare worse in regards to variance-explained, while ac-
tually extracting more correct parameters than conventional methods. On empirical
data, however, variance-explained is a useful metric useful for discriminating good
from bad predictions. Thus, we have arrived at a circular argument which cannot
be easily resolved.

In this thesis, new approaches were taken to break the cycle: Through the intro-
duction of the new RS noise model, a simulation study was conducted with artificial
data containing noise components neither model knew beforehand, effectively re-
moving a large bias towards the reimplemented SnapRF in comparison to mrVista.
Further, the reproducibility of pRF mapping results on empirical data was inves-
tigated through calculation of deviations from estimates on a multi-run average
timeseries. Additionally, the inter-method reproducibility of pRF mapping results
was compared on an external dataset featuring a large number of subjects with a
different stimulus design from the other datasets.

4.1 Results on Simulated Data

When comparing the MSE training loss in Fig. 39 with the training losses the
original authors presented for DeepRF [1], it is apparent that the losses presented
herein are magnitudes larger than those of the original implementation. This effect
stems from the fact that the model was trained with much higher noise than in
the original implementation as well as with timecourses generated from pRF center
locations outside of the stimulus (Fig. 48).

In Fig. 40, it is apparent that x and y errors show no strong bias when plotted
against eccentricity for either method, which is highly desirable. However, it is
notable that SnapRF errors stray further than mrVista errors. The same behaviour
can be observed in dependence of size and noise (variance-explained). From the x
and y errors in dependence of polar angle it is evident that SnapRF results compared
to those of mrVista show a strong influence of the angular distance to the converse
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Figure 48: Minimum MSE validation loss of SnapRF models trained with different
combinations of search radius and CNR values for the Stimsim24 stimulus, showing
how lower CNR values and larger search radii in training decrease model training
performance.

axis, respectively. This effect is expected and also visible in the results of mrVista,
though not as strongly.

In the size errors, there exists a clear bias towards overestimation of size for
SnapRF, which is especially pronounced for small sizes. This effect is likely due to
the pRF parameter space in SnapRF training and not an inherent feature of the
method. However, it is interesting because the artificial data was drawn from the
same distributions of x, y, pRF size and CNR values that were used in training the
SnapRF model. Therefore, these effects might indicate the need for a more robust
training of the size parameter. Splitting the loss function into the individual pRF
parameters during model training, however, shows that the mean error in pRF size
is minimized better in training than those of x and y positions (Fig 49). Thus, the
bias of SnapRF in size estimation might also stem from the different type of noise
in the dataset than the model was trained with. For mrVista, the effect of the grid
fit is clearly visible in the size error dependent on actual size, leading to a larger
spread of errors for larger sizes than SnapRF.

Notably, the MSE loss in x and y in Fig. 49 reach values of about 4◦, therefore the
mean absolute errors at the end of training take values of around 2◦, which is close
to the stimulus width of 1.6◦. The mean absolute error of the pRF size parameter
meanwhile reaches values close to 0.8◦, which is half of the stimulus width. These
correlations indicate an influence of the stimulus width on the training performance,
where narrower stimuli might help in reducing training losses. In empirical settings,
however, exceedingly narrow stimuli would necessarily lead to longer measurement
times at a constant stimulus diameter or to smaller stimulated areas of the visual
field at constant measurement times. This is because it takes more steps to cover the
whole stimulated region with narrower stimuli than with broader ones. In practice,
neither longer measurement times nor smaller stimulated regions are desirable.
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Figure 49: MSE validation loss separated into the losses for x, y and pRF size
parameters for the Stimsim24 stimulus. This shows the model struggles more with
localization of center positions than with accurate size estimation.

4.2 Results on Stimsim24 Dataset

For the Stimsim24 dataset, the difference between the top rated model and the second
best model in terms of total rank-sums (see Table 5) is striking in the sense that
no two variable features of the models are equal: They were trained with different
noise models, different HRFs and different HRF delay ranges. However, when only
taking the mean and median variance-explained rank-sums into account without the
number of voxels above a threshold of 0.1 variance-explained, 3 of the top 4 models
were trained with the mrVista HRF, indicating this to be an important factor for the
goodness-of-fit on this dataset. This behaviour exemplifies the need for thorough
analysis of DeepRF results and the fact that no single model can be a priori identified
as best for a given dataset. Further, it is notable that the SnapRF model identified
as best is a sub-model of the RVy model, which was trained with HRF delay in
contrast to the best performing RVn model. This indicates that an HRF delay of
zero seconds is a reasonable assumption for this dataset. This result might further
indicate the need to train models with HRF delay with a less uniform sampling of
delays, so that they can still recognize and successfully fit small delay values.

On the cortex plots (Fig. 42 and 43) it is clearly visible that SnapRF is capable
of reproducing the retinotopy of the visual cortex similar to mrVista. There exist
some small differences, but overall the results are highly comparable. This indicates
the promise SnapRF has for fast and reliable pRF mapping results.

In the inter-method comparison of pRF estimates and derived quantities (Fig.
44), the overall agreement between the two methods is promising. Stark devia-
tions are only visible in the size estimates, where mrVista’s estimates go to larger
sizes, which can be easily explained by the size limit in SnapRF training, as well
as in the variance-explained of estimates. The latter, of course, is due to mrVista’s
optimization of the parameter and SnapRF’s ignorance to it.

From the mean deviations of estimates across 30 runs from the estimates on the
averaged run (Fig. 45), several features can be identified. For the deviations in x,
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both methods scatter broadly with growing eccentricity, though mrVista does so a bit
wider. In the x and y deviations in dependence of polar angle, both methods show a
similar behaviour to that seen on the simulated data: Close to the y axes, the error
in x is maximal, and close to the x axes, that in y is maximal. For the deviations in
dependence of size, SnapRF shows a bias towards larger sizes for small eccentricities
and high variance-explained values of the reference averaged run. mrVista, on the
other hand, is more likely to underestimate the size compared to the reference run for
larger eccentricities and larger sizes, as well as for lower variance-explained values.
Further, the mrVista estimates go to larger sizes than the SnapRF estimates on the
averaged run, because of the size limit in SnapRF training.

Finally, for the deviations in dependence of variance-explained, both methods
fare comparably well, only in the size deviations does mrVista show a slight bias to
larger sizes in the voxels with low variance-explained, and SnapRF a slight bias to
larger sizes for higher variance-explained values.

Together, these results suggest that SnapRF gives comparable results to mrVista
on low-noise empirical data in only a fraction of the time.

4.3 Results on NYU Retinotopy Dataset

For the NYU retinotopy dataset, the most important characteristic in the perfor-
mance of SnapRF models seems to be the noise model and the HRF delay (Table 6).
Here, as in the Stimsim24 dataset, a SnapRF model with the new RS noise model
achieved the best overall results. In contrast to the Stimsim24 dataset however, the
two top rated models across all categories (mean and median variance-explained,
number above threshold) both feature a non-zero HRF delay in training, indicating
that the data in this dataset is well explained by assuming a delay of the HRF.

In this dataset, the training losses are consistently higher than those in the
Stimsim24 dataset. Therefore, it is expected that mapping results with SnapRF are
less reliable here than in the Stimsim24 dataset.

To investigate the influence of stimulus configurations on the training loss, differ-
ent stimuli were created from the Stimsim24 and NYU stimuli by slicing the individual
stimulus passes and putting them back together in different orders. These orders
and their properties can be seen in Table 7.

Table 7: Properties of different stimulus configurations.

Configuration Vertical Sweeps Length [s]

original Full 240
original reduced Half 192
shuffled Full 240
shuffled reduced Half 192

The associated training losses for each of those configurations can be seen in
Fig. 50. From these losses, it is clear the stimulus configuration only has a marginal
influence on SnapRF training performance. Therefore, the reason for the worse
training performance for the NYU stimulus must lie in the stimulus properties itself.
In comparison with those of the Stimsim24 stimulus, the NYU stimulus is almost
twice as broad due to the larger area of visual field covered. Therefore, the resolution
of the NYU stimulus in regards to visual field position as well as pRF size is lower
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Figure 50: MSE validation loss for different configurations of the Stimsim24 and
NYU retinotopy dataset stimuli showing marginal influence of stimulus configuration
compared to stimulus width on training performance.

than in the Stimsim24 stimulus, which is visible in the SnapRF training loss when
splitting it into the individual parameters (Fig. 51). When further splitting the
pRF size loss function into bins of 1◦, it is apparent that the higher loss for size
predictions with the NYU retinotopy stimulus is mainly driven by small sizes, which
cannot be resolved correctly due to the broader stimulus (Fig. 52). As with the
Stimsim24 stimulus, the losses seen here can be well explained quantitatively by the
stimulus width: The mean squared errors in pRF size and x and y positions in Fig.
51 match the squared half width of the stimulus and squared width of the stimulus
reasonably well. Any additional error is likely due to noise.

Of course, the lower spatial resolution of the stimulus will also affect the results
of mrVista, but without any indication, so that this effect passes silently for standard
analysis software. Thus, DeepRF training performance can be used to assess different
stimulus designs and thereby help improve pRF mapping reliability.

In the inter-method reproducibilities for both subject median and group average
results, similar features can be seen (Fig. 47). The winding shape of the eccentric-
ity estimate comparison and the disparity in the polar angle estimates between the
two methods are in stark contrast to the almost linear relationship between these
estimates on the Stimsim24 dataset. Interestingly, both methods have smaller maxi-
mum size estimates in this dataset, and an overall good agreement between the two.
In variance-explained, however, the same phenomenon can be seen as in Fig. 44,
where mrVista estimates almost always have higher variance-explained values than
those of SnapRF.

The differences between the methods seen here are likely due to the relatively
poor SnapRF training performance on the NYU retinotopy dataset. However, due
to the broad stimulus used in this dataset, it is also possible that mrVista estimates
are less reliable here than in the Stimsim24 dataset.
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Figure 51: MSE validation loss separated into the losses for x, y and pRF size pa-
rameters for the Stimsim24 stimulus (left) and the NYU retinotopy dataset stimulus
(right). Both center localization and size estimation is worse in training with the
NYU stimulus compared to training with the Stimsim24 stimulus, though center lo-
calization more so than size estimation.

Figure 52: MSE pRF size validation loss separated into size bins of the ground truth
for the Stimsim24 stimulus (left) and the NYU retinotopy dataset stimulus (right).
In the legend, s describes the true size with which the timecourses were generated.
Higher size estimation losses with the NYU stimulus are mainly driven by small
sizes, which cannot be resolved due to the broader stimulus.

56



5 CONCLUSION AND OUTLOOK

5 Conclusion and Outlook

In this thesis, the DeepRF approach for pRF mapping was reimplemented as SnapRF
in order to overcome limitations of the original implementation in regards to the
fairness and scope of comparisons with reference methods. In doing so, the approach
was expanded and thoroughly tested on different datasets. To assess its suitability
for pRF mapping applications under realistic conditions, its results were compared
to that of the standard analysis tool mrVista.

On simulated data with known ground truth, SnapRF was shown to perform
worse than mrVista under a wide range of noise conditions. Especially in the size
estimates can a bias of SnapRF towards larger predictions be observed, which could
feasibly be removed by training a SnapRF model with more datapoints generated
with smaller pRF sizes. This, however, would introduce a bias towards smaller sizes,
which is why it was not implemented for the purposes of this thesis, as the goal was
to assess the model without artificial biases. Due to the multi-stage fitting approach
of mrVista, however, the simulation study has shown SnapRF results at larger sizes
to be slightly more reliable than those of the reference method.

An important part of the simulation study worthy of highlighting was the newly
created RS noise model described in 2.2, which features noise components from
resting state fMRI measurements and enabled a fair comparison between the two
methods. Such an approach to modelling noise in fMRI simulation studies will
doubtless prove useful for future studies. An important limitation of the RS noise
model in its current form, however, is the small number of freely available datasets
with a wide range of different properties (number of participants, sequence used,
measurement site, etc.). Due to this small sample size, it is possible that features
seen in a few subjects (such as relatively large movements or above-average heart
rate, etc.) might have a strong influence on the characteristics of the generated
noise. Nevertheless, the merits of the new RS noise model were proven in the
analyses on empirical datasets. On these, SnapRF models trained with the RS noise
model exhibited best performance in terms of a combined metric depending on the
variance-explained of pRF estimates compared to models trained with other noise
sources. These comparisons highlight that no ”one-size-fits-all” approach can be
employed where a single SnapRFmodel is suitable for all datasets. With this in mind,
the results of comparisons on the simulated data might also indicate problems in
SnapRF’s ability to generalize on data with different noise characteristics than those
it was exposed to during training. This further emphasizes the need for careful
assessment of SnapRF model suitability for individual datasets.

On the Stimsim24 dataset, SnapRF was shown to be able to reproduce the retino-
topic organization of the visual cortex in good agreement with mrVista. Further,
overall good agreement between the methods was shown on a high SNR averaged
measurement and in analyzing the reproducibility of estimates over a large number
of measurements of single subjects. Additionally, due to SnapRF’s pRF size limit
in training, the pRF estimate results show better reproducibility in dependence of
size than those of mrVista. It is important to note that the size limit in SnapRF
is grounded in the physiological properties of the primary visual cortex, which this
thesis focused on.

On the NYU retinotopy dataset, the agreement between the method estimates
was less pronounced than expected based on the previous results. This discrepancy
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can likely be explained by the properties of the stimulus used for this dataset. The
dependence of SnapRF training success on visual stimulus design was uncovered by
training SnapRF models with different stimulus configurations and by splitting the
loss function into the individual pRF parameters and further into bins of the pRF
size parameter. It was shown that broader stimuli lead to worse SnapRF performance
due to the lower spatial resolution afforded by them compared to narrower stimuli.
Standard analysis procedures are likely influenced in the same way, but without the
warning signs present in the model training performance. Therefore, it is proposed
that DeepRF training performance may serve as a guideline in pRF stimulus design.
However, one has to note that SnapRF training performance is also influenced by
training hyperparameters, such as the learning rate, the network architecture, and
so on. Nevertheless, the assessment of training losses may help in designing ideal
stimuli for best result reliability.

The results and interpretations presented herein open the door for multiple future
research directions. New research could be conducted into DeepRF’s performance
on other visual areas and the possibility to delineate different visual areas in the
human brain based on DeepRF results. Further, the method holds great promise
for the assessment of different stimulus designs, which might also benefit standard
pRF mapping approaches. Finally, it might be worthwhile to investigate other
network types as a basis, as several new ANN architectures have been developed
since DeepRF’s inception. Transformer models, for example, have been shown to
outperform ResNet architectures on computer vision tasks [109]. It is therefore
conceivable that they might perform better on the task of pRF mapping as well.

While the results obtained in this thesis do not show SnapRF to be capable of
better performance than the standard approach, the method still holds potential
for future applications due to the substantial 191-fold reduction of testing time
compared to mrVista. Further, the reusability of a once trained model to any dataset
acquired with the same stimulus is an attractive feature of the method beyond the
increase in testing speed.

In conclusion, the newly implemented RS noise model appears to be a better
option than the neuRosim noise models in training for application on empirical data
and is therefore suggested for future studies focused on machine learning approaches
in fMRI analyses. However, the relatively poor performance of a model trained with
one noise model on data generated with the other indicates a poor generalization of
trained models to other noise sources than the ones trained with, so that a simple
one-size-fits-all approach is not recommended when applying this method. The new
noise model is further suggested for simulation studies as a way to remove biases
towards machine learning models due to training procedures featuring the same
noise types as simulated test data. Further development of the DeepRF approach
might help in tackling the challenges the method faces and establish it as a reliable
and power-saving alternative to current methods for pRF mapping.
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into a beam of atoms (2) before entering an inhomogeneous magnetic
field (3). Quantum mechanics predicts a splitting of the beam into
two separate components (4) while classically a broadening of the
beam on the detector screen is expected (5). . . . . . . . . . . . . . . 2

2 Experimental evidence for spin quantization of silver atoms in an
inhomogeneous magnetic field [5]. In the scale below, 20 units are
equal to 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Larmor precession of a nuclear spin around an external field with
precession frequency ω0 (adapted from [17]). . . . . . . . . . . . . . . 5

4 Schematic of Rabi’s magnetic resonance method setup [19]. Mag-
nets A and B create inhomogeneous magnetic fields with anti-parallel
gradients, magnet C creates the oscillating field. The solid curves
represent paths of molecules without change of magnetic moments
in the apparatus. The dashed curves represent paths of molecules
whose magnetic moments were changed in the excitatory field of the
C magnet. Such molecules are not refocused onto the detector. . . . . 6

5 First observation of nuclear magnetic resonance [14]. At the resonance
condition, a sharp drop in beam intensity at the detector is visible,
as molecules are not refocused onto the detector screen. . . . . . . . . 6

6 Establishment of phase coherence between children of swings through
pushes applied at the resonance frequency. . . . . . . . . . . . . . . . 8

7 Tipping of the net magnetization vector in a coordinate system ro-
tating with the Larmor frequency [17]. . . . . . . . . . . . . . . . . . 8

8 Relaxation or recovery of longitudinal magnetization Mz after a π
2

excitation pulse of the resonant RF field or after exposure to a static
external magnetic field, respectively [17]. . . . . . . . . . . . . . . . . 9

9 Occurrence of free induction decay after one π
2
pulse and a spin echo

after a second rephasing pulse that reverses dephasing due to mag-
netic field inhomogeneities (adapted from [23]). . . . . . . . . . . . . 10

10 Emergence of a gradient echo after reversing a dephasing magnetic
field gradient (adapted from [26]). . . . . . . . . . . . . . . . . . . . . 11

11 Measurement of T2∗ with a train of gradient echoes created through
application of dephasing (De) and rephasing (Re) gradients after ex-
citation with an RF pulse with a flip angle of α (adapted from [27]). . 11

12 Schematic representation of how overlapping frequency and phase
encoding magnetic field gradients in a selected slice define three-
dimensional voxels of space that can be selectively measured (adapted
from [32]). At step 0, the phase encoding gradient is not active, and
the resulting measured signal S0(t) is a linear combination of the sig-
nals from voxels A and B. At step 1, the phase of voxel B was shifted
by 180◦ relative to voxel A by the phase encoding gradient, and the
measured signal S1(t) is the difference between the two individual
signals. The combination of measurements allows the calculation of
individual voxel signals. . . . . . . . . . . . . . . . . . . . . . . . . . 13

59



LIST OF FIGURES LIST OF FIGURES

13 Central parts of k-space (a) encode general features like contrast in
images (b), while peripheral parts (c) encodes details but little con-
trast (d) (adapted from [33]). Arrows represent Fourier transforms
between k-space and real space and vice-versa. . . . . . . . . . . . . . 13

14 Rectangular motion through k-space in the echo planar imaging (EPI)
technique [36]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

15 T1 and T2 weighted images of the same brain slice [37]. . . . . . . . . 14

16 Normalized canonical hemodynamic response function (HRF) that
models the increase in bloodflow to an active brain region following
a short stimulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

17 The visual pathway in humans, shown from the retina to the visual
cortex [54]. Note the contralteral endpoints for left and right hemi-
fields, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

18 Retinotopic maps of a dog created by Munk in the late 1870s [56]. The
maps show the reorganization of the optic nerves at the optic chiasm
(Ch) and the contralateral endpoints for input from the left an right
hemifields, respectively. Additionally, the retinotopic organization of
visual space on the visual cortex is shown. . . . . . . . . . . . . . . . 18

19 One of the first retinotopic maps in humans, created by Holmes in
1944 from lesion studies of soldiers [60]. The retinotopic organization
of the visual cortex is shown both in eccentricity and polar angle for
the right visual hemifield. . . . . . . . . . . . . . . . . . . . . . . . . 18

20 Periodic stimulus (a) evokes observed wave of neural activity (b) [63]. 19

21 Typical stimuli used in pRF mapping experiments [70]. . . . . . . . . 20

22 Sweeping bar stimulus used in pRF mapping experiments (adapted
from [70]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

23 Simulated timecourses for the same voxel with different noise levels.
Note the peaks introduced by the higher noise that may be fitted as
signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

24 Artificial neuron that applies a nonlinear function to a weighted sum
of inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

25 Schematic representation of a biological neuron in the brain. . . . . . 23

26 Artificial neural network (ANN) constructed from layers of artificial
neurons (ANs), with one input layer, a single hidden layer, and one
output layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

27 Schematic representation of a layer with a convolutional kernel filter
in a convolutional neural network (CNN) (adapted from [73]). . . . . 24

28 Schematic representation of padding before convolution in a CNN
(adapted from [73]). Padding can be used to increase the image size
(a) or to keep it the same (b) after convolution with a filter kernel. . 24

29 Schematic representation of pooling operations in a convolutional
neural network (CNN). . . . . . . . . . . . . . . . . . . . . . . . . . . 25

30 Different nonlinear activation funtions. . . . . . . . . . . . . . . . . . 26

31 Schematic representation of a block of layers in a residual neural net-
work (ResNet) with identity skip connection [81]. The output of such
a building block is given by the sum of the functions applied by the
layers and the input to the layers itself. . . . . . . . . . . . . . . . . . 26

60



LIST OF FIGURES LIST OF FIGURES

32 Comparison of HRFs used by DeepRF and mrVista to model stimula-
tion at T ime = 0. Both HRFs have been used for this thesis. . . . . . 29

33 Sweeping bar stimulus used in the Stimsim24 dataset (adapted from
[70]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

34 Sweeping bar stimulus used in the NYU retinotopy dataset (adapted
from [70]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

35 Background consisting of natural images over pink noise revealed by
the stimulus aperture in the NYU retinotopy dataset. . . . . . . . . . 35

36 SnapRF MSE validation loss for different learning rates (LR) showing
a model with a learning rate of 0.001 converging faster and to lower
loss values than with other learning rates. . . . . . . . . . . . . . . . 40

37 Mean variance-explained values of 1000 voxels for different SnapRF
CNR values and noise models showing comparable. . . . . . . . . . . 40

38 Almost linear relationship between number of voxels in a test set and
the time taken for applying SnapRF in seconds. . . . . . . . . . . . . 41

39 MSE validation loss of model used for evaluation of SnapRF on simu-
lated data converging towards a value close to 1. This is a higher loss
than in the original DeepRF results but expectedly so due to higher
noise and larger search radius in training SnapRF. . . . . . . . . . . . 42

40 PRF estimate errors for mrVista and SnapRF-NVn on 10,000 simu-
lated voxels in dependence of eccentricity, pRF size, and variance-
explained. Moving percentiles are also plotted. . . . . . . . . . . . . . 43

41 MSE validation loss of model used for evaluation of SnapRF on the
Stimsim24 dataset showing convergence to a value below 2. This is
higher than in the simulation study, likely owing to the different type
of noise used in training. . . . . . . . . . . . . . . . . . . . . . . . . . 45

42 Comparison of eccentricity estimates of mrVista (top) and SnapRF-
RVn (bottom) on the inflated brain surface of subject 001 for the
averaged run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

43 Comparison of eccentricity estimates of mrVista (top) and SnapRF-
RVn (bottom) on the inflated brain surface of subject 002 for the
averaged run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

44 Voxel-wise comparison of pRF estimates of mrVista and SnapRF-
RVn on averaged run for both Stimsim24 subjects. Only voxels with
variance-explained > 0.1 for both methods are plotted. Blue vox-
els are from the left hemisphere, and orange voxels from the right
hemisphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

45 Mean pRF estimate deviations over 30 runs from estimates on av-
eraged run in dependence of eccentricity, pRF size, and variance-
explained of averaged run estimates. Data for both subjects of the
Stimsim24 dataset were pooled. Moving percentiles are plotted addi-
tionally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

46 MSE validation loss of model used for evaluation of SnapRF on the
NYU retinotopy dataset reaching lowest values of about 7, which
is much higher than in previous datasets, indicating less predictive
power of the trained model in this dataset. . . . . . . . . . . . . . . . 49

61



LIST OF FIGURES LIST OF FIGURES

47 Comparison of SnapRF-RDy and mrVista voxel-wise median subject
pRF mapping results (top) and group-average pRF mapping results
(bottom) on the NYU retinotopy dataset. Only voxels with variance-
explained > 0.1 for both methods are plotted. Blue points are voxels
from the left hemisphere, and orange ones from the right hemisphere. 49

48 Minimum MSE validation loss of SnapRF models trained with differ-
ent combinations of search radius and CNR values for the Stimsim24
stimulus, showing how lower CNR values and larger search radii in
training decrease model training performance. . . . . . . . . . . . . . 52

49 MSE validation loss separated into the losses for x, y and pRF size
parameters for the Stimsim24 stimulus. This shows the model strug-
gles more with localization of center positions than with accurate size
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

50 MSE validation loss for different configurations of the Stimsim24 and
NYU retinotopy dataset stimuli showing marginal influence of stimu-
lus configuration compared to stimulus width on training performance. 55

51 MSE validation loss separated into the losses for x, y and pRF size
parameters for the Stimsim24 stimulus (left) and the NYU retinotopy
dataset stimulus (right). Both center localization and size estimation
is worse in training with the NYU stimulus compared to training with
the Stimsim24 stimulus, though center localization more so than size
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

52 MSE pRF size validation loss separated into size bins of the ground
truth for the Stimsim24 stimulus (left) and the NYU retinotopy dataset
stimulus (right). In the legend, s describes the true size with which
the timecourses were generated. Higher size estimation losses with
the NYU stimulus are mainly driven by small sizes, which cannot be
resolved due to the broader stimulus. . . . . . . . . . . . . . . . . . . 56

62



LIST OF TABLES LIST OF TABLES

List of Tables

1 SnapRF models trained per dataset. . . . . . . . . . . . . . . . . . . . 31
2 Openneuro datasets used for RS noise models. . . . . . . . . . . . . . 31
2 Openneuro datasets used for RS noise models (Continuation). . . . . 32
3 SnapRF pure testing times on simulated data. . . . . . . . . . . . . . 41
4 SnapRF and mrVista testing times on simulated dataset. . . . . . . . . 42
5 Variance-explained Rank-Sums for SnapRF Models on the Stimsim24

Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 Variance-explained Rank-Sums for SnapRFModels on the NYU Retino-

topy Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7 Properties of different stimulus configurations. . . . . . . . . . . . . . 54

63



64



Acronyms Acronyms

Acronyms

ANN Artificial Neural Network. 22, 23, 25

BIDS Brain Imaging Data Structure. 28

BOLD Blood Oxygenation Level Dependent. 15, 33–37

CBF Cerebral Blood Flow. 15

CBV Cerebral Blood Volume. 15

CNN Convolutional Neural Network. 23, 24

CNR Contrast-to-Noise Ratio. 20, 29, 38, 39, 59

DCNN Deep Convolutional Neural Network. 24

EPI Echo Planar Imaging. 13, 15, 32, 33, 35, 36

FID Free Induction Decay. 10

fMRI Functional Magnetic Resonance Imaging. iii, 1, 15–17, 19, 20, 27–30, 32–36,
55, 56

GLM General Linear Model. 19

GPU Graphical Processing Unit. 27, 28

HRF Hemodynamic Response Function. 15, 16, 28, 29, 31, 32, 40, 51, 52, 58, 59

LGN Lateral Geniculate Nucleus. 16

ML Machine Learning. 21, 22

MRI Magnetic Resonance Imaging. 12, 15, 27, 30, 32, 33

MSE Mean Squared Error. 30, 38, 43, 47, 49, 50, 54, 60

NMR Nuclear Magnetic Resonance. 2, 4–7, 15

NORDIC NOise Reduction with DIstribution Corrected PCA. 33

PC Principal Component. 30

PCA Principal Component Analysis. iii, iv, 30

PET Positron Emission Tomography. 15

pRF Population Receptive Field. iii, iv, 19, 20, 27–30, 33, 35, 38–43, 45–47, 49–51,
53–56, 58–60

65



Acronyms Acronyms

ReLU Rectified Linear Unit. 25

ResNet Residual Neural Network. 25

RS Resting State. 30–32, 34, 36–38, 49, 52, 55

RSS Residual Sum of Squares. 19, 20, 27

SGE Stern-Gerlach Experiment. 2–4

SNR Signal-to-Noise Ratio. 35, 43, 55

TE Echo Time. 31–33, 35

TR Repetition Time. 15, 30–33, 35

66



REFERENCES REFERENCES

References
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