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Abstract

One of the critical factors in operational satellite-based flood monitoring ef-
forts is the time it takes from the acquisition of the satellite image to the
delivery of the flood maps to users. Any human involvement, such as coordi-
nating satellite acquisitions or manually interpreting images, can delay this
process. To avoid such delays, a fundamentally new approach was adopted
for the Sentinel-1 based Global Flood Monitoring (GFM) service: All Syn-
thetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellites in
VV polarisation over land are processed entirely automatically, enabling flood
maps to be delivered within eight hours of acquisition. The flood maps, along
with a novel flood likelihood layer, are generated using ensemble approaches
that integrate three complementary flood mapping algorithms along with ref-
erence water maps to distinguish flooded areas from permanent and seasonal
water bodies. A notable feature of the service is its capability not only to
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depict flood-pixels evident in the Sentinel-1 images but also to provide contex-
tual information that identifies areas where flood mapping is not feasible or
problematic due to land cover and environmental conditions. These advance-
ments were made possible through the use of a global 20 m backscatter dat-
acube, which has enabled the characterisation of the backscatter behaviour
for approximately 379 billion land surface pixels and deriving the reference
water maps and a global flood archive. The GFM service was launched in
2021 as a new component of the Copernicus Emergency Management Service
(CEMS) and has quickly garnered attention from users worldwide. In this
review, we offer the first comprehensive overview of the scientific accomplish-
ments and challenges faced during the first three years of operations. This
analysis discloses discrepancies between the current service capabilities and
the requirements of operational users, and provides directions for future re-
search and service improvements, anticipating the increasing availability of
systematic SAR data coverage from ROSE-L and other future SAR missions.

Keywords: Flood monitoring, Inland water, Sentinel-1, SAR, Datacube,
Copernicus

1. Introduction1

1.1. Satellite-based flood monitoring2

Significant efforts have been made over the past years to improve flood3

risk management. European and global policy frameworks such as the Floods4

Directive of the European Union and the Sendai Framework for Disaster Risk5

Reduction have enabled the strengthening of prevention, preparedness, and6

response to floods. While this has resulted in a decrease in flood fatalities and7

economic losses for Europe (Paprotny et al., 2018), this is not true for other8

regions of the world. In addition, the increase in weather and climate related9

extremes thwarts the achievements in flood risk management. According10

to the Intergovernmental Panel on Climate Change (IPCC), human-caused11

climate change is already affecting many weather and climate extremes in-12

cluding floods in every region across the globe (Calvin et al., 2023). The re-13

cent large-scale floods in central Europe in mid-September 2024, which were14

caused by record-breaking rainfall over a period of four days, have demon-15

strated again the increasing challenges that civil protection and emergency16

responders are facing in order to reduce the impacts of floods on our society17

and economy (Kimutai et al., 2024).18
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With the increasing availability of satellite imagery, particularly through19

Europe’s Earth observation programme Copernicus, satellite-based flood mon-20

itoring has become a crucial tool for flood response. It offers a rapid and21

efficient overview of flood situations, especially for large-scale flood events.22

As part of the Copernicus Emergency Management Service (CEMS), satellite23

imagery is routinely used to generate flood maps within hours or days, follow-24

ing activation by authorised users from European Member States and other25

countries participating in the European Civil Protection Mechanism (Denis26

et al., 2016). The on-demand CEMS Rapid Mapping service operates 24/7,27

providing geospatial information on the impact of selected disasters world-28

wide using both optical and radar satellite images (Ajmar et al., 2017). In29

this paper, we present CEMS’s new Global Flood Monitoring (GFM) compo-30

nent, which provides in near real-time, continuously, and fully automatically,31

flood maps together with contextual auxiliary layers.32

1.2. Systematic observation capabilities of Sentinel-133

The potential of SAR sensors for flood mapping has been recognised since34

the inception of spaceborne SAR missions in the second half of the 20th cen-35

tury. Following the launch of Seasat in 1978, the first civil satellite equipped36

with an L-band SAR sensor, researchers started exploring the data for flood37

mapping and water resources evaluation (Imhoff et al., 1987). SAR technol-38

ogy is particularly effective in detecting surface water features under cloudy39

conditions, thanks to its ability to penetrate the atmosphere at microwave40

frequencies and the contrasting return signals from smooth water surfaces41

compared to rough terrain (Lewis, 1998). This capability allows SAR to42

overcome the limitations posed by cloud cover, which often obscures visibil-43

ity for optical satellite systems, particularly during the initial phases of a44

flood. Consequently, Imhoff et al. (1987) predicted that SAR would become45

a powerful tool for measuring and monitoring flood progression as satellite-46

acquired SAR imagery becomes available worldwide in the 1990s.47

This prediction turned out to be only partially true. While the first gen-48

eration of SAR satellites launched in the 1990s, including ERS-1 and ERS-249

from Europe, JERS-1 from Japan, and Radarsat from Canada, enabled nu-50

merous scientific studies that investigated algorithms for extracting flood51

extent (Oberstadler et al., 1997; Wang, 2004), their impact on real-world52

flood monitoring efforts was limited. The problem was not the quality of the53

data, which was excellent for a first-generation technology (Meadows et al.,54
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2001), but rather data availability. Essentially, due to the lack of frequent ob-55

servations, one had to be ”fortunate” to obtain a high-resolution SAR image56

of a flood (Kiage et al., 2005). This had technical and organisational rea-57

sons. The main technical constraints stem from fixed satellite orbits and the58

high energy demand of high-resolution SAR imaging modes. Space agencies59

tried to mitigate these restrictions by developing SAR instruments with mul-60

tiple imaging modes that enable the acquisition of SAR images with varying61

spatial extents, resolutions, and incidence angles (Raney et al., 1991). Con-62

sequently, users had to select and request appropriate SAR images several63

days in advance of acquisitions, which is very problematic, particularly for64

flood mapping applications.65

Improving data availability during flood situations can be accomplished66

through various strategies. The most straightforward solution is to gather67

data from as many SAR (and optical) satellites as possible (Voigt et al.,68

2007), a concept supported by the International Charter on Space and Major69

Disasters. This strategy is gaining momentum with the deployment of large70

fleets of small, programmable SAR satellites, as seen with new commercial71

SAR data providers (Ignatenko et al., 2024). A crucial component for the72

success of this strategy is to have advance knowledge of the locations requiring73

data collection. This can be facilitated by leveraging hydrological model74

predictions (Boni et al., 2016; Wania et al., 2021) and monitoring social75

media posts (Rossi et al., 2018). An alternative strategy is to develop SAR76

missions that provide frequent high-resolution coverage without the need for77

programming-specific image acquisitions. This was the road chosen for the78

Sentinel-1 mission. Instead of offering many different imaging modes like79

its predecessors, Sentinel-1 was developed to operate in a limited number80

of pre-programmed, conflict-free modes, allowing for high-resolution imaging81

of the Earth’s surface with extended swath width and duty cycles (Torres82

et al., 2012). Additionally, from the outset, Sentinel-1 acquisitions have83

been scheduled according to a stable and predefined observation scenario,84

with sufficient resource margin to flexibly handle emergency requests (Potin85

et al., 2012). The duty cycle, which determines the sensor’s effective ground86

coverage per orbit revolution, is probably one of the most overlooked SAR87

mission characteristics. With a duty cycle of 28 min and a swath width of up88

to 250 km, even a single Sentinel-1 satellite achieves a daily global coverage89

unmatched by any of its predecessors or small SAR satellite swarms. For90

the Sentinel-1 Next Generation, the duty cycle will be further extended to91

approximately 38 min and the swath width to 400 km (Torres et al., 2024).92
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Sentinel-1 was developed as a constellation of two SAR satellites flying93

in a near-polar sun-synchronous orbit with a 12-day repeat cycle (i.e. the94

time between two successive identical orbits). Together, the two satellites95

achieve a combined orbit repeat cycle of 6 days. The first two satellites,96

Sentinel-1A and Sentinel-1B, were launched in April 2014 and April 2016, re-97

spectively. Unfortunately, Sentinel-1B failed prematurely in December 2021.98

Sentinel-1C was launched in December 2024 and Sentinel-1D will follow in99

2025. The principle Sentinel-1 acquisition mode over land is the Interfero-100

metric Wide (IW) swath mode, which captures three sub-swaths using an101

advanced ScanSAR technique introduced by De Zan and Monti Guarnieri102

(2006). This results in 250 km wide images with a spatial resolution of ap-103

proximately 3 m in range and 22 m in azimuth directions (single look). The104

on-board SAR sensor can emit and receive polarized electromagnetic waves105

along both vertical (V) and horizontal (H) planes. The base configuration106

over land is to collect IW imagery in VV and VH polarisation. According107

to the Copernicus Sentinel Data Access Annual Report 2023, the Sentinel-1108

mission produces up to 6 terabytes daily and the delivery time of near-real-109

time products can be as fast as 1 hour after data acquisition. The average110

revisit time (i.e. the time between two subsequent images of the same area,111

which may be observed from different orbits) of two Sentinel-1 satellites is112

illustrated in Fig. 1, based on all IW images acquired by Sentinel-1A and113

Sentinel-1B from 2016 to 2021. Europe is covered best, with revisit times114

ranging from 1 to 3 days. For other priority regions, as outlined in the obser-115

vation scenario, the average revisit time is between 4 and 6 days. Most other116

land areas are observed every 6 to 12 days, although some individual orbits117

covering high-latitude regions, Africa, islands, and coastal regions have even118

longer revisit intervals.119

< Fig. 1 >120

1.3. SAR-based flood mapping121

Flood mapping is among the first and most important applications of122

spaceborne SAR missions (Amitrano et al., 2024). Most flood mapping stud-123

ies start from the premise that backscatter from water surfaces is lower than124

that from surrounding land. Consequently, many algorithms concentrate on125

detecting areas of low backscatter within individual SAR images. Assum-126

ing that all detected areas represent water surfaces, flood extent is obtained127

by subtracting permanent water bodies (Twele et al., 2016; Rahman and128
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Thakur, 2018). The techniques used for mapping water surfaces are diverse,129

ranging from multi-scale thresholding methods to fuzzy classifiers and deep130

learning approaches, often enhanced by post-processing steps for image im-131

provement (Bentivoglio et al., 2022; Amitrano et al., 2024). While these132

algorithms generally perform well under ideal conditions, various physical133

factors can disrupt the assumption that backscatter from flooded areas is134

consistently low while that from land is higher. Some effects can even com-135

pletely obstruct the detection of flooded areas.136

The physical mechanism responsible for the high contrast in radar im-137

agery between flooded and non-flooded terrain is the specular, mirror-like138

reflection of SAR signals from smooth water surfaces, which produces very139

low backscattered amplitude. However, various factors – wind, rain, variable140

water depths, and obstacles obstructing water flow – can induce ripples and141

waves on the water surface that significantly increase backscatter (Dasgupta142

et al., 2018). Additionally, vegetation and other objects that extend above143

the water’s surface can increase backscatter due to direct scattering from144

these objects and double bounce effects occurring between the water surface145

and the scattering elements. In these situations, the contrast between flooded146

and non-flooded areas may lessen or disappear entirely. When double bounce147

effects are pronounced, it may even be possible to identify flooded vegetation148

and urban regions by detecting very strong backscatter echoes (Tsyganskaya149

et al., 2018; Mason et al., 2014).150

Even when backscatter from the water surface is low, confusion can arise151

with water-free land areas that also appear dark in SAR images (Lewis, 1998;152

Zhang et al., 2020). These water-lookalike areas include sandy (beaches,153

sand dunes, etc.) and paved (airport runways, parking lots, etc.) surfaces,154

which have a smooth texture at radar wavelengths, resulting in consistently155

low backscatter throughout the year. Other land surfaces may exhibit low156

backscatter only during specific seasons or environmental conditions, such157

as when the soils and vegetation are dry, frozen or covered by wet snow158

(Pulvirenti et al., 2014). Additionally, SAR imagery exhibits dark, noisy159

patches in radar shadow regions. All these water-lookalike areas contribute160

to ambiguities in SAR image classification, leading to false alarms. Such161

false alarms can be removed in sloping terrain by using topographic indices162

that derive drainage patterns or valley bottoms from digital elevation models163

(DEMs) (Huang et al., 2017). In flood mapping, probably the most widely164

used terrain index is the Height Above Nearest Drainage (HAND) index,165

which expresses the height difference between a DEM cell and the closest cell166
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of the drainage network along the actual flow path (Rennó et al., 2008).167

Another, more important way to reduce false alarms is to employ change168

detection techniques that compare a SAR image acquired during the flood169

with a reference SAR image depicting non-flooded conditions (Carincotte170

et al., 2006; Giustarini et al., 2013; Long et al., 2014). The assumption is171

that only SAR pixels showing a drop in backscatter value from the non-172

flood image to the flood image correspond to flooded areas. In addition to173

minimising the false alarm rate, change detection techniques simplify the174

process of establishing thresholds that are effective across various environ-175

ments and weather conditions (Tupas et al., 2023b), and they eliminate the176

need for external datasets to delineate permanent water surfaces. However,177

one challenge is to select suitable SAR reference images that best represent178

’normal’ conditions (Hostache et al., 2012). Furthermore, change detection179

does not solve the problem of underdetection in case the backscatter from the180

flooded areas is elevated due to a rough water surface, emergent vegetation,181

or buildings.182

In their review of SAR-based flood monitoring, Amitrano et al. (2024)183

highlight that monitoring floods in vegetated and urban areas still presents184

significant challenges due to the complex scattering mechanisms that im-185

pede accurate water region extraction. They recommend employing multi-186

dimensional SAR data (e.g. multi-phase, multi-polarisation, multi-frequency)187

to isolate the different scattering mechanisms that contribute to the overall188

received signal. Furthermore, the thematic accuracy of flood mapping algo-189

rithms is often enhanced through the integration of ancillary datasets, such190

as land cover information (Wang et al., 2022), radar shadow masks (Rees,191

2000), and topographic indices (Tupas et al., 2023a). Beyond improving192

mapping accuracy, multi-dimensional SAR data and ancillary datasets play193

a crucial role in estimating retrieval uncertainties and delineating exclusion194

areas where the presence of water simply cannot be determined from SAR195

backscatter observations due to physical reasons (Zhao et al., 2021a), as is,196

for example, the case in tropical forest regions (Carreno-Luengo et al., 2024).197

1.4. Scope of the flood monitoring service and this review198

As noted by Solbo and Solheim already in 2004, operational flood moni-199

toring services require fully-automated methods capable of processing avail-200

able SAR data in near real-time (NRT). One of the pioneering studies that201

investigated the use of Sentinel-1 SAR data for NRT flood mapping was con-202

ducted by Twele et al. (2016). They demonstrated that, without requiring203
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user intervention at any stage of the flood mapping process, time-sensitive204

disaster information could be produced in less than 45 min after a new dataset205

was made available on one of the Sentinel data hubs. Recognising the unique206

opportunities presented by such NRT capabilities to enhance the timeliness207

of information during emergencies, the European Commission initiated a208

feasibility study for an automated, global, satellite-based flood monitoring209

product. The main conclusion of this feasibility study was that state-of-210

the-art, scientific methods for automatically detecting and identifying flood211

events are mature and ready for operational implementation for Sentinel-1212

(Matgen et al., 2019). Following the study’s recommendations on the design213

of the data processing architecture and system requirements (Wagner et al.,214

2020), a fully automatic global Sentinel-1 processing system was set up in215

less than a year and put into operations at the end of 2021 (Salamon et al.,216

2021). This so-called Global Flood Monitoring (GFM) service is a new and217

independent component of CEMS, complementing its flood early warnings218

and on-demand mapping services (Matthews et al., 2025b; Denis et al., 2016).219

All worldwide GFM flood data are freely available in NRT, as well as the220

historic data from an archive covering the complete Sentinel-1 observation221

period (from 2015 to present).222

The CEMS GFM service is designed to provide continuous global flood223

monitoring by automatically processing and analysing all incoming Sentinel-1224

IW images over ice-free land. For cost reasons, the service utilises so far only225

one polarisation of the IW images. VV polarisation was selected over VH226

polarisation because studies have shown that VV polarisation offers slightly227

higher thematic accuracy compared to VH polarisation (Twele et al., 2016).228

When there are no delays in the provision of Sentinel-1 data on the Coperni-229

cus data hubs, users can expect 20 m resolution flood maps within 8 h after230

image acquisition. The service employs three independently developed flood231

mapping algorithms to enhance the robustness and accuracy of flood and232

water extent maps, and to build a high degree of redundancy into the ser-233

vice. To assist users in interpreting the GFM data, the products do not just234

contain binary flood maps but also flood likelihood values and detailed con-235

textual information, including data layers showing permanent and seasonal236

water bodies, environmental conditions that may affect the quality of the237

flood information, and exclusion areas where Sentinel-1 is unable to provide238

flood data.239

In terms of the data processing efforts alone – without even considering240

the complexity of the scientific algorithms – the CEMS GFM service stands241
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out as the largest systematic initiative for operational SAR-based flood mon-242

itoring. Other SAR-based systems typically focus on specific regions, lack243

transparency, or still require some degree of user interaction to start SAR244

data processing. For instance, Ohki et al. (2024) recently introduced the first245

ALOS-2-based algorithms designed for rapid and automated flood detection246

in Japan. Efforts to create regional-scale Sentinel-1-based flood monitoring247

capabilities have often leveraged the Google Earth Engine (GEE), which has248

emerged as a powerful web platform for managing large satellite datasets effi-249

ciently (Velastegui-Montoya et al., 2023). For example, DeVries et al. (2020)250

describe a method for NRT flood monitoring that combines contemporary251

SAR time series with historical Landsat data on the GEE, enabling rapid252

discrimination of floods and previously inundated areas. Tsyganskaya et al.253

(2018) present an advanced GEE solution by incorporating both ascending254

and descending passes, integrating slope and elevation parameters to reduce255

false positives in hilly terrains, and optimising on-the-fly processing to elim-256

inate unnecessary computations.257

The purpose of this paper is to give a comprehensive overview of the258

CEMS GFM service, discussing in Section 2 how the service was set up to259

benefit from novel scientific algorithms and Big Data solutions in a cloud260

platform environment. The service rests on a global Sentinel-1 backscatter261

datacube system that allows analysing the complete mission data archive for262

all continental land surface areas. After presenting results in Section 3, the263

technical and scientific challenges encountered during the first three years of264

operations are discussed in Section 4. Finally, in Section 5 we identify the265

main discrepancies between the current characteristics of the CEMS GFM266

service and user needs, and provide directions for scientific research and267

system development to enhance NRT flood monitoring capabilities.268

2. Methods269

2.1. Approach270

The task of SAR-based flood mapping is commonly approached from an271

image classification perspective (Manavalan, 2017). In contrast, the CEMS272

GFM service treats it as a geophysical variable retrieval problem, similar to273

methodologies used for soil moisture (Quast et al., 2023) or biomass (San-274

toro and Cartus, 2018) retrievals. The key distinction is that image-oriented275

approaches focus on classifying water surfaces visible in SAR images, while276
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geophysical approaches emphasise the physical aspects of the problem, tak-277

ing into account the sensitivity of backscatter measurements to the target278

variable under varying environmental conditions. This perspective calls for279

an accurate description of retrieval uncertainties accounting for both the vis-280

ible and hidden components present within a SAR image. Consequently, the281

CEMS GFM service was designed not only to map flooded areas evident in282

the Sentinel-1 images but also to describe the associated uncertainties and283

exclusion cases. It achieves this by leveraging the information content of284

the Sentinel-1 time series and by fusing single-image, dual-image, and time285

series-based flood mapping algorithms using ensemble approaches. Addition-286

ally, contextual information layers are derived by combining Sentinel-1 data287

with ancillary datasets, such as surface water data, forest maps and a global288

settlement data set.289

The GFM workflow is depicted in Fig. 2, illustrating the step-by-step290

generation of the GFM data products from the Sentinel-1 IW Ground Range291

Detected (GRD) images and ancillary data. The first step of the NRT work-292

flow is to preprocess the GRD images, producing geometrically and radiomet-293

rically corrected images of the backscattering coefficient σ◦. The σ◦ images294

are then ingested in a global Sentinel-1 datacube (Section 2.4.1) and for-295

warded to the three flood classification algorithms (Sections 2.2.1 to 2.2.3)296

and the advisory flag module (Section 2.3.3). After classifying each σ◦ image297

using the three complementary flood mapping algorithms, they are combined298

using two ensemble approaches that produce a binary flood map and a flood299

likelihood layer, respectively (Section 2.2.4). The NRT workflows utilises300

additional inputs that were derived offline by analysing the historic data301

within the Sentinel-1 datacube along with high-resolution ancillary datasets,302

namely a harmonic backscatter model required by the time series algorithm,303

monthly reference water maps (Section 2.3.1) and the exclusion mask (Sec-304

tion 2.3.2). In the following subsections, we examine the scientific literature305

and key arguments that influenced the design of the different algorithms and306

technical solutions. More detailed descriptions of each processing step and307

the associated technical specifications can be found on the Wiki pages of the308

GFM service (https://extwiki.eodc.eu/en/GFM). The Wiki pages also serve309

as a register of the changes made in the GFM implementation. This paper310

describes GFM version v3.2.0 released on 27th November 2024.311

< Fig. 2 >312
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2.2. Flood mapping algorithms313

The three algorithms used for mapping flood extent have been developed314

by the German Aerospace Centre (DLR), the Luxembourg Institute of Sci-315

ence and Technology (LIST), and the Vienna University of Technology (TU316

Wien). Each algorithm employs distinct strategies and data inputs to ad-317

dress the complex scattering mechanisms, resulting in outputs that are not318

directly comparable at first glance (see Table 1). The single-image algorithm319

from DLR estimates the total water extent captured in an image, which in-320

cludes both seasonal and permanent water bodies as well as flooded areas.321

Next, the dual-image algorithm from LIST compares the flood image with322

a recent SAR scene acquired from the same orbit, analysing the statistical323

properties of both the backscatter intensity and the changes observed be-324

tween the two SAR images. It can therefore describe recent water and flood325

dynamics. Finally, the time-series algorithm developed by TU Wien focuses326

on the difference between the flood image and a reference SAR image simu-327

lated by a harmonic backscatter model that was trained on historic Sentinel-1328

observations. As a result, the TU Wien algorithm provides the flood area in329

relation to a long-term seasonal mean. The differences in the target variables330

of the three algorithms can be reconciled by using reference water maps that331

allow distinguishing between permanent inland water, seasonal flooding, and332

the real flood extent. The main scientific concepts behind each of the three333

algorithms are discussed in the following.334

< Table 1 >335

2.2.1. Single-image classifier336

The algorithm from DLR is designed to derive individual scene-dependent337

threshold values for data of various SAR sensors acquired with different sen-338

sor configurations (i.e., polarisation, beam mode, and incidence angle) and339

estimates the total water extent captured in one single image. It was orig-340

inally developed by Martinis et al. (2009, 2015) for automatic flood detec-341

tion in TerraSAR-X/TanDEM-X data, and was adapted to Sentinel-1 data342

by Twele et al. (2016). The classification is initialised by an unsupervised343

hierarchical tile-based thresholding procedure, which solves the water detec-344

tion problem even in large-size SAR data with small a priori probabilities345

of the class-conditional densities of water in a time-efficient manner. First,346

the SAR imagery are tiled according to a bi-level quadtree structure and347

a limited number of tiles are selected, which are characterised by a high348
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probability to represent a bimodal distribution of the classes to be separated349

(i.e., water and non-water areas). Local threshold values are computed from350

histograms of the selected tiles using a parametric thresholding approach351

(Kittler and Illingworth, 1986). A global threshold computed based on the352

arithmetic mean of the local thresholds is applied to the SAR data to derived353

an initial water mask. In order to exclude water look-alikes and to reduce354

under-estimations, the initial classification result is optimised using a fuzzy355

logic-based post-classification approach by combining different information356

sources (backscatter, elevation and slope information as well as size of ini-357

tially derived water bodies). Fuzzy region growing is performed in order to358

iteratively enlarge the water bodies until a tolerance criterion is reached and359

to increase the spatial homogeneity of the detected water areas. The HAND360

index is used to reduce potential misclassification in non-flood-prone regions361

with an empirically defined value above the drainage network. Finally, the362

monthly reference water reference maps are used to separate flooded areas363

from permanent or seasonal water bodies.364

2.2.2. Dual-image classifier365

LIST’s flood mapping algorithm is fundamentally based on a dual-image366

approach utilising SAR from the same orbit, applying a sequence of statis-367

tical backscatter modelling, region growing and change detection (Matgen368

et al., 2011). It was initially designed to enable an automated on-demand369

mapping of water bodies to support disaster risk reduction at large scale.370

It later evolved into an always-on systematic monitoring tool that analyses371

newly obtained pairs of SAR images acquired from the same orbit and up-372

dates a regional floodwater extent with each new image acquisition (Chini373

et al., 2017, 2020). This algorithm operates iteratively, enforcing a systematic374

mapping of water body and flood dynamics on a large scale. The process375

is initiated by calibrating the parameters of the probability density func-376

tions (PDFs) to automatically and adaptively retrieve thresholds for the377

region-growing process. This involves modelling backscatter values linked378

to open water bodies and changes derived from flood and difference images,379

respectively. The employed hierarchical split-based approach identifies spe-380

cific subsets of the images characterised by a substantial amount of water and381

changed pixels, where the bimodality of the histogram becomes evident. This382

characteristic facilitates a more robust estimation of the model parameters.383

The advantages of this dual-image method include its ability to distinguish384

between floodwater and pre-flood water bodies while simultaneously lever-385
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aging the fact that image pairs allow distinguishing slow and fast changing386

processes impacting backscatter. This allows filtering out categories that387

exhibit water-like backscattering values, including shadows and smooth sur-388

faces, as well as improving the detection of backscatter reduction caused by389

vegetation and dry soils. Utilising reference and flood images from the same390

relative orbit and with identical incidence angles minimises false alarms re-391

sulting from varying geometrical acquisition characteristics. Furthermore,392

selecting images that are temporally closest reduces the effects of variations393

in vegetated regions (Zhao et al., 2021b), rendering this method particularly394

effective for Sentinel-1 data, which features a 6-day repeat cycle and ensures395

systematic and consistent image collection. This change detection config-396

uration allows for the identification of waters that have emerged since the397

previous satellite acquisition. Subsequently, the algorithm analyses regions398

where the floodwater might have diminished in comparison to the reference399

image. The two types of detected changes are ultimately employed to update400

the flood extent map generated in the previous satellite cycle.401

2.2.3. Time-series classifier402

The time-series based flood mapping algorithm is based on two decades403

of research carried out at TU Wien aimed at large-scale monitoring of surface404

water dynamics from SAR data. Initial research concentrated on monitor-405

ing wetlands in boreal and sub-arctic environments, where simple thresh-406

olding methods proved effective due to the strong contrast between water407

bodies and surrounding land areas (Bartsch et al., 2007). However, when408

applying these methods to regions in Africa (Bartsch et al., 2009) and Asia409

(Greifeneder et al., 2014), it became clear that more sophisticated approaches410

were necessary to account for spatial backscatter patterns. This realisation411

led Schlaffer et al. (2015, 2016) to develop a harmonic backscatter model that,412

after calibration with historical backscatter time series, enables the simula-413

tion of expected backscatter values for each pixel and day of the year. By414

comparing observed backscatter with expected values, it becomes possible to415

identify anomalously low or high backscatter, with low values indicating open416

flood water and high values pointing to flooded vegetation. To quantify the417

uncertainty, the difference between observed and expected backscatter was418

interpreted as a measure of confidence, prompting the introduction of PDFs419

for land and open water surfaces, and the estimation of flood probabilities420

using Bayes’ theorem. While Schlaffer et al. (2017) worked with Advanced421

Synthetic Aperture Radar (ASAR) data from the ENVISAT mission, which422
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sampled backscatter observations quite uniformly over the entire incidence423

angle range, the application of this method to Sentinel-1 data proved chal-424

lenging due to the mission’s systematic coverage, which results in very un-425

even data sampling at different locations on the Earth. Therefore, Bauer-426

Marschallinger et al. (2022) had to adopt the Bayesian inference model for427

application with Sentinel-1 IW data collected from different ascending and428

descending orbits. They also refined the methods for the masking of radar429

shadow areas, water look-alike areas, areas of no-sensitivity due to obstruc-430

tive land cover, and ill-posed SAR settings, thereby enhancing classification431

robustness.432

2.2.4. Ensemble algorithms433

The GFM ensemble algorithms integrate the results from the three in-434

dividual flood mapping algorithms in order to produce two output layers,435

namely a binary flood map and a flood likelihood layer (Fig. 3). The binary436

flood map is the main GFM output and is based on the idea of combining437

the three flood maps by means of a majority voting mechanism. However,438

there are instances when only one or two of the three individual flood map-439

ping algorithms produce valid output files for an incoming Sentinel-1 scene.440

Therefore, in order to make best use of all acquired scenes, the ensemble441

algorithm producing the binary flood maps is essentially a decision tree that442

considers several cases. In the standard case, when all three flood mapping443

algorithms yield valid results, the binary flood map is generated by classifying444

pixels as flooded when at least two of the three algorithms had classified the445

pixels as flooded. In cases where one algorithm fails to provide a result, the446

remaining two algorithms ideally reach a consensus. If there is disagreement447

between them, the classification with the greater confidence level is selected.448

If both algorithms disagree but have equal confidence, the ensemble defaults449

to classifying the pixel as flooded. If only a single algorithm returns a result,450

this result is adopted by the ensemble.451

< Fig. 3 >452

To ensure that known water bodies are not mistakenly marked as flooded453

areas, all results are corrected using the monthly reference water maps, which454

include permanent and seasonal water extents (Section 2.3.1). If the majority455

of algorithms classify a pixel as water but it overlaps with a (semi-)permanent456

water body in the reference water map, this flood detection is overwritten.457
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The total water extent can then by determined by blending the flood extent458

and the reference water maps. In addition, an exclusion mask as described459

in Section 2.3.2 is applied to remove misclassified flood pixels arising from460

non-sensitivity, radar shadow, permanent low backscatter, or topographic461

distortions. Finally, ocean areas are excluded based on the Copernicus Water462

Body Mask.463

The second output from the GFM ensemble module, the flood likeli-464

hood layer, is derived independently from the binary flood layer by fusing465

the flood likelihoods estimates from the three individual algorithms (Krul-466

likowski et al., 2023). The flood likelihood indicates the probability of flood467

detection for each pixel. Lower likelihood scores signify greater confidence in468

non-flood classifications, while higher values indicate increasing confidence469

in flood classifications. Since the TU Wien’s Bayesian algorithm outputs un-470

certainties, these are inverted to align with the likelihood values of the DLR471

and LIST algorithms before combining them in the ensemble. The ensemble472

flood likelihood is then computed as the arithmetic mean of all successfully473

computed likelihood layers from the three individual algorithms. While not474

carried out by the GFM service itself, the flood likelihood layer may be475

turned quite easily into a binary flood map adapted to local conditions by476

fine-tuning a threshold above which a pixel is classified as flood and below477

as non-flood.478

2.3. Contextual information479

Contextual information on local conditions and how they impact the SAR480

measurements is crucial for the correct interpretation of SAR-based flood481

maps, allowing users to assess the usability of the flood product and the im-482

pact of the flood. The first important contextual data layers are reference483

water maps that allow distinguishing between flooded areas and the ‘normal’484

permanent and seasonal water extent as seen by the SAR sensors. To achieve485

this, the reference water maps must also be derived from the same SAR sen-486

sor. Failing to do so, such as when comparing SAR-derived flood maps with487

optical surface water data, leads to systematic differences related to the dif-488

ferent physical sensitivities of the sensors. Furthermore, emergency managers489

and other users must be aware of the areas where the SAR sensor cannot de-490

tect floods due to physical factors. Unfortunately, explicit information about491

exclusion areas is often missing in operational services and scientific stud-492

ies (Lahsaini et al., 2024; Al-Ruzouq et al., 2024). Furthermore, users must493
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be informed about environmental and meteorological conditions that could494

interfere with flood detection.495

The following subsections describe the methods used by the GFM service496

to generate monthly reference water maps, an exclusion mask, and advisory497

flags, which are all tailored to the physical characteristics of the Sentinel-1 VV498

data. Finally, to help GFM users quickly evaluate potential flood impacts,499

the flood maps are combined with land cover and population datasets.500

2.3.1. Reference water extent501

In satellite-based flood mapping, inundation extent is typically derived by502

comparing crisis data with water extent under normal hydrologic conditions,503

either through change detection or by using static reference water masks.504

Change detection often involves manually (O’Grady et al., 2011; Ban and505

Yousif, 2012) or automatically (Hostache et al., 2012; Li et al., 2018b) select-506

ing pre-event images from the same season. Reference water maps, derived507

from independent sources, can also differentiate flood waters from normal508

conditions (Martinis et al., 2015; Twele et al., 2016), though their suitability509

depends not only on matching sensor characteristics but also stable hydro-510

logic conditions. For areas with seasonal changes, month-by-month mapping511

is preferable to capture temporal variations in surface water extent (Marti-512

nis et al., 2022). In this context, statistical computations on remote sensing513

time-series data are promising to reflect seasonality in the products (Fichtner514

et al., 2023). Water frequency approaches rely on calculating the frequency of515

water presence over time to distinguish permanent water bodies from seasonal516

ones (Wieland and Martinis, 2019). Median image approaches, in contrast,517

use the median pixel values over a reference time period to generate a single,518

stable representation of water extent that smoothens out transient changes,519

making it well-suited for identifying consistent water features.520

As recommended by Martinis et al. (2022), the GFM service has derived521

twelve monthly reference water maps, each reflecting the extent of both per-522

manent and seasonal water bodies. These reference water maps were pro-523

duced using an ensemble water mapping algorithm based on Sentinel-1 me-524

dian backscatter intensity data over a predefined time period of several years.525

The first version of the data was based upon two years (2019-2020), the most526

recent one upon five years (2017-2021). The ensemble method uses only the527

DLR and LIST algorithms that map water extent and calculate likelihoods528

for each pixel. The TU Wien algorithm was not used as it maps only flood529

areas. In cases where the DLR and LIST algorithms disagree on water clas-530

16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5110703

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



sification, the one with the higher confidence level dictates the final result.531

In a post-processing step, an exclusion layer, based on a buffered version532

of the maximum extent of the Landsat-based Global Surface Water (GSW)533

product (Pekel et al., 2016) and the Copernicus DEM Water Body Mask534

(Franks and Rengarajan, 2023), is applied to address potential misclassifica-535

tion caused by radar shadows or rough surfaces. Fig. 4 shows an example536

of the GFM reference water maps for Bangladesh with strong hydrological537

variability throughout the year.538

< Fig. 4 >539

2.3.2. Exclusion mask540

Even though it may not be apparent from visual inspection, a SAR im-541

age typically contains many pixels where flood mapping is impossible due542

to land cover and topography (Boni et al., 2016; Zhao et al., 2021a). For543

example, over dense vegetation and urban areas C-band backscatter is nor-544

mally quite stable, making the SAR measurements insensitive to surface545

inundation. Moreover, water-lookalike areas (e.g., flat and impervious sur-546

faces, sandy surfaces) and radar distortion areas (e.g., layover and shadow)547

pose challenges. For identifying affected pixels, a variety of methods and548

ancillary datasets have been developed. Urban areas and dense vegetation549

can be masked using existing land use maps and lidar-derived digital surface550

models (Mason et al., 2018; Grimaldi et al., 2020). Sandy areas, which often551

mimic water surfaces in SAR imagery, can be excluded using a sand exclu-552

sion layer derived from SAR time series (Martinis et al., 2018). Additionally,553

geometric and radiometric distortions in SAR images caused by topography554

can be filtered using the HAND index (Huang et al., 2017) and DEM-based555

shadow and layover masks (Mason et al., 2018). For the systematic mapping556

of all these effects at large scales, Zhao et al. (2021a) introduced a decision-557

tree-based approach for generating exclusion maps solely from SAR data.558

Similarly, the GFM service derived a global exclusion mask based on a sta-559

tistical analysis of the Sentinel-1 datacube, refined using various ancillary560

data sets. This exclusion mask is an overlay of several thematic sub-masks,561

each designed to address specific effects:562

1. No-sensitivity areas : Pixels, where SAR backscatter is largely insensi-563

tive to flooding, are identified using the Sentinel-1 Global Backscatter564

Model developed by Bauer-Marschallinger et al. (2021), a Global Forest565
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Change dataset for vegetation (Hansen et al., 2013), as well as static566

masks for urban regions (Marconcini et al., 2020).567

2. Non-water low-backscatter areas : Tarmac, sand, and other smooth sur-568

faces often display consistently low backscatter values, similar to those569

of open water surfaces. Since it is not feasible to differentiate these sur-570

face types from water surfaces based solely on their backscatter char-571

acteristics, all pixels showing low backscatter (below -15 dB) in more572

than 70% of the time series and not belonging to the reference water573

layer are masked.574

3. Topographic distortions : Topography can distort the geometric and575

radiometric properties of SAR images. Taking benefit of the fact that576

floods are unlikely on high elevations above the nearest drainage, areas577

with HAND values greater than 15m are excluded (Chow et al., 2016).578

4. Sentinel-1 radar shadows : Shadows caused by terrain (e.g., rough ter-579

rain or forest edges) and non-terrain factors are masked by comparing580

temporal mean backscatter values between ascending and descending581

Sentinel-1 tracks.582

5. Insufficient coverage: Areas with no or insufficient historic Sentinel-1583

coverage are excluded, as in these areas no parametrisation of the al-584

gorithms is possible.585

The obtained binary GFM exclusion mask integrates all pixel locations586

where the SAR data cannot deliver the necessary information for robust flood587

delineation.588

2.3.3. Advisory flags589

While the GFM exclusion masks deal with static effects at high resolution,590

there are many highly dynamic phenomena that can impair the detection of591

flooded areas in SAR images over larger areas. In particular, the intermittent592

or semi-permanent occurrence of phenomena such as wet snow, frost and dry593

soil or wind-roughened water can result in limited flood mapping capabilities594

(Pulvirenti et al., 2014; Wieland and Martinis, 2019). To address this issue,595

the GFM service provides an advisory flag output layer, whose function is to596

raise the user’s attention in carefully handling flood mapping results within597

flagged regions. In contrast to the exclusion layer, pixels highlighted by598

the advisory flags are not removed from the flood maps. For each incoming599

Sentinel-1 scene processed by the flood mapping algorithm, two distinct flags600

are produced in NRT:601
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1. Low-regional backscatter flag : Dry soil conditions, snow and frost can602

lead to a drop in backscatter, leading to wrongful flood mapping results603

over large areas affected by the specific weather conditions. In the GFM604

service those areas are outlined by comparing the monthly backscatter605

signature with the incoming Sentinel-1 scene at a 20 km scale. Pixels606

with detected low-backscatter values are then enclosed into a 14 km607

buffer zone, constituting the final advisory-flagged region.608

2. Rough water surface flag : Water bodies can be affected by wind dis-609

turbances on the surface, altering significantly the typical backscatter610

behaviour observed by SAR. Thus, given the calm water signature from611

the backscatter time-series data as a reference, it becomes possible to612

delineate water pixels (as indicated by the reference water layer) that613

exhibit a significant increase in backscatter. A 5 km buffer zone around614

the wind-altered water pixels is flagged for potential wind impact.615

Areas overlapped by both flags are highlighted separately.616

2.3.4. Flood impact indicators617

When complete and accurate flood maps are available it is possible to618

carry out rapid flood impact assessments by superimposing different expo-619

sure layers to the final flood map (Cian et al., 2024). While Sentinel-1 cannot620

map flooding in dense urban settings and other exclusion zones, as discussed621

in Section 2.3.2, the GFM service still computes two rapid flood impact in-622

dicators to address the critical need for such information during emergency623

situations, namely indices estimating the affected population and land cover624

respectively. The source of information for estimating the affected population625

is the Global Human Settlement Layer (GHSL), specifically the GHS-POP626

dataset (Schiavina et al., 2023). This dataset provides a raster representa-627

tion of population distribution and density, indicating the number of people628

living within each grid cell. It is available at various spatial resolutions and629

for different time periods. For the GFM service, the dataset at 100 m res-630

olution and with the Epoch 2020 of version R2022A is used. This dataset631

was resampled from 100 m to the 20 m grid used for the Sentinel-1 datacube632

(Section 2.4.1. This involved dividing the input pixels by the number of 20633

m pixels that fit into one 100 m pixel. As illustrated by Fig. 5, the affected634

number of people is then estimated by superimposing the GFM flood layer635

with the resampled human population layer.636

< Fig. 5 >637
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For obtaining a quick estimate of the affected landcover the GFM flood638

maps are superimposed upon the Global Land Cover dataset provided by the639

Copernicus Land Monitoring Service. The Copernicus Global Land Cover640

dataset includes 23 classes, is available globally at a 100 m resolution and641

is updated annually. This dataset was also resampled from 100 m to the 20642

m grid. This information allows for an initial assessment of affected land643

cover or land use types, such as determining the extent of agricultural areas644

impacted by the flood within the observed flood extent area.645

2.4. Implementation646

The scientific methods outlined in the previous section were implemented647

within a dedicated cloud platform environment to enable its global and au-648

tomatic processing in near real-time, utilising a datacube-centric processing649

architecture (Wagner et al., 2020). This allows for straightforward compar-650

isons of each incoming backscatter image with the entire backscatter history,651

making it possible to run any type of time-series analysis on a per-pixel ba-652

sis. In terms of storage and computational requirements, such a datacube653

solution is far more demanding than single-image SAR processing pipelines,654

such as the one used by Twele et al. (2016) to demonstrate the potential655

of Sentinel-1 IW images for fully-automatic flood mapping. However, as al-656

ready pointed out by Cossu et al. in 2009, fast access to both recent and657

historical data requires more advanced cloud platform solutions. Since then,658

advancements in cloud computing technologies (Gomes et al., 2020) and dat-659

acube solutions (Chatenoux et al., 2021) have greatly enhanced capabilities660

for storing, processing, analysing, and disseminating large datasets like those661

generated by Sentinel-1. The following subsections describe the solutions662

adopted by the GFM service.663

2.4.1. Sentinel-1 backscatter datacube664

The GFM service builds upon the Sentinel-1 backscatter datacube as665

described by Wagner et al. (2021), which represents a complete collection666

of Sentinel-1 IW data for all continents (except Antarctic) sampled to a667

20 m fixed-Earth grid. The datacube runs on the cloud infrastructure of the668

Earth Observation Data Center (EODC) (https://portal.services.eodc.eu/),669

enabling both near real-time image-based applications and offline analyses670

of multi-year time series. Like other SAR datacube solutions such as re-671

alised by the Google Earth Engine (Mullissa et al., 2021), it solves the prob-672

lem of providing fast and efficient access to Sentinel-1 backscatter time se-673
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ries by projecting all Sentinel-1 IW images, which come as variable swath-674

based images, onto a fixed-Earth grid before tiling. This preprocessing step,675

though resource-intensive, is essential because performing on-demand Range-676

Doppler terrain correction is time-consuming, especially when covering large677

regions and/or extended time periods (Navacchi et al., 2022). A key fea-678

ture of this datacube solution is the use of the Equi7Grid that employs the679

equidistant azimuthal projection and divides the Earth surface into seven680

continental zones (Bauer-Marschallinger et al., 2014). Unlike other com-681

monly used large-area grids, the Equi7Grid minimises shape distortions even682

near the zone boundaries. In comparison to the Universal Transverse Mer-683

cator (UTM) based grid as used for Landsat and Sentinel-2, the Equi7Grid684

offers the advantages of a smaller number of zones (7 instead of 62) and685

reduced data redundancy (3% instead of 34%) (Bauer-Marschallinger and686

Falkner, 2023). Thanks to these specifications, the yearly data volume per687

satellite is less than 50 TB, whereas the number of pixels is approximately688

379 billion. The backscatter data are stored as sigma nought (σ◦) values689

and not as radiometrically-terrain-corrected gamma nought (γ◦
RTC) values as690

proposed by Small (2011). While the latter was recognised by the Committee691

on Earth Observation Satellites (CEOS) as the Analysis Ready Data (ARD)692

format for normalised radar backscatter data, it primarily improves the clas-693

sification of SAR data over undulating terrain (Dostalova et al., 2022). Its694

benefits are less obvious in valley bottoms and flat areas, which are most rel-695

evant for flood mapping. Therefore, for the GFM service, we will await the696

official switch to γ◦
RTC , which is expected to happen in the 2026+ timeframe.697

2.4.2. Near real-time workflow698

The NRT data production workflow operates on a fully independent pro-699

cessing environment within EODC’s cloud infrastructure. This setup includes700

570 virtual CPUs (vCPUs) and 3 TB of memory, distributed across multiple701

worker units to ensure a service availability of 99%. As illustrated by Fig.702

2, the NRT workflow starts from fetching the latest Sentinel-1 IW images.703

Only Ground Range Detected at High resolution (GRDH) images in VV po-704

larisation are used, while VH polarisation is neglected. The incoming scenes705

are then preprocessed and registered in the datacube. The output of the706

preprocessing routine is encoded and gridded SAR data ready for both spa-707

tial and temporal analysis. The Equi7Grid with a 20 m pixel spacing and a708

300km gridding (T3 level) serves as efficient working grid representation for709

all steps in the data processing workflow. Consequently, all input datasets,710
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including auxiliary datasets from external sources, must be re-projected to711

the Equi7Grid beforehand. After the successful preprocessing, the NRT flood712

data production workflow is triggered. First, the tiled backscatter as well as713

auxiliary data sets are mosaicked and cut to cover the whole extent of the714

input Sentinel-1 scene. As a next step, the processing of the individual flood715

mapping algorithms is initiated. For the dual-image classifier described in716

Section 2.2.2 the previous image acquired from the same orbit is extracted717

as additional input. Once the individual algorithms have been executed,718

their results are registered in dedicated databases and the ensemble algo-719

rithm is triggered. In the ensemble, described in 2.2.4, the observed flood720

extent, likelihood values, observed water extent and the exclusion mask are721

produced and afterwards registered. As a last step, the ensemble outputs are722

re-projected to the WebMercator projection which is used in the dissemina-723

tion system described in Section 2.4.4.724

2.4.3. Archive processing725

In addition to the NRT delivery of the GFM flood products, we have726

created a complete GFM data archive using all available Sentinel-1 IW ac-727

quisitions from 2015 onwards, totalling approximately 2 million scenes. This728

offline processing was conducted in the high-performance-computing environ-729

ment at the Vienna Scientific Cluster (https://vsc.ac.at/). The GFM archive730

is continuously expanding, with efforts focused on ensuring compatibility be-731

tween the software versions used for both NRT and archive processing chains.732

The first version of the GFM data archive, based on GFMNRT version v2.1.0,733

was released end of 2023. The current version of the archive was processed734

with GFM NRT version v3.1.0 in early 2024, and is planned for release early735

2025. Access to the GFM data is described in the next subsection. The GFM736

archive processing precedes a comparable effort by Misra et al. (2024) who737

create a 10 years-long Sentinel-1 flood data record using a Neural Network738

model trained with manually labelled SAR images from selected large-scale739

flood events.740

2.4.4. Open data access741

As highlighted by Mostafiz et al. (2022), flood information should be eas-742

ily accessible and continuously evaluated to maximise its usefulness for both743

the public and professionals. Accordingly, GFM data are freely available744

and accessible to all stakeholders upon registration. To meet the needs of745

diverse users, several dissemination systems have been established (Table 2).746
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One way to visualise the GFM flood maps is to use the map viewers of the747

European Flood Awareness System (Matthews et al., 2025a) and the Global748

Flood Awareness System (Matthews et al., 2025b). These map viewers en-749

able users to visualise all GFM product layers and manually download data750

for specific areas of interest (AOI). For more flexible downloading, includ-751

ing single files or time series for one or multiple GFM output layers, a set752

of application programming interfaces (APIs) following the Representational753

State Transfer (REST) standard has been implemented. This standard facil-754

itates access to web resources using a predefined set of operations, allowing755

for seamless integration with virtually any programming language (Iadanza756

et al., 2021). For the analysis of the GFM data in Geographic Information757

System (GIS) environments, a web mapping service based on the GeoServer758

technology was established. Finally, a dedicated webportal was set up to759

enable users to define AOIs, display and download the available products760

for the AOI, and configure the notifications for any new available data. All761

mentioned systems provide the latest available imagery for each Sentinel-1762

overpass. Moreover, users can also request the full time-series (or a subset) of763

all the archived data products. Considering the constantly growing volume764

of the generated GFM output data, concluding the whole archive as well as765

NRT data, easy discoverability and access in a programmatic way is vital to766

include GFM data into processing workflows and applications (Groth et al.,767

2024). That is why, additionally to the aforementioned data access meth-768

ods, we have published the GFM data as an open access collection utilising769

Spatio-temporal Asset Catalogs (STAC). This enables users to search the770

whole GFM output data for regions and time ranges of interest. Filtering771

based on output-specific metadata such as the amount of flooded pixels is772

also possible. The GFM output data itself is stored in the cloud-optimised773

GeoTiff (COG) format in order to improve data reading efficiency and be774

ready for scaleable processing workflows.775

< Table 2 >776

3. Results777

3.1. GFM data product778

The fully automatic algorithms and workflows described in the previous779

section yield ten data layers (Table 3) that are included in the GFM data780

product. The main output layers are the observed flood extent and the781
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flood likelihood layer. Context is provided by the reference water maps, the782

exclusion mask, the advisory flags, and the flood impact indicators. The783

observed water extent is the combination of the observed flood extent and784

the reference water extent. These data fields are complemented by meta-785

data inherited from the Sentinel-1 IW swath products, including the image786

boundaries (footprint), and the next scheduled Sentinel-1 acquisition. The787

latter is important for emergency managers who are awaiting updates on the788

flood situation.789

An exemplary GFM data product is shown in Fig. 6. This scene de-790

picts flooded areas along the river Rhine in the province of North Rhine-791

Westphalia, Germany, during the disastrous flooding that hit Germany and792

the Benelux countries in July 2021 (Tradowsky et al., 2023). As can be793

learned from the backscatter image shown as background of the flood map794

in Fig. 6e, the region is characterised by a mix of agricultural fields, forests,795

urban areas (including the city of Wesel in the southwestern part of the im-796

age), and several permanent water bodies. Many forest areas, such as the797

”Uedemer High Forest” in the western part of the image, are located in more798

elevated terrain. The different landscape features are well captured by the799

exclusion mask layers as discussed in Section 2.3.2. Most of the exclusion800

areas are a result of the presence of forests and urban areas (no backscatter801

sensitivity) and elevated terrain (high HAND index values). In this area802

there are few non-water low-backscatter areas, mostly situated near water803

bodies contained in the reference water map. Potentially these represent804

new water bodies or errors in the reference water map. Radar shadow areas805

are very small and mostly located along forest edges, as is typical outside806

mountainous regions. Some erroneous radar shadow areas can be observed807

along the river course, likely caused by river currents or ships, which can808

impact ascending and descending SAR acquisitions differently.809

< Fig. 6 >810

As can be seen by comparing Figs. 6a to 6c, the flood maps generated by811

the three individual algorithms agree very well. While a systematic evalua-812

tion of the differences between the three algorithms is outside the scope of this813

paper, we found a satisfying agreement for most of the analysed large-scale814

flood events. However, local differences near the borders of the flooded areas815

may arise, for instance, from the way in which each algorithm incorporates816

region-growing and filtering processes. Nevertheless, for our example, the817
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ensemble flood map shown in Fig. 6e closely resembles the individual maps.818

Of particular interest is the comparison with the flood likelihood layer dis-819

played in Fig. 6d. As expected, high flood likelihood values correspond to820

areas identified as flooded in the ensemble flood map. Additionally, it is en-821

couraging to note that in this particular case medium likelihood values are822

found only near the flooded areas and permanent water bodies, while further823

away flood likelihood values are consistently small. This suggests that the824

flood likelihood layers can provide a more complete picture of the flood sit-825

uation, by allowing to identify even pixels that are only partially flooded or826

more challenging to interpret. This impression is further strengthened when827

checking other flood cases where the flood likelihood values often depict the828

river course, whereas the flood map remains patchy.829

3.2. Timeliness830

As the timely dissemination of flood maps is crucial for disaster response831

efforts, a core requirement of the GFM service is delivering GFM output data832

within 8 h after each Sentinel-1 SAR acquisition. In line with the technical833

specifications issued by the European Commission in 2020, procedures have834

been put in place to ensure and evaluate service quality. A set of Key Perfor-835

mance Indicators (KPIs) is used for quarterly monitoring of GFM product836

performance (Seewald et al., 2024). The first KPI measures the percentage of837

time the service was available to users, with a target value of ≥ 99%. A mon-838

itoring system keeps track of the availabilities of all user-facing components839

of the GFM service. For the year 2023, a value of 99.80% was reached. The840

second KPI tracks the percentage of products delivered within the required841

8 h timeframe from actual observation of a Sentinel-1 scene to availability of842

the data on the user front ends. A typical timeline is illustrated in Fig. 7:843

The availability of new Sentinel-1 IW GRDH images is monitored by query-844

ing the Copernicus Data Space Ecosystem every 10 min. Downloading and845

pre-processing the data on the EODC cloud infrastructure takes less than846

10 min and 35 min respectively. The time required for the three scientific847

algorithms and the ensemble product varies more strongly, from 15 to 60848

min with an average of approximately 45 min depending on the complexity849

of the SAR scene. Post-processing and placing the data on the user front850

ends takes less than 10 min. On days when the Sentinel-1 ground segment851

operates nominally, the total time from sensing to dissemination is under 5 h,852

whereas the time from data upload on the Copernicus Data Space Ecosystem853
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to delivery to the users is less than 2 h. On best-case scenarios, the system854

achieved a timeliness from sensing to dissemination even below 90 min.855

< Fig. 7 >856

3.3. Coverage of flood events857

A high spatio-temporal data coverage is essential for effective flood mon-858

itoring. To identify gaps in Sentinel-1 satellite observations and detection859

capabilities, we evaluated the data coverage by assessing the performance of860

the GFM service in detecting 104 global flood events over the past three years861

(i.e. 2022-2024). Note that during this period only Sentinel-1A was opera-862

tional. The results of this analysis are summarised in Fig. 8 and Table 4; the863

complete list of flood events is provided in the Appendix in Table 7. The 104864

events, encompassing small, medium, and large-scale floods from all conti-865

nental regions (except Antarctica), were identified using the Global Disaster866

Alert and Coordination System (GDACS), a cooperation framework between867

the United Nations, the European Commission, and disaster management or-868

ganizations worldwide (https://gdacs.org/). GDACS provides details such as869

affected regions, event duration, fatalities, and displacement figures, support-870

ing disaster response and coordination during major emergencies.871

< Fig. 8 >872

< Table 4 >873

As can be seen from Table 4, the GFM service detected 70.2% of the flood874

events (73 out of 104), for 10 events (9.6%) no Sentinel-1 were acquired, while875

21 events (20.2% ) were not detected, most likely due to unfavourable timing876

of the Sentinel-1 acquisition, with possible failures of more than one algorithm877

another possible factor. Fig. 8 illustrates how detection performance of878

Sentinel-1A varied significantly across continents: Europe, benefitting from879

the overall best coverage, demonstrated the highest success rate, detecting880

95% of events (19 out of 20). Asia and South America followed with a 70%881

detection rate, although several events were missed in both regions. Africa882

showed a detection rate of 65%, with 7 out of 20 events undetected, while883

North America detected 60% of events (9 out of 15), missing 3. Oceania,884

with the smallest sample size of 9 events, exhibited the lowest performance,885

detecting 4 events, missing 3, and encountering 2 instances of unavailable886

Sentinel-1 observations.887
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A notable finding is that all undetected events and cases of unavailable888

Sentinel-1 observations corresponded to small- or medium-scale floods. This889

highlights a critical limitation of the GFM service: its reduced capability to890

detect smaller flood events, particularly in regions with low temporal revisit891

frequencies of Sentinel-1 satellites. The most crucial factor influencing how892

well GFM captures flood extents is the spatial coverage pattern and the893

actual overpass time of the satellite(s) (Wagner et al., 2024). When local894

overpasses coincide with flood peaks, the GFM product aligns best with the895

perception of affected populations and authorities, offering the most useful896

information. Additionally, a dense revisit frequency enables monitoring the897

progression of floods from onset to peak and eventual retreat. This shows898

that, at present, the GFM service is most valuable for large-scale flood events,899

such as the 2022 Pakistan floods (Roth et al., 2023). For small- to medium-900

scale events, however, additional satellite observations or improved revisit901

strategies are needed to enhance detection capabilities.902

3.4. Accuracy903

In addition to timeliness and coverage, the thematic accuracy is the third904

key criterion for evaluating the effectiveness of the GFM service. Given that905

the GFM service cannot exploit more information than what is contained in906

the Sentinel-1 VV-polarised IW imagery itself, the main question is how well907

do the algorithms extract the flooded areas visible in the Sentinel-1 images?908

Note that this is a different question from asking how well do Sentinel-1 flood909

maps capture the total flood extent? In the latter case, also the basic sensor910

limitations play a big role. Nevertheless, since these questions are closely911

related, also efforts targeted to deepen our understanding of the physical912

characteristics of C-band VV backscatter measurements and the efficacy of913

the various contextual layers were undertaken. At the individual algorithm914

level, the algorithm development teams have conducted a series of case stud-915

ies to examine specific aspects of their algorithms and advanced techniques916

for exploiting the Sentinel-1 data (Zhao et al., 2022; Tupas et al., 2023b,a;917

Roth et al., 2023; Martinis et al., 2024; Tupas et al., 2024; Garg et al., 2024;918

Roth et al., 2025). At the GFM product level, the ensemble flood maps919

have been evaluated for selected flood cases (3 every quarter of a year) and920

systematically on a global level, as discussed in the following.921

In the dedicated GFM evaluation activities, the accuracy was deter-922

mined by comparing the automatically-derived GFM binary flood maps with923
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human-interpreted Sentinel-1 images and computing various accuracy met-924

rics based upon the error matrix, such as the Critical Success Index (CSI)925

and Overall Accuracy (OA). The OA is a global measure that treats flood926

and non-flood cases as equally important. As the non-flood class dominates927

outside of flood-affected areas, the OA can be biased towards non-flood ac-928

curacies. The CSI, on the other hand, is better suited for evaluating events929

that occur substantially less frequently than the alternative (Wilks, 2011).930

In our context, the CSI is the number of correct flood pixels divided by the931

total number of flood pixels in either the GFM flood map or the human-932

interpreted reference map. Like the OA, it scales between 0 (worst possible)933

and 100% (best possible value). The accuracy target for the GFM service is934

a CSI value of greater than 70%.935

As results for the current GFM version v3.2.0 are not yet available, we936

report here results from version v2.1.0 that was used for generating the first937

version of the GFM data archive (Section 2.4.3). When computing OA and938

CSI values for 12 selected flood events, which occurred between 2017 and939

2023, Seewald et al. (2024) found consistently high OA values (>96.6%),940

while CSI values varied strongly, from 11.0% to 81.1%. The accuracy target941

was reached for 7 of the 12 events. For the systematic evaluation at global942

scale, a method similar to the one used for the evaluation of the GSW product943

of Pekel et al. (2016) was employed. Following the guidelines given by Card944

(1982) and Olofsson et al. (2014), a stratified random sampling approach was945

implemented to evaluate how accurately a particular pixel is mapped into the946

categories of permanent water, seasonal water, flood, or other areas. For es-947

tablishing the reference data base consisting of tens of thousands of individual948

points, a tool was implemented that allowed trained interpreters to perform949

a blind validation (i.e., without prior knowledge of the mapped class) of the950

sample points based on the production imagery (i.e., Sentinel-1), with visual951

support from Sentinel-2, and various very high resolution images provided952

via Google and Bing Areal maps. For Sentinel-1 and Sentinel-2, pre- and953

post-event time series were provided to facilitate the identification of flood954

events. Each sample point was interpreted multiple times to assess interpre-955

tation uncertainty. The results of the global assessment are summarised in956

Table 5. This table shows globally-aggregated and area-weighted OA and957

CSI values for the three water classes: permanent water, seasonal water, and958

flooded areas. Whereas the OA values suggest a high accuracy for the per-959

manent water body class, seasonal water and flooded areas reach OA values960

of 74.4% and 72.0%, respectively. The CSI values are lower, ranging between961
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43.7% for the flood class to 64.1% for the permanent water body class. To962

get a better understanding of the flood detection capability under various963

environmental conditions, the ∼55,000 sample points were assigned to global964

environmental zones as proposed by Metzger et al. (2013). These zones are965

mainly differentiated according to their temperature (growing degree-days)966

and aridity (from arid, xeric, dry, mesic, moist, to wet). As can be seen967

in Table 6, the best validation results are obtained for regions in the tem-968

perate and tropical zones, while lower accuracies are typically observed in969

arid environments. This is in line with expectations given the difficulties in970

distinguishing sand from water in SAR images. Overall, these results sug-971

gest that the accuracy target had not yet been reached for the investigated972

archive version. Further work is required to determine of how much the CSI973

values can be increased through improvements in the algorithms, or, as will974

be discussed in Section 4.5, whether the lower CSI values could partially be975

attributed to intrinsic constraints in the statistical analysis and uncertain976

reference data.977

< Table 5 >978

< Table 6 >979

4. Discussion980

4.1. A paradigm shift in SAR-based flood monitoring981

While there are already fully-automatic global flood monitoring services982

based upon optical satellite data (Li et al., 2018a), the GFM service is the983

first of its kind in the SAR domain, benefitting from the radars’ capability to984

observe day and night under all weather conditions. Some of the experiences985

made during its first three years of operation aligned with our anticipations986

while others were unexpected. Probably the most notable aspect is the shift987

in perspective, away from the scientific focus on mapping flood scenes as988

accurately as possible to designing the algorithms such that they perform989

equally well for flood and non-flood scenes. In fact, given that only a small990

fraction of SAR images depict flooding, the detection of false positives was991

the biggest concern during the initial phase of the GFM service. The main992

reasons for overdetection are discussed in the following subsection (Section993

4.2). Since it is impossible to create an error-free scientific algorithm that en-994

tirely eliminates overdetections, this issue cannot be resolved purely through995
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scientific and technical methods but requires careful consideration of the way996

of the results are communicated to the users of the data. Another challenge997

is that Sentinel-1, like any other instrument, cannot detect all flooded areas998

due to various technical and scientific constraints. The main causes of un-999

derdetection in flood situations as encountered during the first three years1000

of GFM operation are explored in Section 4.3. From a user perspective, one1001

of the key limitations of the GFM service is its inability to map flooding1002

in urban areas. In this context, the GFM exclusion mask is crucial, as it1003

informs the users where they cannot expect to obtain information from the1004

Sentinel-1 measurements. Equally important for the users are the suitability1005

of the reference water maps (Section 4.4), and the question of how to in-1006

terpret validation results (Section 4.5). Another pressing issue encountered1007

during the first three years of operation has been the insufficient temporal1008

coverage, especially during the period when only one Sentinel-1 satellite was1009

operational. Solutions to this challenge are discussed in Section 4.6.1010

4.2. Overdetection in non-flood situations1011

Overdetection in non-flood situations occurs when dynamic land surface1012

processes other than flooding cause backscatter to drop to low values typi-1013

cal for water surfaces. Figure 9 shows three common cases of overdetection1014

encountered during the first three years of operation. Probably the most1015

problematic case from a service point of view is overdetection in agricultural1016

and grassland areas, as illustrated in the example of Fig. 9a. This has several1017

causes, including signal attenuation during the early stages of crop growth1018

(Arias et al., 2022; Reuß et al., 2024) and rapid changes in surface roughness1019

and crop cover due to farming activities (Zhu et al., 2019). These effects1020

are exacerbated when the soils are dry, as this reduces backscatter from fer-1021

tile soils. As a result, depending on crop type and weather conditions, false1022

positive rates can be quite high in some agricultural regions. Particularly1023

the time-series algorithm as described by Bauer-Marschallinger et al. (2022)1024

is impacted, given that the harmonic backscatter model − which is used to1025

predict non-flood backscatter − cannot account for crop rotation practices.1026

Therefore, Tupas et al. (2024) suggested replacing the harmonic backscat-1027

ter model with an exponential filtering approach that better accounts for1028

changing land surface backscatter.1029

< Fig. 9 >1030
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The second, and most significant case in terms of the area affected, is the1031

overestimation of flood areas in arid environments. While this issue is more1032

pronounced in certain desert regions, such as northwestern Iraq, anomalies1033

appear and disappear in many arid regions without clear spatio-temporal1034

patterns. Due to the lack of systematic studies, the exact causes of these1035

anomalies remain speculative. One likely reason is that many arid regions1036

have low backscatter values, close to the threshold used to create the non-1037

water low-backscatter exclusion layer. As a result, even minor changes in1038

land surface conditions or speckle can cause pixels to be mistakenly classi-1039

fied as flooded. Potential natural causes for changes in backscatter include1040

the movement of sand (Abdelkareem et al., 2020), which seems to be the1041

primary factor contributing to the false positives shown in Fig. 9b, erosion1042

and deposition processes triggered by rainfall, and variations in soil moisture1043

levels. The effect of soil moisture on backscatter can vary; it may increase or1044

decrease depending on the presence of subsurface scatterers (Wagner et al.,1045

2022).1046

The third case of overdetection occurs when the land surface freezes or1047

gets covered by snow and ice, which can cause a significant drop in backscat-1048

ter (Nagler and Rott, 2000; Park et al., 2011; Pulvirenti et al., 2014). When1049

this happens over larger areas, it is often well captured by GFM’s low-1050

regional-backscatter advisory flag. However, when temperatures fluctuate1051

around 0°C, there may be considerable spatial variability in the Sentinel-11052

images, with small patches of low backscatter caused by either frost, ice, wet1053

snow, or flooding. In this case it is impossible to decide where the GFM1054

flood map is correct or where not. An example is a flood that affected large1055

areas in northwestern Europe in early January 2024 (see Fig. 9c). As tem-1056

peratures started to drop below 0°C in the Netherlands, flooded meadows1057

and agricultural fields began to freeze, likely leading to scattered patches of1058

overestimation.1059

For all the cases discussed above, further research is needed to gain a1060

deeper understanding of the physical mechanisms behind false alarms and1061

to develop methods for correcting - or at least improving the flagging of1062

these effects. As mentioned earlier, the low-regional-backscatter advisory1063

flag generally performs well in identifying potential issues caused by snow1064

or frost. However, flagging changes in already dry areas, such as deserts,1065

remains a challenge. Additionally, advisory flags are typically not raised1066

for overdetection in agricultural areas, as the impact of this phenomenon is1067

usually confined to smaller areas than in the case of frost or drought.1068
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4.3. Underdetection in flood situations1069

Ironically, the concern over overdetection errors in non-flood situations1070

initially led to underdetection errors in flood situations. In an attempt to1071

reduce ”noise” (e.g. speckle, isolated pixels) in the GFM flood maps, refining1072

post-processing and merging strategies were implemented that effectively act1073

as low-pass filters. While this helped mitigating the impact of speckle and1074

small-scale land cover effects, they inadvertently hampered the capability to1075

detect small-scale and spatially scattered flood areas (Roth et al., 2025). This1076

problem will be partly solved by an update of the post-processing algorithms1077

planned for 2025. Nonetheless, more research will be needed to balance1078

overestimation errors in non-flood cases and underestimation of actual flood1079

areas. This challenge is not unique to the GFM service but is a broader issue1080

within the field of SAR-based flood mapping. To date, many studies are1081

limited to selected datasets coinciding with flood events, while disregarding1082

the much more common non-flood situations. In contrast, the GFM service1083

− to fulfil its monitoring mission − processes per day hundreds of individual1084

data takes to flood products. Naturally, most of these products do not cover1085

any flood and may be exposed to overestimation.1086

Another important aspect that needs to be balanced is the size of the1087

exclusion areas and the magnitude of underdetection errors, which are, by1088

definition, only assessed in the non-excluded areas. Expanding the exclusion1089

areas to include more challenging zones could help minimise underdetection1090

errors, thereby improving validation results. However, this would come at1091

the cost of reducing the spatial coverage of the GFM service. Conversely,1092

reducing the size of the exclusion mask would increase coverage but may1093

lead to larger classification errors. Although the current GFM exclusion mask1094

may seem extensive at first glance, it’s important to consider that, due to1095

topography, only a relatively small portion of land is prone to flooding, mostly1096

following valleys and plains. Additionally, in some parts of the world, large1097

portions of the land are covered by forests, sand, or other land cover types1098

that hinder flood mapping. Considering this, the GFM exclusion mask looks1099

plausible, striking a reasonable balance between maximising coverage and1100

minimising underdetection errors. Nonetheless, it is evident that expanding1101

the coverage would be beneficial, potentially through the use of additional1102

data, improved algorithms, or a combination of both.1103

From a technical perspective, the data set that would be the easiest to add1104

to the GFM workflow is the VH polarisation also acquired by the Sentinel-11105

IW mode. As noted before, this second image channel is currently discarded1106
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due to cost reasons. As already discussed by Boni et al. (2016) and Roth et al.1107

(2025), this can lead to an underestimation in the presence of certain types of1108

vegetation and wind. For the vegetation case, Fig. 10 illustrates the compar-1109

ison between VV and VH images for a flood along the river Shire in Malawi1110

in January 2022. The VH image detects more flooded areas than the VV1111

image, particularly along the tributary rivers Lukhubula and Mwamphanzi,1112

which flow into the Shire from the western hills. January falls in the middle1113

of the rainy season in Malawi, so grasses and agricultural crops were tall1114

when the flood occurred. The better detection of flooded areas by VH, com-1115

pared to VV, is likely due to the double-bounce effect created by floodwater1116

beneath the grasses or crops, which can increase backscatter and obscure1117

flood detection. The VV polarisation is particularly sensitive to this effect,1118

while VH remains less affected. Therefore, incorporating VH polarisation can1119

provide a more complete flood map for tall grass and crop canopies. This is1120

also true for windy conditions, where VV backscatter from wind-roughened1121

water surfaces is often more strongly enhanced than VH backscatter (Roth1122

et al., 2025). However, over low-vegetated surfaces and water bodies, VH im-1123

ages are characterised by lower backscatter that is associated with reduced1124

contrast and elevated noise. As this leads to higher classification errors, care1125

must be taken that algorithms, which use both polarisations, are designed to1126

extract the additional flood areas from VH data while avoiding higher false1127

positive rates.1128

< Fig. 10 >1129

A second promising SAR-based dataset for flood mapping is the inter-1130

ferometric coherence, which is calculated by comparing the amplitude and1131

phase information of two or more single look complex (SLC) SAR images.1132

High coherence indicates stable scatterers, while low coherence signifies a1133

loss of correlation in amplitude and/or phase. Since flooding causes a loss of1134

correlation, coherence can potentially enhance flood detection in areas where1135

it is generally high (Chini et al., 2019). Because this is the case for urban1136

areas and arid environments, the interferometric coherence holds particular1137

promise for these two cases. The urban case was addressed by a recent re-1138

view by Zhao et al. (2025) who concluded that the coherence − and even1139

the interferometric phase − are critical for improving flood detection in ur-1140

ban areas. Similarly, Garg et al. (2024) highlighted the importance of the1141

interferometric coherence in arid regions, where floodwaters reduce coher-1142

ence, while non-flooded areas exhibit stable and consistent coherence over1143
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time. However, other factors, such as varying soil moisture conditions, can1144

also lead to a loss of correlation. Therefore, further research is required to1145

better understand the environmental conditions under which interferometric1146

coherence can reliably indicate flooded areas.1147

4.4. Suitability of reference water maps1148

The suitability of the monthly reference water maps depends on their1149

ability to match the level of detail as provided by Sentinel-1 and to reflect1150

accurately the normal water extent for the same season. Unfortunately, these1151

requirements could not have been fulfilled by using existing global surface wa-1152

ter data sets. For example, relying on static water products such as the SRTM1153

Water Body Data (NASA JPL, 2013) or the Copernicus DEM Water Body1154

Mask (Franks and Rengarajan, 2023) would lead to an overestimation of flood1155

extent particularly in hydrologically dynamic regions like monsoon-affected1156

Bangladesh (Fig. 4). Martinis et al. (2022) confirm this effect through com-1157

paring different water mask products. They stress that only few studies1158

explicitly address seasonality, and that not all seasonal water products are1159

useful for flood mapping. The latter point is also true for the widely used1160

Landsat-based GSW data set from Pekel et al. (2016). This data set contains1161

a “Monthly History” product (Pekel et al., 2016) that offers intra-annual wa-1162

ter extent through monthly layers from the past 32 years, but is sensitive to1163

single-image artifacts such as extreme events or cloud cover. Such artifacts1164

are removed in the GSW “Monthly Recurrence” product, which provides1165

monthly water coverage but is averaged over a long period, thus not re-1166

flecting river dynamics or climate shifts. Last but not least, it needs to be1167

remembered that water maps derived from optical and topographic data do1168

not capture the same water areas as observed by Sentinel-1, which would1169

lead to systematic errors in the Sentinel-1 flood maps.1170

For these reasons, a dedicated effort was needed to produce 20 m ref-1171

erence water maps directly from the Sentinel-1 datacube, meaning that the1172

GFM service has delivered a completely new global high-resolution surface1173

water data set almost as a by-product. As our global evaluation has shown1174

(Section 3.4), the quality of the GFM reference water maps appears to be1175

quite good, with overall accuracies of 95.6% for the permanent water ex-1176

tent and 74.4% for the seasonal water bodies respectively. Nonetheless, it1177

needs to be remembered that these water extent maps only show water sur-1178

faces as sensed by Sentinel-1. More complete water maps could be derived1179

by adopting multi-sensor approaches that combine the Sentinel-1 data with1180
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multi-spectral optical data from Landsat or Sentinel-2 (Martinis et al., 2022)1181

or novel bi-static measurements such as provided by Global Navigation Satel-1182

lite Systems Reflectometry (GNSS-R) missions (Carreno-Luengo et al., 2024)1183

or swath-based altimetry missions (Morrow et al., 2018).1184

An open question for flood mapping is the optimal length of the time1185

series used to compute the reference water maps. Following Martinis et al.1186

(2022), GFM uses time series of a few years from the recent past. Whereas the1187

first versions of the reference water maps was based upon two years (2019-1188

2020), the most recent on five years (2017-2021). While the longer time1189

series helped to reduce misclassification and mitigate the impact of extreme1190

events, longer aggregation periods may blur dynamic hydrological features,1191

such as braided rivers and water reservoirs. Hence, some water surfaces that1192

should be part of the reference water maps are wrongly shown as flooded1193

(e.g. water reservoirs that are being filled up). An interesting special case1194

is flooded fields used for growing rice and other semiaquatic crops. These1195

fields are sometimes included in the reference water maps and sometimes in1196

the flood maps. As this is confusing for the GFM users, a dedicated effort1197

for mapping these fields based upon their pronounced seasonal backscatter1198

behaviour, as for example done by Nguyen and Wagner (2017) over European1199

rice fields, might be useful.1200

4.5. Adequacy of accuracy metrics1201

The results of the validation activities, as discussed in Section 3.4, have1202

been quite mixed so far. While the results are generally satisfying, the CSI1203

values computed for individual flood events and the global evaluation of the1204

first version of the flood data archive (GFM v2.1.0) fall short of the GFM1205

service’s accuracy target. Insights gained from the different validation activ-1206

ities have already been very instructive, driving step-by-step improvements1207

in the algorithms and workflows with each new GFM version. For example,1208

over- and underdection errors as discussed above have already been reduced,1209

leading to subsequent improvements in CSI values. Nonetheless, we note that1210

in some cases the CSI and other accuracy metrics remain relatively low, even1211

when the flood maps appear visually satisfactory (Roth et al., 2023, 2025).1212

This raises questions regarding the adequacy of the accuracy metrics. One1213

key issue is the lack of independent data to serve as objective ground truth1214

for assessing how well the algorithm extracts flooded areas from Sentinel-11215

images. As a result, expert-interpreted Sentinel-1 flood data are used to cre-1216

ate flood reference datasets. However, this introduces uncertainties, which1217
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likely lower the CSI and other accuracy metrics to an extent that remains1218

unclear. The second issue is that, so far, the quality of flood maps has been1219

assessed with methods as used for assessing static land cover. While critical1220

aspects such as sampling design, response design, and analysis design are1221

well understood for the latter (Stehman and Czaplewski, 1998; Congalton1222

and Green, 2019), the high spatiotemporal variability of the sensitivity of1223

the sensor to the target variable and the highly dynamic nature of floods1224

make the evaluation of flood data much more challenging. As a result, flood1225

mapping studies had to cope with inadequacies of metrics derived from the1226

error matrix. For example, Landuyt et al. (2019) showed that the CSI has1227

a bias towards large-scale floods and assigns a higher accuracy in case of1228

overdetection in comparison to underdetection. When using the whole map1229

for the metric computation, the agreement between the reference and classi-1230

fication will generally be much larger compared to their difference. Further,1231

the expected autocorrelation of neighbouring pixels in satellite observations1232

leads to many redundant pixels being validated. Consequently, Landwehr1233

et al. (2024) suggested the definition of an appropriate sampling design for1234

computing the metrics and choosing an adequate metric for the correspond-1235

ing design.1236

In line with our methodological approach, which views flood mapping1237

as a geophysical variable retrieval problem rather than a classification task1238

(Section 2.1), we believe that also the validation of flood extent data should1239

be approached from a broader geophysical perspective. First, validation ac-1240

tivities should clearly define their scope. Is the aim to evaluate the combined1241

effect of sensor and retrieval algorithm on the quality of the flood extent1242

data, or just one of these aspects? In all cases, data producers should pro-1243

vide estimates of the retrieval uncertainty and clearly identify exclusion areas1244

where the sensor is insensitive to the target variable. Additionally, validation1245

should not be limited to flood images but should also include non-flood cases1246

(Tupas et al., 2024). It is likely that most existing algorithms are optimised1247

for flood detection, which may limit their applicability to other regions or1248

time periods. Moreover, methods must be developed to assess the impact1249

of imperfect reference data on accuracy metrics. All these topics require a1250

community effort to develop best practice guidelines, which, as already noted1251

by Landwehr et al. (2024), are still missing. These efforts could be organised1252

as part of the Land Product Validation subgroup of the Committee on Earth1253

Observation Satellites (https://lpvs.gsfc.nasa.gov/).1254
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4.6. Temporal coverage1255

Despite the fact that the Sentinel-1 mission provides better global cov-1256

erage than any other single SAR satellite or SAR satellite constellation, our1257

analysis presented in Section 3.3 illustrates that smaller flood events may1258

be missed, particularly in less well-covered areas of the world. Increasing1259

the temporal resolution of SAR acquisitions would significantly improve the1260

ability to capture the high dynamics of floods, ensuring that flood peaks1261

and progressions are adequately monitored. Through improvements in swath1262

width and duty cycle, the situation will become better for the Sentinel-1 Next1263

Generation (Torres et al., 2024). Nonetheless, substantial improvements in1264

the GFM coverage can only be achieved by integrating further satellites into1265

the service. The most logical candidates are other SAR missions that match1266

the global and systematic monitoring capabilities of Sentinel-1. In this re-1267

gard, two L-band SAR missions stand out, namely the NASA-ISRO Syn-1268

thetic Aperture Radar (NISAR) satellite (Rosen and Kumar, 2021), which1269

is ready for launch in early 2025, and the Radar Observing System for Eu-1270

rope at L-band (ROSE-L) two-satellites constellation mission (Davidson and1271

Furnell, 2021), planned for launch in the 2028+ timeframe. ROSE-L be-1272

longs to the Copernicus programme, and its two satellites will be operated1273

in synergy with the two Sentinel-1 satellites, with the orbit phasing yet to be1274

determined. One option is to fly the ROSE-L satellites in convoy with the1275

Sentinel-1 satellites, acquiring matching dual-frequency SAR imagery just1276

minutes apart. The alternative is to phase the orbits of the four satellites to1277

maximise daily global coverage. As we already highlighted in Wagner et al.1278

(2024), the second option is clearly preferred by the GFM service. While1279

dual-frequency retrievals can be expected to improve the accuracy of the1280

flood maps to some extent (Refice et al., 2020), the more critical issue is1281

whether the satellites can effectively capture flood dynamics, especially near1282

the flood peak. Irrespective of the choice for the orbit phasing, research will1283

be needed to optimally exploit the availability of interleaved C- and L-band1284

backscatter time series.1285

5. Conclusions1286

The GFM service constitutes a significant advancement in the field of1287

satellite-based flood monitoring. Launched in 2021 as part of the CEMS,1288

the GFM service has demonstrated its capability to deliver flood maps with1289

high accuracy and reliability in near real-time. When the Sentinel-1 ground1290
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segment operates normally, the service achieves a rapid turnaround of under1291

five hours, which is essential for timely disaster response. The flood maps1292

are produced using an innovative ensemble approach that integrates three1293

complementary flood mapping algorithms. These algorithms combine single-1294

image, dual-image, and time-series techniques to improve the robustness and1295

accuracy of the automatic flood detection. In addition to the binary flood1296

map, a novel flood likelihood layer is generated, which often offers a more1297

comprehensive view of the flood situation. For example, it can depict river1298

courses more effectively than the binary flood maps. Users with their on-1299

site knowledge can create a binary flood map that is better suited to local1300

conditions by fine-tuning a threshold, above which a pixel is classified as1301

flooded and below which it is classified as non-flooded.1302

The scientific algorithms were implemented within a cloud platform en-1303

vironment, leveraging a datacube-centric processing architecture. This ap-1304

proach is crucial for framing the flood mapping problem as a geophysical1305

variable retrieval task, rather than a traditional image classification prob-1306

lem. A global 20 m Sentinel-1 datacube allows to compare each incoming1307

backscatter image with the entire historical backscatter dataset, facilitating1308

time-series analysis on a per-pixel basis. This setup has enabled the gen-1309

eration of monthly reference water maps, which differentiate flooded areas1310

from permanent and seasonal water bodies, as well as an exclusion mask that1311

informs users where Sentinel-1 cannot effectively map flooded areas. Advi-1312

sory flags raise attention in case of ambiguous radar signals stemming from1313

meteorologic or geomorphologic circumstances, and flood impact indicators1314

give quick insight into affected population and land cover. Additionally, the1315

datacube has enabled the creation of a global flood data archive spanning1316

the entire Sentinel-1 mission from 2015 onwards. The GFM flood archive is1317

continuously updated with NRT data, while regular reprocessing efforts are1318

conducted to ensure compatibility between the NRT and archive data.1319

Despite its successes, the GFM service faces several scientific and techni-1320

cal challenges. One of the primary issues is the reduction of false positives,1321

especially in agricultural and arid regions, as well as in areas with frozen1322

or snow-covered land surfaces. These false positives arise from the complex1323

scattering mechanisms as depicted by SAR imagery, which are influenced1324

by a range of environmental factors, including soil moisture and vegetation1325

dynamics. Another significant challenge is the underdetection of floods in cer-1326

tain conditions. The reliance on VV polarisation alone, without considering1327

VH polarisation, can lead to underestimation in areas with dense vegetation1328
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or rough water surfaces. Additionally, urban areas pose difficulties for flood1329

detection due to the complex interaction of microwaves with building struc-1330

tures. Preliminary validation results as reported in this paper showed that1331

algorithmic improvements are still needed, several of which are in the pro-1332

cess of being implemented and tested. Moreover, work is needed to advance1333

validation practices, approaching the problem from a broader geophysical1334

perspective and accounting for uncertainties in the flood reference data. For1335

the users, another pressing issue is that particularly smaller flood events go1336

undetected due to insufficient data coverage. The analysis of 104 global flood1337

events from 2022 to 2024 revealed that the GFM service, relying on only one1338

Sentinel-1 satellite during this period, detected 70.2% of these events. How-1339

ever, the detection performance varied significantly across continents, with1340

Europe demonstrating the highest success rate and Oceania the lowest. The1341

reduced capability to detect smaller flood events, particularly in regions with1342

low temporal revisit frequencies of Sentinel-1 satellites, highlights the need1343

for improved data coverage.1344

To enhance the GFM service, several future directions are proposed.1345

First, the integration of VH polarisation data could improve flood detec-1346

tion in vegetated and urban areas. Additionally, the development of more1347

sophisticated algorithms that account for the complex scattering mechanisms1348

in SAR imagery is essential. For instance, the consideration of double bounce1349

signals and interferometric coherence may improve food mapping in urban1350

areas and dense vegetation (Mason et al., 2014; Chini et al., 2019). Flood1351

maps may be refined by improved use of ancillary data such as topographic1352

indices and land cover (Tupas et al., 2023a). Machine learning is expected to1353

be useful for a better modelling of overdetection cases (Misra et al., 2024).1354

The GFM service should also continue to refine and update its exclusion1355

mask and reference water maps, making sure that these data layers reflect1356

changing land cover and water body dynamics. After the premature loss of1357

Sentinel-1B, the expansion of the Sentinel-1 constellation with Sentinel-1C1358

and the upcoming Sentinel-1D satellite is essential to maintain the perfor-1359

mance of the service. Additionally, adopting a multi-sensor approach, which1360

includes data from other satellite missions such as ROSE-L, would signifi-1361

cantly improve the ability to capture flood dynamics and reduce over- and1362

underdetection. The aim is to gather enough satellite imagery to monitor1363

the progression of floods from onset to peak and retreat with improved the-1364

matic accuracy. Although not covered in this review, the integration of the1365

GFM flood maps with topographic data and hydraulic models to provide1366
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more complete flood extent maps and flood depth estimates holds significant1367

potential.1368

The Sentinel-1-based Global Flood Monitoring service has made signifi-1369

cant strides in operational satellite-based flood monitoring, providing timely1370

and accurate flood maps to support disaster response efforts. While chal-1371

lenges remain, ongoing research and development efforts are poised to en-1372

hance the service’s capabilities, ensuring it meets the evolving needs of users1373

worldwide. By leveraging advancements in SAR technology and integrating1374

data from multiple satellite missions, the GFM service is well set to continue1375

to play a leading role in global flood risk management and mitigation.1376
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Appendix: List of flood events1406

The 104 flood events selected for this study were derived from the Global1407

Disaster Alert and Coordination System (GDACS). GDACS offers real-time1408

flood alerts and comprehensive data to aid disaster response (De Grove et al.,1409

2007). The alerts issued by GDACS are based on information gathered from1410

authoritative institutions, media outlets, and scientific institutions, rather1411

than automated systems. These alerts rely on manual evaluations of the flood1412

impacts, which are performed by the Dartmouth Flood Observatory. The1413

assessments include various metrics such as the area affected, the duration1414

of the flood, severity, fatalities, and the number of displaced persons. The1415

magnitude of each event is computed according to:1416

Magnitude = ln(duration)× severity class× affected region

100

where the affected region is measured in km2, estimated from the polygon1417

that encompasses all the place names reported in the media. For single-day1418

events, the duration is set to 1.1 for calculation purposes. The GDACS alert1419

score is translated into an alert level or colour as follows:1420

• Large-scale floods: GDACS score of 2.5, corresponding to a Red alert1421

for more than 1,000 dead or 800,000 displaced.1422

• Medium-scale floods: GDACS score of 1.5, corresponding to an alert if1423

there are more than 100 dead or 80,000 displaced.1424

• Small-scale floods: GDACS score of 0.5, corresponding to a Green alert1425

for all other floods.1426
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Our dataset (Table 7) contains all large- and medium-scale flood events1427

that occurred between 2022 and 2024, ensuring comprehensive coverage of1428

significant global floods during this period. In addition, small-scale flood1429

events were included to obtain up to 20 flood events per continental region1430

and test the ability of the GFM service to detect less severe events.1431

< Table 7 >1432
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Tables and Figures

Algorithm Single-image Dual-image Time-series

Developer DLR LIST TU Wien

Target
variables

Total water area Total water and re-
cently flooded area

Flood area compared
to seasonal mean

Reference
image

None Last image from same
orbit

Image simulated with
harmonic model

Method Hierarchical tile-
based thresholding

Hierarchical split-
based thresholding

Bayesian inference

Thresholds Automatic tile-
based thresholds for
backscatter

Automatic tile-
based thresholds
for backscatter and
backscatter change

Fixed threshold of
Bayesian posteriori
probability

Likelihood Fuzzy logic Bayesian inference Bayesian inference

Post-
processing

Region-growing Region-growing Noise filter

Main refer-
ence

Martinis et al. (2015) Chini et al. (2017) Bauer-Marschallinger
et al. (2022)

Table 1: Main characteristics of the three flood mapping algorithms used within the GFM
service.

Access Description Link

Web viewers GFM viewers integrated into the
web viewers of the Global Flood
Awareness System (GloFAS) and
the European Flood Awareness Sys-
tem (EFAS)

https://global-flood.
emergency.copernicus.eu/
https://european-flood.
emergency.copernicus.eu/

REST API RESTful APIs written in Python
with the Flask framework for web
applications

https://api.gfm.eodc.eu/v2/

Web Map
Service

GeoServer implementation to sup-
port web-based GIS analysis

https://geoserver.gfm.eodc.eu
/geoserver/gfm/wms

Web portal Dedicated webportal tailored for op-
erational GFM applications

https://portal.gfm.eodc.eu/

Table 2: Access mechanisms for the GFM flood products.
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Name Description Sections Data Formats

Observed
Flood extent

Flooded areas observed by Sentinel-1,
mapped by applying a majority vot-
ing on three scientific algorithms

2.2, 2.2.4 Raster (COG)
and vector
(GeoJSON)

Total water
extent

Total water extent by blending ob-
served flood extent and reference wa-
ter extent

2.2.4 Raster (COG)
and vector
(GeoJSON)

Reference
water extent

Monthly maps of permanent and sea-
sonal water extent derived from me-
dian Sentinel-1 backscatter images
using the single- and dual-image al-
gorithms

2.2, 2.3.1 Raster (COG)
and vector
(GeoJSON)

Exclusion
mask

Unclassified areas due to topography
and lack of sensitivity of Sentinel-1
(forests, cities, smooth surfaces)

2.3.2 Raster (COG)

Flood likeli-
hood

Likelihood of a pixel being flooded
derived by averaging the likelihoods
from the three scientific algorithms

2.2.4 Raster (COG)

Advisory
flags

Flags indicating potential misclassifi-
cations due to environmental condi-
tions (dry soils, frost, snow, wind)

2.3.3 Raster (COG)

S-1 footprint
& Metadata

Sentinel-1 acquisition parameters in-
herited from IW image

2.4.2 KML

S-1 schedule Next scheduled Sentinel-1 acquisition 2.4.2 KML

Affected
population

Number of people in affected areas,
mapped by overlaying the flood map
with population data

2.4.2 Raster (COG)

Affected
land cover

Flood land cover classes, mapped by
overlaying flood map with land cover
data

2.4.2 Raster (COG)

Table 3: The ten data layers of the CEMS GFM product. COG stands for cloud optimised
GeoTIFF, GeoJSON is a format for encoding a different geographic data structures, and
KML is a file format used to display geographic data in Earth browsers.
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Continent Events Detected Missed No Data

Europe 20 19 1 0

Asia 20 14 3 3

South America 20 14 4 2

Africa 20 13 7 0

North America 15 9 3 3

Oceania 9 4 3 2

Total 104 73 21 10

Table 4: Summary of flood events detection performance by continent.

Class OA [%] CSI [%]

Permanent water 95.9±0.2 64.1±0.7

Seasonal water 74.4±0.4 55.2±0.8

Flood 72.0±0.4 43.7±0.8

Table 5: Global evaluation results for permanent water, seasonal water, and flood pixels,
showing Overall Accuracy (OA) and Critical Success Index (CSI) together with their 95%
confidence intervals.

Biome Environmental zone No. OA [%] CSI [%]

Boreal/Alpine E. Cold and wet 543 78.1±3.6 41.9±4.9
F. Extremely cold and mesic 4521 69.7±1.4 57.5±1.7
G. Cold and mesic 4542 80.9±1.2 64.2±1.6

Cool temperate H. Cool temperate and dry 3931 77.2±1.4 58.3±1.8
I. Cool temperate and xeric 3130 78.7±1.5 55.2±2.0
J. Cool temperate and moist 1185 94.7±1.3 68.4±3.1

Warm temperate K. Warm temperate and mesic 3273 92.9±0.9 63.8±1.9
L. Warm temperate and xeric 3439 82.3±1.3 47.8±2.0

Sub-tropical M. Hot and mesic 2286 89.4±1.3 63.7±2.3

Drylands N. Hot and dry 4149 73.1±1.4 53.1±1.8
O. Hot and arid 2319 64.2±2.1 36.2±2.3
P. Extremely hot and arid 1412 67.2±2.6 37.4±3.0
Q. Extremely hot and xeric 4875 79.2±1.2 59.4±1.6

Tropical R. Extremely hot and moist 8458 85.8±0.8 74.2±1.1

Table 6: Evaluation results for different bio-geographic regions as defined by Metzger
et al. (2013). The third column shows the number of sample points per environmental
zone. Note that results from the arctic biome are not included in this table due to the
small number of sample points (<100).
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Figure 1: Average revisit time of the Sentinel-1 two-satellite constellation over non-polar
land. The image was created by collecting all Interferometric Wide (IW) swath data
acquired by Sentinel-1A and Sentinel-1B in the years from 2016 to 2021.

Figure 2: Overview of GFM’s main algorithms and workflows, with NRT processes in the
top, and offline model layer generation in the bottom.
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Figure 3: Illustration of the GFM ensemble approach for merging the flood maps and
likelihood estimates produced by three independent flood mapping algorithms. Prior-
computed monthly reference water maps and an exclusion mask are used for masking the
ensemble flood map.
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Figure 4: GFM’s monthly reference water maps for Bangladesh, with permanent (dark
blue) and seasonal water bodies (light blue).
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Figure 5: Illustration of the approach to estimate the number of affected people by super-
imposing the 100 m Global Human Settlement Layer with the 20 m GFM flood map.

Figure 6: a)-c) show the thematic exclusion layers, the monthly reference water extent, and
the individual floods maps from the three contributing scientific algorithms. The GFM
ensemble output is shown with the flood likelihood in d), and the ensemble flood in e).
The scene shows the flood situation on July 17, 2021, along the river Rhine in Germany,
near the city of Wesel. The background shows the temporally aggregated VV backscatter
from Sentinel-1 Global Backscatter Model from Bauer-Marschallinger et al. (2021).
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Figure 7: Timeliness of the GFM service, with maximum durations under regular condi-
tions between acquisition from Copernicus, GFM main processing modules, and product
dissemination. NRT-3h and FAST-24h refer to Copernicus’ Sentinel-1 timeliness cate-
gories.

70

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5110703

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 8: Overview on the coverage analysis of 104 flood events from 2022-2024 listed in
Tab. 7. See results also in Tab. 4. Flood events are detected (green circles) or missed
(red circles) by GFM with Sentinel-1A. The blue circles show cases where no Sentinel-1
image was acquired over the entire flood duration as reported in the GDACS database.
The size of the circles illustrates event duration.
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Figure 9: Examples of overdetection in non-flood situations: a) Agricultural areas in the
USA, and b) dry soil in Iran. c) Shows in the Netherlands an actual flood event, but an
exceptional one under frozen soils conditions. The GFM low regional backscatter advisory
flag is displayed in transparent blue, indicating backscatter decrease at the larger scale.

72

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5110703

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 10: 2022 flood event in Malawi, an example for underdetection of flooded vegetation
due to the limitation to a single polarisation (modified from Roth et al., submitted). a)
shows the GFM products based on Sentinel-1 IW data in VV-polarisation; b) shows the
VH band of the same dataset, with flooded areas underdetected in VV highlighted by
yellow ellipses.
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Table 7: Selected flood events from the GDACS flood events record (2022-2024).

ID Country From Date To Date GDACS
Score

Deaths Displaced

AF01 Libya 08-09-2023 14-09-2023 2.5 3500 33000
AF02 Nigeria 10-09-2022 26-10-2022 2.5 605 1306000
AF03 Chad 01-09-2024 17-10-2024 1.5 576 -
AF04 South Sudan 03-08-2024 05-08-2024 1.5 0 571989
AF05 Kenya 12-04-2024 06-05-2024 1.5 219 206000
AF06 Burundi 17-03-2024 03-05-2024 1.5 5 209486
AF07 Ethiopia 29-04-2024 01-05-2024 1.5 18 106193
AF08 Tanzania 28-03-2024 28-04-2024 1.5 169 1660
AF09 Ethiopia 07-11-2023 06-12-2023 1.5 53 347600
AF10 Kenya 23-10-2023 06-12-2023 1.5 136 462160
AF11 Somalia 04-10-2023 06-12-2023 1.5 87 458126
AF12 Democratic Republic

of Congo
01-05-2023 10-05-2023 1.5 478 3300

AF13 Rwanda 01-05-2023 03-05-2023 1.5 109 -
AF14 Democratic Republic

of Congo
01-04-2023 15-04-2023 1.5 20 100500

AF15 Somalia 20-03-2023 14-04-2023 1.5 30 140000
AF16 Malawi 13-03-2023 16-03-2023 1.5 225 88312
AF17 Mozambique 22-03-2024 24-03-2024 0.5 4 7658
AF18 Nigeria 14-10-2024 19-10-2024 0.5 25 5328
AF19 Nigeria 23-06-2024 23-09-2024 0.5 5 10284
AF20 Angola 25-11-2022 05-12-2022 0.5 15 405
AS01 India 20-10-2024 26-10-2024 2.5 9 803,888
AS02 Bangladesh, India,

Myanmar
13-05-2023 15-05-2023 2.5 41 850,000

AS03 China, Taiwan 14-09-2022 16-09-2022 2.5 0 1,233,000
AS04 Pakistan 14-06-2022 31-08-2022 2.5 1,061 215,997
AS05 Nepal 26-09-2024 28-09-2024 1.5 148 -
AS06 India 30-08-2024 05-09-2024 0.5 45 45,369
AS07 Indonesia 03-02-2024 12-06-2024 1.5 79 84,943
AS08 Afghanistan 09-05-2024 25-05-2024 1.5 387 -
AS09 Kazakhstan 28-03-2024 10-04-2024 1.5 2 104,694
AS10 Bangladesh 24-10-2023 26-10-2023 1.5 3 273,000
AS11 Pakistan 16-08-2023 18-08-2023 1.5 0 100,000
AS12 China 27-06-2023 23-07-2023 1.5 15 284,100
AS13 India 07-07-2023 10-07-2023 1.5 169 47,790
AS14 India, Pakistan 14-06-2023 16-06-2023 1.5 7 175,925
AS15 Philippines 10-12-2022 23-01-2023 1.5 63 330,071
AS16 Oman, Yemen 23-10-2023 25-10-2023 0.5 1 9,000
AS17 Indonesia 18-09-2024 04-11-2024 0.5 18 1,100
AS18 Azerbaijan 12-10-2024 23-10-2024 0.5 2 67
AS19 Philippines 12-10-2024 23-10-2024 0.5 3 12,793
AS20 Sri Lanka 08-10-2024 10-10-2024 0.5 3 9,591
EU01 Spain 27-10-2024 04-11-2024 2.5 221 447
EU02 Bosnia and Herzegov-

ina
03-10-2024 05-10-2024 1.5 14 -

EU03 Austria, Czech Repub-
lic, Germany, Poland,
Romania, Slovakia

12-09-2024 18-09-2024 1.5 13 7,042

EU04 France 3-12-2023 03-01-2024 1.5 1 743
EU05 Germany 18-12-2023 03-01-2024 1.5 0 -
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ID Country From Date To Date GDACS
Score

Deaths Displaced

EU06 Norway 31-10-2024 05-11-2024 0.5 0 98
EU07 Greece 04-09-2023 15-09-2023 0.5 20 4,506
EU08 Italy 16-10-2024 28-10-2024 0.5 1 290
EU09 Italy 17-09-2024 25-09-2024 0.5 0 1,550
EU10 France 01-10-2024 26-10-2024 0.5 1 347
EU11 Italy 30-10-2023 04-11-2023 0.5 10 510
EU12 Italy 01-05-2023 26-05-2023 0.5 17 36,450
EU13 Slovenia 03-08-2023 05-08-2023 0.5 3 4,000
EU14 United Kingdom 28-12-2023 01-01-2024 0.5 3 1,120
EU15 United Kingdom 19-10-2023 12-11-2023 0.5 1 1,620
EU16 Russia 01-07-2023 10-07-2023 0.5 0 407
EU17 Austria 03-08-2023 13-08-2023 0.5 1 57
EU18 Russia 11-08-2023 21-08-2023 0.5 8 2,500
EU19 Kosovo, Serbia 18-01-2023 22-01-2023 0.5 2 584
EU20 Italy 26-11-2022 10-12-2022 0.5 7 1,304
NA01 Dominican Republic 02-11-2024 04-11-2024 0.5 0 1,390
NA02 Costa Rica 06-11-2024 08-11-2024 0.5 1 155
NA03 United States 09-01-2024 03-02-2024 0.5 1 405
NA04 United States 16-08-2024 18-09-2024 0.5 1 55
NA05 Panama 29-09-2024 01-10-2024 0.5 1 12
NA06 Mexico 16-10-2024 22-10-2024 0.5 7 247
NA07 United States 22-12-2022 28-01-2023 0.5 4 500
NA08 Canada 01-07-2023 23-07-2023 0.5 0 1,270
NA09 United States 16-06-2023 24-08-2023 0.5 5 14,525
NA10 Honduras 03-11-2023 05-11-2023 0.5 4 1,024
NA11 Honduras 07-12-2023 09-12-2023 0.5 2 30
NA12 Cuba, Jamaica 03-11-2024 10-11-2024 0.5 0 38,095
NA13 Costa Rica 06-11-2024 08-11-2024 0.5 1 155
NA14 Mexico 30-08-2024 04-10-2024 0.5 18 92
NA15 United States 22-12-2022 28-01-2023 0.5 4 500
OC01 New Zealand 03-10-2024 05-10-2024 0.5 0 100
OC02 Australia 29-12-2022 05-01-2023 0.5 0 700
OC03 Fiji 03-02-2023 05-02-2023 0.5 1 350
OC04 New Zealand 12-02-2023 14-02-2023 0.5 0 3,810
OC05 Australia 01-01-2024 23-02-2024 0.5 0 286
OC06 Fiji 14-03-2024 16-03-2024 0.5 0 230
OC07 Papua New Guinea 25-03-2024 27-03-2024 0.5 4 2,250
OC08 Australia 22-10-2022 05-11-2022 0.5 2 540
OC09 New Zealand 11-11-2022 15-11-2022 0.5 0 200
SA01 Brazil 23-04-2024 17-05-2024 1.5 144 540,548
SA02 Brazil 23-05-2022 26-05-2022 1.5 92 16,619
SA03 Chile 20-06-2024 28-06-2024 0.5 0 1,500
SA04 Uruguay 20-03-2024 22-03-2024 0.5 0 4,687
SA05 Brazil 05-11-2024 08-11-2024 0.5 1 1,950
SA06 Brazil 19-12-2022 06-01-2023 0.5 3 242
SA07 Colombia 09-01-2023 17-01-2023 0.5 1 558
SA08 Brazil 17-01-2023 19-02-2023 0.5 5 4,900
SA09 Brazil 18-02-2023 20-02-2023 0.5 40 2,496
SA10 Peru 22-02-2023 01-03-2023 0.5 1 740

75

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5110703

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



ID Country From Date To Date GDACS
Score

Deaths Displaced

SA11 Peru 16-01-2023 18-04-2023 0.5 24 2,045
SA12 Ecuador 22-05-2023 06-06-2023 0.5 3 46
SA13 Brazil 07-07-2023 11-07-2023 0.5 15 3,850
SA14 Chile 19-08-2023 21-08-2023 0.5 1 1,200
SA15 Argentina 26-11-2023 14-12-2023 0.5 2 2,340
SA16 Venezuela 08-10-2022 22-10-2022 0.5 61 -
SA17 Bolivia 10-02-2024 14-02-2024 0.5 2 420
SA18 Brazil 03-03-2024 05-03-2024 0.5 0 1,663
SA19 Peru 26-12-2023 12-03-2024 0.5 21 727
SA20 Argentina 03-03-2024 17-03-2024 0.5 3 1,194
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