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Kurzfassung

Industrie 4.0 zielt darauf ab, industrielle Prozesse durch die Einführung intelligenter Edge-
Systeme zu verbessern, die durch Datenerfassung und -verarbeitung von Sensorwerten
unterstützt werden. Dies verbessert die Effizienz, Kommunikation und Flexibilität in
industriellen Prozessen. Insbesondere die Echtzeitverarbeitung von Sensordaten kommt
den Fabriken besonders zugute, da sie den Einsatz datenbasierter Optimierungstechniken
ermöglicht, wie z. B. den Einsatz von Modellen des maschinellen Lernens zur Erkennung
von Anomalien in der Fertigung. Serverless Computing hat das Potenzial, eine wichtige
Rolle als Grundlagentechnologie in der industriellen Automatisierung zu spielen, da es den
flexiblen Einsatz von serviceorientierten Software-Architekturen (die möglicherweise auch
die Anpassung von Produktlinien erleichtern) mit feiner Granularität ermöglich, sowie
eine effiziente Ressourcenskalierung. Vor allem in ressourcenbeschränkten Edge-Szenarien
kann Serverless ein entscheidender Faktor sein. Im Falle plötzlicher und unvorhersehbarer
Spikes in der der Rechenlast hilft die Möglichkeit, verschiedene Anbieter zu nutzen,
die Belastung des Gesamtsystems zu reduzieren und einen reibungslosen Betrieb zu
gewährleisten. Zur Maximierung der Leistung von Serverless im Bereich der Industrie zu
maximieren, nutzen wir eine hybride Edge-Cloud Herangehensweise und schlagen einen
intelligenten Serverless-Workload-Scheduler vor, der auf Deep Reinforcement Learning
(DRL) basiert. Dieser wählt auf Grundlage spezifischer Anforderungen die am besten
geeignetste Serverless-Instanz. Dieser Scheduler ist ein integraler Bestandteil unserer
End-to-End-Systemarchitektur, die wir entwerfen und implementieren, mit dem Ziel,
Industrie 4.0-Anwendungsszenarien zu unterstützen. Unsere Architektur konzentriert sich
auf effiziente Datenaufnahme und Interoperabilität und unterstützt den weit verbreiteten
OPC UA-Standard für die Erfassung von Sensordaten aus Industrieanlagen. Aufbauend
auf dem NGSI-LD-Standard, erleichtert dies die Integration von Applikationen, indem der
Datenaustausch standardisiert wird. Wir demonstrieren die Machbarkeit und industrielle
Relevanz unseres Ansatzes, indem wir ihn auf einem realistischen Anwendungsfall aus
dem Bereich der anwenden. Außerdem zeigen wir, dass unser DRL-basierter Scheduler
die Gesamtleistung der serverless Funktionsbereitstellung Abhängigkeit von definierten
Prioritäten wie Zuverlässigkeit, Reaktionszeit, Abschwächung von Cold-Starts, und/oder
Vermeidung von Überlastungen der Prozessoren.
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Abstract

Industry 4.0 aims to enhance industrial processes by introducing smart edge systems,
leveraged by data collection and processing of sensor readings. This improves efficiency,
communication and flexibility in industrial processes. Especially, real-time processing of
sensor data benefits factories as it enables the use of data-based optimization techniques,
such as deploying machine learning models for detecting anomalies in manufacturing.
Serverless computing has the potential to play an important role as an enabling technology
in industrial automation, as it can facilitate the flexible deployment of service-oriented
software architectures (potentially also facilitating customization of product lines) with
a fine granularity and the ability to scale resources appropriately following compute
demand that may vary over time. Especially in resource-limited edge scenarios, serverless
can act as a crucial enabler. In case of sudden and unpredictable spikes in computation
load, having the option to use different providers helps to reduce computing stress on the
overall system and ensures frictionless operation. In order to maximize performance of
serverless in industrial scenarios, we leverage a hybrid edge-cloud setting and propose an
intelligent serverless workload scheduler based on Deep Reinforcement Learning (DRL),
which decides on the best-fitting serverless instance based on specific requirements. This
scheduler is an integral component of an end-to-end system architecture that we design
and implement, with the aim of supporting Industry 4.0 application scenarios. Our
architecture focuses on efficient data ingestion and interoperability, supporting the widely
adopted OPC UA standard for sensor data collection from industrial equipment and
building on the NGSI-LD standard to facilitate application integration and data exchange.
We demonstrate the feasibility and industrial relevance of our approach by applying it to
a realistic use case from the domain of lightweight metal manufacturing. Furthermore,
we show that our DRL-based scheduler improves overall serverless function serving
performance significantly depending on the defined priorities, such as function invocation
reliability, response time, cold start mitigation and/or avoiding CPU overload.
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CHAPTER 1
Introduction

1.1 Motivation
The concept of Industry 4.0 poses a fundamental transformation in the manufacturing
landscape. This fourth industrial revolution integrates cyber-physical systems, the
Internet of Things (IoT), edge and cloud computing, and cognitive technologies to create
intelligent, interconnected factories and aid process automation and end-to-end digital
value chain creation. This enables more control and less errors in the systems. Especially,
remote locations like offshore oil factories benefit from such interconnection. Therefore,
industries aim to move from human-controlled processes to autonomous processing [HS24].
Industry 4.0 promises significant advancements in industrial processes, including the
following:

• Enhanced Efficiency and Productivity: Real-time data analytics causing a
better production planning and better resource allocation results in an efficiency
gain in manufacturing processes. Furthermore, real-time data processing and
evaluation can improve product quality and save resources used in manufacturing
processes, thus reducing overall costs.

• Increased Communication and Collaboration: Industry 4.0 also establishes
solid and predictable processes where resulting data can be used for precise planning
and accurate estimates which leads to a high stakeholder satisfaction. Different
processes also exchange data between each other which enables automatic decision
making.

• Flexibility and Customization: Due to a highly connected and intelligent in-
frastructure, systems are able to adapt to specific needs which enables customization
of product lines.

1



1. Introduction

Due to the distributed nature of Industry 4.0, edge computing plays an important role
here. Compared to cloud computing, processing data on the edge provides several benefits
such as real-time data processing enabled through its low latency characteristics and
enhanced privacy, as data is not sent to third party cloud providers, but is kept locally.
However, using the cloud may still be an option to consider because of its scalable
processing power, availability and fault tolerance, thus leading to the idea of a hybrid
approach. In case of the edge server being overloaded, the cloud serves as a viable and
reliable alternative due to it’s ability of having “infinite” processing power. By having
this as a fallback option, it is ensured that the system will be able to continue running
during manufacturing processes in case of high load.
Another benefit is that the cloud could be used to offload insensitive tasks there, i.e.
tasks which do not have security or time constraints, thus saving local computing power
for critical tasks. An example use case, which we will address in this thesis, is real time
prediction of machine sensor data, where sensors produce large amounts of data which
need to be processed and provided to an anomaly detection machine learning model
(ML). Therefore, having the cloud as an offloading option, more machines would be able
to send data to the edge server and get their data evaluated.
Factories of the future, within Industry 4.0 and towards Industry 5.0 [LSW+22], are
characterized by a “softwarization” of manufacturing processes as also evidenced by
the emergence of the concepts of Digital Twins and Digital Shadows [KBBK22, WW24,
BDJ+22]. Such complex software cannot be monolithic, but rather should follow a
microservices-based design, and eventually be cloud-native in the sense that it can
be deployed and executed over general purpose compute infrastructure, which can be
provided on demand by public or private clouds.
Serverless computing can have an important role as an enabling technology here, as
it can facilitate the flexible deployment of such service-oriented software architectures
(potentially also facilitating customization of product lines) with a fine granularity
(function level vs. micro-service/component level) and the ability to scale resources
appropriately following compute demand that may vary with time. Especially in resource-
limited edge scenarios, serverless can act as a crucial enabler. In case of sudden and
unpredictable spikes in computation load, having the option to use different providers helps
to reduce computing stress on the overall system and ensures frictionless operation [HS24].
In comparison to a microservice architecture, serverless computing can be a better fit
in specific cases, due to its function-level granularity, which enables better control over
which tasks to schedule outside the main system. Serverless, often in the form of Function
as a Service (FaaS) and combined with Backend-as-a-Service (BaaS) offerings, stands for
a technique which does not involve developers maintaining servers by themselves. They
rather focus on functionality by writing code only, where an underling system manages
these function calls. Typical benefits include better and simpler scaling, cost efficiency
due to its pay-per-use nature (similar efficiency in an on-premise setting), simplified
development and management, high availability and its lightweight property.
However, Industry 4.0 is still a developing and emerging concept that has not yet been fully
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1.2. Aim of the Work

explored. Furthermore, various companies are striving for digitalization and optimization
of their processes in order to use different kinds of resources more efficiently, thus
allowing them to keep up with the competition. Adopting techniques of Industry 4.0 into
existing processes is challenging and raises critical questions about system architecture,
cybersecurity, monitoring and maintainability aspects of such a distributed system.

Specifically, the concrete problem of this thesis is connecting different parts of manufac-
turing processes together into a smart end-to-end system, leveraging on the capabilities
of Industrial IoT (IIoT), state-of-the-art interoperability standards, and serverless com-
puting. By simply forwarding sensor values, other applications would struggle using that
kind of data as classifying sensor values, gathered from various machines and sensors
within a factory, without additional context, is hard. This interoperability challenge
needs to be handled in a standardized way. Therefore, standards such as NGSI-LD [Pri21]
might provide a remedy, enforcing adding information about data. We refer to this as
context. For instance, machine sensors (IoT devices) produce a large volume of data
which could be used for real-time processing and automatic optimization. This could
be realized by creating such a system within a serverless edge setting, where functions
(FaaS) are utilized to handle individual data processing tasks per machine or IoT-sensor.
This thesis will address specific architectural and algorithmic challenges, as described in
the following section.

This thesis explores a new approach to serverless function scheduling, developed in
collaboration with the Austrian Institute of Technology (AIT) and its subcompany,
Leichtmetallkompetenzzentrum Ranshofen (LKR). LKR provided a real-world use case
in light metal manufacturing, integrating an anomaly detection model into a serverless
architecture for their casting process. This model, deployed as a serverless function,
identifies manufacturing deviations, enabling real-time, automated adjustments based on
sensor data, including autonomous process shutdowns if needed. This integration, driven
by LKR’s Industry 4.0 initiative, optimizes resource use, enhances product quality, and
demonstrates the practical impact of this research.

1.2 Aim of the Work
In this thesis we will adopt techniques and concepts of Industry 4.0 to support manufac-
turing processes. While the research questions we pose have a more general applicability
in smart manufacturing scenarios, our work will be driven by, tailored to, and evaluated
on a real-world industrial use case provided by LKR. The architecture that we design
and implement can be applied to support and transform LKR’s legacy manufacturing
system and will feature concepts and approaches from serverless edge computing.

In particular, the aim of this work is enabling the use of data-based optimization
techniques for various manufacturing processes in a serverless on-premise edge setting.
In current legacy systems, such as the one involved in our use case, machines already
produce sensor data which are saved and sent to the system for evaluation afterwards,
i.e. offline. The problem here is that such manufacturing processes take several hours

3



1. Introduction

to complete, and use of course a significant amount of resources (time, energy and
light metals) which might lead to a waste of resources and time if anything goes wrong
during the process. Additionally, for research purposes, a company such as the LKR
running experiments is likely to encounter inaccuracies, e.g., in initial configurations,
where real-time data processing and monitoring become crucial. A real-time processing
approach could possibly save resources in case of a production inaccuracy caused by
a machine, by adjusting or completely stopping the process, thus saving energy and
materials. This thesis sets off to answer the following research questions:

RQ1: How can a serverless approach be applied in an industrial IoT
edge setting, what benefits can it bring about, and how can existing
standards for data collection and representation be leveraged to
improve on integration capabilities and interoperability?

We aim to explore this specific serverless architecture design in the context of Industrial
IoT. We believe that it might be highly beneficial to be able to adapt processing functions,
thus allowing to extend functionality easily, e.g. using different data-driven algorithms
towards extending the cognitive capabilities of the system. Due to this, this approach
might also be viable for other domains besides light metal manufacturing. Importantly,
this thesis addresses several interoperability challenges, as, for example, manifested
in the need to ingest in the system data originating at diverse machinery and when
specific industrial standards are put in place for data acquisition, such as OPC-UA.1 In
addition, the thesis explores the adoption of modern IoT data interoperability standards,
particularly the ETSI NGSI-LD specification2 and the FIWARE framework.3

RQ2: How to achieve high-performance function serving in Industrial
IoT in order to meet requirements for real-time data processing?

Here our aim is to explore techniques for high-performance serverless function serving par-
ticularly to meet low latency, high availability, and overall system efficiency requirements.
A promising approach is to combine edge and cloud resources to schedule serverless
function workloads dynamically. Particularly, we apply Deep Reinforcement Learning
(DRL) techniques to effectively balance between edge and cloud execution based on
application and system requirements, and the current system state (e.g. cloud offloading
in case of high edge load, to save costs or for computationally heavy tasks). Answering
RQ2 also involves looking into the cold start problem in FaaS, which can be more severe
in edge settings and where solutions to alleviate it are highly relevant.

1https://opcfoundation.org/about/opc-technologies/opc-ua/
2https://www.etsi.org/deliver/etsi_gr/CIM/001_099/008/01.02.01_60/gr_

CIM008v010201p.pdf
3https://www.fiware.org/
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1.3. Contributions

RQ3: How does such a system affect performance in IIoT systems
where performance is a critical key consideration?
Our last question consists in evaluating if and to what extent such a complex solution
improves the overall system performance, whether this system is suitable for IIoT scenarios
with real-time requirements, and if our approach is feasible and industrially relevant.
Answering this question involves experimental work in two directions: (i) Measuring the
benefits and overheads specific to our workload scheduling algorithms, and (ii) evaluating
our system design and implementation end-to-end on a realistic industrial use case, aiming
to also investigate if there are hidden bottlenecks introduced by our system components
and, if so, how they can be mitigated.

1.3 Contributions
This thesis presents two primary contributions to the field of industrial automation in
the context of Industry 4.0.

1.3.1 Architecture
Firstly, we propose a novel, end-to-end microservice architecture designed to facilitate
the seamless integration of industrial processes with Industry 4.0 principles. This archi-
tecture prioritizes extensibility and maintainability, leveraging the inherent advantages of
microservice design. Moreover, it incorporates serverless technologies to further enhance
scalability and flexibility.

At a high level, our system architecture is as follows: Data from diverse factory machinery
is aggregated at a gateway and transmitted to a context broker, which uses the NGSI-LD
standard [BBFL19] to provide crucial context about the data to applications that wish
to make use of it. The adoption of the NGSI-LD standard enriches the data with
comprehensive contextual information, thereby simplifying data utilization for client
applications. The context broker then stores data persistently. Since we target industrial
IoT settings, the de facto communication protocol is OPC UA, which many modern
machine sensors of various domains implement. Client applications can access this data
either through direct subscription to the context broker or by querying. In our target IIoT
scenario, serverless functions are not bound to a specific deployment location. Rather, we
address multi-provider serverless settings, where functions can be hosted at the serverless
platforms of different providers (public clouds and on-premise FaaS platforms included).
We come up with the idea of a more sophisticated scheduling mechanism, thus introducing
a function scheduler component in our design. This scheduler operates at a higher level,
outside the FaaS platform, and can be integrated with client applications or be deployed
as a single stand-alone component. We discuss the FaaS scheduling problem in more
detail in the background chapter followed by thorough evaluation.

We demonstrate the feasibility of our approach by implementing the proposed system
and applying it to an industrial IoT use case in the area of light metal manufacturing.
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We then evaluate the practicality of the end-to-end system in a local deployment with
simulated sensor values. To ensure real world applicapility, we measure sensor patterns
and values from real machine sensors in light metal casting.

1.3.2 Serverless Function Execution
Secondly, we introduce a serverless function scheduler that employs the Deep Q-Network
(DQN) algorithm, a DRL mechanism, to dynamically allocate incoming function invo-
cations to the most suitable serverless provider from a predefined set. This dynamic
scheduling capability allows for the mitigation of cold starts. Furthermore, it enables the
optimization of function execution based on pre-configured parameters, such as latency,
function labels, or user-defined execution preferences. Thus, it offers a higher degree of
control and customization over function execution compared to other methods, which
primarily rely on server-side predictions based on metrics like function instance count
and CPU utilization to mitigate cold starts only, as outlined in [ARB21, FR24].

We carry out extensive simulations with our DRL-based scheduling mechanism and show
it to outperform a number of baselines such as edge-only scheduling and scheduling with
greedy heuristics.

1.4 Structure
We start with describing key concepts necessary for a better understanding of this thesis
in Chapter 2. We particularly focus on relevant aspects of the IIoT landscape, serverless
computing, and reinforcement learning. Additionally, we discuss related work which
addresses similar problems in Chapter 3. We then dive into the main contributions
of this thesis. We first present the design of our system architecture in Chapter 4.
As a major component of our architecture is our DRL-based scheduler for serverless
functions, we devote Chapter 5 to describe its design and internal workings in detail.
Chapter 6 elaborates on the implementation choices we made. We then present an
extensive experimental evaluation of our approach in Chapter 7. In the first part of
this chapter, we conduct experiments to evaluate the performance of our DRL-based
scheduling mechanisms in isolation. In the second part, we evaluate our system end-
to-end, by applying it to a realistic IIoT use case from the light metal manufacturing
domain, demonstrating its feasibility and industrial relevance, and aiming to identify
potential bottlenecks. We conclude this thesis with a summary of our key findings and
contributions, as well as a discussion on avenues for future work in Chapter 8.
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CHAPTER 2
Background

This thesis explores the application of Reinforcement Learning (RL) to optimize re-
source allocation and enhance performance in IIoT edge systems. As such, it addresses
architectural, system and algorithmic aspects. Specifically, we focus on the challenge
of efficiently scheduling serverless functions, such as machine learning predictions, in
real-time. Given the dynamic and unpredictable nature of IIoT environments, where
data volumes and processing demands can fluctuate significantly, traditional scheduling
approaches often fall short. This is where (D)RL, with its capabilities, offers a powerful
solution. By enabling an agent to learn optimal scheduling policies through interaction
with the environment, RL can adapt to changing conditions and improve overall system
efficiency.

This background section provides a foundational overview of the key concepts and
technologies relevant to this research, including IIoT systems, serverless computing, and
the fundamentals of reinforcement learning, setting the stage for a deeper exploration of
their integration and the resulting performance benefits.

2.1 Industry 4.0 Specifics
2.1.1 Industrial Internet of Things (IIoT)
A foundational understanding of the Industrial Internet of Things [SSH+18] is crucial
to contextualize this research, as it forms the operational environment, including the
underlying infrastructure, for the use cases we target. To start with, the Internet of
Things (IoT) paradigm is broad and – seen from an architectural perspective in the
scope of the computing continuum [DCD23, AJJ+24] – includes various devices within
the edge layer. Specifically, these are devices on the lowest end, often of small form
factor, such as mobile phones, smart watches, sensors, but also generalizing to include
any other device capable of exchanging data with a network, such as terrestrial and aerial
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vehicular platforms or sensor-equipped networked machinery. We particularly speak of
IIoT within the scope of industrial applications as in factories. Therefore, IIoT defines
infrastructure where IoT devices such as machine sensors, controllers and other devices
within the industrial environment can be easily integrated and interconnected (often via
wireless technologies [ZWZ+25]) which results in a smart system, improved automation
and efficiency.

2.1.2 OPC UA
A key component of data exchange in IIoT is the OPC Unified Architecture (OPC UA)1

standard, which provides a robust and secure mechanism for industrial communication,
enabling interoperability between devices and systems from different vendors which
includes communication from machine-to-machine, machine-to-enterprise and everything
in-between. OPC UA is seeing significant industrial adoption worldwide [OPC24]. The
OPC UA protocol employs an information model to define a structured and hierarchical
representation of system data. This model is organized around a root node, from where
the data nodes are accessible. Subordinate to the root node, the “Objects” node contains
instances of various object types, providing a standardized way to organize and access
information within the system [GHIU17, Bus24]. In simpler terms, machine sensors use
this protocol for data exchange. An OPC UA server contains a tree of object nodes which
represent sensors in our case. Object nodes contain so called variable nodes which store
the raw sensor values.

A useful feature for the Industry 4.0 paradigm is the Publish-Subscribe mechanism which
was added to OPC UA. With this, applications do not need to request data directly,
but instead, clients just subscribe to a server publishing sensor data over a Message
Oriented Middleware (MOM) without knowledge of any subscribers. However, by using
this mechanism, some sort of information gets lost as subscribers do not know where the
data came from. For example, adding context to that data would be highly beneficial in
terms of interoperability. This can be done with context brokers employing the NGSI-LD
standard for data exchange.

2.1.3 NGSI-LD
NGSI-LD poses a standard information model for data exchange, whose aim is to enhance
interoperability. It does so by providing tools which enable the creation of extensions
to include domain-specific modelings for example. We envision smart IIoT applications
that consume data from multiple sources, such as sensors attached to machines in the
factory, databases with time-series data relevant for the manufacturing processes at
hand, and other. Such information is referred to as context and collectively includes any
relevant information about entities, their properties and how these are related, which is
consumed by a smart application. For example, in the framework of this thesis, an OPC
UA gateway could act as a context provider; interested applications could subscribe to

1https://opcfoundation.org/about/opc-technologies/opc-ua/
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such information via a context broker, and fuse it with context potentially coming from
sensors using different data collection standards, as well as data from external sources,
without awareness of the underlying connectivity technology.

Precisely, NGSI-LD gives three major benefits. A key advantage is the system’s ability to
facilitate flexible information discovery and querying. This is achieved through dynamic
data discovery capabilities, coupled with built-in query patterns tailored to address
common information needs within unbounded, federated information systems. The
second thing is the ability to provide context to data of a specific sensor or service,
i.e., the standard provides a mechanism to add information about period of validity,
geographic constraints, to which machines or factories sensors belong to, and other
relevant information. The last point is that NGSI-LD poses a good solution in terms
of scalability and alleviates sharing data across distributed systems by providing a
developer-friendly interface for data collection [BBFL19].

NGSI-LD represents data in a way that is similar to a connected graph, where information
is linked together. This makes it easy to manage relationships between different pieces of
data, much like a graph database. Furthermore, NGSI-LD allows applications to update,
query, and subscribe to data, making it simple to automatically access information from
multiple sources. A reference implementation developed by FIWARE [CSB+19] is the
Orion Context Broker,2 which is also used in this thesis.

2.2 Serverless Computing
2.2.1 Function-as-a-Service
In recent years, the concept of serverless computing started to get a lot of attention in
research and application. The most commonly used form is called Function-as-a-Service
(FaaS) where code is split up into isolated functions and deployed separately. Often, FaaS
is combined with Backend-as-a-Service (BaaS) which provides additional functionality
such as authentication, message brokering and persistent storage for serverless applica-
tions [SSK+21]. A key advantage of the FaaS paradigm is the abstraction of underlying
infrastructure management. This allows users to concentrate on application logic and
minimal configuration tasks instead of infrastructure tasks, as the serverless platform
takes care of resource provisioning, scaling, and maintenance.

A defining characteristic of FaaS is its inherent elasticity, enabling dynamic scaling.
Serverless providers capitalize on this capability by scheduling workloads among available,
possibly distributed servers [YIWL21]. Typically, FaaS pricing follows the pay-as-you-go
model and major cloud platforms already offer serverless options, such as Google Cloud
Functions,3 AWS Lambda,4 Microsoft Azure Functions,5 and IBM Cloud Functions.6

2https://fiware-orion.readthedocs.io/en/master/
3https://cloud.google.com/functions
4https://aws.amazon.com/lambda/
5https://learn.microsoft.com/en-us/azure/azure-functions/
6https://cloud.ibm.com/functions/
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The pay-as-you-go model is a consumption-based pricing strategy where users are charged
by what and how many resources they use. Unlike subscription-based pricing strategies,
where the user is charged recurring fees, fees are calculated on a fine-grained basis. This
calculation depends on factors such as number of invocations, each execution’s duration,
consumed memory, and consumed computation power. It fits perfectly in unpredictable
use cases with fluctuating workloads and sporadic usage patterns, thus, saving up on idle
resources.

2.2.2 Serverless Function Scheduling

While FaaS scheduling shares certain similarities with conventional web service scheduling
for example, it presents new challenges that require novel approaches due to its special
characteristics. Unlike conventional web service deployments, where (micro-)service
deployments are fixed and are possibly stateful, FaaS functions are stateless and workloads
can spike. After execution, these temporary function instances are scaled down and
removed from the server to save up resources after some time. This is known as scaling
to zero. Function instances are typically run in lightweight software containers such as
Docker.7 On subsequent invocations, an instance is recreated which results in a significant
initialization overhead known as cold start latency [JSSS+19]. This is because necessary
function code, software container blueprints, and source code libraries are possibly
not cached on that server. In contrast to traditional web services where deployments
usually stay in the same place, FaaS function deployments are constantly moving around
the server cluster. This shifting happens because, when functions are not being used,
FaaS platforms take back the resources they were using – i.e. memory, disk space, and
processing power – and give them to other functions that need them. The changing nature
of serverless functions makes it hard to come up with a smart scheduling algorithm that
considers these unique characteristics. The scheduler needs to consider that functions
can run in any server and that resources are freed up and reassigned all the time. Such a
scheduler needs to do more than just simply balancing the load like in traditional web
services, in order to handle these unique FaaS challenges [YIWL21].

It is important to note that traditionally FaaS scheduling is discussed as a responsibility
of the serverless platform, where the scheduler may have access to detailed infrastructure-
level information such as the CPU load of different compute nodes. In the settings
this thesis addresses, this is not always the case, as the serverless workload scheduler
component that our architecture introduces may dispatch functions to different (public or
private) FaaS clouds. Particularly in the case of multi-provider serverless, such monitoring
information is typically not available externally and the scheduler needs to make decisions
only based on metrics it can observe (such as the response times it perceives).

7https://www.docker.com/
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2.2.3 Function Cold Starts
Serverless functions are lightweight by nature, thus, providing good scaling qualities.
Despite this fact, providing compute ressources and building containers from scratch is not
necessarily a lightweight task. This includes launching a new container, the setup of the
function’s runtime environment and deploying this function instance. Such initialization
processes take up to several hundreds of milliseconds, thus, delaying the execution of
the underlying function. This process of launching new function instances is referred
as cold starts. Wang et al. [WLZ+18] provide some insights on what happens under
the hood and how drastic cold starts are. For example, they differentiate the cases
based on whether a function is launched on an existing VM or a new one. Consequently,
in the latter scenario, the cold start latency is further increased. Other factors such
as memory and language influence the cold start latency additionally. For AWS, they
measured median cold start latencies of 167-171 ms for Python 2.7 and 824–974 ms for
Java environments. They used a Nodejs 6 environment as baseline to measure cold start
latencies which resulted in median values of 250-265 ms for AWS, 110-493 ms for Google
and Azure 3640 ms (the reason here was that each instance was assigned 1,5GB).

Upon invocation, a function instance does not immediately terminate but remains active
for a brief period. This approach, known as a warm start, conserves resources by allowing
the instance to handle subsequent requests arriving within a short timeframe, thus
avoiding the overhead of repeated initialization. Consequently, warm starts enhance
performance by reusing existing, readily available function instances at the expense of
increased resource consumption.

The problem with cold starts is the low reliability in critical use cases where performance
is important, such as in industrial settings with real-time requirements. Especially in
cases where cold starts take up to 3-4 seconds, as Wang et al. have measured [WLZ+18],
this poses a significant problem.

Cui [Cui18] stated an interesting edge case which makes this problem even worse. When
multiple requests occur concurrently so that multiple function instances are launched,
multiple concurrent cold starts can happen which in sum takes more time than just
waiting for a single instance to launch where all functions could be invoked. Mohan et
al. [MSD+19] also discuss that issue. Such scenarios commonly occur in large systems
and especially during periods of time where exceptional traffic is expected, such as rush
hours in systems like Uber.

2.3 Reinforcement Learning
Reinforcement Learning (RL) has gained massive attention in the last years generally,
and is also being applied in the field of serverless computing [ARB21, FR24, YIWL21].
The general idea comes from natural situations people or animals encounter. In various
situations we encounter problems we try to solve by interaction with a specific environment.
For example, newborns know nothing about how the world works but are forced to interact
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in different environments like how to get from one point to another more efficiently. By
taking action they constantly gather new knowledge from how the environment changes
which helps them to learn. Additionally, each action results in some kind of feedback
which is an indication of its quality, resulting in a positive or negative reward. Quoting
Sutton and Barto, whose work [SB20] was a major source for this section:

“Learning from interaction is a foundational idea underlying nearly all theories
of learning and intelligence.”

In short, Reinforcement Learning is a strategy to map situations or environments to
specific actions, where the goal is to maximize the reward by reaching a goal in the most
efficient way, basically a trial-and-error strategy.

The problem of RL is framed using ideas from dynamical systems theory. Precisely, it is
described by finding the best way to control a Markov Decision Process (MDP) where not
all information is known. A decision is made by obtaining the most relevant information
of the real problem (e.g. from the environment) where a learning agent learns the best
actions given this information to accomplish an objective. This objective must be related
to the observation or state of the environment and an action must have the capability of
changing the environment. Consequently, in its simplest form, a MDP is characterized
by an environment, an action and a goal. Reinforcement Learning is any method which
is able to operate within this MDP problem statement [SB20].

The most used form of machine learning is supervised learning, where an external oracle
is used to give information and context about data. That is, given a specific situation,
an example is labeled which gives information on how to act in that situation. In typical
cases such labels categorize examples. The primary goal of this type of learning is for
the system to generalize its responses, enabling it to perform accurately in situations
that were not encountered during training. While this type of learning is valuable, it is
insufficient for scenarios involving learning from interaction. In such interactive settings,
acquiring a comprehensive set of training examples that accurately represent all possible
situations the agent may encounter is often infeasible. Particularly in novel or unexplored
environments, such as in the serverless field and FaaS, where the benefits of autonomous
learning are important, an agent needs the capability to learn autonomously from its
own experiences.

The RL paradigm does not fit into the term unsupervised learning either. Unsupervised
learning works by finding structure or patterns among unlabeled data. The key difference
between RL and unsupervised learning is that instead of finding patterns, RL aims to
maximize rewards from actions to achieve a specific goal based on a specific state of the
environment.

By the definition of RL, an agent tries to maximize rewards by taking the best action
given a state of the environment. By continuously learning, the agent reaches a point
where it learns about the best actions and continues taking those actions for future
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iterations. The problem here is that the agent gets biased towards those actions possibly
missing better fitting options that the agent has not considered yet due to exploiting
his knowledge of past experiences. So, in order to function the best possible way, an
agent needs to know every actions reward given an observation of the environment, thus
the agent needs to explore different actions. Multiple executions of each action are
required to obtain a reliable estimate of its expected reward. Concretely, a big challenge
of RL is the trade-off between exploitation and exploration. The challenge lies in the fact
that neither exploration nor exploitation can be pursued in isolation without hindering
successful completion of the goal. The agent must balance trying a range of actions with
progressively favoring those that yield the most promising results.

2.3.1 Policies and Value Functions
By the nature of RL, given a specific state, the algorithm decides on that state how good
each action is in terms of future reward. Specifically, a value function on a state-action
pair tells how good it is to execute that action within that state. How good the future
reward is depends on the chain of actions taken. Therefore, value functions are defined
in relation to a specific policy, which is the strategy the agent uses to select actions.

“Formally, a policy is a mapping from states to probabilities of selecting each
possible action. If the agent is following policy π at time t, then π(a|s) is the
probability that At = a if St = s.” [SB20]

2.3.2 Returns and Episodes
Basically, the goal of a RL agent is to maximize its cumulative rewards over time. In other
words, it tries to maximize the expected return, which is defined in its most basic form
as a specific function of the sequence of rewards, e.g. the sum of rewards. In applications
featuring a natural endpoint or terminal state, where the agent-environment interaction
naturally segments into discrete subsequences known as episodes, this approach is suitable.
An episode ends when a terminal state is reached. For example, when playing a game,
each action is tied with a specific reward. A terminal state occurs, when the game is won,
e.g. the goal of that game was reached, or when the game is lost. In other words, when a
state is reached where no more actions can be made. The next episode would then be
the next round of a game, a reset of the environment, independent of what happened in
the previous episode.

2.3.3 Exploration vs. Exploitation
As mentioned before, finding a good balance between exploitation and exploration is hard.
A simple and pragmatic approach is the ϵ-greedy method. It uses a fixed ratio between
exploration and exploitation, choosing the action with the highest value but having a
chance ϵ of exploring by picking a random action. For example, if the value of ϵ is 0.2,
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then there is a chance of 80% of choosing the best fitting action and a 20% chance of
choosing a function randomly.

This is called the exploration-exploitation trade-off. This trade-off is central to rein-
forcement learning, influencing both the certainty of the outcome and the rate at which
this certainty can be enhanced and variance reduced. Other exploration strategies also
exist. For example, another technique is the ϵ-ratio which starts with a specific ratio
but changes over time depending on the learning process [Pla22]. For a thorough survey
of different exploration strategies in RL, the reader is referred to the work of Amin et
al. [AGS+21].

2.3.4 Q-Learning
A widely used Reinforcement Learning method is Q-Learning [WD92]. This model-free
algorithm enables agents to learn about the optimal action-selection policies in Markov
Decision Processes. In its basic form, it is defined by

Q(St, At) ← Q(St, At) + α[Rt+1 + γmaxQ(St+1, a) − Q(St, At)]. (2.1)

The so-called Q-values represent a numerical estimate of the expected future reward
that an agent can obtain by taking that action and following the optimal action-value
policy after. This equation represents how the Q-value is composed. When choosing
the action, the new Q-value gets updated by having the current one as base, adding the
immediate reward and the next states maximal Q-value but subtracting the current one
again, dictated by the learning rate to create a blend of the old estimate and the new
information. The components of the above expression are as follows:

• Q(St, At) represents the Q-value by taking action At in state St at time t.

• α is the learning rate which dictates how fast the algorithm updates its estimates
given new information. The value ranges between 0 and 1.

• Rt+1 is the immediate reward after taking action.

• γ represents the discount factor ranging between 0 and 1 controlling how much
importance to give the future reward.

• maxQ(St+1, a) represents the maximum of the next states St+1 Q-values for all
possible actions.

In this equation, the Q-value directly approximates the optimal action-value function,
independent of the policy being followed. This simplification greatly facilitated the
algorithm’s analysis and enabled early convergence proofs. While the policy still influences
the visitation and updating of state-action pairs, the sufficient condition for guaranteed
convergence is that all pairs continue to be updated [SB20].
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Q-learning is an off-policy algorithm. Off-policy learning methods differ from on-policy
methods in how they update value estimates. In off-policy learning, the update is based
on the value of an action that was not selected by the current behavior policy. This is
particularly useful during exploration, when the behavior policy deliberately chooses a
potentially non-optimal action. While an on-policy method would update based on this
exploratory action’s likely lower value, an off-policy method can instead update based on
the estimated value of the optimal action, in case of Q-learning, the best value of the next
state maxQ(St+1, a). This allows off-policy learning to avoid incorporating potentially
misleading values from exploratory actions into its updates, thus maintaining a more
accurate value function, while also not influencing the behavior policy. So, it allows the
agent to learn the optimal policy even while exploring using a different policy.

An important difference between off- and on-policy methods is convergence. This means
that after enough iterations, the algorithm recognizes optimal Q-values for all actions.
Off-policy methods converge when learning from greedy rewards after sufficient iterations.
ϵ-greedy on-policy methods do not converge on the other hand as they keep exploring
except in the case of a decreasing ϵ value [Pla22].

Bellman Equation

The value function (i.e., how Q-values are updated) for Q-learning is based on the Bellman
Equation. The roots of the bellman equation lie in the idea of getting information of the
whole environment. For instance, when looking at the whole state space as a tree-like
structure, the naive approach of learning the optimal path would be to traverse the
whole tree. Exactly this is the main idea of Bellman, having knowledge of the whole
environment at once. So, when looking at a specific state-action pair, the optimal policy is
calculated by looking at all possible subsequent states recursively. The Bellman Equation
represents the relationship between value function in state s and the subsequent state s′,
when following the transition function [Pla22].

V π(s) =
∑︂
a∈A

π(a|s)

 ∑︂
s′∈S

Ta(s, s′)
[︁
Ra(s, s′) + γ · V π(s′)

]︁ , (2.2)

where:

• π(a|s) is the probability of action a being chosen in state s.

• Ta is the transition function for action a.

• R is the reward for action a transitioning from s to s′.

• γ is the discount factor.

At the end, the same value function is called again recursively on the subsequent state
V π(s′) following the policy π, thus taking the whole state space in consideration. This
method falls into the dynamic programming paradigm introduced by Bellman.
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2.3.5 Deep-Q-Networks
As described earlier, simple Q-learning has a major drawback with its state space explosion
problem and is therefore only usable for simple environments with small state spaces.
In classical RL scenarios, consecutive states are often very similar to each other. This
leads to biased updates, instability as the algorithm can get stuck in local optima, and
slow convergence due to redundant information in correlated experiences. The Deep
Q-Network (DQN) approach [MKS+15] aims to break correlations between subsequent
states and to slow down changes to parameters during training to improve stability, which
is achieved using an experience replay and slowing down weight updates [Pla22]. Minh et
al. found a solution to this by incorporating Deep Learning into Q-learning, as described
in their seminal DQN article [MKS+15]. Therefore, key features that distinguish DQNs
are the following.

1. Deep Neural Networks (DNN) which approximate Q-values instead of Q-tables.

2. A replay buffer stores past experiences which are used to update the neural network.

3. A target network serves as separate neural network to calculate the target Q-values
according to the Bellman equation.

Deep Neural Networks are utilized to approximate the Q-function which estimates the
value of taking a specific action in a given state. The state parameters are mapped to the
input layer of the DNN. It then learns the complex relationships between these metrics
within the hidden layers and provides the results in its output layer, which is mapped
to the resulting actions. The DQN agent selects the action with the highest predicted
Q-value, effectively learning to optimize a given problem.

Experience Replay Buffer

A challenge in reinforcement learning arises from sequential experiences, as preceding
states are strongly correlated to its subsequent states. This can lead to an imbalance in
training, where the agent overemphasizes certain areas of the state space while neglecting
others, thus lacking in exploration. Additionally, the use of function approximation
and bootstrapping can result in the agent “forgetting” previously learned behaviors.
For instance, upon reaching a new and different level in a game, an agent might lose
proficiency in earlier levels due to this overemphasis on recent experiences.

In order to mitigate these correlations, a replay buffer is used. This buffer contains
experiences which are quadruples consisting of (state, action, reward, next state). It
caches a specific amount N previously reached states, which are randomly sampled in the
training process. This mitigates the issue of correlated training samples by employing a
buffer that stores a dynamic dataset of recent interactions. Instead of training solely on
consecutive states, samples are randomly drawn from this buffer, making the training set
more diverse. This approach increases the independence of subsequent training examples,
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as the next state to be trained on is not necessarily a direct successor of the current state,
but rather one selected from a history of past states. Consequently, experience replay
reduces temporal correlations between samples by distributing learning across a wider
range of previously encountered states [MKS+15].

In the DQN algorithm all examples of the replay buffer are treated equally in the
base algorithm. There also exists an approach where sampling occurs according to
relevance [SQAS16].

Target Network

The second upgrade which made DQN possible are infrequent weight updates, as Minh et
al. state [MKS+15]. In traditional tabular Q-learning, the Q-values are updated after
every single interaction with the environment. This means that each time the agent
takes an action and observes the next state and reward, the corresponding entry in the
Q-table is immediately updated. In DNNs these immediate updates can cause instability
and correlations between states. Instability occurs when the neural network’s weights
fluctuate excessively during training, hindering the learning process and preventing the
network from converging to an optimal solution. This can happen due to frequent updates
based on correlated experiences or noisy data, leading to oscillations, divergence, or
getting trapped in local optima.

So, the reason behind the target network is that the Q-network is periodically cloned
to create a target network. This target network is then used to generate the Q-learning
targets for the subsequent n updates to the main Q-network. In the original DQN, a
single network with weights was used, resulting in a constantly shifting target for the
loss function. By contrast, the target network’s weights are updated less frequently,
leading to slower changes in the target values compared to the main network’s updates.
Using a separate target network addresses a key challenge in Q-learning, where an
update immediately alters the target value at each step, potentially causing oscillations
or divergence of the policy. Introducing a delay, by generating targets with an older set
of parameters, mitigates the risk of these oscillations [Pla22].
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CHAPTER 3
Related Work

While IIoT, Industry 4.0, serverless, and edge computing have received a lot of attention,
works that particularly apply serverless in concrete IIoT settings and provide architectures
or systems combining these elements are scarce. We discuss scheduling of such serverless
functions using Reinforcement Learning, where we come up with a different technique
in opposition to similar work done in that field. In the following, we provide a short
overview of such works and outline the features that set this thesis apart.

3.1 Industry 4.0, Industrial IoT and Edge Computing
Dobaj et al. [DIKK18] propose a microservice-based software architecture tailored for
Industrial IoT (IIoT) environments. They argue that the flexibility, scalability, and
maintainability of microservices can address the heterogeneous nature of IIoT devices
and protocols. However, they rather propose a very high-level IIoT design and focus
on a microservice architecture. Their main arguing point are interoperability challenges
between devices and systems in this industry. Our architecture design concretely addresses
these interoperability challenges, while focusing on the evolution towards the serverless
paradigm.

Another similar approach is proposed by Hussain and Salehi [HS24] where a dynamic
fog federation approach is proposed to overcome the limitations of individual resource-
constrained fog systems. Their goal is to optimally and without human intervention
partition microservice-based applications across the federated fog in the Industry 4.0
space. The idea emerges from the problem that fog systems are resource-limited, inelastic,
disaster-prone, and without access to the cloud. Similar to this thesis, they explore
possibilities of serverless within Industry 4.0. However, they focus on a problem orthogonal
to ours, that of dynamic fog resource federation when there is an increased need for
compute resources that can be covered by opportunistically deployed mobile infrastructure
(e.g., on drones deployed in emergency response scenarios).
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Golec et at. [GGW+24] study the use of serverless computing for predictive maintenance
tasks in IIoT scenarios. They focus specifically on the problem of cold start latencies,
which is well-known in serverless [LGC+22]. Particularly, they apply machine learning
tools to predict cold start delays, which can be a first step toward cold start latency
mitigation strategies. While their system includes components that span the whole
computing continuum, the serverless platform where functions are executed resides in the
cloud, and Google Cloud Functions are used. Furthermore, the scope of their work is
limited to cold start latency prediction. Other works have also proposed ways to reduce
the effect of cold starts, either by means of prediction and pre-warming to make slow cold
starts rare [KS24, FSP+24], or by using lightweight runtime environments for function
execution to make cold starts cheap [GFD22, MPB24].

Simion et al. [SWlT+23] present a framework for “seamless serverless computing across an
edge-cloud continuum,” directly addressing the need for efficient and flexible deployment
of serverless functions in both edge and cloud environments. They introduce a novel edge
orchestration technique that enables functions to be deployed and managed seamlessly
across the continuum on top of Knative. While this closely aligns to our investigation
and gives insights to our idea of deploying functions on both cloud and edge nodes, our
aim is a different one. As mentioned before, we explore the integration of serverless to a
lower level with a focus on performance.

Bacchiani et al. [BPS+22] report on an IIoT use case that, albeit on a different field,
has some striking similarities with the one we consider, such as the use of compute
resources across the computing continuum to support low-latency processing of streams
of data originating by industrial machinery and, at the network level, collected via
common protocols (OPC UA data acquisition; W3C WoT to address interoperability).
In particular, anomaly detection algorithms are executed on data from CNC or PLC
machines on compute nodes at the edge and in the cloud. Contrary to this thesis, and
use-case specifics aside, the granularity the authors consider is that of the (micro-)service
and not the individual function as in FaaS, and they rely on a cloud-based orchestrator,
which is contrary to our design goals.

Finally, the work of Baresi et al. [BQT23] is relevant for this thesis as they recognize
challenges of resource allocation for serverless functions in edge environments, specifically
highlighting how existing approaches often neglect dependencies between functions. We
do not address this in this work, but this might be relevant for future work and give
some insights of how to further optimize function calls at the edge. They extend and
improve an existing framework that considers function dependencies (i.e. how functions
are invoked by others) into the new one, NEPTUNE+. Notably, Xie et al. [XGT+23]
also consider inter-dependent functions by proposing a reinforcement learning-based
serverless workflow scheduling scheme for IIoT services in edge environments. These
works underscore the importance of considering dependencies in resource allocation for
serverless edge computing and provide valuable reference points for further research in
this area.
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3.2 Reinforcement Learning for Serverless Computing
Li and Nastic [LN24] recently came up with an approach parallel to ours, where a multi-
agent reinforcement learning is used for eventually offloading functions from resource-
constrained edge nodes, e.g. mobile devices, to cloud providers in order to minimize the
completion latency. An agent runs within an edge device and communicates with other
edge agents over a communication group to ensure that offloading decisions are globally
optimal by exchanging relevant data like computing power and network properties. As
not all information is necessary, they introduce an attention mechanism to decide which
information are relevant for other edge nodes to be shared. This reduces communication
resources and improves decision making. They put a focus on communication strategies
between agents. In contrast, our work is about a single-agent DQN approach which
runs as a separate application observing all available serverless function providers, then
scheduling the function to the best fitting instance based on the current state of all
instances. Moreover, we observe the scheduling problem in an industrial setting where
the edge represent an on-premise server instead of resource-constrained mobile devices.

An interesting application of Reinforcement Learning (simple Q-Learning) is used by
Agarwal et al. [ARB21] to tackle the problem of cold starts for serverless functions. Their
idea is to predict function invocations by considering the number of function instances
and their CPU utilization for the state. Depending on a specified CPU utilization range,
function instances are proactively scaled up or down, thus being able to circumvent
cold starts. This work takes cold starts into consideration as well but from a different
perspective. Instead of scaling function instances appropriately, our DQN decides at the
application level to which serverless provider a function call should be scheduled.

Furthermore, we are using DQNs instead of simple Q-Learning to avoid the state
space explosion problem and our scheduler offers greater flexibility by operating at the
application level, enabling fine-grained control over various aspects of serverless execution,
such as the prioritization of minimizing cold starts, minimizing latencies or decide where
to run this function based on its type. Femminella et al. [FR24] also discuss the problem
of cold starts and scaling of serverless functions at the edge. Their work is also related to
ours and both deal with the same technologies. However, they mirror the work of Agarwal
et al. [ARB21] but with a more advanced procedure of using different Deep Reinforcement
Learning algorithms instead of simple Q-Learning. Additionally, they compare these
algorithms in terms of performance and reliability of results, precisely DQN, PPO, and
A2C. As other DRL algorithms might be suitable for a function scheduling problem,
we decided on DQN due to its stability by reducing correlations between updates, its
simpler implementation and better sample efficiency as DQN uses a replay buffer of past
experience for better sample efficiency. However, a potential limitation of our approach in
certain scenarios is the discrete action space which means that our approach works only
for a fixed set of actions whereas PPO for example supports continuous action spaces.

Yu et al. [YIWL21] introduce a novel scheduler employing DRL which considers the
changing nature of serverless functions. Implemented in Openwhisk, they replace the
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built-in scheduler with their own and compare its performance with baseline schedulers.
Our work sets a focus on black-box (though not limited to) information as our scheduler
runs outside of serverless providers like Openwhisk. They also point out why more
sophisticated scheduling methods are required for serverless functions.

In our previous work [Sch22], we proposed a tabular Q-Learning approach for the same
problem of function scheduling for general-purpose FaaS instead of IIoT scenarios. The
major drawback of that approach was the state space explosion problem, which we avoid
by using DQNs in this work and explore this problem in more depth with a broader state
representation.
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CHAPTER 4
System Design

4.1 Overview
In this section we briefly describe the system design without implementation-specific
details, which is depicted in Figure 4.1. For the proposed architecture, we keep generality
in mind regardless of the examined use case. It is designed to fit in any industrial IoT use
case which involves diverse machinery containing sensors capable of communicating via the
de facto standard communication protocol OPC UA. The system is engineered to efficiently
handle high-frequency data streams from multiple sensors, dynamically allocate processing
resources, and support manufacturing processes in real-time (such as by executing anomaly
detection mechanisms) using serverless functions. This design prioritizes scalability,
adaptability, and real-time performance while maintaining a modular structure that
allows for easy integration with various other IIoT applications and components. By
leveraging the standardized data representation of NGSI-LD and the flexibility of serverless
computing, this architecture offers a robust and versatile solution for diverse industrial
settings.

4.2 OPC UA Gateway
The role of the gateway is to be able to collect diverse sensor data over the OPC UA
protocol. It acts as a bridge between the OPC UA servers embedded in manufacturing
machines and the central context broker. The gateway subscribes to relevant OPC UA
nodes, receives real-time data updates, and transforms the data into a format suitable
for the context broker. This ensures interoperability between the diverse sensor data
sources and the standardized data representation used within the system. Additionally,
the gateway can perform data preprocessing tasks, such as filtering, aggregation, or
normalization, before forwarding the data to the context broker. This reduces the data
volume transmitted over the network and prepares the data for efficient processing by
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downstream components. It is designed to accept various sensor data types which can
occur.

4.3 NGSI-LD Context Broker

The context broker serves as a central point for data collection and persistence. Data can
arrive from any gateway or data source such as the OPC UA gateway, which we consider
as the main data source. It uses the NGSI-LD standard, a JSON-LD based format that
provides a rich and standardized way to represent entities and their relationships. This
ensures interoperability and facilitates data sharing among different components and
applications within the IIoT system. In an Industry 4.0 architecture, adding context to
data is crucial to enable extensibility of the system. Instead of applications handling
raw data directly, an intermediate context broker adds comprehensive information to
data about the origin or for what this data should be used for example. This provides an
immense benefit for applications using these data as information about data values is
always present. The context broker not only stores the data but also enables efficient
querying and retrieval, allowing authorized applications to access the information they
need. Moreover, it offers features like subscriptions and notifications, enabling real-time
updates to be pushed to interested parties. By providing a unified and standardized data
management layer, the context broker plays a critical role in facilitating data integration
The context broker is also designed to efficiently persist data as it comes in, thus, not
only being able to add context and forward data, but also saving data into its database.
This takes responsibility for storing data from applications, representing a central point
of data collection and storing.

4.4 Application Layer

This part does rather represent a layer instead of a single component. It poses a layer of
applications listening for data or fetching data from the context broker. It embodies the
core functionality and intelligence of the system, leveraging the data provided by the
context broker to generate insights, automate actions, or support decision-making. An
example is an application collecting and processing data in order to evaluate them using
machine learning techniques and make predictions. The applications in this layer can be
diverse, ranging from simple data visualization tools to complex machine learning pipelines
for predictive maintenance, anomaly detection, monitoring, or process optimization. The
modular design of the system allows for flexibility in integrating various applications,
enabling the system to adapt to evolving needs and incorporate new functionalities as
required.
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4.5 Serverless Provider
In our proposed architecture we consider the use of serverless technologies as highly
beneficial in terms of resource utilization and extensibility. Specifically, serverless functions
may be called by applications in the application layer. In a smart Industry 4.0 system,
which generates and processes tons of data, running this in a simple server may cause
problems in terms of load and resources. Serverless, especially FaaS, enables efficient
resource use as edge resources might be limited. FaaS achieves that by efficient scaling, so
that unused resources are freed and provided to other applications. In addition, serverless
enables the use of cloud resources easily, as the developer can simply deploy functions on
the cloud. This has the advantage that in case of loaded edge instances, function calls can
be offloaded to the cloud. Serverless functions provide a high degree of flexibility, enabling
the integration of diverse application logic (e.g., detecting anomalies in a light metal
manufacturing process, as in the use case we evaluate in Chapter 7) without requiring
modifications to the overall system’s architecture. This approach aligns with the dynamic
nature of IIoT environments, where adaptability and efficient resource utilization are
paramount, potentially at the expense of additional latency, especially when using cloud
providers.

We should note that we target serverless edge computing [RND23] use cases that involve
scenarios where serverless functions can be executed on an on-premise FaaS platform
or, when specific conditions are met, be offloaded to external cloud facilities, such as at
the edge of the telecom operator’s network following the Multi-access Edge Computing
paradigm [ETS22] or at traditional remote cloud data centers. We particularly consider
multi-cloud serverless settings, a paradigm that is receiving increasing attention [BKJS21,
ZBPG22]. In our architecture, interfacing with FaaS provider platforms – internal or
external – is the responsibility of the scheduler component described next, which is
in charge of dispatching function invocations to the appropriate serverless providers.
As such, the scheduler component implements the integration logic so that function
invocation requests are appropriately encoded according to the API specifications of
different FaaS providers. In order to support additional FaaS offerings, the appropriate
adapters need to be implemented, which is how our design achieves a level of extensibility
with respect to serverless provider support.

4.6 Serverless Function Scheduler
In the multi-cloud FaaS scenario we assume, the scheduling problem that we address is
positioned at a level higher than what is traditionally the case in serverless. Namely,
our scheduler operates outside the FaaS platform1 and decides on a per function call
basis which is the most appropriate FaaS provider to use, considering the information

1However, the scheduling logic we present in Chapter 5 could be implemented within the serverless
platform, where more detailed infrastructure-level monitoring information such as host CPU loads could
also be utilized. For such cases, we design and evaluate an appropriate adaptation of our scheduler that
considers such load information.
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that it can measure (e.g., latency, failure rate) or has otherwise available (e.g., pricing
information and availability related SLAs).

Due to the unpredictable nature of serverless functions, we incorporate an intelligent
scheduling mechanism into our system. Precisely, applications using serverless functions
make use of the scheduler to run their functions according to their specific needs. The
scheduler employs a DQN-based decision strategy, which is able to consider specific
characteristics of serverless providers and functions, thus, making the best fitting choice
for function execution. Example cases, where such a scheduler shines, are loaded edge
servers resulting in the cloud being a better location for execution. Another situation
would be that functions have tight performance criteria, where the scheduler helps
choosing the best fitting provider.

A question, which arose during the design and implementation of our system, is whether
this scheduler should be implemented as a single stand-alone component in a separate
deployment or whether each application should come with its own scheduler instance.
Originally, we opted for the former, so that each application does not have to implement
this specific logic. However, applications might have specific needs and priorities resulting
in different configurations for the scheduler. To take it a step further, schedulers with
fundamentally different logic might be desired to be supported in parallel. Therefore,
it might also make sense to run the scheduler as part of the application. While in our
implementation and experiments we have eventually focused on the latter approach,
bundling the scheduler with the application, we note that our architecture can also
be deployed with a single scheduler component with all applications forwarding their
function invocations to its API endpoint.
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Figure 4.1: Overall System Architecture Design 27





CHAPTER 5
A Reinforcement Learning-Based

Serverless Function Scheduler

In this chapter, we delve into the internals of the serverless function scheduler component
of our architecture. We present the design of a scheduler tailored to multi-cloud serverless
settings, and extensions that would be possible if the scheduler were deployed in a
more controlled environment where it would have access to more detailed platform-level
performance information. For each function invocation request, our scheduler is tasked
with deciding on the appropriate FaaS platform instance to forward the request to for
execution. For this purpose, it implements a decision making strategy based on the DQN
reinforcement learning algorithm.
We start from a basic version of our scheduler that aims to optimize for low response
times, without sacrificing on reliable function execution. This scheduler operates on
minimal observable information, namely the response times, cold start incidents, and
invocation failures resulting from its decisions. Then, we propose a DQN-based scheduler
design which aims to make decisions that also induce a balanced workload among target
serverless platforms by avoiding scheduling on overloaded hosts. This scheduler is tailored
to settings where platform CPU load is observable – this is not generally the case when
using (external) public FaaS platforms. Finally, we discuss potential extensions that
could allow system operators to attach different performance priorities to individual
functions, which the scheduler then considers in its decisions. Each scheduler variant
naturally comes with a different state representation and reward structure, on which we
elaborate in this chapter.

5.1 State Representation
To define the state for the reinforcement learning problem at hand, we first have to
think about how a state of a serverless function provider/instance can look like and
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which parameters are relevant for function execution. Serverless functions are typically
called remotely, so they are not embedded into application code directly, but rather are
invoked similar to a remote procedure call (RPC). That means that there is a latency
for communication involved. Another factor that contributes to application-perceived
response time the function execution time, i.e. how long it takes to produce a response to
a called function. Execution time is influenced by different conditions like computation
time of the function itself and cold starts. Response time increases significantly in case
of a cold start. Those indicators are already a solid measure, but other factors play also
a role in a successful invocation, where success can be measured in different ways, for
example if a specific response time requirement was met. Next, the actual success of a
function, i.e., if it returns a valid response, play a role as retries can be costly in terms
of response time. The load of a provider is also relevant, as response times or success
rates are affected by that measure, typically by means of CPU-load. However, in many
cases this information is not directly observable outside the serverless platform. Lastly,
function characteristics and requirements set by the caller are also relevant, e.g., whether
the function is computation-heavy, or whether it needs to return within a specific time.
Functions may be also labeled according to other needs such as privacy and data locality,
where an execution on self-hosted instances is preferred.

The state representation varies between different implementations and grows with the
number of providers available. In this work, we evaluated different types of DQN
implementations, where each covers different factors in its state. Specifically, the first
variant we design includes latencies, cold start information, and availability, which can
be a measure for function success, into its state per provider. The second considers
CPU-load in addition. Actions correspond to which provider is chosen in a given state.

To clarify the encoding of the state representation, we will talk about the specifics. Each
parameter within the state is represented as a normalized numerical value. Latency, for
instance, is normalized by dividing the raw latency value by 10 to make the state space
smaller. Cold start information is encoded as a binary value, where 1 represents a cold
start and 0 indicates a warm start. Availability is an indicator for the function’s success.
It is encoded by putting it into custom bins, where 99.999% falls into the bin 99.9%.
To speed up training convergence in our experiments, we simplified this by representing
availability in coarse-grained bins. In the second variant of our scheduler, CPU load is
normalized by putting values into 10 bins, each representing a range of 10 for reasons of
simplicity. These normalized values are then concatenated into a single vector, where the
order of features is consistent across different instances. This vector serves as the input
to the DQN, allowing it to learn and make decisions based on the combined information
of all relevant factors.

We summarize the state space representation of our two scheduler variants below, where
li stands for the normalized latency, ci for the cold start, ai for the normalized availability
and cpui for the normalized CPU-load value per instance i.
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• Variant 1 – latency, cold start and availability-aware scheduler:

S = (l1, cs1, a1, . . . , ln, csn, an)

• Variant 2 – latency, cold start, availability and CPU-load-aware scheduler:

S = (l1, cs1, a1, cpu1 . . . , ln, csn, an, cpun)

5.2 Training and Convergence
Training is a difficult task, especially when it comes to train an algorithm with the
aim to suit various situations and patterns possible in the serverless nature. By the
nature of Reinforcement Learning, an an agent learns continuously by interacting with
the environment by taking action in given states. The tabular Q-learning approach
would need to encounter each single situation to learn from it. For larger state spaces
training would be close to infeasibility due to the state space explosion problem. DQN’s
generalize from seen states and approximate Q-values based on that. This reduces
training complexity by a major factor compared to tabular Q-learning, but still need to
encounter various states and patterns to be able to learn from that. Although, we show
good results in our experiments, more training would probably be required with more
varying patterns.

We apply the Rainbow DQN approach [HMvH+17], which is supported by RLlib [LLN+18],
our DRL implementation framework of choice. The agent trains a Convolutional Neural
Network (CNN), as the original DQN [MKS+15] does, with 3 convolutional layers, in-
cluding 32, 64 and 64 channels respectively. The layers use filters of sizes 8×8, 4×4, and
3×3, with corresponding strides of 4, 2, and 1. It uses a dueling architecture where each
hidden layer consists of 512 units. As stated in the background chapter, the output layer
corresponds to the actions.

To train it, we simulate various patterns, such as changes in load, latency and computation
time, simulating random spikes, in order to provide a solid base. Figure 5.1 and Figure 5.2
depict how convergence looks within 100 training iterations in an example training session
of the first variant of our scheduler. The loss function, which is an indicator of how much
the optimal reward was missed, gradually decreases until reaching an optimal policy at
iteration 42, indicated by a consistently low value. Due to some degree of randomness
given by our environment and the random exploitation, convergence can also get reached
at a later point. Respectively, the rewards gradually increase and show optimal results
given the reward function. We note that rewards show slight peaks or drops due to the
nature of the scheduling problem and the dynamic environment. The exploration strategy
of the DQN can lead to occasional selection of suboptimal actions, resulting in temporary
dips in rewards. However, the overall trend indicates a clear convergence towards an
optimal policy, where the scheduler effectively learns to balance various factors and make
informed decisions to optimize resource allocation and meet performance objectives.
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Figure 5.1: Training loss

5.3 Reward Model

5.3.1 Variant 1: Latency, Cold Start and Availability-Aware Scheduler

In the problem of FaaS scheduling, there is no specific goal such as winning conditions in
games which indicate if an episode is done or not, we just penalize actions based on their
performance. This way we guide the agent towards the most profitable action in terms of
latency, cold start avoidance, etc. The following reward functions consider response times,
divided by 10, so that they do not outweight failures. Cold start latencies are included
within the overall response time, e.g., if a cold start delay increases the response time by
400, paired with a round trip with computation time included, an additional delay of
for example 30 would result in a negative reward of -43. Given our focus on mitigating
cold starts, function call failures are not heavily penalized. Instead, a moderate negative
reward of -40 is assigned. This reward magnitude was determined to be sufficient to
incentivize the agent to avoid cold starts and failures effectively while still allowing for
exploration and learning in other aspects of the environment, thus providing an initial
reward model for evaluation. In the first variant of our scheduler, our reward is therefore
given by the following expression:

R(t, s) =
{︄

−Pf , if s = 0
− t

10 , if s = 1
(5.1)
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Figure 5.2: Mean rewards per training iteration

• R(t, s) represents the reward function with response time t and success indicator s.

• −Pf represents the penalty in case of a failure.

5.3.2 Variant 2: Latency, Cold Start, Availability and
CPU-Load-Aware Scheduler

Additionally, other metrics like CPU-load might be also interesting to observe. Gathering
information about CPU load provides a critical parameter for the observation of a
serverless function instance’s state and overall health. While serverless platforms abstract
away much of the underlying infrastructure management, monitoring CPU utilization
remains valuable for several reasons. Firstly, CPU-load serves as a key indicator of
an instances current processing capacity and its ability to handle incoming requests
efficiently. High CPU utilization might signal that an instance is coming closer to its
processing limit, potentially leading to increased latency or even request failures.

Secondly, CPU load can be used to proactively predict and prevent performance decrease.
In an industrial setting, such decreases can prove as lethal in settings where real-time
prediction is required. Manufacturing processes might come with tight performance
requirements. Not providing responses within a reasonable time might harm a process
significantly and lead to losses. By monitoring CPU load trends, it becomes possible to
anticipate when an instance might become overloaded and take preemptive actions, such
as provisioning additional instances or rerouting traffic.
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Thirdly, in the context of function scheduling, CPU load information can be leveraged
to make more informed decisions about where to route new function invocations. For
example, a scheduler could prioritize instances with low CPU utilization, ensuring faster
execution and minimizing the risk of resource contention.

Lastly, understanding CPU load patterns can be valuable for optimizing function code and
resource allocation. By identifying functions or code sections that are particularly CPU-
intensive, developers can focus their optimization efforts to improve overall performance
and reduce execution costs. In a dynamic and often opaque serverless environment, CPU
load emerges as a vital metric for ensuring efficient resource utilization, maintaining
application performance, and enabling intelligent scheduling decisions.

Therefore, for scenarios where CPU load information is available to the scheduler, we add
an additional factor into the reward function, which penalizes high load. This function
was also used for evaluation (see Chapter 7). Even though these reward functions are
simple, they were sufficient to show that they work well in the scenarios we studied. In
the following reward function that drives the second variant of our scheduler, we consider
the variable c additionally, which represents the CPU-load after scheduling a function
call to that instance.

R(t, s, c) =

��������������

−40 − t
10 , if s = 0

− t
10 −

����������
60, if c ≥ 95
40, if 90 ≤ c < 95
20, if 80 ≤ c < 90
0, if c < 80

, if s = 1
(5.2)

5.4 Extensions
Even though these reward functions perform well in our target scenarios as experiments
demonstrate, more sophisticated models are possible and might be useful in other real
world settings. Of course, a thorough training with diverse real world patterns is also
necessary. We conclude the discussion on the design of our DQN-based scheduler with a
possible extension to provide the system some flexibility to efficiently schedule serverless
functions with inherently different and potentially conflicting priorities. We factor these
priorities in the design of the reward function by introducing configurable weights,
each associated with a different criterion (e.g., latency, availability, CPU load), which
applications can adapt to their needs more easily.

In particular, we propose a labeling mechanism for functions, which assigns each weight
a different value depending on the label. This way it is possible to customize priorities to
a certain level on the function level. That means, depending on a label, e.g., “no-fail”,
we can schedule incoming function calls in a specific way, such as avoiding failures. The
label “no-fail” for example, would give the success penalty the maximum weight factor of
1. Still, the scheduling mechanism is not fully customizable this way. As the function
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label would be part of the state, those labels need to be predefined in the system with
predefined weights.

A specific reward model for this approach is proposed below. In this model, we utilize a
simple linear scaling technique to normalize reward components. This involves subtracting
the minimum observed reward and dividing by the difference between the maximum and
minimum rewards. This maps the rewards to a range between 0 and 1, ensuring that all
reward components contribute proportionally to the overall reward signal.

R(t, s, c) =

����
wf − wc · c

100 − wt · t, if s = 0

1 − wc · c
100 − wt · t −

{︄
wh, if c > cthreshold

0, if c ≤ cthreshold

, if s = 1
(5.3)

• wf represents how the penalty for failures is weighted, ranging from 0 to 1.

• wc represents how the penalty for CPU-load is weighted, ranging from 0 to 1.

• wt represents how the penalty for response times is weighted, ranging from 0 to 1.

• wh represents how the penalty for exceeding a defined CPU load threshold is
weighted, ranging from 0 to 1.

Thoroughly evaluating these extensions to our basic DQN mechanisms is a subject for
future study.
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CHAPTER 6
Implementation

In this chapter, we dive deeper and discuss implementation choices and decisions we
made in our proposed system. We talk about their advantages and disadvantages and
describe the technology used in our implementation. This detailed examination of
the implementation process provides valuable insights into the practical considerations
and trade-offs involved in building a real-world IIoT system. By understanding the
specific technologies, libraries, and design patterns employed, readers can gain a deeper
understanding for the complexities of translating a conceptual design into a functional
and efficient system. For our deployment scenario, we pack each part in its own Docker
container to promote maintainability and extendability.

6.1 OPC UA Gateway
For our gateway, we use the Go programming language.1 Reasons for this decision are
mainly its strength in building concurrent applications such as gateways. The enabling
mechanism for this are the so called goroutines, which are lightweight threads managed
by the Go runtime. In case of our OPC UA gateway, this mechanism enables seamless
and efficient processing of multiple sensors in parallel. In contrast to python for example,
which we also considered due to its simplicity, python has limited concurrency abilities
due to the global interpreter lock preventing multiple threads of executing python code
at once.

The gateway starts a subscription within a separate goroutine to a sensor once it receives
an http request, thus, serving as a simple web server additionally. It is designed to handle
different types of sensors. Therefore, it receives custom subscription details in each
request body. Once the gateway subscribed successfully to a sensor, it keeps collecting
data and sends data values further to the context broker.

1https://go.dev/
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A major point of discussion is if data should be preprocessed at the gateway level or
not. The problem in sending each new value notification to the context broker is a much
heavier network load, further increased by the additional context information in a format
suitable for the NGSI-LD standard. The preferred solution is to batch values into a
list and send the list as update for an entity. This also aligns to the specific use case
we evaluate in Chapter 7, where the input of an anomaly detection model corresponds
to a list of 10 values. For applications that operate with single values, this approach
is still appropriate as single values are extractable with their timestamps. However, it
is possible to extend the system by implementing an option whether to send data as
a batch or immediately as each value arrives. This makes sense for applications which
require data to arrive in a specific frequency. For instance, if a sensor, such as a camera
transmitting image data, produces only one data point per second, the resulting update
frequency might be too low, especially as the frequency gets lower based on how many
items are required to fill the list and trigger the update request.

6.2 NGSI-LD Context Broker
For the context broker, we utilize an existing approach developed by the FIWARE Founda-
tion2, namely the Orion-LD Context Broker. It employs the NGSI-LD standard [BBFL19]
out of the box. It is implemented as a high performance and high throughput middleware
and offers various extensions to the system. By default, it uses the document-based
MongoDB3 where entity data is stored. One of its extensions relevant for industrial use
cases – and the use case we experiment with in this thesis in particular – is Quantumleap.4
It is an additional service for storing, querying and retrieving data in NGSI-LD format.
Quantumleap converts this data and stores it in a tabular time-series data store, such as
CrateDB. An example payload which employs the NGSI-LD format is specified below.

{
" id " : " Machine1 " ,
" type " : " Machine " ,
" temperature " : {

" va lue " : 23 ,
" type " : " Float "

} ,
" p r e s su r e " : {

" va lue " : 720 ,
" type " : " I n t eg e r "

}
}

2https://www.fiware.org/
3https://www.mongodb.com/de-de
4https://quantumleap.readthedocs.io/en/latest/
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6.3 Serverless Layer
For the serverless layer, we utilze Nuclio.5 Nuclio is a high-performance open-source
serverless framework which soothes the lock-in problem, ensures fast development and
supports GPU utilization. It is designed for speed and efficiency, making it significantly
faster than many alternatives [LKRL19]. Nuclio offers versatile deployment options,
running as a standalone Docker container or within a Kubernetes cluster. Nuclio supports
a wide range of event triggers, including HTTP requests, message queues, and scheduled
events, making it adaptable to various use cases. Its focus on performance, flexibility,
and data-centric workloads makes Nuclio a compelling choice for building and deploying
serverless functions, suitable for industrial IoT environments.

For our DRL-based function scheduler, instead of implementing the DQN from scratch,
we use Ray [MNW+18] and RLlib [LLN+18]. Ray leverages concurrency whereas RLlib
provides a full implementation of deep Q-learning as proposed by Minh et al. [MKS+15].
Despite of the vast configuration and customization options provided by RLlib, we use
default parameters with little customization which are described in Table 7.2.

5https://nuclio.io/
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CHAPTER 7
Evaluation

In this chapter we present the findings of the experiments we have conducted to evaluate
our scheme. The evaluation is twofold. In the first part we measure and evaluate how well
our DQN-based function scheduler performs given baselines such as an edge-only heuristic
and a latency-greedy heuristic. We further compare two different DQN scheduling
algorithms with different state spaces, where we show which benefits a consideration of
more state parameters brings. In the experiments dedicated to our scheduler we examine
different scenarios serverless functions may encounter. We strive to solve them and
outperform our baselines showing the value of our scheduling algorithm in improve the
use of serverless in an industrial IoT setting.

For the second part, we evaluate the feasibility and relevance of our approach by deploying
and measuring the performance of our system end-to-end on a specific realistic IIoT use
case provided by AIT.1 For this, we simulate the integration by setting up local machine
instances, which simulate sensor readings for a light metal manufacturing process. We
measure its performance regarding whether our system meets requirements set up by AIT.
The major requirement specifies a time limit in which our end-to-end system must deliver.
Additionally, we setup a function instance in Nuclio2 which evaluates sensor readings
using an anomaly-detection machine learning model specifically developed for this process
by AIT. All experiments are run locally on the same host with the environment specified
in Table 7.1.

1https://www.ait.ac.at/
2https://nuclio.io/
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Table 7.1: Experiment Environment Details.

Experiment Environment
Operating System Microsoft Windows 11 Home 64-Bit
CPUs Intel Core i7-10875H @ 2.30GHz, 2304 MHz, 8 cores
Main Memory 16 GB DDR4 RAM
GPU Nvidia GeForce RTX 2080 Super MAX-Q | 16 GB

GDDR5 RAM
Python Version 3.10.13
Torch Version 2.1.1
Ray Version 2.40.0

7.1 Function Scheduling Performance

7.1.1 Emulation Settings

Cold Start Emulation

We emulate cold starts by tracking each function call with the exact time when it was
invoked in a map-like data structure per instance. As serverless functions are designed
with scalability and resource optimization in mind, function containers are scaled down
if not frequently used. A simple heuristic when to scale down functions is time. For
different providers this threshold ranges between seconds. Therefore, we assume that
we know after how many seconds a function container is stopped/destroyed, which we
use to calculate if a function call will result in a cold start or not. For example, if the
threshold is 8 seconds, we retrieve the cold start by calculating the difference between
the current time and the time this function was last called. However, for our quantitative
experiments with several hundred or thousand function calls, we randomize cold start. By
doing so, we simulate different possible scenarios over time, thus getting good measures
for our experiments.

Serverless Instances

For the emulation of serverless instances, we need to consider latencies and how the
instance runs a function. For the latency, we simply preset a realistic range and simulate
specific behaviors like random spikes and sudden increases of latency for a short period of
time. These latency ranges were gathered by pinging edge and cloud servers. In addition,
we emulate CPU-load by increasing and decreasing it depending on function calls. For
our experiments, we decide on a fixed computation time each function takes, adding a
distribution of the latency range for each instance. Depending on the availability, we
emulate failures.
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7.1.2 Tools

For all the experiments, we use Ray [MNW+18] and RLLib [LLN+18] to train our algo-
rithm. Ray is a powerful open-source framework that facilitates distributed computing
and parallel execution of tasks, making it particularly well-suited for training computa-
tionally intensive machine learning models like DQNs. It offers several advantages that
can significantly accelerate and streamline the training process. Even when executed on
a single computer, it speeds up the training process a lot by exploiting parallelism.

One of the key benefits of Ray is its ability to efficiently distribute the workload across
multiple cores or machines, enabling parallel execution of tasks such as experience replay
sampling, neural network updates, and environment simulations. This parallelism can
lead to substantial speedups in training, especially for complex RL algorithms that require
large amounts of data or extensive exploration.

Ray also provides a simple and intuitive API for defining and executing distributed tasks,
making it easy to parallelize existing code or implement new distributed algorithms. Its
flexible architecture allows for seamless scaling from single-core experiments to large-
scale distributed training on clusters, enabling researchers to experiment with different
configurations and leverage the full potential of their hardware resources.

Furthermore, Ray’s integration with RLlib, a comprehensive library for reinforcement
learning, offers a rich set of tools and functionalities specifically designed for training
DQNs. RLlib provides optimized implementations of various DQN algorithms, along
with features like hyperparameter tuning, checkpointing, and logging, which can further
simplify and accelerate the development process.

The agent is driven by the reward function which differs in each use case. So, the
goal is rather to provide the best scheduling decision given a specific state considering
future rewards as well. For example, after scheduling a function, the agent learns future
invocations on the same provider are beneficial as cold starts are probably avoided. This
happens due to the nature of DQN considering future rewards for actions too in the
current state. That means that the Q-value is calculated including the maximum future
Q-value (i.e., in the next state). This way, the agent will learn that a specific action
will probably result in a higher reward (i.e., avoiding a cold start) in the next state,
thus learning about long-term consequences. During training, the agent employs an
epsilon-greedy strategy with a decaying exploration rate to balance exploration and
exploitation.

7.1.3 Baselines

In this section, we present the baseline scheduling strategies against which we compare
our DQN-based scheduler.
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Latency-Greedy Heuristic

A very simple strategy to gain an advantage in terms of performance is to use a heuristic
which decides on the instance with the lowest latency value. Although this could be
helpful in some scenarios, it is not sufficient to handle the complex nature of serverless
functions, but serving as a good baseline for comparison to our smart scheduler.

Function-Failure Heuristic

Similarly, this heuristic selects an instance based on the highest availability rate. If
multiple instances share the same value, it follows a latency-greedy approach similar to
the latency-greedy heuristic. This serves as our second baseline, where we show that
also this heuristic performs significantly worse than our DQN scheduler, which is able to
make complex decisions based on multiple parameters.

Edge-Only Heuristic

A common strategy of function execution or computation in general would be to use
existing on-premise edge infrastructure due to potential cost savings or because of security
and privacy constraints. This approach can simplify management, reduce dependencies
on external providers, and potentially offer greater control over data security and privacy.
Therefore, we take this as our third baseline.

7.1.4 DQN Evaluation: Latency, Cold Start Calculation, Availability
We start with a DQN agent, which is trained for optimizing function scheduling regarding
mean instance latencies, cold start executions and availability rates. We consider a
weighted mean of the last three latency values which were measured per instance.

Li = 0.1l
(3)
i + 0.3l

(2)
i + 0.6l

(1)
i

We choose this approach as the latest latency value might not be representative and
would bias the state representation towards random spikes. By using a weighted mean of
the last three values, we get more stable information about the latency of an instance
which is more resistant to sudden latency spikes. Furthermore, we want to capture most
recent data of an instance which is why we calculate the weighted mean, where the most
recent latency measure gets the most weight for the resulting mean, i.e. 0.6.

This DQN agent is trained with 1000 iterations, where each iteration contains 32 batches
(or timesteps), each running 50 episodes. Since our environment does not specify a
specific goal to reach, we just limit an episode with 50 steps. 1000 training iterations
was found to be a good starting point for the agent to reach a good level of convergence.
This batch size (which is the default value) and episode length were chosen to balance
computational efficiency with sufficient exploration of the serverless environment’s state
and action space.
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Table 7.2: Summary of DQN-parameters.

Steps per Training Batch Size
Episode Iterations
50 1000 32
Replay Buffer Replay Buffer Replay Buffer
α β Capacity
0.5 0.5 60 000
Learning Rate Discount Factor
α γ

0.001 0.99

Comparison of our DQN scheduler with a Latency-greedy and Edge-only
Heuristic

In this experiment, we conduct a comparative analysis of our DQN-based function
scheduler against two baseline heuristics: a latency-greedy heuristic and an edge-only
heuristic. The latency-greedy heuristic selects the serverless provider with the lowest
expected latency at the time of the function call, without considering cold starts or
availability. The edge-only heuristic exclusively utilizes edge instances for all function
executions. We evaluate these strategies using simulated instances, focusing on average
latency and cold start frequency as our primary performance metrics. This analysis
aims to demonstrate the effectiveness of our DQN scheduler in optimizing function
placement decisions and improving overall system performance compared to simpler,
reactive heuristics.

Each scheduling method receives the exact same function to call and the same observation
every round. The number of function calls is 1000. We provide a set of three different
functions. For the sake of simplicity, cold starts are calculated randomly. The experiment
is run with the instance configuration shown in Table 7.3.

Table 7.3: Instance Settings.

Instance Type Availability Latency (ms)
Edge 99% 5-15

Private Cloud 99% 16-25
Public Cloud 99% 25-40

The result shows that our DQN-scheduler outperforms the other strategies when it comes
to cold starts. We simulate cold starts by adding a gaussian-distributed latency of 300-500
ms, which results in almost no response times around 200 ms. Most of the response times
lie between 5 and 100, where the median lies on the lower end as the diagram shows.
The diagram especially shows that cold starts were effectively avoided as the frequency
of response times around 400 is significantly lower compared to the other strategies and
as the interquartile range shows (the thicker line), most of the datapoints lie in range
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Figure 7.1: Violin chart representing response times and frequencies.

0-100 whereas the interquartile range of the other strategies reaches up to around 380.

Comparison of the DQN Scheduler and the Latency-Greedy Heuristic for
Function Batches

Next, we will show how consecutive calls of the same function are handled by the DQN
strategy and the latency-greedy heuristic. We send three batches of the same function
15 times to our scheduling mechanisms, which consist of our latency-greedy heuristic
and our DQN-scheduler. With that we want to show how both strategies handle this
type of workload. To do this, we configured the three available instances to have the
same latency ranges and the same availability. We do this to put a focus on cold start
avoidance so that the decisions are not biased from availability or latency. We solely
want to show the decision-making capability with respect to cold starts.

As Figure 7.2 shows, after scheduling a function call to the best fitting instance regarding
latency and availability, while a cold start is unavoidable in all available instances, our
algorithm effectively avoids cold starts for consecutive function calls. In contrast to the
heuristic, a cold start occurs only on the very first invocation of the function. Due to
the latencies being similar to each other, the latency-greedy heuristic simply chooses
the instance with the lowest latency, thus, leading to eventually schedule the call to all
instances after some time and an overall higher cold start rate.

Our DQN scheduler demonstrated its effectiveness in minimizing cold starts during the
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Figure 7.2: Function cold starts per instance using DQN and a heuristic.

evaluation. Across three batches of 15 function calls each, the DQN scheduler reduced cold
starts to an absolute minimum of three, significantly outperforming the latency-greedy
heuristic. The heuristic, due to its lack of consideration for cold starts, resulted in a
total of 8 cold starts, approaching the absolute maximum of nine possible cold starts.
The distribution of cold starts for the heuristic was uneven, with 3 cold starts in the
first batch, 2 in the second, and 3 in the third. This uneven distribution highlights the
heuristic’s reactive nature and its inability to anticipate and avoid cold starts effectively.
In contrast, the DQN scheduler’s ability to learn and adapt to the environment’s dynamics
resulted in a more consistent and optimized scheduling strategy, minimizing cold starts
and potentially improving overall system performance.

Table 7.4: Instance Settings.

Instance Type Availability Latency (ms)
Edge 100% 5-15

Private Cloud 100% 5-15
Public Cloud 100% 5-15

Comparison of Function Success Rates

This experiment aims to demonstrate the effectiveness of our DQN-based function
scheduler in optimizing task allocation while considering the availability and failure
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Figure 7.3: Failure rates per instance including an availability-greedy heuristic.

rates of serverless providers. We compare our DQN scheduler against three baseline
heuristics: a latency-greedy heuristic, which prioritizes providers with the lowest latency
without considering availability, an edge-only heuristic, which exclusively utilizes edge
instances, and an availability-greedy heuristic, which considers the highest availability.
The availability-greedy heuristic contains a modification: in case two instances share
the same availability rate, then the best instance according to latency is chosen. By
evaluating these strategies in a simulated environment with varying instance availability,
we assess their impact on the success rate of 1000 function calls and the overall latency,
with each function having a high probability of resulting in a cold start. Such scenarios
may happen in the real world, especially over a longer period of time. Avoiding cold starts
is particularly important in settings, where fast response times are needed while functions
are infrequently dispatched. This analysis showcases the DQN scheduler’s ability to
learn and adapt to provider availability, maximizing successful function executions while
maintaining low latency compared to the baseline heuristics.

Table 7.5: Instance Settings.

Instance Type Availability Latency (ms)
Edge 70% 5-15

Private Cloud 99% 16-25
Public Cloud 99% 25-40

Again, the results show that our DQN scheduler also outperforms the other baseline
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strategies notably with a failure rate of only 0,7%. Specifically, Figure 7.3 shows the
failure and success rates of each method, where our DQN scheduler reveals a significant
reduction of function call failures out of 1000 function calls. Besides reducing failure
rates, the DQN method also optimizes on latencies and cold starts, which results in an
overall lower latency. It is important to note that cold starts occur frequently in our
simulation environment. As expected from an availability of 70%, sending all functions to
the edge results in an approximate failure rate of 30%. As the overall latency of the edge
is the lowest, the latency-greedy heuristic considers scheduling to the edge in most cases,
which results in a high failure rate too. Compared to the availability-greedy heuristic,
both excel in avoiding failures, however, the DQN improves on response times (including
cold start avoidance) compared to all other heuristics. While doing so, it can happen
that the DQN scheduler compromises availability and risks a failure. As we see in Table
7.7, the edge instance has an already warm function container in contrast to the cloud
instances. Despite having a low availability, the function gets scheduled to the edge
anyway. This is due to the specific reward function used for training, where cold starts
are higher penalized than failures. The latency greedy heuristic performed similar to
the experiment before, favoring low latency, therefore potentially scheduling to cloud
instances too, otherwise a failure rate of around 30% would be the case.

Table 7.6: Comparison of the latency-greedy heuristic, DQN, and edge-only scheduling.

Mean Response Time (ms) Failure Rate (%)
Heuristic-Latency 149.14 21.40

DQN 106.53 0.70
Heuristic-Availability 156.03 0.80

Edge 159.37 30.40

Table 7.7: Observation 1, results in action 1 (edge).

Instance Latency Cold Start Availability
edge 1 0 70%

private-cloud 2 1 99%
public-cloud 11 1 99%

Comparative Analysis of Tabular Q-Learning and Deep Q-Networks

In our previous work [Sch22] we investigated the use of Q-learning, a tabular Reinforce-
ment Learning approach, to solve the problem of function scheduling across different
serverless providers. We trained the Q-table to excel in cold start avoidance where we
could show similar performance to our experiment of Figure 7.2. Our investigation reveals
that tabular Q-learning can be an effective method for addressing scheduling problems
within the serverless computing domain, particularly in scenarios with limited state spaces.
However, a fundamental limitation of the Q-learning approach lies in its susceptibility
to the curse of dimensionality, also known as state space explosion. As the number
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of state variables increases, the size of the Q-table grows exponentially, rendering it
impractical for problems with large state spaces. For instance, considering just 10 binary
state variables would result in a Q-table with 1024 entries. In our target environment,
with over 20 such variables, a Q-table becomes entirely unmanageable. The inherent
complexity of scheduling serverless functions, which raises the need for consideration of
numerous parameters such as resource availability, cold starts, cost implications, and
system information like CPU-load, highlights this limitation. Our proposed DQN-based
scheduler addresses this challenge by leveraging the function approximation capabilities
of deep neural networks, demonstrating the feasibility of handling high-dimensional state
spaces inherent in complex serverless environments. Additionally, the Deep-Q-Networks
are capable of handling a larger action state compared to the limited Q-table approach.

Assuming that we have a limited and discretized state representation for our Q-table, we
model our evaluated state space, where

• Expected latency values range from 0-400 and are discretized into bins of 20.

• Cold starts are represented as booleans (0 or 1).

• Availability ranges from 0-100 and is discretized into bins of 10.

• CPU-load ranges from 0-100 and is also discretized into bins of 10.

• 3 FaaS providers are observed, each mapped to an action, resulting in 3 actions in
total.

Then, we calculate the number of possible states for each provider (latency × cold start
× availability × CPU load):

20 × 2 × 10 × 10 = 4000

The combinatorial nature of the state space, with 4000 possible states per provider,
leads to an exponential increase in complexity, reaching 40003 (64 billion) states when
considering 3 providers. This results in 3 ∗ 64 billion = 192 billion state-action pairs.
Assuming that 32-bit floats, which are equal to 4 bytes, are used to represent Q-values,
this results in approximately 768 Gigabytes.

This huge memory requirement for this simplified state is not viable and shows the
dimensions of the state-space explosion problem. Furthermore, this state representation
is very coarse-grained where important information gets lost. Discretizing latency spaces
into bins of 20 might not be sufficient for the serverless space. Additionally, discretizing
CPU-loads like this also hides necessary details resulting in suboptimal scheduling
decisions. So, a more fine-grained state representation is needed which would result in a
much higher memory consumption. Especially, by adding a fourth provider or information
about the specific function, such as adding function labels, would result in an exponential
increase of memory consumption.
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Unlike tabular Q-learning, which explicitly stores Q-values for each state-action pair,
DQN employs a deep neural network to approximate the Q-function. This allows it to
generalize across similar states, effectively handling large and even continuous state spaces
without requiring explicit enumeration. This demonstrates that our DQN scheduler makes
it possible to use a higher number of state parameters compared to tabular Q-learning,
thus, making it feasible to observe various parameters at once

7.1.5 Load-Aware DQN Evaluation: Latency, Cold Start Calculation,
Availability, CPU-Load

After comparing our basic DQN scheduler with simple baselines, we focus on its variant
which considers load information about platform instances, assuming an environment
where such information is available to the scheduler. Specifically, we want to evaluate
if the CPU-load-aware DQN approach performs better than the cold-start-aware one.
We expect both approaches to perform similar when it comes to avoiding cold starts,
while still trying to minimize latencies. The CPU-aware DQN considers CPU loads of all
instances in addition and tries to avoid high-loaded instances.

In the experiments we conduct in this section, we trained our DQN scheduler with
an additional parameter per instance, namely CPU-load. We assume having access to
white-box information such as CPU-load for this experiment. Indeed, there are ways to
retrieve system information, such as built-in APIs or third party APIs serving this kind
of information. For the sake of simplicity, we simulate CPU-load in order to focus on our
scheduler’s performance evaluation. Generally, there is always a possibility of writing
custom services and deploy them on the instances for observation. A common practice is
to use monitoring tools like Prometheus.3 It records system information in a time series
database, which can then be queried. It works for obtaining system information of cloud
deployments too. When deployed on Kubernetes, metrics like CPU-load can be obtained
by leveraging Kubernetes’ monitoring capabilities.

The setup is similar to the previous DQN algorithm. We trained it with less iterations,
800 in total, as it converges quite fast for the specific setup we use for our experiments.
The batch size is equal to 32, but we set the steps per episode up to 80 in order to capture
CPU-load patterns better. We also use the same weighted averaging method to represent
latency information.

Li = 0.1l
(3)
i + 0.3l

(2)
i + 0.6l

(1)
i

For the reward function, we decided on a similarly simple one which penalizes high
CPU-loads in addition, as we define in Chapter 5.

Analysis of CPU-load-aware DQN scheduler performance

In this experiment, we evaluate how scheduling decisions are made given specific situations.
As an additional parameter was introduced, the scheduler now has to make trade-offs,

3https://prometheus.io/
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Table 7.8: Summary of DQN-parameters.

Steps per Training Batch Size
Episode Iterations
80 800 32
Replay Buffer Replay Buffer Replay Buffer
α β Capacity
0.5 0.5 60 000
Learning Rate Discount Factor
α γ

0.001 0.99

whether to go for a cold start, to overload an instance or to risk a failure. According to
the reward function, the scheduler should rather avoid overloaded instances (CPU-load
above 80%) over cold starts or failures.

Figure 7.4 shows how functions are scheduled out of a total 25 functions. The instance
in the private cloud starts with high load, thus, the scheduler is expected to avoid that
instance. Moreover, we assume that function calls are scheduled within a few milliseconds
before the first function returns which leads to a continuous increase of CPU-load. By
doing so, decisions based on CPU-load can effectively be shown.

The results are interesting since the algorithm now has to choose whether to avoid cold
starts or high loads in situations where both cannot be prevented. In most cases the
function call was placed on less loaded instances such as the edge or the public-cloud,
where the edge was the preferred choice generally due to its low latency.

The following observations represent the states and the chosen actions which map to the
instances respectively (1 to edge, 2 to private-cloud, 3 to public-cloud). The observation
space represents 4 parameters per each of the 3 instances (latency measure, cold start,
availability, CPU-load). We normalize values to improve the training and decision
performance, which is why latencies were assigned low integer values. Precisely, we divide
latencies through 10 and floor the result, thus, discretizing the values into baskets of size
10.

The observations make it clear how the agent reacts to different situations. Its priority
lies in avoiding cold starts and loaded instances. In Observation 3 (Table 7.11) the agent
decides on the last instance (public cloud) despite having a higher latency compared to
the second (private cloud). The first instance (edge) is avoided due to the cold start
measure. Observation 1 (Table 7.9) is a difficult case. All instances result in a cold start,
thus, the penalty for all instances would be high. The probable explanation is a lack
of diverse training data which was generated by the simulations and the algorithm was
not able to optimize its policy in specific states like this. In this scenario with a low
number of function calls, the scheduler was able to effectively avoid cold starts except in
observation 1. Due to the high availability, no failures occured. The mean response time
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resulted in 45.1 ms and the failure rare in 0%.

• Mean Response Time (DQN): 45.41 ms

• Failure Rate (DQN): 0.00

In real scenarios, a more sophisticated reward calculation might be beneficial as it might
deliver better results in a wider range of cases, but in our experiments this suffices. We
want to show the interconnection of state parameters with a slight focus on avoiding
high CPU-loads as penalties reach up to -60. We still gradually increase penalties in our
reward function to indicate that a higher load results in a worse result. However, these
results are very promising as a refined model with a more sophisticated reward calculation,
and more thorough training, would recognize invocation and instance patterns, therefore
being able to efficiently decide on the best instance.

Table 7.9: Observation 1, resulted in action: 2.

Instance Latency Cold Start Availability CPU Load
edge 1 1 99% 0%

private-cloud 2 1 99% 90%
public-cloud 3 1 99% 10%

Table 7.10: Observation 2, resulted in action: 1.

Instance Latency Cold Start Availability CPU Load
edge 1 0 99% 20%

private-cloud 2 0 99% 100%
public-cloud 3 0 99% 10%

Table 7.11: Observation 3, resulted in action: 3.

Instance Latency Cold Start Availability CPU Load
edge 2 1 99% 30%

private-cloud 2 0 99% 100%
public-cloud 4 0 99% 10%

7.2 End-To-End System Evaluation
7.2.1 A real-world use case
This research was conducted in collaboration with the Austrian Institute of Technology
(AIT) and its subsidiary, Leichtmetallkompetenzzentrum Ranshofen (LKR),4 which

4https://www.ait.ac.at/ueber-das-ait/center/center-for-transport-technologies/
lkr-leichtmetallkompetenzzentrum-ranshofen
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Figure 7.4: Evolution of CPU load for each instance.

provided a real-world use case for the system’s application. LKR is specialized in light
metal manufacturing and develops (also in cooperation with other companies) new
manufacturing techniques to make production more efficient.

Currently, they are upgrading their IT infrastructure by digitalizing their manufacturing
processes on the software side to take a step forward to Industry 4.0 standards. From
this, they expect better efficiency in general by collecting various data, such from those
produced by machine sensors.

In parallel, they are developing a proprietary anomaly detection model for one of their
processes, light metal casting. We consider running this model within a serverless function
as highly beneficial, as specific logic bound to a use case is decoupled from the remaining
architecture. This separation enhances maintainability, simplifies updates, and provides
greater control over code. Furthermore, the collaboration with AIT and LKR ensures
the system’s practical relevance and applicability to real-world industrial settings.

The integration of real-time data collection and processing, coupled with the anomaly
detection model, enables LKR to significantly enhance the efficiency of their manufacturing
processes. By continuously monitoring sensor readings, the system facilitates automated
decision-making, enabling autonomous adjustments to the manufacturing environment,
such as regulating temperature. Moreover, in situations where environmental adjustments
are insufficient to address an anomaly, the system is capable of halting the entire process,
thereby preventing the further consumption of resources such as electricity and material
and mitigating potential production losses. This capability to dynamically respond to real-
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time conditions, ranging from fine-grained adjustments to complete process shutdowns,
is a key advantage of the implemented system, ultimately contributing to optimized
resource utilization and improved product quality.

A key requirement for this system is the ability to produce results in real-time. The upper
limit of producing a result is 5 seconds to support manufacturing processes. Therefore,
evaluating the performance of the whole pipeline of services is critical, i.e. the time the
system needs to collect sensor data in the gateway, passing this further to the context
broker, which serves this data to applications subscribing to and processing this data.

In this use case this application runs our scheduler, calls serverless functions and processes
the results. For the serverless platform, we decided on Nuclio,5 which excels in performance
needed in high performance settings such as manufacturing processes where a high volume
of function invocations is expected. The overall experimental architecture is depicted in
Figure 7.5.

7.2.2 Testbed Setup
To evaluate the performance of our proposed system, we constructed an end-to-end
testbed on a single machine with the hardware described in Table 7.12. This setup, while
providing a controlled environment for experimentation, aims to emulate a realistic IIoT
edge deployment. The testbed comprises several key components: (1) Simulated OPC
UA Server: This simulates the machine sensor data source, generating data streams that
mimic real-world sensor readings with varying patterns with a fixed frequency. (2) OPC
UA Gateway: This component collects the simulated sensor data and forwards it to
the context broker. (3) NGSI-LD Context Broker: Acting as the central information
hub, the context broker stores and manages the sensor data, making it accessible to other
applications. (4) Application and Scheduler: This microservice continuously monitors
the context broker for new sensor data by subscribing to it and employs a DQN-based
algorithm to decide which Nuclio instance is best suited to process the incoming data.
Both run within the same container in this experiment. However, whether running the
scheduler outside or coupled as part of the application is up to the user. (5) Nuclio
Function Instances: These serverless function instances host the anomaly detection
model. The scheduler dynamically assigns incoming data to these instances for processing.
(6) Logging: To capture performance metrics, we integrated logging mechanisms to
record timings, such as data ingestion latency, scheduling decisions, and function execution
times. Basically, we create log files for each container logging timestamps at relevant
locations in code. This comprehensive setup allows us to systematically analyze the
behavior and performance of the system under different conditions and workloads.

We run the system using Docker Compose which is widely used for local testing of
multi-container applications. We run the whole end-to-end experiment for roughly 15
minutes where the system collects and processes data of four sensor nodes in total. Our
goal is to test the feasibility of such a system in terms of stability and performance.

5https://nuclio.io/
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Figure 7.5: Architecture used for this experiment. The DQN schedular is bundled in the
same container with the application for simplicity.

Instead of sending each single value over the network, we preprocess the values in the
gateway and send them in batches of 10. This coincides with the requirements of the
anomaly detection model, which receives as input and processes only 10 float values at a
time. As our focus here is more on integration aspects and feasibility testing, rather than
evaluating the decision quality of our scheduler, we only deploy a single serverless instance,
which is responsible for all function calls. Note that the scheduler is still operating on
the function serving path, thus contributing a small amount of delay (∼2 milliseconds)
to the perceived response time, that is mainly attributable to invoking it over its API
endpoint and executing the DQN.
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Table 7.12: Hardware details of the testbed host.

Experiment Environment
Operating System Microsoft Windows 11 Home 64-Bit
CPUs Intel Core i7-10875H @ 2.30GHz, 2304 MHz, 8 cores
Main Memory 16 GB DDR4 RAM
GPU Nvidia GeForce RTX 2080 Super MAX-Q | 16 GB

GDDR5 RAM

Simulated OPC UA Server

This component realistically simulates possible sensor values for our specific use case.
Specifically, the following sensor readings are captured for this experiment, where all
values have the float data type.

• Casting speed, simulated using a distribution centered around a mean value of 2.

• Metal temperature, using a distribution of the mean value 923.15.

• Water temperature, using a distribution of the mean value 294.15.

• Water flow, using a distribution of the mean value 9.

Furthermore, we captured real sensor frequencies from manufacturing processes on the
factory side. For this, we connected onto a VM running on the edge server, subscribed
to real machine sensors and logged frequencies and values into a file. In the process of
light metal casting, each sensor provides 20 values per second, which means that every 50
milliseconds one value is produced and published by the OPC UA server per sensor node.

Logging and Measurements

Our key performance metric is end-to-end latency. This metric is an expression of the
sensing-to-actuation delay, which is critical for the use case under study. In particular, in
the anomaly detection scenario that we experiment with, the latency components in the
end-to-end path are the following: (i) transporting data from sensors to the application
ingestion endpoint via the gateway and the context broker; (ii) carrying out preprocessing
application logic, i.e., preparing the serverless function invocation and transmitting it to
the scheduler; (iii) scheduling the function to the serverless platform; (iv) executing the
function and receiving the result by the respective application component. Notably, this
could be another serverless function as part of a serverless workflow orchestrated by the
application, that would be responsible for actuation upon anomaly detection – we do not
implement such logic in this experiment.
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7.2.3 Results
This section presents the findings of the end-to-end experiment designed to evaluate the
performance and stability of our serverless approach in an IIoT environment in an end-to-
end style. The experiment involved running the system under a consistent workload for
15 minutes, capturing detailed logs from each component (gateway, scheduler, and Nuclio
functions), and monitoring CPU load. The analysis focuses on key performance indicators,
including individual component durations, overall round-trip latency, and the distribution
of these durations to identify potential bottlenecks and assess system behavior under
load. Our aim is to show feasibility in terms of the set real-time requirement of five
seconds as a maximum, which this system meets. The results are presented through a
series of visualizations and statistical analyses to provide a comprehensive understanding
of the system’s performance characteristics.

We could identify rough bottlenecks in our system but we can not name specific problems
as this would require thorough testing in a real deployment. However, we could observe a
good level of stability, especially for the scheduler. In addition, the minimum requirement
of an overall processing time, scheduling and processing of a maximum of 5 seconds was
met even though of the presence of outliers pushing the end-to-end latency up to 1.5-2
seconds, which is extractable from following metrics.

• Sensor value handling at the gateway resulted in a mean of 111.66, 118.15, 111.10
and 124.97 ms respectively per sensor.

• The schedulers mean processing time for scheduling and calling a function was
106.41 ms.

• The total end-to-end latency mean value results in 222.90 ms.

Sensor and OPC UA Gateway Analysis

Here we show how the gateway handled the four sensors sending data concurrently.
Figure 7.6 reveals crucial insights into the performance characteristics of the sensor data
ingestion process within the tested system. Each line in the plot represents the time
taken to process a batch of sensor readings from a different sensor. A prominent pattern
observed across all sensors is the recurring spikes in duration, where processing times
abruptly jump from a baseline of under 100 milliseconds to 400-500 milliseconds. This
recurring pattern suggests a periodic bottleneck or delay affecting all sensor data streams.
But in general, they range around 100-120 ms.

These spikes in sensor data processing times have significant implications for the overall
system performance. In real-time IIoT applications, where timely data processing is
crucial, such unpredictable delays can hinder the system’s ability to respond promptly to
events and anomalies. The variability in sensor data ingestion times introduces jitter and
inconsistency in the data pipeline, potentially affecting the accuracy and effectiveness of
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applications relying on these data. However, these spikes do not disturb efficiency of our
system in our specific LKR use case as the threshold of 5 seconds provides space.

Several factors could contribute to these spikes such as network latency resulting for
inconsistency, specific implementations in the gateway or processing in the gateway.
Another reasonable possibility lies in our testbed which consists of a resource-limited host
in terms of memory and processing power or implementation choices for the gateway itself.
To identify the reasons behind the spikes would raise the need to rerun experiments on real
deployments on the target servers. So, further analysis on an enhanced deployment with
increased compute capacity and capabilities such as network monitoring, profiling of the
gateway code, and experimentation with different buffering strategies, can help pinpoint
the source of the delays and guide optimization efforts. By addressing these performance
bottlenecks in the sensor data ingestion pipeline, the overall system’s responsiveness and
reliability can be significantly improved.

Figure 7.6: Durations for each sensor over 15 minutes.

Overall end-to-end latency

Figure 7.7 visualizes the variability and consistency of the processing times within the
tested system. It illustrates how frequently different processing durations occur for each
component, i.e. scheduler and sensors, and the overall end-to-end latency. By examining
the shape and spread of these distributions, we can gain insights into potential bottlenecks
and the overall predictability of the system’s performance.
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The blue bars, representing the sensor data ingestion durations, reveal a distinct bimodal
distribution. This indicates that the sensor processing times fall into two primary
categories: a cluster of very short durations (close to 0 milliseconds) and a smaller
cluster of longer durations around 250 milliseconds. This bimodal pattern aligns with
the observations from Figure 7.6, confirming the presence of frequent, periodic spikes in
sensor processing times. These spikes introduce significant variability in the sensor data
pipeline, potentially affecting the responsiveness of the system to real-time events.

In contrast, the orange bars, representing the scheduler’s processing durations, show
a more even distribution. This suggests that the scheduler’s performance is relatively
consistent together with the serverless Nuclio function running the anomaly detection
model, with no single processing duration being overly dominant. Although there is a
small deviation of up to 300-400 ms, it can still be considered as consistent. This is
desirable in a scheduling component, as it ensures more predictable behavior and avoids
introducing additional jitter into the system.

The green bars depict the total end-to-end latency, where characteristics of the scheduler
and sensors are combined. The distribution is skewed towards shorter durations, primarily
due to the frequent fast processing times of the sensor. However, the noticeable tail of
longer durations highlights the influence of both the sensor’s spikes and the scheduler’s
inherent variability.

Figure 7.7: Represents the distribution of all durations measured.
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Closer Analysis of Individual Component Performance

Figures 7.8 and 7.9 provide valuable insights into the relationship between individual
component performance and the overall responsiveness of the system. These plots help
identify which components have the most significant impact on the total end-to-end
latency, which is a critical measure of the system’s ability to handle real-time data
processing.

In particular, Figure 7.8 plots the end-to-end latency with respect to the latency intro-
duced by the process of ingesting sensor data, i.e., collecting data from the sensors (OPC
UA servers), pushing them to the context broker, and eventually delivering them to the
application. The figure shows a clear positive correlation. This means that as the sensor
data ingestion time increases, the overall end-to-end latency also increases proportionally.
This observation confirms that the sensor data processing stage including the gateway is
a major contributor to the overall latency of the system. Any delays or inefficiencies in
handling sensor data directly translate to increased end-to-end latencies, but with regard
to our requirement, this is still acceptable.

Conversely, end-to-end latency exhibits a weaker correlation with the delay induced by
the execution of the scheduler, as Figure 7.9 shows. While longer scheduler processing
times do contribute to increased end-to-end latencies, the impact is less pronounced
compared to the sensor processing in the gateway. This suggests that the scheduler,
while still a factor in overall performance, is not the primary bottleneck. There might be
opportunities for minor optimizations in the scheduler, but the focus should primarily
be on further analyses in real-world deployments on stronger and more stable compute
infrastructure, and addressing the more significant impact of the sensor data ingestion
process if it still holds.

These findings highlight the importance of optimizing the sensor data pipeline to minimize
latency and improve overall system responsiveness. Strategies such as reducing network
latency, optimizing implementation of the gateway, and streamlining data processing
within the gateway can significantly reduce sensor processing times and, consequently, the
overall end-to-end latency. By prioritizing these optimizations, the system can achieve
better real-time performance and ensure timely processing of critical sensor data in
real-time critical applications where latency requirements are more stringent.

That said, while the observed sensor delays might raise concerns about real-time perfor-
mance, it is crucial to consider them within the context of our application’s requirements.
The system’s design specifies a maximum allowable sensor-to-actuation latency of 5
seconds for our light metal casting use case. Even with the occasional spikes in sensor
processing time, the vast majority of end-to-end latencies remain well below this thresh-
old. Therefore, despite the variability observed in the sensor data ingestion process, the
system meets the performance requirements for this specific use case. This highlights the
importance of aligning performance evaluation with the practical needs and tolerances of
the target application.
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Figure 7.8: Scatter plot representing influence of the gateway and sensors on overall
performance.

Figure 7.9: Scatter plot representing influence of the scheduler on overall performance.
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CHAPTER 8
Conclusion

This chapter revisits the posed research questions and highlights the major contributions
and findings of this thesis towards answering them. This work addressed a broad spectrum
of issues that pertain to serverless-supported industrial processes, from architecture spec-
ification and interoperability support, to algorithmic aspects of serving IIoT application
workloads. Naturally, and given its scope, this work also comes with some limitations.
These give rise to interesting directions for future study, with which we conclude this
thesis.

8.1 Contributions
RQ1: How can a serverless approach be applied in an industrial IoT edge
setting, what benefits can it bring about, and how can existing standards for
data collection and representation be leveraged to improve on integration
capabilities and interoperability?

We could answer this question by providing an implementation of such a system which
addresses the challenges of incorporating serverless and data collection. By providing an
architecture, which is able to ingest data from sensors by having a uniform interface and
supports widely used standards such as OPC UA, and processes data concurrently, this
system offers the possibility of integrating numerous types of different sensors relevant in
manufacturing and other industrial environments. By applying the NGSI-LD standard,
the integrated Orion Context Broker improves interoperability significantly by adding
relevant context information to data. It also serves as a single endpoint allowing different
services using data as from sensors.

RQ2: How to achieve high-performance function serving in Industrial IoT in
order to meet requirements for real-time data processing?
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Answering this research question involved a deep dive into the nature of serverless
functions and what challenges arise when employing this model into a system. We came
to the conclusion that serverless raises difficult challenges when it comes to executing
functions with specific requirements, such as response time, success rate or balancing
function invocation across different providers based on CPU-load. That said, we discuss
the hybrid use of cloud and edge resources, as additional servers ensure stability of such
an industrial IoT system. On-premise edge servers might get overcharged as they are
subjected to unpredictable fluctuations in workload, particularly during peak processing
times or unexpected events. Cloud resources, with their elastic scaling properties, can
absorb these spikes, ensuring continuous operation and preventing service disruptions.
Therefore, we introduce an approach which uses DQNs to automate the decision on
which serverless provider suits best the given requirements on a per function invocation
basis. For example, in our discussed use case of anomaly detection in industrial processes,
the anomaly detection model is designed to run as a serverless function and has strict
performance requirements. Thus, the DQN scheduler makes decisions based on the lowest
response time. As cold starts are included into response times, our scheduler excels at
avoiding them, thus, maximizing response-time based performance. We should note that
we introduce different variants of our DQN-based scheduler and discuss further possible
extensions, to account for different assumptions regarding their operating environment.

RQ3: How does such a system affect performance in IIoT systems where
performance is a critical key consideration?

Such as system needs to be feasible, which is why we also run end-to-end experiments by
deploying the whole system and test it. Although, we did not deploy it in a real factory,
but instead the system was run on a local testbed, the fidelity of this experiment is high.
In corporation with AIT, we were able to collect data like request patterns from real
processes by using historical data and, in addition, connecting to sensor readings during a
real experiment and log all relevant results. We came to the conclusion that such a system
works perfectly fine in overall without significant bottlenecks, but with recommendations
of improvements, as we identified some minor issues at the data ingestion level, i.e.
the gateway. This system effectively facilitates the transition to Industry 4.0 with
extensibility in mind. Deploying this whole system together with the anomaly detection
model provided by AIT for our use case can result in significant savings in terms of
material, resource use and costs, because it allows real-time evaluation of the process. In
the worst case for example, if an inveterate error occurs, this whole system is able to
identify this error and stop the whole process instead of wasting further material and
resources on a wasted product.

Importantly, we found that our first cold-start aware DQN algorithm improves on cold
starts by a factor of roughly 3 according to our evaluated scenario. When it comes to
minimizing failures, the DQN scheduler achieved up to 8.32 times less failures while still
improving on response times by mainly avoiding cold starts by a factor of up to 1.25.
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8.2 Limitations and Future Work
As our system was not tested in a factory environment, this could be an aspect for future
work, namely to measure how this system performs in a real deployment. Compared
to a local testbed, problems can be identified which are otherwise hidden in a local
deployment. This way a better measure in terms of savings could be achieved by tracking
how much electricity, time or material was saved.

A limitation of the DQN algorithm is its fixed action space which allows to schedule
only to a predefined set of providers. Interesting future work would be to find a way
to mitigate or solve this issue. Evaluating the use of other algorithms like PPO for the
problem of function scheduling could be valuable, as PPO is able to handle continuous
action spaces.

The question of running a single scheduler for all applications or running multiple
schedulers with different policies remains open. A scheduler per application would involve
custom requirements and priorities which a single scheduler could not easily handle. We
explored the option of assigning functions different labels reflecting their priorities by
weighting the reward function. However, our early experimental investigation of this
approach revealed that it makes training more complex. Implementing in our system and
evaluating a DQN scheduler that addresses these challenges, and efficiently and flexibly
balances the competing demands of different coexisting functions is an important subject
for future study.

Lastly, interesting directions for future work are related with different parameters to
consider into our state and action space, and to take into account additional factors,
particularly related with the costs to offload workloads to external cloud providers.
This would influence the design of appropriate reward functions. Costs matter also for
on-premise edge instances as resources are consumed per each function call. Therefore,
considering the latter jointly with the different pricing strategies of serverless providers, as
well as with the respective service-level agreements offered and the attainable performance
is a problem worth studying.
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Overview of Generative AI Tools
Used

In a limited number of cases, Google Gemini Pro 1.5 (https://gemini.google.com/
app) was used. It served as an aid for writing in the English language. It was used
sparingly for improving language only based on self written paragraphs.
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Übersicht verwendeter Hilfsmittel

Für diese Diplomarbeit wurde Google Gemini Pro 1.5 (https://gemini.google.
com/app) als Hilfestellung verwendet. Dieses Tool wurde nur für die Verbesserung der
englischen Sprache verwendet.
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