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Kurzfassung

Neuliche Fortschritte in Deep Learning und Hardware-Beschleunigung führten zur Ent-
stehung von neuen Lösungen in KI-basierter Bildkomprimierung. Mit jeder neuen Lösung
wurde es schwieriger, die tatsächlichen Auswirkungen jeder Änderung und getroffenen
Entscheidung zu messen.

Wir schlagen eine Zwei-Faktor-Lösung vor. Wir entwickeln eine Klassifizierung, die die
grobe Landschaft der KI-unterstützten Bildkomprimierung darstellt. Sie ist in Kernkom-
ponenten eingeteilt wie Quantifizierung, Kontext-Modelle, architektonische Archetypen,
hierarchische Prioren und Modelle mit variabler Rate. Wir analysieren die Trends und
Weiterentwicklungen, um Forschern und Forscherinnen den Einstieg und Weiterforschung
zu erleichtern.

Zusätzlich entwickeln wir ein Benchmark-Werkzeug, um die KI-Modelle zu trainieren
und zu testen. Unsere Konfigurationen sind standardisiert und leicht änderbar. Der
Test-Prozess misst und vergleicht Variationen der Konfiguration unter der Verwendung
von verschiedenen Datensätzen und Metriken. Wir evaluieren jede Konfiguration mit den
CLIC- und Kodak-Datensätzen. Wir messen die R-D Leistung, LPIPS, PSNR, MS-SSIM,
Kodierungslatenz und den Kodierungsdurchsatz. Wir beobachten die Auswirkung der ge-
troffennen Design-Entscheidungen wie die Änderung der Non-Linearity-Kernkomponente.
Während die GSDN-Aktivierungsfunktion in der Non-Linearity-Kernkomponente in einem
kleinen Netzwerk eine schlechtere Leistung erzielt hat, war die Leistung die Beste in
größeren Netzwerken. Interessanterweise waren Konfigurationen, die größere Netzwerke
definiert haben, zwar langsamer, haben aber eine bessere R-D Leistung für den gleichen
Kompressionsfaktor erzielt.
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Abstract

Recent advancements in deep learning and hardware accelerators led to the appearance of
many novel solutions in learned image compression. With each novel solution, measuring
the impact of fine-grained decisions gets increasingly more challenging.

We propose a two-fold solution. We develop a taxonomy to define the landscape of lossy
learned image compression broadly. We classify advancements into core components
such as quantization, context models, architectural archetypes, hierarchical priors, and
variable rate models. We analyze the trends and advancements to aid novices and
seasoned researchers in showing the focus points of current research.

In addition, we develop a benchmarking tool to train and test models. Our standardized
configurations are highly customizable by defining variations. The testing pipeline
compares variations with multiple datasets and metrics. We evaluate each configuration
on the CLIC and Kodak datasets. We measure the R-D performance, LPIPS, PSNR,
MS-SSIM, encoding and decoding latency, and encoding and decoding throughput. We
observe the impact of fine-grained design decisions, such as changing the non-linearity
block. While the GSDN activation function within the non-linearity block performs worse
in small networks, its best performance is achieved in deeper networks. Interestingly,
configurations with deeper networks performed slower yet achieved higher visual quality
for the same compression rates.

We compare the learned image compression models with a fixed codec (BPG) to ensure
comparable results. We find that the impact of minor design decisions depends on
network size, resulting in vastly different performances.
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CHAPTER 1
Introduction

1.1 Motivation

Recent advancements in deep learning and hardware accelerators led to the appearance
of many novel solutions in image compression. While the usage of traditional image
formats such as PNG (80.6%) and JPEG(76%) [91] dominates the web space [90], recent
learning-based codecs match and surpass those formats in compression performance [12,
9, 13]. Although compression using neural networks dates back to 1989 [82], only
recently end-to-end to end learned methods that convincingly outperform handcrafted
standards [12, 81]. Data compression reduces bit rates by removing redundant information.
In lossless compression, the codec output must be identical to the input. Conversely,
lossy compression permits distortion to achieve significantly lower bitrates. Neural
compression is the application of artificial neural networks (ANNs) to this task [102].
The core difference between handcrafted and learned methods is that the former relies on
linear transformations based on expert knowledge. Contrarily, the latter is data-driven
with non-linear transformations learned by neural networks to reduce dependencies from
sources that are not jointly Gaussian [10].

1.2 Problem Statement

To adequately scope this thesis, we exclusively focus on lossy compression. By focusing
on preserving structure in regions of interest, codecs can safely discard information for
less critical areas (e.g., unfocused backgrounds).

Standardized benchmark datasets (e.g., Kodak [27] or CLIC [14]) exist to compare
codec performance and demonstrate whether a novel method can improve rate-distortion
performance.
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1. Introduction

Cheng et al. [25] work underlines the importance of our thesis. The work introduces
a convolutional attention mechanism and a novel entropy model based on Gaussian
Mixture Likelihoods (GMM). While the model demonstrates significantly better rate-
distortion performance overall, the contribution of each component is unclear. Instead,
improvements contributed by GMM and other design decisions, such as lightweight
attention layers that emphasize local interactions [51], should be measured. Another
example is the varying ways to handle gradient flow of discrete quantization. Some
authors [75, 81] apply straight-through estimation, others [2] continuous relaxation or
a combination [10]. The impact of such a seemingly minor design decision needs to be
clarified. Therefore, a more streamlined method of precisely comparing and benchmarking
fine-grained design decisions is needed.

To the best of our knowledge, we are the first to provide a comprehensive overview and
taxonomy of lossy neural image compression that focuses on primary components and
contributions instead of architectural changes only. We argue that the entropy model,
the quantization, encoding, and the objective function primarily determine the novelty of
the work.

Our study investigates the two limitations mentioned above in contemporary lossy
neural image compression research. By addressing both limitations, we aim to ease the
comparison of methods. Then, newer work may find promising directions and more
readily determine the significance of method components. To this end, this thesis aims
to facilitate the advancements in lossy neural image compression.

1.3 Research Questions

• RQ1: How do the finer-grained design decisions (e.g., model width and depth, archi-
tectural component, quantization methods) impact rate-distortion performance and
perceptual quality? The primary focus is on runtime and improving rate-distortion
performance using particular measures (e.g., MS-SSIM, PSNR). By answering
RQ1, we may identify generalizable design decisions and facilitate discussions on
developing a better understanding of their impact.

• RQ2: How can we classify neural compression methods by their core components?
Neural compression is a popular but niche research area of deep learning (DL), and
work in learned image compression (LIC) draws from advancements in DL for other
vision tasks (e.g., [24]). By answering RQ2, we can aid novices in identifying parts
of existing and future work that are native (and most relevant) to the compression
task.

• RQ3: What are current publication trends and focus areas in neural data com-
pression? Identifying trends can aid novices in providing contributions that the
community is more likely to appreciate. Contrastingly, more seasoned researchers
may identify worthwhile problems that the larger community needs to pay more
attention to.

2



1.4. Aim of the work

1.4 Aim of the work
The thesis aims to provide a comprehensive overview of lossy neural image compression
work following a non-linear transform coding (NTC) approach [10]. We conceive a
taxonomy that categorizes work exclusively according to components relevant to the
compression objective with learned non-linear functions. Additionally, we implement a
model registry and interface to benchmark various methods. Unlike existing libraries for
neural data compression that implement existing methods, an essential requirement of
our work is the configurability and exchangeability of individual components.

By addressing both limitations, we aim to ease the comparison of methods so that newer
work may find promising directions and more readily determine the significance of method
components.

We expect a streamlined integration of existing open-source neural data compression
methods from third-party repositories and the ability to reproduce reported results in
our environment. Lastly, we investigate the impact on rate-distortion performance by
exchanging seemingly minor components of the existing compression model (e.g., GDN
versus more common non-linearity functions). With this, we expect to draw meaningful
insights that aid in the design of novel methods. Lastly, we expect our taxonomy to
facilitate identifying worthwhile work and components to study.

The twofold aspect of our solution (taxonomy and registry) reflects the two limitations
described in Section 1.2. With our comprehensive evaluation, taxonomy, and registry, we
facilitate a fine-grained distinction of components relevant to the compression task. By
combining the taxonomy with our benchmarking tool, newer work may find promising
directions and more readily determine the significance of method components.

1.5 Structure
Chapter 2 describes the fundamental concepts and explains the domain knowledge
required to understand the following chapters. Chapter 3 presents the related work,
comparing existing benchmarking tools and literature reviews. Chapter 4 explains the
methodology and procedures used to create an elaborate literature review, taxonomy, and
benchmarking tool. It also includes the research questions posed in this thesis. Chapter
5 presents the developed taxonomy, which describes the classification of core components
instrumental in learning image compression. Chapter 6 shows the implementation of
the benchmarking tool Benchpresso, including software concepts, requirements, specific
implementation details, UML diagrams, and caveats. Chapter 7 evaluates learned image
compression models using the benchmarking tool and presents the results. The results
are discussed and explained separately for each architecture. Chapter 8 concludes the
thesis by answering the research questions and presenting an outlook to future work and
possible continuation.
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CHAPTER 2
Fundamentals

Section 2.1 defines image compression types. We explain the difference between tradi-
tional and learned image compression, including the rate-distortion theory. Section 2.2
introduces the commonly used evaluation metrics in literature, such as the mean-squared
error, peak signal-to-noise ratio, and structural similarity index measure.

2.1 Image Compression
Compression reduces input data size by eliminating redundant information without
distorting it. In image compression, the focus is on encoding the original image to be
reconstructed from the compressed data. The goal is to reconstruct the image with
the fewest differences from the original. Lossless image compression aims to reduce the
data size while ensuring that the original and reconstructed images are identical. This
limitation challenges the compression efficiency that can be achieved. Contrastingly, lossy
image compression permits a bounded amount of error to lower bitrates further. The
extent of detail and quality loss can vary and is often quantified using quality levels.

2.1.1 Lossy Image Compression Pipeline
Figure 2.1 shows a general pipeline in lossy image compression. The input image is
represented as pixel intensities. These values are then quantized (rounded) because
storing infinite real numbers is impossible. Quantization introduces error since the
original real values cannot be exactly restored. Next, the quantized data is encoded into
a bitstream and stored along with necessary metadata, such as the quality level. The
resulting bitstream should be significantly smaller than the original image. The metadata
is used to reverse the process during decoding. The bitstream is dequantized, and the
inverse transform is applied. Depending on the set quality level, the reconstructed image
may differ from the original to varying degrees.

5
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Decoder

Encoder

Transform Quantization

DequantizationInverse
Transform

Bitstream

Entropy Coding

Entropy
Decoding

Original Image

Reconstructed
Image

Figure 2.1: Lossy image compression pipeline.

2.1.2 Learned Image Compression

Learned image compression implements the general image compression pipeline that
utilizes deep learning across several key steps. In LIC, the input image is transformed
using a non-linear parametric transform. Traditional methods, such as the Discrete
Cosine Transform (DCT) used in JPEG, are linear. Quantization was initially achieved
through binarization [102], such as in the work by Toderici et al. [85, 86], which learns
quantization by utilizing stochastic binarization. The image reconstruction process
is the approximate inverse of the encoding. This architecture can be expanded with
additional components that capture local and global similarities, focus attention on areas
of high interest, and differentiate between relevant and redundant information. Neural
networks with non-linear parametric transforms may achieve extremely low file sizes
while maintaining high-quality reconstructed images. These results were not possible
before with linear codecs such as JPEG.

2.1.3 Rate-Distortion Theory

The goal is to find a data representation that does not exceed a certain error threshold
(distortion) while requiring minimal mutual information. Given the mutual information
and the distortion, the r-d function theory estimates the minimum transmission bitrate
needed to reconstruct the target representation without exceeding the error threshold [102].
In other words, Shannon’s [79] rate-distortion theory estimates the achievable lower bound
of bits needed to transmit the data from the encoder to the decoder. Assume an objective
function L(c, λ), where c is a lossy codec and λ the rate-distortion lagrangian to relax the
constrained optimization problem in Equation (2.1). As described by Yang et al.[102],
given a fixed λ > 0, the function returns a new codec, where its R-D value lies on the R-D

6
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curve1. Thus, the λ hyperparameter controls visual quality and compression trade-offs.
Commonly, models are trained for fixed and established λ values. Ballé et al.[12] defined
the following λ values from lightest compression (best quality) to heaviest compression:
[0.1800, 0.0932, 0.0483, 0.0250, 0.0130, 0.0067, 0.0035, 0.0018]. The λ values significantly
impact the analysis and synthesis processes (Section 2.1.1). The analysis component
utilizes non-linear transforms to convert the input into a latent representation. The
synthesis component reconstructs the latent representation while minimizing distortion
(Section 2.1.1). Compared to linear transforms, non-linear transforms are not limited to
lattice-shaped quantization and can better adapt to the input[9, 10]. The Lagrangian
multiplier controls both components. Higher λ values increase the loss for distortion,
telling the model to focus more on quality during training. Lower λ values allow for
higher distortion and lower rate, as seen in Equation (2.1).

L(λ, c) = R(c) + λD(c) = E[l(X)] + λE[ρ(X, X̂)]. (2.1)

Rate measures the bits transmitted through the bitstream, directly determining the
image’s file size. Rate is commonly expressed using the bits-per-pixel (bpp) metric, which
computes the average number of bits required to represent each pixel. This metric is
calculated by dividing the total number of bits used by the total number of pixels of the
reconstructed image.

Distortion quantifies the difference between the reconstructed and original images. The
most common metric for measuring distortion is Mean Squared Error (MSE). However,
Section 2.2 provides a detailed discussion of various metrics quantifying distortion
(reconstruction error).

2.2 Metrics
Various metrics evaluate the quality or similarity of a given set of images. The most
common and versatile metric is MSE. Over time, more specialized metrics were developed
that focused on measuring perceptual quality.

2.2.1 Bjøntegaard Delta Rate
The Bjøntegaard Delta Rate [16] (BD-Rate) measures the compression performance of
video codecs. This technique compares rate-distortion curves at various quality levels
using PSNR and bpp value pairs. It also measures compression performance in the neural
image compression field. The BD-Rate expresses the performance difference between
the test and anchor codec. It measures the required bitrate to achieve the same quality
level and outputs a percentage. A positive percentage means that the test codec requires
more bits than the anchor codec to achieve the same quality level. Negative percentages
imply that the test codec achieves the same quality level, requiring fewer bits than the
anchor codec. BD-PSNR expresses the quality difference between both codecs at the

1The R-D curve is non-convex and typically only the local minimum is reached[102].

7



2. Fundamentals

same bitrate. Positive BD-PSNR values suggest that the visual quality of the test codec
is higher than the visual quality of the anchor codec at the same bitrate.

Barman et al. [15] conducted a study on the evolution and limitations of the BD-Rate
metric, including a comparison of open-source implementations. Their research found
that evaluating quality metrics other than PSNR may lead to unstable and insignificant
results. The interpolation method varies between implementations, and the results
may vary depending on the chosen method. Barman et al. found that the piece-wise
interpolation mode (pchip) ensures the most stable results.

2.2.2 Reference-based vs No-Reference

Metrics used in image compression can be categorized as full reference-based, reduced
reference-based, or no-reference [30, 18]. Full reference-based metrics compare the
original and reconstructed images to assess quality, while reduced reference-based metrics
evaluate the reconstructed images using only partial information from the original [30].
No-reference metrics operate solely on the reconstructed images without referencing
the original [18]. Our work focuses exclusively on full reference-based metrics, such as
Mean Squared Error (MSE), Multi-Scale Structural Similarity Index (MS-SSIM), Peak
Signal-to-Noise Ratio (PSNR), and Learned Perceptual Image Patch Similarity (LPIPS).

2.2.3 Mean Squared Error

MSE is the most commonly used full-reference metric in learned image compression. Its
simplicity and computational efficiency make it a highly performant metric [97]. Given
the original image x and reconstructed image y, the MSE is calculated as the mean of
the squared differences between the corresponding pixels of the two images, as seen in
Equation (2.2). The goal is typically to minimize the MSE value, i.e., loss. However,
MSE is not recommended for inference, as it poorly correlates with the human perception
of visual quality [40, 98, 17, 103].

MSE(x, y) = 1
n

n∑︂
i=1

(xi − yi)2 (2.2)

2.2.4 Peak Signal-to-Noise Ratio

PSNR is derived from metric [98] and is defined in Equation (2.3). It does not provide
additional information beyond MSE. However, it allows for comparing images with
different intensity levels by accounting for dynamic range [98]. This work measures PSNR
as:

PSNR = 10 log10
L2

MSE
(2.3)

8



2.2. Metrics

where L is the maximum signal value (e.g., 255 = 28 for 8-bit images). The above
PSNR definition scales logarithmically using a decibel (dB) scale. The dB growth can be
interpreted as the reduction of the error signal. The logarithmic scaling of PSNR tends
to flatten at higher dB-values. Reducing error at high dB-values becomes significantly
more challenging. For instance, an improvement of 10 dB implies an error reduction by a
factor of 10. Achieving a further 10 dB of improvement requires the same error reduction
in addition to the previous one.

2.2.5 Multi-Scale Structural Similarity Index Measure
MS-SSIM is a metric first introduced by Wang et al. [96]. They argue that the
human visual system (HVS) is sensitive to structural similarity in images [98], and it
has been shown that the Structural Similarity Index Measure (SSIM) correlates better
with perceived visual quality than MSE [96, 98]. However, SSIM still correlates poorly
with visual quality [17]. Wang et al. initially developed the SSIM using a single-scale
approach [96] but later improved upon it by incorporating multiple scales, each weighted
according to its relative importance [97]. Given the original and reconstructed images,
MS-SSIM begins at scale=1 and compares the structure and contrast of the images.
The images are then iteratively downsampled by a factor of 2, affecting the detail and
structure, before being compared again. This process is repeated until the set number of
scales has been reached.

2.2.6 Learned Perceptual Image Patch Similarity
Traditional pixel-wise metrics, such as PSNR and MSE, do not accurately reflect human
perception [40, 98, 17, 103]. Zhang et al. [103] introduced the Learned Perceptual Image
Patch Similarity (LPIPS) metric, which utilizes a deep learning network to measure the
similarity between two images. It surpasses the well-known metrics, such as PSNR, MSE,
and MS-SSIM, in mimicking human perception and aligning with human judgment. The
input images are expected to be normalized for the [-1, 1] range. The output is the
similarity of both images, where lower is better and 0 means identical images. We set
the network to net = vgg for LPIPS evaluations in Chapter 7.

9





CHAPTER 3
Related Work

This section outlines the currently available approaches and related work which address
similar topics.

3.1 Benchmarking Tools
CompressAI [20] is an open-source repository based on PyTorch that serves as a platform
for end-to-end compression research. It provides pre-trained models and evaluation scripts
and has partially ported the TensorFlow compression library to PyTorch. It is commonly
used for its valuable implementations of standard functions. However, this platform does
not meet our previously outlined requirements in Section 1.4 and chapters 4 and 6. Our
objective is to develop a benchmarking tool that measures the performance of given
models with well-known metrics. Our highly configurable tool offers a simple interface
to replace components and quickly measure changes. Thus supporting the researcher in
identifying components with the highest impact.

3.2 Literature Reviews
3.2.1 Learning-driven lossy image compression: A comprehensive

survey
The survey by Jamil et al. [49] provides a general taxonomy of machine learning, which,
in contrast to our taxonomy, does not focus on individual components of LIC. The
publication strongly emphasizes architecture and measures the most common types, such
as Autoencoders, Convolutional Neural Networks, and Principal Component Analysis.
Conversely, our work argues that the components of an architecture, rather than the
architecture itself, as classification on a component level permits a more fine-grained
assessment of the significance of proposed changes.
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3.2.2 Learning End-to-End Lossy Image Compression: A Benchmark
This work by Hu et al. [46] focuses on reviewing literature and benchmarking end-to-end
learned image compression methods. It summarizes significant contributions up to 2021.
In addition, it identifies issues with existing methods and addresses them by proposing a
coarse-to-fine hyperprior framework.

3.2.3 Deep Architectures for Image Compression: A Critical Review
Mishra et al. [76] reviewed over 100 state-of-the-art (SOTA) publications. Contrary
to our work, their review focuses on architectures in learned image compression, such
as CNNs, GANs, RNNs, AEs, and VAEs. They conducted a comparative analysis of
various models and traditional codecs such as JPEG and BPG. Recent advancements
were summarized and visually presented on a timeline. In conclusion, they found that
the joint rate-distortion optimization problem, which is present in traditional codecs, has
not been fully solved with the utilization of deep neural networks.

3.2.4 Unveiling the Future of Human and Machine Coding: A Survey
of End-to-End Learned Image Compression

Huang et al. [47] surveyed learned image compression codecs. They provide a high-level
view of the JPEG compression flow and explain which components lend themselves to be
optimized using neural networks. The survey summarizes previously conducted surveys
and benchmarks, outlining their contributions. Huang et al. outline advancements in
learned image compression, such as context models, transformers, attention modules,
quantization, and generative adversarial networks. Their discussion points out the open
challenges in learned image compression, such as computational complexity and subjective
image assessment. In addition to reviewing MPEG Video Coding for Machines (VCM)
and JPEG AI, the authors concluded by pointing out how much more flexible learned
compression is compared to current traditional codecs.

3.2.5 Image compression with Neural Networks - A survey
Jiang et al.[50] published a survey regarding image compression with neural networks
in 1999. They categorized the appliance of neural networks into three categories: 1)
Direct Development, which focused on creating new codecs using neural networks, 2)
Re-implementation of traditional codecs using neural networks, 3) Indirect application of
neural networks to enhance existing pipelines. They used the standard metrics (described
in Section 2.2), such as bits-per-pixel, Peak-Signal-to-Noise Ratio, and (normalized) Mean-
Squared Error, to measure the compression performance and quality of reconstructed
images. At the time, the goal was to match the performance of traditional codecs.
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CHAPTER 4
Methodology

This section outlines the methods for achieving expected results and answering the
research questions.

4.1 Literature Survey
The literature survey can be broken down into multiple steps:

4.1.1 Database Search.

The initial step is identifying critical publications based on selected keywords. The
following terms can be derived from the aim of our thesis (Section 1.4): image compression,
lossy compression, neural compression, and learned image compression. Our materials are
primarily sourced from arXiv, IEEE Xplore, and Google Scholar databases. Publications
with significant impact will be labeled foundational and will lay the groundwork for this
thesis and subsequent steps of its literature survey. Additionally, arXiv provides tools
for finding related publications called Influence Flower [80], Connected Papers [32], and
CORE Recommender [57], which can be considered.

4.1.2 Backward and Forward Snowballing

Following the initial database search, we manually apply a twofold snowballing technique
to find related publications. Backward snowballing involves collecting all materials
cited by the publication currently under review; conversely, forward snowballing focuses
on gathering materials that have cited the publication in question. We can gather a
comprehensive amount of related papers by applying those techniques to all material
from the initial step.
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4.1.3 Screening and Selection
This step focuses on refining the gathered material by eliminating duplicates and irrelevant
publications that do not contribute to the topic of lossy or learned image compression.

4.2 Taxonomy
The thesis introduces a comprehensive overview of work in learned image compression
and non-linear transform coding. Our taxonomy categorizes works based on their primary
components and contributions to the field of LIC, such as quantization and entropy
models.

4.3 Benchmarking Tool
The findings and insights of our component-based taxonomy are further utilized in our
benchmarking tool, Benchpresso. This tool verifies coarse-grained design decisions of
notable works in neural image compression to establish a baseline. With an established
baseline, we focus on the finer-grained design decisions and measure their performance.
Our tests individually benchmark the significance of overlooked components and determine
their impact on the model.
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CHAPTER 5
Taxonomy

This chapter describes the classifications of our taxonomy, which are instrumental in the
field of lossy LIC.

We differentiate the following categories in our taxonomy by identifying top-level compo-
nents that pose cornerstones of the modern LIC paradigm:

• Context Model: computes probabilities and predicts the output image by sequen-
tially decoding latents.

• Architectural Archetypes: break down and reconstruct images through analysis
and synthesis transforms.

• Side Information provide additional context in encoding and causal modeling

• Quantization: reduces the image’s continuous values into a discrete form, intro-
ducing error.

• Variable Rate specializes in variable quality settings without needing separate
models for each quality setting.

Notably, we derive the interface of our benchmarking tool (Chapter 6) based on the
top-level components. We systematically categorized and tagged the appropriate major
components of publications derived in Section 4.1. Moreover, we introduced subcategories
to accommodate varying properties, such as serial versus parallel processing in learned
image compression or scalar versus vector quantization, which provides a finer granularity
and cohesive structure.
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5.1 Quantization

Quantization is a fundamental process in LIC. It approximates continuous values with a
finite set of discrete symbols, reducing the amount of data and introducing error. We
differentiate two major quantization types, scalar and vector quantization (Figure 5.1
and table 5.1).

Universal
Quantization

Uniform Quantization

Non-Uniform
Quantization

Vector Quantization

Scalar Quantization

Stochastic
Binarization

Variational Vector
Quantization

Quantization

Figure 5.1: Quantization classification for learned lossy image compression.

Quantization Categories Related Papers

Vector Quantization [1, 3, 26, 107, 10, 105]
Scalar Quantization [88, 33, 9, 13, 10, 74, 75, 43, 58, 77, 21, 85]

Table 5.1: Taxonomy of quantization methods in learned image compression.
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5.1.1 Scalar Quantization
Scalar Quantization in LIC transforms each pixel of an image to its scalar representation.
It is commonly employed due to its technical simplicity and computational efficiency.

Uniform Quantization [9] is the most common form of quantization in lossy learned
image compression. It has been utilized in several publications by Ballé et al. [9, 13, 10],
Minnen et al. [74, 75], He et al. [43], Lee et al. [58], and Qian et al. [77]. In Uniform
Quantization, continuous values are divided into equal-sized bins during training and
rounded to the nearest integer. However, the rounding operation is non-differentiable,
which poses a challenge for gradient-based optimization methods. To address this,
Ballé et al. introduced additive uniform noise. They restore differentiability for the
backpropagation process by simulating the quantization error with uniformly distributed
additive noise.

Non-Uniform Quantization is a form of scalar quantization. The authors [21]
address the inherent challenge of non-differentiability in quantization differently. Unlike
uniform quantization [9], which applies the same quantization step across all values,
non-uniform quantization updates itself based on the data distribution. Cai et al. [21]
introduce an iterative optimization process that alternates between fixing the quantizer
and the entropy model for optimization. The network is initially trained without the
quantizer to minimize the MSE loss. The subsequent iteration fixes the network and aims
to optimize the quantizer to reduce the quantization errors. According to the authors,
this attempt showed overall improved compression efficiency.

Stochastic Binarization [85] introduces a probabilistic approach to quantization by
transforming real-valued inputs into binary values, typically (-1,1). Unlike its deterministic
counterparts, values are quantized based on the probability derived from the input, which
may simulate noise. The challenge of non-differentiability in gradient-based optimization
applies here as well. To address this issue, Toderici et al. [85] employ the straight-through
gradient estimate [88, 33], which allows gradients to pass through unchanged. This
approach mitigates the problem of gradients being zero or infinite almost everywhere,
thereby allowing end-to-end optimization.

5.1.2 Vector Quantization
Vector Quantization in learned image compression involves segmenting an image into
blocks of pixels as multi-dimensional vectors. Given a vector pattern, these vectors are
approximated to the closest quantization bin in the latent space.

Soft-to-hard Vector Quantization [1] is an approach in quantization that anneals
soft assignments to hard assignments during the training process. The key benefit of
soft assignments lies in their differentiability, which facilitates end-to-end gradient-based
optimization. The initial annealing rate σ estimates a probability distribution of the
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input value. Soft quantization assigns the value to multiple bins based on the estimated
probability distribution. The authors systematically increase the σ-value, approaching
infinity, to eventually focus the probability distribution on a single assignment, thus
transitioning to a hard assignment. Agusstson et al. [1] warn about the annealing rate.
Slow and rapid annealing rate may cause inflated weights or the vanishing gradients issue.
Instead, they recommend parametrizing the σ-value or making it dependent on other
values within the model.

Universal Quantization [3, 26] , also referred to as dithered quantization, is a
form of quantization with a random offset [3], which aims to be universally applicable
at training and test time. While Choi et al. [26] implemented universal quantization,
Agustsson et al. [3] improved upon their work by eliminating the need for straight-
through gradient estimates. Both successfully eliminated the training-test time mismatch
and achieved end-to-end gradient optimization. Based on their previous work, soft-to-
hard vector quantization in Section 5.1.2, Agustsson et al. combine soft rounding with
additive uniform noise by Ballé et al. [9], to simulate quantization and use universal
quantization [107] to communicate samples during training and test time and retain
differentiability.

Variational Vector Quantization

Variational Entropy Constrained Vector Quantization is a vector quantization
method based on non-linear transformations. Traditionally, vector quantization is com-
putationally infeasible for multi-dimensional sources [10]. Transform coding simplified
the problem by mapping the vectors into a latent space using linear transforms, which
are constrained to simple transformations of that space. Ballé et al. utilized non-linear
transform coding to adapt its quantization bins more closely to the source data. Stochas-
tic gradient descent suffers from zero values almost everywhere and was avoided by
employing dithered quantization and additive uniform noise [10].

Unified Multivariate Gaussian Mixture introduced by Zhu et al. [105] is a proba-
bilistic vector quantization method with cascaded estimation. They identified redundan-
cies in the inter- and intra-correlations in the latent representations. This novel vector
quantization approach estimates the means and variances for the multivariate Gaussian
mixture without utilizing a context model. Additionally, they found that using a single
codebook was computationally too complex and introduced a multi-codebook approach
instead. Their results and ablation study showed promising B-D rate improvements.
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5.2. Architectural Archetypes

5.2 Architectural Archetypes
Analysis and synthesis transforms are the primary transforms in lossy image compression.
Before the quantization step, the image must be deconstructed into a set of coefficients
using an analysis transform. Conversely, the synthesis transform is used to reconstruct
the image from the quantized coefficients.

Architectural Archetypes Related Papers

Hierarchical Transformer [71, 108, 106, 69, 68, 51, 56, 62, 55, 23, 7, 64, 34]
Non-linearity [11, 12, 52, 78]
Convolutional [35, 29, 92, 70, 106]

Table 5.2: Taxonomy of architectural archetypes in learned image compression.

A classic example of such transforms is the discrete cosine transform (DCT) and its
inverse (IDCT), used in the JPEG image compression standard. It is a simple and efficient
transform, limited to linear transformations. Such limitation influences the compression
performance on complex images and introduces compression artifacts.

Convolutional Neural Networks apply filters to the input and create convolutions, which
are further filtered [102]. They excel in feature extraction and image processing and are
capable of approximating functions. CNNs outperformed [8, 59] handcrafted codecs, and
their use reached 32% of all architectures for still image compression in 2022 [48]. Ballé
et al. [12] helped CNN architectures achieve higher r-d performance by replacing the
ReLU activation function with GDN and introducing the NTC [10] approach.

Further improvements include the introduction of deformable convolutions, which can
shift attention to various details in the image. Wang et al. [92] described a promising
new strategy for kernels, which introduces variable spatial ranges that are content-aware
and deformable while adjusting their weights dynamically.

The constantly increasing depth of neural networks proved training to be challenging.
The residual bottleneck block architecture mitigates the vanishing gradient problem. Skip
connections bypass the depth and are directly combined with the output, enabling more
profound and robust networks. We classify these approaches as convolutional (Table 5.2).

Other architectural archetypes include transformer-based models. Their general use
involves classification and vision tasks, but they also found their way into learned image
compression. We classify models predominantly consisting of self-attention or other
transformer-like components as transformer-based.
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Residual Bottleneck
Blocks

Deformable
ConvolutionsConvolutional

Architectural
Archetype

Hierarchical
Transformer

Octave Convolutions

Local Attention

Global Attention

Non-linearity

Generalized Divisive
Normalization

Generalized
Subtractive Divisive

Normalization

One Divisive
Normalization

Figure 5.2: Architectural archetype classification for learned lossy image compression.
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5.2.1 Hierarchical Transformer
Hierarchical transformers leverage a layered architecture that is capable of multi-scale
processing. Initially used primarily in Natural Language Processing (NLP), they have
since been adapted for high-level vision tasks and, more recently, low-level tasks such as
LIC [71, 108, 106, 68]. Transformers start with high-resolution input and progressively
reduce the resolution while increasing the number of extracted features. The feature
extraction mechanism, or Attention, varies in implementation and technique and includes
approaches such as Shifted Windows Transformer Attention, Residual Neighborhood
Attention, or Convolutional Neural Networks.

Local Attention

Shifting-window-based Attention is an attention mechanism based on shifted
windows [71, 108, 106, 69, 68, 51]. Swin splits the image into non-overlapping windows
but can also do cross-window referencing. Zou et al. [108] developed a plug-and-play
window-based attention module (WAM), which improved the R-D performance for learned
image compression in Transformer- and CNN-based architectures. Their attention module
was able to distribute bits unevenly, focusing more on regions of high contrast. Employing
Swin-transformer-based Attention with non-linear transformations improved performance
and shorter decoding times than CNN transforms [108, 106]. Liu et al. [68] showed in
their ablation study that their Transformer-CNN Mixture (Section 5.2.1), which includes
Swin Attention, resulted in significant performance gains over Transformer-only and
CNN-only architectures.

Transformer-CNN Mixture is a combination of Transformer-based and CNN-based
models that benefit from both strengths. CNNs are limited in modeling long-range
dependencies [68, 56, 62]. However, Transformers excel in capturing global dependen-
cies [56, 108]. We classify models as Transformer-CNN mixtures when they combine
Transformer- and CNN-based characteristics.

Liu et al. [68] combined CNN’s local modeling ability with a transformer’s long-distance
capturing ability. Their TCM Block splits the input tensor evenly and computes local
and non-local features independently and in parallel. The outputs are concatenated
into one tensor. This process is repeated in stages one and two. While the first stage
employs Window-Based Multi-Head Self-Attention (W-MSA), the second stage uses
Shifted W-MSA.

Khoshkhaht et al. [55] proposed a transformer-based non-linear transform, which utilizes
two CNN-based hyperpriors and captures local and global information efficiently. Kim
et al. [56] utilized a novel Transformer-based entropy model that combines a global and
local hyperprior and outperforms existing entropy models regarding R-D performance.
Both the entropy model and the local hyperprior consist of convolutional layers. Since
the Informer utilized an autoregressive prior, the decoding process cannot be parallelized.
Employing a channel-wise autoregressive [75] model would mitigate this limitation [55].
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Residual Neighborhood Attention is classified as an archetype of residual block
architecture, including attention mechanisms (Figure 5.2). Lu et al. [70] utilized Neigh-
borhood Attention Transformer (NAT) [41] by Hassani et al. Before NAT, transformer-
based attention mechanisms were considered unfeasible for low-level tasks such as
compression[41]. Following the work [44], Lu et al. improved training and informa-
tion aggregation by adding residual skip connections.

Global Attention

Khoshkhahtinat et al. [55] claims that SwinT’s receptive field is insufficient to capture
global information. Instead, they propose utilizing a hierarchical aggregated-windows
transformer (AGWinT) to extract global dependencies. AGWinT extracts global query
patches and matches them against local patches extracted by the local attention mecha-
nism. Additionally, they employ a global context block based on an autoregressive model
to exploit global context information context-dependently.

Kim et al. [56] introduced a novel entropy model based on the transformer architecture.
The goal is to jointly model global and local dependencies using the Transformer’s
ability to capture long-range dependencies. They propose an Information Transformer
(Informer), which uses a global hyperprior with a cross-attention mechanism to avoid the
quadratic complexity of self-attention. Global dependencies are modeled in a context-
dependent manner. However, the global hyperprior lacks spatial information provided by
another local hyperprior.

5.2.2 Non-linearity
Generalized Divisive Normalization (GDN)

GDN is a non-linear transform used to gaussianize the local joint statistics. It was initially
introduced by Ballé et al. [11] and works by normalizing pixel values, which account
for neighboring pixels, to mimic the Gaussian distribution and make them statistically
independent. Typical analysis and synthesis transforms have fixed parameters after
training. In contrast, GDN is spatially adaptive and highly non-linear [12]. Its formula
can be found in Equation (5.1).

zi = xi(︁
βi + ∑︁

j γij |xj |αij
)︁εi

(5.1)

One Divisive Normalization (1DN)

GDN is a commonly used non-linear transform. Its significant performance comes at
a price of high computational complexity. Johnston et al. [52] reduced the run-time of
GDN by simplifying the formula in Equation (5.2). The authors fixed parameters to
eliminate the need for square-root computation without performance degradation. They
proposed One Divisive Normalization (1DN), a simplified version of GDN, resulting in
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21.4% savings on normalization computations and over 50% of decoder run-time for
state-of-the-art models at that time.

zi = xi

βi + ∑︁
j γij |xj | (5.2)

Generalized Subtractive Divisive Normalization

Qian et al. [78] argue that GDN suffers from a mean-shifting problem since its density
should be zero-mean. They introduced Generalized Subtractive Divisive Normalization
(GSDN), which aims to fix the issue by subtracting the mean from all values. This
non-linearity component (Figure 5.2) improved their rate savings by about 2%.

5.2.3 Convolutional
Deformable Convolutions

Deformable Convolutions modify the standard convolution operation by allowing the
shape of the convolution kernel to adapt dynamically to the input. This adaptation is typ-
ically achieved through an offset field that adjusts the kernel’s receptive field [35, 29, 92].
There are subtypes of deformable convolutions, such as Deformable Residual Modules
(DRM) and Lite Deformable Convolutions (LDCN). Deformable convolutions that incor-
porate residual block mechanisms are classified as DRMs [35, 29]. Meanwhile, simplified
deformable convolutions that share kernel weights or apply softmax normalization are
classified as LDCN [92].

Lite Deformable Convolution Deformable convolutions are similar in complexity to
non-deformable convolutions [29]. Their complexity may be reduced without performance
degradation. Wang et al. [92] introduced an LDCN that splits the input feature into
groups and has the sharing modulated kernel weights within each group. They utilize
softmax normalization to improve the training performance further.

Deformable Residual Module DRMs were first proposed by Dai et al. [29] and
integrated into a LIC framework by Fu et al. [35]. The kernel’s offset field is typically
the size of the input feature map. Combining a classical convolution and the deformable
module requires a skip connection inspired by the residual block mechanism. Modules in
this group are highly compatible and can be used as a replacement for typical analysis
and synthesis transforms. Due to their compatibility, we classify them as Deformable
Convolutions and Residual Bottleneck Blocks (Figure 5.2).

Residual Blocks

Residual Blocks [44] allow layers to learn modifications to the identity mapping and
improve the gradient flow. They utilize shortcut connections to skip through one
or multiple layers and prevent degradation in deep neural networks. These shortcut
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connections are present in most modern architectures, from CNN to Transformers[89].
We classify works that use the original bottleneck blocks [44] with shortcut connections
to this residual block subcategory.

Residual Neighborhood Attention Lu et al. [70] introduced a neighborhood atten-
tion mechanism for local attention that utilizes residual skip connections. This flexible
mechanism is compatible with other window-based self-attention mechanisms [70] like
SwinT [106]. Skip connections are necessary to facilitate better information aggregation
and model training [70]. Section 5.2.1 describes further details on local attention in
hierarchical transformers.

Octave Convolutions

Chen et al. [23] first introduced Octave Convolutions for computer vision tasks. They
were motivated by areas of low detail (global structures) exhibiting low frequencies, while
areas of high detail and lots of change exhibit high frequencies. They formulated an
octave convolution (OctConv), which separated the feature maps into low and high
frequencies 1 and at different resolutions, allowing them to be stored and processed
efficiently.

Akbari et al. [7] observed that the work [23] used fixed interpolation methods in their
octave convolutions, such as average pooling and nearest neighbor interpolation. They
stated that these methods do not preserve spatial information and structure, which are
not necessary for object detection. However, they developed a novel generalized octave
framework to make OctConv suitable for LIC. Instead of fixed interpolation methods,
they utilized learnable internal activation layers. Their proposed Generalized Octave
Convolution (GoConv) effectively preserves the spatial structure and enhances the R-D
performance [7, 64]. They also used the parameter estimator [74] to combine information
for the context model and hyper-decoder.

Fu et al. [34] forgoes using an element-wise context-adaptive entropy model to avoid
sequential decoding of elements. To compensate for the performance loss, they split
image representations into LR and HR parts. Utilizing GoConv [7] in their hyper-encoder
and decoder layers further eliminates spatial redundancies. They also introduce cross-
resolution parameter estimation (CRPE), which combines LR parts from different layers
and provides this information to decode elements. Avoiding the entropy model enables
parallel decoding and accelerates decoding times by at least 73% while outperforming
the VVC(4:2:0) codec.

5.3 Context Models
Context Models are an essential part of LIC. They utilize entropy-coded latents to
improve R-D performance. They are typically sequential, but recent works in Table 5.3

1May be referred to as High Resolution (HR) and Low Resolution (LR) components.
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show parallelizable variants. Figure 5.3 visualizes their categorization.

Parallelized Decoding

Channel and Spatial

Checkerboard

Sequential

Context Model

Progressive Decoding

Figure 5.3: Context model classification for learned lossy image compression.

5.3.1 Sequential
This category encompasses partially and completely sequential models, i.e., models that
do not focus on parallelization and utilize some form of context modeling.

Autoregressive priors have been successful in generative models [74]. Minnen et
al. [74] examined their application in LIC. Their autoregressive model relied on the
side information provided by a hyperprior. However, the decoding process depends on
previously decoded pixels, so autoregressive models are inherently sequential [75, 102,
56]. Section 5.3.2 describes how Minnen et al. managed to parallelize the process.

Context-Adaptive models cannot be parallelized [56, 58, 34]. Lee et al. [58] introduced
a context-adaptive model that splits the contexts into bit-free and bit-consuming ones.
This distinction allowed them to allocate bits only where necessary, reducing spatial
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dependency. However, they utilize already decoded latents autoregressively to decode
the bit-free context, which hinders parallelization.

5.3.2 Parallel Decoding
Checkerboard Context Model

He et al. [43] introduced the Checkerboard Context Model (CCM), a novel approach
to parallel decoding. They proposed splitting the latent representation into anchors
and non-anchors to facilitate decoding in two stages. Initially, the anchors are decoded
in parallel. Subsequently, the non-anchor points are decoded in parallel using decoded
anchors (context features) and hyperprior features. Many works [77, 43, 35, 92, 95, 42]
utilize this two-stage, parallelizable checkerboard context model.

Fu et al. [35] noted a 0.2-0.3 dB decrease in R-D performance with the original CCM [43].
This issue was addressed by utilizing different probability distributions for anchors and
non-anchors. They utilized the Gaussian-Laplacian Logistic Mixture Model (GLLMM)
for anchor points and the Gaussian Mixture Model (GMM) the non-anchors to regain
performance.

Jiang et al. [51] also observed a 4% performance degradation in the original CCM [43].
They enhanced the model by stacking checkerboards and utilizing shifted window-based
checkerboard attention to address this issue. Stacked checkerboards also increase the
non-linearity depth [51] while retaining the two-pass decode.

Wang et al. [92] divided their latent representation into slices. They applied the CCM to
each slice for parallel decoding and achieved a BD-Rate of -7.68% over BPG(4:4:4) on
the Kodak dataset.

He et al. [42] applied the CMM [43] pattern in combination with non-uniform channel
grouping using an uneven grouping scheme to improve efficiency further. They allocated
fewer channels in the early slices, resulting in fewer symbols that can be processed in par-
allel. However, they allocated more channels in the later slices to increase parallelization.
This novel grouping scheme yields improved BD-Rate performance and lower latency.
They argue that the later encoded channels contain less information and place higher
emphasis on the early channels to reduce cross-group reference.

Similarly, Lu et al. [70] were inspired by the work [42] and adopted a similar grouping
technique where the number of channels increases with each slice. However, instead of
using the handcrafted slicing technique [42], they opted for cosine slicing, which performs
better than linear slicing. In 3 of their four slices, they use the Generalized Checkerboard
Pattern with variable granularity to group spatial neighbors.

Progressive Decoding

Progressive Decoding is the ability to split the complete decoding process into stages.
We define it as the ability to preview an image without fully decoding it, which is highly
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practical for real-world applications. Progressive decoding is assumed to take only a
fraction of the time compared to fully decoding an image. Prior works include those by
Minnen et al. [75] and He et al. [42]

The Channel-wise Autoregressive Entropy Model by Minnen et al. [75] naturally supports
progressive decoding, although this was not their primary goal. Their model first utilizes
information from the hyperprior to generate an initial image. The missing information is
inferred from the distribution of the hyperprior, and then the previously sliced latents
are progressively added, increasing detail with each slice. Minnen et al. [75] highlight two
crucial drawbacks. First, the R-D performance is much worse than standalone models
tailored for low bitrates, making progressive decoding an infeasible solution for variable
rate decoding. Second, their progressive decoding still requires the complete synthesis
transform, which is computationally costly.

He et al. [42] addressed these issues by introducing the unevenly grouped channel-wise
context model (described in Section 5.3.2). According to their claims, early channels
contain most information, which lends itself to progressive decoding. To address the
decoding speed issue, He et al. propose training a separate tiny network called a thumbnail
synthesizer, which decodes images in microseconds thanks to its lightweight structure [42].

Channel and Spatial

We classify context models as "Channel and Spatial" that parallelized decoding by
leveraging channel-wise or spatial-wise conditionals. This includes but is not limited to,
slicing along the channel axis or using custom decoding orders that divide the latent
space into independent and, therefore, parallelizable patches.

Channel-wise Autoregressive Context Model [74] Autoregressive models are
inherently serial [74]. Minnen et al. [75] aimed to minimize serial processing while
maintaining matching R-D performance in forward and backward adaptation. Forward
adaptation makes use of side information, e.g., hyperpriors. Backward adaptation predicts
already decoded patients, which are usually processed serially. They minimized serial
processing by utilizing Latent Residual Predictions (LRP) and Channel-Conditioning
(CC). The latent representation of an image is sliced along the channel axis instead of
the spatial axis, and each slice can be processed in parallel. Their experiments improved
encoding and decoding speeds compared to the checkerboard pattern approach [43] while
maintaining better R-D performance than state-of-the-art codecs.

Fu et al. [36] utilize the channel-wise autoregressive model by Minnen et al. [75] employing
a dual-branch encoder architecture. Two encoders process the input image: one handles
high-resolution input to capture global dependencies and is fed as side information to
the second encoder, which handles low-resolution input. Each encoder is processed by
its channel-wise autoregressive context model (ChARM) separately and in parallel. Fu
et al. [36] experimented with slicing the latent representation into 5 and 10 groups and
found that more groups offer only slightly improved R-D performance.
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Multistage Spatial Context Model [63] Lin et al. [63] mentioned that Lu et al.’s [70]
extension to the checkerboard context model has similarities to their solution but is
limited by the decoding order. They also consider the checkerboard context model by He
et al. [43] to be a two-stage context model, where half of the codes (anchors) are decoded
in stage 0 and the other half (non-anchors) in stage 1. Anchors do not benefit from the
context model’s information [63]. Lin et al. [63] introduced more stages to reduce the
proportion of anchors to non-anchors. They provided two examples, dividing the latent
space into 2x2 and 4x4 patches, decoded in 4 and 16 stages, respectively. All patches in
each stage can be decoded in parallel and utilize the information from previously decoded
stages. They found their solution [63] superior in R-D performance and 11.8% to 27.6%
slower than the original checkerboard context model [43].

Context Model Categories Related Papers

Sequential [74, 75, 102, 56, 58, 34]

Parallelized Decoding
Channel and Spatial [74, 75, 43, 36, 63, 70, 61]
Checkerboard [43, 77, 35, 92, 95, 42, 51, 70]
Progressive Decoding [75, 42]

Table 5.3: Taxonomy of context models in learned image compression.
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Scanning Order and Dividing Technique Li et al. [61] utilize a spatial context-
based convolutional context model to introduce a code-dividing technique that enables
parallel decoding. First, they analyzed various 2D coding techniques, such as raster
coding, which hindered parallelization or reduced entropy estimation accuracy. They
chose the zigzag technique and extended it to 3D by interpreting the latent as a cube
and stages as diagonal planes [61, 63]. These diagonal planes contain codes that can be
independently decoded in parallel. Their Context-based Convolutional Network (CCN)
utilized the 3D Zigzag Coding Order and Dividing Technique. Its degree of parallelization
(DoP) depends on an image’s width, height, and number of channels.
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5.4 Hierarchical Priors
Hierarchical Priors utilize multiple layers of probability models. The primary prior models
the latent of the input image. Then, additional layers of priors are built on top of the
primary probability model, further processing the latent, which is fed back during the
encoding and decoding process. The probability modeling assumes the prior distribution
prior to computing the primary distribution.

Hierarchical Priors Categories Related Papers

Causal Context Modeling [13, 58, 74, 77, 71, 70, 41]

Global Context Modeling Attention Based Models [22, 62, 66, 65, 72, 77, 94, 93, 74, 71]
Joint Priors [74, 12, 13, 78, 36, 101, 104, 25, 56, 58, 45]

Table 5.4: Taxonomy of hierarchical priors in learned image compression.

5.4.1 Local Context Modeling
CNNs efficiently model the local context through their architectural design of convolu-
tional filters and small receptive fields. Their main limitations are capturing long-range
dependencies and global context modeling. This section classifies publications focusing on
local context modeling and capturing local dependencies within the latent representations.

In [13], they introduce a variational autoencoder with a scale hyperprior. The distribution
scale is estimated by their input-adaptive entropy model. Lee et al. [58] extend this work
and introduce a context-adaptive entropy model that handles two contexts: bit-free and
bit-consuming. The bit-consuming context provides global information and is described
in more detail in Section 5.4.2. The bit-free context focuses on modeling the local context,
which is bit-free, as it is already known to the encoder-decoder.

Minnen et al. [74] also based their solution on Ballé et al.’s [13] hyperprior architecture.
They extended the scale hyperprior with an autoregressive component, which can effi-
ciently exploit local dependencies by predicting the current latent based on previously
decoded latent.
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Hierarchical
Priors

Attention Based
Models

Causal Context
Modeling

Joint Priors

Global Context
Modeling

Figure 5.4: Hierarchical Priors classification for learned lossy image compression.

Qian et al. [77] utilized stacks of transformer layers as the autoregressive prior, with
each layer including self-attention masks to learn the local context. Combined with a
hyperprior, this predicted the Gaussian parameters, mean, and scale.
The causal attention module (CAM) by Lu et al. [71] is different from previous masked
convolution-based mechanisms. In their Transformer-based Image Compression (TIC)
architecture, they utilize Swin Transformer Blocks (STB) with convolutional layers
jointly to extract both short—and long-range information. The combination of STB and
convolutional layers is called a Neural Transformation Unit (NTU). CAM aggregates the
information from NTUs using autoregressive neighbors with masked attention. These
neighbors are then fused with the hyperpriors to predict the context.
Another notable work that utilizes self-attention for local context modeling is TinyLIC
by Lu et al [70]. Their Integrated Convolution and Self-Attention (ICSA) units comprise
Residual Neighborhood Attention Blocks (RNABs). The RNAB architecture can be
implemented with window-based self-attention schemes, such as SwinT. However, Lu
et al. [70] opted to use Neighborhood Attention Transformers (NAT) by Hassani et
al. [41], as it provides a more flexible window with fewer irrelevant patches compared to
SwinT. Both attention mechanisms are also mentioned in Section 5.2.1 about attention
in hierarchical transformers.

5.4.2 Global Context Modeling
Attention Based Models

Non-local Attention Module (NLAM) [22, 62, 66] Chen et al. [22] argue that
generating importance maps only at the bottleneck [65, 72] cannot handle complex
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regions effectively. Instead, they propose an attention module in the main encoder-
decoder and the hyperprior branch. The Non-Local Attention Module (NLAM) is based
on the Non-Local Network (NLN) by Liu et al. [65] and includes ResBlocks with ReLU
activations. This NLAM architecture is identical to the NLAM architecture introduced 2
years prior by Liu et al. [66] Additionally, they produce multiscale attention masks, which
are summed over all channels. [22] The key to their solution is applying the non-local
attention module in both the primary and hyperprior branches to generate multiscale
attention masks and exploit non-local correlations effectively.

Li et al. [62] also introduced a non-local attention block to exploit the global context.
They propose a proxy similarity function to indirectly compute the similarity between
the target code and other codes, which may be in different contexts. Additionally, they
utilize a confidence score to omit dissimilar codes. The attention block combines this
non-local information with the local representation to produce an output for entropy
modeling.

Self-Attention Another approach that utilizes attention mechanisms in hierarchical
priors is the Entroformer by Qian et al. [77] They introduce top-k self-attention for learned
image compression, inspired by content-based sparse attention by Wang et al. [94, 93],
which was used in vision tasks. The architecture is based on the work of Minnen et al. [74]
and extended with a transformer-based entropy model. Additionally, the hyperprior
consists of six transformer layers, each with a self-attention block. Qian et al. [77] tested
multiple k-values for the top-k self-attention and found that the model performs best and
converges quickly with k-values no larger than 64. The top-k scheme with large k-values
may include too many irrelevant tokens [77], which worsens performance.

Swin Transformer-based Attention The Transformer-based Image Compression
(TIC) model by Lu et al. [71] aims to utilize Swin Attention to capture both short-range
and long-range dependencies. They construct Neural Transformation Units (NTUs),
which consist of Swin Transformer Blocks (STB) combined with convolutional layers.
These NTUs are present in both the encoder-decoder and the hyperprior branches,
embedding long-range dependencies efficiently.

Joint Priors

Hierarchical Priors, combined with other priors jointly and utilized for global modeling,
are classified as Joint Priors (Figure 5.4 and table 5.4).

Joint Autoregressive and Hierarchical Priors [74] After introducing one of the
first end-to-end learned image compression models [12], Ballé et al. [13] extended their
work by introducing a hierarchical prior to capture more information directly in the latent
space. Their hyperprior became a well-known technique for capturing side information and
improving R-D performance. Following this, a work by Minnen, Ballé, and Toderici [74]
extended the previous scale-only hyperprior [13] to one that predicts both mean and
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scale. Additionally, they added an autoregressive prior, which jointly predicts the causal
context.
Fu et al. [36] introduced a learned image compression model with two encoder branches,
one for learning high-resolution latent and one for learning low-resolution latent. They
utilize two Channel-Wise Autoregressive Models [74] (ChARM) for the output of the
hyperprior branch. One ChARM is designed with larger filters to capture global infor-
mation more efficiently, while the other uses smaller filters to capture local information.
Furthermore, during the encoding and decoding of low-resolution latents, the information
from the high-resolution latents is incorporated as conditional side information to enhance
encoding and decoding efficiency and reduce redundancy.

Global Reference [78] Qian et al. [78] claim that the lack of global vision is a
significant limitation and thus introduces a global reference model. Their solution
extends the architecture by Minnen et al. [74] and adapts the entropy model to include
a reference-based component. The global reference finds latent matching the current
latent using already decoded latent. The search method is based on the works of Zheng
et al. [104] and Yang et al. [101] However, Qian et al. [78] go beyond the similarity score
by considering a confidence score to more accurately find relevant patents. The context
model first estimates the entropy parameters and is then jointly updated by the global
reference and hyperprior model.

Gaussian Mixture Models [25] Cheng et al. [25] observed some spatial redundancy
in the latents in the work by Minnen et al. [74] They argue that a single Gaussian
distribution is limited in shape and cannot fully represent the underlying distribution.
To address this limitation, Cheng et al. [25] proposed a more flexible approach using a
Gaussian mixture model (GMM), which achieved better spatial redundancy reduction.

Unified Multivariate Gaussian Mixture [105] Zhu et al. [105] argue that scalar val-
ues in univariate priors may be insufficient to capture inter- and intra-correlations. Inter-
correlations are defined as visually and spatially similar regions, while intra-correlations
are differences (covariances). The proposed method utilizes vectors instead of scalars
to estimate means and covariances accurately without needing a context model. Their
vectorized prior treats latents as vectors, improving compression speeds and reducing
complexity. Their vector quantization method is described in Section 5.1.2.

Information Transformer [56] Kim et al. [56] found that the global reference model
by Qian et al. [78] does not fully utilize global references, as it only finds one latent
that matches the target latent. They improve upon this issue by introducing a global
hyperprior, which extracts information from all the latent instead. Additionally, the
solution by Qian et al. [78] has quadratic complexity, while the global hyperprior utilizes
a cross-attention mechanism with fixed complexity regardless of image size. Kim et
al. [56] introduce an Information Transformer (Informer), which jointly utilizes local and
global hyperpriors and reduces computational complexity.
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Bit-free and bit-consuming contexts [58] Lee et al. [58] introduced a context-
adaptive entropy model that distinguishes between bit-free and bit-consuming contexts.
The bit-free context does not require additional bit allocation and is usually included in
the local context. Their work builds on the scale hyperprior by Ballé et al. [13], which
uses the hyperprior as a bit-consuming context. The proposed framework adaptively
decides whether the given information is bit-free (i.e., already known to both the encoder
and decoder) or requires additional bit allocation.

Multi-layered Hyperpriors Hu et al. [45] proposed a coarse-to-fine framework that
utilizes multiple hyperprior layers to eliminate spatial redundancy efficiently. They intro-
duced a signal-preserving hypertransform designed to reduce spatial redundancy while
preserving information. Hu et al. [45] used relatively small filters and 1x1 convolutions
to achieve this, as large filters rely on local correlations. Additionally, they exploited the
space-to-depth reshaping to place spatially adjacent elements in the exact location after
reshaping. These novel solutions allowed them to stack multiple hyperlayers and better
approximate the joint distribution.
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5.5 Variable Rate
This category focuses on publications (Table 5.5) that aim to introduce variable rate
models. Their characteristic is that they do not require separate models for each quality
level. Instead, a single model can achieve variable target rates through scaling, modulation,
adaptation, or multi-resolution.

Variable Rate

Scaling Parameters

Residual Coding

Conditional

Direct

Figure 5.5: Variable Rate model classification for learned lossy image compression.

5.5.1 Scaling Parameters
Variable rate entropy models offer flexibility in setting the output quality. Unlike
progressive decoding, which can stop the decoding process at any stage, variable rate
models decode an image fully with a predetermined bit rate or quality target. This
section focuses on variable rate models, which introduce variable rates through scaling
parameters.

Variable Rate Categories Related Papers

Scaling Parameters Direct [28, 87, 53]
Conditional [84, 26, 100, 83, 64]

Residual Coding [6, 60, 5]

Table 5.5: Classification table for fig. 5.5
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Conditional

Conditional Scaling Parameters can be seen as hyperparameters, which affect the entire
network and the R-D optimization process. These parameters are typically present in
analysis and synthesis transforms, the entropy model, and the quantization process. Choi
et al. [26] proposed a variable rate framework that does not require training networks
separately for each quality goal. Instead, they introduced two rate control parameters:
the Lagrange multiplier λ and the quantization bin size. Both parameters can change the
output quality without retraining or using multiple models. Theis et al. [84] introduced
scale parameters λ to achieve variable rates. They initially trained the model using
a fixed lagrangian multiplier (β), as described in Section 2.1.3. Then, they fixed the
parameters and fine-tuned the model by introducing the scale parameters λ. The obtained
scale parameters allow for fine-grained variable rate control with a single model. Choi
et al. [26] trained the network using a predefined set of Lagrange multipliers λ and a
bin size 1. They also adjusted the rate-distortion terms to accommodate the multiplier.
Afterward, they fine-tuned the network using various bin sizes, enabling two controllable
rate parameters. Yang et al. [100] published another novel. They introduced Modulated
Autoencoders (MAE), which utilize modulation functions trained on a scaling factor λ.
Unlike traditional methods that scale the bottleneck representation, these modulated
networks adapt the feature maps at various layers within the model.

Direct

Direct Scaling Parameters typically scale the latent tensors directly before quantization
and encoding. They also invert the scaling after entropy decoding and before the synthesis
transform step. In contrast to the previous subcategory, direct scaling parameters are
absent throughout the network as they scale the latent representation early and directly.

In contrast to the previous subcategory’s work [26, 100], Cui et al. [28] introduce a
variable rate model that utilizes channel-wise scaling of the latent representation through
"gain units." Their exponential interpolation formula generates arbitrary scaling between
learned discrete scaling points, providing finer-grained quality control. The gain control
is applied directly to the latent representation before quantization and is reversed by
applying the inverse gain before the synthesis transform step.

Tong et al. [87] introduce a quantization-error-aware variable rate framework to scale
the latent representation directly. They formulate a univariate quantization regulator
vector, which controls the quantization bin sizes and the quantization error during the
quantization and entropy coding process. Tong et al. [87] claim that QVRF keeps
the Gaussian entropy estimation nearly fixed. Experimental results suggest negligible
performance degradation for discrete and continuous variable rates.

5.5.2 Residual Coding
This section focuses on achieving variable rates in a single model using residual coding.
This approach controls the output quality by encoding the residual image losslessly [6, 60],
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typically with the BPG codec2.

Octave Convolutions specialize in separating high and low-frequency data. More details
on this architectural archetype can be found in Section 5.2.3. Their unique architecture
lends itself well to variable rate models. Akbari et al. introduced a multi-resolution
variable-rate model based on their previous work [5]. They replaced the analysis and
synthesis transforms with generalized octave convolutions (GoConv) and transposed
octave convolutions (GoTConv), allowing them to factorize high-frequency data and
preserve important features across resolutions. Additionally, they modified the objective
function to accommodate variable rates and introduced an enhancement layer called the
residual image. The residual image is encoded losslessly into the bitstream using the
BPG codec, further improving the performance by preserving finer details at higher bit
rates.

Li et al. [60] proposed a variable rate model that utilizes vision transformer blocks to
capture long-range dependencies. They extend the base framework previously used by
Akbariet al. [6] To compensate for the time and computational cost of the context model,
they divide the latent into segments, where each segment is processed in parallel with
transformers. The residual image is encoded and decoded using the previously mentioned
BPG codec.

Year Title Taxonomy Categories

2024 Variable-Rate Learned Image Compression with
Multi-Objective Optimization and Quantization-
Reconstruction Offsets [53]

Section 5.5

2024 Learned Image Compression with Gaussian-Laplacian-
Logistic Mixture Model and Concatenated Residual
Modules [36]

Section 5.4

2024 S2LIC: Learned Image Compression with the SwinV2
Block, Adaptive Channel-wise and Global-inter At-
tention Context [95]

Section 5.3

2023 QVRF: A Quantization-error-aware Variable Rate
Framework for Learned Image Compression [87]

Section 5.5

2023 Neighborhood Attention Transformer [41] Section 5.4
2023 An Introduction to Neural Data Compression [102] Section 5.3
2023 Multistage Spatial Context Models for Learned Image

Compression [63]
Section 5.3

Continued on next page

2Available at https://bellard.org/bpg/
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Continued from previous page

Year Title Taxonomy Categories

2023 Fast and High-Performance Learned Image Compres-
sion With Improved Checkerboard Context Model,
Deformable Residual Module, and Knowledge Distil-
lation [35]

Section 5.3, Section 5.2

2023 Dynamic Kernel-Based Adaptive Spatial Aggregation
for Learned Image Compression [92]

Section 5.3, Section 5.2

2023 MLIC: Multi-Reference Entropy Model for Learned
Image Compression [51]

Section 5.3, Section 5.2

2023 Learned Image Compression with Mixed Transformer-
CNN Architectures [68]

Section 5.2

2023 Multi-Context Dual Hyper-Prior Neural Image Com-
pression [55]

Section 5.2

2022 Asymmetric Gained Deep Image Compression With
Continuous Rate Adaptation [28]

Section 5.5

2022 Variable-Rate Deep Image Compression With Vision
Transformers [60]

Section 5.5

2022 High-Efficiency Lossy Image Coding Through Adap-
tive Neighborhood Information Aggregation [70]

Section 5.4, Section 5.3,
Section 5.2

2022 Entroformer: A Transformer-based Entropy Model
for Learned Image Compression [77]

Section 5.4, Section 5.1,
Section 5.3

2022 Ada-NETS: Face Clustering via Adaptive Neighbour
Discovery in the Structure Space [94]

Section 5.4

2022 KVT: k-NN Attention for Boosting Vision Transform-
ers [93]

Section 5.4

2022 Learning Accurate Entropy Model with Global Refer-
ence for Image Compression [78]

Section 5.4, Section 5.2

2022 Joint Global and Local Hierarchical Priors for Learned
Image Compression [56]

Section 5.4, Section 5.3,
Section 5.2

2022 Unified Multivariate Gaussian Mixture for Efficient
Neural Image Compression [105]

Section 5.1

2022 Learned Image Compression with Generalized Octave
Convolution and Cross-Resolution Parameter Estima-
tion [34]

Section 5.3, Section 5.2

2022 ELIC: Efficient Learned Image Compression with Un-
evenly Grouped Space-Channel Contextual Adaptive
Coding [42]

Section 5.3

Continued on next page
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Continued from previous page

Year Title Taxonomy Categories

2022 The Devil Is in the Details: Window-based Attention
for Image Compression [108]

Section 5.2

2022 Transformer-based Transform Coding [106] Section 5.2
2021 Variable-Rate Deep Image Compression through

Spatially-Adaptive Feature Transform [83]
Section 5.5

2021 End-to-End Learnt Image Compression via Non-Local
Attention Optimization and Improved Context Mod-
eling [22]

Section 5.4

2021 Transformer-based Image Compression [71] Section 5.4, Section 5.2
2021 Taming Transformers for High-Resolution Image Syn-

thesis [33]
Section 5.1

2021 Checkerboard Context Model for Efficient Learned
Image Compression [43]

Section 5.1, Section 5.3

2021 Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows [69]

Section 5.2

2021 Learned Bi-Resolution Image Coding using General-
ized Octave Convolutions [7]

Section 5.2

2020 Variable Rate Deep Image Compression With Modu-
lated Autoencoder [100]

Section 5.5

2020 Learned Variable-Rate Multi-Frequency Image Com-
pression using Modulated Generalized Octave Convo-
lution [64]

Section 5.5, Section 5.2

2020 Learned Multi-Resolution Variable-Rate Image Com-
pression with Octave-based Residual Blocks [6]

Section 5.5

2020 Learning Context-Based Non-local Entropy Modeling
for Image Compression [62]

Section 5.4, Section 5.2

2020 Learning Texture Transformer Network for Image
Super-Resolution [101]

Section 5.4

2020 Learned image compression with discretized gaussian
mixture likelihoods and attention modules [25]

Section 5.4

2020 Coarse-to-Fine Hyper-Prior Modeling for Learned Im-
age Compression [45]

Section 5.4

2020 Universally Quantized Neural Compression [3] Section 5.1
2020 Nonlinear Transform Coding [10] Section 5.1

Continued on next page
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Continued from previous page

Year Title Taxonomy Categories

2020 Channel-wise Autoregressive Entropy Models for
Learned Image Compression [75]

Section 5.1, Section 5.3

2020 Efficient and Effective Context-Based Convolutional
Entropy Modeling for Image Compression [61]

Section 5.3

2019 Variable Rate Deep Image Compression With a Con-
ditional Autoencoder [26]

Section 5.5, Section 5.1

2019 Learned Variable-Rate Image Compression with
Residual Divisive Normalization [5]

Section 5.5

2019 Practical Stacked Non-local Attention Modules for
Image Compression [66]

Section 5.4

2019 Conditional Probability Models for Deep Image Com-
pression [72]

Section 5.4

2019 Context-adaptive Entropy Model for End-to-end Op-
timized Image Compression [58]

Section 5.4, Section 5.1,
Section 5.3

2019 Drop an Octave: Reducing Spatial Redundancy in
Convolutional Neural Networks with Octave Convo-
lution [23]

Section 5.2

2019 Computationally Efficient Neural Image Compres-
sion [52]

Section 5.2

2018 Joint Autoregressive and Hierarchical Priors for
Learned Image Compression [74]

Section 5.4, Section 5.1,
Section 5.3

2018 Non-Local Recurrent Network for Image Restora-
tion [65]

Section 5.4

2018 Variational image compression with a scale hyper-
prior [13]

Section 5.4, Section 5.1

2018 CrossNet: An End-to-end Reference-based Super Res-
olution Network using Cross-scale Warping [104]

Section 5.4

2018 Neural Discrete Representation Learning [88] Section 5.1
2018 Deep Image Compression with Iterative Non-Uniform

Quantization [21]
Section 5.1

2017 End-to-end Optimized Image Compression [12] Section 5.4, Section 5.2
2017 Lossy Image Compression with Compressive Autoen-

coders [84]
Section 5.5

Continued on next page
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Continued from previous page

Year Title Taxonomy Categories

2017 Soft-to-Hard Vector Quantization for End-to-End
Learned Compression of Images and Neural Net-
works [1]

Section 5.1

2017 Deformable Convolutional Networks [29] Section 5.2
2016 End-to-end optimization of nonlinear transform codes

for perceptual quality [9]
Section 5.1

2016 Variable Rate Image Compression with Recurrent
Neural Networks [85]

Section 5.1

2016 Density Modeling of Images using a Generalized Nor-
malization Transformation [11]

Section 5.2

1985 On universal quantization [107] Section 5.1
Table 5.6: List of selected publications, which are included in the taxonomies. This
list is sorted by known release year and points to the section it has been categorized
as. Section 5.2 is the taxonomy for architectural archetypes. Section 5.4 is the taxonomy
for hierarchical priors. Section 5.1 is the taxonomy for quantization. Section 5.5 is the
taxonomy for variable rate. Section 5.3 is the taxonomy for context models.
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CHAPTER 6
Benchmarking Tool - Benchpresso

This chapter focuses on the details of implementing the Benchpresso benchmarking
tool. Section 6.3 outlines the features and usage of the Benchpresso command line
interface, including training models with various datasets, testing different datasets for
inference, and dynamic configuration. Section 6.4 provides a base model implementation
to train and test models designed to be used with the Benchpresso tool. Section 6.5
provides a base implementation for data modules to facilitate loading various data sets
when using Benchpresso. Section 6.6 discusses customization options, such as saving and
loading checkpoints, setting the log-directory and streamlining development.

6.1 Requirements
The framework’s goal is to standardize the benchmarking process by offering an end-to-
end process of fitting, validating, and testing a model. It interprets configuration files
and executes any or all steps. Modifying configuration files and restarting the end-to-end
process should be possible. The framework ensures that the results are reproducible
and evaluated directly or in the future. This section outlines the requirements that the
Benchpresso framework must meet, the problems it aims to solve, and the processes
involved in configuring it.

• The framework must be configurable using configuration files.

• The framework must load objects of given class paths.

• The framework must execute single or all stages, such as fit, test, and validation.

• The framework must persist results in standard formats.

• The framework must perform seeding to ensure reproducible results.
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• The configuration files must be open, i.e., not specifying a field assumes the default
value.

• The configuration files must accept class paths to core components.

• The configuration files must be reusable.

• The configuration files must be compatible with all stages, such as fit, test, and
validation.

6.2 System Design
This section offers a comprehensive description of the system behind the framework. It is
highly configurable and extensible. Figure 6.1 presents the model diagram in more detail.
Core components are abstract and can be extended or replaced. They are inspired by
the typical variational autoencoder (VAE) architecture. Therefore, implementing any
VAE model and modifying its core components is possible. The exact way of creating
new variations is described in Section 6.4.
Loading data for the fit, validation, and test stages is an essential step. Benchpresso
applies its rules to datasets as well. Figure 6.2 shows the data module diagram, which
shows that datasets for various stages are easily replaceable. The implementation may
consist entirely of custom transforms, setups, preprocessing, and datasets.

6.3 Command Line Interface
The Command Line Interface (CLI) is designed to load various models that extend
the LightningModule and dataloaders that extend the LightningDataModule.
Our BaseModel and BaseDataModule classes implement these and can be further
extended. Section 6.3.1 describes the implementation in further detail.

6.3.1 Command Line Interface

1 # These imports let you use the classes through the CLI
2 from data_modules import * # noqa: F401
3 from models import * # noqa: F401
4

5

6 def cli_main():
7 cli = LightningCLI()
8

9

10 if __name__ == "__main__":
11 cli_main()
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Additionally, the CLI requires a specific execution stage, model, and data. The available
stages are fit for training, validate for validation, and test for inference. Instead of
defining the models and data loaders using the --model and --data flags, it is possible
to use the --config flag to pass a configuration file. Using configuration files ensures
that each run (referred to as experiments) is reproducible and highly customizable. We
recommend creating separate configuration files for each dataset, stage, and model. The
CLI also supports overriding by passing the arguments in the jsonargparse1 syntax.
Section 6.3.2 provides and explains the usage.

6.3.2 CLI Command Usage

1 # Run training with FactorizedPrior model and Flicker2W dataset
2 $ python benchpresso-cli.py fit \
3 --model models.google_models.FactorizedPrior \
4 --data data_modules.flicker_2w_data_module.Flicker2WDataModule
5
6 # Run training with FactorizedPrior model, Flicker2W dataset,
7 # and override batch_size
8 $ python benchpresso-cli.py fit \
9 --model models.google_models.FactorizedPrior \

10 --data data_modules.flicker_2w_data_module.Flicker2WDataModule
11 --data.batch_size 32
12
13 # Run inference with FactorizedPrior model, Kodak dataset,
14 # batch_size=1, and ms_ssim loss metric
15 $ python benchpresso-cli.py test \
16 --model models.google_models.FactorizedPrior \
17 --data data_modules.kodak_data_module.KodakDataModule
18 --data.batch_size 1
19 --model.rate_distortion_function
20 '{class_path: loss.rate_distortion_loss_compressai.RateDistortionLoss,
21 init_args: {loss_metric: ms_ssim}}'
22
23 # Run inference with the specified configuration file
24 $ python benchpresso-cli.py test \
25 --config configs/factorized_prior_test_q8_mse.yaml
26
27 # Run training with the specified configuration file
28 $ python benchpresso-cli.py fit \
29 --config configs/factorized_prior_fit_q8_mse.yaml

1https://jsonargparse.readthedocs.io/en/v4.32.0/
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6.4 Models - loading and customizing
Our benchmarking tool enables modular and customizable models. We have defined a
base class for models that consists of necessary arguments, such as:

• encoder & decoder non-optional input arguments used to encode and decode
data

• rate_distortion_function is the objective function

• entropy_bottleneck is the entropy bottleneck with the default value provided
by the CompressAI framework.

• **kwargs An optional argument that can be used to pass a dictionary of additional
parameters.

We expect the users to implement the abstract methods themselves. Additionally, we
leverage the PyTorch Lightning framework by LightningAI, which reduces boilerplate
code, such as the training loop, as seen in Section 6.4.1.

6.4.1 Base Model

1 class BaseModel(L.LightningModule, ABC):
2 def __init__(self,
3 encoder: nn.Module = None,
4 decoder: nn.Module = None,
5 rate_distortion_function: nn.Module = None,
6 entropy_bottleneck = None,
7 **kwargs: dict[str, Any]):
8 super(BaseModel, self).__init__()
9 # implementation details

10

11 @abstractmethod
12 def forward(self, x):
13 pass
14

15 @abstractmethod
16 def training_step(self, batch, batch_idx):
17 pass
18

19 @abstractmethod
20 def validation_step(self, batch, batch_idx):
21 pass
22
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23 @abstractmethod
24 def test_step(self, batch, batch_idx):
25 pass
26

27 def on_train_epoch_end(self) -> None:
28 pass
29

30 def configure_callbacks(self) -> Union[Sequence[Callback], Callback]:
31 pass
32

33 def configure_optimizers(self):
34 pass

The BaseModel class should be extended and customized to your needs. We recommend
adding additional functions, such as saving images during inference or computing addi-
tional metrics. Section 6.4.2 provides a simple implementation of the training and test
loop. The datasets are modular and are automatically loaded depending on the current
stage. A correctly implemented data module should load the training and validation
datasets for the training stage, as shown in Section 6.5.1.

6.4.2 VAE Model Example

1 class VariationalAutoEncoder(BaseModel):
2

3 # ...
4

5 def forward(self, x: torch.Tensor) -> Dict[str, Any]:
6 y = self._encoder(x)
7 y_hat, y_likelihoods = self._entropy_bottleneck(y)
8 x_hat = self._decoder(y_hat)
9 return {

10 "x_hat": x_hat,
11 "likelihoods": {
12 "y": y_likelihoods,
13 },
14 }
15

16 def training_step(self, batch, batch_idx):
17 return self.compute_one_epoch(batch, batch_idx)
18

19 def validation_step(self, batch, batch_idx):
20 return self.compute_one_epoch(batch, batch_idx)
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21

22 def test_step(self, batch, batch_idx):
23 return self.compute_one_epoch(batch, batch_idx)
24

25 def compute_one_epoch(self, batch, batch_idx):
26 x, _ = batch
27 x_hat = self.forward(x)
28 loss = self._rate_distortion_function(x_hat, x)
29 return loss
30

By keeping the extensions of the base class consistent and modular, it is possible to inte-
grate various models with different datasets. Section 6.4.3 provides the configuration file
for the factorized model by Ballé et al. [13] In this configuration, we set the convolutional
layers for the encoder and decoder according to their publication and set the class_path
accordingly. Additionally, we set the activation function to Generalized Divisive Normal-
ization (GDN). As described in the work of Ballé et al. [13], for λ = 0.0018, we set N to
128 and M to 192. We chose mean-squared-error as our loss metric.

6.4.3 Factorized Prior Model Configuration File

1 model:
2 class_path: models.google_models.FactorizedPrior
3 init_args:
4 encoder:
5 class_path: google_encoder_decoder.FactorizedPriorEncoder
6 init_args:
7 activation:
8 class_path: activations.GeneralizedDivisiveNormalization
9 init_args:

10 channels: *N
11 inverse: False
12 beta_min: 1e-6
13 gamma_init: 0.1
14 channels: &N 128 # saves value 128 in variable N
15 expansion_channels: &M 192 # saves value 192 in variable M
16 decoder:
17 class_path: google_encoder_decoder.FactorizedPriorDecoder
18 init_args:
19 activation:
20 class_path: activations.GeneralizedDivisiveNormalization
21 init_args:
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22 channels: *N
23 inverse: True # set to true utilizes IGDN
24 beta_min: 1e-6
25 gamma_init: 0.1
26 channels: *N
27 expansion_channels: *M
28 rate_distortion_function:
29 class_path: loss.rate_distortion_loss_compressai.RateDistortionLoss
30 init_args:
31 lagrangian_multiplier: 0.0018
32 loss_metric: mse
33 return_type: all
34 entropy_bottleneck: null # default entropy bottleneck is used
35 expansion_channels: *M

6.5 Data Modules - handling data loaders and datasets
The Data Module handles datasets for training, validation, and testing. The base class
in Section 6.5.1 provides basic functionality for datasets and is intended to be extended
by a concrete class implementation. The following parameters can be customized:

• data_dir specifies the path to the dataset directory. When using the ImageFolder
class by torchvision, ensure that the data structure complies with its require-
ments and provide folders for training, validation, and testing.

• batch_size can be customized depending on your hardware. Loading 16-32 images
per batch should be sufficient for training. All images in a batch must be of the
same size. Set batch_size = 1 for inference to handle various resolutions. The
default value is 1.

• num_workers can accelerate the process depending on your hardware. The
default value is 1.

• transform is used to load a dataset. If none is provided, the base class defines a
default transform, which crops each image to a 256 ∗ 256px patch and transforms it
into a tensor.

• **kwargs is optional and provide a dictionary of additional parameters.
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6.5.1 The Base Class for Data Modules

1 class BaseDataModule(L.LightningDataModule):
2 def __init__(self,
3 data_dir: str = "./data",
4 batch_size: int = 1,
5 num_workers: int = 1,
6 transform=None,
7 **kwargs: dict[str, Any]):
8 super().__init__()
9 # assign or initialize variables

10

11 default_transform = transforms.Compose([
12 transforms.CenterCrop(256),
13 transforms.ToTensor()
14 ])
15 self.transform = transform or default_transform
16

17 def prepare_data(self):
18 pass
19

20 def setup(self, stage):
21 train_path = os.path.join(self.data_dir, "train")
22 # initialize eval_path and test_path
23

24 if stage == 'fit' or stage is None:
25 self.train_dataset = ImageFolder(root=train_path,
26 transform=self.transform,
27 allow_empty=True)
28 self.val_dataset = ImageFolder(root=eval_path,
29 transform=self.transform,
30 allow_empty=True)
31

32 if stage == 'validate' or stage is None:
33 # analog to the training stage
34

35 if stage == 'test' or stage is None:
36 # analog to the training stage
37

38 def train_dataloader(self):
39 return DataLoader(self.train_dataset,
40 batch_size=self.batch_size,
41 shuffle=False,
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42 num_workers=self.num_workers)
43

44 # val_ and test_dataloaders analog to train_dataloader(self)

6.5.2 Loading a Dataset using the CLI
The Kodak Dataset is commonly used in testing. Creating a concrete implementation for
a dataset such as Kodak, can be realized in two ways. The fastest option is to extend
our base class and override the arguments accordingly, e.g., data_dir = ”./data/kodak.”
Section 6.5.2 provides an example implementation.

Kodak Data Module

1 class KodakDataModule(BaseDataModule):
2 def __init__(self,
3 data_dir: str = "./data/kodak",
4 **kwargs: dict[str, Any]):
5 super(KodakDataModule, self).__init__(data_dir=data_dir,
6 **kwargs)

6.5.3 Loading a Dataset using a configuration file
The alternative way is to define the data module in the configuration file. We recommend
extending the base class with the concrete dataset first. This enables customization
of the concrete class and introduces additional parameters without changing the base
class. To this end, we propose a configuration file for inference using the Kodak dataset
(Section 6.5.4). We set the transform to NoCrop to compress the full-resolution image.
Each batch is a tensor and requires consistent resolution. A simple solution is to
set batch_size = 1 and num_workers = 2. Alternatively, divide the dataset into
class_n, n ≥ 0 folders, each with images of identical resolution.

6.5.4 Kodak DataModule Configuration File

1 data:
2 class_path: data_modules.kodak_data_module.KodakDataModule
3 init_args:
4 transform:
5 class_path: transform.NoCrop
6 data_dir: ./data/kodak
7 batch_size: 1
8 num_workers: 2
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We have implemented a transform class that consists of common transforms such as
CenterCrop, RandomCrop (Section 6.5.6), and NoCrop. Both our RandomCrop and
CenterCrop transforms include the patch_size argument. When loading a training
dataset, usingRandomCrop with a patch_size of 256 and batch_size of 16 is typical.
These settings are similar to the Kodak configuration file in Section 6.5.5.

6.5.5 Flickr2W DataModule Configuration File

1 data:
2 class_path: data_modules.flicker_2w_data_module.Flicker2WDataModule
3 init_args:
4 transform:
5 class_path: transform.RandomCrop
6 init_args:
7 patch_size: 256
8 data_dir: ./data/flicker_2W_images
9 batch_size: 16

10 num_workers: 2

6.5.6 RandomCrop Transform Implementation

1 class RandomCrop:
2 def __init__(self, patch_size: int = 256):
3 self.transform = transforms.Compose([
4 transforms.RandomCrop(patch_size),
5 transforms.ToTensor()
6 ])
7

8 def __call__(self, img):
9 return self.transform(img)

6.6 Configuration Files
We use configuration files to achieve high customizability while maintaining consistency.
Our naming convention follows the syntax
<model_name>_<stage>_<quality>_<loss_metric>.yaml; for example,
FactorizedPrior_fit_q1_mse.yaml for training the factorized prior model [13] or
Cheng2020Attention_test_q8_ms_ssim.yaml for testing the model by Cheng et
al. [25] When using the CLI, executing commands saves the configuration in the logs
directory to document and reproduce results in the future. Checkpointing can occur after
a specified number of batches, as shown in Section 6.6.1. For development purposes, we
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recommend configuring fast_dev_run : True. Furthermore, loading checkpoints may
be accomplished by setting the path in the configuration file. For more details, refer to
the PyTorch Lightning documentation2.

6.6.1 Miscellaneous Configuration

1 # ... trimmed configuration
2

3 trainer:
4 logger: null
5 callbacks:
6 - class_path: lightning.pytorch.callbacks.ModelCheckpoint
7 init_args:
8 # save checkpoint every 1000 steps
9 every_n_train_steps: 1000

10 # keep only the latest checkpoint
11 save_top_k: 1
12 # runs only one epoch and one batch
13 fast_dev_run: true
14 enable_checkpointing: true
15 enable_progress_bar: true
16 enable_model_summary: true
17 default_root_dir: logs
18 # loads a checkpoint
19 ckpt_path: '/app/logs/factorized_prior_relu_q8_mse.ckpt'

• –stage is either train or test.

• –data specifies the data module configures the dataset, batch size, transforms, and
directories.

• –rates_config

• –trainer loads a trainer config. We use different trainers for local development,
training and testing to ensure consistent settings across all runs. The development
trainer limits the number of steps and epochs, disables checkpointing, limits batch
sizes, etc.

6.7 Measuring and benchmarking
Benchpresso measures each model’s encoding and decoding latency across multiple
resolutions. Additionally, it measures the throughput across multiple resolutions and

2https://lightning.ai/docs/pytorch/stable/
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batch sizes to evaluate the architecture’s capability of working on images in parallel.
The coding latencies are measured in milliseconds, while the throughput is measured in
images per second.

Geifman [39] shows the correct way to measure latency in CUDA-supported workflows.
Traditional methods of measuring the elapsed time between tasks may result in inaccurate
measurements. The author describes the correct way of synchronizing the GPU with the
CPU, warming up the GPU with dummy data, and recording execution times according
to the GPU.

6.7.1 GPU Warm-up
Benchpresso warms up the GPU by generating random images in a loop and utilizing
CUDA functions. At the end of the loop, the torch framework synchronizes all kernels
by waiting for the CUDA cores to finish.

6.7.2 Measuring time
Benchpresso measures execution times using cuda.Event3 markers, which are designed to
measure them accurately. Create a starter and ending event. Record the time on the
starter event and execute your operation. After the operation ends, record the ending
event. Wait for the cuda cores to synchronize, then measure the elapsed time between
both events. These steps ensure precise measurements by excluding external factors.

Benchpresso reuses this function for latency measurements and throughput evaluation.
Measuring throughput also tracks the number of batches to evaluate the images per
second value accurately.

3Documentation: https://pytorch.org/docs/stable/generated/torch.cuda.Event.
html
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+test_step(batch, 
batch_idx)*
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NonLinearTransform
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1DN
+in_channels: int

+inverse: bool
+beta_min: float

+gamma_init: float
+forward(x)

GSDN
+in_channels: int

+inverse: bool
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+update()

+aux_loss()

Figure 6.1: This diagram shows the basic structure of Benchpresso. The Base Model
defines input variables and is necessary to implement functions. The default imple-
mentation is provided for consistency. The exemplary model FactorizedPrior requires
two optimizers (main and aux) and an update function for the cumulative distribution
function required by the entropy bottleneck. The non-linear transform interface requires
only the forward function. Furthermore, our base class for the rate-distortion may be
extended, and training and evaluation may differ.
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BaseDataModule
data_dir

batch_size
num_workers

transform
setup()

train_dataloader()
val_dataloader()
test_dataloader()

KodakDataModule
data_dir

Clic2021DataModule
data_dir

VimeoDataModule
data_dir

FlickrDataModule
data_dir

Transform
call(img)*

CenterCrop
patch_size
transform

RandomCrop
patch_size
transform

NoCrop
transform

Figure 6.2: This diagram shows the basic structure of data modules in Benchpresso. The
Base defines input variables necessary to implement functions. The default implementa-
tion is provided for consistency. We implement the data module for training and testing
datasets. The transform interface offers an abstraction to implement common image
transforms such as center crop, random crop, and no crop (for full-resolution images).
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CHAPTER 7
Evaluation

This chapter evaluates variants of learned lossy compression models using our bench-
marking tool. We choose proven models as our baseline and systematically modify their
core elements. Benchpresso trains and evaluates the baseline models and their variants
using the same procedures and datasets. We draw comparisons with handcrafted codecs
to reduce variance and ensure comparable results across all tested models.

We utilize the BD-Rate and BD-PSNR to compare trained models with the anchor codec.
Unless otherwise specified, we employ BPG (4:4:4) as the anchor codec. Results are
interpolated using the Piecewise Cubic Hermite Interpolation (PCHIP), as recommended
by Barman et al. [15] and Boyce et al. in their work on the common test conditions,
following the 10th JVET meeting [19].
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7.1 Setup
This section describes the environment and application setup, as future changes in
software and hardware may influence the currently presented results. The environment
section provides detailed information on hardware, the operating system, and global
dependencies. The Application section includes detailed information on the libraries and
programs, such as docker.

7.1.1 Hardware and Software Environment
We conduct our experiments on a machine running Ubuntu 22.4 LTS, equipped with an
NVIDIA GeForce RTX 3090 GPU with 24GB VRAM. We utilize the official PyTorch
Docker image1 with CUDA 12.4 Runtime, Python 3.11.9, and Docker v27.1.1. For the
anchor codec, which serves as a reference for comparison, we employed BPG2 0.9.5,
compressing images with 4:4:4 sampling and quality settings ranging from 0 to 51.

7.1.2 Datasets and Training Parameters
We train the models on two datasets, Flickr2K and Vimeo90K. Flickr2K comprises 20’715
images sampled from the Flickr dataset and curated by Liu et al. [67]. Vimeo90K [99]
Triplet dataset comprises 73’171 3-frame images and is loaded with the dataloader by
CompressAI 3. For testing and validation, we employ the standard set of 24 raw Kodak
images [27]. For architectures based on [13], we use λ ∈ (0.0250, 0.0130, 0.0067, 0.0035,
0.0018) with N = 128, M = 192 set to five lower rates.

We optimize all models using the Adam optimizer with an initial learning rate of 10−4

(decay to 10−6). We use a batch-size = 16 for Ballé et al. architectures. We conducted
training for a minimum of 1’000’000 steps with early stopping (patience=20). All models
are optimized for MSE and forgo fine-tuning. We lower the default precision to bfloat16
(medium precision) to achieve faster convergence.

7.1.3 Application
The experiments run in a dockerized environment with volumes mapped to log output,
datasets, checkpoints, and compression output. We utilize the Weights&Biases Logger4

(v0.18.5) for experiment tracking. Essential libraries include torch (v2.4.1), torchvision
(v0.18), CompressAI (v1.2.6), and lightning5 (v2.4.0).

We utilize YAML configuration files for training and testing stages, each assigned a
descriptive name. For instance, google_fp_gdn in the training folder signifies the

1PyTorch Images can be found here: https://hub.docker.com/r/pytorch/pytorch/tags
2Available at https://bellard.org/bpg/
3Source code available at: https://github.com/InterDigitalInc/CompressAI/blob/

master/compressai/datasets/vimeo90k.py
4Available at https://wandb.ai/
5Available at https://lightning.ai/docs/pytorch/stable/
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7.2. Ablation Studies

training process of the factorized prior model by Ballé et al. using GDN as the activation
function, while train/google_fp_relu signifies the same training process with ReLU
as the activation function.

7.2 Ablation Studies
We perform ablation studies on two well-researched architectures by Ballé et al. The
baseline of the factorized prior (fp) architecture features a simple encoder and decoder,
which utilizes the generalized divisive normalization (Section 5.2.2) activation function.
Similarly, we refer to the second architecture as mean-scale hyperprior (msh). In addition
to the previous architecture, it features a component to extract and utilize side information.
Our flexible framework allows us to construct diverse configurations based on these two
architectures.

Section 7.3 describes the modifications for the fp model, and Section 7.4 for the msh
model.
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7.3 Factorized Prior Model

7.3.1 Activation Functions

The factorized prior model by Ballé et al. utilizes GDN [13] as the activation function.
CompressAI6 replaced this activation function with ReLU, while Johnston et al. [52]
introduced a simplified version of GDN described in Section 5.2.2. Qian et al. [78] intro-
duced a subtractive version of GDN, described in Section 5.2.2. We utilize the framework
Benchpresso to train and evaluate the factorized prior model with the above activation
function variants: FP with GDN, FP with 1DN, FP with ReLU, and FP with GSDN.
To modify the baseline architecture, we adjust the classpath of the activation function
by pointing at different implementations to profit from the framework’s modularity. We
measure the performance gains of various activation functions and compare computa-
tionally expensive functions with cheaper alternatives. Those architecture variants are
visualized in Figure 7.10.
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Figure 7.1: Performance evaluation in MS-SSIM of Factorized Prior Variants on the
Kodak dataset.

6https://github.com/InterDigitalInc/CompressAI/blob/master/compressai/
models/google.py#L167
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7.3.2 R-D Performance
We evaluate the models on the Kodak [27] and CLIC [14] datasets and report Bits-per-
pixel, MS-SSIM, LPIPS, and PSNR. Figure 7.2 and Figure 7.1 show the rate-distortion
curves, with the distortion measures in PSNR and MS-SSIM evaluated on the Kodak
dataset.
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Figure 7.2: Performance evaluation in PSNR of Factorized Prior Variants on the Kodak
dataset.

Figure 7.3 and Figure 7.4 illustrate rate-distortion curves evaluated on the CLIC dataset.
These figures also provide a comparison to other non-linear components within the same
architecture. We choose a similar range of bitrates for the anchor codec (BPG) to ensure
stable and comparable results
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Model Bjøntegaard Delta Rate↓ Bjøntegaard Delta PSNR↑

fp_relu 44.37% -1.40 dB
fp_gdn 41.67% -1.35 dB
fp_1dn 42.08% -1.36 dB
fp_gsdn 44.21% -1.41 dB

Table 7.1: Bjøntegaard Delta Rate and Bjøntegaard Delta PSNR of factorized prior
variants with modified activation functions. The anchor codec is BPG(4:4:4). All codecs
are evaluated on the Kodak dataset.

Table 7.2 shows the performance of the factorized prior model with GDN as the non-linear
component. This baseline achieves a BD-Rate of 41.67% and BD-PSNR of -1.35 dB,
as shown in Table 7.1. Table 7.3 shows the performance of the fp_gsdn model, which
utilizes the GSDN function, instead of GDN in its non-linear component.
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Figure 7.3: Performance evaluation in PSNR of Factorized Prior Variants on the CLIC
dataset.
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Figure 7.4: Performance evaluation in MS-SSIM of Factorized Prior Variants on the
CLIC dataset.

We show that the GSDN and ReLU variants perform 3% worse than the baseline compared
to our anchor codec. ReLU is computationally cheap to compute and has a lower capacity
of non-linear transforms.

Kodak CLIC2021

bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓ bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓

0.132 9.657 26.881 0.458 0.117 9.544 28.770 0.448
0.208 10.572 28.186 0.407 0.176 9.866 30.095 0.414
0.325 11.524 29.673 0.348 0.267 10.824 31.410 0.373
0.503 13.051 31.284 0.292 0.402 11.453 32.728 0.335
0.703 17.326 33.345 0.235 0.626 11.989 34.083 0.292

Table 7.2: Metrics for the factorized prior model with GDN as the activation function.

Table 7.4 shows the performance of the fp_relu model, which uses a computationally
inexpensive non-linear transform, ReLU. While the computation is less complex and
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Kodak CLIC2021

bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓ bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓

0.123 10.144 26.705 0.468 0.121 11.520 28.697 0.469
0.198 11.681 28.044 0.413 0.186 12.980 30.061 0.429
0.306 13.517 29.648 0.357 0.275 14.660 31.596 0.387
0.484 15.496 31.541 0.297 0.428 16.305 33.251 0.346
0.708 17.270 33.243 0.248 0.622 17.752 34.669 0.311

Table 7.3: Metrics for the factorized prior model with GSDN as the activation function.

achieves a higher throughput per second on our hardware, the performance degradation
is significant.

Kodak CLIC2021

bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓ bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓

0.125 10.565 26.838 0.468 0.123 12.053 28.851 0.468
0.195 12.001 28.218 0.412 0.184 13.458 30.322 0.425
0.302 13.538 29.511 0.363 0.275 14.779 31.536 0.391
0.460 15.276 31.175 0.308 0.406 16.205 33.004 0.354
0.681 17.085 32.858 0.251 0.602 17.659 34.430 0.310

Table 7.4: Metrics for the factorized prior model with ReLU as the activation function.

Table 7.5 shows the performance of the fp_1dn variant with the 1DN transform, which
achieves a BD-Rate of 44%.

Kodak CLIC2021

bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓ bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓

0.129 10.402 26.803 0.455 0.126 11.787 28.810 0.454
0.205 11.994 28.243 0.405 0.189 13.318 30.247 0.419
0.314 13.630 29.820 0.352 0.281 14.787 31.738 0.384
0.480 15.497 31.541 0.294 0.428 16.346 33.255 0.346
0.712 17.369 33.310 0.242 0.625 17.880 34.732 0.305

Table 7.5: Metrics for the factorized prior model with 1DN as the activation function.

64



7.3. Factorized Prior Model

7.3.3 Latency and Throughput

We evaluate latency and throughput by measuring the encoding times, decoding times,
and number of images encoded and decoded in specific time intervals. First, the GPU is
warmed up, and the clocks are synchronized. We generate random pictures using the
"randn" function by torch in batches of 2-16. The initial resolution is 256px and increases
by 128px until 1024px. We repeat our runs 50 times across all resolutions and network
configurations. Small network configurations utilize fewer channels (N=128, M=192).
Larger network configurations utilize more channels (N=192, M=320). The latency is
expressed in milliseconds (ms), while the throughput is in images per second.
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Figure 7.5: Encoding and decoding latency performance across different variants of the
factorized prior architecture. The networks are tested in two capacities: N=128, M=192
and N=192, M=320, and across image resolutions ranging from 256x256 to 1024x1024
pixels. All measurements are in milliseconds.

We compare the encoding and decoding latency of each factorized prior variant in Fig-
ure 7.5. The left side shows results for the small network size of N=128 and N=192. The
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fp_relu variant achieves the lowest encoding and decoding times across all resolutions,
while the fp_gsdn (Section 5.2.2) variant performs the slowest. ReLU is computationally
inexpensive, so we confirm that utilizing the fp_relu activation function in the non-
linearity block achieves the fastest encoding and decoding times. GSDN is an extension
of GDN, with an addition of a subtractive-divisive normalization causing worse encoding
and decoding performance than the fp_gdn variant. The right side of the figure shows
the encoding and decoding latencies evaluated on a more significant number of channels
(N=192, M=320). The increase in network size causes higher latencies across all variants,
almost doubling the measured encoding and decoding times. On average, the fp_relu
variant is the fastest, while the fp_gsdn variant is the slowest. However, the fp_1dn
variant shows significantly better results for the 896x896 resolution while achieving similar
results to fp_relu in lower resolutions.
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Figure 7.6: The encoding and decoding throughput of the factorized prior 1DN variant.

Figure 7.6 shows the throughput performance of the 1DN variant in both network
configurations. The most significant difference can be observed at the 256px resolution in
the small-sized network configuration. With the increasing number of images per batch,
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the small network encoded and decoded more images per second. Higher-resolution
images cause a constant throughput regardless of batch size or network configuration.
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Figure 7.7: The encoding and decoding throughput of the factorized prior GDN variant.

Figure 7.7 shows the throughput performance of the GDN variant. It follows the same
trend as the 1DN variant yet performs slightly better.
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Figure 7.8: The encoding and decoding throughput of the factorized prior GSDN variant.

Figure 7.8 shows the throughput performance of the GSDN variant. The general perfor-
mance gains and losses are relatively similar to previous variants. This variant performs
the worst due to additional computational complexity.
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Figure 7.9: The encoding and decoding throughput of the factorized prior ReLU variant.

Figure 7.9 shows the throughput performance of the ReLU variant. It is the fastest-
performing variant, almost achieving 500 img/s at 256px resolution and batch sizes 8-16.
As expected, the computationally inexpensive ReLU function performs the best in latency
and throughput tests.

7.3.4 Discussion
The GSDN variant reports worse performance and slower coding times than the baseline
GDN performance and shows deficiencies when used in a small network, such as the
factorized prior architecture. The throughput ranges from 20 images per second at
1024px to 420 images per second at 256px. The BD-Rate is 3% higher than the baseline,
meaning 3% higher costs in bitrate to output the same quality of images. Figure 7.5
shows that the GSDN variant consistently achieves, on average, the highest encoding
and decoding times. The authors tested GSDN on a more extensive network with a
hyperprior supported by global reference and local context. Modifying the original GDN
function proves computationally costly, not achieving the desired improvement in simple
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networks such as the factorized prior architecture. The ReLU variant achieves results
similar to those of GSDN in perceptual quality, performing 3% worse than the baseline in
the BD-Rate metric. However, the low computational cost of the ReLU function allows
for the fastest encoding and decoding times among all variants. It is the best-performing
variant in encoding and decoding latencies and throughput. The 1DN variant is a minor
modification of the baseline. Figure 7.5 shows almost identical performance in encoding
and decoding latencies. Analogously, the throughput performance behaves equally to its
baseline. Table 7.1 shows an insignificant performance degradation in BD-Rate by 0.5%.
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Figure 7.10: Factorized Prior baseline architecture consisting of convolutional layers and
non-linear activations (GDN). The input image gets encoded into a latent representation,
quantized (Q), and arithmetically encoded (AE) into a bitstream. The stream can
be decoded with an arithmetic decoder (AE). Both AE and AD share a factorized
entropy model. The baseline synthesis transform comprises deconvolutions and inverse
GDN (IGDN)[11] elements to synthesize an output image. We visualize the modified
architectures with the analysis transform element. We replace the GDN activations
with ReLU, 1DN, and GSDN activations in the synthesis and analysis transforms while
keeping the rest of the architecture unchanged.

71



7. Evaluation

7.4 Mean-Scale Hyperprior Model
Our baseline is the architecture of the mean-scale hyperprior model by Ballé et al. The
baseline configuration utilizes GDN in its non-linear component. Other configurations
utilize GSDN, 1DN, or ReLU instead.
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Figure 7.11: Performance evaluation in MS-SSIM of Mean-Scale Hyperprior Variants on
the Kodak dataset.
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7.4.1 R-D Performance
We evaluate each configuration on the Kodak and CLIC datasets. We measure Bits-
per-pixel, MS-SSIM, LPIPS, and PSNR metrics. Figures 7.11 and 7.12 demonstrate the
r-d performance curves of all configurations compared to the BPG reference codec and
evaluated on the Kodak dataset. Similarly, Figures 7.13 and 7.14 show the evaluation
performed on the CLIC dataset.
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Figure 7.12: Performance evaluation in PSNR of Mean-Scale Hyperprior Variants on the
Kodak dataset.
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Model Bjøntegaard Delta Rate↓ Bjøntegaard Delta PSNR↑

msh_relu 20.02% -0.68 dB
msh_gdn 3.89% -0.15 dB
msh_1dn 3.72% -0.14 dB
msh_gsdn -0.55% 0.01 dB

Table 7.6: Bjøntegaard Delta Rate and Bjøntegaard Delta PSNR of mean-scale hyperprior
variants with modified activation functions. The anchor codec is BPG(4:4:4). All codecs
are evaluated on the Kodak dataset.

The CLIC dataset consists of images that are easier to compress than the Kodak dataset.
Tables 7.7 to 7.10 show greater compression performance when evaluated on CLIC. The
reference codec is evaluated using the same data to ensure fair comparison.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Bits per pixel (bpp)

12

13

14

15

16

17

18

19

20

M
S
-S

S
IM

 (
d
B

)

MS-SSIM (dB) vs. Bit Rate on CLIC2021

BPG (4:4:4) reference codec

msh_gsdn

msh_gdn

msh_1dn

msh_relu

Figure 7.13: Performance evaluation in MS-SSIM of Mean-Scale Hyperprior Variants on
the CLIC dataset.

When evaluated on the Kodak dataset, the r-d performance of all mean-scale hyperprior
configurations closely follows the performance of the reference codec (Figure 2). The BD
metrics shown in Table 5 reveal variations in performance between variants compared to
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the previous architecture. The GSDN variant achieves a slight improvement over the

Kodak CLIC2021

bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓ bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓

0.118 11.088 27.765 0.445 0.092 12.464 29.774 0.447
0.194 12.618 29.346 0.392 0.147 13.779 31.210 0.420
0.305 14.353 31.042 0.333 0.225 15.228 32.694 0.380
0.460 16.222 32.841 0.276 0.337 16.776 34.232 0.339
0.647 17.870 34.376 0.227 0.477 18.268 35.688 0.296

Table 7.7: Metrics for the mean-scale hyperprior model with GSDN as the activation
function

anchor codec and a significant improvement over the baseline in terms of BD-Rate and
BD-PSNR performing the best across all configurations. In contrast, the GDN and 1DN

Kodak CLIC2021

bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓ bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓

0.115 10.876 27.647 0.458 0.093 12.112 29.405 0.466
0.184 12.419 29.062 0.403 0.161 13.685 31.047 0.424
0.289 13.692 30.249 0.354 0.217 14.977 32.393 0.387
0.437 14.768 31.009 0.316 0.325 16.438 33.789 0.345
0.626 16.640 32.631 0.261 0.467 17.875 35.199 0.304

Table 7.8: Metrics for the mean-scale hyperprior model with ReLU as the activation
function

variants show nearly identical performance results, as seen in Tables 2 and 3. The ReLU
variant shows a significant drop off in performance at 20% BD-Rate. When evaluated
on the CLIC dataset, all variants show a better performance pattern in metrics, such as
MS-SSIM, PSNR, and bits-per-pixel. At the same time, LPIPS scores are superior on
the Kodak dataset.
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Kodak CLIC2021

bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓ bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓

0.117 10.927 27.557 0.451 0.093 12.237 29.576 0.456
0.196 12.656 29.319 0.389 0.148 13.795 31.163 0.413
0.308 14.029 30.603 0.341 0.234 15.302 32.657 0.379
0.465 16.249 32.851 0.272 0.344 16.801 34.230 0.334
0.664 18.011 34.430 0.232 0.495 18.190 35.559 0.301

Table 7.9: Metrics for the mean-scale hyperprior model with 1DN as the activation
function

The CLIC dataset has a higher performance gap between the anchor codec and the variants.
This suggests that more competitive results are achieved on traditional photographic
content (Kodak) instead of diverse images (CLIC).

Kodak CLIC2021

bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓ bpp↓ MS-SSIM↑ PSNR↑ LPIPS↓

0.117 11.085 27.764 0.446 0.093 12.441 29.774 0.454
0.194 12.488 28.940 0.393 0.147 13.890 31.233 0.417
0.305 14.152 30.789 0.337 0.226 15.201 32.681 0.377
0.461 16.214 32.867 0.276 0.337 16.732 34.231 0.339
0.651 18.065 34.538 0.222 0.480 18.306 35.674 0.294

Table 7.10: Metrics for the mean-scale hyperprior model with GDN as the activation
function
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Figure 7.14: Performance evaluation in PSNR of Mean-Scale Hyperprior Variants on the
CLIC dataset.
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7.4.2 Latency

We measure the latency in encoding and decoding times across 7 square resolutions and
two network sizes. The initial resolution starts at 256px and increases by 128px until
1024px. The small network size consists of N=128, M=192 channels, while the bigger
network consists of N=192, M=320 channels. We repeat those measurements 50 times
and compute the standard deviation.
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Figure 7.15: Encoding and decoding latency performance across different variants of the
mean-scale hyperprior architecture.

Figure 7.15 shows the latencies divided vertically by encoding and decoding and divided
horizontally by network size. The y-axis is equal in all subplots to improve readability.
The latencies were measured in milliseconds. The GSDN variant performs the slowest,
with latencies varying from 7ms at 256px to 46ms at 1024px. The ReLU variant performs
the fastest, with latencies varying from 6ms at 256px to 41ms at 1024px. The encoding
latency gap between the slowest and fastest variant at low resolutions is 1ms, increasing
to 5ms at 1024px. For decoding latencies, it is 1ms at 256px and 7ms at 1024px.
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7.4.3 Throughput

We measure throughput across all resolutions, network sizes, and batch sizes. The
resolution and network configurations are identical as in the latency measurements. The
batch size starts at two and increases to 4, 8, 10, 12, 14, and 16, respectively. We repeat
those measurements 50 times as well.
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Figure 7.16: The encoding and decoding throughput of the mean-scale hyperprior ReLU
variant.

Figure 7.16 shows the throughput performance for the ReLU variant. For the resolution
of 256px and a small number of channels, each increase in the batch size also increases
the encoding throughput. With the increase in resolution, the throughput gains diminish
entirely. This variant peaks at 179 images per second. Generally, increasing the number
of channels penalizes the throughput growth gained from bigger batch sizes.

Figure 7.17 shows the throughput performance for the GDN variant. The baseline
performs slightly worse than the ReLU variant but generally follows the same trend. In
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networks with more channels, the throughput dips at a batch size of 4 images, with the
highest drop at the lowest resolution.
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Figure 7.17: The encoding and decoding throughput of the mean-scale hyperprior GDN
variant.
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Figure 7.18: The encoding and decoding throughput of the mean-scale hyperprior 1DN
variant.

Figure 7.18 shows the throughput performance for the 1DN variant. It matches almost
exactly the performance of the GDN variant. Table 7.6 and Figure 7.15 confirm that.
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Figure 7.19 shows the throughput of the GSDN variant. It performs the worst out of the
evaluated variants with at most 170 images per second. However, the difference between
the fastest and GSDN variants is less than 10 images per second.
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Figure 7.19: The encoding and decoding throughput of the mean-scale hyperprior GSDN
variant.

7.4.4 Discussion
The GSDN variant reports the slowest encoding and decoding times and the lowest
throughput. This trend can be observed in both factorized prior and mean-scale hyperprior
architectures and small and large network configurations. However, the GSDN variant
achieves the best r-d performance in the mean-scale hyperprior architecture. Unlike the
factorized prior architecture, msh uses side information with its hyperprior component.
Tables 7.1 and 7.6 show that deeper networks benefit the more computationally expensive
GSDN component.

The ReLU variant reports the fastest encoding and decoding times and the highest
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throughput, which is valid for both architectures and network sizes. However, the quality
gap in r-d curves became larger compared to the factorized prior architecture. It implies
that the simple ReLU component has a more significant impact on deeper networks.
Figures 7.11 and 7.12 show that its non-linear modeling capabilities are far weaker than
those of the GDN, 1DN, and GSDN variants.

The 1DN variant performs identically as the baseline variant (GDN) on average. The
throughput performance in Figures 7.15, 7.17 and 7.18 shows no significant gaps in
performance. The simplification in 1DN of the GDN variant has no impact on encoding
and decoding speeds. Table 3 shows an almost identical BD-Rate and BD-PSNR, implying
identical r-d performance. The exact results shown in Tables 7.9 and 7.10 support the
argument, as no significant differences in performance are found.
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CHAPTER 8
Conclusion

This chapter concludes the thesis by answering the research questions posed in the
beginning, summarizing the evaluation results and giving an outlook on the future work.

8.1 Research Questions
RQ1: How do the finer-grained design decisions impact rate-distortion perfor-
mance and perceptual quality? The evaluation in Chapter 7 shows measurements
for two architectures in multiple configurations. The configurations vary in network
depth and core components. We tested the non-linearity component in four variants. The
results show that increasing the network size considerably reduces the throughput and
increases the encoding and decoding latencies. However, the rate-distortion performance
is significantly higher for all variants. Interestingly, the GSDN variant was ranked lower
than other variants in a shallow network while performing the best in the deeper network.
The model depth influences architectural components to different degrees. For instance,
the ReLU variant performed within 1% compared to other shallow network variants.
However, the ReLU variant performed 16% worse in a deep network than other variants.
Simple variants do not benefit in metrics for perceptual quality as much as more complex
variants from increasing the depth of the network.

RQ2: How can we classify neural compression methods by their core compo-
nents? We find relevant papers through the snowballing, screening, and deduplication
methodology described in Chapter 4. The focus is on publications within the lossy learned
image compression field. Publications dedicated to lossless learned image compression
or object detection were discarded. The inherent property of snowballing is linking
publications together. For instance, many works are related and based on the works by
Ballé et al. We classify publications into common groups, which may consist of areas
of opposite stakes, such as serial and parallel processes. In our taxonomy, publications
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are cited multiple times in different groups. The taxonomy identifies core elements of
the lossy learned image compression field: Quantization, Architectural Archetypes, Side
Information, Variable Rate, and Context Models. These future-proof groups are the
core components of state-of-the-art frameworks that describe the publications found in
Tables 5.1 to 5.5. The systematic analysis of connected publications reveals one possible
permutation, which we express as multiple isolated taxonomies. The resulting categoriza-
tion of core components supports the development of the Benchpresso framework, which
offers interfaces to perform and benchmark fine-grained decisions.

RQ3: What are current publication trends and focus areas in neural data
compression? The taxonomy in Chapter 5 categorizes the field of lossy learned data
compression into core components. Each had a period of growth. Early progress can be
attributed to quantization mechanisms and hierarchical priors: seven publications on
quantization, three on architectural archetypes, five on hierarchical priors, one on context
models, and one on variable rate from 2016 to 2018. In the following years, 2019 and
2020, the number of publications for hierarchical priors, architectural archetypes, variable
rate, and context models increased. Table 5.6 shows that more current publications
focus mainly on increasing parallelism, introducing more side information components,
reducing local and global redundancies, and improving efficiency. In summary, the
first publication focused on establishing the first end-to-end optimized learned image
compression architectures and later on shifted the focus to increasing the visual quality.
Afterward, the next goal was to improve encoding and decoding latency and efficiency
while avoiding quality degradation.

8.2 Future Work
This section provides an outlook on possible continuations of this thesis. It highlights
open research left to be done and further questions to be answered separately.

8.2.1 Pypi Package and Open-Source
Given the requirements and system design, the next logical step is to open-source the
software. In the future, the Benchpresso project needs to be refactored and brought to a
state where it is viable to be open-sourced. In addition, we plan to turn the project into
a Pypi package to integrate its features into existing projects easily. Special annotations
would register objects as models and datasets, which can be trained and benchmarked.

8.2.2 Combining novel with existing solutions
This thesis focused heavily on established solutions and based all its variants mainly on
two architectures. In the future, more exotic architectures should be tested. Given the
challenge of mismatched channels and implementation differences, not all combinations
and variants are viable. It would be interesting to measure the impact of attention

86



8.2. Future Work

modules on small networks, such as the factorized prior compared to their original
deep networks. With the given flexibility of benchpresso, it is possible to mix various
architectures by different authors easily.

8.2.3 Extended Literature Review
An follow-up of our work may consider work on perceptual compression. Perceptual
compression aims to maintain perceptual quality scores, which is challenging especially
at lower bitrates [73]. Typically, methods rely on generative models to model the source
distribution [4, 54, 73]. Additionally, a follow-up may focus on task-oriented compression,
where the objective is not limited to image reconstruction [81, 31, 38, 37].
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Overview of Generative AI Tools
Used

I have used ChatGPT in Version 3.5 and 4.0 as an aid. ChatGPT helped me do research.
I have generated summaries in the form of bullet point lists for my notebook, which has
helped me find relevant papers more easily.

I have used Grammarly to correct my text. Grammarly offers features similar to MS
Word. Grammarly gives suggestions on how to fix grammar and punctuation. I have not
used its text generation feature. This AI Tool is limited to the English language.

I have used GitHub Copilot in its student version. This AI Tool helped me write code. I
did not use its prompt feature and, at most, accepted automated suggestions.
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Übersicht verwendeter Hilfsmittel

Ich habe ChatGPT in Versionen 3.5 und 4.0 als Hilfsmittel verwendet. ChatGPT hat mir
bei der Recherche geholfen. Ich habe Zusammenfassungen in Form von nummerierten
Listen für mein Notizbuch generiert, um einfacher relevante Arbeiten zu finden.

Ich habe Grammarly verwendet um meinen Text zu korrigieren. Grammarly bietet ähnliche
Funktionen wie MS Word an. Man bekommt Vorschläge sowohl bei grammatikalischen
als auch bei Interpunktionsfehlern. Ich habe keinen Text mit Grammarly generiert. Das
KI-Tool ist auf die englische Sprache begrenzt.

Ich habe Github Copilot in Student-Version verwendet. Dieses KI-Tool hilft Code zu
schreiben. Ich habe das Prompt Feature nicht verwendet. Ich habe nur die automatisierten
Vorschläge akzeptiert.
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