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Kurzfassung

Dank des technologischen Fortschritts wird die Integration sozialer Roboter (SRs) in
unseren Alltag zunehmend realistischer. In den letzten Jahren haben sich diese bereits
im Gesundheitsbereich als praktikabel erwiesen. Es gibt dennoch viele Herausforderun-
gen die weitere Forschungen erfordern, damit soziale Roboter erfolgreich von kleineren
Unternehmen oder Einzelpersonen akzeptiert und eingesetzt werden können. Bisherige
Studien haben bereits gezeigt, dass sich die Aufgaben-Personalisierung positiv auf die
Wahrnehmung der Benutzer*innen hinsichtlich der Benutzbarkeit der Roboter auswirken
kann. Jedoch sind die klassischen Programmiermethoden für Laien eher ungeeignet.
Neben anderen Machine Learning (ML) Programmierparadigmen stellt Learning from
Demonstration (LfD) eine vielversprechende Methode dar, um maschinelles Lernen mit-
hilfe menschlicher Demonstrationen zu ermöglichen. Wie auch andere Arbeiten zuvor,
wurde in dieser die bestehende Lücke in der Human-Robot Interaction (HRI)-Literatur
identifiziert, welche das fehlende Wissen über die Wahrnehmung menschlicher Instruk-
tor*innen hinsichtlich lernender Roboter in verschiedenen Kontexten und Konfigurationen
verantwortet. Diese Arbeit unternimmt einen Versuch, einen Beitrag zur Schließung dieser
Lücke zu erwirken, indem sie zwei Eigenschaften eines Roboters untersucht: Initial Profi-
ciency (initiale Kompetenz), die beschreibt, wie kompetent ein Roboter erscheint, bevor
ein Lernvorgang gestartet wurde, und Learning Rate (Lernrate), die beschreibt, wie viele
Demonstrationen der Roboter benötigt, um eine neue Aufgabe vollständig zu erlernen. Es
wird analysiert, inwiefern diese Eigenschaften die Wahrnehmungen der Instruktor*innen
hinsichtlich des Roboters und des eigenen Selbst, sowie deren Bereitschaft, den Lehr-
prozess fortzuführen, beeinflussen können. Dafür wurde ein kontrollierter Laborversuch
entworfen und über Benutzertests (N = 24) evaluiert, in denen Teilnehmer*innen, in
einer virtuellen- und LfD-Umgebung versucht haben, einem Roboter beizubringen, eine
Pick-and-Place-Aufgabe zu lösen. Während die initiale Kompetenz eher eine indirekte
Beeinflussung auf diverse Messungen zeigte, war der Roboter mit hoher Lernrate, im
Vergleich zur einer niedrigen Lernrate, in der Lage, die Wahrnehmungen der Teilneh-
mer*innen im Allgemeinen positiv zu beeinflussen. Es wird daher empfohlen, effiziente
Lernalgorithmen für LfD-Systeme zu priorisieren. Weitere Ergebnisse zeigen zusätzlich,
dass die von den Teilnehmer*innen wahrgenommene Bereitschaft zu lehren und deren
Selbstwirksamkeit vom tatsächlichen Lernerfolg des Roboters abhängen. Das führte zu der
Interpretation, dass jeder sichtbare Fortschritt die Teilnehmer*innen motivierte, weitere
Demonstrationen abzugeben und stärkte zudem ihr Vertrauen in deren Wirksamkeit.
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Abstract

Technological advances made Social Robots (SRs) to become common in our everyday
lives more feasible than ever before. In the last years, they have already shown to
be practical in the healthcare domain, like for example, their productive use in the
recent pandemic, which brought viable findings to light. Still, many challenges exist
that need a better exploration by the scientific community to enable SRs to successfully
be accepted and adopted by smaller companies or individuals. Previous work showed
that task customization can be beneficial for users’ perceptions of usability towards
the robot. However, classic robot programming methods are not accessible to non-
experts. Alongside other Machine Learning (ML) programming paradigms, Learning
from Demonstration (LfD) poses a promising method for enabling machines to learn from
human demonstrations in more natural ways. This study, along with other recent works,
identified a currently existing research gap in the field of Human-Robot Interaction (HRI)
which is responsible for the lack of knowledge when it comes to our understanding of
how human instructors perceive their robotic students in various teaching settings and
robotic configurations. This thesis attempts to contribute one part to fill this gap by
analyzing how the two robotic traits Initial Proficiency, which defines how proficient
the robot shows to be before being taught by a teacher, and Learning Rate, which
defines how many demonstrations the robot needs to learn a new task by a teacher, can
influence the users’ perceptions of the robot and themselves, as well as their willingness
to continue the teaching process. Throughout this work, a controlled lab experiment
was designed and was evaluated over user tests (N = 24), in which participants tried to
teach a pick-and-place task to a humanoid robot within a Virtual Reality (VR) and LfD
environment. While initial proficiency only showed indirect effects over various measures,
a fast learning robot was able to positively influence participants’ perceptions’ in general,
compared to slow learning ones. Prioritizing efficient learning algorithms is therefore
recommended for LfD teaching systems. Additionally, findings show that the participants
perceived teaching motivation and self-efficacy are dependent on the actual learning
success of the robot, regardless of the learning rate, which supports the suggestion that
any kind of learning progress helps motivate participants to continue teaching and make
them feel more confident while doing so.
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CHAPTER 1
Introduction

After a rough day at work, you step into your favorite café, hoping for a moment of
relaxation – and a good coffee, of course. Distracted by the latest messages on your
phone, you barely take a glimpse at the old owner of the shop, sitting on a chair behind
the counter. He’s always been very kind to you. Unaware of your surroundings you order
the usual. Taking a seat, you close your eyes, trying to sort through all of your thoughts.
Moments later, you recognize someone moving to your table in your peripheral. It could
be your coffee. It certainly is, you hear the sound of the cup being placed on your table.
You open your eyes and freeze. The hand placing your coffee has a metallic shimmer.
You are carefully looking up. To your surprise, the barista is not the old kind man as
usual, but a new one, a robot. “Thank you for your order. Do you need anything else?”,
it says. You are wide awake now, no need for coffee anymore. It even wears an apron.
“Excuse me?”. “Uh, no... no thank you”, you stammer. The robot turns around and
gracefully moves towards another customer. Before you can make sense of it, the old man
approaches your table, chuckling. He sits down, you look at him, still surprised by what
just happened. “Ha, ha. Surprised, huh?”, you approve by nodding, “You know. It’s hard
to find workers that want to do this job... willing to do the hours, so, I figured this would
be a good solution”. You think about it for a few seconds, trying to get your thoughts
straight. “How does it know...”, you started, but the old man interrupts excitingly “Well,
I just showed it”. “You showed it, how?”, “It’s actually pretty easy, I just showed how I
make coffee, served customers, you know, and it just stood there, watched me. And then,
after some time... well it learned. Simple, right?”
Scenes like this, while seemingly futuristic, are becoming increasingly feasible as technology
continues to evolve. From industrial to healthcare, service, and domestic domains, robots
are rapidly integrating into our daily lives. Yet, teaching strategies, like the one the café
owner used to train his robotic barista are not as easily achievable as of today.
Depending on their application, robots may significantly differ from each other in terms of
how they perceive their surroundings, how they move, how they look, how they manipulate,
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1. Introduction

and how humans approach and interact with them [1, 2, 3]. Purely industrial robots.
for example, often prioritize precision and efficiency, while often being incorporated into
isolated settings. Collaborative robots, or cobots for short, can safely work with human
colleagues in their proximity. In contrast, SRs, like the robotic barista in the café, demand
nuanced movements, flexibility and acceptable social behaviors to naturally interact with
people around them [4]. These requirements introduce particularly challenging issues
into the field of robot development.

One promising approach to teaching robots human-like behaviors and movements is
LfD, which enables human, non-expert teachers to instruct the robots by providing
demonstrations to them [5]. This concept of letting machines (either virtually or physi-
cally) learn how to do things in more natural ways (ML), is not particularly new but is
becoming more and more popular due to technological advances in computer hardware
and open-accessible software frameworks. This type of robot feature development is
especially useful, if there is the need for flexibility with tasks or where there is no clear
go-to set of instructions which would always lead to a successful outcome or execution.

1.1 Motivation
Commercial robots usually come with a set of pre-programmed capabilities, which were
seemingly developed by the respective manufacturer [6]. Having the option to teach a
self-defined task to such a robot would be greatly beneficial for users and manufacturers
in order to make them more flexible and personalized [7, 8]. As described above, LfD
can be implemented as a learning mechanism for robots to achieve exactly that. In order
to make the process of teaching such robots as efficient and comfortable as possible,
a good understanding of how human teachers feel about their robotic students would
be beneficial. Research is already done in this direction when it comes to how human
teachers perceive the robot if it fails or succeeds with a given task [9, 10, 11]. However,
little is found in research about how those human teachers would perceive themselves in
terms of self-efficacy or teaching motivation and whether they would perceive it as more
likeable, intelligent, or efficient, depending on how proficient the robot initially is or how
fast the robot learns to do the given task successfully.
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1.2. Goals and Research Questions

1.2 Goals and Research Questions
The goal of this study is to investigate whether the initial robot proficiency, i.e. how
well a robot is able to perform a task prior to it being taught and the robot learning
rate, i.e. how fast a robot is able to learn a new task, affects human teachers in the
following ways:

1 ) Level of anthropomorphism of the robot.

2 ) Perception of robot likeability, intelligence and safety.

3 ) Self-efficacy: How much do teachers think they are able to teach the robot.

4 ) User experience: A bad user experience with the robot might lead teachers to
exit the process early and could also potentially hinder them from teaching like
this in the future.

5 ) Motivation to teach the robot: Since some ML programming paradigms require a
considerable number of iterations to evoke a meaningful outcome, the motivation
of teachers to continue the teaching process could be of high interest.

Out of these goals, the following research questions were formulated for and are being
addressed within this study:

Research Questions
RQ1: How does the initial proficiency level of a robot in a teaching environment

affect human perception of the robot’s capabilities and intelligence?

RQ2: How does the rate at which a robot appears to learn a new skill influence
the human instructor’s perception of the robot?

RQ3: What is the relationship between the perceived robot’s proficiency level and
learning rate, and the self-efficacy of the human instructor?

RQ4: How do variations in the robot’s initial proficiency and demonstrated learning
rate impact the willingness of human instructors to continue teaching the
robot?

1.3 Expected Outcome
This study aims to provide information about how human teachers may or may not be
influenced by the aforementioned parameters of a robotic student and therefore also open
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1. Introduction

up a discussion about whether this influence, if any, is of significance, and if so, how
much of a significance. Out of this discussion, recommendations will be formulated, if
possible, on how to design certain aspects of robots within a LfD setting.

1.4 Thesis Structure
The main part of this thesis consists of the following chapters:

• Related Work: This chapter summarizes other relevant work regarding the
themes SRs within society, their abilities and how to teach them and lastly how
robot learning outcome may influence their human teachers. In the last section
of the chapter, the previously indicated gap in literature will be presented more
closely.

• Approach: This chapter starts with how the research questions were approached
through a controlled lab experiment. The overall study design will be presented
before going into actual implementation details. Additionally, there will be infor-
mation about how relevant data was evaluated by using two sets of questionnaires
and one final interview for each of the participants of the study. Finally, a concise
description of how the data was further analyzed and processed will be given.

• Results: This chapter will give insights into the results of the data after they have
been merged and analyzed. All of the relevant quantitative results will be shown,
right before moving on to the qualitative results gathered by the interviews.

• Discussion & Future Work: This chapter will address the results shown in the
chapter before in more detail, to provide meaningful insights within the context of
the thesis. Quantitative and qualitative results will be mixed and an attempt at
interpretation together with the findings of previous work will be made. The chapter
closes with a list of the identified limitations of this work and recommendations
about where to take further research.

• Conclusion: The final chapter of this work will summarize the whole thesis and
provide answers to the research questions described above.

1.5 Contribution Statement
This thesis contributes to the research field of HRI by addressing the currently existing
research gap. It proposes findings about how much the above-specified robotic properties
initial proficiency and learning rate directly and in combination can affect humans
in terms of perception of the robot, self-efficacy and teaching motivation within
a robot-student, human-teacher, and LfD context.
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CHAPTER 2
Related Work

Due to advances within ML and pattern recognition, sensor technology, and computer
science, the amount of research in robotics has heavily increased within recent years
[12]. Robotics itself is a multidisciplinary field of research which includes e.g. materials
science, mechatronics, computer science, biomechanics, aeronautics, (micro) electronics,
and HRI [1, 13]. Advances within all of these research areas promise to automate even
more complex tasks across many different fields of applications [4].

Compared to earlier versions of robots, which usually only were deployed within the
industry and usually were only used for very specific tasks while also having their separate
workspaces [14], nowadays robots can work semi- or even fully autonomously on more
complex tasks and within the proximity of humans [2]. This trend makes the research
area of HRI especially interesting with current robotics development [15]. It explores
how communication and interaction between robots and humans can be understood,
improved, and optimized [16]. That includes e.g. spacial, gesture, and human facial
feature detection or detection and use of social cues, like emotions [17]. Robots that are
able to communicate with humans to a certain degree can be considered as SRs.

Along with the many different ways to categorize robots and multiple ways to build
taxonomies around different key features of robots, there is also no real agreement on how
to clearly identify a SR [4, 18, 12, 19, 13]. However, Sarrica et al. stated that there is a
common understanding about SRs at least taking part in social interactions [20]. Youssef
et al. expanded on that by mentioning that they are able of doing services, while also
being able to interact with humans by using different means of communication, including
speech, gesture, or facial expressions [4]. Hegel et al. reviewed some of the most popular
definitions of SRs in literature and constructed their own [21]:

“A social robot is a robot plus a social interface. A social interface is a
metaphor which in-cludes all social attributes by which an observer judges the
robot as a social interaction partner.”
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2. Related Work

The specific research concerned about SRs is of higher interest for this work, as there
seems to be a bigger overlap with HRI concerns than with more traditional robots. The
following sections therefore are focused on SRs more specifically.

2.1 Social Robots and their Roles in Society
There is already a vast variety of different SRs being used in a multitude of different
fields of applications, including education, customer service, medicine, healthcare, and
also more recently, domestic environments [15]. In each of these respective environments
(described in more detail below), the implementation of SRs promises to help solve several
domain-specific problems, including reducing teacher workloads over tutoring robots in
educational environments, reducing care staff workloads over assistive robots, help with
aging in place for elderly adults, providing comfort, companionship and emotional support
with hospitalized children in the healthcare sector and provide more efficient, emotionless
and unbiased services to customers within the tourism and hospitality sectors.

Despite many positive advances in the field of SRs, there are still many challenges, includ-
ing current technical limitations in terms of Artificial Intelligence (AI), environmental
perception, low creativity, social engagement, and user acceptability in terms of self-
efficacy and perceived usefulness, privacy, legal and ethical concerns, and maneuvering
the Uncanny Valley in terms of anthropomorphism, to name a few. Besides the many
challenges, SRs still carries a high potential to enhance people’s lives in the future.

2.1.1 Social Robots within Education
For example within the education sector, telepresence (social) robots can be utilized as
alternatives for teachers, experts, or students if they cannot be physically in class, to still
be able to interact with those who are via teleoperation. Also, the same technology, when
adjusted, would be able to help teachers or experts sort of broadcast the information
they want to share to multiple classrooms at once. Furthermore in education, one other
idea to relieve the workload of teachers would be to implement autonomous tutor robots.
Those would be able to assist with teaching during or besides regular classes, in a more
autonomous way. Research shows that the implementation of SRs may be able to help
counter budgetary and demographic challenges that currently exist within the educational
sector [22, 23]. Still, there are many issues to be solved, e.g. intelligence of autonomous
robots, correct interpretation of social context for autonomous robots, acceptability by
affected people or ethical considerations, to name a few [24, 22, 25].

2.1.2 Social Robots within Healthcare
In recent years SRs gained importance within many healthcare sectors [26, 4]. This is
particularly evident in the context of elderly care which demands innovative solutions to
address the estimated increase in the elderly population expected in the coming decades
[27]. In literature, it is advised to enable people to stay at home with the possibility of
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home assistance, when needed. Ambient Assisted Living (AAL) for example proposes a
variety of different technical solutions to increase health, access to caregivers, housekeeping,
communication, and social environment [28]. AAL mainly includes the incorporation of
sensors or actuators into homes, which then provide certain mechanisms to help with daily
activities or emergencies. One challenge of AAL is to provide acceptable and easy-to-use
interfaces. Here SRs may be more important in the future to improve on accessibility,
as they could be connected to the system and provide a more natural interface for
communication to it, like e.g. over language or social cues [29]. Although AAL proposes
many beneficial solutions for aging in place, several challenges need to be addressed
before these systems can be widely deployed commercially [29, 30]. While SRs may help
in more automated home environments, they can still improve the well-being of elderly
adults, by improving their social lives, potentially reducing loneliness and depression
while also having the potential to enhance human-to-human social behavior [31, 32].

In healthcare, SRs seems to have far-reaching benefits for hospitalized children. They
can help with coping with medical treatment and can provide companionship to them.
They can enhance their well-being to some extent and give them a feeling of comfort,
which is helpful when children must leave their usual social environment due to medical
reasons [33, 34, 35].

During the recent COVID-19 pandemic physical distancing measures were introduced
to contain the spread of the virus. During the early times of the outbreak, healthcare
workers were especially vulnerable due to their frequent exposure to contaminated in-
dividuals, however, they were not always able to keep their distance from them. Since,
compared to humans, SRs are naturally not being affected by the virus, they were being
utilized in a number of applications, including logistical tasks (e.g., delivery, telepres-
ence or telerehabilitation), health monitoring and safety enforcement (e.g., protective
measures and disinfection), and social or emotional support (e.g., companionship or
entertainment) [36, 26, 37].

The recent advances of SRs in the context of healthcare seem promising, however,
there are still barriers that hinder the process of their integration. First, there are
still technical challenges, such as the need for a better overall HRI, environmental
perception, and intelligence [26]. As SRs become increasingly embedded into the routines
in healthcare environments, concerns about privacy and security grow. Some robots
may be able to collect sensitive medical data, raising the risk of privacy violations
or data theft. Further, highly autonomous robots additionally raise concerns about
accountability, which introduces the need for a clear understanding of their ethical and
legal implications [32, 38].

2.1.3 Social Robots within Tourism and Hospitality
There are various applications for SRs in travel, tourism, hotel and hospitality sectors,
including front desk operations, cooking, food delivery or checkout, room cleaning,
luggage transportation, providing travel, shopping, and booking assistance, to name
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a few [39, 40, 41, 42, 43, 44]. Given the high possibilities of customer interactions
and propelled by recent technological advances, SRs present a highly transformative
opportunity within these sectors [44, 45, 41]. The adoption of SRs offers many benefits,
such as efficiency, unaffectedness by emotions, unbiased approach to customers, and
overall reliability with offered services. Further, they can help with engaging personalized
experiences or real-time language translation. They are able to streamline repetitive or
tedious processes which subsequently reduces service times [39, 43, 44].

While these industries may help to propel SRs development through financial investments,
current robots are not as human-like as they would need to be to achieve a high degree
of customer acceptance [46]. Additionally, advances in robotics and AI are going to bring
SRs to a level of anthropomorphism where the affective reaction of humans falls flat
(Uncanny Valley). Business owners may then not be able to afford to sell into such robots
if customers tend to reject or feel uncomfortable with them [40].

As discussed in section 2.1.2, ethical and privacy concerns also exist within the sectors of
tourism and hospitality [39, 43, 44]. Additionally, some customers may feel irritated or
fear being monitored by SRs. Further, the lack of emotional intelligence and creativity
are limiting customer satisfaction for more complex tasks as they might feel anger or
frustration when interacting with SRs that are not able to solve their issues [39, 47, 44].

2.1.4 Social Robots within Domestic Environments
As described in section 2.1.2 above, SRs may be able to be set into homes with AAL
installments to provide more natural interaction possibilities with the system for elderly
adults [29]. In general, there seems to be an overlap of healthcare applications for SRs
with home environments. The research in terms of SRs especially focuses on special
health impaired groups and how SRs may help with solving certain issues (like, e.g. help
with daily activities) [48, 49]. But, SRs are not practically, and even less theoretically
limited to those kinds of applications. General purpose or home assistive SRs were long
imagined in science fiction and people are already accustomed to other Personal Digital
Assistants (PDAs), such as smart speakers [50]. So the question emerges as to why there
is a lack of development of SRs within domestic environments.

Science fiction has heavily influenced how people envision SRs in domestic environments
as helpers, companions, and general purpose tools [51]. The existing gap between
the expectations that emerge through fiction and the actual limited abilities of such
robots experienced in reality is called social robot paradox, coined by Duffy and Joue
[52]. Henschel et al. [51] found that robot manufacturers implement certain human
characteristics into their products (anthropomorphism) while being careful not to push it
too far into the uncanny valley. However, enhancing human-like features would indicate
a potential for enhanced social interaction with such robots. In their investigation of
the SR literature Mejia and Kajikawa [53] found, that while social sciences seem to be
acknowledged to play an important role in SRs research, they remain underrepresented
[51]. Due to the fact that HRI is situated between robot engineering and social sciences,
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Broadbent [54] and Eyssel [55] propose that research in this field should aim for a higher
incorporation of the social science principles [51].

David et al. noticed, how many works in research were expressing rapid growth of the
SRs market, which they thought to be contradicting given the overall low acceptability of
those robots [49]. Throughout their literature review in terms of SR acceptability, they
found, e.g. that technology may be used differently as initially designed [56], that the
technology of the robots are expected to be different by users, which may end up with a
product not matching their needs (perceived usefulness) [57] and that a novelty effect
may lead participants in various lab experiments to initially rate robots as acceptable,
an effect that might not persist over time. It was found that factors like self-efficacy and
prior expectations of the robot are essential for their initial acceptance and are therefore
important for their adoption [58].

De Graaf et al. reviewed long-term studies on SRs in domestic environments and identified
several key factors influencing SRs acceptance [58]. They included other factors that
potentially increase acceptability (additional to the aforementioned), such as the belief
of having the necessary skills to use a SR (self-efficacy), the perception of increasing
status by the possession of a SR, the expectation that of such a robot providing enhanced
enjoyable interactions and the expectation of it causing fewer privacy concerns. It is
important to recognize these effects and their corresponding challenges to implement
effective solutions and reach for potentially higher acceptability for such robots in people’s
homes.

2.2 Social Robots’ Abilities and How to Teach Them
In the context of SRs, manufacturers often deliver their products with a standard set of
baseline abilities, such as navigation, recognition of the environment or certain objects,
basic body movements or gestures, and other basic functionalities. They represent
general-purpose features that enable them to (socially) interact with the world around
them. However, as such robots increasingly are adopted into all kinds of domains, the
demand of people to customize or personalize such robots emerges [59, 8].

Customizations, tailoring, and personalization are especially interesting for small corpo-
rations or individuals, who may want to add, remove, or tweak certain features to meet
very specific requirements. Additionally, customized robots increase their usefulness and
can subsequently raise their acceptance in unique contexts [59, 60]. Additionally, users
that made certain customizations to their robots may want to share their work with
other people or communities, so that they can benefit from it as well.

To understand how such customizations can be made, it is helpful to understand which
types of programming methods exist. While the taxonomy of programming methods
described by Heimann et al. [61] is targeted at industrial robots, its classification of
methods based on the interaction with the robot, still gives a good overview of how they
can be programmed. Methods are classified into online and offline programming.
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Online methods refer to robot programming strategies that need access to the actual
robot itself, including:

• Lead through programming: One of the earliest types of online programming, where
a user for example guides one of the robot’s physical parts to the desired location
with a teach pendant. The positions are simply saved for later playback.

• Walk though programming (also known as kinesthetic teaching [7]): This is an
iteration of lead through programming, where users simply move the robot’s joints
to their desired locations manually and without the pendant. Compared to the
previous version, this does not need a high-level understanding of the robot.

• Programming by Demonstration (PbD): This method relies on sensors for the
robot to observe demonstrations, which can be performed by the user. Also, no
programming skills are needed, so this method can be used by the general public [62].

Online programming methods have the disadvantage, that the robot needs to be pro-
grammed in its proximity or by actual physical manipulation of its joints.

Offline methods refer to robot programming strategies that can be implemented on
some sort of abstraction of the robot, including:

• Text based programming: This method is similar to classic software development.
Usually, with industrial robots, the interface allows access to previously recorded
points from online strategies, like lead through programming.

• Graphical interfaces: Such interfaces provide a simplified user interface to, for
example, access and fine-tune a robot task template (e.g. for a welding task).

Also, hybrid approaches are possible. An example of such a method would be to have
a virtual model of the robot in a 3D environment where it can be programmed and
simulated. The resulting program can then be uploaded to the actual robot. It is worth
mentioning that the process of transferring the result of a virtually trained robot to a
real one often does not work without issues and demands additional adjustments [63].

While all of the above methods have their advantages and drawbacks, some are inherently
more useful than others for non-experts. The following sections describe programming
methods in more detail.

2.2.1 Classic Robot Programming
Lead through and text based programming can be viewed as more classical approaches
for defining and programming tasks for robots. Experts are needed for these methods, as
they need a high level of understanding of their functions [61]. In light of customization,
this seems not to be suitable for most people. It is possible to extend these methods
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by incorporating graphical interfaces, which provide a more intuitive and abstract way,
making programming more accessible for non-experts. Still, classic programming may
not be sufficient for every scenario, when given the complex nature of tasks and variable
environments in the context of SRs [7, 14].

2.2.2 Machine Learning
In the broad scientific field of AI, one of its important branches is ML, which encompasses
various methods to enable computers to learn how to do tasks in ways that are closely
related to how humans or animals learn [64]. This is especially useful if a computer
is required to successfully solve real-world problems, such as speech, gesture, or object
recognition (or pattern recognition in general), prediction of events, complex classification
of data, or decision-making based on feedback from the environment. Those kinds of
problems usually appear very natural to humans but can be complicated to formalize
for computers. A good understanding of how humans or animals learn in nature is
therefore essential. Consequently, the field of ML needs to incorporate a multitude of
other scientific fields, such as psychology, neuroscience, and philosophy. Basically, ML
tries to make predictions or decisions on a certain input based on prior experience.

In the context of ML this is done over models, which are the resulting predictors trained
via a previously chosen ML approach or algorithm, specifically targeted at the problem
at hand. These models may vary strongly in computational complexity, difficulty of
implementation, and learning process automation, again depending on the specific problem
that needs to be solved [65, 66]. The following paragraphs briefly describe a selection of
ML paradigms that are relevant for this work [67, 66, 65, 64].

Supervised Learning: This is an ML approach where a model is trained to map input
data to an output label, with the help of labeled training data. Labels are the ground
truth for classification. Therefore, this approach requires training data that is already
classified beforehand, for example by a human. Labels can be of discrete or continuous
type. In a classification task, the trained model will output a label, which is one of the
set of labels provided alongside the training data, for a new input. In a regression task, a
trained model outputs a predicted continuous value in the range of the provided label
values of the training data. The concept of supervised learning is displayed in figure 2.1.

Unsupervised Learning: Compared to supervised learning, this approach does not
rely on ground truth labels. Instead, the ML algorithm identifies patterns within the
training data. For example, a common method (k-means clustering) forms a certain
amount of clusters of the data by analyzing predefined features. The resulting model
then is able to output a specific cluster group identifier to which it predicts a new input
to belong. The concept of unsupervised learning is displayed in figure 2.2.

Semi-Supervised Learning: There is also the possibility to mix both of the above
methods, when just a part of the training data has labels, while the majority of the data
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Figure 2.2: Unsupervised Learning: Adapted from Preeti and Dhankar [67]

has no labels. This may be the case if a labeling of the whole training dataset is not
feasible. The resulting model has the same applications as supervised learning since at
least some of the data is labeled.

Reinforcement Learning: This is an ML approach where an agent learns to perform
actions in a dynamic environment to maximize a cumulative reward value. In the context
of Reinforcement Learning (RL), an agent represents an entity situated in an environment
that it is able to observe with one or multiple sensors and in which it can take actions
over one or multiple actuators. A reward function (e.g. a set of rules) provides a reward
(e.g. a numeric value) to the agent, dependent on each state of the environment (which
can include the agent). The agent then collects these rewards, which it tries to maximize
by exploring or exploiting various actions inside of the environment [68]. The concept of
RL is displayed in figure 2.3.
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Figure 2.3: Reinforcement Learning: Adapted from Mahesh [66]

Learning from Demonstration

The training method of LfD is typically not described as a separate foundational ML
paradigm, but rather as a methodology that often builds on top of them. However, it is
not constrained to any specific paradigm, while still being able to integrate or enhance
them. This flexibility makes it challenging to fit and align with the previous methods.
Briefly described, throughout LfD a policy is taught to the agent, which is derived by
analyzing demonstrations made by some entity (usually a human) that knows how to
perform the desired task. Therefore it may be viewed as a subset of supervised learning,
as the agent tries to approximate the function learned by the training data set, which
consists of the given demonstrations. Furthermore, RL and LfD form a close relationship
by aiming to teach a policy to an agent, therefore they often are compared to each other
in literature [69, 68].

Within RL, the agent learns from exploration and exploitation, whereas LfD makes it
learn from experience. In the context of robotics, one of the major drawbacks of RL is,
that it often needs experts in the field of application, when trying to teach potentially
complex real-world tasks to a robot [68]. Conversely, LfD does usually not need any
expert knowledge, other than the knowledge on how to correctly perform the specific
task at hand. This makes it an attractive method for humans to teach robots how to do
human-like tasks. Additionally, using body movements has shown to be a more natural
approach to teaching tasks to robots than formulating rule-set policies. Further, LfD is
also much more suitable for teaching robots specific movements in their actual physical
environment, since it only tries to learn from the provided demonstrations, whereas a
traditional RL approach may lead the robot to try potentially hazardous movements.

Although LfD promises to streamline teaching processes for non-experts, it also faces
some challenges. They include, for example: the issue of correspondence, the problem of
limited datasets, and how policies are derived from them [69].

First, the issue correspondence describes how the movements of the teacher should be
mapped to the specific body parts of the agent. Depending on the form factor of the
agent and method of demonstration recording, this can either be very complex or simple.
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Second, limited datasets pose the problem that a simplistic policy strictly derived from a
certain set of demonstrations is not able to generalize the problem to a similar configuration
of the environment, if this specific state of the environment is not represented by one
of the examples in this set. Here, other ML paradigms are often utilized, as many of
them are suitable to generalize policies from training data (e.g. as demonstrated in [70]).
For example, including RL is a popular method to generally enhance the LfD approach
or vice versa [69, 71, 68]. Demonstrations from naturally intelligent entities could in
that sense serve as a baseline for achieving a high cumulative value from the RL reward
function, which arguably eliminates the need for a high number of initial exploration
steps which would potentially lead to low rewards without them. Off of that reference
point, RL may continue to make the agent explore how different kinds of actions lead to a
high reward in different environmental scenarios, which can further increase the accuracy
of the resulting model. Although mixing RL with LfD has its benefits, it reintroduces
the problem of requiring expert knowledge to design a usable reward function, which
would eliminate one of the key advantages of LfD. However, in this combination, the
problem can be circumvented by using Inverse Reinforcement Learning (IRL), which can
derive such a reward function, again based on the provided demonstrations [68, 69]. It is
worth mentioning, that, depending on the desired task and environment, such a reward
function may not be the global optimal, since it cuts away many possible routes the
agent may take in a more traditional RL approach.

Although a bigger set of demonstrations provides a better baseline for deriving policies,
it should be mentioned that if humans are providing them, they may be annoyed with
the need for a high repetition of the task [71]. It is therefore recommended to rely on
only a few demonstrations and to make the teaching experience as pleasing as possible
to maintain motivation.

2.2.3 End-User Robot Development
As mentioned above, describing and developing tasks for robots usually requires a high
level of expert robot development and domain-specific knowledge [61, 72, 7, 14]. With
the help LfD, the process of teaching a task to a robot can be simplified and is often
considered more natural than traditional programming. However, non-experts still need
some sort of tool or environment to be able to teach the robots in the first place. The
field of End-User Development (EUD) encapsulates methods, techniques, and tools which
allow users to customize software or hardware (e.g. with 3D printed) artifacts in a clear
and simple way [73, 14, 74]. In the context of social robotics, such tools face several
challenges, e.g. the need for certain context specifications which might include objects,
obstacles, or intelligent entities [7].

Ajaykumar et al. [7] identified a number of different types of approaches for robotic EUD
tools, which include programming via visual, i.e. by using Graphical User Interfaces
(GUIs), Augmented, Virtual or Mixed Reality (XR), i.e. by using a simulated virtual
representation of a robot, demonstration, i.e. by using LfD, natural language or tangible
methodologies. Depending on the use case and target users, several robot capabilities were
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able to be programmed by these tools and methodologies, including (social) interactive
behavior, object manipulation, execution of motions (which includes gestures), navigation
or sensing of the environment, and providing audiovisual feedback. Additionally, the
authors of this survey identified a set of measures that are usually incorporated into
EUD evaluation. They included, for example, task success (i.e. by checking whether
user-authored programs were executed by the robot successfully), programming time
and progress (i.e. how efficiently a user is able to use the programming tool to teach
the robot), user perceptions of the system, for example by measuring perceived usability
over the System Usability Scale (SUS), or user experience over the User Experience
Questionnaire (UEQ). Additional measures also include evaluation for willingness to use
the system and the users’ perceptions and other subjective evaluations of the robot itself
and how the proposed EUD system may affect them. Furthermore, objective measures,
such as the number of interactions of the users with the robots might provide additional
insights into how engaging the trained robot and the system as a whole are. Finally,
some sort of user instruction or training (e.g. over an in-application tutorial) seems to be
a common practice, before the actual system is evaluated, since some might need users
to get comfortable with the procedure or special hardware.

Within the identified approaches, the use of XR in combination with LfD seems to be
especially interesting for SR experimental settings, since there is the possibility to test
robotic features that do not yet exist or if testing a physical robot is not feasible or even
dangerous [7, 72].

2.3 Social Robot Learning Traits and their Influence on
Human Instructors

As described in section 2.2.2, it is generally recommended to keep the number of needed
demonstrations by humans low in an LfD approach. However, this may not always be
possible with every teaching scenario, as they vary in complexity and their required
accuracy. Also, a human instructor might expect a robot to behave differently, based
on certain observations [9, 75]. It is therefore important to understand how teachers
perceive the robotic student and themselves in different robot teaching settings to avoid
frustration or mistrust and instead enable a productive, engaging, and effective teaching
experience, potentially increasing their acceptability [11] and increasing the success of
teaching robots custom tasks.

Hedlund et al. [9] conducted a lab experiment, where human non-experts tried to teach
different tasks to a physical robotic arm over different instruction methods in a LfD
setting. Within the study, participants were asked to try to teach three different tasks
to this robot sequentially: first, pick-and-place, second, rod insertion and third, object
retrieval. Each participant was trying to teach the tasks to the robot over one of three
instruction methods: kinesthetic teaching (see section 2.2), teleoperation (by using a
joystick controller), or motion capture (by using a camera and a glove with an attached
April Tag for the participant). Participants were able to train each of the tasks before the
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actual actual LfD process was started. Then one official demonstration (also referred to as
One-Shot Learning [76]) was provided by them and the robot presented if it successfully
learned the task or not. Participants were made to believe that the demonstration was
incorporated into a ML procedure, so the successful or failing output of the robot was
shown over a set of pre-recorded trajectories. Thus, the success or failure of the robot
for each of the tasks was pre-defined for each of the participants in a counterbalanced
sequence.
The goal of this study was to evaluate how the success and failure of the robot in the
different settings of instruction methods and over the three tasks influences the human
instructor’s perception of workload and perception of trust and impression of the robot
and themselves. Results showed that, if the robot was failing at the task, participants
trusted the robot and themselves less. Further, participants reported a lower impression
of themselves when they were asked to teach over kinesthetic teaching compared to the
other two methods. No differences were measured over the different tasks. Additionally,
participants expressed a higher perceived workload, when the robot was failing compared
to when it was successful.
A similar lab experiment was conducted by Moorman et al. [10], where the goal was to
evaluate how certain robotic task learning settings were able to influence different target
users and their perception of the robot. Within this study, participants faced a physical
robot trying to learn a cutting task over one of three different simulated learning methods,
which consisted of RL (i.e. participants were only observing a trial and error learning
process), Interactive RL (by enabling users to give binary feedback to the robot during
the RL learning process) and LfD (over kinesthetic teaching) approaches. Additionally,
one learning condition was shown to all of the users, where they only initially observed the
robot downloading a model on how to do the task from “the cloud” and then subsequently
observed the robot executing the task based on this model. Further, participants were
divided into two groups, where one of them participated in person and the other one
observed and interacted with the robot remotely.
Results showed that, with increasing involvement of human guidance throughout the
different learning methods, the robot is perceived as less human-like. The authors
suggested that this may be due to participants assigning personality to the robot when
it tries to learn on its own. Further, reliability and ease of use were impacted by
the perceived success of the robot while the learning method had no effect. This was
interpreted as an indication that users may prefer robot learning methods that promise
learning success. Finally, the physical presence of participants positively affected the
perception of safety, reliability, attitude, and trust towards the robot compared to remote
participants. According to the authors, this may be due to the presence of the researcher
during the study and due to participants increased perceived usability when they are
co-located with the robot.
Another interesting study is proposed by Wang et al. [77] which is concerned about
how natural human feedback for robots learning over RL approaches might unfold over
different robotic competency levels in terms of perceived usability, workload, and trust.
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The competency of the robot will be configured as either consistently low (i.e. that the
robot shows an overall low competency and not learning from feedback), consistently
high (i.e. that the robot shows an overall high competency and does not need much
feedback), decreasing (i.e. the robot shows high competency during the initial phase and
then low competency in the following phase) and increasing (i.e. the robot shows low
competency during the initial phase and then high competency in the following phase).
The authors plan to conduct a study with participants who observe a physical robotic
arm learning a pick-and-place task. Participants will be offered to provide feedback to
the robot (whenever they see fit) by first interrupting the robot and then subsequently
by providing corrections over kinesthetic teaching. The goal of the study is to evaluate
how these different competency configurations affect the participants’ feedback and how
they affect the participants’ perception of trust.

As it stands, recent works seem to be more interested in understanding how users perceive
their robotic students under various conditions, such as different competency levels [77],
different modes of operation, or different methods of learning [9, 10]. All of these studies
have identified the existing research gap in the field of HRI and acknowledge that there
is still more to explore to strive for better customization of robots and to potentially
achieve higher acceptability of SRs in the long run. The work in this thesis hits a similar
chord as the aforementioned studies and contributes additional findings that align with
their direction.
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CHAPTER 3
Approach

A controlled lab experiment was designed to evaluate the research questions defined in
section 1.2. The experiment primarily consisted of user tests for measuring quantitative
data over questionnaires, mainly focusing RQ1-3, and then subsequently also semi-
structured interviews as a follow-up for qualitative inputs, mainly considering RQ4.
In this chapter the overall approach will be reviewed in detail within three sections:
Beginning with the description of the study design itself, this section introduces how the
relevant data can be collected. The second part is about how all of the requirements
for the lab experiment were gathered and implemented, delivering details about specific
decisions made for the user tests and interviews. Finally, the evaluation process will be
presented, showing how all of the outputs of the experiment were processed to be able to
aggregate results.

3.1 Study Design
As mentioned above, the study design was compiled into a mix of questionnaires, user
tests, and interviews, effectively resulting in a mixed-methods design (as seen in figure
3.1). The main goal of the study was to evaluate how human instructors in VR and LfD
environments are being affected by the two independent variables, Initial Proficiency and
Learning Rate (refer to section 3.1.1). The design was constructed such that the findings
of the quantitative data (derived from user tests together with questionnaires) were able to
be contextualized with participants’ reflections (derived from semi-structured interviews).
The quantitative part of the study design consisted of one onboarding questionnaire,
which included items to capture demographic information and personality traits, then
the user tests themselves, during which several measures were recorded, including the
time participants spent doing various things, the number of demonstrations participants
are providing, or the current state of the robot, and finally, another questionnaire, which
included items to measure participants’ perceptions of the robot, and their teaching
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Figure 3.1: Study Design Chart

experience, self-efficacy, and motivation scales (refer to section 3.1.8). The qualitative part
of the study design mainly consisted of the semi-structured interviews which concluded
each of the participants’ sessions. Interview questions were mainly concerned with how
different robot configurations affected them in terms of their teaching motivation. The
experimental design followed a within-subject approach, where each of the participants
interacted with the robot across four different configurations. The four test conditions
were assigned to participants in a Latin-square counterbalanced sequence. The LfD
robot teaching process was conducted in an VR environment, where participants tried to
teach a pre-defined task to the robot (refer to section 3.1.3). The learning progress was
simulated, so it was known beforehand which of the conditions made the robot act in
certain ways. Subsequently, this ensured comparability between the individual results of
the participants.

3.1.1 Independent Variables

Since the study aims to measure potential differences across various variables for the
two robotic properties: initial proficiency and learning rate, exactly these two had been
selected to be the independent variables within the user tests.

Initial proficiency: Within this work, this relates to the robot’s ability or accuracy in
being able to successfully execute a fixed predefined task before an attempt to teach it had
been made. The initial proficiency of a robot was presented to each of the participants
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for each of the four test conditions respectively. It is important to mention that the two
tasks involved within each of the tests, i.e. the task over which the robot is presenting its
initial proficiency to the participant, and the actual task that the participants attempted
to teach to the robot, differ from each other. Please refer to section 3.1.3 for more specific
information on tasks.

Learning rate: Within this work, this relates to the number of demonstrations the
robot needs to observe (i.e. teaching iterations a participant needed to conduct to the
robot within a single, particular test) to be able to successfully execute the task.

3.1.2 User Test Conditions

To be able to measure potential differences within dependable variables, both initial
proficiency and learning rate need to be varied across at least two states respectively.
This led to the following definitions of states: Low initial proficiency (L), high initial
proficiency (H), slow learning rate (S), and fast learning rate (F). Combining these leads
to four distinct test conditions, which are: LS, LF, HS, and HF. To make it easier to
refer to these conditions they were encoded into a single letter format: A, B, C, and D.
Please also refer to table 3.1.

Initial proficiency
Test Condition

Low High

Slow A C
Learning rate

Fast B D

Table 3.1: User Test Conditions

Counterbalancing: Since there are four conditions to test for each of the participants,
it is good practice to counterbalance them to avoid the effects of accumulated practice or
carryover effects more generally [78]. That means, that every participant will not get the
same sequence of test conditions, but different ones. The most straightforward approach
would be to test every possible permutation of condition sequences, which would be
optimal to avoid carryover effects within the measured data, but also would have the
negative side-effect that the number of possible permutations grows factorially. With
only four conditions this results in 4! = 24 possible sequences which would also mean
that the number of participants needs to be a multiple of 24.

To reduce this number, a balanced Latin square approach was chosen. A Latin square
design implies the use of a n2 matrix, where n is the number of conditions. The cells of
this matrix can be filled in with test conditions (A, B, C, and D in this case) in such a
way that each row of this matrix contains every single condition. Each of the resulting
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rows represents one sequence of conditions. Thus, the number of possible sequences
effectively is reduced to n, the number of conditions, i.e. four sequences in this case.

There are several possibilities on how to fill the cells of the Latin square with the actual
conditions. In the balanced Latin square approach, one simple solution is to use the
following instructions. Assuming we have a finite set of conditions C = {1, 2, 3, ..., n}
where n = |C| is even, the first row c1 for the matrix can be evaluated as such (modified
version of Edwards [79]):

c1 = 1, 2, n, 3, n − 1, 4, n − 2, ...,
n

2 + 1 (3.1)

which can be defined as a sequence:

(c1,k)k=1,...,n =

������
k, if k ≤ 2⌈︂

k+1
2

⌉︂
, k > 2 and k is even

n −
⌊︂

k−3
2

⌋︂
, k > 2 and k is odd

(3.2)

Then the subsequent rows cr,k with r > 1 are built upon their predecessor, like such:

(cr,k)r=2,...,n, k=1,...,n = (cr−1,k mod n) + 1 (3.3)

Applying this to a set of four conditions: C = {1, 2, 3, 4} =⇒ n = 4, this results to the
following matrix: ���

1 2 4 3
2 3 1 4
3 4 2 1
4 1 3 2

			 (3.4)

Which can be substituted with the actual conditions of the user tests X = {A, B, C, D}
while preserving the same order of elements, i.e. 1 → A, 2 → B, 3 → C and 4 → D,
this results in the final Latin square as defined in table 3.2. This table was used during

Condition Sequences (Si)

Sequence 1 (S1) A B D C

Sequence 2 (S2) B C A D

Sequence 3 (S3) C D B A

Sequence 4 (S4) D A C B

Table 3.2: Latin square balanced condition sequences

the experiment to read the sequence of conditions for each of the participants. Each
participant was assigned a unique ID p = [1, m], p ∈ N, which was just a simple integer
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sequence number and m being the last participant ID. This sequence was sufficient, with
me being the only researcher conducting all of the user tests. The Sequence number i
for each participant was derived as such: i = ((p − 1) mod 4) + 1, i.e. for the first and
after each set of four participants the sequences from table 3.2 were cycling from top to
bottom.

3.1.3 Tasks
There were two tasks that participants were confronted with within the user tests. One
task was the one that the participants were trying to demonstrate to the robot. The
other task was done solely by the robot, which it performed in front of the participants
to demonstrate its initial skill (see section 3.1.2). Both will be described in more detail
below.

3.1.4 Demonstration Task
In robot LfD research there is a variety of different tasks which for example include: pick
and place, peg insertion, polishing, grasping, or assembly operations. These are found
often in manufacturing-themed works. More specific ones can be found for example within
the healthcare sector, which include: feeding, specific tasks for physical rehabilitation,
surgery, and assisting or handling objects. Besides these examples, there can also be
found tasks which are about basic movements for specific mobile robots, which include:
flips, rolls, or even more complicated flight maneuvers for aerial robots, valve turning or
marine data collection for underwater robots, walking or gait optimization for bipedal or
quadrupedal robots (locomotion) [80].

As this work already focused towards SRs, the type of robot was chosen to be a humanoid
SR for the experiment. Furthermore, as described above, the user tests will be conducted
within a VR environment, so the robot will be presented digitally. This way, certain
basic robotic movements can simply be done over pre-recorded animations. Many of the
above examples of tasks are too specific and could lead to different and strong opinions
by participants when asking certain questions about the robot’s abilities and safety etc.
However, some tasks are more abstract, like for example: pick and place, grasping, or
peg insertion. The first one among these three seemed to be the most straightforward
one to choose since this can be done with all kinds of basic shaped objects and is often
incorporated into related user studies [77, 81, 72, 7, 14].

The final pick-and-place task was defined as such: Initially, three cubes are being generated
within a pickup area for both, the robot and the teacher respectively. The teacher stands
opposite the robot while demonstrating to it, how to pick and place the three cubes into
a fixed target area while maintaining a specific final order to them. The correct target
order of the three cubes is instructed to the teacher (please refer to figure 3.2).

Within this task, the learning rate of the robot was of importance (see section 3.1.2).
This defined how many demonstrations were needed as input from the human teacher to
successfully teach the robot. This implied that the robot must not have accomplished

23



3. Approach

Teacher pickup-area

Target arrangement

Teacher target-area

Robot target-areaRobot pickup-area

Figure 3.2: Initial setup for pick-and-place task in top-down view

the task before it observed a certain amount of demonstrations depending on whether its
learning rate was set to slow or fast. To avoid having the robot achieve the goal of the
task by accident, the actual learning of it was simulated instead of using actual machine
learning. This ensured that the robot’s movements and learning outcomes were the same
across each of the user tests for all of the participants. That way the results from each of
the participants were comparable more accurately, excluding any kind of randomness
that an actual machine learning strategy would have introduced.

For the simulated learning to happen, the following questions had to be answered:

• How does the robot learn?

• How does the robot show to the teacher its increasing proficiency at the task?

How does the robot learn? Within each single user test and for each single condition
the robot started without having any proficiency with the task. When a participant
provided a valid demonstration (i.e. the cubes on the participant’s side were correctly
picked and placed into the target area while also having them in the correct final order),
the task proficiency of the robot increased. The task proficiency itself can be represented
as a percentage value between 0% (i.e. no proficiency at the task) and 100% (i.e. being
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able to correctly do the task). The extent to which this level increased for each valid
participant demonstration, depended on the learning rate setting of the robot. For the
test-conditions A and C (see table 3.1) the learning rate was set to slow, which means the
robot increased its task proficiency by only 11% for each valid demonstration provided.
For the other two conditions B and D, the learning rate was set to be fast, increasing the
robot task proficiency by 34% for each valid demonstration provided. This resulted in a
slow learning configured robot being able to accomplish the task after ten iterations and a
fast learning configured robot already after only three iterations of valid demonstrations.

How does the robot show to the teacher its increasing proficiency at the task?
Since the task proficiency of the robot was being tracked for each user test and increased
for each valid demonstration, this property was also then used by the robot to show the
teacher how proficient it was at the task. For this, the robot tried to do the task by itself
after each demonstration it observed from the teacher. Depending on the current task
proficiency, the robot then either executed the task with multiple mistakes at once (i.e. a
combination of single mistakes), a single mistake or no mistake (please refer to figure 3.3
and 3.4). So, if the robot made a mistake it was one of the following: Cubes in the wrong
order (M1), cubes misplaced (M2), or the combination of these two (M1+2, see table 3.3).
Additionally, if the robot made a M2 mistake, the distance of misplacement also depends
on whether the robot has low or high task proficiency. If it is low, the distance is greater,
and vice versa.

Demonstration task mistake table

Proficiency

Range (%)
< 33.34

≥ 33.34

< 66.68

≥ 66.68

< 100
≥ 100

Mistake M1+2 M1 M2 -

Table 3.3: Mistakes made by the robot by task proficiency level

The proficiency increasing step sizes of 11% and 34% were roughly picked because, first
the participants should be well able to distinguish between slow and fast learning robots,
and second the individual experiment runs (i.e. briefing, questionnaires, four user test,
and interview) should fit into roughly one-hour time slots.

3.1.5 Initial Proficiency Task
This is a task that the robot executes on its own at the very beginning of each of the
user tests (i.e. also for each of the individual test conditions). This was done to suggest
to the participants how much proficiency the robot had with a different task, effectively
introducing them to the first mentioned independent variable, described in section 3.1.2.
Since the task must be different from the demonstration task, another more abstract
task was chosen, which is the task of drawing a rectangular shape. This task is different
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Teacher pickup-area

Target arrangement

Teacher target-area

Robot target-area

no mistake or M1 or M2 or M1+2

Robot pickup-area

Figure 3.3: Valid demonstration, robot task execution outcome depends on proficiency

Robot target-area: M2
Misplaced cubes

Robot target-area: M1+2

Robot target-area: M1
Cubes in wrong order

Robot target-area: No mistake

Figure 3.4: Types of mistakes
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from the demonstration task enough so to avoid having participants interpreting it as
being interconnected, while also still sharing similarities between them. For example,
the 2D shape of a cube on a flat surface is a rectangle, so if the robot understands how
this shape is drawn, this might be able to suggest to the teachers that there is some
understanding of how to place cubes onto flat surfaces. While this suggestion is not
required for participants to get to answer any of the research questions, still it seemed
that this may have led to higher chances of participants making guesses on how the
robot would perform on the pick-and-place task afterward which also would not be of
any discount to the results. Also, like the demonstration task, this task was not done
with actual machine learning to prevent difficult-to-compare results.

For the test-conditions A and B (see table 3.1), the initial proficiency was set to low,
meaning the robot was not able to correctly draw a rectangle, whereas in test-conditions
C and D it was high, meaning that the robot was able to perfectly draw a rectangle. The
path that the robot tracked with its hand to draw the rectangle was fixed for each of
the test conditions (please refer to figure 3.5). Furthermore, there is no learning process
running for the robot as it presents its skills on this task, leaving it always drawing the
same shape over and over again within a given test condition until the teacher decides to
move on to teaching the actual demonstration task.

(Test-Condition A) (Test-Condition B) (Test-Conditions C and D)

Figure 3.5: Different paths for the initial proficiency drawing task

For condition A the path was set deliberately to be incomplete and with offsets to the
edges, resulting the robot in drawing an open imperfect shape. For condition B the order
of the edges of the drawing path was swapped with also having offsets to the edges as
well, resulting the robot in drawing more of an hourglass shape. With conditions C and
D, the robot was given a path for drawing a perfect enclosed rectangular shape.

3.1.6 Resources
For the study to be conducted, the following was necessary: A computer capable of
running Unity 2022.3.21f1, a Meta Quest 2 Head-mounted Display (HMD) with one
default hand-held controller, an audio recorder for recording interviews, a notebook for
letting participants fill in the questionnaires digitally and a lab room with enough space

27



3. Approach

for participants to do the necessary interactions within the VR environment in a standing
position, requiring about 4m2 of room without any obstacles.

3.1.7 Participants
Due to the Latin square balanced condition sequences for the user-tests (see section
3.1.2), the study needed to have a multiple of four participants, and aimed for at least
20. People of all ages, genders, and ethnic groups were welcome to join the study. Each
of them would take about one hour in the lab to complete the experiment, including
briefing, the four individual user tests, questionnaires, and an interview. People who
had no experience with VR before were expected to need a bit more time to get used
to it, which needed to be accounted for while planning the time slots. Furthermore,
short-sighted people with bigger glasses were not able to join the study, as they would
not fit into the relatively small interface gap inside of the HMD.

3.1.8 Measures
For this study, the required measures have been made over multiple sources, which
consisted of: an onboarding questionnaire, a robot assessment questionnaire, and event-
logging with timestamps from each of the user tests and interviews. Each of these sources
will be described in more detail below.

Onboarding questionnaire: Participants filled in this questionnaire right after the
briefing and right before doing the user tests. The questionnaire measured:

• Age: text field

• Gender: multiple choice with an optional text field.

• Highest level of education: single choice with an optional text field.

• Employment status: single choice with an optional text field.

• Experience with teaching: text field.

• Technical skills in terms of machine learning: 1 to 5 Likert-scale.

• Education related to robotics, computer science, or similar: text field.

• Experience with VR: single choice.

• Comfort with new technologies: 1 to 5 Likert-scale

• Interest about humanoid robots: 1 to 5 Likert-scale

• Personality traits according to the Ten-Item Personality Inventory (TIPI) [82].

28



3.1. Study Design

These measurements have been made to be able to provide overall demographic informa-
tion about the people who participated in the experiment as well as for potentially being
able to reason about certain study results, if applicable.

Robot assessment questionnaire: This questionnaire was filled in by participants
right after completing each of the four individual user tests and measured:

• Participants’ impressions of the robot, including anthropomorphism, animacy,
likability, perceived intelligence, and perceived safety, according to the Godspeed
series [83].

• Self-efficacy of teaching by using a subset of the Self-efficacy in Human-Robot
Interaction Questionnaire (SE-HRI) [84].

• User-Experience about teaching the robot by using a User Experience Questionnaire
(short version) (UEQ-S) set of questions [85].

• Motivation to continue teaching the robot: 1 to 7 Likert-scale.

• Reason that made the participant stop teaching (qualitative): Free text input.

The measures of the Godspeed series, SE-HRI and UEQ-S were included to reliably being
able to gather data mainly concerned about RQ1-3 while the last two items were created
manually and provide information regarding RQ4, which is about teaching motivation.

The task for the participants was to teach the robots how to do the pick-and-place task,
as much as they wanted to, so they were able to break up each of the four teaching
sessions without having to teach until the robot accomplished the task. This was one of
the key mechanics to be able to check whether different configurations of the independent
variables made a difference for example in the participants’ motivation to continue
teaching.

Event logging & screen-recording During each of the user tests, certain events
have been logged aiming to gather vital information about the participants’ behaviors.
Each of the events had a timestamp attached to it, to be able to reconstruct the timeline,
if needed, and, which is of more importance, to automatically extract or summarize
temporal data. The following measures were extracted from event log files:

• Time needed from beginning to end of the test.

• Time the participant took to observe the robot doing its initial task.

• Sum of time the participant spent interacting with the cubes.

• Mean time of each demonstration within the test the participant spent interacting
with the cubes.
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• Sum of demonstrations given to the robot.

• Final robot task proficiency at the end of the test.

These measures were made for each individual test case A, B, C, and D. Additionally all
of these were summarized over all of the test cases as well, e.g. the sum of times needed
from beginning to end for all of the test cases and so forth. Please refer to section 3.2.5
for more detailed information on how this was done.

As an addition to logging, screen recordings of each of the user tests were made as a sort
of backup of a trustworthy source for the data. This was helpful in one or two cases,
where the logging contained a few more events than it should have due to unforeseen
actions of participants inside the VR environment. The data itself was consistent, but
the additional entries caused problems with the automatic data extraction script. With
the help of the recordings it was simple to repair the affected log files.

Interviews: Each of the participants took part in a semi-structured debriefing interview
after all of the test conditions had been completed. It was mainly concerned about RQ4
and included the following open questions:

Q1. Please describe your overall experience with teaching all the different robots.

Q2. When seeing the robot’s initial skill level, which means how well it did in drawing
the rectangle. Did this fact affect your willingness to teach the robot with the new
task? (If yes: In which way?)

Q3. When seeing how slow or fast the robot’s learning capabilities have been. Did this
rate of learning affect your willingness to teach the robot with the new task? (If
yes: In which way?)

Q4. Considering only those robots that had a bad initial skill level while drawing the
rectangle.

A. Did your motivation to continue teaching change when you saw how fast the
robot was learning the new task with the fast learning robot? Were you
positively surprised by how fast it was?

B. Did your motivation to continue teaching change when you saw how slow the
robot was learning the new task with the slow learning robot? Did you expect
this slow rate of learning?

Q5. Considering only those robots that had a good initial skill level while drawing the
rectangle.

A. Did your motivation to continue teaching change when you saw how fast the
robot was learning the new task with the fast learning robot? Did you expect
this fast rate of learning?
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B. Did your motivation to continue teaching change when you saw how slow
the robot was learning the new task with the slow learning robot? Were you
negatively surprised by how slow it was?

Q6. Which robot did you find the most demanding in terms of your engagement and
patience and why? Discuss each of the robots and ask why it is in this place on the
table.

Finally, participants were asked if they wanted to add anything else to the discussion that
had not been mentioned before. The time consumption of single interviews was aimed at
about ten minutes. The last three questions Q4-6 were special in a sense because they
only have been asked to the participants in conjunction with the data that was gathered
from the very last portion of the robot assessment questionnaire which was about the
participant’s self-rated motivation to continue teaching the robot (Likert-scale from 1 to
7). All four results regarding this part were manually noted down in a table by me as the
user tests were conducted. So, by the time the interview started I had a filled table with
all the motivation rankings the participants provided for all the test cases A, B, C, and
D. With this data the questions Q4-6 were used to ask participants why they provided
certain ratings they way they did. For example, if the teaching motivation rating for
condition D was much lower than for condition B (both were fast learning), then these
questions were used. On the other hand, if the ratings were clear from the beginning,
then the questions were either completely omitted or shortened to some extent.

3.1.9 Expected Output of the Study
An overall better rating of the perceived robot likability, intelligence, and safety along
with higher ratings regarding participant motivation and self-efficacy for user tests with
fast learning rate and high initial proficiency have been anticipated. The results of the
study and their interpretation may influence or inform certain design choices regarding
HRI research as described within section 1.5.

3.2 Implementation
The framework for conducting the user studies was provided by TU Wien as a foundation.
All the specific requirements that were needed in addition were built on top of that
framework. It provided the following features at the time of implementation: a humanoid
robot model with basic movement animations (idle state and hand waving gesture), a
table model that provided a surface for object manipulation testing, two pick-and-place
example scenarios including cube objects ready for manipulation and finally a VR headset
integration provided by various official Unity XR plugins. The framework was built
on Unity 2022.3.21f1 which also then has been used to implement extending features
required for the user-study in this work. All of the features which had been implemented
in addition to this work are described in detail below.
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Figure 3.6: Humanoid robot sample scene provided by TU Wien HRI-testing framework

3.2.1 Teaching Environment

A basic room, about the size of 14m x 6m x 24m (W x H x D) was designed around the table.
The table itself also has been re-designed and had about the size of 1.4m x 0.85m x 1.2m
(W x H x D). For the pick-and-place demonstration mechanic, four individual cube areas
have been put on top of the table as seen in figure 3.7. Both of the areas with the name
‘Unordered Objects’ represented the space in which the cubes would appear when a reset
is required. The other two areas were for task validation which is described in more detail
in section 3.2.3. Finally, a whiteboard was added to the scene which was able to show in
which order the cubes needed to be put down into the target area for the teacher to have

Figure 3.7: Teaching environment
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a valid placement. Both, the room and the whiteboard had been modeled in Blender.

3.2.2 The Robot Apprentice
The humanoid robot model was imported from the Unity Starter Assets Package provided
by Unity Technologies. It comes out of the box with basic animations, materials, textures,
and sound effects, whereas the latter was not utilized within the framework or the
extensions of this work (user tests were conducted without in-application sound effects
or music).

Movement

The TU Wien HRI-testing framework provided a test scene with the robot model in
the center standing behind a table (see figure 3.6), with the robot model having a hand
waving gesture and an already default attached idle animation (slight natural body
movements). Additionally, the model within this scene has inverse kinematic constraints
attached to its arms and head. For these constraints, there was also already an attached
empty target object (i.e. without a rendered shape). That way the hands, arms, and
head of the robot could simply be moved programmatically or within the Unity editor by
moving their respective target objects to the desired location.

Robot Initial Proficiency

This property was shown over a drawing task according to section 3.1.3. In Unity, a
simple rectangle mesh, containing exactly four vertices was added to the scene. Within a
script, these vertices were able to be retrieved over a simple function. Another script that
managed the drawing task then was able to retrieve those vertices, and make changes to
or reorder them depending on the configuration of the learning rate and initial proficiency
configurations. Then the list of vertices is traversed. The target object controlling the
kinematics of the right robot arm and the target object controlling the gaze direction
of the head were then both transformed towards the first vertex in the list over a fixed
period of time to produce an actual motion effect. Then the same movement mechanic
is done towards the next vertex in the list. If two vertices have been traversed by the
robotic hand, a line renderer was used to compute a 2D line between them. In this way,
the impression occurs that the robot is actually drawing a rectangle (see figure 3.10).
When the user test launched, participants were able to observe the robot doing this task.
In this stage of the test, only if they were looking at the robot for at least ten seconds,
the ‘Switch Task’ UI button appeared floating above the table. If participants pressed
this button, the environment switched to the pick-and-place task.

Errors: As mentioned earlier the robot was also able to draw different shapes to convey
to the teachers that the robot made a mistake or that it did not learn how to properly
draw the rectangle. Those shapes were only being drawn by the robot if the initial
proficiency was set to low, i.e. only with test conditions A and B. Participants were told
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Blank square Line 1 Line 2 Line 3

Figure 3.8: Test-Condition A: Robot missing a side of the rectangle, edges are offset

Blank square Line 1 Line 2 Line 3 Line 4

Figure 3.9: Test-Condition B: Robot drawing hourglass instead of rectangle

Blank square Line 1 Line 2 Line 3 Line 4

Figure 3.10: Test-Conditions C and D: Robot drawing a correct rectangle

that each of the test cases had differently trained robots, so in order to not confuse them
by showing the same erroneousness rectangle twice, two different shapes were used (see
figures 3.8 and 3.9), like described in section 3.1.5.

Robot Learning Rate

The robot learning rate defined how big of a step the robot task proficiency p increased
after each demonstration had been made by the human teacher. For each user test it was
initialized with p = 0.0. If a teacher provided a valid demonstration, the value has been
increased either by 0.11, if the learning rate was set to slow, or 0.34, if the learning rate
was set to fast. The maximum value for p was set to 1.0 representing 100% proficiency.
If the value reaches this maximum, the robot will not make any more mistakes.
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Algorithm 3.1: Demonstration task: Main loop
Data: Global LR, Global E
// LR - Learning rate setting: LR ∈ {0, 1}
// E - List of possible errors: E = {0, 1, 2}
// c - Defines whether to continue or not: c ∈ {⊥, ⊤}
// p - Current robot task proficiency: p ∈ [0, 1], p ∈ R
// L - List of target locations for each cube

1 c ← ⊤;
2 p ← 0;
3 i ← 0;
// Start main loop

4 do
5 e ← Call Next-Error(p);
6 Call Reset-Cubes-Location();

/* Waits until the teacher places all the cubes and hits
the finish button, returns target locations for each
cube already prepared for the robot target area. */

7 L ← Call Wait-For-Demonstration-Finished();
8 if LR = 0 then
9 p ← p + 0.11;

10 else
11 p ← p + 0.34;
12 end
13 if p > 1.0 then
14 p ← 1.0;
15 end
16 Call Robot-Execute-Task(L, e, p);
17 i ← i + 1;
18 if i > 3 then
19 c ← Call Show-Feedback-Dialog();
20 end
21 while c = ⊤;

Explained in more detail, algorithm 3.1 shows a simplified version of the demonstration-
task loop. First, the next error is picked from the list of possible errors which is based
on the current robot task proficiency value. More details about errors are provided in
the upcoming paragraph. Next, the code moves all of the cubes back to their original
locations and into their respective pickup areas. Then it waits for the teacher to complete
with a demonstration. Wait-For-Demonstration-Finished() internally then fetches where
in the teacher’s target area the cubes have been placed, and then calculates and returns
the coordinates where the robot should place its cubes into its target-area, for it to be a
correct reproduction of the demonstration. Also after the teacher finished a demonstration
the task-proficiency increased, with a step size depending on the current learning rate
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Algorithm 3.2: Function: Robot-Execute-Task
Data: Global C – List of cube objects
Input: L – List of target locations for each cube, i.e. 3D-coordinates
Input: e – Error type: e = −1 if no error should be made
Input: p – Current robot task proficiency: p ∈ [0, 1], p ∈ R
// Li - List item of L: Li = (x, y, z) where x, y, z ∈ R
// Ci - List item of C: Single cube at index i
// Start function

1 assert |C| = |L|;
2 if e = 0 then

/* Picks two random target coordinates and swaps them.
This way the cubes are in the wrong order after the
robot places them into the target area. */

3 L ← Call Randomly-Swap-Two(L);
/* Randomly picks one of the target coordinates and

applies an offset to the z-axis. This results in one
cube being put too far away from the other ones. The
magnitude of the offset is dependent on p. The
higher p is, the smaller the degree of misplacement.

*/
4 L ← Call Randomly-Misplace-Single(L, p);
5 end
6 if e = 1 then
7 L ← Call Randomly-Swap-Two(L);
8 end
9 if e = 2 then

10 L ← Call Randomly-Misplace-Single(L, p);
11 end

/* Loops over the individual cubes and makes the robot
pick cube Ci and place it to the target-coordinate Li */

12 for i ← 0 to |L| do
13 Call Robot-Pick-And-Place-Cube(Ci, Li);
14 end
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setting. Algorithm 3.2 then takes the error type from before as input and handles it
accordingly. It does so by swapping or manipulating the target coordinates if needed.
Then, the robot model will be told to pick and place each of the individual cubes to
their respective target locations. Finally, the teacher will be asked whether the teaching
session should continue or not over Show-Feedback-Dialog(). Please refer to section 3.2.4
for more detailed information.

Errors The robot has been making mistakes according to the definitions in table 3.3
and figure 3.4, if the current robot task proficiency was p < 1.0. Algorithm 3.3 shows how
the error type was picked from the list of possible errors E = {0, 1, 2} which depended on
p. Each of the elements of E represents an error type: 0 → M1+2, 1 → M1 and 2 → M2.

Algorithm 3.3: Function: Next-Error
Data: Global E – List of possible errors (integer-encoded): E = {0, 1, 2}
Input: p – Current robot task proficiency: p ∈ [0, 1], p ∈ R
Output: e – Integer-encoded error type: e ∈ E ∪ {−1}
// e = −1 → no error
// Start function

1 if p ≥ 1 then
2 return −1;
3 end
4 i ←

⌊︂
|E| · p

⌋︂
;

5 e ← Ei;
6 return e;

3.2.3 The Human Instructor
Participants were asked to provide demonstrations to the robot within the user tests. A
Meta Quest 2 HMD together with its right hand-held controller was used to enable them
to do so within a VR environment. Usually, no special locomotion technique was needed
as they only would generally have to stand in a specific area within the scene to be able
to do the task. Also, the physical space within the lab room was enough for them to
adjust to smaller spatial corrections if needed. In rare cases, when the mapped location
from the VR headset was off a few meters within the VR environment, I made a live
location reset of the participant within the scene through the unity editor.

User Input

The participants were able to do all the necessary actions over the hand-held controller’s
trigger and grip button. The first one allowed them to press User Interface (UI) buttons
while the latter one enabled the pick-and-place mechanic for objects. In order to pick
up an object, participants simply had to target a draggable one (which was only cubes
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No validation Validation failed

Validation failed Validation succeeded

Figure 3.11: Individual cube placement and validation of demonstration

in this case) and then press and hold the grip button of the controller. While holding
the object, participants were able to relocate it to their liking. Once they let go of the
button, the object would simply drop from where it has been relocated to.

Task Demonstrations and Validation

Demonstrations were provided by teachers by moving each of the cubes from the pickup
area into the target area. The final row order of the placed cubes had to match with
the description on the whiteboard. Only if the demonstration was valid, the teacher was
able to pass it to the robot by pressing the ‘Finished’ UI button. Algorithm 3.4 shows in
a simplified version how the cube order was validated. It assumes to have an already
sorted list of the locations of the teacher’s cubes as input, i.e. the cube which should
be the outer left according to the task description on the whiteboard is the first one in
the list, the one which should be in the middle is the second and the one that should
be right is the last. The list of cube coordinates is traversed and various conditions are
checked, such as whether each of the cubes is inside of the target area, whether they are
in a row formation, or whether they are in close enough proximity. Figure 3.11 presents
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a sequence of cube placements and their validation states. If the target area was colored
gray, this meant that no validation had been made so far, an orange color meant that
the validation failed and if the area was rendered green with a big tick symbol in the
center, this meant that the validation succeeded.

Algorithm 3.4: Validation of cube placement
Data: Global cs – Side length of cube objects: cs ∈ R
Input: V – List of teacher’s cube locations, sorted according to the target order
Output: v – Placement of cubes valid: v ∈ {⊤, ⊥}
// Vi - List item of V : Vi = (x, y, z) where x, y, z ∈ R
// Start function

1 z̄ ← 1
|V |

∑︁|V |
i=1 Vi,z;

2 v ← ⊤;
3 for i ← 1 to |V | do
4 if ¬ Call Is-Cube-In-Target-Area(Vi) then
5 v ← ⊥;
6 end

/* Checks if the order of placement is correct */
7 if Vi+1 ̸= None ∧Vi+1,x < Vi,x then
8 v ← ⊥;
9 end

/* Checks if cubes are in proximity (i.e. space between
them does not exceed 7.5 cm) */

10 if Vi+1 ̸= None ∧|Vi,x + cs
2 − (Vi,x − cs

2 )| > 0.075 then
11 v ← ⊥;
12 end

/* Checks if cubes are placed within a row on the x-axis
(i.e. from left to right from the teacher’s point of
view) */

13 if |z̄ − Vi,z| > cs
3 then

14 v ← ⊥;
15 end

/* Checks if cubes are not stacked on top of each other
in some way */

16 if Vi+1 ̸= None ∧(Vi+1,y < Vi,y − Vi,y · 0.05 ∨ Vi+1,y > Vi,y + Vi,y · 0.05) then
17 v ← ⊥;
18 end
19 end
20 return v

39



3. Approach

3.2.4 Feedback Dialog
After having completed a fixed set of four demonstrations and when the robot finished
placing the cubes, a dialog appeared, as seen in figure 3.12, in front of the participants,
asking them whether or not they want to continue teaching the robot or not. After
the ‘Continue’ UI button was clicked once, the dialog appeared after each successive
demonstration. This mechanic let participants discontinue their efforts more confidently
for each of the different test conditions.

Figure 3.12: Feedback dialog asking the participant to continue or stop with teaching

3.2.5 Logging of Events
In addition to questionnaires, the logging mechanic during the user tests has been one of
the main sources for the quantitative data analysis, as already mentioned in section 3.1.8.
The following events have been logged during each of the user-tests:

• Application events:

– Application started.
– Robot initial proficiency and learning rate settings on application start.
– Application ended.

• Demonstration events:

– Increased robot current task proficiency.
– Robot finished with task execution.
– Next robot mistake type chosen (i.e. M1, M2 or M1+2).

• UI events:
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– ‘Finished’ button pressed.

– ‘Reset’ cubes button pressed.

– ‘Switch task’ button pressed.

– ‘Continue’ feedback dialog button pressed.

– ‘Exit’ feedback dialog button pressed.

The respective log files were created at the application start if needed. The naming
followed the format: Log_p<participant-ID>_<yyyy-MM-dd>.txt, where the
current participant ID was taken from a public variable editable within the unity editor,
and the current date is appended, e.g. as such: Log_p01_2024-07-03.txt. If a file
with the same name already existed (i.e. for the same participant and date), then all of
the logs during user tests were just appended to this file, otherwise, it has been created.
Each of the log entries was appended to the file over an internal logging object, which
contained the properties: event-type (which referred to one of the items in the listing
above, encoded as a number), timestamp (date and time of the event) and message
(which contained human-readable text and sometimes vital payload data). These logging
objects were transformed into a JSON format before they were finally written into the
file. This was done to simplify the later data processing of these files in the evaluation
phase of the study, which is described in section 3.3.3.

3.3 Evaluation

3.3.1 Participants and Time Slots

Participants were recruited based on availability, accessibility, and mailing lists. Once
the communication channel to potential participants has been established, further details
were provided to them by sending a Termino link to them. Termino is a publicly available
online platform designed for appointment coordination with a special interest in data
protection and GDPR compliance. On the website, potential participants were able to
read a short description of what the study was about, where the lab room was located,
and how long it would take them to participate. Time slots were provided to them, giving
them options usually for the current or also even for the following week. If they found a
fitting time slot, they were able to book it by providing an e-mail address.

Each week had up to about ten time slots, usually targeted at afternoons or early evenings,
scattered over the weekdays from Monday to Saturday. Occasionally participants reached
out to negotiate special time slots when there was none provided that would fit into their
schedule. Time slots were scheduled with 40 minutes buffer time between them, in cases
where they have been added back-to-back. Over roughly two months (July and August
2024), a total of 24 participants, 11 male and 13 female (self-identified), had volunteered
to take part.
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3.3.2 Lab Experiment

All of the participants taking part in the experiment went through three stages, consisting
of onboarding, user tests, and interviews. Table 3.4 shows an outline of these stages, how
much estimated time they needed, and which data was collected.

Lab experiment

Stage Estimated
time needed Data collection

Welcome &
Consent Form ∼ 3 min -

Onboarding
Questionnaire ∼ 5 min Quantitative:

General demographic data, TIPI [82]
Onboarding

Briefing ∼ 2 min -

User Tests ∼ 30 min

Quantitative:
Logged event data with timestamps.
Data from robot assessment
questionnaire including
Godspeed [83], UEQ-S [85]
and a subset of SE-HRI [84]

Qualitative:
Open question from the concluding
part of the robot assessment
questionnaire

Debriefing Interview ∼ 10 min
Qualitative:
Data on participant’s motivation
about teaching the robot

Table 3.4: Lab experiment summary: Estimated time and data collection

Onboarding

The onboarding stage of the experiment included the welcoming of a participant, an
introduction to the project, a consent form for them to sign, a questionnaire for them to
fill out, and finally a briefing that explained what they were being asked to do within the
experiment.
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Consent form: Once participants got to the lab room within their respective time slots,
they first have been asked to sign a consent form and with it give the necessary permissions
to collect, store, and process all of the relevant data for the study, including photos,
video and audio recordings during the individual parts of the experiment. Although
all participants signed this document, if pictures or videos were being made of them,
for example during the user tests, they were asked again for their permission, since
this data was not mandatory for data analysis. Additionally, the document contained
a short project description and informed the participants that they were able to speak
freely during the experiment and that they were able to leave it at any time without
consequences.

Onboarding questionnaire: This questionnaire gathered demographic data and asked
participants about certain personality traits. Participants were aged between 22 and 40
(M = 29.54, SD = 4.23). When asked about their highest level of education, participants
responded with ‘Bachelor’s degree’ (9), ‘Master’s degree’ (8), ‘Matura (Austria) or high
school’ (6) and ‘Dipl. Ing. (FH)’ (1). Their current state of employment were ‘employed
part-time’ (9), ‘employed full-time’ (4), ‘employed part-time & student’ (4), ‘self-employed’
(3), ‘student’ (2) and ‘unemployed’ (2). When asked about whether they have experience
with teaching, participants responded with having experience as a tutor or school teacher
(11), no experience (9), experience with teaching children outside of school (3), and
corporate training (1). Participants were asked on a Likert scale from 1 (novice) to 5
(expert) about their technical skills in terms of machine learning or artificial intelligence
(M = 2.54, SD = 1.25). When asked whether they had any kind of formal education
about computer science or robotics, participants responded with currently studying or
already having a university degree in computer science (15), having basic or advanced
education in software developing (3), and, no formal education (6). Participants had
minimal (17), moderate (4), extensive (1), or no (2) experience with VR. Further, they
were asked about how comfortable they are with new technologies on a Likert scale from
1 (disagree strongly) to 5 (agree strongly) (M = 4.25, SD = 0.85) and on the same scale
from 1 (no interest) to 5 (high interest), they have been asked how interested they were
about humanoid or collaborative robots (M = 3.67, SD = 0.87).

Additionally, as mentioned in section 3.1.8, participants have filled in the TIPI. Results
are provided in the next chapter in section 4.1.

Briefing During the briefing, participants were informed that the study was about
certain aspects of robots learning from demonstration together with a short explanation
about what that means, and that the tests would be conducted within a VR application.
They have been told that they would try to teach a certain pre-defined task to a
humanoid robot within said application. Subsequently, it was communicated that the
robot is learning from them with the help of some ML algorithm which would run in
the background during the process of teaching. The initial proficiency task was brought
to their attention, by mentioning that the robot would demonstrate to them what it
learned on another task. Afterward, the actual task, that they should teach the robot,
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was mentioned to them, and that it would be necessary to provide correct demonstrations
to have it learn. Additionally, they were told that they would face the robot four times
altogether with each time having a different configuration of the ML algorithm behind
the scenes, and that they should be aware of having to provide different numbers of
demonstrations for each of the individual tests to have the robot learn how to successfully
execute the task. To avoid confusion, they were notified that each of the individual
tests would start afresh, essentially saying that the results or learning outcomes were not
dependent on each other. Finally, they were told that after some time there would be a
dialog appearing in front of them, asking them whether or not they wanted to continue
teaching or not and that they were free to decide on their own about which option to
choose, and if they decided to discontinue the process, that any possible reason would be
a valid one.

Questions from participants regarding the information above were answered during or
after the briefing if needed. Any questions regarding study details, which occasionally
arose due to the demographics of the participants were deferred to the very end of the
experiment. Participants were asked about their experience with VR and were given a
short introduction on how to attach the HMD and how to use the hand-held controller.

Tutorial

Once participants knew how to put on the HMD they were first confronted with a tutorial
within the VR application. They have been put in front of a table with the humanoid
robot standing behind it, just like with the actual pick-and-place teaching scenario, but
without any cubes or the usual UI. A dialog guided them through the process step by
step. Figure 3.13 shows example screenshots of two different stages of the tutorial.

Figure 3.13: Example Screenshots from the tutorial mode

User Tests

After the participants have finished the tutorial, they have been asked whether there
are any remaining questions concerning the user input or the pick-and-place task. Once
everything was clear, the user tests were started with the first set of conditions according
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to table 3.2. Just as with the tutorial, participants started off standing behind the
empty table. On rare occasions the mapped location of the VR headset in the virtual
environment had a few meters offset on the x-axis or z-axis, i.e. participants were too
far off from the table and would not be able to do the test in such cases successfully.
Since this bug was known beforehand (see section 3.2.3), a location reset option was built
into the unity-editor, only visible to me, which relocated participants back to the default
location, if needed.
In the default case, or after participants got re-located, the robot started with the
rectangle drawing task, as described within sections 3.1.5, 3.2.2 and as shown in figure
3.10. In order to continue, participants had to spend some time looking into the direction
of the robot, essentially observing it doing its drawing task. After some time a UI button
appeared in front of the participants and they were able to switch to the pick-and-place
task. When this action was triggered, the interactable cubes, UI elements, and all of the
four picking and placing areas were made visible on top of the table and participants
were able to start providing demonstrations as described in sections 3.1.4 and 3.2.2.
Participants spent the majority of the time within the VR application within this stage
of the user tests.
During this time, usually, they straightforwardly provided demonstrations, i.e. by
randomly picking and placing the cubes into the target area until the task was completed.
Participants tended to misplace the cubes within their first few tries, violating one or
more of the validation rules described in algorithm 3.4. In this case, participants were
not able to finish their demonstrations. The most common error at that point was that
cubes had been placed too far from each other on either the x-axis or the z-axis in Unity’s
coordinate system. The second most common error was that cubes have been placed in
the wrong order, which happened in later demonstrations or user tests more often than
the first error. Participants sometimes asked what to do in such situations, or figured it
out by themselves.
Some of the participants tried different teaching strategies, including demonstrations
with slower or more precise movements, demonstrations with specific placement orders of
the cubes, or introducing very specific or seemingly easy-to-get motions for the robot to
observe. These were partly observed during the user tests or in their respective screen
recordings. Participants sometimes mentioned how they tried different strategies in the
later interviews.
After participants provided four valid demonstrations, they were asked whether they
wanted to continue with teaching or not according to section 3.2.4 and as shown in
figure 3.12. When this dialog appeared the first time, it is worth mentioning that the
robot already learned how to do the task successfully in test cases B and D, as the robot
was configured with a high learning rate (see table 3.1). Participants have not been
encouraged to make a choice by this dialog to either continue or discontinue with the
teaching process before the fourth demonstration has been provided to them. Due to the
faster learning process of the robot, participants stopped earlier in test cases B and D
than with test cases A and C, where the robot was configured to be slow learning.
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If participants decided to discontinue the teaching process within a given user test,
they were asked to take off the HMD to fill out the robot assessment questionnaire
as described in section 3.1.8. Once this was completed as well, participants repeated
the whole procedure of teaching the robot within the VR application and filling out
the questionnaire for the remaining test conditions. Each time that one of the four
questionnaires was completed, the results of one of the questions were noted down in a
table which in the end represented the participant’s self-rated motivation scores for each
of the test cases on a Likert scale from 1 to 7. This served as a foundation for some of
the questions for the finalizing interview as described in section 3.1.8.

Debriefing Interview

After all of the user tests and their respective questionnaires were completed, participants
were asked to take part in a short finalizing and audio-recorded interview as described in
section 3.1.8. In summary, Q1 served as an entry question and participants often already
had something on their mind that they wanted to share. Q2 and Q3 were specifically
asking about whether they were affected by the robot’s initial proficiency and learning
rate. Especially with the robot’s initial proficiency drawing task, participants felt that this
did not impact them in terms of their motivation, however, sometimes these explanations
did not fit with the ratings from the table which was filled with their self-rated motivation
results from the robot-assessment questionnaires. In this case, or if the numbers within
the table seemed to be unclear in terms of consistency, Q4-6 were additionally brought
into the interview. As with the learning rate of the robot, a majority of participants
reported a feeling that their motivation was inhibited by a slow learning configuration
compared to a fast learning configuration.

3.3.3 Data Analysis
Quantitative Data

Since both, the onboarding and robot assessment questionnaires have been filled out over
Google Forms, the resulting data was made available and downloaded as comma-separated
plain text data (CSV) by the online tool, which is available out of the box. For each
participant, there was one file for the onboarding and four (i.e. one for each of the test
cases) for the robot assessment questionnaire results. All five files were merged into a
single one which contained all of the questions within the columns, whereas the robot
assessment questions were suffixed with their respective test-case names _A, _B, _C,
or _D. This was done to have the results for each of the participants in a single row,
making data easily accessible for statistical analysis.

Further, the response values of participants from the individual questions from the
TIPI, Godspeed, SE-HRI, and UEQ-S items have been summarized into values that
represented their scales. These scales namely have been Extraversion, Agreeableness,
Conscientiousness, Emotional stability, and Openness to experiences, for the TIPI part of
the questionnaire. According to Gosling et al. [82], for every scale, the response values
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have first been flipped for reverse-scored items, and then summarized by forming the mean
of the values for every item of the scale. The same procedure was made for the Godspeed,
SE-HRI and UEQ-S scales. Additionally, as for these scales, values existed for each item
and each of the test cases A, B, C, and D, the summarizing value for the scales were
again suffixed with _A, _B, _C, and _D. Thus, the Godspeed items were summarized
into Anthropomorphism_A/B/C/D, Animacy_A/B/C/D, Likeability_A/B/C/D, Per-
ceived_intelligence_A/B/C/D and Perceived_safety_A/B/C/D [83]. The subset of the
SE-HRI items were summarized into a single scale Self-efficacy_A/B/C/D [84] and the
items of the UEQ-S were summarized into the two scales Pragmatic_quality_A/B/C/D
and Hedonic_quality_A/B/C/D [85].

Additionally, the event logs from each of the participants were processed with the help of
a custom Python script. All of the log files (one per participant) were put into a folder
out of which the script would loop over and read them one after another to process the
contents. Each of the calculated parameters was again labeled with a suffix to refer to
the test case it corresponds to. Again, the used suffixes were: _A, _B, _C, and _D,
representing the test cases, and _ALL which represents the sum or average value of all
of the test cases. The following data was calculated:

• ‘time_seconds_A/B/C/D/ALL’: How long did the test take in seconds, measured
from application start and end events (see section 3.2.5).

• ‘time_observing_initial_task_seconds_A/B/C/D/ALL’: Represents how much
time a participant spent observing the robots initial drawing task in seconds.
The application start and ‘Switch task’ UI button events were required for this
measurement.

• ‘time_interacting_seconds_A/B/C/D/ALL’: Represents how much time partic-
ipants spent interacting with the cubes during the pick-and-place task, or, the
time devoted to providing demonstrations to the robot. The three ‘Switch task’,
‘Finished’, and ‘Reset’ cubes UI button events were needed for the calculation.

• ‘interacting_repetitions_A/B/C/D/ALL’: Represents how many demonstrations
the participants provided to the robot before they discontinued the teaching process.
The number of repetitions is the same as the number of appearances of the ‘Finished’
UI button event.

• ‘mean_time_per_interaction_A/B/C/D/ALL’: Represents the average time in
seconds that a participant needed to finish with a demonstration. This resulted by
the division of ‘time_interacting_seconds_A/B/C/D/ALL’ by the corresponding
‘interaction_repetitions_A/B/C/D/ALL’.

• ‘robot_proficiency_score_A/B/C/D’: Represents the proficiency value that the
robot had by the end of each user test. This was simply done by reading the
payload of the increased robot current task proficiency event.
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• ‘mean_robot_proficiency_score_ALL’: Represents the average of the previous
values, i.e. the sum of the individual proficiencies from ‘robot_proficiency_score
_A/B/C/D’ divided by the number of test cases.

All of the results were written into a separate CSV file which followed the same structure
as the one containing the questionnaire results. Again, the already merged file was
merged with the file which resulted from the event data processing, resulting in a single
file with all of the quantitative results gathered throughout the experiment.

Parameter selection for statistics: Nearly all of the parameters above have been
consulted for statistical data analysis, except for ‘time_seconds_A/B/C/D/ALL’, ‘mean_
time_per_interaction_A/B/C/D/ALL’ and ‘mean_robot_proficiency_score_ALL’.
Those parameters have been dropped because they already are indirectly represented
within other parameters.

Statistical analysis: The upcoming chapter first shows statistical results from the
quantitatively measured and pre-processed data (some items were summarized into
representative scales like described above). Except for the TIPI scales, from all the
other measurements of the selected parameters, a barplot which shows mean values and
standard errors, a boxplot, and a violin plot, which shows individual and combined
mean values were made for visual representation. These plots were grouped by the two
independent variables learning rate (grouped on x-axes) and learning rate (grouped by
color). Additionally, descriptive statistics are provided to offer a comprehensive view of
the data for each measurement and to support the detailed description of the results.

For items that were summarized into their representative scales, i.e. the items from
Godspeed, SE-HRI and UEQ-S, Cronbach’s α [86] was used to present how reliable these
scales were representing their underlying construct.

The Aligned Rank Transform (ART) [87] was applied to all of the quantitative data
before proceeding with calculating each of the ANOVA results. It is commonly used
in Human-Computer Interaction (HCI) or HRI when non-parametric data is evaluated.
Applying ART ensures that the data will meet expected assumptions for factorial analyses,
such as with ANOVA. It is important to mention that therefore all of the ART ANOVA
results in the following chapter are being calculated off of the transformed instead of the
raw data.

If the ART ANOVA results showed that there was a statistically significant interaction
effect of the two independent variables initial proficiency and learning rate, post-hoc
contrast tests were conducted by using the ART procedure for multifactor contrast
tests (ART-C) [88], which was specifically designed to perform contrast tests for ART
ANOVA results. Internally, ART-C utilized Tukey’s Honestly Significant Difference
(HSD) test to conduct multiple comparisons and to adjust for Type-I errors, revealing
significant differences with some measures. While Bonferroni p-value adjustments were
also considered, they turned out to be too conservative and resulted in non-significant
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differences. These between-group contrast tests were made to help understand which of
the individual test cases are significantly different from each other.

Qualitative Data

Interview recordings have first been transcribed with the help of OpenVINOTM AI
plugins for Audacity. The plugin provided an audio transcription tool directly within
Audacity’s UI by using features of OpenAI Whisper at its core. OpenAI Whisper
is a speech recognition model trained on a large dataset, capable of various kinds of
language processing, including transcription of audio files to text. Once an interview
was transcribed by Whisper, the plugin inserted the text as labels beyond the audio
track. Manual corrections to these labels were made subsequently to remove any kind of
mistakes that the tool made. Additionally, filler words or disfluencies were also removed
from the transcript to improve readability.

Besides the above, annotations to the text were made to contextualize it, including [I] and
[P], indicating whether I (the interviewer) or the participant was talking, and also [A],
[B], [C], [D] or the combination of them, if a part of the text referred to specific user tests.
For example for a participant with the test-sequence S1 (refer to table 3.2): ‘The first
robot...’ would refer to test case [A], whereas ‘The second and the third robot...’ would
refer to test cases [B, D]. After all of the interviews were transcribed and annotated, they
were exported into a text file, making them easier to read for further processing.

In order to potentially extract meaningful results from the qualitative data, a template
thematic analysis [89] approach was utilized. The interview questions already encoded
the initial themes. The interview question Q2 encoded a sort of expectation theme, in
which participants were expected to answer if they perceived any sort of bias towards
the robot doing the initial rectangle drawing task. Q3 encoded a sort of motivational
theme, where participants were expected to give details about how they were affected by
the robot’s learning rate. Q4-6 encoded a sort of interaction theme where participants
were expected to provide answers about how the interaction of the two robotic traits,
initial proficiency, and learning rate influenced their motivation.

The transcripts have been transferred to a Miro board. Miro offers an infinite canvas, a
collaborative design tool with various features and templates. A canvas that is given a
title and which is created as blank or copied from a template is called a Miro board. For
the qualitative analysis of this study, a simple table template has been used to create
the board. The table was modified in such a way that the row header contained the
participant ID and their assigned test sequences, the columns represented the qualitative
questions asked during the experiment, starting with interview questions Q1 through
Q6, then with an additional column for other observations made during the interviews
and finally the individual answers given by them within each of the robot assessment
questionnaires when asked what made the participant stop teaching. Consequentially,
each of the results for the questions of a participant was put into the respective cells of
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the table, as shown in figure 3.14. Transcribed texts from the interviews have been put
into conversation bubbles to further improve readability.

Figure 3.14: Miro board table structure for thematic analysis. Example from the
participant with ID 16. Conversation bubbles have been cut off to shorten the image.

The table on the Miro board was filled out with results from all 24 participants. The
transcripts were then read once to find common themes among them. Potential themes
have been noted down in a separate text file by a colleague researcher and me individually.
Then, the individually found themes were merged and then selected, or eradicated based
on how prominent they had been in the data.

Finally, the remaining common themes were transferred back to the Miro board into
a separate table. Each theme was represented by a table column. Each cell under a
given column was first made an empty placeholder, then all of the texts in the first table
were re-read and if texts would fit into a common theme, they were copied and pasted
into a before-mentioned placeholder cell. The participant ID was additionally added
to such a cell to be able to back-track the information if needed. After this process,
the common themes table contained all the data to extract information needed for the
research question of this study. Results are provided in the next chapter.
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CHAPTER 4
Results

This chapter focuses on the results of the experiment of both, quantitative and qualitative
measures. First, quantitative results are presented from the onboarding questionnaire,
which covers participants’ personality traits. Subsequently, ART ANOVA statistical
results from the log events of the user tests are shown, which included measurements for
how much time participants spent teaching and how much time they spent observing the
robot doing its initial task, the number of demonstrations participants provided to the
robot and how far they managed to increase the robots’ proficiency score after discon-
tinuing the teaching process. Following with statistical results of the robot assessment
questionnaire, which contained scales for how participants perceived the robot in terms
of anthropomorphism, animacy, likeability, intelligence, and safety (Godspeed), scales on
how participants rated their self-efficacy when teaching the robot (SE-HRI) and scales
for how good of pragmatic and hedonic user experience participants had with the robot
(UEQ-S). The reliability of the data is also presented for each of these scales, by using
Cronbach’s α. Finally, statistical results are shown of how motivated participants have
been to continue teaching the robot. Besides the results of participants’ personality
traits, results show, for each of the scales, whether or not there have been statistically
significant differences between the robot configured with a low versus high initial pro-
ficiency and the robot configured with a slow versus a fast learning rate. Additionally,
results show whether or not there has been measured a statistically significant interaction
effect between initial proficiency and learning rate, and if this was the case for a given
measurement, then the result of subsequent contrast tests are presented that show which
of the individual test cases differ from each other.

Second, qualitative results that were yielded from thematically analyzing participants’
interview transcripts are presented, which were mainly concerned with how different
robot configurations affected the participants’ motivation to teach the robot. Along
with the represented main concern of the interviews, other topics were brought up by
participants, for example choosing different teaching strategies for different configurations
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of the robot, perceiving the robot’s movement differently in different test cases, or their
attitude towards the time aspect of the teaching process.

4.1 Participants Personality
The results from the TIPI [82] which had been collected through the personality ques-
tionnaire, as described in section 3.3.2, were summarized into Extraversion (M = 4.44,
SD = 1.28), Agreeableness (M = 4.83, SD = 1.01), Conscientiousness (M = 4.88,
SD = 1.27), Emotional Stability (M = 4.96, SD = 1.00), and Openness to Experiences
(M = 5.54, SD = 0.85). Results are shown with the help of parallel coordinates in
figure 4.1.
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Figure 4.1: TIPI results for each participant on parallel coordinates

4.2 Teaching Time
The teaching time refers to the measurement ‘time_interacting_seconds’, described in
section 3.3.3. The data in table 4.1 and its representations in figure 4.2 suggest that
participants spent similar time teaching for low (Md = 114.5, IQR = 61) and high
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Figure 4.2: Overview of results for teaching time (seconds): A bar chart showing mean
values with standard errors, a boxplot, and a violin plot with additional marks for
individual mean values (dot symbol) and combined mean values (plus symbol). Each of
the plots is grouped by the two independent variables initial proficiency (IP) and learning
rate (LR).

Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 149.54 99.59 95.50 139.0 159.50 64.00 24
B Low Fast 106.42 33.82 81.50 98.0 134.25 52.75 24
C High Slow 140.62 37.10 111.00 137.0 166.75 55.75 24
D High Fast 102.50 42.74 73.50 92.5 118.25 44.75 24
A+B Low All 127.98 76.73 88.00 114.5 149.00 61.00 48
C+D High All 121.56 44.03 91.75 113.5 147.25 55.50 48
A+C All Slow 145.08 74.48 107.50 139.0 162.00 54.50 48
B+D All Fast 104.46 38.18 76.75 94.0 131.75 55.00 48

Table 4.1: Teaching time: Summary for individual and combined test cases

(Md = 113.5, IQR = 55) configurations for the robot’s initial proficiency (IP). The lack
of statistical significance for the main effect for initial proficiency supported this finding
(F = 0.05, p = 0.82, η2 = 0.0008). When comparing participants in terms of learning
rate (LR), the data shows a difference between slow (Md = 139, IQR = 54.5) and fast
(Md = 94, IQR = 55) configurations of the robot. This was also supported by the
statistically significant main effect for learning rate (F = 21.95, p < 0.001, η2 = 0.24).
There has been no statistically significant finding on the interaction effect of IP * LR
(F = 0.54, p = 0.47, η2 = 0.0078).

4.3 Number of Attempts
Number of attempts refers to the measurement ‘interacting_repetitions’ as mentioned
in section 3.3.3. The violin plot in figure 4.3 visually shows a hard lower bound with
four attempts, which was naturally embedded into the data, as the feedback dialog only
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Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 7.88 3.84 5.75 7.0 10.00 4.25 24
B Low Fast 5.12 1.48 4.00 5.0 5.25 1.25 24
C High Slow 7.79 1.93 6.75 7.5 9.00 2.25 24
D High Fast 5.33 1.74 4.00 5.0 5.25 1.25 24
A+B Low All 6.50 3.20 4.00 5.5 8.00 4.00 48
C+D High All 6.56 2.20 5.00 6.0 8.00 3.00 48
A+C All Slow 7.83 3.01 6.00 7.0 9.25 3.25 48
B+D All Fast 5.23 1.60 4.00 5.0 5.25 1.25 48

Table 4.2: Number of demonstrations: Summary for individual and combined test cases

Figure 4.3: Overview of results for number of attempts: A bar chart showing mean values
with standard errors, a boxplot, and a violin plot with additional marks for individual
mean values (dot symbol) and combined mean values (plus symbol). Each of the plots is
grouped by the two independent variables initial proficiency (IP) and learning rate (LR).

appeared after the fourth demonstration for participants, as described in section 3.2.4.
Both the data in table 4.2 and the plots in figure 4.3 suggest that participants took a
similar amount of attempts when comparing low (Md = 5.5, IQR = 4) and high (Md = 6,
IQR = 3) robot initial proficiency. The main effect for initial proficiency supports this
finding as there was no statistical significance (F = 0.3, p = 0.59, η2 = 0.0043). Further,
the data and plots suggest that there is a difference between slow (Md = 7, IQR = 3.25)
and fast (Md = 5, IQR = 1.25) learning configurations which is consistent with the
statistically significant main effect for learning rate (F = 48.18, p < 0.001, η2 = 0.41).
Finally, the interaction effect of IP * LR has not been statistically significant.

4.4 Achieved Proficiency
The achieved proficiency refers to the measurement ‘robot_proficiency_score’ described in
section 3.3.3. The plots in figure 4.4 show that in fast learning configurations, participants
always managed to successfully teach the robot. This is because, first the robot already
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Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 0.77 0.21 0.63 0.77 1.00 0.37 24
B Low Fast 1.00 0.00 1.00 1.00 1.00 0.00 24
C High Slow 0.82 0.15 0.74 0.83 0.99 0.25 24
D High Fast 1.00 0.00 1.00 1.00 1.00 0.00 24
A+B Low All 0.88 0.19 0.77 1.00 1.00 0.23 48
C+D High All 0.91 0.14 0.85 1.00 1.00 0.15 48
A+C All Slow 0.79 0.19 0.66 0.77 0.99 0.33 48
B+D All Fast 1.00 0.00 1.00 1.00 1.00 0.00 48

Table 4.3: Achieved proficiency: Summary for individual and combined test cases

Figure 4.4: Overview of results for achieved robot proficiency: A bar chart showing
mean values with standard errors, a boxplot, and a violin plot with additional marks for
individual mean values (dot symbol) and combined mean values (plus symbol). Each of
the plots is grouped by the two independent variables initial proficiency (IP) and learning
rate (LR).

reaches 100% of simulated proficiency after the fourth demonstration has been given to
it, as described in subsection User Tests, which is contained in section 3.3.2, and second,
due to participants not being asked whether or not they want to continue with teaching
before the fourth attempt was made, as described in section 3.2.4. Likewise, for slow
learning configurations, the minimum value for achieved proficiency was bound to 44%
(four attempts with a step size of 11% as described in section 3.1.4). Within these test
cases, participants still were somewhat close to reaching full robot proficiency on average
(M = 79%, SD = 19%) as seen in table 4.3, which is naturally still lower than within fast
learning test cases, because of the explanations above. The statistically significant main
effect for learning rate supports this observation (F = 58.34, p < 0.001, η2 = 0.46). It
was found that the achieved proficiency was lower with low (M = 88%, SD = 19%) than
with high (M = 91%, SD = 14%) initial proficiency, which was also supported by the
statistically significant main effect (F = 7.71, p < 0.01, η2 = 0.1). Further, there was a
statistically significant interaction effect of IP * LR (F = 7.71, p < 0.01, η2 = 0.1). The
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contrast tests showed that statistically significant between-group differences exist if there
is a difference in the learning rate configuration, so differences occur in the following
sets of test cases: D-C, D-A, C-B, and B-A (p < 0.0001). This conversely means that
there are no significant differences in the sets of: D-B and C-A. Finally, this explains
why there was a statistically significant main effect for IP when most certainly it had no
significant effect on the results for the measured achieved proficiency.

4.5 Initial Observing Time

Figure 4.5: Overview of results for initial observing time (seconds): A bar chart showing
mean values with standard errors, a boxplot, and a violin plot with additional marks for
individual mean values (dot symbol) and combined mean values (plus symbol). Each of
the plots is grouped by the two independent variables initial proficiency (IP) and learning
rate (LR).

Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 27.25 6.67 24.75 25.00 26.25 1.50 24
B Low Fast 27.83 5.72 24.00 25.00 29.50 5.50 24
C High Slow 25.75 5.45 24.00 24.00 26.00 2.00 24
D High Fast 26.12 4.58 24.00 24.50 26.00 2.00 24
A+B Low All 27.54 6.15 24.00 25.00 27.25 3.25 48
C+D High All 25.94 4.98 24.00 24.00 26.00 2.00 48
A+C All Slow 26.50 6.07 24.00 25.00 26.00 2.00 48
B+D All Fast 26.98 5.20 24.00 25.00 27.00 3.00 48

Table 4.4: Time spent observing initial task: Summary for individual and combined test
cases

The measurement of ‘time_observing_initial_task_seconds’ (see section 3.3.3) refers to
initial observing time. There has been measured a higher amount of time spent observing
the robot doing its initial task when initial proficiency was low (Md = 25, IQR = 3.25)
than when it was high (Md = 24, IQR = 2), which was supported by the statistically
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significant main effect for initial proficiency (F = 7.53, p < 0.01, η2 = 0.1). There has
not been detected any significant difference between slow (Md = 25, IQR = 2) and fast
(Md = 25, IQR = 3) learning configurations. The lack of a statistically significant main
effect for learning rate supports this observation (F = 1.21, p = 0.28, η2 = 0.02). Both,
table 4.4 descriptively and figure 4.5 visually represent those findings. Finally, there has
not been a statistically significant interaction effect of IP * LR (F = 0.005, p = 0.94,
η2 = 0.00008). The lack of a significant difference between slow and high learning rate
configurations makes sense, since the measurement of the observation time for the initial
task was already complete when the learning rate took effect at a later stage of the tests
(please refer to section 3.3.2 for a detailed description of the user tests and its individual
steps).

4.6 Robot Perception
Participants perceived a robot to be more anthropomorphic, animated, likeable, and
intelligent when it was configured as fast learning compared to when configured as slow
learning. When a robot was configured with low initial proficiency and as slow learning it
received a lower overall anthropomorphism rating than with other configurations. Further,
participants perceived a robot as more animated, when a robot was configured with low
initial proficiency and with a fast learning rate than with other configurations.

For most of the scales from the Godspeed questionnaire, there has been measured high
reliability by using Cronbach’s α. High reliability was measured for Anthropomorphism
(0.9063), Animacy (0.8957), Likeability (0.931), and Perceived Intelligence (0.9333),
whereas for Perceived Safety (0.6702) there was only measured low reliability (please
refer to table 4.5).

Scale Cronbach’s α 95% Confidence Interval
Lower Bound Upper Bound

Anthropomorphism 0.9063 0.8765 0.9362
Animacy 0.8957 0.8631 0.9283
Likeability 0.9310 0.9092 0.9528
Perceived Intelligence 0.9333 0.9129 0.9537
Perceived Safety 0.6702 0.5498 0.7906

Table 4.5: Godspeed questionnaire: Cronbachs’s α and 95% confidence intervals for the
individual scales.

4.6.1 Anthropomorphism
After comparing Godspeed’s anthropomorphism scale for initial proficiency, there has
been measured only a slight difference between low (Md = 2, IQR = 1.45) and high
(Md = 2.2, IQR = 1.45), however, no statistically significant main effect was measured
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Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 1.75 0.73 1.20 1.60 2.05 0.85 24
B Low Fast 2.47 0.88 1.80 2.40 3.20 1.40 24
C High Slow 2.29 0.95 1.60 2.10 3.25 1.65 24
D High Fast 2.39 0.85 1.75 2.30 3.00 1.25 24
A+B Low All 2.11 0.88 1.40 2.00 2.85 1.45 48
C+D High All 2.34 0.89 1.60 2.20 3.05 1.45 48
A+C All Slow 2.02 0.88 1.40 1.80 2.45 1.05 48
B+D All Fast 2.43 0.86 1.80 2.30 3.20 1.40 48

Table 4.6: Anthropomorphism: Summary for individual and combined test cases

Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 1.83 0.81 1.17 1.58 2.21 1.04 24
B Low Fast 2.55 0.87 2.12 2.58 3.17 1.04 24
C High Slow 2.14 0.81 1.50 2.08 2.67 1.17 24
D High Fast 2.43 0.75 1.83 2.33 3.00 1.17 24
A+B Low All 2.19 0.91 1.33 2.17 2.88 1.54 48
C+D High All 2.28 0.78 1.67 2.25 2.88 1.21 48
A+C All Slow 1.98 0.81 1.33 1.83 2.50 1.17 48
B+D All Fast 2.49 0.81 1.96 2.42 3.04 1.08 48

Table 4.7: Animacy: Summary for individual and combined test cases

Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 2.82 0.86 2.35 2.80 3.25 0.90 24
B Low Fast 3.39 0.92 3.00 3.60 3.80 0.80 24
C High Slow 3.00 1.03 2.40 2.90 3.50 1.10 24
D High Fast 3.31 0.81 2.95 3.20 3.70 0.75 24
A+B Low All 3.10 0.93 2.60 3.10 3.65 1.05 48
C+D High All 3.15 0.93 2.60 3.10 3.65 1.05 48
A+C All Slow 2.91 0.94 2.40 2.80 3.40 1.00 48
B+D All Fast 3.35 0.86 3.00 3.40 3.80 0.80 48

Table 4.8: Likeability: Summary for individual and combined test cases
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Figure 4.6: Overview of results for anthropomorphism: A bar chart showing mean values
with standard errors, a boxplot, and a violin plot with additional marks for individual
mean values (dot symbol) and combined mean values (plus symbol). Each of the plots is
grouped by the two independent variables initial proficiency (IP) and learning rate (LR).

(F = 3.92, p = 0.052, η2 = 0.05). Conversely, there has been a higher measured difference
between slow (Md = 1.8, IQR = 1.05) and high (Md = 2.3, IQR = 1.4) learning rate
configurations and a statistically significant main effect (F = 14.8, p < 0.001, η2 = 0.18).
Further, there has been measured a statistically significant interaction effect for IP * LR
(F = 7.89, p < 0.01, η2 = 0.1). The contrast test that followed resulted in statistically
significant between-group differences for the following sets of test cases: D-A (p < 0.001),
C-A (p < 0.01), and B-A (p < 0.001), which shows that participants rated the robot lower
in terms of anthropomorphism when it was configured to be with low initial proficiency
and with a slow learning rate. These results are visually supported by the plots in
figure 4.6.

4.6.2 Animacy

Regarding Godspeed’s animacy scale, only a slight difference has been measured between
low (Md = 2.17, IQR = 1.54) and high (Md = 2.25, IQR = 1.21) initial proficiency
configurations of the test cases (please refer to table 4.7 and figure 4.7 for details). Also,
there has not been measured a statistically significant main effect for initial proficiency
(F = 0.87, p = 0.35, η2 = 0.01). Compared to initial proficiency, there has been measured
a higher difference between slow (Md = 1.83, IQR = 1.17) and fast (Md = 2.42,
IQR = 1.08) learning rate configurations with an additional statistically significant main
effect for learning rate (F = 30.08, p < 0.001, η2 = 0.3). Further, there has been measured
a statistically significant interaction effect for IP * LR (F = 6.47, p < 0.05, η2 = 0.09).
The between-group contrast tests measured statistically significant differences with the
following sets of test cases: D-A (p = 0.0001), C-B (p < 0.05), and B-A (p < 0.0001),
which shows that a robot configured as low initial proficiency and as fast learning, has
been rated higher than with other configurations in terms of animacy. The plots in figure
4.7 visually support these findings.

59



4. Results

Figure 4.7: Overview of results for animacy: A bar chart showing mean values with
standard errors, a boxplot, and a violin plot with additional marks for individual mean
values (dot symbol) and combined mean values (plus symbol). Each of the plots is
grouped by the two independent variables initial proficiency (IP) and learning rate (LR).

4.6.3 Likeability

Figure 4.8: Overview of results for likeability: A bar chart showing mean values with
standard errors, a boxplot, and a violin plot with additional marks for individual mean
values (dot symbol) and combined mean values (plus symbol). Each of the plots is
grouped by the two independent variables initial proficiency (IP) and learning rate (LR).

For Godspeed’s likeability there was only measured very little difference between low
(M = 3.1, SD = 0.93) and high (M = 3.15, SD = 0.93) initial proficiency configurations
of user tests and there has also been no statistically significant main effect for initial
proficiency (F = 0.28, p = 0.6, η2 = 0.004) (please refer to table 4.8 and figure 4.8 for
details). A higher overall difference has been measured for the two different learning
rate configurations slow (Md = 2.8, IQR = 1) and high (Md = 3.4, IQR = 0.8) with
an additional measured statistically significant main effect for learning rate (F = 29.72,
p < 0.001, η2 = 0.3). Finally, there has been measured no statistically significant
interaction effect for IP * LR.
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4.6.4 Perceived Intelligence

Participants did not perceive the robot in low initial proficiency (Md = 2.4, IQR = 1.65)
configurations of user tests less intelligent than in the high initial proficiency configurations
(Md = 2.4, IQR = 1.45) (please refer to table 4.9 and figure 4.9 for details). There
has also been no statistically significant main effect for initial proficiency (F = 0.2,
p = 0.66, η2 = 0.003). Comparing learning rate, participants perceived the robot in slow
learning configurations as less intelligent (Md = 2, IQR = 1) than within fast learning
configurations (Md = 3.2, IQR = 1.2), which also is supported by the statistically
significant main effect for learning rate (F = 44.81, p < 0.001, η2 = 0.39). There has not
been measured a statistically significant interaction effect for IP * LR (F = 1.69, p = 0.2,
η2 = 0.02).

Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 1.99 0.86 1.35 1.90 2.40 1.05 24
B Low Fast 3.07 1.04 2.35 3.20 3.60 1.25 24
C High Slow 2.17 0.87 1.40 2.10 2.60 1.20 24
D High Fast 2.90 0.88 2.40 3.20 3.60 1.20 24
A+B Low All 2.53 1.09 1.75 2.40 3.40 1.65 48
C+D High All 2.54 0.94 1.80 2.40 3.25 1.45 48
A+C All Slow 2.08 0.86 1.40 2.00 2.40 1.00 48
B+D All Fast 2.98 0.96 2.40 3.20 3.60 1.20 48

Table 4.9: Perceived intelligence: Summary for individual and combined test cases

Figure 4.9: Overview of results for perceived intelligence: A bar chart showing mean
values with standard errors, a boxplot, and a violin plot with additional marks for
individual mean values (dot symbol) and combined mean values (plus symbol). Each of
the plots is grouped by the two independent variables initial proficiency (IP) and learning
rate (LR).
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4.6.5 Perceived Safety

After comparing the responses from the Godspeed’s perceived safety scale on the two
independent variables, the result showed that neither participants perceived the robot
less or more safe compared between low (Md = 3.67, IQR = 1.08) and high (Md = 3.33,
IQR = 1.08) initial proficiency configured test cases, nor did they perceive the robot
less or more safe compared between slow (Md = 3.33, IQR = 1.33) and fast (Md = 3.5,
IQR = 1) learning rate configured test cases (please refer to table 4.10 for details). These
findings were supported, first visually by the plots in figure 4.10, and second, by the
lack of a statistically significant main effect for initial proficiency (F = 0.19, p = 0.67,
η2 = 0.003), learning rate (F = 1.87, p = 0.18, η2 = 0.03) or the interaction effect for IP
* LR (F = 0.28, p = 0.6, η2 = 0.004).

Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 3.46 0.83 3.00 3.33 4.08 1.08 24
B Low Fast 3.67 0.67 3.00 3.67 4.08 1.08 24
C High Slow 3.46 0.87 3.00 3.33 4.33 1.33 24
D High Fast 3.56 0.69 3.00 3.33 4.00 1.00 24
A+B Low All 3.56 0.75 3.00 3.67 4.08 1.08 48
C+D High All 3.51 0.78 3.00 3.33 4.08 1.08 48
A+C All Slow 3.46 0.84 3.00 3.33 4.33 1.33 48
B+D All Fast 3.61 0.67 3.00 3.50 4.00 1.00 48

Table 4.10: Perceived safety: Summary for individual and combined test cases

Figure 4.10: Overview of results for perceived safety: A bar chart showing mean values
with standard errors, a boxplot, and a violin plot with additional marks for individual
mean values (dot symbol) and combined mean values (plus symbol). Each of the plots is
grouped by the two independent variables initial proficiency (IP) and learning rate (LR).
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4.7 Teaching Self-Efficacy
Although only a subset of items from the SE-HRI made it into the robot-assessment
questionnaire, the scale for self-efficacy and its response values are of high reliability
(0.9404 with a 95% confidence interval [0.9207, 0.9601]), which was measured by using
Cronbach’s α.

Participants did not observe themselves as more or less efficient when comparing their
responses between low (Md = 4, IQR = 3) and high (Md = 4.38, IQR = 3) initial
proficiency configured test cases, which was also reflected by the lack of a statistically
significant main effect for initial proficiency (F = 0.27, p = 0.61, η2 = 0.004) (please
refer to table 4.11 and figure 4.11 for details). On the opposite, participants observed
themselves as more efficient with the robot being configured with a fast (Md = 4.88,
IQR = 1.38) learning rate compared to it being configured with a slow (Md = 2.38,
IQR = 2.12) learning rate. This has also been validated with a measured statistically

Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 2.83 1.44 1.75 2.38 3.75 2.00 24
B Low Fast 4.89 1.20 4.38 5.00 6.00 1.62 24
C High Slow 3.00 1.66 1.69 2.50 4.31 2.62 24
D High Fast 4.44 1.46 4.44 4.62 5.25 0.81 24
A+B Low All 3.86 1.67 2.25 4.00 5.25 3.00 48
C+D High All 3.72 1.71 2.00 4.38 5.00 3.00 48
A+C All Slow 2.92 1.54 1.75 2.38 3.88 2.12 48
B+D All Fast 4.66 1.34 4.44 4.88 5.81 1.38 48

Table 4.11: Self-efficacy: Summary for individual and combined test cases

Figure 4.11: Overview of results for self-efficacy: A bar chart showing mean values with
standard errors, a boxplot, and a violin plot with additional marks for individual mean
values (dot symbol) and combined mean values (plus symbol). Each of the plots is
grouped by the two independent variables initial proficiency (IP) and learning rate (LR).
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significant main effect for learning rate (F = 68.44, p < 0.001, η2 = 0.5). No statistical
significance was measured for the interaction effect for IP * LR (F = 1.08, p = 0.3,
η2 = 0.02). Figure 4.11 visually supports these findings.

4.8 Teaching Experience

Participants valued a fast learning configured robot more than a slow one in terms of
pragmatic and hedonic user experiences. Additionally, participants also seemed to rate a
robot higher in terms of hedonic user experience, when it was configured with low initial
proficiency and configured to be fast learning.

Both of the scales and their response values from the UEQ-S questionnaire have been
measured with high reliability according to the Cronbach’s α values. High reliability was
measured for Pragmatic quality (0.9012) as well as for Hedonic quality (0.8658), as seen
in table 4.12.

Scale Cronbach’s α 95% Confidence Interval
Lower Bound Upper Bound

Pragmatic quality 0.9012 0.8693 0.9331
Hedonic quality 0.8658 0.8212 0.9104

Table 4.12: UEQ-S questionnaire: Cronbachs’s α and 95% confidence intervals for the
individual scales.

4.8.1 Pragmatic Experience

Figure 4.12: Overview of results for pragmatic quality: A bar chart showing mean values
with standard errors, a boxplot, and a violin plot with additional marks for individual
mean values (dot symbol) and combined mean values (plus symbol). Each of the plots is
grouped by the two independent variables initial proficiency (IP) and learning rate (LR).
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Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 3.00 1.31 2.19 2.75 3.56 1.38 24
B Low Fast 4.65 1.46 4.00 4.88 5.50 1.50 24
C High Slow 3.08 1.53 1.94 3.00 3.50 1.56 24
D High Fast 4.52 0.91 4.00 4.62 5.25 1.25 24
A+B Low All 3.82 1.60 2.50 4.00 5.25 2.75 48
C+D High All 3.80 1.44 2.50 4.00 5.00 2.50 48
A+C All Slow 3.04 1.41 2.00 2.88 3.50 1.50 48
B+D All Fast 4.58 1.21 4.00 4.75 5.25 1.25 48

Table 4.13: Pragmatic quality: Summary for individual and combined test cases

Participants had no different user experience regarding the pragmatic quality, when
compared between low (Md = 4, IQR = 2.75) and high (Md = 4, IQR = 2.5) initial
proficiency configured test cases, which also was supported by the lack of a statistically
significant main effect for initial proficiency (F = 0.13, p = 0.73, η2 = 0.002) (please refer
to table 4.13 and figure 4.12 for details). On the contrary, participants reported a better
pragmatic user experience with fast (Md = 4.75, IQR = 1.25) learning rate, rather than
with slow (Md = 2.88, IQR = 1.5) learning rate configured test cases. A measured
statistically significant main effect for learning rate supports this finding (F = 70.7,
p < 0.001, η2 = 0.51). Finally, no there has been measured no statistically significant
interaction effect for IP * LR (F = 0.54, p = 0.47, η2 = 0.008).

4.8.2 Hedonic Experience

Figure 4.13: Overview of results for hedonic quality: A bar chart showing mean values
with standard errors, a boxplot, and a violin plot with additional marks for individual
mean values (dot symbol) and combined mean values (plus symbol). Each of the plots is
grouped by the two independent variables initial proficiency (IP) and learning rate (LR).

Similar to the results of the pragmatic user experience, participants also did not have a
different experience regarding the hedonic quality, when compared between low (Md =
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Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 3.07 1.45 1.94 2.75 3.75 1.81 24
B Low Fast 4.27 1.25 3.69 4.50 5.00 1.31 24
C High Slow 3.32 1.47 2.25 2.88 4.19 1.94 24
D High Fast 3.77 1.20 2.94 3.75 4.50 1.56 24
A+B Low All 3.67 1.47 2.50 3.75 4.56 2.06 48
C+D High All 3.55 1.35 2.50 3.38 4.50 2.00 48
A+C All Slow 3.20 1.45 2.25 2.75 3.81 1.56 48
B+D All Fast 4.02 1.24 3.19 4.12 4.81 1.62 48

Table 4.14: Hedonic quality: Summary for individual and combined test cases

3.75, IQR = 2.06) and high (Md = 3.38, IQR = 2) initial proficiency configured test
cases (please refer to table 4.14 and figure 4.13), which also was supported by the lack of
a statistically significant main effect for initial proficiency (F = 1.22, p = 0.27, η2 = 0.02).
Also similar to the results of the pragmatic user experience, participants again reported a
better hedonic user experience with fast (Md = 4.12, IQR = 1.62) learning rate, rather
than with slow (Md = 2.75, IQR = 1.56) learning rate configured test cases. A measured
statistically significant main effect for learning rate supports this finding (F = 29.42,
p < 0.001, η2 = 0.3). Differently than with the results of the pragmatic user experience,
there has been measured a statistically significant interaction effect for IP * LR (F = 4.63,
p < 0.05, η2 = 0.06). The following sets of test cases exhibited a statistically significant
difference within the follow-up contrast tests: D-A (p < 0.05), C-B (p < 0.001) and B-A
(p < 0.001). Thus, these results together with the visual differences of the test cases
within the violin plot of figure 4.13 suggest that especially the configurations of test case
B had a special influence on participants’ hedonic experiences.

4.9 Teaching Motivation

Case IP LR M SD Q1 Med Q3 IQR n
A Low Slow 3.33 1.90 2.00 3.00 4.25 2.25 24
B Low Fast 5.21 1.67 4.00 6.00 6.25 2.25 24
C High Slow 3.67 1.83 2.00 3.00 5.00 3.00 24
D High Fast 4.50 1.67 3.00 5.00 6.00 3.00 24
A+B Low All 4.27 2.01 3.00 4.00 6.00 3.00 48
C+D High All 4.08 1.78 3.00 4.00 6.00 3.00 48
A+C All Slow 3.50 1.86 2.00 3.00 5.00 3.00 48
B+D All Fast 4.85 1.69 4.00 5.00 6.00 2.00 48

Table 4.15: Self-rated teaching motivation: Summary for individual and combined test
cases
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The summarized data in table 4.15 suggests that participants self-rated their motivation
to continue teaching not differently between low (Md = 4, IQR = 3) and high (Md = 4,
IQR = 3) initial proficiency configured test cases, which also is supported by the
lack of statistically significant main effect for initial proficiency (F = 0.84, p = 0.36,
η2 = 0.01). Other than with initial proficiency, participants self-rated their motivation
to continue teaching had been higher with fast (Md = 5, IQR = 2) than with slow
(Md = 3, IQR = 3) learning rate configured test cases, which was also supported by the
statistically significant main effect for learning rate (F = 30.04, p < 0.001, η2 = 0.3).
Finally, there has been measured a statistically significant interaction effect for IP * LR
(F = 4.26, p < 0.05, η2 = 0.06). The follow-up contrast tests showed interesting findings,
wherein the following pairs of test cases there has been measured a statistically significant
between-group difference: D-A (p < 0.01), C-B (p < 0.001), and B-A (p < 0.001).
Together with the comparison of the visual differences within the plots in figure 4.14, the
results suggest that participants were self-rating their motivation to continue teaching
the highest when the robot exposed a low initial proficiency at first while then being fast
learning in the succeeding task.

Figure 4.14: Overview of results for self-rated teaching motivation: A bar chart showing
mean values with standard errors, a boxplot, and a violin plot with additional marks for
individual mean values (dot symbol) and combined mean values (plus symbol). Each of
the plots is grouped by the two independent variables initial proficiency (IP) and learning
rate (LR).

4.10 Post-Hoc Explorative Analysis on Robot Success

As mentioned in section 2.3, Hedlund et al. found that the success or failure of the robot
significantly affected their participants’ perceptions of it. Additionally, the subset of the
SE-HRI scale used in this study is concerned about how participants rate themselves in
terms of their self-efficacy by asking whether or not they could imagine being able to teach
the robot certain tasks. This rating of self-efficacy may also change when participants
think that they successfully taught the robot.
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However, since the design of the study was mainly to evaluate how different configurations
of the robot’s initial proficiency and learning rate affected the participants, the actual
success was only indirectly tested in section 4.4. Nonetheless, an attempt to get more
specific results in terms of robot success and failure has been made as described below.

It showed that a robot with a fast learning rate always had been successful at the end of
the respective user tests. But, this was not always the case with a slow learning robot.
In order to be able to compare results with those mentioned in the literature, additional
post-hoc statistical tests were made, in which data has been isolated for slow learning
robots (essentially cutting away half of the test data), while also being grouped into
successful, i.e. robot proficiency reached 100%, and unsuccessful, i.e. robot proficiency
was < 100%, test runs. The two measures, teaching motivation and self-efficacy were
considered for this special analysis, because of the above-mentioned reasons.

4.10.1 Teaching Motivation

Figure 4.15: Overview of results for motivation isolated for slow learning rate configured
test cases grouped by successful (proficiency = 1) and unsuccessful (proficiency < 1) test
runs: A bar chart showing mean values with standard errors and a boxplot.

Group M SD Q1 Med Q3 IQR n
Proficiency < 1 3.11 1.80 2.00 3.00 4.00 2.00 36
Proficiency = 1 4.67 1.56 3.00 4.50 6.00 3.00 12

Table 4.16: Self-rated teaching motivation: Summary for slow learning rate configured
test cases grouped by successful (proficiency = 1) and unsuccessful (proficiency < 1) test
runs.

The data in table 4.16 and plots in figure 4.15 show a significant gap in participants’
self-rated motivation scores, depending on whether the robot successfully completed the
task (Md = 4.5, IQR = 3) or failed (Md = 3, IQR = 2) to do so before they decided
to discontinue the teaching process. A statistically significant effect on participants’
self-rated teaching motivation (t = 2.67, p = 0.01, 95% CI [2.73, 0.38]) supports this
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finding. The effect size was measured to be large (Cohens’d = 0.89) when comparing the
group means.

4.10.2 Teaching Self-Efficacy

Figure 4.16: Overview of results for self-efficacy isolated for slow learning rate configured
test cases grouped by successful (proficiency = 1) and unsuccessful (proficiency < 1) test
runs: A bar chart showing mean values with standard errors and a boxplot.

Group M SD Q1 Med Q3 IQR n
Proficiency < 1 2.32 1.04 1.69 2.00 2.81 1.12 36
Proficiency = 1 4.71 1.43 4.31 5.12 5.62 1.31 12

Table 4.17: Self-rated teaching self-efficacy: Summary for slow learning rate configured
test cases grouped by successful (proficiency = 1) and unsuccessful (proficiency < 1) test
runs.

The data in table 4.17 and plots in figure 4.16 show a significant gap in participants’
ratings in terms of self-efficacy, depending on whether the robot successfully completed
the task (Md = 5.12, IQR = 1.31) or failed (Md = 2, IQR = 1.12) to do so when
they decided to discontinue the teaching process. A statistically significant effect on
participants’ self-efficacy scores (t = 6.27, p < 0.001, 95% CI [3.16, 1.62]) supports this
finding. The effect size was measured to be huge (Cohens’d = 2.09) when comparing the
group means.

4.11 Qualitative Results
This section presents insights into relevant parts of the participants’ responses, examining
first the final part of the robot assessment questionnaire, which asked why participants
stopped teaching the robot, and second the debriefing interview, which evaluated certain
aspects of teaching motivation. Please refer to 3.1.8 for details. Common themes of
both parts were extracted throughout the data analysis phase. These themes further
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were aligned with the independent variables of the experiment and formed the next
subsections: 4.11.1 Influence of Initial Proficiency and 4.11.2 Influence of Learning Rate.
All the findings which were still relevant, but would not fit into those two groups were
put into the final subsection 4.11.3 Other Findings.

Participants reported that their expectations to be able to teach the robot were set low
when the robot was not able to draw the rectangle in the initial task and vice versa.
Some participants were surprised at how well the robot has been learning in test case B,
where the robot was configured to show low initial proficiency and to be fast learning.
Additionally, it has been mentioned by a few participants that they do not see any
connection between the initial and the pick-and-place task, subsequently often expressing
that the initial proficiency had no impact on their motivation to teach the robot. With a
subset of these participants, there were found conflicting quantitative measurements on
their self-rated motivation scores from the robot assessment questionnaire.

A major part of the participants brought up that any kind of visual learning progress of
the robot increases their motivation to continue teaching. Further, when the robot is slow
learning, some participants thought that they needed to change their teaching approach
or strategy, that the robot may be dysfunctional, or that there might be a problem
with the robot’s motivation to learn. Further, a small number of participants attributed
non-existent properties to the robot in certain test cases, e.g. different movement patterns
in different test cases. Finally, some participants did not see a significant difference
between the test cases, while mentioning that the time span to test each configuration
was too short for them.

4.11.1 Influence of Initial Proficiency
More than half of the participants brought up that either when the robot drew the
rectangle poorly (test cases A and B) or when the robot drew the rectangle perfectly
(C and D), it changed their expectations towards how difficult or easy teaching the
pick-and-place task would be.

“The last [C] one, yeah, I expected to be faster because I saw that the rectangle
was perfect and I thought, okay, then you also do the task easier like the
previous one, but, it took, I think, the longest, or the first [A] one took the
longest, so, it was not that fast as I expected it.” — P1

“So I thought that in the last two tasks (test-cases) [D, C] they did it right,
(meaning) the previous (drawing) task, and so I thought that the robot is better
in learning things, but it wasn’t.” — P5

“When I saw the robot drawing a rectangle that was not a rectangle at all,
I already had the preconception that, oh, he might be a little bit dumber or
something. It definitely skewed my interpretation.” — P17
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As the interview questions were mainly concerned about motivational factors, P8 and
P11 talked about how the initial proficiency did set the expectations for the learning
efficiency of the robot on the pick-and-place task, but that it basically would not directly
influence the motivation of the participant for teaching the robot.

“It definitely had like a feeling of like, okay, this one will be harder or easier
than previous one. I said with the first [D] one, especially because the first
one drew it correctly, I thought, okay, maybe that’s just how it goes. But then
for example, on the second [A] one did not draw it correctly, I was already
like, oh, this one won’t (learn as easy). [...] That sort of set my expectations,
but I wouldn’t say I was less motivated to teach it just because it showed that
it can (draw the rectangle) [...]” — P8

“It wasn’t relevant to my motivation, but it was relevant for my expectation
how quickly it will learn.” — P11

P13 might have missed that also the robot in the third test case (D) was able to draw the
rectangle shape without errors, but still mentioned that the robot drawing the rectangle
perfectly in the last test was setting expectations for how well it could do things besides
rectangle drawing.

“He (the robot) was slow, to put them in the right order. I don’t know if he
needed more time, but he was the only one who could draw the rectangle in the
previous (drawing) task, so I thought maybe he’s better, not only at rectangle
drawing [C].” — P13

The quantitative measurement of self-rated teaching motivation for P18 showed that
there was no big difference between low and high initial proficiency configured robots for
this participant, but when asked about it in the interview, it was mentioned that it may
have influenced the participants’ patience with the robot.

“[...] the performance of the previous task could lead to, I think, increased
or decreased patience with the robot, like, the number of iterations, I tried to
teach them.” — P18

Participants P19, P23, and P24 mentioned that they were especially surprised with the
robot when it first showed that it had low initial proficiency, potentially also setting the
expectation for it to learn the pick-and-place task low, but then learning fast afterward
(test case B). Not only did it set expectations for the robot’s learning efficiency, but for
these three participants there has also been measured a higher self-rated motivation score
for this test case.
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“then there was one robot who drew a ‘sanduhr’-shape (hourglass), instead of
a square [...] but this robot learned to do the ordering of the cubes. [...] I
expected it to be stupid, simply said, and then I was surprised that it was able
to order the cubes.” — P19

“But I really liked this robot that was dumb in the beginning and then learned
and like surprisingly good [B], because it still elevates some kind of feeling.
Even though you know that probably it’s because of the system that is behind,
but still makes you feel nice.” — P23

“Well, when I saw that, okay, this guy couldn’t accomplish previous tasks,
probably it will not accomplish the next one. And it was just a fast thought.
So, and then when it managed, I was like, ‘Yay, good, okay, such a nice
improvement’.” — P23

“Yeah, absolutely, because my expectations what the robot can do, and for the
last [B] one, for instance, the performance of the previous (drawing) task was
poor again, and then the robot learned really fast from what I’ve shown to
the robot, and then I was happy. [...] But yeah, it (initial proficiency) has a
strong effect of what I could expect from the robot afterwards.” — P24

“[...] the drawing task was quite poor, and therefore my expectations were
quite low, and then I was totally surprised, by the performance of the robot,
and so, yeah, I was surprised and therefore, and then happy, and I thought, it
was super fast to teach this robot.” — P24

One participant mentioned that there was uncertainty about how the rectangle drawing
would be in connection to the pick-and-place task.

“As I mentioned, I didn’t see any correlation because the first [B] one was
like, this sand-clock (hourglass). And I think he was the fastest, if I remember
correctly. And the last [D] one did the rectangle quite nicely and this one was
also quite fast. So that’s why I got a bit confused whether or not this first
task had an effect on the efficiency of the robot.” — P22

“The first few times I wasn’t aware that there could be a connection, but when
I learned that it could be a connection I draw my attention to it whether there
is some sort of good rectangle - fast learner, bad rectangle - slow learner.”
— P22

72



4.11. Qualitative Results

While also expressing uncertainty about the connection between the two tasks, P15 said
that the robot in test case B was the most preferred one, which also seems to be reflected
within the self-rated teaching motivation score compared to the remaining test cases (A,
C, D).

“I tried to see a correlation between the rectangle drawing thing and the robot,
but I wasn’t able to see it, so for example, as far as I remember the best robot
was the one who drew like the set rectangle, like with the house of Nikola
(referring to hourglass shape the robot drew in test case B) [...]” — P15

.

One other common theme regarding initial proficiency has been that some participants
expressed that they did not see any connection between the drawing task and the pick-
and-place task, so in a sense, they thought that the drawing task did not matter much
for teaching the robot.

“Yeah, I didn’t know if I have to do this too, so I didn’t know what this had to
do with my tasks.” — P07

“Well, first I thought, of course, that it (initial proficiency) said something
about how well they would perform in the next (pick-and-place) task, but I
think it didn’t. I think there was no connection [...] (between) the rectangle
task and the cube task.” — P14

“No, no. Frankly I did not see the the why they were showing me what they
did as a previous task. I did not understand that this was the link, in the last
[B] one I thought, oh, so maybe that is why they are showing this to me. I
did not get that they are sort of displaying their capabilities, or, what they
might be an outlook of their ability to learn. I don’t know if that was the
thought behind it but I did not get that connection. I thought this was this
was sort of a relic how the test was designed that there were other tests that I
am supposed to teach them and that was just cut or something.” — P20

Finally, when comparing the participants’ self-rated teaching motivation scores from
the robot assessment questionnaire with the interview responses, when asked about
whether or not initial proficiency affected their teaching motivation, some conflicting
statements occurred. For example, P1 mentioned that initial proficiency did affect
teaching motivation, when the participant also rated the teaching motivation with the
same score compared between low and high initial proficiency configured test cases, i.e.
same scores for low initial proficiency test cases A and C, and same scores for high initial
proficiency test cases B and D.
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“Yes, I would say, so, for the first [A] robot, it wasn’t that much, of how much
it affected me, but I would say, with the iterations the better the robot got for
the second [B] and third [D] run, it definitely affected me because I had this
feeling of, okay, the robot can draw a rectangle, so he can also put the boxes
in the correct order and, yeah, I would say that affected it a lot.” — P1

Vice versa, participants P3 and P21 responded that initial proficiency did not affect their
motivation, while they systematically rated their teaching motivation lower within the
questionnaire for low initial proficiency than with high initial proficiency configured test
cases.

“No, it was confusing because it was a completely different task and the pattern
was also different, that he drew [...] but the rectangle was also a little bit
confusing because it had nothing to do with the task.” — P3

4.11.2 Influence of Learning Rate
Many participants found that if they saw progress while teaching the robot, they have
had a higher motivation teaching it, which seemed to be most prevalent within test cases
B and D where the robot has been configured with a fast learning rate.

“I think for the motivation, it was more the response, I got from the robot
after several iterations, if I had the feeling that the robot somehow did more
or less what I’m teaching. So if there was some improvement, I would say
that this always triggered my motivation [...]” — P1

“And on the second [A] one, I really tried to, I gave it way more attempts,
but still, I would say, the aspect that influences my motivation the most is if
they learned something, and I’m like, okay, now they got it right.” — P2

“[...] if the first, task (learning iteration) is already completely wrong, then I
might lose motivation to continue, but if I see some progress and I see it’s
okay, just one small color mistake, and I would teach again.” — P3

“I think in the second task [B] (user test) the robot learned very fast, that was
motivating for me. And when the robot didn’t learn like I wanted it, it was
frustrating.” — P5

“[...] like what influenced my motivation more was that after a certain number
of tries, it (the robot executing the pick-and-place task) did not change at all,
and it influenced it way more than just the drawing. That (initial proficiency)
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sort of set my expectations, but I wouldn’t say I was less motivated to teach
it just because it showed that it can (draw the rectangle), but like repeating
the task and it’s not having any progress, that influenced the motivation. I
mean, I tried a few rounds and then an after a few experiments that didn’t do
anything different, I was like, maybe it’s time to give up.” — P8

“[...] when I recognized after a few rounds that robot did not make any progress,
it was kind of dismotivating and disheartening.” — P11

“[...] some of them did really bad and I thought, okay, let’s give them one
other try, but it was rather frustrating, but some of them who did good. I
thought okay, let’s do it one more time to see if it really worked and if he really
got it, well, different motivations led to repetitions, so different motivations
made me repeat it again, continue it, yeah.” — P14

“I’d say, I got more motivated and less frustrated when, because for example,
in the last [A] robot, I got a bit frustrated because it took him so long to
complete the task.” — P15

“It was important for me to see differences in each iteration, so that I could
see that the robot learned something or he improved from iteration to iteration.
That’s also how I decided when to stop continuing to teach [...]” — P17

P20 expressed that, if there is no visual progress, in addition to a lower perceived
motivation as a teacher, there also may be a problem with the student’s motivation to
learn the task.

“It affected it a lot I’d say, because this is this was the moment where I could
see or at least had the impression that they are reacting towards my input
which gives me the feeling that I am sort of not just doing this for my own
fun but that I’m actually sort of providing input that is of use to the machine
and I’m not just doing random stuff and then the machine is doing something
completely random as well. There is to me there’s a strong direct connection
to this if I don’t see an effect in my pupil or this AI thing then I question their
motivation to learn at all or their capability to learn. [...] Which influences
my motivation.” — P20

Participants P18, P12, and P21 responded that the lack of progress, which is especially
the case with a slow learning configured robot, may provoke the perception of the robot
being dysfunctional or that the robot is stuck in a local optimum.
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“[...] I think it was the second [A] and the third [C] one but it was totally
chaotic like it did not learn anything it was just like if it was stuck in a valley
so I could say.” — P12

“I mean, in one case, I just gave up teaching, so, I did not see any improvement,
and thought maybe, that’s not, maybe, if it’s me, if it’s the robot, I don’t know,
it’s not working, I will stop the task, so in that case, I, obviously, had less
motivation to continue teaching the robot than in other cases, I would say.”
— P18

“The robots that could learn faster, like after three or four attempts, they felt
like they function as expected and the other ones just at some point, I was
like, they just will never learn or are dysfunctional or there is some error,
yeah, so yeah, I felt more motivated to work with the one that could replicate
the task.” — P21

Additionally to progress, P24 mentioned that time is not a limiting factor to the par-
ticipant. More participants made the same observation about the time factor and their
statements are presented in section 4.11.3.

“I think what would be a no-go for me, what didn’t happen, is that the robot,
or at least, that I think the robot has learned something, and then in the next
trial, he then performed again poorly, this would bring me in the way that I
would say, okay, no, I quit the training, but the time doesn’t really matter, at
least I have to see some progress.” — P24

Participants also reported negative sentiments about the robot when it was configured
with a slow learning rate.

“So, my experience, sort of first robot, I remember because in the beginning,
you always saw what the last task was with the, with the rectangle. And the
first [A] robot was not that smart.” — P1

“After a few tasks he couldn’t learn a little of it. It was exhausting [A].” — P5
/ Questionnaire

“No progress, frustrating [A].” — P11 / Questionnaire
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4.11.3 Other Findings
Some participants tried several approaches or teaching strategies in order to enhance
learning efficiency. Participants also reported, that for the decision of, whether or not to
change strategies, depended on the robot’s behavior.

“[...] I tried different techniques with different robots. So with one robot, I
tried to just do it quickly, like in a quick way, just like a human being would
be because it’s like an easy task. And with another one, I was really like, okay,
let’s take it.. move it over there.. take it.. move it over there, like really
(carefully). I also brought the position in a straight line because I wanted to
know if they just throw it on there, or if they just really copy the positions as
well [...]” — P2

“[...] and I did try different approaches, for example, with I tried to drop the
cubes from a higher, or I did try to take different cubes or to take the cubes in
another order, so for example to start from the left side, for the correct cubes
or from the right side or start with the cube in the middle to place the cube in
the middle first, but that also was dependent on which robot I was interacting
with, so for example with the last robot [A] I felt like it was pretty slow when
learning, so I was happy when he could do it in the most easiest way, so grab
the cube on the left side first and the cube in the middle and the last one, so
I think I changed my approach depending on the robot.” — P15

“[...] at first I always took the cubes as they were, I think from left (to) right
from my side (perspective), but then I noticed that the robot always took the
red cube first, I think, but that was the middle cube. So I also tried to first,
place the cube in the middle and then the left and then the right, instead of
just left (to) right.” — P17

P8 brought up that even if teaching a robot, after trying the same approach for long
enough without success, then a teacher might ask if there is a problem with the approach
rather than with the student.

“I don’t know if it was like coincidence, but I was still kept on trying, because
it’s like if I have to repeat it four or five, six times, I also feel stupid if I just
repeat the same thing every time, which might be helpful, but somehow it’s
like more like I need to try something else, if this is what’s not working, so
to say. [...] At least in the human world. And sometimes you do need the
repetition, but it’s also like you start to think, it’s like, if you repeat something
for a time and it doesn’t work, then maybe it’s the method and not the lack
of repetition.” — P8

77



4. Results

P21 stated that the participant tried to accommodate the robot’s movements from the
drawing task to potentially improve learning efficiency.

“I looked at it (the robot’s movement) and I was like, maybe if they (the robots)
are crisscrossing them (the false rectangle drawing of test case B, which had
an hourglass-like shape), if I teach them in a crisscross way, they will learn the
correct sequence, I was just trying to strategize my moves based on how they
move or something, like I thought maybe there is some connection.” — P21

One participant mentioned that it’s the repetition that supposedly would lead to the
desired effect when teaching a robot.

“I thought about placing the objects in a different order and starting with a
different object, but I thought showing it in the same way would maybe lead
to the desired effect because if he sees the same thing twenty times, then the
learning effect might be higher. Of course, human teaching is different because
seeing things from different angles and different perspectives can have a better
learning outcome than doing always the same thing.” — P22

P1 and P11 brought up that if the robot did not learn as expected when several strategies
were tested, this negatively influenced the participants’ motivation.

“[...] for the last one [C], he drew the rectangle also perfect, but the teaching
was not that easy because I don’t know, I tried also several strategies, but I
had the feeling that the robot did not learn that good from me, so I think that
was like, that impacted my motivation, negatively, I think, because I was like
trying so many times and it did not respond correctly [...]” — P1

“[...] if there was no visible progress, I tried different strategies, so I tried
different orders. So maybe I thought the order is important, but when I saw
that it made no difference, it killed my motivation.” — P11

Several participants attributed properties to the robot that do not exist. P12 has
mentioned that the robot in test case B learned in a more detailed way and had a complex
behavior and a different movement than the robot in other test cases, even though the
movement and the placement of the cubes of the robot were the same in all of the test
cases.

“[...] and then the last [B] one was something I would use so let’s say the
first [D] one is like a good student project and the last one [B] is something
that you could use in a real setting. So it learned things like the position in
relation to the to other cubes like it’s not just left right in the order but also
placement [...], so it learned even the details pretty fast.” — P12
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“[...] So the next two [A, C] were I was like okay they’re not as good as the
first [D] one probably and then the last [B] one did completely opposite of
what it’s supposed to do, but it was more complex and it was pretty smooth.
So I was like so it made like an hourglass or whatever instead of a box, a
square, and I was like okay this is either totally random and I will not teach
it at all or this one is the advanced one and it does it on its own [...] just
like it can learn many things and it can like show off so to say. Like I didn’t
think that it’s intelligent, like conscious, so it does it, like, on purpose but I
thought that it may learn, it has the capacity to learn more, or it’s just totally
random.” — P12

P19 expressed that there was a test case where the robot was perceived as moving in
a less rigid or robotic way. P21 reported a similar observation, where the robot had a
jittery movement in some test cases, which also inhibited the teaching motivation for the
participant.

“I felt like there was one robot to move significantly less rigidly than the others
[...] I feel like it was the first [C] one, but I don’t know if, that if I imagine
that, because all the other ones moved the same kind of robot way.” — P19

“I think the ones that did perform the task, like some of them were very
jittery, you would see them picking up the cube, and then a jitter, and then
just randomly place the cube somewhere, so I was, I could not see the whole
trajectory or anything and then they were performing it incorrect, so I think
that’s why I was not motivated, because, even I could not see the trajectory
they’re taking.” — P19

Some participants reported that either they did not see any difference throughout multiple
test cases, or that the time frame for each test case was too short to be able to estimate
how the different configurations would affect them in terms of teaching motivation.

“For me, it was always exactly the same, so I didn’t recognize anything. There
wasn’t any difference in the motions or anything, so I don’t know.” — P7

“I think the time was just too short to change my opinion or mood in regards
to teaching this robot. [...] Yeah, I think it was just very short. I have the
patience to keep going. If I would like to try to teach the robot for days, and
it’s still not figured it out, then I would not be motivated.” — P9

“I did not see that much difference between the robots, I find them quite similar,
if not the same.” — P10
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“I mean, these tasks are pretty short, it’s a short time span, I need to spend,
to teach them. I am a very patient person, for me, the time didn’t reduce any,
I think, motivation.” — P18

Two participants were even more encouraged to teach the robot when it was expressing a
slow learning rate.

“When he was learning slowly, I tried harder [...] But I think this is also a
special of my character, that I cannot give up. Give up is no option.” — P6

“[...] I mean, I maybe, I sympathize with the slow learners, I don’t know.”
— P18
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CHAPTER 5
Discussion & Future Work

This chapter discusses both the statistical and qualitative results of the study while
considering its initial four objectives outlined in section 1.2: The teachers’ perception of
the robot in terms of likeability, intelligence, and safety, the teachers’ perception of
self-efficacy, user experience and the motivation to teach the robot.

Further, this work focuses on two independent variables, initial proficiency and learn-
ing rate. Both have been tested against the above-mentioned objectives and the results,
which were described in detail in the previous chapter, highlight which combinations of
those two variables had statistically significant effects or showed qualitative relevance.
These findings will be thoroughly discussed in sections 5.1, 5.2, 5.3 and 5.4. The chapter
continues with the limitations of this work in section 5.6 and concludes with an outlook
to future work in section 5.7.

5.1 Perception of Robotic Traits

5.1.1 Anthropomorphism
The results on Godspeed’s anthropomorphic scale indicated that participants were
generally anthropomorphizing the robot with similar results for three of four possible
configurations of the independent variables. Only when the robot was configured with
low initial proficiency and a slow learning rate, participants significantly rated it lower
on the anthropomorphic scale.

Additionally, participants indicated that they anthropomorphized the robot within the
interview. For example, participants described the robot as being ‘dumb’, most commonly,
when it has been configured as slow learning, or expecting it to be ‘smart’, most commonly
when it was configured with high initial proficiency, thus potentially projecting human-
like cognitive traits to it. Conversely, some participants also perceived the robot as
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‘dysfunctional’, ‘erroneous’, or ‘jittery’ with its movements. The usage of such mechanical
terms indicates a form of cognitive dissonance towards the robot, where participants
might expect human-like behavior, but when they saw how poorly it performed at drawing
a rectangle or learning a seemingly simple task, then this mismatch conceivably was able
to diminish the effect of anthropomorphism. The data shows that this was especially
prevalent when the robot was configured with low initial proficiency and with a slow
learning rate. This seems to contradict previous research, which suggests that a (social)
robot’s imperfect behavior is expected to be more anthropomorphized (Pratfall Effect)
[90]. However, it does not necessarily need to be contradicting, since participants rated
the robot similar, in terms of anthropomorphism, when it was able to showcase a perfect
rectangle at first, but then was slow learning with the pick-and-place task. It stands
to reason, that the lack of impact of a slow learning rate on this scale, which usually
had a significant impact with many measurements throughout the study, shows that a
(social) robot is being perceived as faulty or erroneous, thus as more machine-like and
less human-like, when it is not good at doing any of the tasks.

Another indicator that participants anthropomorphized the robot is, that many used
masculine pronouns, such as ‘he’, when referring to the non-gendered robot. However,
this behavior may also be influenced by the gendered nature of participants’ native
language.

Due to the robot’s human-like form factor and due to implemented animations, like
the robot’s subtle body movements when being in an idle state, or the greeting (hand
waving) animation at the beginning of each test case, a certain base score for the
anthropomorphism scale was to be expected. The measured data leaves room to interpret
that this base score is prevalent with most of the configurations of initial proficiency
and learning rate. However, if the robot is configured to show an overall low ability to
accomplish different tasks, participants seem to perceive it as more robotic, which first
showed by rating it low in the relevant items of the questionnaire, and second, by using
mechanical terms to describe the robot in the interviews. It would be interesting to see,
whether or not different kinds of robot form factors or different kinds of animations, like
e.g. body movements, could produce different results for anthropomorphism.

5.1.2 Other Traits
As for every other trait measured by Godspeed’s scales, participants appeared to strongly
prefer a fast learning configured robot, as they perceived the robot as more animated,
likeable, and intelligent compared to a slow learning configured robot. This makes sense
since a fast learning configured robot is expected to lead to an earlier sense of contentment
with the robot as opposed to frustration with a slow learning configured robot. The
qualitative results from the interviews also support these findings, where participants
reported to be ‘happy’, ‘motivated’ or when expressing that the robot made ‘such a
nice improvement’ with a fast learning robot, opposed to participants perceiving the
teaching process as ‘frustrating’, ‘dismotivating and disheartening’ or expressing that
they question the robot’s ‘motivation to learn at all or their capability to learn’ when
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it was configured as slow learning. These findings align with the results of Hedlund et
al. [9], which found that participants reported a significantly higher workload when the
robot failed at learning the task, where the workload was measured by NASA Task Load
Index (NASA-TLX), which includes items measuring effort and frustration levels.

Most of these scales also did not show a statistically significant effect when comparing a
robot configured with low versus high initial proficiency. However, as for the animacy scale,
there has been measured a statistically significant interaction effect for the combination
of initial proficiency and learning rate. The contrast tests as described in section 4.6.2
showed that participants perceived the robot as more animated when the robot showed
a low initial proficiency in the rectangle drawing task and then performed well in the
pick-and-place task when configured with a fast learning rate. This could indicate that
the participants’ anticipations were not met in this test case. This effect of surprise is
described in more detail in section 5.4.

5.2 Teaching Motivation
Participants dedicated more time teaching a robot configured with a slow compared to
a robot configured with a fast learning rate. Consequently, they also provided more
demonstrations to the robot when the robot was configured with a slow compared to a
robot configured with a fast learning rate (please refer to sections 4.2 and 4.3). When
the learning rate was configured fast, the data showed that participants usually taught
the robot until it learned the task successfully with one or two additional attempts. This
behavior was clarified in the interviews, where some participants mentioned that they
wanted to make sure, that the robot got the task and did not just succeed with it by
accident.

The self-rated motivation score from participants was measured quite the other way,
where they reported being less motivated with slow learning compared to a fast learning
configured robot (as described in section 4.9). Results from the measured achieved profi-
ciencies of the robot after participants were done with teaching, echoed with participants’
motivation scores, indicating that they were more motivated if the robot was learning fast.
These findings were also strongly supported by participants’ comments that expressed, for
example, that motivation dropped with an increasing number of attempts and that many
repetitions without visual progress from the robot were rather perceived as frustrating.

The analysis of quantitative and qualitative data for motivation, leaves open, whether
or not the success of the robot had a significant influence on the teachers’ motivation
scores. A robot is considered successful if its proficiency score is equal to one (i.e. 100%),
everything else is considered unsuccessful (i.e. < 100%). The validation area provided
insight to the participants on whether or not a robot had been successful in a given user
test, as described in 3.2.3, so participants knew when the robot was successful. The data
is clear for a fast learning rate configured robot, as they were always successful after the
participant discontinued the teaching process, but not for slow learning rate configured
test cases. Thus, a follow-up explorative post-hoc test was conducted isolated for slow
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learning rate configured test cases and independent of initial proficiency, grouped by
successful and unsuccessful runs.

The findings in section 4.10.1 may suggest that participants were left frustrated if the
robot was not successful by the time they discontinued the teaching process, while
participants who provided enough demonstrations for the robot to have it succeed in
the end were left with a positive sense of accomplishment. This aligns with the similar
results of Hedlund et al. [9], which found that, if participants successfully taught the
task to the robot, they were more impressed with the robot and themselves than when
they failed to teach it to the robot. On the other hand, it may also be the case that
participants were motivated in the first place and, regardless of the success of the robot,
were able to provide the needed demonstrations for the robotic student to succeed, just
because of their initial motivation. Also, it may be possible that both explanations could
hold, and further research could reveal which of these possibilities has more significant
effects. Although the effect seems to be significant, the interpretations of the results
should be approached with caution, since the test was explorative and not planned.

Similar to Godspeed’s animacy scale, as described in section 5.1.2 above, a statistically
significant interaction effect for the combination of initial proficiency and learning rate
was measured, where the post-hoc contrast tests showed that a low initial proficiency
additional to a fast learning rate indicates higher ratings in terms of teaching motivation.
The behavior of the data is analyzed in section 5.4 in more detail.

5.3 Teaching Experience and Self-Efficacy
Participants seemingly had a better pragmatic and hedonic user experience with a
fast compared to a slow learning rate configured robot (please refer to section 4.8).
Additionally, there has been a statistically significant interaction effect for the combination
of initial proficiency and learning rate for the hedonic quality. After post-hoc contrast
tests for the individual groups were conducted, it showed that participants had an even
better hedonic teaching experience with a robot when it was configured with a low initial
proficiency and with a fast learning rate. This finding seems to be on par with the
interaction effects of Godspeed’s animacy and teaching motivation, as described in the
above sections 5.1.2 and 5.2. This common characteristic is analyzed in section 5.4 in
more detail.

As for the pragmatic experience, a fast learning rate in this setting is directly connected
to a user’s Efficiency requirements, a subscale of the pragmatic quality. Participants also
commented that they perceived the robot as being more adaptive to their input, less
erroneous, and less frustrating. These comments indirectly suggest that a fast learning
robot also was positively influential to the Perspicuity and Dependability scales of the
UEQ’s pragmatic quality subscales.

Similarly, a fast learning rate configured robot appears to be as more competent than
a slow learning one (refer to section 4.6.4). The robot then may come across as more
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innovative or leading edge, which both are parts of the Novelty subscale of UEQ’s hedonic
quality scale. Participants reported that a fast learning robot would be ‘more complex’,
‘pretty smooth’ and even pay attention to details of cube placement, which arguably
could increase hedonic quality ratings in general. Finally, a fast learning configured robot
is rated as more motivating than a slow learning one, which directly influences the UEQ’s
Stimulation scale.

By analyzing the participants’ self-efficacy data (refer to 4.7), the results are similar to
the pragmatic, and even more so, hedonic user experience qualities. Participants felt
themselves as being more efficient with teaching a fast learning robot rather than a slow
learning one. This makes sense since a faster learning robot leads to earlier gratification,
and as already mentioned above, participants reported that the robot has been perceived
to be more adaptive to the participants’ inputs in this case. Vice versa, participants
often reported negative sentiments towards the slow learning alternative, by expressing
that they feel ‘stupid’ if they repeat the same thing over and over, while the robot does
not seem to progress, or by expressing an overall ‘frustration’, which further seems to
support that the robot’s learning rate influenced their self-efficacy.

Since self-efficacy is coupled with the success of the robot by asking participants whether
or not they were confident with teaching it in a number of ways, the question remains
if participants were also feeling as self-efficient if they managed to successfully teach a
robot when it was configured as slow learning. Therefore a follow-up post-hoc test was
conducted isolated for slow learning rate configured test cases and independent of initial
proficiency, grouped by unsuccessful (robot proficiency < 100%) and successful (robot
proficiency equals 100%) runs, similar to the post-hoc test above for teaching motivation
(see section 5.2).

Similar to the findings with teaching motivation, the findings for self-efficacy in section
4.10.2 may suggest that participants were left with a diminished impression of self-efficacy
or confidence in teaching the robot when they did not explicitly observe it succeeding
at the task. Arguably, it would make sense that participants would feel more confident
teaching the robot another task if they successfully taught it the pick-and-place task
in the relevant user tests. This again aligns with the similar results of Hedlund et al.
[9], just as described above in section 5.2, when comparing user test runs in terms of
robot success or failure. Nevertheless, since the experiment was not designed to explicitly
measure these effects, this interpretation should be approached with caution. Further
research would be interesting to examine this behavior in more detail.

5.4 Expectations and the Surprise Effect
Many participants reported that the robot’s initial proficiency did set expectations on how
well it would perform on the pick-and-place task. It skewed the participants’ impressions,
that the robot ‘won’t learn as easy’ or ‘might be a little bit dumber’ when it was not
initially able to draw a correct rectangle. Conversely, participants expected the robot to
be faster, or that the teaching process would be ‘easier’ when the robot initially drew a
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perfect rectangular shape. One participant even explicitly stated the assumption, that a
poor rectangle means that the robot was indicating a slow learner and vice versa.

On the flip side, also many participants expressed that they either were not sure about
how the presented initial proficiency of the robot would influence them, or that they saw
the drawing task as completely disconnected from the pick-and-place task, and thus, did
not influence them at all in terms of their teaching motivation. Interestingly, some of
the participants who reported their thoughts as on par with the latter were found to
have a measurable difference within their self-rated motivation scores when compared
between low and high initial proficiency configured test cases. This contradiction can be
interpreted as a form of unconscious bias towards the robot.

Unlike the qualitative findings, where participants often had opinions on initial proficiency,
it did not directly make for significant differences in most of the quantitative results.
The only direct impact was found on the initial observing time measurement (see section
4.5). It suggests that participants were more interested in understanding in which way
they should proceed with teaching the robot in the pick-and-place task. This finding is
supported by some of the participants’ comments from the interviews. This leads to the
interpretation that when the robot was able to perfectly draw a rectangle, participants
were less interested in keeping them watching for longer, as the rectangle was already
perfect, and no robotic behavioral patterns were hiding behind its errors.

More interesting than that are the results of measurements where the robot’s initial
proficiency did have an impact in combination with the learning rate. This was first
found to be the case with Godspeed’s anthropomorphism scale, where contrast tests
revealed that the robot was especially low-rated in terms of anthropomorphism when
the robot had been configured with low initial proficiency and a slow learning rate as
described above in section 5.1.1. Further, statistically significant interaction effects were
found for Godspeed’s animacy scale, hedonic user experience, and teaching motivation.
Within the results, there was commonly found a significant difference when the robot was
configured with low initial proficiency and with a fast learning rate. This finding has not
been expected prior to the study. Some participants validated and also explained this
finding, reporting that they were particularly ‘surprised’ and even ‘happy’ by the robot’s
behavior in this configuration. Initially, when the robot drew a faulty rectangle, they
assumed it would be slow learning with the pick-and-place task, but then the robot’s
quick improvement left their expectations unmet and caused a positive surprise effect
which subsequently appeared to have influenced a significant part of the aforementioned
scales.

Although not significant, a reassessment of the results brought up that scales such as
Godspeed’s likeability and perceived intelligence, as well as self-efficacy, exhibit notably
similar differences for a robot configured with low initial proficiency and fast learning rate
compared to other configurations. Overall, this may suggest that initial proficiency was
influential only in conjunction with learning rate throughout most of the tested scales,
and only for some of them, it was responsible for a significant difference.
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5.5 Implications for Design
One of the main findings of the study shows, that the learning rate of a (social) robot,
taught by LfD seems to be a common influential factor for many teaching-relevant
attributes. A general suggestion therefore would be to have efficient learning algorithms
incorporated with the robot to begin with. However, fast learning may not be the desired
behavior in every scenario. The results in this study are limited to a simple pick-and-place
task. In real settings, users may expect the robot to learn slowly in favor of attention to
potentially necessary nuanced movements.

Next, the initial proficiency of a (social) robot in this study has been found to be
influential in terms of how users expected it to behave while trying to teach it a new
task. A robot exhibiting low initial proficiency at first while then leaving the users’
expectations unmatched, seemed to bring up a positive surprise effect. Since in this
study participants were especially happy with this behavior, it might be beneficial in
real settings by designing a teaching environment where users will have such positive
impressions of the robot from time to time.

Teaching motivation and self-efficacy seem to strike a similar chord. Participants repeat-
edly mentioned that their motivation was keeping up if there was at least some kind of
visual progress. Longer teaching times were not as demotivating, when the robot was
finally successful, as described with the help of the post-hoc explorative tests in sections
5.2 and 5.3. This indicates, that a user’s motivation can be kept up by the robot when it
shows continuous improvement. It would therefore be beneficial for users to be able to
break complex tasks into individual pieces, which could then be worked through step
by step. Such an approach could potentially positively influence a user’s motivation to
continue teaching after each step is presented as accomplished.

Finally, a (social) robot exhibiting imperfect behavior will be more anthropomorphized,
likeable, and perceived as more intelligent by a user, which subsequently can increase
emotional engagement while teaching it [90]. In this study, it also occurred that, if a
robot is not able to do any of the presented tasks, the robot’s behavior is perceived as
less human-like and more machine-like, potentially diminishing emotional engagement.
Therefore it is recommended to have a robot capable of showing that it can successfully
do certain tasks ‘out of the box’.

5.6 Limitations
It is important to acknowledge the limitations of this study, which are as follows:

• Reality gap: The experiment involved a robot with pre-programmed movements
and learning outcomes, providing participants a simulated LfD teaching experience.
Additionally, the experiment has been conducted in VR, which only supports the
reality gap. However, a virtual experience can be beneficial to teach the robot even
in a real-world setting, since this is a safer way to test and validate the robot before
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uploading the result to a real one. However, the transfer of the virtually trained
models to their real counterparts remains to be problematic [63][91].

• Limited teaching approach: Within the experiment, participants were able to
show the robot how to correctly do a pick-and-place task in a very streamlined
manner. Additionally, UI elements indicated when a correct demonstration has
been made. Further, only correct demonstrations were accepted as input for the
robot to learn. Interestingly, participants still tried to incorporate slightly different
approaches to teach the robot. Still, the point remains, that one single possibility
to proceed, limited participants to teach the robot in a personalized way and may
have caused fatigue or boredom more quickly.

• Design of feedback dialog: Participants were only encouraged to decide if they
wanted to continue or stop teaching after four valid demonstrations were provided
to the robot for the pick-and-place task. This resulted in a fast learning configured
robot to already reach 100% proficiency by the time they have been asked by the
feedback dialog. Therefore it is uncertain if some participants would have stopped
teaching earlier, and subsequently, how their responses would have been different
in this case.

• Task complexity: The study incorporated a single simple pick-and-place task
for participants to teach to a robot. Due to this design, it is potentially limiting
the findings above to such simple tasks. Thus, more complex or nuanced tasks
may produce different results. For example, Bhat et al. [92] found that a missed
value alignment between a robot and a user concerning a task, especially if the risk
is perceived as high by the user, negatively influences the user’s perceived trust
towards the robot. In this study, however, the robot expressed always the same
motions and speeds when picking and placing cubes, so no such effect was able to
be measured here.

• Limited workload findings: Although participants often reported how they felt
frustrated or efficient with certain test settings in the interviews, those findings can
only be interpreted in a limited way. In order to understand how much mental or
physical effort is needed or in order to quantitatively understand the frustrations a
user might have with certain robot configurations, suitable questionnaire items, like
those found in the NASA-TLX, may have helped to incorporate extended statistical
analysis and findings.

• Limited time of user tests: As found by several previous works [7, 58, 93], the
HRI community could benefit from a higher number of longitudinal studies. As
the study in this work only had limited time, the findings here may not hold up
when users are observed over longer periods of time.

• Participants sample: Due to the way how participants were recruited for the
study, it is limited to a mostly tech-savvy group of people. Different participant
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samples therefore may produce overall different results. Future work could benefit
from a more diverse participant sample to generalize findings.

5.7 Future Work
To build upon the findings and limitations of this study, the following directions for
further research are proposed:

• Influence of robotic form factor and movement: In this study, a humanoid
(social) robot has been tested against participants. It was equipped with pre-defined
sets of more or less human movements. Data analysis revealed a certain baseline
value for anthropomorphism, rated by participants after they observed this robot in
four different test cases. It would be interesting to explore, how much the robot’s
form factor or animations contributed to this effect.

• In-depth analysis for teaching motivation: As is currently prevalent with
LfD, machines (or agents, more generally) often need a considerable number of
demonstrations to effectively learn how to accomplish specific tasks. It is therefore
crucial to understand how the teaching motivation of human instructors is influenced
by various factors, including the design of the teaching environment (like for example
UI and feedback mechanisms), emotional engagement, and perceived self-efficacy
with different teaching methods.

• Perceived safety: There has not been measured any significant effect of the
robot’s initial proficiency or learning rate on Godspeed’s perceived safety scale,
even though some participants reported that they had the impression of the robot
being dysfunctional or faulty, where a lower rating was to be expected. One reason
why this might be the case is that the experiment was conducted in VR, where no
physical harm on behalf of the robot is possible. However, in real-world scenarios,
where users teach SRs for personalized tasks, they may be more cautious about a
potentially faulty robot within their proximity. It would be interesting to investigate
if robotic traits, like initial proficiency and learning rate, would be able to influence
the participants’ perceived safety in a real teaching environment and with a real
humanoid robot.

• Influence of initial proficiency: Since the robot’s initial proficiency has been
found influential most commonly in interaction with its learning rate, it would be
interesting to explore if other, potentially more prominent, representations of initial
proficiency could elicit stronger main effects on participants’ perceptions of the
robot and themselves.

The to-be-tested conditions on a robot’s competency in a proposed user study by Wang
et al. [77] read similar to the independent variables used in this work, as described in
section 2.3. The future results will show if, and how their results may align with the
findings described above.
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CHAPTER 6
Conclusion

In this work, a controlled lab experiment was conducted, in which participants (N = 24)
were taking part as teachers and were asked to teach a pick-and-place task to a virtual
humanoid robot, over a simulated LfD approach, within a VR teaching environment.
Two independent variables of this robot, initial proficiency (low and high) and learning
rate (slow and fast), formed four different test conditions: A (low, slow), B (low, fast),
C (high, slow) and D (high, fast). Initial proficiency defined how the robot showcased
its capability to participants in a task different than pick and place, before the teaching
process started, which it did via a rectangle drawing task. The learning rate defined
how many demonstrations the robot needed to have provided by the human teacher to
accomplish the task. Each participant was confronted with the robot in each of the test
cases. The sequences of test cases have been counterbalanced before the experiment.
Several measurements were made for each participant and each test case, including
participants’ responses on Godspeed’s scales Anthropomorphism, Animacy, Likeability,
Perceived intelligence and Perceived safety, as well as responses to SE-HRI and UEQ-S
items and participants’ self-rated teaching motivation. Log files from each test run were
analyzed and provided additional measurements, including Teaching time, Achieved robot
proficiency, Number of attempts, and Initial observing time.

6.1 How do Findings Align with Research Questions?
As results and findings have been discussed in the previous chapter, they remain to
provide insights into how they align with and contribute to the initial research questions.

RQ1: How does the initial proficiency level of a robot in a teaching environ-
ment affect human perception of the robot’s capabilities and intelligence?

It has been found that different initial proficiency levels (either low or high) of the robot
tested within the experiment were ineffective towards the participants’ perception of
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intelligence measured over Godspeed’s Perceived intelligence scale. However, participants
repeatedly mentioned in their debriefing interviews that the presentation of the robot’s
initial proficiency did set their expectations on how well the robot would perform with
the pick-and-place task, or how efficient it would be to teach them, in other words, how
intelligent they expected the robot to be. The actual performances of the robot while
trying to learn the pick-and-place task potentially dominated the participants’ impression
of perceived intelligence in the end.

RQ2: How does the rate at which a robot appears to learn a new skill influence
the human instructor’s perception of the robot?

The data showed that different robot configurations for learning rate (either slow or fast)
tested within the experiment had extensive implications for participants’ perception of
the robot. First, participants rated the robot higher in terms of Godspeed’s Anthropo-
morphism, Animacy, Likeability and Perceived intelligence scales when learning rate was
configured to be fast compared to it being configured as slow. Second, a large portion
of participants reported that they favored a fast learning robot, as it expressed higher
efficiency, intelligence, and adaptiveness, compared to a frustrating, not smart, and faulty
slow learning robot.

RQ3: What is the relationship between the perceived robot’s proficiency level
and learning rate, and the self-efficacy of the human instructor?

When comparing the robot’s initial proficiency and learning rate throughout the exper-
iment, results revealed that initial proficiency was not measured to have a significant
effect while learning rate did have a direct significant effect on participants’ reported
self-efficacy scores, which has been rated higher with a fast learning compared to a slow
learning robot. Participants’ comments on their teaching approach or teaching strategy
for a slow learning robot within the debriefing interviews supported this finding. However,
both the quantitative and qualitative data on self-efficacy did not answer whether or
not the score of self-efficacy also depended on the actual success of the robot with the
pick-and-place task, which is something the SE-HRI items are concerned with. Therefore,
an explorative reevaluation of the data has been made, isolated for test runs with a
slow learning robot, to compare the self-efficacy scores of participants who successfully
taught the slow learning robot with participants who were not. The result suggested
that participants rated themselves higher in terms of their self-efficacy when the robot
succeeded with the task, by the time the participants decided to stop teaching, even
when it had been configured as slow learning.

RQ4: How do variations in the robot’s initial proficiency and demonstrated
learning rate impact the willingness of human instructors to continue teaching
the robot?

The data on the participants’ self-rated teaching motivation score showed that, first,
learning rate had a direct significant effect, as a fast learning robot caused participants
to be more motivated and vice versa, and second, that the robot’s initial proficiency
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was only showing a significant effect when observing it in conjunction with learning rate.
To be more precise, participants responded with a higher teaching motivation when the
robot was configured with low initial proficiency together with a fast learning rate. When
participants were asked in interviews, they expressed that they were especially happy
when the robot was configured as such. Together the findings suggested that participants
expected the robot to perform poorly when trying to learn the pick-and-place task when
it had low initial proficiency, while then being surprised by it learning fast. This surprise
effect caused the spike in motivation scores in this specific test case. An explorative
reevaluation of the data, isolated for test runs with a slow learning robot, has been
made to check whether or not the success of the robot when participants decided to stop
teaching, did have an impact on participants’ motivation. The results showed, similar to
the participants’ self-efficacy score, that the success of the robot caused participants to
rate their motivation higher compared to when it was unsuccessful, even when the robot
was configured as slow learning.

6.2 Toward Acceptable Social Robots
With the recent advances in SR technology, the incorporation of the field of HRI seems to
gain high importance, as many challenges arise within this interdisciplinary area. These
challenges need further scientific exploration to enable robots to help people with various
tasks and within various domains in a meaningful way. This work aimed to address
the previously mentioned gap in the literature by analyzing how the two robotic traits,
initial proficiency, and learning rate influence the users’ perceptions of the robot and
themselves.

A fast learning robot was heavily preferred by participants over slow ones. Additionally,
the success or failure of the robot, although only tested indirectly, was shown to contribute
a significant effect in terms of the participants’ reported teaching motivation and self-
efficacy, even when the robot was slow learning. Initial proficiency only showed low direct
effects, although it did set the participant’s expectations on how good it would perform
with other tasks and was able to cause participants to form an unconscious bias towards
the robot.

Potential EUD systems that make use of an LfD approach for SRs are recommended
to focus on providing efficient teaching processes to their users. Additionally, users
should be able to cut down complex tasks into simpler parts to emphasize teaching
success moments, which would keep motivation high and leave users with a feeling of
accomplishment every now and then. Future work may further evaluate how other robotic
characteristics influence essential aspects of human teachers’ perceptions, and with this,
lead us toward acceptable social robots.

93





Overview of Generative AI Tools
Used

Throughout this work, I made use of the following assistive AI tools:

• OpenAI Whisper: This tool has been used indirectly by OpenVINOTM AI plugins
for Audacity and has been used to transcribe interview audio files. Once, the audio
files were transcribed, the results were validated, by comparing them against the
original audio data. Failed transcriptions or failed parts of them were manually
corrected.

• OpenAI ChatGPT: This served as an assistive tool for recommendations and
suggestions for structure, clarity, and sometimes proofreading purposes. None
of the results were directly included in this work without adaption and critical
evaluation.
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