
Classification of vehicles based
on audio data

Classifying vehicle types with audio preprocessing
and machine learning

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

066 646 Master programme Computational Science and Engineering

by

Bernd Schönfelder, BSc
Registration Number 01326497

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. DI Dr. Thomas Grechenig

Vienna, February 6, 2025

Bernd Schönfelder Thomas Grechenig

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Fahrzeug Klassifizierung
basierend auf Audiodaten

Fahrzeugklassifizierung basierend auf Audio
Datenvorverarbeitung und Machine Learning

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

066 646 Masterstudium Computational Science and Engineering

eingereicht von

Bernd Schönfelder, BSc
Matrikelnummer 01326497

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. DI Dr. Thomas Grechenig

Wien, 6. Februar 2025
Bernd Schönfelder Thomas Grechenig

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Bernd Schönfelder, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel
bedient habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt.
Im Anhang „Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools
gelistet, die verwendet wurden, und angegeben, wo und wie sie verwendet wurden.
Für Textpassagen, die ohne substantielle Änderungen übernommen wurden, habe
ich jeweils die von mir formulierten Eingaben (Prompts) und die verwendete IT-
Anwendung mit ihrem Produktnamen und Versionsnummer/Datum angegeben.

Wien, 6. Februar 2025
Bernd Schönfelder

v

Danksagung

Ich möchte meinen Betreuern meinen aufrichtigen Dank für ihre unschätzbare
Unterstützung, Anleitung und Ermutigung während dieser Arbeit aussprechen. Ihr
Fachwissen und ihr konstruktives Feedback waren maßgeblich für die Ausrichtung
und das Ergebnis dieser Arbeit.

Mein herzlicher Dank gilt außerdem der Technischen Universität Wien, dem INSO-
Institut und der RISE GmbH für die Bereitstellung der notwendigen Ressourcen und
Infrastruktur, die diese Forschung ermöglicht haben.

Besonderer Dank gilt meiner Familie und meinen Freunden für ihre unerschütterliche
Unterstützung und ihr Verständnis während dieser Reise. Ihr Glaube an mich war
eine stetige Quelle der Motivation.

Abschließend danke ich allen, die direkt oder indirekt zum erfolgreichen Abschluss
dieser Arbeit beigetragen haben. Ihre Hilfe und Ermutigung weiß ich sehr zu schät-
zen.

vii

Acknowledgements

I would like to express my sincere gratitude to my supervisors for their invaluable
guidance, support, and encouragement throughout this thesis. Their expertise and
constructive feedback were instrumental in shaping the direction and outcome of
this work.

I also extend my heartfelt thanks to Vienna University of Technology, INSO Institute
and RISE GmbH for providing the necessary resources and infrastructure that made
this research possible.

Special thanks go to my family and friends for their unwavering support and un-
derstanding during this journey. Their belief in me has been a constant source of
motivation.

Finally, I am grateful to everyone who contributed, directly or indirectly, to the
successful completion of this thesis. Your help and encouragement are deeply
appreciated.

ix

Kurzfassung

Diese Arbeit untersucht das Potenzial der Fahrzeugklassifizierung auf Basis von Audi-
odaten und bietet eine Alternative oder Ergänzung zu traditionellen video-basierten
Verkehrserkennungssystemen. Vier zentrale Forschungsfragen leiten diese Arbeit:
die Genauigkeit der Fahrzeugzählung (RQ1), die anhand von Referenzdaten bewertet
wird, die Machbarkeit der Fahrzeugtypklassifikation mittels maschinellem Lernen
(RQ2), die ebenfalls gegen dieselben Referenzdaten evaluiert wird, der Einfluss der
Hardware auf Echtzeitberechnungen (RQ3), der sich auf die bereits entwickelte
und eingesetzte Infrastruktur bezieht, sowie die Gesamtzuverlässigkeit der audio-
basierten Verkehrserfassung (RQ4) im Hinblick auf die verfügbaren Referenzdaten
und die Messkonfiguration.

Zur Beantwortung dieser Fragen wurden Daten aus einer Sensorbox mit Audioauf-
zeichnungskapazität verwendet, die neben einem bestehenden Videoerkennungssys-
tem eingesetzt wurde. Die von der Videoerkennung gewonnenen Daten dienten als
Referenz für die Bewertung der Leistung des Audioerkennungssystems. Ein Softwa-
reprototyp, der maschinelles Lernen einsetzt, wurde entwickelt und erreichte eine
Fahrzeugzählgenauigkeit von bis zu 98 was zeigt, dass eine Ereigniszählung die Zu-
verlässigkeit video-basierter Systeme erreichen kann. Es konnte zudem beobachtet
werden, dass die Hypothese, wonach Videoerkennungssysteme bei schlechter Sicht
Schwierigkeiten haben könnten, während Audio-basierte Systeme weiterhin zuverläs-
sig bleiben, nicht verworfen werden kann. Für die Klassifizierung von Fahrzeugtypen
erreichten die im Rahmen dieser Arbeit trainierten maschinellen Lernmodelle eine
Spitzengenauigkeit von 95–97% und eine durchschnittliche Genauigkeit von 88,7%.
Dies demonstriert die Machbarkeit der Audio-basierten Klassifizierung, obwohl Klas-
senungleichgewichte zugunsten von Autos dazu führten, dass der Klassifikator letzt-
lich als binär einzustufen ist.

Hardwarebegrenzungen stellten eine Herausforderung dar; Der Khadas VIM3 - Mi-
krocomputer, der das Herzstück der verfügbaren Sensorbox bildet und auch die
Erkennungspipeline hosten sollte, erwies sich aufgrund von Speicherbeschränkun-
gen als ungeeignet für die Verarbeitung an Bord, wodurch eine Echtzeitbereitstellung
unter den aktuellen Bedingungen nicht möglich war. Nichtsdestotrotz repräsentierte

xi

der entwickelte Workflow den vorbeifahrenden Verkehr mit hoher Genauigkeit, ins-
besondere unter der Bedingung, dass Autos den Großteil des Verkehrs ausmachten,
was auch die am Teststandort beobachtete Zusammensetzung war. Während die
Methoden am Teststandort validiert wurden, sind weitere Studien erforderlich, um
ihre Anwendbarkeit in unterschiedlichen Verkehrsumgebungen zu bewerten.

Diese Ergebnisse unterstreichen das Potenzial der Audio-basierten Fahrzeugerken-
nung als komplementären Ansatz zu Videosystemen und bieten bedeutende Implika-
tionen für skalierbare und kosteneffiziente Lösungen zur Verkehrserfassung.

Abstract

This thesis explores the potential of classifying vehicles using audio data, offering
an alternative or addition to traditional video-based traffic detection systems. Four
primary research questions guide this work: the accuracy of vehicle counting (RQ1)
which is evaluated against reference data, the feasibility of vehicle type classification
via machine learning (RQ2) which is also evaluated against the same reference
data, the influence of hardware on real-time computations (RQ3) which adresses
the already developed and deployed infrastructure, and the overall reliability of
audio-based traffic representation (RQ4) in respect to available reference data and
the measurement setup.

To address these questions, data from a sensor box with audio recording capabilities
which is deployed alongside an existing video recognition system was used. The data
obtained by the video recognition system served as reference data for evaluating
the performance of the audio recognition system. A software prototype leveraging
machine learning was developed, achieving a vehicle counting accuracy of up to 98%,
proving that a counting of events can approach the reliability of video based systems.
It could also be observed that the hypothesis that video recognition systems would
struggle with bad visibility while audio based systems will still be reliable can’t be
abandoned. For vehicle type classification, the machine learning models trained in
during thesis reached a peak detection accuracy of 95–97% and an average of 88.7%,
demonstrating the viability of audio-based classification despite class imbalances
favoring cars which lead to the classifier being of binary type.

Hardware limitations posed challenges; the Khadas VIM3 - microcomputer which
is the heart of the available sensorbox and should also have been able to host the
detection pipeline was insufficient for on-board processing due to memory constraints,
making real-time deployment infeasible under current conditions. Nevertheless, the
developed workflow successfully represented passing traffic with high accuracy,
provided the prevalence of cars dominated the traffic composition which was also
the observed composition at the test site. While the methods were validated at the
test location, further studies are required to assess their applicability across varying
traffic environments.

xiii

These findings underscore the promise of audio-based vehicle detection as a comple-
mentary approach to video systems, with significant implications for scalable and
cost-effective traffic monitoring solutions.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Contribution of this Work 3
2.1 Research questions . 4

3 State of the Art, Literature Review and Impact 5
3.1 Introduction . 5

3.2 Video Recognition in Traffic Monitoring and Analysis 5

3.3 Audio Recognition in Traffic Monitoring and Analysis 7

3.4 Significance of Audio Recognition in Traffic Monitoring 11

3.5 Machine Learning in Audio Classification 12

3.6 Integration of Audio and Video Technologies 18

3.7 Challenges and Limitations in Existing Approaches for Traffic Monitor-
ing and Analysis . 19

3.8 State of the Art Synopsis . 21

4 Methodology 23
4.1 Introduction . 24

4.2 Experiment Design . 25

4.3 Equipment and Setup . 27

4.4 Data Collection . 28

4.5 Project Workflow Pipeline . 32

4.6 Data Setup and Preprocessing . 33

4.7 Preprocessing of Audio Data . 34

4.8 Machine Learning Model . 36

4.9 Threats to Validity . 40

xv

4.10 Data workflow for this thesis . 42
4.11 Synopsis of Methodology . 43

5 Implementation of Methodology 45
5.1 Data Collection and Preprocessing . 45
5.2 Feature Extraction and audio pre-processing 51
5.3 Transformation Methods . 57
5.4 Data Labeling . 59
5.5 Implementation as a pipeline . 61

6 Results 67
6.1 Overview of experiment Results SVM 67
6.2 Overview of experiment Results Keras Model 74

7 Discussion and future work 81
7.1 Research questions . 81
7.2 Discussion . 84
7.3 Future Work . 85

Overview of Generative AI Tools Used 87

Übersicht verwendeter Hilfsmittel 89

List of Figures 91

Acronyms 93

Bibliography of Print Media 95

Bibliography of Online Sources 103

CHAPTER1
Introduction

In contemporary traffic control systems, video recognition technology has become
ubiquitous and plays a key role in monitoring and managing vehicular activities.
However, this prevalent method is not without limitations, which pose challenges
such as high costs, substantial computational demands, and inherent restrictions
under adverse weather conditions. As traffic surveillance technology continues to
evolve, it is imperative to explore additional approaches that address these drawbacks
while maintaining efficiency and cost effectiveness.

One of the main methods for detecting and classifying vehicles at the current time is
video recognition, as it provides an easy approach for almost every situation where a
camera can be mounted. Video-based vehicle detection and classification systems
have been developed and have been proven to be viable solutions for real-time traffic
data collection. However, they are susceptible to drawbacks such as dependency on
good weather conditions and clear visibility, which can hamper detection in adverse
circumstances.

This research investigates the potential advantages of audio classification of vehicles
as a viable addition, or even alternative, to video-based traffic control systems. The
focus on audio classification stems from the recognition of its unique strengths,
particularly in overcoming challenges posed by inclement weather conditions such
as snow and fog, under which conventional video recognition may falter.

The methodology used in this research endeavors to address research questions
regarding the number of passing vehicles, deduction of vehicle types, and represen-
tation of traffic, exploring the potential of audio recognition technology in traffic
monitoring. This includes an in-depth description of the equipment, data collection
processes, preprocessing techniques, feature extraction methods, machine learning

1

1. Introduction

model, experiment design, validation methods, ethical considerations, limitations,
data analysis approaches, and an overall summary of the research methodology.

To ensure correct results and verifiability of predictions made by the machine learning
model, input data has to be correctly labeled. The basis for this is the reference data
acquired from video recognition, which is automatically synchronized with results
from audio preprocessing. Resulting labeled data is then analyzed for plausibility,
ensuring that data used for verifying the model is indeed correct in respect to the
reference data. Data labeling has to be automated to handle large input datasets to
quickly accommodate new input data, where manual labeling of such large data sets
would be very time consuming and prone to error, which is not feasible in the scope
of this thesis.

In the results section, there will be a detailed description of the results achieved
during this thesis, as well as a comparison to existing video recognition results
utilizing confusion matrices to show how well the model could detect a car or predict
the correct vehicle type from the available classes. The results will also be discussed
in detail with respect to the relevant research questions.

The primary motivation behind this research lies in the pursuit of a robust, real-
time, and cost-efficient traffic monitoring system. Unlike video-based approaches
that often require complex setups and significant computational resources, audio
recognition presents the prospect of a streamlined and economically viable solution.
Through the usage of a sensor box equipped with microphones and a microcomputer,
this research seeks to showcase the feasibility of implementing audio recognition
technology in traffic monitoring.

The objectives of this thesis are multifold. The first aim is to assess the accuracy of
vehicle detection derived from the audio recordings and ascertain its comparability
with the already deployed measurement setups. Subsequently, the potential to
accurately calculate the number of passing vehicles, to discern the vehicle type,
and to evaluate the influence of the preliminary setup on the computation speed
is explored. By addressing these research questions, audio recognition of passing
vehicles is established as a reliable and efficient alternative to traditional video-based
traffic monitoring.

This introduction sets the stage for a comprehensive exploration of audio recognition
in the realm of traffic monitoring. First, the current state of the art will be explored
to provide an overview of available methods. The subsequent sections will delve into
the methodology employed, present the results of the experiments conducted, and
provide a thorough discussion of the findings in relation to the research questions
outlined.

2

CHAPTER2
Contribution of this Work

This thesis provides a reliable alternative to an existing video monitoring setup for
classifying vehicles passing by a recording station, consisting of a video camera
of which data is analyzed by a subsequent machine learning system to generate
labels for passing vehicles, as well as a sensorbox containing microphones and other
equipment, as further described in Section 4.3. It is shown that it is possible to have
a machine learning setup based on the available audio data that produces as reliable
results as the already proven video recognition system, and which is able to predict
the correct vehicle type for new data, which can be verified with results video data
recognition from the same time period.

Furthermore, by getting accurate results, it is shown that a very simple setup
consisting of Micro-Electro-Mechanical Systems (MEMS) microphones in a sensor
box and a machine learning classifier for the resulting audio stream can compete with
a camera recognition system used by Austrian Motorway and Expressway Financing
Joint-Stock Company (ASFINAG). This provides a viable and cheaper alternative
that is also easier to set up, as well as posing less concerns regarding privacy
infringements via camera recording, as the recorded audio snippets would only
be available as a spectrogram, yielding no sensible data about possibly recorded
conversations. By showing that similar detection accuracy as vehicle classification
via video recognition can be achieved with this simple audio recognition system, it
is shown that this audio-based setup provides a viable alternative for the existing
video-based system, and provides a proof of concept which can be tested in other
locations in the future.

3

2. Contribution of this Work

2.1 Research questions

A short overview of the main research questions tackled in this thesis, further
evaluated in chapter 7

2.1.1 Calculation of Passing Vehicles (RQ1)

Can the number of passing vehicles be calculated accurately with respect to the
number of lanes, or for a single lane only? Here, a software prototype will be built
and tested against reference data obtained from video data. Research through
development will help to refine the computations so that they can be verified by
comparison with results from video analysis.

2.1.2 Vehicle Type Deduction (RQ2)

Can the type of a passing vehicle be deduced accurately with machine learning? The
results will be tested against video data obtained at the same location and time as
the audio data, and photoelectric barriers can also be used to gather vehicle count
and timestamps for verification.

2.1.3 Influence of Hardware Setup (RQ3)

How does the hardware setup, which is based on a Khadas VIM3 as the microcom-
puter in use with a Neural Processing Unit (NPU) Machine Learning (ML) module for
ML workloads, influence the computation, and is it possible to finish computations
close to real-time, where results can be acquired within a maximum constant time
window of a few seconds after each event? A window of five seconds is the desired
maximum here, as the evaluation period on the sensor box has a sliding window of
five seconds in length.

2.1.4 Overall Representation of Passing Traffic (RQ4)

Can the workflow developed in this thesis lead to an accurate representation of
passing traffic in regard to the existing video based detection system? Could this
detection method be used in different locations as well, and how would that change
in surroundings affect detection accuracy? This depends on the first three research
questions and will be examined by research through development and comparing
results from audio detection with reference measurements for the same period of
time at the same location obtained from video analysis. All of these results will then
be interpreted and described and will yield the final verdict.

4

CHAPTER3
State of the Art, Literature

Review and Impact

3.1 Introduction

In the era of smart cities and advanced traffic management systems, the accurate
detection and classification of vehicles play a pivotal role in ensuring efficient trans-
portation, safety, and security [1]. One of the main methods for detecting and
classifying vehicles at the current time is video recognition, as it provides an easy
approach for almost every situation where a camera can be mounted. Video-based
vehicle detection and classification systems have been developed and proven to be
viable solutions for real-time traffic data collection [2]. Using such systems has some
drawbacks, however, like the dependency on good weather conditions as well as
clear visibility as the main impacting factors, which can hamper detection in adverse
circumstances.

Other popular detection methods with a lesser susceptibility to these influences
can be based on inductive loops, radars, infrared sonar, microwave detectors, or
combinations of those technologies, but those are not relevant to this work.

3.2 Video Recognition in Traffic Monitoring and Analysis

In traffic monitoring and analysis systems, video recognition plays a pivotal role, as it
can offer real-time insights into traffic flow, safety, and congestion, as well as tracking
vehicles and vehicle types at certain locations [3]. Numerous methods implementing
video recognition can be employed for video-based detection and classification of
vehicles, each posing its own advantages and disadvantages [4]. As the importance

5

3. State of the Art, Literature Review and Impact

of efficient vehicle detection is ever increasing, especially with more vehicles being
on the roads, and with the expansion of road networks, video monitoring has become
an essential method for automatic traffic analysis [5].

Video recognition plays a crucial role in traffic monitoring systems, offering real-time
insights into traffic flow, congestion, and safety. Several methods and technologies
are employed for video-based vehicle detection and classification, each with its own
strengths and limitations [4].

3.2.1 A short introduction of traditional computer vision techniques
employed in traffic monitoring

There are many different traditional algorithms that can be employed for implement-
ing computer vision, such as background subtraction [6], edge detection [7], [8],
and object tracking [8]. These basic methods are widely used in traffic surveillance
systems to detect and track vehicles [8]. Although being computationally efficient
and easy to implement, these presented computer vision methods can struggle with
complex scenarios, including obstructions in the field of view, varying lighting condi-
tions, and noisy or cluttered backgrounds, as they all rely on handcrafted features
and heuristic rules to detect vehicles in input video streams [9]–[11].

3.2.2 Classification approaches depending on deep learning
algorithms

Deep Learning-Based Approaches

Deep learning models, particularly convolutional neural networks (CNNs), have
revolutionized video recognition tasks by automatically learning hierarchical rep-
resentations from raw pixel data [11]. CNN-based architectures, such as Faster
R-CNN [12], YOLO [13], and SSD [14], have demonstrated remarkable performance
in real-time object detection and tracking in traffic videos. Deep learning models
excel at capturing complex spatial and temporal patterns in video data, leading to
highly accurate and robust vehicle detection results [15]. However, training deep
neural networks requires large annotated datasets and significant computational
resources [16].

Multi-View and 3D Reconstruction

Multi-view and 3D reconstruction techniques leverage multiple camera perspectives
and depth information to enhance the accuracy and reliability of vehicle detection
[17]. By fusing information from different viewpoints, multi-view systems can mit-
igate occlusion and improve the accuracy of object localization. Furthermore, 3D
reconstruction enables the estimation of vehicle trajectories and motion dynamics,

6

3.3. Audio Recognition in Traffic Monitoring and Analysis

providing valuable insights into traffic behavior [18]. However, deploying multi-view
and 3D reconstruction systems may require extensive infrastructure and calibration
efforts, limiting their scalability and deployment in real-world environments [19].

Foreground Segmentation and Motion Analysis

Foreground segmentation methods segment moving objects from static backgrounds
in video sequences, allowing for the detection and tracking of vehicles based on
motion cues [20]. Motion-based approaches, such as optical flow analysis and motion
history images, capture temporal dynamics and motion patterns of vehicles in traffic
scenes. These methods are effective at detecting moving objects and distinguishing
them from static background elements [21]. However, motion-based techniques may
struggle with handling complex motion patterns, occlusions, and variations in object
speed [22].

Hybrid Systems and Ensemble Methods

Hybrid systems combine multiple video processing techniques, such as deep learning
models, motion analysis, and background subtraction, to improve overall detection
performance. Ensemble methods integrate predictions from diverse detection al-
gorithms to enhance robustness and reliability in challenging scenarios [23]. By
leveraging the strengths of different approaches, hybrid and ensemble systems can
achieve superior detection accuracy and resilience to environmental factors. How-
ever, designing and optimizing hybrid systems may require careful integration and
parameter tuning to achieve optimal performance [24].

In summary, video recognition methods in traffic monitoring encompass a diverse
range of techniques, from traditional computer vision algorithms to deep learning-
based approaches. Each method offers unique advantages and challenges, highlight-
ing the importance of selecting the most appropriate approach based on specific
application requirements and environmental conditions [25].

3.3 Audio Recognition in Traffic Monitoring and Analysis

To support existing video analysis and monitoring systems, audio recognition can play
a vital role in augmenting those systems by providing additional sensory information
about surrounding traffic conditions [26]. Several different methods and techniques
can be employed for audio-based vehicle detection, classification and monitoring,
which come with their unique advantages and challenges [27]–[29].

7

3. State of the Art, Literature Review and Impact

3.3.1 Spectral Analysis and Feature Extraction

Commonly utilized techniques for extracting discriminative features from audio
signals are spectral analysis techniques, such as Fourier Transform, most often Fast
Fourier Transform (FFT), and Mel-Frequency Cepstral Coefficients (MFCC), which
can also be used for vehicle classification based on audio data [30], [31].

The audio signal is decomposed into constituent frequency components with Fourier
Transform, while the Mel-Frequency Cepstral Coefficients method captures both
spectral and temporal characteristics of input sounds. Both methods combined
enable the identification of vehicle-specific acoustic signatures [32]. These methods
can also be combined with machine learning algorithms for further interpretation of
results. To achieve that combination of spectral analysis and machine learning, the
output of feature extraction methods can be passed to a machine learning model, for
example as spectrogram data which the model can be trained on, as well as identify
samples later. A known caveat is the susceptibility of spectral analysis methods to
variations in environmental noise and/or background clutter, as well as data from
different locations, which can affect classification accuracy and has to be handled
separately [33].

3.3.2 Machine Learning-Based Approaches

There are a couple of machine learning models which are employed in vehicle
classification based on audio-data, such as random forest classifiers, support vector
machines (SVM) and neural networks, where such models distinguish different
vehicle types. Different kinds of machine learning models are employed for audio-
based vehicle classification tasks, such as support vector machines (SVM), random
forests, and neural networks. While support vector machines utilize hyperplane
classifiers for separation of vehicle classes in feature space, neural networks capture
audio patterns via using hierarchical representations [34], [35].

Machine learning approaches offer good scalability and high flexibility and can
be used to model diverse acoustic features, a caveat is that most of them require
extensive and well labeled datasets for training to produce reliable results, and are
susceptible to overfitting in noisy environments [34].

As support vector machines have shown promise in varying audio classification tasks
such as environmental audio classification and music genre classification, an SVM
model has also been chosen as a first approach to testing a proof of concept for this
thesis [36]–[38]. They also sport a high ability for generalization and can efficiently
deal with high-dimensional input features [34], which is another reason that qualifies
them for testing. Furthermore, they can also be combined with ensemble methods,
such as artificial neural networks, which can further improve their classification
accuracy [39]. As such, machine learning approaches can offer robust methods to

8

3.3. Audio Recognition in Traffic Monitoring and Analysis

accurately differentiate between various audio inputs, thus leading to the possibility
of classifying vehicle types based on their passing-by sound.

3.3.3 Time-Frequency Analysis and Wavelet Transform

Localized spectral decomposition of audio signals is possible by utilizing Wavelet
Transform, which is especially useful for examining and characterizing transient
sounds and extracting acoustic features [40], which can also be useful for vehi-
cle classification. During the Wavelet Transform, the audio signal is decomposed
into different frequency components at varying resolutions [41], which enables en-
hanced time-frequency localization and feature extraction for both stationary and
non-stationary signals as it offers arbitrary time-frequency resolution [42], which
underscores the resiliency of Wavelet Transform methods to background noise varia-
tions and allow capture of dynamic acoustic patterns, which are crucial for vehicle
classification. A challenge arising with these methods is the appropriate selection
of wavelet basis functions and decomposition scales, which affects their practical
implementation [43].

The MEL scale

The MEL scale is a scale of pitches judged by listeners to be equal in distance
one from another. The reference point between this scale and normal frequency
measurement is defined by equating a 1000 Hz tone, 40 dB above the listener’s
threshold, with a pitch of 1000 MELs [44].

The Morlet Wavelet Transformation

The challenges of choosing appropriate wavelet basis functions and decomposition
scales are addressed by the Morlet Wavelet Transformation, which offers an empir-
ically validated solution, where the effectiveness of the synchrosqueezed wavelet
transform is discussed by [45], a method providing a solution for the selection of a
precise wavelet basis function. This provides an indication that a complex-valued
wavelet like the Morlet Wavelet can offer improved outcomes compared to real-valued
wavelets regarding the selection of wavelet basis functions and decomposition scales,
where the analytical expression for the complex Morlet Wavelet is

Ψ(t) = π−1/4eiω0te−t2/2, (3.1)

where ω0 is the non-dimensional frequency [46].

9

3. State of the Art, Literature Review and Impact

The Rectified Linear Unit (ReLU) activation function

ReLU is an activation function which is commonly used in neural networks [47]. It
allows the model to learn from and make predictions on complex data by introducing
a non-linearity to the network, with this simple mathematical expression describing
it:

f(x) = max(0, x) (3.2)

Advantages of using this function include computational efficiency, sparse activation
and mitigating the vanishing gradient problem, which can occur in deep networks
during backpropagation. Disadvantages include the possiblity of dead neurons,
happening if a neuron receives a large amount of negative input data, and that it is
not very suitable for data containing a lot of negative values, which in our case poses
no problems, since the input data passed to the model from preprocessing contains
only positive values, as they describe MEL spectrograms in RGB.

3.3.4 Train-test split and separate dataset for testing

In machine learning, a train-test split is a fundamental technique used to assess
a models performance and generalizability. By dividing the dataset into two sub-
sets—one for training the model (training set) and one for evaluating it (test set) one
can ensure that the models ability to predict new data is accurately measured. This
process helps to prevent overfitting, where the model learns the training data too
well, capturing noise instead of the underlying patterns. Typically, a common split
ratio is 70-80% for training and 20-30% for testing, though this can vary based on
dataset size and specific needs. Additionally, cross-validation methods, such as k-fold
cross-validation, can be employed for a more robust evaluation, where the dataset
is split multiple times to ensure consistent performance across different subsets.
This practice is essential for developing models that are not only accurate but also
reliable when applied to real-world data.

Advantages of Using a Separate Dataset for Testing

Utilizing a separate dataset for testing offers several key advantages. Primarily,
it allows for the detection and prevention of overfitting, ensuring that the model
generalizes well to new data rather than merely memorizing the training set. This
separation provides a clear and unbiased evaluation of the model’s performance,
highlighting its true predictive power on unseen data. Furthermore, it facilitates
hyperparameter tuning and model comparison by providing a consistent benchmark
against which different models and configurations can be measured. Overall, this
approach leads to the development of more robust and reliable machine learning
models.

10

3.4. Significance of Audio Recognition in Traffic Monitoring

3.3.5 Environmental Noise Reduction Techniques

As analytical as well as machine learning methods benefit greatly from clear data, it is
important to be able to reduce environmental and background noise in audio signals
to ensure that only the desired part of the signal can be extracted and trained on, if
necessary. Thus, noise reduction algorithms can improve the accuracy of audio-based
classifiers by preprocessing audio signals to enhance signal-to-noise ratio (SNR) and
reducing or suppressing background noise. Commonly utilized methods of noise
reduction are spectral subtraction, Wiener filtering, and adaptive noise cancellation
and can enhance audio quality of available signals [48], which can also be helpful to
improve the accuracy of vehicle detection in acoustic signals.

3.3.6 Integration with Video-Based Systems

By using audio-visual cues, moving vehicles can be detected utilizing self-supervised
approaches, where cross-modal model distillation using auditory information en-
hances the detection capabilities of a video-based model, thus highlighting the
importance and possibilities of adding audio recognition of vehicles to existing video
recognition [49].

In video-based systems, auditory cues can be used to enhance the existing model,
but this dual approach can also be used to train models relying solely on auditory
data [49], which means by leveraging spectral analysis, machine learning, and noise
reduction techniques, systems based on audio recognition can augment existing
traffic surveillance systems and partly even replace them [50].

3.4 Significance of Audio Recognition in Traffic
Monitoring

Audio recognition plays a significant role in enhancing traffic control and manage-
ment capabilities by providing additional sensory information about surrounding
traffic conditions. Unlike video-based approaches, which rely primarily on visual
cues, audio recognition offers complementary insights into vehicle behavior, road
conditions, and driver interactions. The significance of audio recognition in traffic
control can be understood from several perspectives.

3.4.1 Enhanced Situational Awareness

Audio recognition enhances traffic controllers’ situational awareness by providing
real-time auditory cues about traffic flow, congestion, and emergency situations.
The sounds of vehicle engines, horns, sirens, and tire screeches can convey critical
information about traffic dynamics and potential hazards. By integrating audio
cues with visual data from surveillance cameras, traffic controllers can gain a more

11

3. State of the Art, Literature Review and Impact

comprehensive understanding of traffic conditions and make informed decisions to
optimize traffic flow and ensure safety [51].

3.4.2 Early Detection of Anomalies

Audio recognition enables early detection of anomalies and irregularities in traffic
patterns, such as accidents, breakdowns, and road closures [@anomaly_detection].
Unusual sounds, such as collisions, vehicle malfunctions, or tire blowouts, can serve
as early warning signals for traffic incidents, allowing authorities to respond promptly
and mitigate potential disruptions. By continuously monitoring audio signals from
roadside sensors or microphones, traffic control centers can identify abnormal events
and initiate appropriate interventions to minimize traffic congestion and ensure
efficient traffic management [51].

3.4.3 Non-Visual Monitoring

Audio recognition provides a non-visual monitoring capability that complements
traditional video-based surveillance systems. Unlike video cameras, which may have
blind spots or limited coverage areas, audio sensors can capture sounds from all
directions and distances. Keeping in mind that most microphones still are directional,
this potential omnidirectional sensing capability enables audio recognition systems
to detect and localize traffic events beyond the field of view of cameras, such as
incidents in adjacent lanes or obscured by obstacles, which can be a huge advantage.
Non-visual monitoring using audio sensors enhances overall situational awareness
and reduces reliance on line-of-sight visibility.

3.4.4 Advantages of Audio Recognition in Traffic Monitoring

In summary, audio recognition technologies offer valuable capabilities for enhancing
traffic monitoring by providing non-visual sensory information about traffic condi-
tions, detecting anomalies and irregularities, enabling non-visual monitoring, and
facilitating analysis of traffic flow. By integrating audio recognition with existing
traffic surveillance systems, traffic monitoring can be enhanced by no longer being
reliant only on line-of-sight data.

3.5 Machine Learning in Audio Classification

As some data cannot be covered by cameras and video recognition alone, audio
signals have to be used to detect special events, i.e. tire skidding, or even just a
vehicle passing by in adverse weather conditions like heavy snowfall or rain, or
otherwise low visibility where camera systems will face problems [52]. Machine
learning plays a pivotal task in the accurate classification of any detected events

12

3.5. Machine Learning in Audio Classification

in the audio stream, as vehicles have to be distinguished by their acoustic features
alone while still resulting in a high detection accuracy [53].

3.5.1 Popular Machine Learning Approaches for Audio Classification

There are many different methods to utilize machine learning for audio classification,
where some of the most common approaches will be briefly outlined.

Support Vector Machines (SVM)

SVM is a popular and commonly used machine learning approach, and is used in
audio analysis for both binary and multiclass classification tasks [54]. This makes
SVMs effective in classifying different audio inputs, making them suitable for vehicle
type classification by determining the optimal hyperplane that separates different
classes in feature space, while being robust against overfitting as well as being able
to generalize to unseen data, making them suitable for classification with limited
labeled data [55]. Limitations arise with large-scale datasets and higher dimensional
feature space, where computational inefficiencies and memory constraints become
the main problemns. Interesting insights come from the use of well-known audio
features like MFCCs (Mel-frequency cepstral coefficients) for classification by SVMs
[56], which is an approach also employed in this thesis.

Random Forests

Random forests are ensemble learning algorithms that combine multiple decision
trees to improve classification performance and robustness [57]. In (audio) clas-
sification tasks, random forests learn to differentiate between classes based on
extracted features and labeled training data [58]. Random forests offer scalability,
interpretability, and resistance to overfitting, making them suitable for handling
complex audio patterns and environmental variations [59]. However, random forests
may require careful hyperparameter tuning to achieve optimal performance and may
be susceptible to biases in training data distributions, as well as depending on larger
data sets which require more resources [60]. As the dataset which is available for
testing in this thesis is rather small as far as datasets for machine learning go, this
method was not tested in this thesis.

Neural Networks

Neural networks, particularly deep learning architectures, have emerged as powerful
models for audio classification tasks. Convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), and their variants learn hierarchical representations
from raw audio signals, enabling end-to-end learning of discriminative features [61],
[62]. CNNs operate directly on time-frequency representations of audio signals, while

13

3. State of the Art, Literature Review and Impact

RNNs capture temporal dependencies and long-range contexts in audio sequences
[63], [64]. Neural networks offer scalability, flexibility, and superior performance
in audio classification tasks but require large annotated datasets and significant
computational resources for training [65]. As neural networks also require larger
datasets, this approach was only employed once a certain amount of available data
was reached, but should pose beneficial for future developments, as neural net-
works scale well with added data to improve their accuracy, whereas random forest
classifiers plateau after a certain amount of data is reached [66].

Gaussian Mixture Models (GMM)

Gaussian Mixture Models (GMMs) are commonly used probabilistic models in au-
dio classification for clustering and density estimation tasks [67]. GMMs excel in
modeling the distribution of audio features within different vehicle classes by uti-
lizing a mixture of Gaussian distributions, facilitating probabilistic inference and
classification [68]. They are appreciated for their simplicity, interpretability, and
robustness to noise and variability in audio data [69]. However, GMMs may struggle
with capturing complex nonlinear relationships and often require careful initialization
and parameter tuning to achieve optimal performance [70].

Ensemble Learning and Model Fusion

Ensemble learning techniques, such as bagging, boosting, and stacking, combine
predictions from multiple base classifiers to improve overall classification accuracy
and robustness [71]. By aggregating diverse classifiers’ predictions, ensemble
methods mitigate individual models’ weaknesses and enhance overall performance
[72]. Model fusion approaches integrate outputs from different machine learning
models, such as SVMs, random forests, and neural networks, to leverage their
complementary strengths and improve classification results [73]. However, designing
and optimizing ensemble systems may require careful selection of base classifiers,
feature representations, and fusion strategies to achieve optimal performance [74].

3.5.2 KERAS CNN model

The Keras Convolutional Neural Network (CNN) model is described in a little more
detail with its advantages highlighted, as it is a major part in this thesis.

Advantages of Keras [75]

1. User-Friendly Abstraction: Keras, as an open-source neural network library,
provides a high-level abstraction for building and training neural networks.
This abstraction simplifies the process of constructing complex neural network

14

3.5. Machine Learning in Audio Classification

architectures, allowing researchers and practitioners to focus on the design
and experimentation rather than dealing with low-level implementation details.
Thus, a working model can be built with ease and without having to dive too
deep into a new framework.

2. Modularity and Extensibility: Keras follows a modular design philosophy,
enabling users to easily build, modify, and experiment with various neural
network components. This modularity facilitates the incorporation of different
layers, activation functions, and optimizers, making it well-suited for adapting
to the specific requirements of audio classification tasks.

3. Integration with TensorFlow: Keras is tightly integrated with TensorFlow,
one of the most popular deep learning frameworks. This integration offers the
advantage of combining the simplicity of Keras with the computational efficiency
of TensorFlow, resulting in a powerful and flexible platform for building and
training neural networks.

4. Community Support and Documentation: Keras benefits from a large and
active community, which translates into extensive documentation, tutorials,
and a wealth of pre-trained models. This community support can significantly
accelerate the development and deployment of audio classification models,
providing valuable resources for troubleshooting and optimization.

5. Implementation Considerations: The practical implementation of audio
classification using spectrogram images with Keras involves pre-processing the
audio data, constructing a suitable neural network architecture, and training
the model on labeled datasets. The subsequent evaluation and fine-tuning of
the model are crucial steps in achieving optimal performance.

6. Conclusion: In conclusion, Keras emerges as a preferred choice for developing
audio classification models based on spectrogram images. Its user-friendly
abstraction, modularity, integration with TensorFlow, and robust community
support make it a compelling option for researchers and practitioners seeking a
balance between simplicity and flexibility in their machine learning endeavors.
The subsequent chapters will delve into the details of the implementation,
experimentation, and evaluation of the proposed audio classification model.

3.5.3 Machine Learning Metrics [76]

Three of the most important metrics for machine learning are precision, recall, F1
score and accuracy.These metrics provide valuable data for comparing different
Machine Learning models.

15

3. State of the Art, Literature Review and Impact

1. Precision: Precision is the ratio of true positive predictions to the total number
of positive predictions made by the classifier. It measures the accuracy of the
positive predictions.

Precision = True Positives

True Positives + False Positives
(3.3)

2. Recall: Recall is the ratio of true positive predictions to the total number of
actual positive instances in the dataset. It measures the ability of the classifier
to find all the positive instances.

Recall = True Positives

True Positives + False Negatives
(3.4)

3. F1 Score: The F1 score is the harmonic mean of precision and recall. It
provides a balance between precision and recall. It’s a useful metric when
there is an uneven class distribution.

F1 = 2 × Precision × Recall

Precision + Recall
(3.5)

4. Accuracy: Accuracy measures the proportion of correctly classified instances
(both positive and negative) among all instances in the dataset.

Accuracy = True Positives + True Negatives

Total Predictions
(3.6)

As Accuracy (Acc) is the defining metric chosen in this thesis, as it is a binary metric
that fits very well, it is described in some m Mathematically, accuracy (Acc) is defined
as:

Acc = TP + TN

TP + TN + FP + FN
(3.7)

For a binary classifier, this calculation simplifies to:

Acc = TPcar + TPnoise

Totalsamples
(3.8)

Where:

• TP = True Positives (correctly predicted positive samples)

• TN = True Negatives (correctly predicted negative samples)

• FP = False Positives (incorrectly predicted positive samples)

• FN = False Negatives (incorrectly predicted negative samples)

16

3.5. Machine Learning in Audio Classification

Confusion Matrices

Another important metric for evaluating a models performance that is especially
suited for visualising results is the confusion matrix, which is built from true and
false positives as well as negatives. It is a square matrix that compares the actual
labels of a dataset (true classes) with the labels predicted by the model. The matrix
has the following components:

• True Positives (TP): The number of instances correctly classified as a particu-
lar class.

• True Negatives (TN): The number of instances correctly identified as not
belonging to a particular class.

• False Positives (FP): The number of instances incorrectly classified as a
particular class (also known as Type I error).

• False Negatives (FN): The number of instances incorrectly classified as not
belonging to a particular class (also known as Type II error).

The confusion matrix provides a detailed breakdown of how the model is performing
across all classes, allowing for the identification of specific strengths and weaknesses
in its predictions. It is particularly useful for understanding not only overall accuracy
but also where the model may be making systematic errors.

3.5.4 The loss function

In the context of machine learning (ML), loss is a measure of how well or poorly a
model’s predictions match the actual data. It quantifies the difference between the
predicted outputs and the true values.

The loss function calculates this difference and outputs a single number, known as
the loss, which represents the model’s error on a given data point or batch of data.
The goal of training an ML model is to minimize this loss, meaning you want to adjust
the model’s parameters (weights and biases) to make the predictions as accurate as
possible. Minimizing the loss during training helps the model improve its predictions
over time.

3.5.5 The role of machine learning in audio classification

In summary, machine learning plays a crucial role in audio classification for traffic
monitoring applications, offering diverse algorithms and frameworks for vehicle
detection and identification. By leveraging SVMs, random forests, neural networks,
and ensemble methods, audio-based systems can achieve robust and accurate vehicle
classification results in various environmental conditions.

17

3. State of the Art, Literature Review and Impact

3.6 Integration of Audio and Video Technologies

Integration of audio and video technologies in traffic monitoring systems enables
multimodal data fusion and enhances overall situational awareness [77]. By com-
bining audio and visual cues, multimodal systems can improve vehicle detection
and classification accuracy, especially in challenging scenarios with poor visibility
or occlusions [78]. Several approaches and techniques are employed for integrat-
ing audio and video technologies, each offering unique advantages and challenges
[79]. Subsequently, some of the most common methodologies and techniques for
multimodal fusion will be discussed to provide a detailed overview.

3.6.1 Synchronous Data Acquisition

Synchronous data acquisition involves capturing audio and video signals simultane-
ously using synchronized sensors and recording devices [80]. By aligning audio and
video streams temporally, synchronous systems enable direct correlation between
audio events and visual observations, facilitating multimodal fusion and analysis
[81]. Synchronous data acquisition ensures temporal consistency and accuracy in
audio-video integration but may require specialized hardware and synchronization
mechanisms to maintain temporal coherence [79].

Feature-Level Fusion

Feature-level fusion combines audio and visual features extracted from raw data
streams to generate comprehensive representations of scenes [82], which can also
be helpful in traffic monitoring. Audio features, such as spectrograms [83] and
MFCCs [84], are extracted from audio signals, while visual features, such as color
histograms and motion vectors, are extracted from video frames [85]. Feature-
level fusion techniques concatenate or combine audio and visual features into a
single feature vector, which is then fed into a classifier for vehicle detection and
classification [86], [87]. Feature-level fusion offers flexibility and modularity in
integrating heterogeneous data sources but may require careful feature selection
and normalization to ensure compatibility between modalities [88].

Decision-Level Fusion

Decision-level fusion combines decisions or predictions from independent audio and
video classifiers to make final classification decisions [89]. Audio-based classifiers
and video-based classifiers operate independently to detect and classify vehicles
based on extracted features [90]. Decision-level fusion algorithms combine the output
probabilities or labels from audio and video classifiers using fusion rules, such as
majority voting, weighted averaging, or Dempster-Shafer theory [91], [92]. Decision-
level fusion offers robustness to individual classifier uncertainties and noise but may

18

3.7. Challenges and Limitations in Existing Approaches for Traffic Monitoring and Analysis

require calibration and optimization of fusion rules to achieve optimal performance
[91].

Deep Multimodal Learning

Deep multimodal learning architectures integrate audio and video information within
a unified neural network framework, enabling joint feature learning and represen-
tation [93]. Multimodal neural networks incorporate audio and visual streams as
input channels and learn hierarchical representations from raw data. These archi-
tectures leverage shared representations and cross-modal interactions to capture
complementary information from audio and video modalities [94]. Deep multimodal
learning offers end-to-end optimization of fusion parameters and enhances model
interpretability and robustness [95]. However, training deep multimodal networks
requires large annotated datasets and may suffer from domain mismatches between
audio and video modalities [96].

3.6.2 Possibilities of combining audio and video technologies

In summary, integration of audio and video technologies in traffic monitoring systems
enables synergistic exploitation of complementary information from multiple sensory
modalities. By leveraging synchronous data acquisition, feature-level fusion, decision-
level fusion, late fusion, and deep multimodal learning techniques, multimodal
systems can achieve enhanced vehicle detection and classification performance in
diverse traffic scenarios.

3.7 Challenges and Limitations in Existing Approaches
for Traffic Monitoring and Analysis

Despite significant advancements in video and audio-based traffic monitoring tech-
nologies, several challenges and limitations persist in existing approaches. These
challenges stem from environmental factors, technological constraints, and algorith-
mic limitations, affecting the overall effectiveness and scalability of traffic monitoring
systems.

3.7.1 Camera Systems

Camera based traffic monitoring system are some of the most widely used solutions,
but they are not without issues. Subsequently, we will discuss the most important
concerns concerning the viability of such systems.

19

3. State of the Art, Literature Review and Impact

Environmental Variability

Environmental factors, such as lighting conditions, weather variations, and back-
ground clutter, pose significant challenges for video and audio-based traffic monitor-
ing systems. Changes in lighting conditions, such as shadows, glare, and reflections,
can affect object visibility and pose challenges for object detection algorithms. Simi-
larly, adverse weather conditions, such as rain, fog, and snow, can degrade sensor
performance and reduce data quality. Background clutter, such as foliage, signage,
and other vehicles, can introduce distractions and occlusions, complicating object
segmentation and tracking [97]–[99].

Sensor Limitations

Sensor limitations, including resolution, field of view, and sensitivity, impact the
quality and reliability of data collected by traffic monitoring systems. Low-resolution
cameras may struggle to capture fine-grained details of vehicles, leading to inaccu-
rate object localization and classification. Narrow field-of-view sensors may miss
critical events or objects outside their coverage area, limiting situational awareness
and detection capabilities. Moreover, sensor sensitivity to environmental noise and
interference can affect signal quality and introduce false positives or negatives in
detection results.

Data Annotation and Labeling

When using supervised models, data annotation and labeling require substantial hu-
man effort and expertise, particularly for large-scale video and audio datasets. Man-
ual annotation of vehicle instances, attributes, and behaviors in video sequences and
audio recordings is time-consuming, labor-intensive, and prone to errors. Moreover,
subjective interpretations and inconsistencies in labeling criteria can affect dataset
quality and compromise algorithm performance. Automated or semi-automated label-
ing tools and crowdsourcing approaches may alleviate annotation burdens but may
introduce annotation biases and variability, or even errors. Unsupervised learning
does exist, where models can cluster data on characteristics they decide on, but the
results still have to be verified afterwards.

Algorithmic Complexity

Algorithmic complexity and computational resource requirements pose challenges
for real-time processing and deployment of traffic monitoring systems. Deep learn-
ing models, such as CNNs and RNNs, require significant computational resources
for training and inference, limiting their scalability and applicability in resource-
constrained environments. Moreover, complex algorithms may suffer from long

20

3.8. State of the Art Synopsis

processing times, latency issues, and high energy consumption, hindering their
real-world deployment in edge computing scenarios [100].

Privacy and Ethical Considerations

Privacy and ethical considerations arise from the collection, storage, and analysis
of video and audio data in traffic monitoring systems. Continuous surveillance
and monitoring of public spaces raise concerns about individual privacy and data
protection. Unauthorized access to sensitive data, such as license plate numbers,
vehicle trajectories, and audio conversations, can lead to privacy breaches and
misuse of personal information. This can be somewhat alleviated by not storing data
persistently, or only recording where privacy is not infringed on, for example by
placing the recording equipment near a highway, where personal conversations will
not take place and can’t be recorded in the audio stream, and the only personal data
that has to be removed from video data should be license plates.

3.7.2 Thoughts on possible improvements

In summary, addressing the challenges and limitations in existing video and audio-
based traffic monitoring approaches requires interdisciplinary efforts and holistic
solutions. By mitigating environmental variability, overcoming sensor limitations, im-
proving data annotation practices, optimizing algorithmic complexity, and addressing
privacy and ethical considerations, traffic monitoring systems can achieve greater
accuracy and reliability.

3.8 State of the Art Synopsis

In this thesis section, we explored the state of the art in video and audio-based
traffic monitoring technologies, machine learning approaches for audio classification,
integration of audio and video technologies, challenges and limitations in existing
approaches, the significance of audio recognition in traffic control, and the future
directions for research and development. Literature suggests that by leveraging
diverse methods and techniques from computer vision, signal processing, machine
learning, and sensor technologies, traffic monitoring systems can achieve greater
accuracy, reliability, and efficiency in monitoring and managing traffic flow, ensuring
road safety, and improving transportation infrastructure.

21

CHAPTER4
Methodology

This chapter introduces the methodical approach employed in this project, where
audio pre-processing provides input data for a machine learning model counting
vehicles and categorizing them purely on the basis of their passing-by sound.

The experiment design as well as both hardware and software setups will be de-
scribed. As data collection and processing is an integral part of this thesis, both the
collection of raw audio data and the acquisition of reference data, together with their
joining and comparison with following verification are explained in detail. The most
important step between data acquisition and model training is the pre-processing of
audio data, which is done in a preprocessing pipeline that handles audio processing
as well as automated labeling.

The pre-processing pipeline produces input data for machine learning by analysing
audio data and filtering out passing-by events, producing audio snippets for each
timestamp along with corresponding spectrogram data representing that audio.
Timestamps for these events are then compared with reference timestamps, and
matching pairs are saved with the data for timestamp, audio data, reference label
and audio spectrogram and are passed to the machine learning model in with these
parameters as input.

As preliminary information, all code in this project was realized in python, specifically
python 3.11.0 [101]. Input data format for audio files is MP3, while reference data
is available as JSON. Output data formats are MP3 for audio snippets, and PNG for
spectrogram data generated by pre-processing for further evaluation by the model.

23

4. Methodology

4.1 Introduction

First, the existing setup is shortly introduced, which is described in detail in section
5.1.3, as well as how data is collected from that setup. From this data follows the
data preprocessing, which is discussed in the following sections.

The microcomputer in use is a Khadas VIM3, which sports a High-performance
Amlogic A311D SoC as well as a built-in NPU with 5 TOPS performance [102]. In
currently deployed sensor boxes microphones of the type SPK0641HT4H-1 from the
manufacturer Knowles are in use, which are well-suited for use near load sites like
roadsides, as they have a very good THD to SPL relation, as shown in figure 4.1. Data
from these microphones can be verified against reference data from video recognition
in the labeling step, which generates labeled data as input for machine learning, and
is an important step in the pipeline, as it ensures that available training data can
be validated by checking if the resulting data passed to the machine learning model
corresponds to its label. After the labeling step, audio snippet data is saved together
with corresponding labels and spectrograms. In this step, noise is also extracted
from input data to let the model adapt to all kinds of noise encountered between
events.

The resulting dataset is then passed to the machine learning model, which can be
either trained on a full dataset, or on a standard train-test split. As a final step,
results are then validated against reference data, which gives a measurement of the
models quality. The methodology employed in this research endeavors to address the
research questions described in 7.1.1, 7.1.2, 7.1.3 and 7.1.4, exploring the potential
of audio recognition technology in traffic monitoring. This chapter presents an
in-depth description of the equipment, data collection processes, preprocessing
techniques, machine learning model, experiment design, validation methods, ethical
considerations, limitations, data analysis approaches, and an overall summary of the
research methodology.

Figure 4.1: Typical THD vs. SPL of Knowles SPK0641HT4H-1

24

4.2. Experiment Design

4.2 Experiment Design

The implemented experiment setup is dependent on the existing hardware measure-
ment setup with a sensor box as shown in figures 4.2, 4.3, 4.4, 4.5, described in
more detail in section 5.1.3 and handles data of a two-way country road with in-
and outbound traffic, which is treated the same way for audio recording, therefore
the model neither receives information about the direction of a vehicle, nor does it
predict direction. The model is setup in a way that it can be deployed in different
locations, and this is a testcase for future development when there are more sensor-
boxes available with cameras for labeling, currently this is the only existing setup
with video data for reference.

Figure 4.2: Sensorbox topview with microphone shields marked

25

4. Methodology

Figure 4.3: Sensorbox sideview

Figure 4.4: Sensorbox bottomview

Figure 4.5: Sensorbox microphone input detail with microphone port marked

26

4.3. Equipment and Setup

4.3 Equipment and Setup

Currently deployed sensor boxes are small self-contained setups with approximately
20cm, 15cm and 30cm as width, height and length respectively, as shown in figures
4.2, 4.3, 4.4, 4.5. They contain a power supply, thermal regulation, a microcomputer,
antenna, the microphones relevant to this thesis, and several other sensors which
are not discussed in this thesis. Shielded ports with a mesh provide protection from
environmental factors for the microphones. This ensures fidelity of audio-recordings
even in high-noise environments, as the microphones also posses a good Sound
Pressure Level (SPL) as well as Total harmonic Distortion (THD), which are essential
to making good recordings.

The camera is setup on the side of the road, facing aslant in the roads direction. For
more details on the exact camera setup and viewing angle, refer to section , refere
to figures 4.6 and 4.7.

Figure 4.6: Camera setup at Brenner with Sensorbox (SRB)1030, which denotes the
deployed sensorbox designation
(provided by Bernard Group - Bernard Technologies GmbH)

27

4. Methodology

Figure 4.7: Diagram of camera setup at brenner with srb1030

4.4 Data Collection

Collecting data consists of programming time windows via a Representational State
Transfer (REST) Application Programming Interface (API) from a starting timestamp
to an end timestamp. Raw audio data for this timeframe is then recorded and saved
as MP3 files,. Corresponding reference data and passing-by events from recognition
are also gathered through a REST API and saved as JSON files for future reference.
Both sets of data together allow for a comprehensive analysis of traffic events and

28

4.4. Data Collection

the comparison between results from audio recognition with the results from video
recognition.

4.4.1 Raw Data Collection

Data is permanently collected by the microphones and used for loudness calculations,
but can also be saved as MP3 files on an SD card mounted on the microcomputer,
which is then retrievable by either downloading the files or manually removing
the card. As data is per default not saved persistently, time windows have to be
programmed for which recordings are made.

4.4.2 Reference Data Collection

The camera deployed at this site is permanently monitoring traffic at this location,
and recorded data is passed to a machine learning model which generates output
data in the form of JSON files containing type of vehicle, timestamp of the passing-by
event and estimated speed as shown as example in listing 4.1. This setup acts as
a black box from which reference data is extracted, which is regarded as golden
dataset for this thesis, as it provides reference data which can be trusted to be
accurate. This data can be downloaded via Client for URL (CURL) commands from
an API provided by our partner Bernard Group - Bernard Technologies GmbH [103],
which is then used in preprocessing to match extracted audio snippets and their
respective timestamps to timestamps with associated labels from video recognition
reference data.

Listing 4.1: Exemplary JSON data
1 {
2 "crossingLineEvent" : {
3 "class " : "car" ,
4 "direction" : "out" ,
5 " lineId " : "cdd0ddda−d6d9−40b5−8190−538507719966" ,
6 "lineName" : "Brenner Speed" ,
7 "speedestimate" : "89.700996" ,
8 "subClass" : "van" ,
9 "timestamp" : "2022−11−10T15:36:42.369552Z" ,

10 " trackId" : 125829136
11 },
12 "eventSchema" : "https : / /swarm−analytics .com/schema/ event / " ,
13 "node" : {
14 " id " : "1ce96134−cf3f−481b−b9ec−f25ed411502c" ,
15 "name" : "202205B0023_Land Tirol − Brenner"
16 },
17 "stream" : {
18 " id " : "9d1b97a0−271d−43b1−be88−e09af6ba6c57" ,
19 "name" : "202205B0023_Land Tirol − Brenner"
20 },
21 "version" : "4.0"
22 },
23 {
24 "crossingLineEvent" : {
25 "class " : "car" ,
26 "direction" : " in " ,
27 " lineId " : "cdd0ddda−d6d9−40b5−8190−538507719966" ,
28 "lineName" : "Brenner Speed" ,

29

4. Methodology

29 "speedestimate" : "79.528717" ,
30 "timestamp" : "2022−11−10T15:36:44.226722Z" ,
31 " trackId" : 1158676485
32 },
33 "eventSchema" : "https : / /swarm−analytics .com/schema/ event / " ,
34 "node" : {
35 " id " : "1ce96134−cf3f−481b−b9ec−f25ed411502c" ,
36 "name" : "202205B0023_Land Tirol − Brenner"
37 },
38 "stream" : {
39 " id " : "9d1b97a0−271d−43b1−be88−e09af6ba6c57" ,
40 "name" : "202205B0023_Land Tirol − Brenner"
41 },
42 "version" : "4.0"
43 },
44 {
45 "crossingLineEvent" : {
46 "class " : "car" ,
47 "direction" : "out" ,
48 " lineId " : "cdd0ddda−d6d9−40b5−8190−538507719966" ,
49 "lineName" : "Brenner Speed" ,
50 "speedestimate" : "80.000000" ,
51 "timestamp" : "2022−11−10T15:36:48.647166Z" ,
52 " trackId" : 127926288
53 },
54 "eventSchema" : "https : / /swarm−analytics .com/schema/ event / " ,
55 "node" : {
56 " id " : "1ce96134−cf3f−481b−b9ec−f25ed411502c" ,
57 "name" : "202205B0023_Land Tirol − Brenner"
58 },
59 "stream" : {
60 " id " : "9d1b97a0−271d−43b1−be88−e09af6ba6c57" ,
61 "name" : "202205B0023_Land Tirol − Brenner"
62 },
63 "version" : "4.0"
64 },
65 {
66 "crossingLineEvent" : {
67 "class " : "truck" ,
68 "direction" : "out" ,
69 " lineId " : "cdd0ddda−d6d9−40b5−8190−538507719966" ,
70 "lineName" : "Brenner Speed" ,
71 "speedestimate" : "82.066872" ,
72 "subClass" : "single−unit−truck" ,
73 "timestamp" : "2022−11−10T15:37:20.977848Z" ,
74 " trackId" : 1169162245
75 },
76 "eventSchema" : "https : / /swarm−analytics .com/schema/ event / " ,
77 "node" : {
78 " id " : "1ce96134−cf3f−481b−b9ec−f25ed411502c" ,
79 "name" : "202205B0023_Land Tirol − Brenner"
80 },
81 "stream" : {
82 " id " : "9d1b97a0−271d−43b1−be88−e09af6ba6c57" ,
83 "name" : "202205B0023_Land Tirol − Brenner"
84 },
85 "version" : "4.0"
86 },
87 {
88 "crossingLineEvent" : {
89 "class " : "car" ,
90 "direction" : " in " ,
91 " lineId " : "cdd0ddda−d6d9−40b5−8190−538507719966" ,
92 "lineName" : "Brenner Speed" ,
93 "speedestimate" : "63.305981" ,
94 "timestamp" : "2022−11−10T15:37:31.651439Z" ,
95 " trackId" : 1170210821
96 },
97 "eventSchema" : "https : / /swarm−analytics .com/schema/ event / " ,
98 "node" : {

30

4.4. Data Collection

99 " id " : "1ce96134−cf3f−481b−b9ec−f25ed411502c" ,
100 "name" : "202205B0023_Land Tirol − Brenner"
101 },
102 "stream" : {
103 " id " : "9d1b97a0−271d−43b1−be88−e09af6ba6c57" ,
104 "name" : "202205B0023_Land Tirol − Brenner"
105 },
106 "version" : "4.0"
107 }

31

4. Methodology

4.5 Project Workflow Pipeline

In figure 4.8, the general data flow within the project is illustrated, abstractly showing
the unification of audio and reference data, as well as the choice between different
transformations for the pre-processing output, and the choice which model to train,
which can then be compared.

Figure 4.8: Flowchart of project workflow

32

4.6. Data Setup and Preprocessing

4.6 Data Setup and Preprocessing

Project data is setup according to the guidelines presented by DrivenData in their
article "Cookiecutter Data Science", as per [104], which specifies how to setup the
folder structure of a data science project in a way that leaves raw data immutable,
intermittent and result data mutable, and still pertaining a clean and easy to un-
derstand project structure, as shown in figure 4.9. This leads to a clean project
setup, with clear indications where raw data can be found, both for audio data and
reference JSON files, as well as intermediate data, results, and where the actual
project code resides. Project data is managed by Data Version Control (DVC) [105],
which is used to keep the data synchronized across machines used for development
and ensures that the same experiments always use the same data and versions of
contained files across machines, even if the data should have changed. DVC also
allows the setup of pipelines, which can execute different parts of the code in order,
or only certain stages of it. It also provides the possibility of setting up experiments
by passing variable parameters to the program and tracking the output as well, thus
making it very easy to generate metrics for different setups, and comparing them to
find the optimal interplay of possible parameters.

Paragraph 4.6.1

Parameters to set are the maximum frequency for Melody or melody scale, a
perceptual scale of pitches judged by listeners to be equal in distance from
one another (MEL) to generate spectrograms, as well as the number of epochs
to be used, and which spectrogram transformation to use. Epochs specifies
how often the entire data set has to be worked through during training.

Spectrogram transformations are different ways to represent data as spectrogram
images, leading to different impact on the ML model. Metrics contain information
about model accuracy, F1 score, precision and recall, and also of the support the
dataset provides for each class.

The rest of the project is set up via GitLab [106]. GitLab contains the project code,
as well as the configuration files for DVC for specifying which data is held by DVC,
and which by GitLab. Typically, all code is held by GitLab, and all data by DVC.

All input data is checked into dvc and synchronized across machines using the
repository, as that ensures that an experiment will always have the correct data to
use regardless of the machine it is run on, and has the added benefit of being able to
handle large datasets which GitLab alone cannot upload.

33

4. Methodology

Figure 4.9: Cookiecutter Data Science project structure example [104]

4.7 Preprocessing of Audio Data

To ensure the quality and accuracy of the audio data, a meticulous preprocessing
pipeline is implemented to ensure correct detection of passing-by events and extrac-
tion of audio snippets for detected timestamps, as well as noise data for intermittent
periods, with data structured as presented in section 4.6. Initial steps involve the ex-

34

4.7. Preprocessing of Audio Data

traction of timestamps for passing events by identifying local maxima in a smoothed
Root Mean Square (RMS) curve, generated through denoising steps followed by
Savitzky-Golay interpolation [107], [108]. Subsequently, two-second audio snippets
are extracted for each timestamp, with one second before and one second after the
timestamp. A two-second noise sample is collected between timestamps if those
are far enough apart in time to ensure no part of an event is included in noise data,
meaning that this sample only contains noise, and no part of an audio signal that
should be detected, as shown in figure 4.10. If the time between two events is
long enough that the extraction time of the noise snippet does not collide with the
extraction time of an event snippet, it is extracted and labeled as noise. As is evident
from figure 4.10, event extraction times can overlap, where both will be extracted
and labeled if reference timestamps exist, but an audio snippet can contain the
leading or edge of the following snippet, or the trailing edge of the snippet extracted
before. This however happens rarely as most events are far enough apart in time,
and the model should also learn to detect these overlaps.

Figure 4.10: Snippets for extraction around timestamps (exaggerated)

The audio data undergoes transformation into spectrograms using various methods
to test which of these transformations leads to the best results once the generated
spectrograms are given to the ML model for training. Implemented transformations
are the Morlet wavelet transformation, realized through the librosa package and its
Constant Q Transform (CQT) functionality, a MEL spectrogram also processed with
librosa [109], and two different spectrograms generated with scipy [110].

The scipy spectrogram is once generated directly from the input data snippet, and
once with machine learning preprocessing of the image utilizing sklearn.preprocessing
import minmax_scale [111], which drastically improves results for this simple trans-
formation by transforming the input to an appropriate uniform scale. These pre-
processing steps aim to enhance the discriminative features of the audio data for

35

4. Methodology

effective machine learning classification.

After ascertaining that both librosa implementations produced better results com-
bined with machine learning than their scipy counterparts over all examined fre-
quency ranges from 1kHz to 10kHz, different frequencies were tested again for
setting the MEL frequency scales, where a value of fmax=8000Hz provided the best
results.

Results and the exact procedure of all those preprocessing steps are explained in
more detail in chapter 5.2. The final results of preprocessing are audio and noise
snippets with their corresponding spectrograms, where each filename contains both
timestamp and label, where labels are car, bus, truck, motorbike, noise.

4.8 Machine Learning Model

In this chapter, the reasoning behind the final ML model choice, as well as the
implementation of used models, will be explained. The workflow within the project
along with questions towards validation, ethical considerations and limitations is also
adressed.

4.8.1 Model Choice

As a machine learning framework for this project, the final choice fell to Keras
[75] due to its versatility, simplicity of use and some other advantages, which are
further discussed in section 3.5.2. One of the main tasks for the model was to be
able to recognize spectrograms capturing complex temporal patterns and frequency
variations, which are generated from audio data snippets. These, together with
an efficient labeling system, allow the model to learn the available classes, and
later perform predictions on either labeled data for verification, or predict types for
unknown data, which is the main objective of this thesis. Other machine learning
frameworks are also available for building such classification models, including
TensorFlow [112], PyTorch [113], and scikit-learn (former sklearn) [114], where an
SVC model was implemented for testing. While each of these frameworks has its
merits, Keras stands out for several reasons, particularly in the context of simplicity,
abstraction, and ease of use.

The Keras model was implemented in python by using the tensorflow library, the
exact model setup can be reviewed in section 4.8.4. A Support Vector Machine (SVM)
model as it’s predecessor is described in more detail in section 4.8.3.

4.8.2 Model Input Data

For model training, a dataset consisting of spectrograms generated from audio data
snippets, correlated with their respective labels, is passed to the model as input

36

4.8. Machine Learning Model

data where this training data represents 80% of the available dataset. This input
data is the same regardless of which model is trained, as that allows a comparison
between the implemented Keras and SVM models. Both model types are trained as
supervised models without clustering unlabeled input data themselves. Inference
is then done on the remaining 20% of the dataset to verify that the models can also
predict unknown data correctly. There are for now five different types which are
labeled, as only supertypes of vehicles are considered and not subclasses.

Subclasses will be evaluated when there is more data available, but since they only
form a fraction of a percent of available data, there is not enough audiodata available
for them to train the model, hence it is trained on following five classes:

• Car . . . provided by reference data

• Truck . . . provided by reference data

• Bus . . . provided by reference data

• Motorbike . . . provided by reference data

• Noise . . . generated from audio data

where car, truck, bus and motorbike are classes provided by the camera machine
learning model, passed as events in JSON files, and noise is generated by preprocess-
ing by extracting data between events to have a noise baseline to evaluate against.
The extraction of noise data is necessary to ensure that this class can also be trained
and more clearly differentiated from vehicle data.

4.8.3 Implementation of Support Vector Machine (SVM)

The first model developed is based on the sklearn library and is built by training
a Support Vector Machine (SVM) machine learning model for image classification.
Input data is resized from the input shape generated by pre-processing to a standard-
ized dimension of 64x64 pixels, ensuring consistency in input dimensions, where an
array is then generated from the resulting resized image data to which labels are
appended in a final input step.

Available data is then split into a training and a test dataset, where 80% of the data
are used for training, and the remaining 20% for testing the model.

The model is then trained over a set amount of epochs, where for each epoch accuracy
is used as the determining factor of the models performance. From all epochs, the
model with the highest accuracy over all generations is then selected as the best
model and returned as resulting machine learning model.

37

4. Methodology

A Confusion matrix of the results of the trained and tested model is then generated
to show how well the model performs for each class, as well as calculating additional
metrics, such as precision, recall and F1 score and presenting them in a classification
report.

The best results achieved during training and inference on the available data with
this approach yielded an accuracy of 84% for discerning events with cars passing
by from noise, which was good enough for a proof of concept, but not the desired
quality of results, as an accuracy of at least 90% was a self-imposed goal for this
thesis, with the further goal of getting past 95% accuracy if possible.

4.8.4 Implementation of Keras Model

The chosen Keras implementation is widely used state of the art, and this best
practice was implemented as the Keras Sequential Model. To build this type of model,
data in the form of image arrays is passed directly from the preprocessing algorithm,
along with corresponding timestamps and labels, as this simplified the handover of
data between pre-processing and model training and inference from having to save
and load image files to simply passing arrays containing the same data, resulting in a
faster pipeline.

Based on TensorFlows Keras Sequential API, a Convolutional Neural Network (CNN)
model is constructed, which expects data in the form of MEL spectrograms as input,
which it parses in its input layer based on the shape of the input, which in turn is
determined by the spectrogram transformation used in preprocessing, as the results
of all four transformations have similar, but not the same shape. The reason to
implement and test four different transformation types as described in section 4.7 is
to find the best method for this usecase out of these common transformation types,
and to prove that the wavelet transformation was the best suited candidate.

This first layer is followed by a 2D convolutional layer [115] as second layer, which
contains 32 filters and a (3,3) kernel, followed by a ReLU activation function as
described in section 3.3.3.

As a third layer, MaxPooling2D is applied to reduce spatial dimensions, the result
of which is flattened in a fourth layer. Layers five and six are dense layers, with the
former using 128 units and ReLU activation, whereas the second uses the available
number of classes, which is calculated from the available labels in input data, as
well as softmax activation, which converts a vector of real numbers into a probability
distribution, which can be described as such:

For each element i in the output vector: (4.1)

• z is the input vector of real numbers.

38

4.8. Machine Learning Model

• i represents the index of the element in the output vector.

• K is the total number of classes.

• softmax(z)i denotes the i-th element of the softmax output vector.

The softmax function is given by: softmax(z)i = ezi∑︁K
j=1 ezj

(4.2)

The model is then compiled using the Adam optimizer and categorical crossentropy
loss, with accuracy as the evaluation metric. Using the Adam optimizer has the ad-
vantages that it converges faster than traditional gradient descent-based optimizers,
having an adaptive learning rate as well as being a robust to hyperparameter choices
while also having low memory requirements [116].

The compiled model is then saved for training and testing, where it is first fit to a
training dataset over a predetermined number of epochs, and once the model is fully
trained, it is tested on a test dataset which is either the remaining 20% of a train-test
split, or a dataset which is new to the model.The train-test-split approach is usually
used for training the model and testing inference, but with the possibility of also
testing the model on another dataset it has not been trained on, which is useful to
test if the model overfit on the data.

A summary of the resulting model, as well as the trained epochs with their cor-
responding accuracy, is then printed to the console for inspection along with an
overview of the dataset, where in this example listing 4.2 a test dataset of 27 samples
is used. Conv2D describes the convolutional layer, MaxPooling2D the reduction of
spatial dimensions, Flatten the flattening process and both Dense layers providing
activation function in the former and a probability distribution in the latter, as de-
scribed in the beginning of section 4.8.4. The total number of parameters as well
as trainable parameters along with their data size is then printed, followed by the
training Epochs with their respective runtimes per step and both loss and accuracy
values.

The final accuracy and F1 score are then reported, followed by a confusion matrix
denoting which type was detected how well, along with the available number of
supporting data points.

Listing 4.2: Model Summary Output

Model: "sequential "

Layer (type) Output Shape Param #

===
conv2d_1 (Conv2D) (None, 82, 85, 32) 320

39

4. Methodology

max_pooling2d_1 (MaxPoolin (None, 41, 42, 32) 0
g2D)

flatten_1 (Flatten) (None, 55104) 0

dense_2 (Dense) (None, 128) 7053440

dense_3 (Dense) (None, 3) 387

===
Total params: 7054147 (26.91 MB)
Trainable params: 7054147 (26.91 MB)
Non−trainable params: 0 (0.00 Byte)

Epoch 1/10
4/4 [==============================]− 2s 62ms/ step − loss : 119.8548 − accuracy : 0.4615
Epoch 2/10
4/4 [==============================]− 0s 63ms/ step − loss : 72.5732 − accuracy : 0.5481
Epoch 3/10
4/4 [==============================]− 0s 57ms/ step − loss : 21.0999 − accuracy : 0.7981
Epoch 4/10
4/4 [==============================]− 0s 54ms/ step − loss : 25.5614 − accuracy : 0.6154
Epoch 5/10
4/4 [==============================]− 0s 62ms/ step − loss : 20.4485 − accuracy : 0.7308
Epoch 6/10
4/4 [==============================]− 0s 58ms/ step − loss : 9.5498 − accuracy : 0.8654
Epoch 7/10
4/4 [==============================]− 0s 57ms/ step − loss : 6.2013 − accuracy : 0.9712
Epoch 8/10
4/4 [==============================]− 0s 61ms/ step − loss : 5.5833 − accuracy : 0.9135
Epoch 9/10
4/4 [==============================]− 0s 60ms/ step − loss : 2.8641 − accuracy : 0.9712
Epoch 10/10
4/4 [==============================]− 0s 55ms/ step − loss : 1.6281 − accuracy : 0.9712
1/1 [==============================]− 0s 189ms/ step

Accuracy : 0.8889
F1 Score : 0.8556
Classification Report :

precision recall f1−score support
car 0.82 1.00 0.90 9

noise 0.94 0.94 0.94 16
truck 0.00 0.00 0.00 2

accuracy 0.89 27
macro avg 0.59 0.65 0.61 27

weighted avg 0.83 0.89 0.86 27
Confusion Matrix :
[[9 0 0]
[1 15 0]
[1 1 0]]

These results are from a relatively small dataset of only 27 unique spectrograms,
including noise data, and show that the model can already achieve 89% accuracy
with limited data. Expanding the dataset to at least a support of 300 labeled events
leads to significantly improved results with resulting accuracy of 96%.

4.9 Threats to Validity

As the developed approach has to rely on some limitations which concern the avail-
able training and testing data as well as ethical considerations, it is important to
acknowledge that and take possible concerns into account, which will be discussed

40

4.9. Threats to Validity

in this section.

4.9.1 Validation

Model predictions are currently validated against the output of the video recognition,
and this available reference data is treated as golden dataset against which the
results of this thesis are evaluated, as there is currently no information about the
inner workings of that system, which is a known but accepted caveat, as the data
is used by Asfinag, the Austrian Motorway and Expressway Financing Joint-Stock
Company and therefore deemed accurate. A setup containing a sensorbox and
a camera for manual labeling of raw video data and corresponding audio data is
currently in planning, but an exact setup date is not yet known.

4.9.2 Ethical Considerations

Ethical considerations play a crucial role in research design. To safeguard privacy
and anonymity, the sensorbox is deployed in a location with minimal foot traffic, like
in this case a country road and next to a highway; should this change in the future,
this point will have to be re-evaluated. The audio recognition algorithm also does not
persistently store any data, mitigating potential privacy concerns.

4.9.3 Limitations

While the methodology employed in this thesis is robust, it is essential to acknowledge
certain limitations as mentioned before. The reliance on labeled reference data from
a video recognition model introduces an element of trust in the accuracy of this data,
where it has to be accepted that the available reference data is regarded as true,
and build the model from there, as the only data available from the reference system
are the timestamps with associated type and speed, without access to the raw video
data. Additionally, the current setups restriction to a simple two-way road presents
limitations in assessing the models performance in complex traffic scenarios, which
will be part of future developments, as the outcome of this thesis is for now to be
treated as a proof of concept.

4.9.4 ML Result Data Analysis

The analysis of data involves extracting valuable insights from the ML training and
inference experiments with different transformations and frequency parameters.
The transformed audio data is systematically analyzed, and metrics such as accu-
racy rates, confusion matrices, and other relevant measures are computed. This
step is crucial for drawing meaningful conclusions from the results and to garner
information as to what parameters and transformation steps are most benefitial to
model performance, as well as finding out which tested model performs best. All

41

4. Methodology

transformation modes were tested in the frequency range from 1kHz to 10kHz, in
1kHz steps, with the resulting pre-processing output presented to the SVM model as
well as the Keras model, resulting in 80 different parameter pairings, from which
the wavelet transformation at 8kHz and the Keras model for subsequent evaluation
performed the best. Experiments can be replicated with the original data, as only
the best results have been saved as models for further evaluation. A known caveat is
the scarcity of data available for this thesis, as there are a few thousand events to
be classified, but most of those events are cars, producing a bias towards that class,
which can be remedied in future work by recording a lot more data and extracting as
many events of other classes as possible, so those also are represented with at least
a few hundred examples each.

4.10 Data workflow for this thesis

How data is treated within the project structure can easily be visualized with a
simple flowchart shown in 4.11, starting from data aquisition and ending with the
output metrics which lead to decisions about which model or parameters to use.
Timestamps are matched to ensure that a labeled audio snippet has the correct
label from its corresponding reference timestamp, which can be verified by sifting
the available data. Data transformation is implemented as described in section 4.7,
and model training and testing are repeated until accuracy converges to a stable
value. According to the output metrics, the best model is then chosen for further
evaluation, where the defining metric is accuracy, as it is essentially a binary model.
All experiments can be repeated either by starting a DVC pipeline, or running a
python script by hand.

42

4.11. Synopsis of Methodology

Figure 4.11: Flowchart of the Project Data

4.11 Synopsis of Methodology

In summary, the methodology encompasses a holistic approach to audio recognition
in traffic monitoring, starting with utilizing provided equipment and software, data
collection and preprocessing, machine learning model implementation as well as
experiment design as described in secti 4.9.4, validation and data analysis, as well as

43

4. Methodology

considering ethics and known or possible limitations of the project. This comprehen-
sive methodology is designed to address the research questions as stated in section
7.1 and contribute insights to the field of traffic control how audio classification could
support or even replace video classification, and how the usage of audio classification
could be beneficial for traffic monitoring by adding more data to classification and
making it possible to reliably detect events even under weather conditions where a
camera cannot operate efficiently anymore.

44

CHAPTER5
Implementation of Methodology

In this chapter, the implementation of methodology explained up until this point will
be elaborated, as well as providing exemplary intermediate result plots which are
used by the algorithm to extract the correct audio segments,and how these segments
are transformed for use by the ML model, leading to classification results.

5.1 Data Collection and Preprocessing

How reference and raw data are collected and treated are an essential part of this
thesis and the workflow for obtaining good results from machine learning, therefore
the gathering of said data is described in detail. The most important part is the
feature extraction of available audio data, which ensures that well prepared and
verified data can be presented to the model for training, and is explained in detail
in section 5.2, which covers all the steps between loading raw audio files and
reference data into the pipeline and producing spectrograms of audio snippets at
event timestamps to be passed to the model.

5.1.1 Data Collection

For training the model, we use audio data gathered by a sensorbox mounted on "B182
Brennerstraße" at coordinates 47°01’37.4"N 11°30’03.4"E where the camera and
sensor box setup is shown in figures 4.6 and 4.7, described further in the following
sections to give a detailed overview of how both the camera and the sensor box
are setup in section 5.1.2, and how audio data is collected in section 5.1.3, as at
this location there is also a traffic camera with an underlying video object tracking
machine learning model present, as elaborated in section 5.1.4. Data from both the
camera setup and the sensor box is gathered, where the data from video recognition

45

5. Implementation of Methodology

of the camera images is refered to and used as reference data which is available in
JSON format, and the raw audio data gathered by the sensor box is available in MP3
format.

46

5.1. Data Collection and Preprocessing

5.1.2 Camera and sensorbox location and setup

In this section, images of the setup of the recording camera as well as of the mounted
sensor box are presented to give a better understanding of the overall setup of the
system, and where the data is gathered from.

Figure 5.1: Sensor box setup at B182 Brennerstraße

Figure 5.2: Camera and sensorbox setup at B182 Brennerstraße

It has to be noted that this is not the same camera that records reference data, the
camera where reference data is from can be seen in 5.3 below the cameras on top

47

5. Implementation of Methodology

Figure 5.3: Camera setup
at B182 Brennerstraße

Figure 5.4: Sensor box
setup at B182 Brenner-
straße

Figure 5.5: Sensor box
closeup of setup at B182
Brennerstraße

Figure 5.6: Mounting of camera and sensorbox

that point in both directions, the camera relevant to this thesis is the one pointing
left in the image.

48

5.1. Data Collection and Preprocessing

Figure 5.7: Camera view at B182 Brennerstraße provided by Land Tirol [117]

5.1.3 Audio Data Collection

Acoustic training data is collected by a sensorbox with denotion srb01030 at a location
at coordinates 47°01’37.4"N 11°30’03.4"E on "B182 Brennerstraße", where there
are two lanes present with a single sidelane on the right hand side in relation to
driving in the direction of the camera setups alignment direction, as shown in figure
4.6 as well as in figures 5.1 to 5.7. The audio data is recorded by the sensorbox
utilising two MEMS microphones mounted approximately 20cm from each other, as
shown in figures 4.2 to 4.5 as dual channel audio. For detecting passing by events,
only one channel is needed, so a mono signal is desired and can be extracted by
either layering both channels over each other, or just choosing one of them for
further evaluation. After all pre-processing steps to extract and verify the event
timestamps, the audio snippet from which the spectrogram for ML model training or
inference is extracted from the original raw audio data at that specific timestamp,
so that all available data is used for generating the model input. For the sake of
using all avaliable data points, both channels are overlayed on each other and passed
on as mono audio by utilising librosa’s librosa.to_mono(y) functionality, which
convert an n-channel audio input to mono by averaging samples across channels.
This is even benefitial to the fidelity of the resulting mono signal because more data
points are present for each timestep. Due to the setup of the sensorbox, it always
provides two channels, without the option of just recording one, so the data can
either be converted to single channel, or only one channel can be selected from the
resulting data array, but as an input, the full dataset is always present. The sensorbox

49

5. Implementation of Methodology

can be remotely programmed to start persistently recording data to an SD card for a
specified period, which can then be retrieved by downloading the generated MP3
files or manually removing the SD card from the sensorbox by visiting the deployment
site and opening the box after taking it offline.

5.1.4 Video Data Collection

The results of the ML evaluation of video data corresponding to the audio data
described in section 5.1.3, containing passing-by timestamps and vehicle type, are
collected via a REST API and downloaded as JSON files, where the starting time and
length of the desired timeframe have to be matched to the starting time and length
of the available audio data.

The JSON files contains parameters like vehicle type, estimated speed, direction of
movement, timestamp of the event, and if available, also the subtype of vehicle, and
also the recording stations designation, which in this case is Brenner Speed. Of this
data, for this thesis only the timestamp as well as the vehicle type are relevant, while
the direction of movement, subtype and estimated speed are not evaluated. Data in
JSON has the form of the following example in listing 5.1, and only timestamp and
vehicle type are extracted from these datasets.

Listing 5.1: Exemplary JSON data
1 {
2 "crossingLineEvent" : {
3 "class " : "car" ,
4 "direction" : " in " ,
5 " lineId " : "cdd0ddda−d6d9−40b5−8190−538507719966" ,
6 "lineName" : "Brenner Speed" ,
7 "speedestimate" : "84.639496" ,
8 "timestamp" : "2022−12−09T13:00:51.204668Z" ,
9 " trackId" : 3278897164

10 },
11 "eventSchema" : "https : / /swarm−analytics .com/schema/ event / " ,
12 "node" : {
13 " id " : "1ce96134−cf3f−481b−b9ec−f25ed411502c" ,
14 "name" : "202205B0023_Land Tirol − Brenner"
15 },
16 "stream" : {
17 " id " : "9d1b97a0−271d−43b1−be88−e09af6ba6c57" ,
18 "name" : "202205B0023_Land Tirol − Brenner"
19 },
20 "version" : "4.0"
21 }

A known caveat is that the process gathering reference data from video recognition
is to be regarded as a black box where no insight into how events are classified
exactly is possible, and the reference data received with the assurance of it being
correct leads to the reference data being regarded as correct and as baseline for
evaluationg the audio recognition models with the knowledge that the baseline might
not be 100% correct, but still being the only reference available. This is due to the

50

5.2. Feature Extraction and audio pre-processing

fact that reference data is only available as said JSON files, and no access to the raw
video material for manual evaluation is possible.

Reference data from provided JSON files functions as the baseline for data verifi-
cation, and events recorded there are used to collate timestamps extracted from
audio files with labels for vehicle types. This reference data is saved as a tuple of
timestamp and vehicle type, while the direction of travel and the estimated speed
from video analysis are not considered.Timestamps in reference data and audio data
drift by a few milliseconds, as the camera points at the street at an angle, while the
microphones record data facing the road at a 90° angle, as seen in figure 4.6 and
figures 5.1 to 5.7. This results in a slightly different timestamp from the camera
by a few milliseconds, depending on the direction of travel of the observed vehicle,
leading to a necessary adjustment between audio and video timestamps by matching
timestamps by finding the closest timestamp in reference data and then comparing
if the resulting number of timestamps matches the reference data. A very relevant
downside of video detection has to be noted, as the video camera can be obscured
by fog, snow, heavy rain, otherwise poor visibility or similar phenomena, whereas
the microphones do not suffer from those problems. This leads to testing showing
that sometimes audio preprocessing picks up signals that video recognition misses,
which show up as differences in data analysis and upon further investigation sound
like cars passing, therefore it can be assumed that they are indeed valid registered
events, just not present in reference data. As there is no access to raw video data
for reference, further verification than that is not possible, so signals picked up by
audio processing but not present in video data are discarded from the dataset, as
their label is unknown and cannot be found out. This data is still present and can
be used to let the model predict which type it could be, but as there is no reference
data for it and therefore no label to go by, the results cannot be verified.

5.2 Feature Extraction and audio pre-processing

This section describe the most important workflow in this thesis before Machine
Learning in detail, which is the processing of input audio data to produce spectro-
grams which can be used to train the ML model

Audio files are imported for preprocessing via Librosa [109], which is a python library
providing a large spectrum of audio processing algorithms. Since data is recorded
by two microphones, providing stereo data, the first step in preprocessing is getting
the absolute Root Mean Square (RMS) throughout the signal to be able to build an
envelope for the existing audio data and subsequent peak detection, as only one
channel is required for further processing, but this way, no data is lost. The resulting
data as well as the log power spectrogram are shown in figure 5.8

51

5. Implementation of Methodology

Figure 5.8: Input Signal RMS and spectrogram

The resulting RMS audio data is then denoised by utilizing the python noisereduce
library [118] which utilises spectral gating as its method, which continously updates
the noise threshold throughout the file, and filters out most noise. Below is a short
explanation from the developer, and the result can be examined in figure 5.9.

It works by computing a spectrogram of a signal (and optionally a noise
signal) and estimating a noise threshold (or gate) for each frequency band
of that signal/noise. That threshold is used to compute a mask, which
gates noise below the frequency-varying threshold [118].

Figure 5.9: Input Signal RMS and spectrogram after noise reduction

52

5.2. Feature Extraction and audio pre-processing

Following denoising, the audio signal is smoothed using a Savitzky-Golay filter [119].
This particular type of low-pass filter is well-suited for data smoothing [108], [107].

Savitzky-Golay interpolation is a digital filter technique used to smooth data by fitting
successive subsets of adjacent data points with a low-degree polynomial using the
method of least squares. It preserves the features of the data, such as peak height
and width, making it particularly effective for data smoothing and noise reduction.

This results in a smooth function from which various parameters can be more easily
extracted, such as derivatives for identifying peaks or using peak detection by
locating local maxima, which is shown on following figure 5.10.

Figure 5.10: denoised and smoothed input signal RMS and spectrogram

To simplify the process of finding passing-by event timestamps, a threshold can be
set to discard any part of the signal below a certain amplitude percentage on the
Decibel (dB) scale to cut off noise at the bottom. This results in a signal containing
only the peaks above the threshold, making it easier to identify the timestamps of
passing-by events. After setting such a threshold and removing the noise floor, a
signal with distinct peaks remains, as shown in figure 5.11

53

5. Implementation of Methodology

Figure 5.11: Input Signal RMS and spectrogram peaks

As the signal from figure 5.11 still contains some fluctuations at the peak of each
timestamp location, this would lead to the detection of numerous timestamps at one
location with the available audio data resolution of 44kHz. Therefore, it is necessary
to smooth the signal a second time with a Savitzky-Golay filter [119] to provide a
smooth signal where unique peaks can be detected, which can be seen in figure 5.12

Figure 5.12: Input Signal RMS and spectrogram peaks smoothed

This now smooth signal containing distinct peaks then undergoes a peak detection
algorithm which looks for the gradient next to a point, and when a point has a strictly
rising gradient on its left, therefore before in time, and a strictly falling gradient on
afterwards, or simply put is the highest point relative to neighbouring points, it is
considered a peak and the corresponding timestamp is extracted.

These timestamps can then be overlaid with the original Root Mean Square (RMS)
input data and the corresponding spectrogram, showing that each peak from the

54

5.2. Feature Extraction and audio pre-processing

input RMS signal is detected correctly, to be examined in figure 5.13.

Figure 5.13: timestamp overlay for input Signal RMS and spectrogram

The same timestamps can also be shown as overlay to the original and unedited
two-channel audio stream which represents the raw audio input data in figure 5.16.
From this data, two seconds of audio are extracted as snippets for each timestamp
with one second before and one second after each respective timestamp, resulting in
as many audio snippets as timestamps are detected in a signal.

Figure 5.14: Timestamp overlay with two-channel input signal

The timestamps are then verified against reference data, and if there is a matching
reference timestamp, the appropriate vehicle label will be attached to that snippet
and it will be further processed to a spectrogram which is then used for ML model
training and inference, examples shown in 5.17.

55

5. Implementation of Methodology

Figure 5.15: MEL spectrogram of
a passing car

Figure 5.16: MEL spectrogram of
noise

Figure 5.17: Exemplary car and noise MEL spectrograms

Two seconds proved to be a window where for the time a vehicle passes by at the
testing location, all necessary data is recorded, as the whole signal of a passing vehi-
cle is recorded. This is based on the average speed of vehicles there lying between
50km/h and 70km/h most of the time. With a buffer of again two seconds apart from
a detected timestamp, noise snippets are also extracted between timestamps, thus
if two timestamps lie at least eight seconds apart, a two second noise snippet will
be extracted in the middle of them, as shown in 4.10. The same extraction applies
between the start and end of the signal towards the nearest timestamp. This results
in a dataset that contains timestamps with their correlating audio snippet data for
detected passing-by events that have to be verified as well as for noise data extracted
from original audio data between timestamps which are far enough apart.

This self-built approach to preprocessing was chosen over exploring and using pre-
built machine learning preprocessing steps for the sake of having control over the
whole workflow, as well as keeping the algorithm easy to understand and modifiable
and building the whole pipeline from scratch, which also leaves the computational
modifiable by simplifying the algorithm.

56

5.3. Transformation Methods

5.3 Transformation Methods

Four different spectrogram transformation methods where implemented and tested
utilizing scipy [114] and librosa [109], as well as TensorFlow [112], which provides a
machine learning preprocessing step to make input data uniform and bring it to a
scale better suited for model input.

5.3.1 Morlet Wavelet Transformation and Implementation in librosa
cqt

The morlet wavelet transformation is a mathematical technique employed in signal
processing and time-frequency analysis. It is particularly useful for analyzing the
spectral content of signals, especially in cases where both time and frequency
information are crucial [120]. The morlet wavelet is a complex exponential wave
modulated by a Gaussian envelope, providing a balance between time and frequency
localization [121].

Librosa’s Constant-Q Transform (CQT) functionality emulates aspects of the Morlet
wavelet transformation in the context of audio signal processing [109]. The CQT
is specifically designed for analyzing audio signals at different frequencies with a
constant ratio between them, mimicking the logarithmic scale of human auditory
perception. It applies a series of Morlet wavelets at different center frequencies and
logarithmically spaced bandwidths, capturing the signal’s spectral content across
both time and frequency dimensions [109]. The resulting CQT representation is
beneficial for tasks such as music analysis, where understanding the harmonic
structure and temporal evolution of audio signals is essential. [109], [122]

5.3.2 Librosa MEL spectrogram

A MEL spectrogram is a representation of the spectral content of an audio signal
that emphasizes the perceptually relevant features for human hearing. It is derived
from the MEL scale, which is a perceptual scale of pitches that approximates the
human ear’s response to different frequencies [123]. In a MEL spectrogram, the
frequency axis is divided into MEL-frequency bands, and the energy within each
band is computed using a series of overlapping windows along the signal [124].

Librosa’s functionality for generating MEL spectrograms allows for the extraction of
features that are more aligned with human auditory perception [109]. The process
involves dividing the audio signal into short overlapping frames, applying a window
function to each frame, and then computing the Discrete Fourier Transform (DFT) to
obtain the magnitude spectrum [109], [124]. Subsequently, a filterbank based on the
MEL scale is applied to these spectra, summing the energy in each MEL-frequency
band. The result is a MEL spectrogram, a two-dimensional representation where time

57

5. Implementation of Methodology

is plotted on the horizontal axis, frequency on the vertical axis, and color represents
the intensity of the signal’s energy.

MEL spectrograms find extensive use in speech processing, music analysis, and
various audio-related tasks, providing a more perceptually relevant representation of
the signal’s frequency content compared to a traditional spectrogram [109].

Examples are shown in figure 5.17.

5.3.3 Scipy Spectrogram

This functionality was implemented in a simple manner as well as with machine
learning preprocessing to make the data more uniform.

Simple Approach to Scipy Spectrogram

Similar to the librosa approach described in section 5.3.2, the scipy library in Python
provides a function called scipy.signal.spectrogram for computing spectrograms
[110]. Spectrograms are a way to visualize the frequency content of a signal over
time.

The output of this spectrogram transform is in turn used as input for the machine
learning model, but due to bad preliminary results with average accuracy over
multiple experiments below 60%, this approach was not further evaluated.

Scipy Spectrogram with Machine Learning Preprocessing

To improve on the method described in section 5.3.3, the preprocessing function
minmax_scale from scikit is utilized to produce uniform data for the machine learning
model [114].

This estimator scales and translates each feature individually such that it
is in the given range on the training set, e.g. between zero and one [114].

sklearn.preprocessing.minmax_scale is a function provided by the scikit-learn
library for feature scaling, specifically performing min-max scaling on numerical data.
Feature scaling is a common preprocessing step in machine learning to standardize
or normalize the range of independent variables or features. [114] The input data is
thus re-transformed to a more uniform state, which benefits the machine learning
model by using the full input range possible.

5.3.4 Transformation Methods Synopsis

Four different transformation methods were implemented and tested. From those, the
simple approach with scipy described in section 5.3.3 was discarded after providing

58

5.4. Data Labeling

unsatisfactory results. Its counterpart with ML pre-processing proved to provide
better results, but relied on a pre-processing function from an external library. The
best results could be achieved by utilising the morlet wavelet transformation with
librosas CQT functionality.

5.4 Data Labeling

The crucial task of correctly labeling input data for the model provides the basis
for accurate results and good model performance, and a short overview will be
given here. With labeled data, extracted audio snippets and their corresponding
timestamps and labels can then be passed to the machine learning model.

5.4.1 Overview of Data Labeling

To ensure correct results and reliability of the predictions made by the machine
learning model, input data has to be correctly labeled, as this is crucial for the
reliability of the model’s predictions. The basis for this is reference data acquired
from video recognition, which is automatically synchronized with results from audio
pre-processing. Resulting labeled data is then analyzed for plausibility and to make
sure that the data used for verifying the model is indeed correct in respect to the
reference data. Data Labeling has to be automatized to be able to handle large input
datasets, where manual labeling would be very time consuming and prone to error.
The output of this processing step are labeled data snippets, both as audio samples
and as corresponding spectrograms, which are used to train and test the model.

5.4.2 In-depth Data Labeling

Labeling starts with acquiring input data from the provided JSON files, as well as
extracting event timestamps from the corresponding mp3 audio data. For both files,
the exact starting time of the recording is known. Reference data in JSON form has a
timestamp from which video recognition started, and contains crossing-line events
for every detected vehicle that travelled across a defined boundary line, as shown
in figure 4.6. Audio data has to be pre-processed to make timestamps of detected
passing vehicles available, which is explained in detail in section 5.2.

Each of the timestamps detected during pre-processing has to be labeled to provide
useful input for training the machine learning model. When a timestamp extracted
from audio data coincides with an event timestamp from reference data, the asso-
ciated label from reference data is also attached to the audio event, for which a
two-second audio snippet it also extracted from raw data, which is then further pro-
cessed into a spectrogram. These event spectrograms together with their associated

59

5. Implementation of Methodology

label then present the data used for training and evaluating the machine learning
model.

To verify the correctness of appended labels, data can either be reviewed in a random
sample survey, where an extracted and labeled audio sample can be listened to and
then decided if it could be the sound of the labeled vehicle, which is a sufficiently
exact proof for this usecase.

5.4.3 Synchronization between audio and json data

Since the exact starting time of each recording is known and available in a form of
a timestamp such as 2022-11-10T14-11-00.000000, as well as the duration of the
recording, the results from video recognition can be accessed through a REST API
provided by our partner company Bernard Group GmbH, to get JSON files containing
timestamps and labels for events detected by the camera ML system for the same
timeframe. Timestamps extracted from the audio files are then compared to the ones
from the correlating JSON data, and closest matches accepted to pair the available
vehicle type label to a timestamp as well as the corresponding audio data.

Since subclasses are not available for every detected event, "class" is the only
extracted label, as it provides enough distinction for training and testing the model.
The most common classes found in JSON files are listed as follows, with the noise
class added from audio data during pre-processing.

• Labels from reference data

– Car

– Truck

– Bus

– Motorbike

• Label generated during pre-processing

– Noise

With this labeling procedure, where extraction and matching of timestamps was
described in section 5.2, data for training and inference can then be passed to the ML
model. Spectrograms for each timestamp as shown in figure 5.17 are then combined
with their timestamps as well as the corresponding raw audio snippet. The resulting
dataset then contains all necessary data for model training and testing, and labeled
spectrograms can then be passed to the model. Noise spectrograms are saved in the
same dataset, also with their label as "noise", but without a timestamp as noise is

60

5.5. Implementation as a pipeline

always extracted between events with enough buffer to the previous and next event,
so saving a timestamp for extracted noise is pointless as it doesn’t have reference
data to be compared to.

This labeled data then functions as input data for the model and can either be passed
as a train-test split, or a number of datasets can be used as training data, with
a separate dataset for validation. The option of providing a separate dataset for
validation instead of a train-test split of the same dataset provides a failsafe against
overfitting the model, which could happen if the training and test data are too similar
from a train-test split.

5.5 Implementation as a pipeline

The comprehensive methodology delineated in Sections 4.4 through 5.4.3 has been
meticulously implemented as a cohesive Python script. Within this script, the diverse
array of functions developed throughout the preceding sections are seamlessly
integrated into a unified pipeline. Each function encapsulates specific aspects of
the methodology, effectively abstracting the complex processes involved in data
collection, preprocessing, and synchronization. This modular approach not only
enhances code maintainability but also ensures that the implementation remains
faithful to the theoretical foundations previously established, allowing for a robust
and replicable execution of the proposed workflow.

5.5.1 Audio Processing and Spectrogram Generation

This section lists the crucial procosses of audio-preprocessing and their associated
functions, which lay the groundwork for subsequent analysis. It provides an overview
of the implemented functions in order of their execution in the pipeline for a better
understanding of the pre-processing workflow.

1. Folder Creation and Data Restructuring: Creates a structured folder hier-
archy for organizing processed audio and spectrogram data. It also includes
functions for copying raw audio files and external tags from JSON files into the
appropriate folders, keeping the structure described in figure 4.9.

2. Loading Audio Files: Utilizes librosa to load audio files and obtain their
sample rates.

3. Noise Reduction: Applies noise reduction using the noisereduce library to
clean the audio data.

4. Spectrogram Separation: Separates the spectrogram into magnitude and
phase components and computes the Root Mean Square (RMS) energy for each
frame.

61

5. Implementation of Methodology

5. Savitzky-Golay Interpolation: Smoothes the observed RMS signal utilising
Savitzky-Golay interpolation [107] to provide a smooth function where peaks
can be detected. This is repeated after thesholding to ensure peaks are unique.

6. Threshold Filtering: Sets values below a specified threshold to zero in the
array containing the smoothed RMS data to remove left over noise.

7. Local Maxima Detection: Identifies local maxima in the RMS signal to find
peaks that may indicate significant events in the audio.

8. JSON Processing: Processes JSON files to extract event timestamps and
associated data.

9. Timestamp Matching: Matches and compares timestamps extracted from
audio files with those from JSON files to identify corresponding events.

10. Audio Segment Extraction: Extracts segments of audio data around detected
peaks.

11. Spectrogram Generation: Generates spectrogram images from audio files in
different modes

12. Plotting Functions: Includes several plotting functions using matplotlib to
visualize RMS energy, spectrograms, and audio signals with timestamps.

13. Command Line Interface: Implements an argument parser to facilitate
running the script from the command line, specifying input directories for audio
files, JSON files, and the output directory, as well as additional parameters
like maximum frequency (fmax) and transformation mode for spectrogram
generation.

14. Main Function: Executes the data restructuring process by integrating the
aforementioned functions, processing each audio file, and generating the corre-
sponding spectrograms and noise-reduced audio segments.

5.5.2 Model Training and Evaluation

In this section, an overview of the code developed to train and evaluate the Machine
Learning model is given, as well as mentioning the data split. All data used for
machine learning was split in an 80/20 split as described in section 3.3.4 with the
option to test for overfitting with a separate dataset as well.

The primary functionalities implemented in code include:

1. Confusion Matrix Directory Creation: Creates a directory to save confusion
matrix images.

62

5.5. Implementation as a pipeline

2. Data Loading and Preprocessing:

• Traverses through subfolders in the specified data directory to load images.

• Resizes images to 64x64 pixels and converts them to numpy arrays.

• Assigns labels based on the image and reference data filenames depending
on matched timestamps.

• Splits the data into training and testing sets, or uses the entire dataset for
testing against overfitting if specified.

• Flattens the images for model training.

3. Model Training and Evaluation:

• Trains a Support Vector Classifier (SVC) or a Convolutional Neural Network
(CNN) model for a specified number of epochs.

• Evaluates the model’s accuracy on the test set for each epoch.

• Selects the best performing model based on the highest accuracy achieved.

4. Performance Metrics and Reporting:

• Generates a classification report and confusion matrix for the best model.

• Plots the confusion matrix and saves it as an image file.

• Saves the predicted and actual labels to a CSV file.

• Prints classification metrics, including the number and percentage of
files in each category, the number of correctly identified files, and the
classification report.

5. Saving Model Metrics: Saves the best model’s accuracy and classification
report to a JSON file for later reference.

6. Command Line Interface: Implements an argument parser to facilitate
running the script from the command line, allowing the specification of input
directories for image data and output directories for confusion matrices, as
well as the number of training epochs.

7. Main Function: Orchestrates the entire process by parsing command-line ar-
guments, creating necessary directories, and calling the training and evaluation
function.

63

5. Implementation of Methodology

5.5.3 Data Pre-Processing and Model Training Pipeline

A DVC pipeline is implemented which orchestrates the processes described in sec-
tions 5.5.1 and 5.5.2, and it’s general setup is shown below:

• Stage: structure_raw_data

– Command: Executes a Python script to structure raw audio data and
reference timestamps into a combined format.

– Parameters: Accepts fmax and mode as parameters to configure spectro-
gram generation.

– Dependencies:

* audioclassification/scripts/structure_data.py

* data/0_raw/raw_audio_01

* data/0_external/reference_timestamps_01

* data/1_intermediate/noise_sample

– Outputs: Generates structured data in
data/1_intermediate/combined_raw_data.

• Stage: train_and_evaluate_model

– Command: Executes a Python script to train a machine learning model us-
ing the structured data and evaluate its performance, outputting confusion
matrices.

– Parameters: Accepts epochs as a parameter to specify the number of
training iterations.

– Dependencies:

* audioclassification/scripts/train_model.py

* data/1_intermediate/combined_raw_data

– Outputs: Saves confusion matrices and other evaluation metrics in
data/1_intermediate/confusion_matrices.

– Metrics: Stores model training metrics in metrics/model_training.json.

• Plots

– Generates a plot from
data/1_intermediate/confusion_matrices/predictions.csv, plotting
actual_class against predicted_class,
using a predefined template (confusion_template.json).

64

5.5. Implementation as a pipeline

This configuration ensures a structured approach to processing audio data, training
a model, and evaluating its performance, facilitating reproducibility and efficient
management of data and results. An exemplary metrics report is shown in following
listing 5.2.

Listing 5.2: Exemplary Metrics Output
1 {
2 "accuracy" : 0.8,
3 " classification_report " : {
4 "accuracy" : 0.8,
5 "bus" : {
6 " f1−score" : 0.0,
7 "precision" : 1.0,
8 " recall " : 0.0,
9 "support" : 1.0

10 },
11 "car" : {
12 " f1−score" : 0.8695652173913044,
13 "precision" : 0.7692307692307693,
14 " recall " : 1.0,
15 "support" : 20.0
16 },
17 "macro avg" : {
18 " f1−score" : 0.4173913043478261,
19 "precision" : 0.9145299145299145,
20 " recall " : 0.4318181818181818,
21 "support" : 35.0
22 },
23 "noise" : {
24 " f1−score" : 0.7999999999999999,
25 "precision" : 0.8888888888888888,
26 " recall " : 0.7272727272727273,
27 "support" : 11.0
28 },
29 "truck" : {
30 " f1−score" : 0.0,
31 "precision" : 1.0,
32 " recall " : 0.0,
33 "support" : 3.0
34 },
35 "weighted avg" : {
36 " f1−score" : 0.7483229813664597,
37 "precision" : 0.8332112332112332,
38 " recall " : 0.8,
39 "support" : 35.0
40 }
41 }
42 }

As the whole pipeline was set up in a way that allows easy execution of experiments,
experiment results for all experiments were not saved but can be reproduced at any
time by running experiments with adjustable parameters as described in paragraph
4.6.1 and will produce output as shown in listing 5.3, where the achieved accuracy
for that experiment is 98.08%

Listing 5.3: Exemplary Metrics Output
Model: "sequential "

Layer (type) Output Shape Param #

===
conv2d (Conv2D) (None, 82, 85, 32) 320

65

5. Implementation of Methodology

max_pooling2d (MaxPooling2 (None, 41, 42, 32) 0
D)

flatten (Flatten) (None, 55104) 0

dense (Dense) (None, 128) 7053440

dense_1 (Dense) (None, 3) 387

===
Total params: 7054147 (26.91 MB)
Trainable params: 7054147 (26.91 MB)
Non−trainable params: 0 (0.00 Byte)

Epoch 1/10
4/4 [==============================]− 7s 81ms/ step − loss : 80.1989 − accuracy : 0.5288
Epoch 2/10
4/4 [==============================]− 0s 23ms/ step − loss : 47.1902 − accuracy : 0.5865
Epoch 3/10
4/4 [==============================]− 0s 19ms/ step − loss : 23.9625 − accuracy : 0.5962
Epoch 4/10
4/4 [==============================]− 0s 20ms/ step − loss : 9.1128 − accuracy : 0.7885
Epoch 5/10
4/4 [==============================]− 0s 19ms/ step − loss : 5.6969 − accuracy : 0.8269
Epoch 6/10
4/4 [==============================]− 0s 19ms/ step − loss : 5.5533 − accuracy : 0.7500
Epoch 7/10
4/4 [==============================]− 0s 20ms/ step − loss : 2.8009 − accuracy : 0.8365
Epoch 8/10
4/4 [==============================]− 0s 19ms/ step − loss : 0.8306 − accuracy : 0.9712
Epoch 9/10
4/4 [==============================]− 0s 19ms/ step − loss : 1.0633 − accuracy : 0.9615
Epoch 10/10
4/4 [==============================]− 0s 30ms/ step − loss : 0.4568 − accuracy : 0.9808

66

CHAPTER6
Results

This chapter presents a comprehensive analysis of the results obtained throughout
this thesis. A comparison with existing video recognition benchmarks is provided,
utilizing confusion matrices to evaluate the model’s accuracy in predicting vehicle
types. The findings are discussed in the context of the research questions, offering
insights into the model’s performance and its implications.

The available data is split into an 80/20 split as described in section 3.3.4 and the
following results are based on that split.

6.1 Overview of experiment Results SVM

This section provides a detailed analysis of the models predictions, presented mainly
through confusion matrices. These matrices are an effective tool for visualizing
the accuracy of the model, with the actual classes on the x-axis and the predicted
classes on the y-axis as explained in section 3.5.3. By examining the distribution
of predictions across these axes, we can assess how well the model distinguishes
between different vehicle types, which in this case are cars only. Each cell in
the matrix quantifies the number of instances for each prediction, allowing us to
identify areas of strong performance as well as potential weaknesses. This analysis is
crucial for understanding the overall effectiveness of the model and identifying any
specific classes where the model may struggle, thereby offering insights into areas
for potential improvement. With this, it also became apparent that the lack of busses,
trucks and motorcycles in the available data made those almost impossible for the
model to distinguish from cars, leading to the model behaving like a binary classifier.

67

6. Results

6.1.1 Basic transformation, Librosa MelSpectrogram

The basic mode chosen to transform preprocessed audio snippets to image data for
machine learning is the librosa function librosa.feature.melspectrogram, which
computes a MEL-scale-spectrogram [109].It was chosen as it presented a good proof
of concept, even if the results were not optimal.

Figure 6.1: dvc confusion matrix results for basic transformation, fmax = 5 − 10kHz
for setting MEL frequency scales

The basic transformation is somewhat influenced by setting different frequencies for
MEL frequency scales.

Best results are achieved for setting the MEL frequency scales at 6kHz and 8kHz,
as evident from figure 6.1. Accuracy is used as the defining metric for evaluating
the model, as it is a fundamental and easy to understand method for showing the
performance of a model. As the available datasets mostly lack data for motorbikes,

68

6.1. Overview of experiment Results SVM

trucks and busses, the remaining main classes are "car" and "noise" for which the
model classifies. Based on those two remaining classes, accuracy was deemed to
be the most appropriate metric for comparison, as it is best suited for such binary
classifiers with only two possible classes.

As only the classes car and noise are predicted here, formula 3.7 simplifies to:

Acc = TPcar + TPnoise

Totalsamples
(6.1)

which is also shown in formula 3.8 and yields an accuracy score of 74.3% at 6kHz

and 8kHz, which can also be checked by calculating accuracy based on figure 6.1.
Motorbikes, trucks and busses are not detected due to their sparsity in the available
dataset, with a support of only 1 motorbike, 3 trucks, and no busses.

Morlet wavelet transformation, Librosa MelSpectrogram

For the implementation of the morlet wavelet transform, Librosa’s inbuilt constant-Q
transform librosa.cqt yields the desired functionality. The model output of this
approach is not influenced by setting different MEL frequency scales.

With equation 3.7, the accuracy for morlet wavelet transformation with subsequent
machine learning is 71.4% on the same dataset.

69

6. Results

Figure 6.2: dvc confusion matrix results for morlet wavelet transformation, fmax =
5 − 10kHz for setting MEL frequency scales

6.1.2 Spectrogram transformation with SciPy

For reference, the default scipy spectrogram signal.spectrogram was also utilized
for preprocessing. The results show that this method does not yield good results,
as the calculated accuracy from equation 3.7 yields only 40%. Detection accuracy
for this approach was so low that the model could not differentiate between the two
available classes, therefore this method was not further evaluated.

70

6.1. Overview of experiment Results SVM

Figure 6.3: dvc confusion matrix results for simple scipy spectrogram, fmax =
5 − 10kHz for setting MEL frequency scales

Spectrogram transformation with SciPy and ML preprocessing

For further reference, the default scipy spectrogram signal.spectrogram was en-
hanced with the function minmax_scale from sklearn.preprocessing for prepro-
cessing. The results show that this method also yields better results, as the calculated
accuracy from equation 3.7 yields 80%. The method was still not evaluated further
as it needed more computational effort than the other methods and thus took sig-
nificantly longer to compute while yielding only slightly better results, which were
surpassed by later experiments.

71

6. Results

Figure 6.4: dvc confusion matrix results for scipy spectrogram enhanced by ML
preprocessing, fmax = 5 − 10kHz for setting MEL frequency scales

6.1.3 Further evaluation of SVM results

As a result of this overview, further experiments were only conducted with the default
transformation MEL-spectrogram as well as with the morlet wavelet transformation
MEL-spectrogram as these two methods performed the best. Based on these tests it
was also concluded that the MEL-spectrogram is the ideal method of final prepro-
cessing for the machine learning model. With these findings, further testing of both
the basic mode as well as the morlet mode was conducted.

Comparison of default and morlet wavelet transformation model results

As concluded before, optimal results for both default and morlet method were
achieved at 6kHz and 8kHz. 8kHz was then chosen as the desired frequency for

72

6.1. Overview of experiment Results SVM

further experiments, as with this frequency results seemed to be slightly better in
some experiments, even when the average was very similar.

Figure 6.5: dvc confusion matrix results of default and morlet transformation ML
results, fmax = 6kHz for setting MEL frequency scales

Figure 6.6: dvc confusion matrix results of default and morlet transformation ML
results, fmax = 8kHz for setting MEL frequency scales

As figures 6.5 and 6.6 show, in a direct comparison we can see that the default mode

73

6. Results

is better at distinguishing cars from noise, and has no false negatives detected. On
the other hand, 5 of 17 event were incorrectly classified as cars, when they were in
fact noise.

The morlet model on the other hand shows a worse performance at detecting cars by
9 of 14, but only classifies 1 of 17 noise samples as car.

Both models struggle with motorbikes and trucks, and busses are not even in the
test dataset, as there were too few samples for a train/test split.

In this regard, the classifier can be viewed as a binary classifier that is only classifying
cars and noise, while disregarding the other three classes, as the necessary support
data needed to provide reliable results for all possible classes does currently not
exist, and would need to be accumulated by gathering a lot more data, which will be
discussed in future work.

6.2 Overview of experiment Results Keras Model

With these preliminary results as basis, a Sequential Neural Network / KERAS model
was built to replace the existing SVM model. The Sequential Neural Network /
KERAS model setup is as follows:

Listing 6.1: Sequential Neural Network / KERAS model

model = t f . keras . Sequential (
[

layers . Input (shape=(mel_spectrogram_shape)) ,
layers .Conv2D(32 , (3 , 3) , activation="relu") ,
layers .MaxPooling2D((2 , 2)) ,
layers . Flatten () ,
layers .Dense(128, activation="relu") ,
layers .Dense(num_classes , activation="softmax") ,

]
)

model .compile(optimizer="adam" , loss="categorical_crossentropy" , metrics=["accuracy"])

model .summary()

Layers used in this model are described in detail in section 4.8.4.

This model was then trained and tested with a train-test split on available data, and
was then also evaluated with a separate testing dataset to test for overfitting, the
reasoning behind that being explained in section 3.3.4.

From using equation 3.7 on the confusion matrix presented in figure 6.7, we can see
that the default transformation yields an accuracy of 88.8%, which is significantly
better than the SVM model. Here, 1 event is wrongly classified as noise, when it is in
fact a car. Trucks, motorbikes and busses can still be disregarded as there are too
few samples to make an impact or generate training data.

74

6.2. Overview of experiment Results Keras Model

Figure 6.7: dvc confusion matrix results of default transformation ML results, fmax =
8kHz for setting MEL frequency scales

From using equation 3.7 on the confusion matrix presented in figure 6.8 we can
see that the morlet transformation yields an accuracy of 88.8% as well, which is
also significantly better than the SVM model. This result shows that the morlet
transformation approach does not recognize cars as noise, but does wrongly classify
1 noise sample as car. Such behaviour is slightly preferred, as detecting a car when
there is none can be more important than not recognizing the car at all.

75

6. Results

Figure 6.8: dvc confusion matrix results of morlet transformation ML results, fmax =
8kHz for setting MEL frequency scales

6.2.1 Synopsis of ML Results

With these experiment results, it became clear that a lot of added detection accuracy
could be gained from a larger training dataset for both the SVM approach as well
as the keras CNN approach, as the results shown in listing 5.2 are based off of a
support of only 35 events, whereas results shown in this section had a support of
more than 300 events. This underlines the assumption that the model profits from
more available and well labeled data, which is to be expected, but that the employed
methods already delivered meaningful results with smaller dataset sizes as well.
The KERAS model provides significantly better results than the SVM model, with
the exemplary shown 88.8% accuracy shown as the average, while outliers reached
results as good as 98% accuracy, but these results are not reliably reproducable on
smaller datasets initially used by both models. For large datasets however, these
excellent accuracy results are reproducible. Exemplary results shown in figures

76

6.2. Overview of experiment Results Keras Model

6.1 to 6.8 rely on the same dataset to enable a direct and fair comparison of all
approaches.

The maximum achieved accuracy of the Keras model of 98.08% is shown in listing
5.3, which is a definitive improvement over preceding experiments, and was in part
due to adding more audio and reference data to the existing dataset, which lead to
the increase in performance.

As shown by figures 6.9 and 6.10, the loss function as explained in section 3.5.4
of the morlet approach converges faster while also providing a higher ceiling for
accuracy at the aforementioned 98%. Experiments were performed with up to 50
epochs, but after 10 epochs no changes were determined anymore, therefore 10
epochs was chosen as the evaluation epoch count. Both approaches show their best
performance at 9 epochs, which is in both cases the model that was saved as the
final result.

Figure 6.9: Loss and accuracy of the default transformation model

77

6. Results

Figure 6.10: Loss and accuracy of the morlet transformation model

In conclusion, the results show that both the default- as well as the morlet transfor-
mation methods deliver reliable output data after machine learning with Keras.

With the morlet approach slightly outperforming the default approach, specifically
regarding figures 6.9 and 6.10, the approach to use the morlet wavelet transformation
along with a Keras CNN model is deemed to be the best model to use in this thesis,
and is viewed as the final Machine Learning output of this work.

This also underlines the reason for the change to the Keras CNN model, as the
originally implemented SVM model provided a good proof of concept, but as Keras
CNN is a popular and effective choice with many advantages as outlined in section
3.5.2 it was the desired model to use in this thesis, which the achieved results
validate.

6.2.2 Accuracy of detected events

In following figures 6.11 to 6.13 it becomes apparent that audio recognition some-
times registers events that are clearly audio events to be classified at times when
reference data showed no event. This is most evident in the outtake in figure 6.11,
and events detected by audio pre-processing can be listened to at that timestamp
in original audio data and verified that they sound like cars passing, but the lack
of reference data for that timestamp makes the sample unusable. Upon further
evaluation it was concluded that these are in fact the sounds of vehicles passing
by that for unknown reason did not register on video recognition, but it may be
speculated that the camera was obscured.

78

6.2. Overview of experiment Results Keras Model

Figure 6.11: Accuracy of audio detection vs. video detection.
Event timestamps detected by audio pre-processing are shown as green lines, while
event timestamps extracted from reference data are shown as red lines

Figure 6.12: Accuracy of audio detection vs. video detection.
Event timestamps detected by audio pre-processing are shown as green lines, while
event timestamps extracted from reference data are shown as red lines

79

6. Results

Figure 6.13: Accuracy of audio detection vs. video detection.
Event timestamps detected by audio pre-processing are shown as green lines, while
event timestamps extracted from reference data are shown as red lines

80

CHAPTER7
Discussion and future work

In this chapter, the findings of this thesis are discussed, as well as how research
questions are answered and what the future outlook based on this thesis is.

Traffic classification is important because it enables the accurate computation of
current traffic flow, congestions, diversity of vehicles and many more factors, as well
as lay a foundation for future planning by presenting the development of traffic at the
measured location. Audio-based methods provide an interesting and novel approach
to currently existing systems, i.e. video based ones.

7.1 Research questions

The research questions already posed in section 2.1 are re-iterated here and also
answered.

7.1.1 Calculation of Passing Vehicles (RQ1)

The first research question adresses the counting of vehicles from audio data.

Question Statement Can the number of passing vehicles be calculated accurately
with respect to the number of lanes, or for a single lane only? Here, a software
prototype will be built and tested against reference data obtained from video data.
Research through development will help to refine the computations so that they can
be verified by comparison with results from video analysis.

Empiric Findings Real-world data from a sensor box mounted at the same place
as an existing video recognition system was collected. Different pre-processing

81

7. Discussion and future work

and feature extraction methods were tested along with different machine learning
approaches. The number of passing vehicles could be calculated for the existing
two-lane setup, even when higher traffic flow occurred, with an accuracy of up to
98% relative to reference data, as the number of passing vehicles detected correctly
goes hand in hand with detecting their timestamp and type. However, this does not
indicate the viability for a multi-lane setup like a highway, where this approach would
have to be tested separately. For a multi-lane setup, data for each lane would need
to be gathered separately, while ensuring that adjacent lanes are not detected.

Obtained results show that audio detection catches each peak in the presented audio
data, whereas video detection does not capture every event, examples of this can be
found in figures 6.11 and 6.12. Therefore concrete examples for situations where the
accuracy of audio recognition for vehicle counting surpasses that of video recognition
can be provided.

These audio files were verified by listening to each event audio snippet and concluding
that they indeed sounded like passing cars and also sounded exactly like verified
sound samples from timestamps where a video recognition event exists, therefore the
accuracy of audio recognition for vehicle counting surpasses that of video recognition
in this case.

7.1.2 Vehicle Type Deduction (RQ2)

The second research question adresses the correct detection of the vehicle type.

Question Statement Can the type of a passing vehicle be deduced accurately with
machine learning? The results will be tested against video data obtained at the same
location and time as the audio data, and photoelectric barriers can also be used to
gather vehicle count and timestamps for verification.

Empiric Findings Utilizing machine learning, the type of passing vehicles could
be deduced with a 95 − 97% peak detection accuracy and an average of 88.7%, which
is a very good proof of concept and shows that the audio recognition approach is
a viable alternative to the existing video recognition setup. A known caveat is the
prevalence of cars compared to the other tested types of busses, motorbikes and
trucks. Cars make up about 85% of the passing vehicles at the testing site, which
produces a bias towards detecting cars and noise very well, while the other classes
are not detected often.

7.1.3 Influence of Preliminary Setup (RQ3)

Research question three adresses the influence of the hardware deployed in the
sensorbox on the possibility of running the pipeline as described in section 4.5 also

82

7.1. Research questions

on the Khadas VIM3 microcomputer.

Question Statement How does the hardware setup, which is based on a Khadas
VIM3 as the microcomputer in use with a Neural Processing Unit (NPU) Machine
Learning (ML) module for ML workloads, influence the computation, and is it possible
to finish computations close to real-time, where results can be acquired within a
maximum constant time window of a few seconds after each event? A window of five
seconds is the desired maximum here, as the evaluation period on the sensor box
has a sliding window of five seconds in length.

Empiric Findings

Preprocessing was implemented on the Khadas VIM3, however testing showed that
the hardware was not appropriate to handle the computational load, as after the first
few seconds of analyzing audio data, the system runs into memory issues and the
process is shut down. This is further made more difficult as this audio pre-processing
pipeline would only be one of many clients running on that microcomputer, and as
the hardware is not capable of running it alone, this research question could not
be answered, but will have to be moved to future work with the next generation of
sensor boxes.

7.1.4 Overall Representation of Passing Traffic (RQ4)

The fourth research question adresses the accuracy of traffic representation regard-
ing the available reference data.

Question Statement Can the workflow developed in this thesis lead to an accurate
representation of passing traffic in regard to the existing video based detection
system? Could this detection method be used in different locations as well, and how
would that change in surroundings affect detection accuracy? This depends on the
first three research questions and will be examined by research through development
and comparing results from audio detection with reference measurements for the
same period of time at the same location obtained from video analysis. All of these
results will then be interpreted and described and will yield the final verdict.

Empiric Findings This thesis shows that an accurate representation of traffic can
be made under certain circumstances, as the prevalence of cars means that their
detection works great, whereas trucks, busses and motorbikes are sometimes not
detected at all, leading to a skewed representation of actual traffic at the testing site.
However, as cars pose about 85% of the passing vehicles, the methods employed in
this thesis manage to model the number of passing cars very well. For the testing
location, an accurate representation of passing traffic is possible, and for different

83

7. Discussion and future work

locations future field studies will have to be conducted. As the accuracy of the final
model yielded an accordance of 98% with reference data, this research question can
be answered as providing an accurate representation of traffic at the deployment
location.

7.2 Discussion

In this thesis, accuracy, recall, precision and F1-score of different support vector
machines and neural networks were evaluated, which is evident from examples as
shown in listing 5.2. From these options, accuracy of these different models was
chosen as the defining metric and compared between them. Combined with various
preprocessing and feature extraction approaches, this leads to following takeaways:

In this thesis, it became apparent that an accurate alternative to the existing video
recognition setup can be implemented with audio recognition and machine learning.
The best model results came to an accuracy of 97% compared to video recognition
being regarded as 100% and "true".

A big advantage of audio recognition is that it is less hindered by bad weather
conditions or other adverse conditions as much as video recognition, as results show
that events not captured on video can be found in audio data, examples shown in
figures 6.11, 6.12 and 6.13. Overall, the SVM model approach provided a good proof
of concept for further development, while the KERAS model approach showed that
with a better model setup and a larger dataset, very accurate predictions of vehicle
types can be made.

The biggest known caveat is that we have to regard the results of video recognition
as "true", which for now is sufficient as this data is in use by the Austrian Autobahn
and highway financing stock corporation (ASFINAG), which is a trusted source. With
this in mind, the final result of this thesis is that accurate predictions of the types of
passing cars can be made by audio recognition and machine learning, rivaling, and
in certain conditions surpassing, those of video recognition.

This can be used to either try to replace video recognition for traffic monitoring
in places where that would be helpful (i.e. no option to mount a camera), or to
supplement an existing video recognition system with additional information, possibly
yielding better results than one method alone.

The objective of this thesis to determine whether reliable results can be obtained
through audio recognition and machine learning has been achieved. Consequently,
additional testing of various configurations will be considered in future work.

84

7.3. Future Work

7.3 Future Work

Based on the presented takeaways from this work, a plan for future endeavours to
further explore these subjects can be formed.

As this thesis as a whole builds the proof of concept to utilize audio recognition in
the existing setup with sensor boxes, a big part of further development will be the
adaptation to the microcomputer, so classification can be done on site. For this to
be possible, pre-processing will likely have to be reduced a little and made compu-
tationally more lightweight, as the microcomputer does not possess the necessary
hardware capabilities to run it at full capacity, much less with other clients running
on the same hardware simultaneously. A different approach would be the evaluation
of alternative hardware, as a successor of the Khadas VIM3 microcomputer already
exists as the Khadas VIM4, which poses more processing power and would be from
the same manufacturer, or to look for different suppliers as well.

As all data for this thesis comes from a two-way street, in future work the possibility
of analysing roads with more lanes or even highways will also have to be explored.
Connected with this is the gathering of more data, as it became evident that with
more available data, model results improved, which is to be expected from a Machine
Learning approach. So one important part of further developments would be to
acquire a lot more data than what was available for this thesis and further develop
the models to be able to produce better results still.

The partner company Bernard Group is also working on providing a mobile mea-
surement setup consisting of a camera as well as a sensor box, which will allow the
generation of a golden dataset. This will lead to a verified model that no longer has
to rely on data from a black box, as well as providing the option to test the setup in
many different locations and under different conditions.

Once such a field study can be conducted, the model can be further developed with
data where we know the exact conditions during recording as well as the exact
vehicle correlated to an audio snippet, which can lead to even better classification.
This is also directly related with simply gathering more data to improve the model,
and would lead to possible testing of the same model in different locations, and how
that affects detection accuracy, as well as providing the basis to train a model based
on data from multiple different locations.

A model trained from that data should then be able to reliably detect events at
changing locations, but would still need to be evaluated against a model specifically
trained at one location to test the difference in performance, if there is one.

The detection of other events than passing cars is also a possibility, as this setup
could be used to be trained on different signals like sirens of emergency vehicles to
provide a reliable detection of those, which could help with traffic control as well.

85

7. Discussion and future work

Predictive maintenance is also a possible use case, as the project setup could be
changed to be permanently listening to some input and watching for abnormal
changes in the input signal, like a bearing giving out in an electric motor or generator.

There are many possible use cases that can be found and discusses, but this sums up
the ideas that have come up during the course of this thesis.

86

Overview of Generative AI Tools
Used

Use of Scite.ai for finding further relevant papers and where to download them for
reading and referencing and ChatGPT for asking me questions about the thesis which
lead to better and simpler written explanations and for translating abstract and
acknowledgements.

87

Übersicht verwendeter
Hilfsmittel

Scite.ai um weitere relevante Paper zu finden und herauszufinden wo diese verfüg-
bar sind, ChatGPT als Konversationspartner der generelle Fragen zum besseren
Verständnis der Arbeit stellt, was zu besseren und einfacheren Erklärungen geführt
hat und zur Übersetzung von Abstract und Danksagung.

89

List of Figures

4.1 Typical THD vs. SPL of Knowles SPK0641HT4H-1 24

4.2 Sensorbox topview with microphone shields marked 25

4.3 Sensorbox sideview . 26

4.4 Sensorbox bottomview . 26

4.5 Sensorbox microphone input detail with microphone port marked . . . 26

4.6 Camera setup at Brenner with Sensorbox (SRB)1030, which denotes the
deployed sensorbox designation
(provided by Bernard Group - Bernard Technologies GmbH) 27

4.7 Diagram of camera setup at brenner with srb1030 28

4.8 Flowchart of project workflow . 32

4.9 Cookiecutter Data Science project structure example [104] 34

4.10 Snippets for extraction around timestamps (exaggerated) 35

4.11 Flowchart of the Project Data . 43

5.1 Sensor box setup at B182 Brennerstraße 47

5.2 Camera and sensorbox setup at B182 Brennerstraße 47

5.3 Camera setup at B182 Brennerstraße . 48

5.4 Sensor box setup at B182 Brennerstraße 48

5.5 Sensor box closeup of setup at B182 Brennerstraße 48

5.6 Mounting of camera and sensorbox . 48

5.7 Camera view at B182 Brennerstraße provided by Land Tirol [117] . . . 49

5.8 Input Signal RMS and spectrogram . 52

5.9 Input Signal RMS and spectrogram after noise reduction 52

5.10 denoised and smoothed input signal RMS and spectrogram 53

5.11 Input Signal RMS and spectrogram peaks 54

5.12 Input Signal RMS and spectrogram peaks smoothed 54

5.13 timestamp overlay for input Signal RMS and spectrogram 55

5.14 Timestamp overlay with two-channel input signal 55

5.15 MEL spectrogram of a passing car . 56

5.16 MEL spectrogram of noise . 56

5.17 Exemplary car and noise MEL spectrograms 56

91

6.1 dvc confusion matrix results for basic transformation, fmax = 5 − 10kHz

for setting MEL frequency scales . 68
6.2 dvc confusion matrix results for morlet wavelet transformation, fmax =

5 − 10kHz for setting MEL frequency scales 70
6.3 dvc confusion matrix results for simple scipy spectrogram, fmax = 5 −

10kHz for setting MEL frequency scales 71
6.4 dvc confusion matrix results for scipy spectrogram enhanced by ML pre-

processing, fmax = 5 − 10kHz for setting MEL frequency scales 72
6.5 dvc confusion matrix results of default and morlet transformation ML

results, fmax = 6kHz for setting MEL frequency scales 73
6.6 dvc confusion matrix results of default and morlet transformation ML

results, fmax = 8kHz for setting MEL frequency scales 73
6.7 dvc confusion matrix results of default transformation ML results, fmax =

8kHz for setting MEL frequency scales 75
6.8 dvc confusion matrix results of morlet transformation ML results, fmax =

8kHz for setting MEL frequency scales 76
6.9 Loss and accuracy of the default transformation model 77
6.10 Loss and accuracy of the morlet transformation model 78
6.11 Accuracy of audio detection vs. video detection.

Event timestamps detected by audio pre-processing are shown as green
lines, while event timestamps extracted from reference data are shown as
red lines . 79

6.12 Accuracy of audio detection vs. video detection.
Event timestamps detected by audio pre-processing are shown as green
lines, while event timestamps extracted from reference data are shown as
red lines . 79

6.13 Accuracy of audio detection vs. video detection.
Event timestamps detected by audio pre-processing are shown as green
lines, while event timestamps extracted from reference data are shown as
red lines . 80

92

Acronyms

Acc Accuracy. 16, 92

API Application Programming Interface. 28, 29, 38, 50, 60, 92

ASFINAG Austrian Motorway and Expressway Financing Joint-Stock Company. 3,
92

CNN Convolutional Neural Network. 14, 38, 63, 76, 78, 92

CQT Constant Q Transform. 35, 57, 59, 92

CSV Comma Separated Values. 63, 92

CURL Client for URL. 29, 92

dB Decibel. 53, 92

DFT Discrete Fourier Transform. 57, 92

DVC Data Version Control. 33, 42, 64, 92

JSON JavaScript Object Notation. 23, 28, 29, 37, 46, 50, 51, 60–63, 92

MEL Melody or melody scale, a perceptual scale of pitches judged by listeners to be
equal in distance from one another. 9, 10, 33, 35, 38, 56–58, 68, 91, 92

MEMS Micro-Electro-Mechanical Systems. 3, 49, 92

ML Machine Learning. 4, 15, 33, 35, 36, 41, 45, 49–51, 55, 59, 60, 62, 76, 78, 83,
85, 92

MP3 MPEG-1 Audio Layer III. 23, 28, 29, 46, 50, 92

NPU Neural Processing Unit. 4, 83, 92

93

PNG Portable Network Graphics. 23, 92

ReLU Rectified Linear Unit. 10, 38, 92

REST Representational State Transfer. 28, 50, 60, 92

RMS Root Mean Square. 35, 51–55, 61, 62, 91, 92

SPL Sound Pressure Level. 27, 92

SRB Sensorbox. 27, 91, 92

SVC Support Vector Classifier. 63, 92

SVM Support Vector Machine. xvi, 14, 36, 37, 42, 67, 69, 71, 73, 76, 78, 92

THD Total harmonic Distortion. 27, 92

TMPL Template. 92

94

Bibliography of Print Media

[1] J. Guerrero-Ibáñez, S. Zeadally, and J. Contreras-Castillo, „Sensor technolo-
gies for intelligent transportation systems“, Sensors, vol. 18, no. 4, p. 1212,
2018.

[2] G. Zhang, R. P. Avery, and Y. Wang, „Video-based vehicle detection and
classification system for real-time traffic data collection using uncalibrated
video cameras“, Transportation research record, vol. 1993, no. 1, pp. 138–147,
2007.

[3] X. Zhang, S. Hu, H. Zhang, and X. Hu, „A real-time multiple vehicle tracking
method for traffic congestion identification“, KSII Transactions on Internet
and Information Systems (TIIS), vol. 10, no. 6, pp. 2483–2503, 2016.

[4] K. Yousaf, A. Iftikhar, and A. Javed, „Comparative analysis of automatic vehicle
classification techniques: A survey“, International Journal of Image, Graphics
and Signal Processing, vol. 4, no. 9, p. 52, 2012.

[5] M. Najm and Y. H. Ali, „Automatic vehicles detection, classification and
counting techniques/survey“, Iraqi Journal of Science, pp. 1811–1822, 2020.

[6] Y. Yang, T. Zhang, J. Hu, D. Xu, and G. Xie, „End-to-end background subtraction
via a multi-scale spatio-temporal model“, IEEE Access, vol. 7, pp. 97949–
97958, 2019.

[7] J. Yang, J. Yuan, and X. Shen, „Neuronal edge detection with median filter-
ing and gradient sharpening“, in 2012 Fourth International Symposium on
Information Science and Engineering, IEEE, 2012, pp. 259–262.

[8] N. Buch, S. A. Velastin, and J. Orwell, „A review of computer vision tech-
niques for the analysis of urban traffic“, IEEE Transactions on intelligent
transportation systems, vol. 12, no. 3, pp. 920–939, 2011.

[9] H. Ouchra and A. Belangour, „Object detection approaches in images: A
weighted scoring model based comparative study“, International Journal of
Advanced Computer Science and Applications, vol. 12, no. 8, pp. 268–275,
2021.

95

[10] J. Li, D. Lin, Y. Wang, et al., „Deep discriminative representation learning
with attention map for scene classification“, Remote Sensing, vol. 12, no. 9,
p. 1366, 2020.

[11] G. Cui, S. Wang, Y. Wang, Z. Liu, Y. Yuan, and Q. Wang, „Preceding vehicle
detection using faster r-cnn based on speed classification random anchor and
q-square penalty coefficient“, Electronics, vol. 8, no. 9, p. 1024, 2019.

[15] E.-J. Kim, H.-C. Park, S.-W. Ham, S.-Y. Kho, and D.-K. Kim, „Extracting vehicle
trajectories using unmanned aerial vehicles in congested traffic conditions“,
Journal of Advanced Transportation, vol. 2019, no. 1, p. 9060797, 2019.

[16] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and F.
Herrera, „Deep learning in video multi-object tracking: A survey“, Neurocom-
puting, vol. 381, pp. 61–88, 2020.

[17] X. Xie, H. van Lint, and A. Verbraeck, „A generic data assimilation framework
for vehicle trajectory reconstruction on signalized urban arterials using parti-
cle filters“, Transportation research part C: emerging technologies, vol. 92,
pp. 364–391, 2018.

[18] X. Tang, H. Song, W. Wang, and Y. Yang, „Vehicle spatial distribution and
3d trajectory extraction algorithm in a cross-camera traffic scene“, Sensors,
vol. 20, no. 22, p. 6517, 2020.

[19] P. Gao, R. Guo, H. Lu, and H. Zhang, „Multi-view sensor fusion by integrating
model-based estimation and graph learning for collaborative object localiza-
tion“, pp. 9228–9234, 2021.

[20] P. Corcoran, A. Winstanley, P. Mooney, and R. Middleton, „Background fore-
ground segmentation for slam“, IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 12, no. 4, pp. 1177–1183, 2011.

[21] M. Irani and P. Anandan, „A unified approach to moving object detection
in 2d and 3d scenes“, IEEE transactions on pattern analysis and machine
intelligence, vol. 20, no. 6, pp. 577–589, 1998.

[22] R. Hou and K.-S. Jeong, „3d reconstruction and self-calibration based on
binocular stereo vision“, Journal of the Korea Academia-Industrial cooperation
Society, vol. 13, no. 9, pp. 3856–3863, 2012.

[23] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, „Large-scale video classification with convolutional neural networks“,
pp. 1725–1732, 2014.

[24] L. Rokach, „Ensemble-based classifiers“, Artificial intelligence review, vol. 33,
pp. 1–39, 2010.

[25] F. He, „Intelligent video surveillance technology in intelligent transportation“,
Journal of Advanced Transportation, vol. 2020, no. 1, p. 8891449, 2020.

96

[26] P. Foggia, A. Saggese, N. Strisciuglio, M. Vento, and V. Vigilante, „Detecting
sounds of interest in roads with deep networks“, pp. 583–592, 2019.

[27] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and M. Vento, „Audio surveil-
lance of roads: A system for detecting anomalous sounds“, IEEE transactions
on intelligent transportation systems, vol. 17, no. 1, pp. 279–288, 2015.

[28] L. Lu, H.-J. Zhang, and S. Z. Li, „Content-based audio classification and
segmentation by using support vector machines“, Multimedia systems, vol. 8,
pp. 482–492, 2003.

[29] A. Wieczorkowska, E. Kubera, T. Słowik, and K. Skrzypiec, „Spectral features
for audio based vehicle and engine classification“, Journal of Intelligent
Information Systems, vol. 50, pp. 265–290, 2018.

[30] Y. Astuti, R. Hidayat, and A. Bejo, „A mel-weighted spectrogram feature
extraction for improved speaker recognition system.“, International Journal
of Intelligent Engineering & Systems, vol. 15, no. 6, 2022.

[31] S. Hu, Z. Liao, R. Hou, and P. Chen, „Characteristic sequence analysis of giant
panda voiceprint“, Frontiers in Physics, vol. 10, p. 839699, 2022.

[32] T. Jayasree and R. P. Ananth, „Sound signal based fault classification system
in motorcycles using hybrid feature sets and extreme learning machine
classifiers.“, Sound and Vibration, vol. 54, no. 1, pp. 57–74, 2020.

[33] J. K. Das, A. Chakrabarty, and M. J. Piran, „Environmental sound classification
using convolution neural networks with different integrated loss functions“,
Expert Systems, vol. 39, no. 5, e12804, 2022.

[34] M. Davy, A. Gretton, A. Doucet, and P. J. Rayner, „Optimized support vector
machines for nonstationary signal classification“, IEEE Signal Processing
Letters, vol. 9, no. 12, pp. 442–445, 2002.

[35] R. Sawata, T. Ogawa, and M. Haseyama, „Novel audio feature projection using
kdlpcca-based correlation with eeg features for favorite music classification“,
IEEE transactions on affective computing, vol. 10, no. 3, pp. 430–444, 2017.

[36] F. Ahmed, P. P. Paul, and M. Gavrilova, „Music genre classification using a
gradient-based local texture descriptor“, pp. 455–464, 2016.

[37] L. Nanni, A. Rigo, A. Lumini, and S. Brahnam, „Spectrogram classification
using dissimilarity space“, Applied Sciences, vol. 10, no. 12, p. 4176, 2020.

[38] Y. Zhang, D. Lv, and Y. Lin, „Environmental audio classification based on
active learning with svm“, pp. 208–212, 2015.

[39] S. Zahid, F. Hussain, M. Rashid, M. H. Yousaf, and H. A. Habib, „Optimized
audio classification and segmentation algorithm by using ensemble methods“,
Mathematical Problems in Engineering, vol. 2015, no. 1, p. 209814, 2015.

97

[40] R. E. Learned and A. S. Willsky, „A wavelet packet approach to transient
signal classification“, Applied and computational Harmonic analysis, vol. 2,
no. 3, pp. 265–278, 1995.

[41] I. Daubechies, „Ten lectures on wavelets“, 1992.

[42] H. Göksu, „Engine speed–independent acoustic signature for vehicles“, Mea-
surement and Control, vol. 51, no. 3-4, pp. 94–103, 2018.

[43] N. E. Huang, Z. Shen, S. R. Long, et al., „The empirical mode decomposition
and the hilbert spectrum for nonlinear and non-stationary time series anal-
ysis“, Proceedings of the Royal Society of London. Series A: mathematical,
physical and engineering sciences, vol. 454, no. 1971, pp. 903–995, 1998.

[45] I. Daubechies, J. Lu, and H.-T. Wu, „Synchrosqueezed wavelet transforms: An
empirical mode decomposition-like tool“, Applied and computational harmonic
analysis, vol. 30, no. 2, pp. 243–261, 2011.

[46] M. Bernardini, G. Della Posta, F. Salvadore, and E. Martelli, „Unsteadiness
characterisation of shock wave/turbulent boundary-layer interaction at mod-
erate reynolds number“, Journal of Fluid Mechanics, vol. 954, A43, 2023.

[48] Y. Huang, J. Benesty, and J. Chen, „Analysis and comparison of multichannel
noise reduction methods in a common framework“, IEEE transactions on
audio, speech, and language processing, vol. 16, no. 5, pp. 957–968, 2008.

[49] J. Zürn and W. Burgard, „Self-supervised moving vehicle detection from audio-
visual cues“, IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7415–
7422, 2022.

[50] I. McLoughlin, H. Zhang, Z. Xie, Y. Song, and W. Xiao, „Robust sound event
classification using deep neural networks“, IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 23, no. 3, pp. 540–552, 2015.

[51] D. Jiang, D. Huang, Y. Song, et al., „An audio data representation for traffic
acoustic scene recognition“, IEEE Access, vol. 8, pp. 177863–177873, 2020.

[52] N. Almaadeed, M. Asim, S. Al-Maadeed, A. Bouridane, and A. Beghdadi,
„Automatic detection and classification of audio events for road surveillance
applications“, Sensors, vol. 18, no. 6, p. 1858, 2018.

[53] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley, „De-
tection and classification of acoustic scenes and events“, IEEE Transactions
on Multimedia, vol. 17, no. 10, pp. 1733–1746, 2015.

[54] G. Guo and S. Z. Li, „Content-based audio classification and retrieval by
support vector machines“, IEEE transactions on Neural Networks, vol. 14,
no. 1, pp. 209–215, 2003.

[55] C. Cortes and V. Vapnik, „Support-vector networks“, Machine learning, vol. 20,
pp. 273–297, 1995.

98

[56] J. VAVREK, J. Jozef, and A. Anton ˇCI ˇZM, „The svm binary tree classification
using mrmr and f-score feature selection algorithms“, Acta Electrotechnica
et Informatica, vol. 14, no. 2, pp. 8–14, 2014.

[57] V. Y. Kulkarni and P. K. Sinha, „Pruning of random forest classifiers: A survey
and future directions“, pp. 64–68, 2012.

[58] A. Gupta and B. Kahali, „Machine learning-based cognitive impairment classi-
fication with optimal combination of neuropsychological tests“, Alzheimer’s
& Dementia: Translational Research & Clinical Interventions, vol. 6, no. 1,
e12049, 2020.

[59] P. Probst, M. N. Wright, and A.-L. Boulesteix, „Hyperparameters and tuning
strategies for random forest“, Wiley Interdisciplinary Reviews: data mining
and knowledge discovery, vol. 9, no. 3, e1301, 2019.

[61] J. Salamon and J. P. Bello, „Deep convolutional neural networks and data
augmentation for environmental sound classification“, IEEE Signal processing
letters, vol. 24, no. 3, pp. 279–283, 2017.

[62] Y. Liu, A. Neophytou, S. Sengupta, and E. Sommerlade, „Cross-modal spec-
trum transformation network for acoustic scene classification“, pp. 830–834,
2021.

[63] R. V. Sharan, H. Xiong, and S. Berkovsky, „Benchmarking audio signal repre-
sentation techniques for classification with convolutional neural networks“,
Sensors, vol. 21, no. 10, p. 3434, 2021.

[64] Q. Zhang, H. Lu, H. Sak, et al., „Transformer transducer: A streamable speech
recognition model with transformer encoders and rnn-t loss“, pp. 7829–7833,
2020.

[65] K. Avramidis, A. Kratimenos, C. Garoufis, A. Zlatintsi, and P. Maragos, „Deep
convolutional and recurrent networks for polyphonic instrument classification
from monophonic raw audio waveforms“, pp. 3010–3014, 2021.

[67] A. Ramalingam and S. Krishnan, „Gaussian mixture modeling using short time
fourier transform features for audio fingerprinting“, pp. 1146–1149, 2005.

[68] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, „Semantic annota-
tion and retrieval of music and sound effects“, IEEE Transactions on Audio,
Speech, and Language Processing, vol. 16, no. 2, pp. 467–476, 2008.

[69] H. Wang, „The generalized bayes method for high-dimensional data recogni-
tion with applications to audio signal recognition“, Symmetry, vol. 13, no. 1,
p. 19, 2020.

[70] D. Bonet-Solà and R. M. Alsina-Pagès, „A comparative survey of feature
extraction and machine learning methods in diverse acoustic environments“,
Sensors, vol. 21, no. 4, p. 1274, 2021.

99

[71] A. A. Abro, E. Taşcı, and A. Ugur, „A stacking-based ensemble learning method
for outlier detection“, Balkan Journal of Electrical and Computer Engineering,
vol. 8, no. 2, pp. 181–185, 2020.

[72] M. Panda, D. Mishra, and S. Mishra, „Ensemble methods for improving
classifier performance“, pp. 363–374, 2018.

[73] Y. Chen, J. He, W. Wei, N. Zhu, and C. Yu, „A multi-model approach for user
portrait“, Future Internet, vol. 13, no. 6, p. 147, 2021.

[74] N. Sutton-Charani, A. Imoussaten, S. Harispe, and J. Montmain, „Eviden-
tial bagging: Combining heterogeneous classifiers in the belief functions
framework“, pp. 297–309, 2018.

[76] G. E. Goutte C., „A probabilistic interpretation of precision, recall and f-
score, with implication for evaluation“, Losada, D.E., Fernández-Luna, J.M.
(eds) Advances in Information Retrieval, vol. ECIR 2005, 2005. doi: https:
//doi.org/10.1007/978-3-540-31865-1_25.

[77] M. M. Trivedi, T. L. Gandhi, and K. S. Huang, „Distributed interactive video ar-
rays for event capture and enhanced situational awareness“, IEEE Intelligent
Systems, vol. 20, no. 5, pp. 58–66, 2005.

[78] M. El-Helaly and A. Amer, „Synchronization of processed audio-video signals
using time-stamps“, vol. 6, pp. VI–193, 2007.

[79] T. Wang, Z. Zhu, and C. N. Taylor, „Multimodal temporal panorama for moving
vehicle detection and reconstruction“, pp. 571–576, 2011.

[80] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, „A multimodal database
for affect recognition and implicit tagging“, IEEE transactions on affective
computing, vol. 3, no. 1, pp. 42–55, 2011.

[81] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, „Multimodal machine learning: A
survey and taxonomy“, IEEE transactions on pattern analysis and machine
intelligence, vol. 41, no. 2, pp. 423–443, 2018.

[82] S. Petridis and M. Pantic, „Audiovisual discrimination between speech and
laughter: Why and when visual information might help“, IEEE Transactions
on Multimedia, vol. 13, no. 2, pp. 216–234, 2010.

[83] Y. Wu, H. Mao, and Z. Yi, „Audio classification using attention-augmented
convolutional neural network“, Knowledge-Based Systems, vol. 161, pp. 90–
100, 2018.

[84] S. Bunrit, T. Inkian, N. Kerdprasop, and K. Kerdprasop, „Text-independent
speaker identification using deep learning model of convolution neural net-
work“, International Journal of Machine Learning and Computing, vol. 9,
no. 2, pp. 143–148, 2019.

100

https://doi.org/https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/https://doi.org/10.1007/978-3-540-31865-1_25

[85] J.-W. Hsieh, S.-H. Yu, Y.-S. Chen, and W.-F. Hu, „Automatic traffic surveil-
lance system for vehicle tracking and classification“, IEEE Transactions on
intelligent transportation systems, vol. 7, no. 2, pp. 175–187, 2006.

[86] Y. Zhou, H. Nejati, T.-T. Do, N.-M. Cheung, and L. Cheah, „Image-based vehicle
analysis using deep neural network: A systematic study“, pp. 276–280, 2016.

[87] Z. Wang, X. Miao, Z. Huang, and H. Luo, „Research of target detection and
classification techniques using millimeter-wave radar and vision sensors“,
Remote Sensing, vol. 13, no. 6, p. 1064, 2021.

[88] Y. Chen, C. Wang, Y. Zhou, et al., „Research on multi-source heterogeneous
big data fusion method based on feature level“, 2023.

[89] Y. Li, J. Ren, Y. Wang, G. Wang, X. Li, and H. Liu, „Audio–visual keyword
transformer for unconstrained sentence-level keyword spotting“, CAAI Trans-
actions on Intelligence Technology, vol. 9, no. 1, pp. 142–152, 2024.

[90] X. Liu, Q. Li, J. Liang, et al., „Advanced machine learning methods for au-
tonomous classification of ground vehicles with acoustic data“, vol. 12113,
pp. 524–533, 2022.

[91] G. Potamianos, C. Neti, G. Gravier, A. Garg, and A. W. Senior, „Recent ad-
vances in the automatic recognition of audiovisual speech“, Proceedings of
the IEEE, vol. 91, no. 9, pp. 1306–1326, 2003.

[92] V. Shah, A. Aggarwal, and N. Chaubey, „Alert fusion of intrusion detection
systems using fuzzy dempster shafer theory“, Journal of Engineering Science
and Technology Review, vol. 10, no. 3, pp. 123–127, 2017.

[93] J. Gao, P. Li, Z. Chen, and J. Zhang, „A survey on deep learning for multimodal
data fusion“, Neural Computation, vol. 32, no. 5, pp. 829–864, 2020.

[94] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency, „Tensor fusion
network for multimodal sentiment analysis“, arXiv preprint arXiv:1707.07250,
2017.

[95] Z. Yu, J. Yu, Y. Cui, D. Tao, and Q. Tian, „Deep modular co-attention networks
for visual question answering“, pp. 6281–6290, 2019.

[96] K. Bayoudh, R. Knani, F. Hamdaoui, and A. Mtibaa, „A survey on deep mul-
timodal learning for computer vision: Advances, trends, applications, and
datasets“, The Visual Computer, vol. 38, no. 8, pp. 2939–2970, 2022.

[97] R. P. Loce, E. A. Bernal, W. Wu, and R. Bala, „Computer vision in roadway
transportation systems: A survey“, Journal of Electronic Imaging, vol. 22,
no. 4, pp. 041121–041121, 2013.

[98] M.-T. Yang, R.-K. Jhang, and J.-S. Hou, „Traffic flow estimation and vehicle-
type classification using vision-based spatial–temporal profile analysis“, IET
Computer Vision, vol. 7, no. 5, pp. 394–404, 2013.

101

[99] V. Mandal, A. R. Mussah, P. Jin, and Y. Adu-Gyamfi, „Artificial intelligence-
enabled traffic monitoring system“, Sustainability, vol. 12, no. 21, p. 9177,
2020.

[100] W. Kang, D. Kim, and J. Park, „Dms: Dynamic model scaling for quality-aware
deep learning inference in mobile and embedded devices“, IEEE Access,
vol. 7, pp. 168048–168059, 2019.

[114] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., „Scikit-learn: Machine learn-
ing in Python“, Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[119] A. Savitzky and M. J. Golay, „Smoothing and differentiation of data by simpli-
fied least squares procedures.“, Analytical chemistry, vol. 36, no. 8, pp. 1627–
1639, 1964.

[120] R. Büssow, „An algorithm for the continuous morlet wavelet transform“,
Mechanical Systems and Signal Processing, vol. 21, no. 8, pp. 2970–2979,
2007.

[121] L. Sheppard, A. Stefanovska, and P. McClintock, „Testing for time-localized
coherence in bivariate data“, Physical Review E, vol. 85, no. 4, p. 046205,
2012.

[122] C. Schörkhuber, „Constant-q transform toolbox for music processing“, [Online;
accessed 13.06.2024], 2010.

[123] J. Shen, R. Pang, R. J. Weiss, et al., „Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions“, pp. 4779–4783, 2018.

102

Bibliography of Online Sources

[12] R. Girshick, Fast R-CNN Quick Overview, https : / / blog . paperspace .
com/faster- r- cnn- explained- object- detection/, [Online; accessed
13.06.2024].

[13] R. Kundu, YOLO: Algorithm for Object Detection Explained, https://www.
v7labs.com/blog/yolo-object-detection, [Online; accessed 13.06.2024].

[14] A. Developers, How single-shot detector (SSD) works?, https://developers.
arcgis.com/python/guide/how-ssd-works/, [Online; accessed 13.06.2024].

[44] Stevens and Davis, MEL-scale, https : / / www . sfu . ca / sonic - studio -
webdav/handbook/Mel.html, [Online; accessed 13.06.2024].

[47] J. Brownlee, A Gentle Introduction to the Rectified Linear Unit (ReLU),
https://machinelearningmastery.com/rectified-linear-activation-
function - for - deep - learning - neural - networks/, [Online; accessed
13.06.2024].

[60] IBM, Random Forest Algorithm, https://www.ibm.com/topics/random-
forest, [Online; accessed 13.06.2024].

[66] Prof. Dr. Peter Roßbach, NN vs Random Forest Algorithm, https://blog.
frankfurt-school.de/wp-content/uploads/2018/10/Neural-Networks-
vs-Random-Forests.pdf, [Online; accessed 13.06.2024].

[75] F. Chollet et al., Keras, https://github.com/fchollet/keras, 2015.

[101] Python TM, Python 3.11.0, https://www.python.org/downloads/release/
python-3110/, [Online; accessed 13.06.2024].

[102] Khadas_VIM3, Khadas VIM3, https://www.khadas.com/vim3, [Online;
accessed 13.06.2024].

[103] Bernard Gruppe ZT GmbH., Bernard Gruppe, https://www.bernard-gruppe.
com/, [Online; accessed 13.06.2024].

[104] DrivenData, Cookiecutter Data Science, https://drivendata.github.io/
cookiecutter-data-science/, [Online; accessed 13.06.2024].

103

https://blog.paperspace.com/faster-r-cnn-explained-object-detection/
https://blog.paperspace.com/faster-r-cnn-explained-object-detection/
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://developers.arcgis.com/python/guide/how-ssd-works/
https://developers.arcgis.com/python/guide/how-ssd-works/
https://www.sfu.ca/sonic-studio-webdav/handbook/Mel.html
https://www.sfu.ca/sonic-studio-webdav/handbook/Mel.html
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://www.ibm.com/topics/random-forest
https://www.ibm.com/topics/random-forest
https://blog.frankfurt-school.de/wp-content/uploads/2018/10/Neural-Networks-vs-Random-Forests.pdf
https://blog.frankfurt-school.de/wp-content/uploads/2018/10/Neural-Networks-vs-Random-Forests.pdf
https://blog.frankfurt-school.de/wp-content/uploads/2018/10/Neural-Networks-vs-Random-Forests.pdf
https://github.com/fchollet/keras
https://www.python.org/downloads/release/python-3110/
https://www.python.org/downloads/release/python-3110/
https://www.khadas.com/vim3
https://www.bernard-gruppe.com/
https://www.bernard-gruppe.com/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/

[105] Data Version Control, Data Version Control, https://dvc.org/, [Online;
accessed 13.06.2024].

[106] GitLab, GitLab, https://about.gitlab.com/, [Online; accessed 13.06.2024].

[107] SciPy, scipy.signal.savgol_filter, https://pypi.org/project/noisereduce/,
[Online; accessed 13.06.2024].

[108] SciPy, Savitzky Golay Filtering, https://scipy.github.io/old- wiki/
pages/Cookbook/SavitzkyGolay, [Online; accessed 13.06.2024].

[109] B. McFee, C. Raffel, D. Liang, et al., librosa: Audio and music signal analysis
in Python, https://librosa.org/doc/main/index.html, [Online; accessed
13.06.2024], 2015.

[110] SciPy, scipy.signal.spectrogram, https://docs.scipy.org/doc/scipy/
reference / generated / scipy . signal . spectrogram . html, [Online; ac-
cessed 13.06.2024].

[111] scikitlearn, sklearn.preprocessing.minmax_scale, https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.minmax_scale.
html, [Online; accessed 13.06.2024].

[112] Martín Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow: Large-scale
machine learning on heterogeneous systems, Software available from tensor-
flow.org, 2015. [Online]. Available: https://www.tensorflow.org/.

[113] PyTorch Team, PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation, https://pytorch.org/
assets/pytorch2- 2.pdf, [Online; accessed 13.06.2024]. doi: 10.1145/
3620665.3640366.

[115] I. Shafkat, Intuitively Understanding Convolutions for Deep Learning, https:
//towardsdatascience.com/intuitively-understanding-convolutions-
for-deep-learning-1f6f42faee1, [Online; accessed 13.06.2024].

[116] N. Vishwakarma, What is Adam Optimizer?, https://www.analyticsvidhya.
com/blog/2023/09/what-is-adam-optimizer/, [Online; accessed 13.06.2024].

[117] Land Tirol, Abteilung Landesstraßen und Radwege, Webcam B 182 Brenner-
straße, https://www.tirol.gv.at/verkehr/strassenbau-und-strassenerhaltung/
webcams/webcams-bezirk-innsbruck-land-mit-stadt/b-182-brennerstrasse/,
[Online; accessed 13.06.2024].

[118] T. Sainburg, Noisereduce 3.0.0, https://pypi.org/project/noisereduce/,
[Online; accessed 13.06.2024].

[124] L. Roberts, Understanding the Mel Spectrogram, https://medium.com/
analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53,
[Online; accessed 13.06.2024].

104

https://dvc.org/
https://about.gitlab.com/
https://pypi.org/project/noisereduce/
https://scipy.github.io/old-wiki/pages/Cookbook/SavitzkyGolay
https://scipy.github.io/old-wiki/pages/Cookbook/SavitzkyGolay
https://librosa.org/doc/main/index.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html
https://www.tensorflow.org/
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://www.analyticsvidhya.com/blog/2023/09/what-is-adam-optimizer/
https://www.analyticsvidhya.com/blog/2023/09/what-is-adam-optimizer/
https://www.tirol.gv.at/verkehr/strassenbau-und-strassenerhaltung/webcams/webcams-bezirk-innsbruck-land-mit-stadt/b-182-brennerstrasse/
https://www.tirol.gv.at/verkehr/strassenbau-und-strassenerhaltung/webcams/webcams-bezirk-innsbruck-land-mit-stadt/b-182-brennerstrasse/
https://pypi.org/project/noisereduce/
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

	Kurzfassung
	Abstract
	Contents
	Introduction
	Contribution of this Work
	Research questions

	State of the Art, Literature Review and Impact
	Introduction
	Video Recognition in Traffic Monitoring and Analysis
	Audio Recognition in Traffic Monitoring and Analysis
	Significance of Audio Recognition in Traffic Monitoring
	Machine Learning in Audio Classification
	Integration of Audio and Video Technologies
	Challenges and Limitations in Existing Approaches for Traffic Monitoring and Analysis
	State of the Art Synopsis

	Methodology
	Introduction
	Experiment Design
	Equipment and Setup
	Data Collection
	Project Workflow Pipeline
	Data Setup and Preprocessing
	Preprocessing of Audio Data
	Machine Learning Model
	Threats to Validity
	Data workflow for this thesis
	Synopsis of Methodology

	Implementation of Methodology
	Data Collection and Preprocessing
	Feature Extraction and audio pre-processing
	Transformation Methods
	Data Labeling
	Implementation as a pipeline

	Results
	Overview of experiment Results svm
	Overview of experiment Results Keras Model

	Discussion and future work
	Research questions
	Discussion
	Future Work

	Overview of Generative AI Tools Used
	Übersicht verwendeter Hilfsmittel
	List of Figures
	Acronyms
	Bibliography of Print Media
	Bibliography of Online Sources

