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ABSTRACT: Reaction templates are graphs that represent the
reaction center as well as the surrounding context in order to
specify salient features of chemical reactions. They are subgraphs of
imaginary transition states, which are equivalent to double pushout
graph rewriting rules and thus can be applied directly to predict
reaction outcomes at the structural formula level. We introduce
here SynTemp, a framework designed to extract and hierarchically
cluster reaction templates from large-scale reaction data reposito-
ries. Rule inference is implemented as a robust graph-theoretic
approach, which first computes an atom−atom mapping (AAM) as
a consensus over partial predictions from multiple state-of-the-art
tools and then augments the raw AAM by mechanistically relevant
hydrogen atoms and extracts the reactions center extended by
relevant context. SynTemp achieves an exceptional accuracy of 99.5% and a success rate of 71.23% in obtaining AAMs on the
chemical reaction dataset. Hierarchical clustering of the extended reaction centers based on topological features results in a library of
311 transformation rules explaining 86% of the reaction dataset.

1. INTRODUCTION
Recent advancements in Artificial Intelligence (AI) and data-
driven methods have markedly accelerated the molecular design
of drug candidates and materials. The development of recipes to
construct a target compound from available starting materials by
orchestrating a sequence of chemically viable reaction steps, i.e.,
synthesis planning, thus also is increasingly treated as a
computational problem. Traditionally, it is most commonly
approached by retrosynthetic analysis, formalized by E. J.
Corey1,2 in the 1960s as the recursive decomposition of the
product considering the reverse of synthetic reactions. This calls
for the exploration of a vast array of potential chemical reactions
that have not yet been observed for a specific set of reactants but
are analogous to known chemical transformations. Modern
synthesis planning therefore crucially relies on reaction patterns
that summarize the accumulated knowledge about feasible
chemical reactions. Here, we describe a computational frame-
work, SynTemp, designed to extract such reaction patterns
from large-scale repositories of chemical reactions and to make
them available in the form of explicit transformation rules.
Significant data resources for chemical reactions include the

United States Patent and Trademark Office (USPTO) database3

and the commercial platform Reaxys.4 In particular, the latter,

with its collection of over 55 million manually curated reactions,
has become a pivotal resource for implementing deep learning
models in retrosynthesis.5 Efficient synthesis planning for novel
compounds, by its very nature, requires reasoning by analogy.
This can be greatly facilitated by a representation of reactions
that provides transformation rules applicable to novel
compounds and novel combinations of reactants. A very
transparent, explicit model of chemical reactions is provided
by graph grammars, implemented, e.g., in MØD.6 Here,
molecules are encoded as graphs and reactions are defined by
transformation rules that rewrite local patterns of chemical
bonds.7 Specific transformation rules, e.g., for well-known named
reactions, are not challenging to write manually; for instance,
Synthia (or Chematica8) successfully applies this
approach, in its complex synthesis planning utilizing a database
of approximately 70,000 expert-encoded rules.9,10 This level of
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effort, however, is unlikely to scale to the entirety of present-day
chemical knowledge5 and cannot keep pace with the continuing
exponential increase in the number of reported reactions.11

Hence, automatic methods to mine comprehensive data
repositories for transformation rules are urgently needed. Recent
efforts in this direction include the study by Shuan Chen et al.,12

which utilizes a generalized-template-based graph neural
network, and research by Lung-Yi Chen,13 focusing on
extraction and curation of reaction templates. SynTemp aims
to produce explicit, interpretable patterns. The graph-theoretical
approach pursued here yields a representation that not only has
an equivalent interpretation as a computationally operational
reaction rule but also can form the basis for a mechanistic
reaction classification.
Reaction rules, by definition, describe bond changes and thus

establish a one-to-one mapping between the atoms of the
reactants and the products in the reaction center. The inference
of such rules, therefore, requires reaction data endowed with
atom−atommaps (AAMs). Sizable repositories of reaction data,
such as Reaxys4 or the United States Patent and Trademark
Office (USPTO) database,3 however, provide reaction data only
as sets of reactant and product molecules without AAM

information. AAM inference, therefore, is the crucial first step
toward accurate reaction patterns.
Methods for computing AAMs can be divided into rule-based

and machine learning-based (ML-based) approaches. Rule-
based techniques, such as Automapper,14 Indigo,15

NameRXN,16 RDTool,17 and a complex tool described by
Jaworski,18 rely on combinatorial optimization criteria such as
minimal chemical distance (MCD)19 or maximum-common
subgraph (MCS).20 These rule-based solutions face challenges
in practice. Most importantly, the optimization objectives of
MCD and MCS only approximate the inference of the actual
chemical mechanism. Therefore, even exact solutions of the
corresponding combinatorial optimization problem may yield a
chemically incorrect AAM.18,21 Computational cost, moreover,
may become an issue since various variants of MCS are well-
known NP-complete problems.22 As an alternative, several ML-
based tools have become available in recent years, most
prominently AMLGAM,23 RXNMapper,24 Graphormer-
Mapper,25 and LocalMapper.26 These methods bypass
the formulation of the task as a combinatorial optimization
problem and avoid the computationally expensive subgraph
matching process by utilizing data-driven methods. Despite

Figure 1. Procedure for extracting reaction rules in SynTemp. (A) Reaction with accurate atom−atommapping between reactants and products. (B)
Complete ITS graph. (C) Extracted reaction center. (D) Hierarchical clustering around the reaction center. Red edges signify breaking bonds; green
edges show forming bonds.
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significant progress, AAMs obtained from machine learning
approaches are not perfect either, as demonstrated both by
recent benchmarking efforts21 and the performance data
provided in the publications that describe the individual tools.
The comparison of AAM predictions generated by different

tools is not trivial. One practical issue is that each tool describes
AAMs using its own atom numbering. It was only proved
recently that the equivalence of AAMs could be reduced to
isomorphism of certain auxiliary graphs,27 notably including the
Condensed Graph of a Reaction (CGR),28 which was
introduced much earlier under the name Imaginary Transition
State (ITS) as a graph theoretical description of a chemical
reaction.29 The ITS graph provides a faithful representation of a
chemical reaction and thus contains the necessary information
to identify the reaction center. More precisely, the reaction
center corresponds to a subgraph of the ITS containing at least
all atoms incident to bonds that change during the transition
from reactants to products.30 These subgraphs of the ITS are
equivalent to the Double Pushout (DPO) graph rewriting rules
used by the MØD package.6 Reaction centers embedded in ITS
graphs therefore provide a source of reaction rules that can be
used directly in large-scale computational applications. A final
technical challenge arises from the fact that the comparison of
AAMs requires that they are completely specified.27 This is only
possible if the reaction data entry is balanced, i.e., if all
participating molecules are represented on both sides of the
reaction. For the majority of the data in the major repositories,
however, this is not the case. SynTemp therefore greatly profits
from recent advances in reaction rebalancing.31

The SynTemp framework, introduced in this paper, utilizes
the equivalence of ITS graphs and AAMs, as well as the fact that
reaction patterns turn out to be equivalent to subgraphs of the
ITS graph, as the basis for its chemical reaction modeling. The
purpose of SynTemp is to extract a limited number of explicit
reaction rules from a large collection of reaction data. In the
following section, we describe in detail how this is achieved. Two
key ingredients are (1) to consider a hierarchy of partial ITS
graphs that contain the reaction centers as well as additional
structural contexts of different sizes and (2) to leverage
clustering to extract reaction patterns that are consistently
observed in a large collection of reaction data.
Other methods for template extraction, such as RDChi-

ral32 which employs SMARTS strings, have been proposed.
These methods, however, usually ignore critical components, in
particular hydrogen atoms and byproducts. In contrast,
SynTemp incorporates these elements and thus provides a
more comprehensive and accurate framework for understanding
and modeling reaction mechanisms. Moreover, SynTemp
utilizes an explicit graph representation instead of operating on
strings and thus completely avoids the well-known problems
associated with such linear encodings.33−35

2. THEORY AND METHODS
2.1. General Framework. The notation adopted in this

study is derived from previous studies.27,36 In order to make the
presentation easier to read, we relegate the full mathematical
details to Supporting Section A.1 and restrict ourselves here to a
high-level description of the framework.
SynTemp operates through four main stages, as outlined in

Figure 1. The process initiates with a chemical reaction input in
SMILES format, from which an AAM is inferred. Formally, we
treat a chemical reaction as a map between two graphs G and H
whose connected components are the reactant and product

molecules, respectively. The AAM is simply an invertible map α :
V(G) → V(H) between their vertex sets that preserves the atom
types. A reaction, therefore, corresponds to a rearrangement of
edges, i.e., of chemical bonds. As discussed in the introduction,
no perfect solution exists for this task. We therefore leverage the
agreement of multiple state-of-the-art AAM tools (RXNMap-
per, GraphormerMapper, LocalMapper, RDT) to
determine trustworthy AAMs. Comparison of AAMs utilizes the
theoretical framework developed in Section 2.3 as well as
ensemble learning. Experimental procedures for the latter are
described in more detail in Supporting Section A.2.
Once the AAM is defined, it dictates the construction of the

ITS graph Υ(G,H,α), which combines the reactant and product
structures. The vertices of G and H are identified in accordance
with the bijection α and the edge set of the ITS graph contains
the edges of both the reactant and product graphsG andH. Edge
labels in the ITS graph distinguish between bonds that are
modified or deleted from reactants, bonds introduced in
products, or altered in bond type, and bonds that remain
unchanged between G and H, see Figure 1B. An important
practical complication is introduced by the fact that AAM tools
typically do not map hydrogen atoms. However, the
mechanisms of many important reactions involve the forming
and breaking of bonds to hydrogen atoms. This situation can
result in either a complete or partial ITS. In the case of a partial
ITS, implicit hydrogens are inferred to accurately depict the
reaction mechanism, as further elaborated on in Section 2.4.1.
The next phase involves identifying the reaction center within

the ITS, consisting of the modified bonds and their adjacent
atoms, and capturing the transformation core. However, this
minimal reaction center alone is insufficient to describe all the
preconditions necessary for the reaction. Thus, we extend this
subgraph by adding additional vertices and bonds to obtain
extended reaction centers as partial ITS graphs encoding the
reaction rule, as discussed in Section 2.4.2.
Finally, these extended reaction centers are systematically

classified into clusters using a hierarchical clustering approach.
We utilize hierarchical clustering because it leads to a significant
reduction of the computational cost associated with the iterative
isomorphism checks required in graph clustering. By confining
isomorphism checks to subgroups within the same reaction
center, hierarchical clustering enhances the efficiency as the
reaction center expands. For the details of this methodology, see
Section 2.5. The resulting clusters form a library of template ITS
graphs, which are converted into DPO rules in GML format for
graph transformation systems such as MØD. The efficacy of these
reaction rules is comprehensively evaluated in Section 2.6.
2.2. DPO Graph Rewriting and ITS Graphs. Chemical

reactions can be modeled and studied through systems of rule-
based rewriting of molecular graphs.7,37,38 These graph
transformation systems require (1) rules that prescribe how a
pattern in the input graph is to be changed within a larger
substrate graph and (2) a definition of a pattern match. In DPO
graph rewriting,39 both facets are expressed in terms of
morphisms, i.e., maps, between graphs, providing a sound
mathematical foundation in category theory. A rule is specified

as a so-called span, p L K R( )
l r

= , where L, K, and R are
graphs and the arrows represent maps l : V(K) → V(L) and r :
V(K) → V(R) which describe the embedding of K into L and R
as a subgraph. The graph L describes the pattern in the reactants
that is transformed into a product pattern R. The “context
graph” K and the maps l and r establish the correspondence of
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vertices and edges that remain unchanged during the trans-
formation from L to R. Since atoms do not change in the course
of a chemical reaction, the maps l and r together define the AAM
of the reaction. The edges of E(K) specify the chemical bonds
that remain unchanged during the reaction, i.e., xy ∈ E(K)
implies l(xy) ∈ E(L) and r(xy) ∈ E(R). From a chemical point
of view, therefore, the DPO rule is a condensed representation of
the reaction mechanism. It specifies which bonds change, and
how, in the local vicinity of the reaction center. It is more general
than the reaction center because the context graph K can also
contain atoms and bonds that are not part of the reaction center.

Application of a rule p L K R( )
l r

= to a substrate G
amounts to finding a position of the pattern L in the graphG and
then replacing L by R at this position. This yields the graph H
representing the reaction products. A graphical summary is

presented in Figure 2. For a detailed mathematical explanation
of the application of rules, we refer to the Supporting Section B.
2.3. Incomplete AAMs. The inference of reaction rules

crucially depends on the accuracy of the ITS and thus on the
underlying AAMs. While recent machine learning-based
methods have been reported to yield improvement over older
methods which solve combinatorial optimization problems, they
are still subject to a non-negligible degree of uncertainty which
may result in unequivalent AAMs and very different reaction
centers. Figure 3 shows an example of a reaction for which the
results of RXNMapper, GraphormerMapper, and Lo-
calMapper are different.
The comparison of AAMs produced by two different tools is a

nontrivial task. The reason is that each tool describes reactants
and products in its own way. The same reaction thus appears as
α : V(G) → V(H) for one tool and as β : V(G′) → V(H′) for

Figure 2. Illustration of the DPO graph rewriting technique. This diagram also shows the corresponding ITS and the reaction center of the DPO rule.
L,K, R are the graphs, and l and r are the mappings, of the rule p. The mapsm andm″ are bijections into the molecular graphs of the reactionG → H. D
is the unchanged subgraph of the ITS, i.e., it contains the edges that are present in both G andH. It can be seen as the difference between the ITS and
the reaction center.

Figure 3. Differences in predicted AAMs and ITS graphs. (A) RXNMapper suggests a reaction center with two cycles of size four. (B)
GraphormerMapper suggests a reaction center with two cycles of size three and six, respectively. (C) LocalMapper suggest a reaction center
with a single cycle of size six.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01795
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01795/suppl_file/ci4c01795_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01795?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


another. For both, we can construct the ITS graphs Υ(G, H, α)
and Υ(G′, H′, β), as well as the reaction center subgraphs Γ(G,
H′, α) and Γ(G′, H′, β), as described in Section 2.4. The AAMs
are equivalent if and only if the ITS graphs are isomorphic.40 In
scenarios where reactions are balanced with complete atom−
atommaps, the isomorphism betweenΥ(G,H, α) andΥ(G′,H′,
β) can be evaluated, for example using the VF2 algorithm41

implemented in NetworkX, in order to determine their
equivalence.
The situation is more complicated if a tool produces only a

partial AAM, which in particular is the case for unbalanced
reactions. A formal framework for partial AAMs has been
described in our previous work.36 In general, the comparison of
partial AAMs is a difficult problem. We therefore consider here
only the special case that the AAMs cover the reaction center,
i.e., that partial AAMs are “good” in the sense of Def. Six in our
previous work.36 Some mathematical results that are directly
relevant to our discussion are provided in Supporting Section
A.2.1 since the complete formal statements require extensive
notation borrowed from our previous work that we refrain from
introducing in the main text for ease of presentation.
In cases of incomplete atom−atom mappings, the sets of

atoms mapped by different tools will in general also be different
and may vary substantially. This is in particular the case for tools
like LocalMapper that focus primarily on the reaction
center. The consistency of partial AAMs is formally defined in
Def. Nine of our previous work.36 Here we will be content with a
much simpler condition:
For two different reactions G → H and G′ → H′, the idea

from27,36 can be used to compare extended reaction centers. We
define these as subgraphsΨ andΨ′ of the ITS graphsΥ(G,H, α)
and Υ(G′, H′, β) that contain the reaction centers Γ(G, H, α)
and Γ(G′, H′, β) as well as all vertices in both reactant and
product graphs within a distance at most r from a vertex in the
reaction centers. If the two (complete) AAMs α and β are
consistent, then Ψ and Ψ′ must be isomorphic (for proof of this
statement, see Proposition 3 in Supporting Section A.2.1). It is
important to note that the converse is not true, i.e., isomorphism
of extended reaction centers does not imply consistency of the
reaction maps. Counterexamples such as the one in Figure 9 of
our previous work,36 however, turn out to be very rare for
chemical reaction data. We therefore useΨ ≅ Ψ′ as an efficiently
testable condition. For the comparison of AAMs, we employed

this approximate condition, as detailed in Supporting Section
A.2.2. This condition for AAMs comparison facilitated the
development of ensemble atom mappings.
2.4. Reaction Centers. Starting from a (partial) AAM α, a

(partial) ITS is readily constructed in linear time. In practice,
one can start with an edgeless graph comprising the vertices ofG
endowed with the double labels (aG(x), aH(α(x))) for all x ∈
V(G) and insert edges by iterating over the edge lists ofG andH,
at the same time recording the edge labels�see also.27 In the
same manner, the reaction center Γ can be obtained directly
from the (partial) AAM restricted to the reaction vertices,
inserting reaction edges only.

2.4.1. Completing the Reaction Center. Computational
tools may return only partial AAMs, in particular ones which do
not represent hydrogen atoms. While hydrogens can usually be
suppressed safely in structural formula because simple valency
rules imply the missing hydrogens, this is no longer true for
subgraphs of the ITS. In particular, if only the reaction center
extracted from a partial AAM is known, the reattachment of
hydrogens cannot be unambiguously determined. As a
consequence, without a complete representation of the reaction
mechanism, deriving comprehensive mechanistic insights from
“hydrogen-deficient” fragments of the ITS becomes challenging.
Moreover, hydrogens that take part in the reaction must be
present in reactant molecules, necessitating their inclusion in the
reaction rules of a chemical rewriting system such as MØD. We
therefore strive to extract the most information-rich representa-
tion of the ITS patterns.
Consider the example in Figure 4.1. Here, either hydrogen

atom H1 or H2 is transferred to the hydroxy group. From a
chemical point of view, hydrogen atoms H1 and H2 are
equivalent, even though this equivalence is not readily apparent
to computational methods tasked with inserting hydrogens.
Such methods may yield two alternative reaction centers
depicted in Figure 4.1A,B. In this case, these graphs are
isomorphic, indicating that the reaction centers in A and B are
interchangeable. The reaction in Figure 4.2 shows, however, that
there is not always a unique hydrogen completion of the ITS. In
this particular example, the resulting reaction center graphs,
Figure 4.2A,B, are not isomorphic, highlighting the complexity
and ambiguity inherent in achieving hydrogen completeness.
In practice, the precise mapping of hydrogen atoms may not

always be possible. The insertion of hydrogen can thus be

Figure 4. First row shows an unambiguous hydrogen insertion resulting in identical reaction center (RC) graphs (1A) and (1B). The second row
illustrates an ambiguous hydrogen transfer in two scenarios with opposite transfer directions. In (2A), hydrogen moves from OH to CN and from a
benzene ring to N−OH. Scenario (2B) demonstrates the reverse, with hydrogen transferring from the benzene ring to CN and from OH to N−OH.
Instance (2A) is chemically accurate, leading to the formation of RC characterized by four- and six-membered cycles.
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regarded as a special case within the extension of the reaction
center, which is detailed in Section 2.4.2. Here, we augment the
vertex labels by the attributenumber_of_hydrogens inG,
H, and Υ ≔Υ(G, H, α), and include atoms with a change in the
number of attached hydrogens as part of the reaction center. If
the changes in Υ involve a single pair of hydrogens, there exists a
unique solution. However, if multiple pairs are involved, the
situation escalates in complexity, yielding a number of
combinations that grows exponentially with the number of
pairs of hydrogens that undergo change. In cases where multiple
potential solutions exist, we handle hydrogen reattachment by
considering multiple AAMs in the subsequent analysis steps. If
all AAMs α are identical, or if all extended ITS graphs Υ(G′,H′,
α′) are isomorphic for all the possible extensions α′, G′, and H′
of, respectively, α, G, and H, due to addition of hydrogens, then
we adopt a single representative as the complete ITS.
Hydrogen atoms may furthermore be problematic by

originating from environmental sources such as solvents. Ideally,
this would be explicit in the reaction data that we use as input.
Usually, however, this is not the case. To manage this, we
decompose reactions into sequences that account for
“borrowed” environmental hydrogens. For a more detailed
discussion, we refer to our recent study.36 In SynTemp, we
initially exclude external hydrogen atom in the construction of
the ITS database and add relevant hydrogen later for each
mechanistic step.

2.4.2. Extended Reaction Centers. Reaction mechanisms are
oftentimes not only influenced by reaction vertices and edges
but also by adjacent structural components such as functional
groups that determine the local chemical environment. It is
desirable, therefore, to consider patterns L in DPO rules that
also include features that are not altered during the reaction.
Formally this can be achieved by considering subgraphsQ of the
ITS Υ(G, H, α) containing the reaction center as a proper
subgraph, Γ ⊂ Q ⊆ Υ(G,H, α). The choice of the graphQ is the
difficult issue here.
It stands to reason that the necessary context around the

reaction center cannot be determined from a single reaction.
Such information can be inferred by considering a set of
reactions with the same reaction mechanism. A (mechanistically
defined) reaction type or named reaction, such as the Diels−
Alder reaction in Figure 1C above, however, is usually not
annotated in most reaction data records. We therefore start from
a (large) collection of reactions and use a clustering approach
to at least approximate a classification into mechanistically
equivalent classes. Following ideas from Hendrickson’s seminal
publication,42 we first subdivide into classes determined by
isomorphic reaction centers. That is, we set ρ′ ∼ ρ″ for two
reactions , if and only if Γ(ρ′) ≅ Γ(ρ″).
The computation of the equivalence classes is straightforward:

iterating over , one checks whether Γ(ρ) is isomorphic to
a reaction center Γ′ previously obtained. If so, ρ is added to set

( ). Otherwise, Γ(ρ) defines a new class and ρ is inserted into

Figure 5. Process of rule extraction and clustering. SynTemp constructs high-confidence ITS graphs based on the congruence of multiple existing
AAM tools for a given set of input reactions. Different reactions might have the same underlying mechanism and hence yield isomorphic reaction
centers. Further, depending on the desired contexts, a reaction can yield multiple rules of various sizes but with isomorphic reaction centers. These
rules can be clustered according to reaction center isomorphisms. The example shows the extracted ITS and reaction center (RC) of two different
Diels−Alder reactions with an ortho and para product and of two hydrogenation reactions. The mechanisms in each pair are isomorphic and can be
clustered. However, the Diels−Alder RC and the hydrogenation RC are nonisomorphic and belong to different clusters.
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the new set ( ( )). As a result, we obtain a collection of
subsets ( ) of whose members share a common reaction
center Γ. For a detailed mathematical explanation, we refer to
Supporting Section A.4.
2.5. Clustering of Partial ITS graphs. For a set of reactions
, we compute the partial ITS graphs Qr

(i) for each reaction
i , where r = 0, 1, 2,... denotes the expansion radius, i.e., the
maximal number of bonds that an atom in the graphQr

(i) is away
from the reaction center. Thus, Γi = Q0

(i) coincides with the
reaction center. This collection of partial ITS graphs can be
partitioned further into sets of unique reaction patterns by
verifying isomorphisms (see Alg. S1). Our clustering method,
which is illustrated in Figure 5, does not employ machine
learning but categorizes reaction centers based on isomorphism.
For larger values of r, however, this becomes computationally
demanding for large data sets. We therefore make use of the fact
that these partial ITS graphs of the extended reaction centers
form a hierarchical structure, which is an immediate
consequence of Cor. Six in Supporting Section B.
In order to construct this hierarchy , we add a formal root as

a parent of the nonisomorphic reaction centers. For each
reaction p, we check whether RCQ0

(p) is isomorphic to a child of
the root. If so, we proceed to the children of the root and check
for isomorphism Q1

(p), and so on. If the isomorphism tests fail,
the pattern Qr

(p) is new and is inserted as a new child of the node
in for which the isomorphism test of its parent, i.e., Qr−1

(p) ,
succeeded. Novel reaction centers are correspondingly inserted
as children of the formal root. In practice, the insertion into is
interleaved with the construction of graphs Qr

(p). For details, we
refer to Alg. S2, further elucidated by the illustrative example in
Figure 1D. We show in Supporting Section B that the
hierarchical approach substantially reduces computational cost.
2.6. Application of Reaction Rules. The final result of the

SynTemp pipeline is a collection of partial ITS graphs which
describe reaction rules at different resolutions depending on the
extent to which the reaction centers have been expanded. We
refer to these partial ITS graphs as reaction templates, while
reserving the term reaction rules for encoding of these data as
DPO rewriting rules.

The template graphs are transformed into DPO rules,
encoded in GML format for direct use with MØD. In order to
check the validity and usefulness of the extracted rules, we apply
a rule to a set of reactants of a known reaction and check whether
the application of the graph rewriting rule recovers the expected
products. ITS graphs also implicitly encode the reverse of a
reaction. To this end, it suffices to exchange the first and second
entry in the tuple of edge labels. Making use of this symmetry, we
also tested whether the application of the reverse rule to a set of
product molecules could recover the reactants.
The performance of rule application is quantified as the

coverage , defined as the fraction of reactions correctly
recovered by applying a rule to a set of reactants. However, in
many cases, templates also match with a set of reactants other
than the one from the rule extracted. In these cases, we obtain
predictions for novel reactions. We quantify this as the novelty
rate , defined as the fraction of successful applications of the
rule that results in a novel reaction.
2.7. Dataset. We compare AAM methods and ensemble

learning techniques using two subsets. Their reaction type
distributions are illustrated in Figure S5.

• Chemical reaction data sets: Golden (1785 reactions),21

NatComm (491 reactions), and USPTO_3K (3000
reactions).26

• Biochemical reaction data sets: Recon3D (382 reac-
tions)23 and EColi (273 reactions).

To enhance comparison, we assess success rate, which is the
proportion of reactions achieving atom mapping, and accuracy,
which compares generated atom maps against ground truth in
the reported database.
We inferred partial ITS graphs from a subset of the

USPTO_50K dataset, categorized into ten classes by Schneider
et al.43 Following the approach of Coley et al.,44 we split the
dataset in an 8:1:1 ratio, allocating 80% for reaction template
extraction. With no learning in rule extraction, validation (10%)
and test (10%) sets serve for direct SynTemp evaluation. We
reduced unbalanced reactions by using SynRBL31 to suggest
missing compounds.

Figure 6. (A) and (B) present the benchmarking results for the chemical and biochemical data sets, respectively, using accuracy and success rate as
evaluation metrics.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01795
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01795/suppl_file/ci4c01795_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01795/suppl_file/ci4c01795_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01795/suppl_file/ci4c01795_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01795/suppl_file/ci4c01795_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01795/suppl_file/ci4c01795_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01795/suppl_file/ci4c01795_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01795?fig=fig6&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01795?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3. COMPUTATIONAL RESULTS
In this section, we report on our computational results. Our
experiments can be summarized as follows. SynTemp
processes reaction SMILES for ensemble atom mapping and
ITS graph completion, including hydrogen inference. We verify
SynTemp’s robustness through theoretical and computational
analyses in Supporting Section A.2. Optimal AAM tools
selection is based on comprehensive benchmarking in Section
3.1. Hierarchical clustering and reaction center extension
generate reaction templates, which are analyzed using topological
descriptors (Section 3.2). These templates are converted into
DPO rules or reaction rules in GML format, with efficacy assessed
through additional benchmarking (Section 3.3) across various
radii.
All experiments were conducted using Python 3.11 on an

Intel(R) Core(TM) i7−8700 CPU @ 3.20 GHz with 12 cores,
running Fedora 37.
3.1. Ensemble Atom Mapping. As evidenced in

Supporting Section A.2.3, SynTemp exhibited superior robust-
ness compared toCGRTools28 in AAMs comparison. Notably,
CGRTools employs the Condensed Graph of Reaction for
comparing AAMs. We then utilized SynTemp to integrate
state-of-the-art tools utilizing partial ITS graphs comparison to
refine the accuracy and reliability of AAMs. This evaluation
involved an assessment of four state-of-the-art tools (RXNMap-
per 0.3.0, GraphormerMapper 1.75, LocalMap-
per 0.1.4, and RDTool 2.4.1) alongside two ensemble
strategies, applied across five distinct data sets. For technical
details on the benchmarking procedure and the choice of tools,
we refer to Supporting Section A.2. The results are summarized
in Figure 6.
RXNMapper was the fastest tool (14 ms per reaction),

followed by GraphormerMapper (78 ms per reaction) and
LocalMapper (105 ms per reaction) while RDTool was the
slowest (4.5 s) due to its extensive computations of maximum-
common subgraphs between reactants and products for
mapping. More detailed timing data are compiled in Table S2.
To enhance accuracy, we utilized two ensemble strategies:
Ensemble_1 with RXNMapper, GraphormerMapper, and
LocalMapper, and Ensemble_2, which extends Ensemble_1
by including RDTool.
RDTool was the only tool that could not complete all

reactions in the Golden and NatComm data sets, see Figure
6A,B. These results suggest that Ensemble_2, which includes
RDTool, may not be efficient for processing large-scale
databases. Additionally, the Biochemical Reaction Dataset posed
more challenges compared to the Chemical Reaction Dataset,
with processing times more than doubling.
Machine learning-based techniques were highly effective with

the Chemical Reaction Dataset, achieving accuracies over 90%,
see Figure 6A. Conversely, their performance was less impressive
on the Biochemical Reaction Dataset, with accuracies falling
below 60%, as shown in Figure 6B. Notably, RDTool
outperforms the other machine learning-based tools on the
Biochemical Reaction Dataset, attaining an accuracy of approx-
imately 64.58%. This discrepancy may be attributed to the
training focus of most machine learning tools on organic rather
than biochemical reactions, which adversely affects their
performance on the Biochemical Reaction Dataset. In both data
sets, ensemble methods achieved the highest accuracies. In the
Chemical Reaction Dataset, the difference in performance
between Ensemble_1 and Ensemble_2 is marginal, at 99.47 and

99.69%, respectively. However, employing Ensemble_2 de-
creased the success rate from 71.23 to 67.14% and increased
computational expenses due to the integration of RDTool.
Ensemble strategies were effective on the Biochemical Reaction
Dataset, yielding accuracies of 76.10% for Ensemble_1 and
80.16% for Ensemble_2, but the overall success rate was still
below 45%, indicating that Ensemble_1 is particularly beneficial
for the Chemical Reaction Dataset.
Figure S7A compares the performance of the alternative AAM

inference methods with respect to varying numbers of bond
changes. As the number of bond changes increases, the accuracy
of single AAM techniques diminishes. Notably, Local-
Mapper is most effective among single techniques for fewer
bond changes (1−2), RXNMapper excels at medium bond
changes (3−4), and RDTool dominates with higher bond
changes (6−8). Conversely, ensemble techniques consistently
maintain an accuracy above 90%, with a significant negative
impact only when an AAM tool’s performance severely declines.
Further analysis of cycle descriptors within the reaction center
(Figure S7B) reveals that LocalMapper outperforms other
single techniques at lower cycle counts (1), while Graph-
ormerMapper surpasses others as the number of cycle
descriptors increases. Ensemble techniques continue to outper-
form single options.
When analyzing the trade-off between success rate and

accuracy in the Golden dataset, a standard benchmark,
LocalMapper achieved an accuracy of 100% at a high
confidence level, corresponding to a success rate of 53.3%. In
contrast, RXNMapper reached an accuracy of 95.1% with a
success rate of only 19.7%.26 Our ensemble strategies on the
Golden dataset, Ensemble_1 and Ensemble_2, attained
accuracies of 99.47 and 99.69%, with success rates of 71.23
and 67.14%, respectively. The trade-off between success rate and
accuracy was more favorable in Ensemble_1 compared to
Ensemble_2, LocalMapper, and RXNMapper.
At present, Ensemble_1 constitutes the base choice for

predicting AAMs with near-perfect accuracy. Moreover, we
note that the methods provided by SynTemp for comparing
AAMs yield an improvement in efficacy compared to
CGRTools. Taken together, this allows SynTemp to process
a large fraction of the available reaction bases with near-perfect
accuracy.
3.2. Template Analysis. The initial dataset from which we

extracted reaction patterns consisted of 40,012 reactions (see
Section 2.7 for details on the dataset). About 86% (34,395) of
reactions were successfully identified by consensus according to
Ensemble_1 and subsequent reinsertion of missing hydrogens in
the reaction center. The hierarchical clustering of the partial ITS
graphs with different expansion radii, as described in Supporting
Section B.2, significantly reduced the computational efforts
required for template extraction. It reduces the processing time
for the entire data from approximately 1.5 h to 1.7 min for a
maximal expansion radius of r = 3. In the end, we obtained 313
raw templates (Qraw) omitting hydrogen atoms, and 311 complete
templates (Qcomplete) incorporating hydrogen atoms. These data
are compiled in Table S3.
These reaction templates were then classified based on the

topology of the reaction center, detailed in Table 1. The most
relevant topological feature for our purposes is the cycle
structure. We made use of the well-known fact that every graph
can be decomposed into 2-connected components (where any
two vertices are located on a common cycle), and a tree-like
remainder that may in turn consist of several mutually
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disconnected parts. Each of the 2-connected components can be
represented by a minimal cycle basis (MCB). Even though the
MCB of a graph is not unique in general, it can be shown that all
MCBs have the same number of cycles with the same length.45,46

Thus, we could characterize the reaction center by the list of
cycle lengths of any of its MCBs, augmented by a zero for every
tree-like component. To obtain a uniquely defined descriptor,
we stipulated that the list of cycle lengths is sorted in ascending
order.
The reaction center in Figure 7A is Acyclic, consisting of a

single tree, here just a path of length 2. The correponding
descriptor is [0]. Figure 7B shows an Elementary reaction,
classified as Single Cyclic in the terminology of Table 1. Since the
reaction center consists of a single cycle of length 4, its descriptor
is [4]. In Figure 7C, a Complicated reaction is presented,
featuring a Combinatorial Cyclic topology. In this example, there
is a unique MCB comprising two 4-cycles, corresponding to the
descriptor [4,4]. Finally, Figure 7D depicts a Complicated
reaction with a Hybrid Graph topology, which integrates acyclic
and cyclic elements with cycle lengths of [0,4].

We conducted an analysis of these descriptors, evaluating
them both within the context of the entire database consisting of
34,395 reactions for which we identified the reaction centers
(hereafter referred to as the “database”), and our template
library, which comprised 311 distinct templates. The over-
whelming majority of the database, 87.0%, was categorized as
elementary (and thus single-step) reactions, see Figure 8A. This
percentage decreased to 54.3% of the 311 templates collected in
the template library, Figure 8B. More detailed statistics can be
found in Table S4.
Further analysis of the topological configurations revealed

that the Single Cyclic type was by far the most abundant reaction
type, comprising 86.6% of the reaction centers across the
“database” as depicted in Figure 8C. This dominance persisted
in the template library, where Single Cyclic remained the most
common configuration, accounting for 48.6%.
We further analyzed the cycle length in the reaction center of

both elementary and complex reactions, as shown in Figure 9
and summarized in Table S5. In the subset of elementary
reactions, comprising both Acyclic Graphs with a single
connected component and Single Cyclic types, we found that
more than 98% of the entire “database” was of type [4], i.e., the
reaction center was formed by a single cycle of length 4. Six-
membered cycles, i.e., type [6], account for 1.4% of the
reactions. Similar patterns were observed in our “template
library”, with four-membered cycles at 64.5% and six-membered
cycles at 17.2%, see Figure 9B. Four-membered cycles are
typically associated with transition states in 1,2-addition
reactions or nonconjugated reactions, whereas six-membered
cycles are common in 1,4-addition reactions, where conjugated
effects play a significant role.
For more intricate templates, such asCombinatorial Cyclic and

Hybrid Graph, similar patterns were observed, as shown in
Figure 9C,D. Notably, more than 66.1% of these feature
combinations involve two four-membered cycles in the

Table 1. Classification of Reaction Templates

descriptor category description

reaction type elementary
(simple)

single-step reactions, involving acyclic or
simple cyclic structures.

non-elementary
(complicated)

multistep reactions, involving
combinatorial or complex cyclic
structures.

topological
type

acyclic graph structures without cyclic elements.
single cyclic structures with a single cyclic component.
combinatorial
cyclic

structures with multiple cycles.

hybrid graph hybrid structures combining cyclic and
acyclic elements.

cycle length measures the minimal cycle basis in the reaction center graph,
assigning a value of zero to acyclic centers.

Figure 7. Examples of reaction patterns cataloged in the database, showcasing different topological structures with (A) Acyclic Graph [0], (B) Single
Cyclic [4], (C) Combinatorial Cyclic [4,4], and (D) Hybrid Graph [0,4].
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“database”, making it the most prevalent structural config-
uration. In the template library, this arrangement is similarly
dominant, accounting for 21.8% of all templates. This is followed
by condensed systems of four- and six-membered cycles, which
constitute 11.2% of the structures in the “database” and 15.5% in
the “template library”, respectively.
Analyzing the cycle lengths of the reaction center could

provide insights into the reaction steps involved. To this end, we

took the number of entries in the list of cycle length as an
estimate for the number of steps. We verified on a subset of 100
reactions that this estimator is plausible from a chemical point of
view. See Supporting File 2. In the database, 87.0% of reactions
were single-step, similar to the proportion of elementary
reactions. Only 10.98% were two-step, and less than 2% were
more than two-step. The “template library” showed a slightly
different from “database”, with 54.34% single-step, 33.12% two-

Figure 8. Pie charts display analysis of reaction types (Panels A and B), topological types (panels C and D), for the ”database” and the ”template
library”, respectively.

Figure 9. Cycle length analysis for Elementary reactions (panels A and B) and Complicated reactions (panels C and D).
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step, and less than 13% more than two-step reactions. More
detailed statistics can be found in Table S4.
A more detailed inspection of the 311 Qcomplete entries in the

library of reaction patterns revealed that a subset of 20 rules
disproportionately accounts for 80% of all cataloged reactions, as
depicted in Figure S8A. The twomost prominent rules are amide
formation (Rule 8) and amine alkylation (Rule 2), as illustrated in
Figure S8B and S8C, respectively. Detailed descriptions of these
20 rules are provided in Table S6. The entire library of rules is
available in the Supporting File 3.
The processing of 40,012 reactions, including ITS graph

extraction, clustering, and conversion to DPO rules, required
approximately 23 min on a system equipped with an Intel(R)
Core(TM) i7−8700 CPU @ 3.20 GHz, featuring 12 CPU and
96 GB of RAM, averaging 34 ms per reaction. While this rate is
efficient for medium-sized data sets, scaling up to millions of
reactions poses significant computational challenges.
3.3. Application of Reaction Rules and Benchmarking

Study. In this section, we executed a series of rule application
experiments across varying radii of templates to analyze the
quality of the reaction templates/rules based on two metrics:
novelty rate ( %) and coverage ( %). We observed a distinct
inverse relationship between the radius of templates and these
two metrics. This relationship is demonstrated in Figure 10
(validation set) and Figure S9 (test set). An increase in the
radius leads to the expansion of template rules, significantly
reducing the likelihood of subgraph morphisms with input
molecules, as reported in Table S3. Consequently, this results in
a lower number of generated solutions, illustrating a practical
trade-off between % and %. While a decrease in % can
simplify the search for optimal solutions, it may concurrently

diminish % and thereby restrict potential exploratory pathways
within chemical reaction networks.
As shown in Figure 10, the performance of Qraw is notably

inferior, evidenced by the high % and a % below 10%
across all tested radii. This is a consequence of ignoring bond
changes that involve hydrogens. Since Qraw does not capture
them, the corresponding rewriting rule is not sufficient to
describe the transformation completely, i.e., the application of
the rule to the reactants does not lead to product molecule(s)
but to graphs that leave hydrogens attached to their original
neighbors in the reactants and thus may result in an abnormal
increase in valence bonds for certain atoms. We conclude,
therefore, that most reactions involve hydrogens, and thus Qraw
rules, in general, are not applicable to complete representations
of the molecules. In contrast, other template types significantly
improve effectiveness, with % ranging from 78 to 94.5%.
An interesting finding was the relative consistency in %

observed for both forward and backward predictions, as
evidenced in Figure 10A,B, where the values exhibit only slight
variations. In contrast, the % showed a marked disparity
between forward and backward predictions, as depicted in
Figure 10C,D, respectively. This significant difference could be
attributed to the generally smaller number of molecules involved
in backward predictions compared to forward predictions,
simplifying the subgraph isomorphism and potentially leading to
a higher number of solutions. This observation is further
elaborated upon in Tables S7 and S8 for validation and test set,
respectively. These findings highlight the complexities inherent
in backward prediction tasks, making them notably more
challenging than their forward counterparts.

Figure 10. Performance of rule applications on the validation set of three different template types (Qraw,Qcomplete,Qhier) across varying radii. Panels (A)
and (B) depict the % for forward and backward predictions, respectively. Panels (C) and (D) illustrate the % for forward and backward
predictions.
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The computational cost for rule application increases with
expansion radius r used in the templates Qr. As illustrated in
Figure S10, the progression R0 to R1 ofQcomplete incurs a 2.5-fold
increase in processing time. This increase becomes more
pronounced, surging to a 20-fold rise at R2 and escalating
further to a 50-fold increase at R3. Such exponential growth in
computational demand underscores the need for more efficient
processing strategies. In response, we have implemented a
hierarchical rule application, denoted as Qhier, making use of the
hierarchical structure of the templates. The processing time for
Qhier is significantly lower than that of Qcomplete, with only a 60%
increase in processing time from R0 to R3 compared to the 50-
fold increase observed withQcomplete. Despite these differences in
processing time, both approaches maintain consistent coverage
and novelty across all choices of the extension radius r, see Figure
10A,B. Consequently,Qhier emerges as the more efficient choice,
enabling equal outcomes with reduced resource expenditure.
We finally compared the graph-theoretical approach

described here with SMARTS-based templates, which are
typically used in machine learning-driven retrosynthetic
models.47−49 To extract reaction SMARTS from the training
dataset covering 80% of the USPTO_50K we employed the
RDChiral toolkit.32 We obtained 11,647 templates that were
successfully applied to 93.3% of the entries in the 10% test set. In
a comparative analysis, while SynTemp extracted only 311
reaction rules from the same dataset, it achieved remarkable
coverage of 94.5% for forward prediction and 93.5% for backward
prediction. The reactions that were not covered by our rules can
be attributed to the presence of 194 ambiguous hydrogen atoms
and 5423 nonequivalent AAMs, which together constitute
14.04% of the training set.
The application of coarse-grained rules or templates in Figure

11 usingRDChiral leads to two potential products. Extending
the context graphs, i.e., using the hierarchy of templates in
SynTemp, successfully eliminates the less viable synthesis
route. This refined approach holds promise in synthesis
planning, in particular, if the context is effectively and precisely
expanded beyond the current arbitrary extensions.
About one-eighth of the USPTO reaction data are composite

reactions. It is of interest, therefore, to investigate whether their
ITS graphs can be derived as the consecutive application of two
or more single-step reactions. To this end, we used the 169
single-step rules from Qcomplete and combined them into more
than 16,000 two-step rules. Somewhat surprisingly, only three of
the rules in the template library are composites of rules for

single-step reactions observed in the same data. These three
cases are shown in Figure S11. We suspect that the direct rule
composition fails because (a) the composite reactions take place
in different parts of the molecule, and hence there is little or no
overlap of the reaction centers of the individual steps, and (b)
the templates used for the consecutive steps may involve
inconsistent extended contexts. Given a library of patterns for
single-step reactions, it is also possible to ask whether a given
reaction can be explained by a sequence of single-step
reactions.50 In contrast to rule composition, this approach
does not require a substantial overlap of the reaction centers of
consecutive rules.

4. DISCUSSION AND CONCLUSIONS
This contribution presents SynTemp, a framework for
automatic reaction template/rule extraction. SynTemp sup-
plies reaction rules as ITS subgraphs, equivalent to DPO graph
rewriting rules, for immediate application to new substrates via
MØD. The graphs contain the reaction center as a subgraph and
thus describe a classification of reaction that refines e.g., the
classification proposed in ref 42. SynTemp successfully tackles
key technical problems associated with the inference of
interpretable reaction patterns, namely the large-scale compu-
tation of reliable AAMs, the comparison of AAMs based on
information, and the efficient clustering of pattern graphs with
varying detail levels beyond the reaction center.
The present implementation uses an approximation for AAMs

comparison on partial ITS graphs that delivers accuracies well
above 90% on benchmark sets, but may occasionally return false
positives. Computationally inferred AAMs form the basis of our
approach to extract reaction templates. To this end, we
integrated multiple state-of-the-art AAM tools to enhance
accuracy. Specifically, we combined RXNMapper, Graph-
ormerMapper, and LocalMapper, achieving an accuracy
of 99.47%with a success rate of 71.23% on theChemical Reaction
Dataset. The ensemble approach of extracted templates to
atom−atom mapping exhibits high confidence in correctly
representing the underlying chemical mechanisms.
In the absence of extensive collections of reaction rules against

which our results could be compared, we opted to maximize
accuracy and confidence in the rule sets at the expense of
coverage. We ignore nonequivalent AAMs and ambiguous
hydrogens, which account for approximately 14% of the
database. The coverage results in rule application within radii
zero being limited to 93.5−94.5%, which is only slightly better

Figure 11. Comparison of template application differences between the standard RDChiral implementation and SynTemp across various cases:
(A) Etherification; (B) Hydrobromide addition; (C) Asymmetric Diels−Alder reaction; (D) Elimination reaction.
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than the 93.3% coverage achieved by RDChiral using
SMARTS templates. However, this is achieved by a library of
reaction patterns that, at present, contains only 311 entries,
compared to more than 10,000 SMARTS, indicating a drastic
difference in generalization ability.
In the present implementation, the context around the

reaction center is simply defined by an expansion radius, i.e., it
includes all atoms within a given graph-theoretical distance.
Refining this context part of the rules remains an interesting
research question. One promising approach is graph alignments,
for which methods have recently become available.40 These
could be used to distinguish common from variable parts of the
context.
SynTemp can efficiently process 50,000 reactions within

minutes on personal hardware. The effectiveness of SynTemp
− and all similar tools−heavily depends on the accuracy and
efficiency of the AAM inference process. The performance is
therefore tied to the quality of the reaction data that are used as
input. Unbalanced reactions in general compromise the
reliability of results and complicate the inference process. The
success rate of SynRBL in imputing missing compounds in the
Reaxys database is approximately 76%.31 Reaction patterns
inferred by SynTemp may contribute to future improvements
of tools for correcting reaction data since they can help improve
the coverage of reaction types in machine learning classifiers51,52

and improve the voting process among AAM tools with new
methods such as the cycle descriptor for classifying reaction
center topologies.
Given the prevalence of multistep reactions in the dataset,

SynTemp leverages MØD’s rule composition features to explain
these reactions as constituting single-step components.50,53

Reactions involving fewer steps are generally more chemically
plausible, suggesting lower energy barriers and streamlined
processes. This adds credibility to combinatorial AAMmapping
approaches that seek reaction centers composed of few cycles, as
advocated in the study of Mann et al.54 Nevertheless, there is no
guarantee that the true mechanism minimizes descriptor
lengths. Complex mechanisms may also form bonds that are
broken again in subsequent steps and thus do not appear at all in
the ITS and reaction center graphs. To address this issue at least
in part, overlay graphs that extend the ITS have been introduced
by.55 These graphs detail both the imaginary transition states
and transient bonds within multistep reactions. Integrating this
with recent insights into partial ITS graphs36 could significantly
advance both our understanding and computational capabilities
of multistep reaction mechanisms. Notably, a formal framework
for rule composition is absent in SMARTS, highlighting the
benefits of explicit graph transformations for modeling reactions.
Finally, the correct and unambiguous completion of hydrogens
in the ITS graphs, as a special issue in the context of AAM
inference, also remains a topic for future improvements.
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