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Kurzfassung

In einer Welt, die zunehmend von Daten geprigt ist, erzeugen Anwendungen wie die
Netzwerkverkehrsanalyse, Finanzanalytik und die Uberwachung von IoT-Geréten kontinu-
ierlich sich entwickelnde Daten, die eine Echtzeitverarbeitung erfordern, um verwertbare
Erkenntnisse zu gewinnen. Um die zugrunde liegenden Strukturen dieser Daten in dy-
namischen Umgebungen zu verstehen, miissen uniiberwachte Methoden entscheidende
Herausforderungen des Stream-Clustering bewiéltigen: den Umgang mit nicht-stationdrem
Verhalten, die Anpassung an sich d&ndernde Verteilungen und die Erkennung neu auf-
tretender Klassen. Diese Phédnomene, zusammenfassend als Konzeptdrift bezeichnet,
stellen erhebliche Herausforderungen fiir traditionelle Methoden dar. Mit SDOstreamclust
stellen wir einen Stream-Clustering-Algorithmus vor, der auf den Stérken von Sparse
Data Observers aufbaut und dabei hohe Genauigkeit, geringen Rechenaufwand und
Anpassungsfahigkeit an sich stdndig verdndernde Daten kombiniert. SDOstreamclust
wurde speziell fiir dynamische Umgebungen und Echtzeit-Datenstreams entwickelt und
zeichnet sich durch Skalierbarkeit, einfache Interpretierbarkeit, Effizienz und Robustheit
bei minimaler Parametrisierung aus. Umfangreiche Experimente mit verschiedenen realen
und synthetischen Datensétzen, erginzt durch Analysen zur Parametersensitivitét, bele-
gen die hervorragende Leistung und Zuverlassigkeit im Vergleich zu etablierten Methoden.
Besonders hervorzuheben ist, dass SDOstreamclust keine aufwendige Feinabstimmung
erfordert und Konzeptdrift — eine héufig iibersehene, aber zentrale Herausforderung
realer Anwendungen, die oft zu einer schnellen Verschlechterung von Modellen fiihrt —
erfolgreich adressiert. Damit etabliert sich SDOstreamclust als eine leistungsstarke und
verldssliche Losung im Bereich der uniiberwachten Analyse von Datenstreams.

ix
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Abstract

In a world increasingly driven by data, applications such as network traffic analysis,
financial analytics, and IoT device monitoring continuously generate evolving data,
necessitating real-time processing to uncover actionable insights. To understand the
underlying structures of this data in dynamic environments, unsupervised methods must
address critical stream clustering challenges: managing non-stationary behavior, adapting
to distribution shifts, and identifying emerging classes. These phenomena, collectively
referred to as concept drift, pose significant challenges to traditional methodologies.
We introduce SDOstreamclust, an algorithm for stream clustering built upon Sparse
Data Observers, leveraging their strengths to deliver high accuracy, low computational
cost, and adaptability to evolving data. Designed for dynamic environments and real-
time data streams, SDOstreamclust ensures scalability, interpretability, efficiency, and
robustness with minimal parameterization. Comprehensive experiments on diverse real
and synthetic datasets, complemented by parameter sensitivity analyses, demonstrate
its superior performance and reliability compared to state-of-the-art methods. Notably,
SDOstreamclust performs exceptionally well without extensive fine-tuning, effectively
addressing concept drift, a critical yet often overlooked challenge in real-world applications
that leads to rapid model degradation. These qualities establish SDOstreamclust as a
strong competitor in the field of unsupervised streaming data analysis.
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CHAPTER

Introduction

In this chapter, we present the background of our research, discussing the motivation and
necessity behind the study. We will outline our specific objectives and the methodology
employed. Lastly, a brief overview of the thesis structure will be provided.

1.1 Background

In today’s data-driven world, vast amounts of information are continuously generated in
real time. Unlike traditional static datasets, streaming data requires immediate attention
and processing. The shift from static analysis to dynamic, real-time data processing
is crucial for modern applications, where timely insights are essential for maintaining
competitiveness, ensuring security, and fostering innovation.

Streaming data analysis plays a pivotal role in applications where real-time processing and
adaptation are essential. These applications include network security, where continuous
monitoring of network traffic is necessary to detect and respond to potential threats
promptly. Financial services also rely on data stream analysis for real-time fraud
detection and high-frequency trading, where timely and accurate data processing can
have significant financial implications. Additionally, in smart cities, data from various
sensors and IoT devices must be analyzed in real-time to manage resources efficiently,
monitor traffic, and ensure public safety. Moreover, in healthcare, continuous patient
monitoring generates streaming data that needs to be analyzed instantly to provide
timely medical interventions. Each of these applications highlights the importance of
robust, adaptable, and efficient data stream analysis techniques.

Change, adaptation, and novelty are key to analysing streaming data, which often
requires unsupervised or semi-supervised techniques to identify novel patterns in evolving
datasets where labeled data is typically unavailable due to their dynamic nature. To
effectively capture these changes, algorithms must possess several critical capabilities: (a)

1
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processing data incrementally to produce timely results, (b) swiftly adapting to shifts
in the data, (c) scaling effectively to handle substantial data volumes, (d) maintaining
a compact and fixed-size model, (e) detecting outliers, and (f) accommodating diverse
data types [SEBT13]. Stream clustering and stream anomaly detection emerge as the
primary branches in streaming environments, focusing on organizing data and identifying
anomalies, respectively.

In this thesis, we focus on stream clustering, specifically on organizing data into meaningful
groups while adapting to shifts and changes in the data distribution over time. However,
static clustering methods have significant limitations. Béhm et al. summarize these
drawbacks, noting that clustering algorithms often focus on spherical or Gaussian clusters,
are sensitive to outliers, and require user-defined thresholds and parameters .
These limitations persist in more recent studies, as highlighted in works such as [NNI19]
and [PGR18]. In streaming environments, the challenges are compounded, as incremental
analysis and evolving data — particularly concept drift — introduce significant additional
complexity. Nguyen et al. [NWNT15] identify concept drift as a major challenge for stream
clustering, emphasizing it as a critical area for improvement in the reviewed algorithms.
This thesis aims to address these challenges, focusing on the development of more robust
and adaptable stream clustering techniques that can effectively manage the dynamic
nature of streaming data.

1.2 Motivation

The growth of internet-connected devices and the expansion of network infrastructures
have significantly increased both the volume and speed of network traffic, making network
security a critical area where vast amounts of data are produced in real time. Efficiently
processing and analyzing these data streams is essential for maintaining robust security
measures.

Network traffic flows, consisting of continuous streams of data packets transmitted across
network nodes, are essential for identifying patterns, detecting anomalies, and preventing
unauthorized access. However, the high throughput and variability of network traffic pose
significant challenges for conventional data processing techniques. Intrusion Detection
Systems (IDS) are critical in defending against cyber threats by analyzing network traffic
to identify suspicious activities that may indicate security breaches. While traditional
IDS often rely on signature-based detection methods limited by their dependence on
known attack signatures, anomaly-based IDS leverage machine learning and clustering
techniques to detect unusual patterns in data streams. This adaptive approach is vital
for recognizing novel threats, underscoring the necessity for robust stream clustering
algorithms that can effectively handle the dynamic nature of network data. Based on my
experience, improving these techniques is crucial for enhancing the overall effectiveness
of network security measures.

Trending topics in data analysis, such as deep learning and generative Al, predominantly
excel in supervised settings. However, in many real-world applications, such as finance
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1.3.

Goals

and IoT, labels are often unavailable, and the environment is rarely as static as we might
hope. This oversight of the adaptive nature of data and applications can lead to models
that suffer degradation over time as the data evolves. Therefore, it is essential to address
these challenges, particularly through enhanced stream clustering techniques that can
effectively identify patterns and navigate the complexities of a dynamic unsupervised
environment.

1.3 Goals

In this section, we present the research questions guiding our investigation into our novel
data stream clustering algorithm.

¢ RQ1: Performance

How and to what extent can an incremental version of SDOclust improve the
performance of consolidated stream clustering in terms of accuracy and execution
times?

¢ RQ2: Self-adjustment

To what extent can an incremental version of SDOclust effectively self-adjust to
overcome the challenges of stream clustering, especially concept drift? Is it superior
to state-of-the-art alternatives?

« RQ3: Applicability

Can interpretability and parameter robustness be maintained in incremental clus-
tering algorithms while ensuring a lightweight profile? To what extent can the
models and parameters of SDOstreamclust be considered interpretable and robust?

1.4 Methodology

To achieve those goals the following steps were done:

e We built our algorithm upon the foundations of SDOstream [HIZ20| and SDO-
clust [[ZHZ23|, conducting a comprehensive study of their features, underlying
algorithms, relevant literature, and existing Python implementations.

e« We designed SDOstreamclust to achieve high accuracy and low computational
cost, which are essential for dynamic environments. Our design goals include
scalability to handle unlimited data streams within resource and time constraints;
adaptability to evolving data patterns; efficiency for lightweight, real-time processing;
interpretability to provide clear insights into clusters; an almost parameter-free
approach to minimize the need for manual adjustments; and robustness to ensure
stability over time, avoiding unexpected performance drifts and high sensitivity to
parameter changes.
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o We established a test environment by selecting competitor algorithms, datasets with
concept drift, and appropriate evaluation metrics to ensure workflow compatibility.
Our approach focused on various datasets, particularly those involving evolving
data, to emphasize the importance of robustness in parameterization. A data
stream algorithm must maintain performance without manual intervention amid
changing data, making this a key aspect of our evaluation.

e We conducted comprehensive evaluation experiments, including comparisons with
competitor algorithms and detailed parameter analyses. We collected and analyzed
the results to gain insights, propose refinements, and outline potential improvements
for future work.

o We documented the process in this thesis, and a conference paper is under review ',

making SDOstreamclust available via pip 2 or directly from the repository [, with
evaluation experiments reproducible through Docker *. Detailed setup instructions
are provided in a DOI-citable repository [[V24].

1.5 Structure

The thesis is structured as follows: Chapter [2| provides relevant background information,
covering topics such as data stream processing, state-of-the-art methods and approaches
in stream clustering, as well as challenges and strategies for handling evolving, changing,
or anomalous data in streaming scenarios. Chapter 3| describes our novel method,
giving algorithmic and implementation details in Section [3.1, and elaborating on the
evaluation setup (including the datasets, comparison algorithms metrics, and experiments)
in Section 3.2, The results are presented and discussed in Chapter 4, and the thesis
concludes with a summary of findings and future research directions in Chapter 5.

'Félix Iglesias Véazquez, Simon Konzett, Tanja Zseby, and Albert Bifet (2024). Stream Clustering
Robust to Concept Drift. Under review at the Furopean Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases 202/

2https://pypi.org/project/pysdoclust-stream/

3https://github.com/CN-TU/pysdoclust-stream/

‘https://hub.docker.com/r/fiv5/sdostreamclust
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CHAPTER

Background Knowledge

This chapter provides an essential foundation on data stream processing and clustering,
focusing on its significance and the primary methodologies employed to tackle real-time
data analysis. It introduces key approaches such as partitioning, hierarchical, density-
based, and grid-based methods, and addresses the unique challenges posed by the dynamic
and continuous nature of data streams.

2.1 Data stream processing

One of the key challenges in stream clustering is maintaining an up-to-date clustering
model that accurately reflects the evolving data distribution. This requires algorithms to
quickly assimilate new data points, detect and adapt to concept drifts, and discard obsolete
information, all while operating within stringent memory and processing constraints.
Additionally, ensuring the robustness and stability of clusters over time, despite the
transient nature of streaming data, remains a significant hurdle.

Time window models are commonly used to manage to manage and process the continuous
flow of data efficiently. They help in capturing the most relevant data points while
addressing the challenges of unbounded data streams. Here, we explain the four most

commonly used time window models [SFB¥13], [NWNT5|, [CTT9]:

Damped time window. In a damped time window model, recent data points are
given more importance than older ones by applying a decay factor A to the weight of each
data point, which diminishes their significance over time. The weight of a data point can,
for example, be defined as w(At) = e Mt where At represents the time elapsed since
the data point’s arrival. As new data arrives, older data gradually loses its influence on
the clustering process, allowing the model to quickly adapt to changes in the data stream
while still considering past information to some extent. This approach is commonly used

in popular algorithms such as DenStream [CEQZ06] and DBStream [HB16].
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Figure 2.1: Time Window Models: The figures illustrate different strategies for handling
temporal data in streaming scenarios

Sliding time window. The sliding time window model maintains a continuously
moving window of data points as new data arrives, operating with either a fixed-size
or dynamically adjusted window. This model typically follows the first-in-first-out
(FIFO) principle, where the oldest data points are discarded as the window shifts to
accommodate new arrivals. By considering only on the data points within the current
window, the clustering process reflects the most recent data, providing a dynamic snapshot
of the evolving state of the data stream. This approach is used in algorithms such as

SWClustering and SDStream [RMO09].

Landmark Time Window. In a landmark time window model, the data stream is
divided into disjoint segments based on specific landmarks or significant events. All data
points between two consecutive landmarks are considered for clustering, allowing analysis
within these predefined intervals. This approach is particularly useful for algorithms that
cannot evolve continuously and therefore require periodic restarts, or in situations where
the data stream naturally exhibits distinct phases or cycles. It is employed in algorithms

such as BIRCH [ZRL96] and Stream [GMMOOQQ].

Tilted Time Window. The tilted time window model provides a multi-resolution
view of the data stream by maintaining different time windows with varying granularity.
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2.2. Stream Clustering

Individual windows can follow damped, sliding, or landmark models. It retains finer
granularity for recent data and coarser granularity for older data, making it particularly
effective for capturing both short-term trends and long-term patterns. For instance, it
may store detailed information about the last few minutes, less detail for the past hours,
and even less for the past days or weeks. This approach is used in algorithms such as

CluStream [APHW03| and StreamKM-++ [AMRT12].

These four models — damped time window, sliding time window, landmark time window,
and tilted time window, as illustrated in Fig. |2.1) — represent strategies for handling
continuous data streams. KEach approach offers unique advantages in balancing the
emphasis on recent data while maintaining the relevance of older information, effectively
addressing the challenges posed by evolving data distributions in stream analysis.

2.2 Stream Clustering

Clustering is a fundamental task in data analysis, which involves grouping a set of objects
in such a way that objects in the same group (or cluster) are more similar to each other
than to those in other groups.

In recent years, the emergence of data streams — continuous flows of data generated
in real-time — has necessitated the development of stream clustering methods. Stream
clustering has emerged as a critical technique in the field of data mining, dedicated
to the real-time analysis and classification of continuously flowing data. Unlike static
datasets, data streams are characterized by their high velocity, potentially unbounded
size, and dynamic nature, posing unique challenges for traditional clustering algorithms.
To address these challenges, specialized stream clustering methods have been developed,
each designed to efficiently process and organize data on-the-fly while managing resource
constraints such as limited memory and computational power.

In this section, essential concepts of stream clustering are outlined, encompassing the most
popular types, taxonomies, approaches, methodologies, and algorithms. The algorithms
that are structural in this work (i.e., SDO, SDOclust, and SDOstream) are not explained
here, but rather discussed in detail in Chapter 3, specifically in Section [3.1.1.

2.2.1 Core Principles and Taxonomies

Various stream clustering methods have been developed to handle different data types
within streaming scenarios. However, optimizing these methods is constrained by factors
such as the availability and order of data, as well as limitations in resources and time.
Due to the large volume of data, storing all observations becomes impractical or infeasi-
ble. Typically, each observation should only be evaluated once before being discarded,
necessitating the extraction of sufficient information from each observation. Similarly,
the order of observations should not be disturbed and must be accommodated within the
clustering process [CT19]. These constraints give rise to various considerations regarding
the structure of stored data.
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Nguyen et al. [NWNT15] categorize data stream clustering methods into five types, similar
to traditional data clustering: (a) partitioning methods, which divide the data into a
predefined number of clusters, such as StreamKM-++ [AMRT12]; (b) hierarchical methods,
which create a tree-like structure of clusters by progressively merging smaller clusters
(agglomerative) or splitting larger clusters (divisive) based on a measure of dissimilarity,
exemplified by BIRCH [ZRL96]; (¢) density-based methods, which form clusters based
on regions of high data density, allowing for the discovery of clusters with arbitrary
shapes, including DenStream and DBStream [HB16]; (d) grid-based methods,
which partition the data space into cells and form clusters by grouping neighboring dense
cells, as seen in D-Stream [CT0T]; and (e) model-based methods, which assume a specific
statistical model for the data and estimate its parameters to identify clusters, such as
CluDistream [ZCYF06]. These categories are not mutually exclusive and can overlap. All
clustering methods rely on a measure of distance or similarity between clusters. The four
primary distance measures are: single-linkage, which is the minimum distance between
any pair of points in the two clusters; complete-linkage, defined as the maximum distance
between any pair of points; mean distance, which considers the distance between the
centroids (e.g., arithmetic mean) of the clusters; and average distance, calculated as
the mean of all pairwise distances between points in the two clusters. Due to the high
computational cost associated with maximum distance and average distance measures,
they are generally not suitable for data stream clustering applications.

Silva et al. ﬂm propose an alternative taxonomy for stream clustering algorithms.
This taxonomy emphasizes different criteria or may organize them in a different manner
compared to the one presented before. Data stream clustering algorithms typically consist
of two main steps: the incremental data abstraction step and the subsequent clustering
step, which often involves offline processing where a traditional static clustering algorithm
is applied to the abstracted data. This taxonomy aspects include:

t1. the data structure used for statistical summary,
t2. the window model,

t3. the mechanism for outlier detection,

t4. the number of user-defined parameters,

t5. the (offline) clustering algorithm utilized,

t6. the shape of clusters formed,

t7. type of clustering problem addressed.

This taxonomy provides a structured framework for understanding and comparing various
approaches to data stream clustering, allowing researchers to identify key characteristics
of each method and assess their suitability for specific applications.
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2.2. Stream Clustering

The first two characteristics (t1, t2) focus on the data abstraction of the stream, which
are explored in more detail in Sections [2.1] and [2.2.2. The abstracted data is typi-
cally processed using established static clustering methods. The choice of clustering
method (t5) influences the shape of the clusters that can be detected (t6). For example,
k-means [LIo82], [MT67], [Ste56], [BHT65] tends to identify spherical clusters, while
DBSCAN ﬂm and hierarchical clustering can detect clusters of arbitrary shapes.
Ideally, these methods should differentiate between true outliers and natural cluster
evolution (t3), as further elaborated in Section 2.3.2.

Algorithms vary in the number of user-defined parameters (t4) required, such as the
number of clusters, window size, and decay rate. Fewer parameters can simplify the
algorithm, making it more user-friendly, but this may come at the cost of reduced
flexibility and adaptability. However, ease of use is not solely determined by the number
of parameters. The robustness of an algorithm concerning parameter choices and the
intuitiveness of these parameters also significantly contribute to user-friendliness. While
clustering problems can be either object-based or attribute-based (t7), this discussion
focuses exclusively on object-based clustering.

2.2.2 Data structures

In stream analysis, data arrives continuously and in high volumes, making it impractical
to store and process every single data point. Therefore, stream clustering algorithms
need to summarize the data efficiently while preserving its essential statistical properties.

A statistically summarizing data structure allows stream clustering algorithms to capture
the key statistical characteristics of the data, such as its distribution, centroids, or density,
without retaining every individual data point. By summarizing the data statistically,
algorithms can reduce memory usage and computational complexity while still providing
meaningful insights into the underlying data distribution.

The main data structures are micro-clusters, grids, coresets, and prototype arrays. Each
is explained as follows.

Micro-clusters. Micro-clusters provide a compact and efficient structure for summariz-
ing data points in stream clustering. A key data structure, introduced by BIRCH [ZRL96],
is the Clustering Feature (CF) vector, designed to handle unbounded and dynamic data
streams in an incremental and memory-efficient manner. The CF vector consists of three
components: N, the number of data objects; LS, the linear sum of the data objects; and
SS, the sum of squared data objects. Both LS and SS are arrays with n dimensions.
These components allow for incremental updates as new data points arrive, enabling the
real-time computation of cluster properties such as mean, radius, and diameter.

Many algorithms employ these CF vectors, or similar structures, to form micro-clusters,
which are compact representations of dense regions in the data. These micro-clusters are
continuously updated to capture evolving patterns in the data stream and often serve as
inputs to traditional clustering algorithms. This leads to two-phase clustering processes,
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where the first phase involves summarizing the data through micro-clusters, and the
second phase applies a clustering algorithm to the summarized data. For example, BIRCH
uses hierarchical clustering, CluStream [APHW03] and StreamKMeans [OMMT02] use
k-means, and DenStream employs DBSCAN, as noted in and [CT18].
This approach allows for efficient, adaptive clustering of streaming data under real-time
or memory-constrained conditions.

Grids. Another common data structure in stream clustering is to capture the density of
observations within a grid structure. A grid partitions the data space along all dimensions
into intervals, creating a number of grid-cells. By mapping data points to these cells, a
density estimate can be maintained, allowing the algorithm to identify regions of high
data concentration by grouping adjacent dense cells.

The main challenge for grid-based clustering algorithms lies in the construction of the
grid-cells: specifically, determining how often cells should be partitioned and choosing the
appropriate size for each cell. These decisions are crucial as they impact the granularity
and accuracy of the clustering results.

A well-known grid-based algorithm is D-Stream [CT07], from which many variations
have evolved. D-Stream is a density-based stream clustering algorithm that leverages
grid-cells to manage data streams effectively.

Coreset. Coresets are representative subsets of a dataset that approximate the prop-
erties of the original dataset, primarily used to efficiently approximate the results of
clustering and other computational tasks. A coreset reduces the size of the data while
retaining enough information to ensure that computations performed on the subset yield
results close to those obtained using the full dataset. The quality of a coreset depends on
how well it represents the original data, and it is typically constructed through techniques
such as sampling or optimization. By reducing the data size, coresets are highly scalable
and enable more tractable computations, making them valuable for large-scale data
processing, particularly in stream clustering.

Coreset trees, as employed by StreamKM++ ﬂm, combine concepts from feature
vectors and prototype arrays within a binary tree structure to efficiently manage and
process streaming data. In contrast, the method proposed in this work, SDOstreamclust,
leverages a coreset-based approach but adopts a partitional strategy instead of the
hierarchical tree structure used in StreamKM-++.

Prototype Array. Prototype Arrays are specialized data structures used in clustering
algorithms to represent clusters through a small set of representative points, such as
centroids or medoids. Each prototype serves as a center in the feature space, capturing
the key characteristics of a cluster. Unlike coresets, which provide a summary of the
entire dataset, Prototype Arrays focus specifically on representing clusters with a limited
number of points. This makes them particularly useful in scenarios where a small number
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of prototypes can adequately describe the data distribution. As new data points arrive,
the prototypes are updated iteratively, allowing the array to adapt to evolving clusters.

Prototype arrays are frequently used in algorithms for dynamic, large-scale clustering, as

demonstrated in methods such as Stream [GMMOQ0] and LSearch [OMMT02].

In summary, four main types of data structures used in stream clustering are micro-
clusters, grids, coresets, and prototype arrays. Each plays a crucial role in efficiently
summarizing and managing data streams, enabling scalable and adaptive clustering
solutions under real-time or resource-constrained conditions. These structures allow
algorithms to balance memory usage, computational efficiency, and clustering accuracy
when dealing with large and continuously evolving datasets.

2.3 Novelty, change and outlier detection

Silva et al. point out that many data stream clustering algorithms overlook
a crucial aspect of data stream mining: change detection. In addition to addressing
evolving data streams and change detection, it is essential for clustering algorithms to
effectively handle noise, or outliers, throughout the data stream [Bar(02]. This capability
is crucial as outliers can significantly impact clustering accuracy and the interpretation
of evolving data patterns. Specifically, in this section we look into two key concepts:
Concept Drift and Outlier Detection.

2.3.1 Concept Drift

It is well-known that the data generation processes for various stream applications are
driven by nonstationary distributions. This phenomenon, known as concept drift, means
that the underlying concept from which data is derived can shift periodically, each time
after a minimum period of stability.

® o0 - LA (A o0
o0 o 0. o °® - o @ °® ® @
T ev® Y@ o 0°0® o o 0
@0 ® 0o o ® : o [ A ® ]
e 9o PS | J 00 0 "y 00 0® 4
. . . . . . . ...... .
(a) original (b) real (c) real and virtual (d) virtual

Figure 2.2: Concept Drift: Real and Virtual, based on ﬂm

Gama et al. ﬂm distinguish between two types of concept drift: real and virtual
concept drift. Real concept drift happens when the classification boundaries change
over time, affecting how data is classified. This type of drift can also occur alongside
changes in the appearance or distribution of the data, making it harder to identify the
underlying shifts in classification. In contrast, virtual concept drift refers only to changes

11
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in the data’s appearance or distribution while the classification itself remains the same.
Figure 2.2 illustrates these concepts, demonstrating how real drift can occur without
changes in data appearance, as seen in (b), while (c) shows real drift with changes in
appearance. Understanding this distinction is important for recognizing how data streams
evolve and for developing effective strategies to adapt to these changes in classification
dynamics, particularly when real concept drift occurs together with virtual drift.

However, in practice, distinguishing between real and virtual concept drift can be
challenging. The complexities of real-world data streams often make it hard to tell whether
changes in data distribution indicate a fundamental shift in classification boundaries or
simply reflect variations in data appearance. This confusion can complicate adaptation
strategies, as misinterpreting the type of drift may lead to inappropriate responses to
changes in the data.

(a) sudden (b) incremental (c) gradual (d) reoccuring (e) outlier

Figure 2.3: Data Evolution: Concept Drift and Anomalies

They also identify various patterns of concept drift, including (a) sudden drift, character-
ized by an abrupt change of states; (b) incremental drift, which involves a continuous and
slow transition from one state to another; (c) gradual drift, where a new state gradually
replaces an old state with increasing frequency until the old state disappears; and (d)
reocurring concepts, in which states frequently appear and disappear. Additionally,
another phenomenon that is not technically concept drift but may appear as such to
an algorithm is the presence of (e) noise or outliers. These patterns are illustrated in
Figure [2.3 which provides a visual representation of the different types of concept drift
and the occurrence of outliers.

Moreno et al. adopt a theoretical perspective on concept drift to unify the
diverse and often confusing terminology found in the literature. They define concept
drift as changes in the distribution of data over time, which can lead to a deterioration in
model performance. Consequently, models must be adapted to maintain their predictive
accuracy in the face of such changes. They distinguish between two types of problems,
based on the functional relationship between the features and the class:

e X — Y: Features x € X causally determine the class label y € Y, e.g., voting
behavior is influenced by cultural background and economic situation. Joint
distribution: P(z,y) = P(y|z)P(x).

e Y — X: The class label y € Y determines the features z € X, e.g., recognizing a
"Bird" implies wings and feathers. Diagnosing diseases also falls into this category.
Joint distribution: P(z,y) = P(x|y)P(y).

From this concept, the term dataset shift refers to a change in the joint distribution
between training and test data. In unsupervised problems, such as stream clustering,



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.3. Novelty, change and outlier detection

the test data corresponds to future incoming data, making it essential to adapt models
rapidly to these changes. They distinguish four types of shifts: covariate shift, which
occurs only in X — Y relationships where the distribution of the input data changes,
but the relationship between features and labels remains unchanged; prior probability
shift, the equivalent for Y — X problems, where the distribution of the class changes,
but the relationship between the class and features remains fixed; and concept drift,
where the relationship between features and class evolves, while the feature or class
distribution stays constant for X — Y or ¥ — X problems. If both parts of the
distribution change, the authors deem the problem extremely challenging and potentially

unsolvable [MTRARF12).

Relating these to earlier mentioned concepts of concept drift, the first two categories
align with virtual drift, differentiated by the type of problem at hand. Real concept drift,
as defined by , covers not only changes in the feature-class relationship but
also the more complex case where prior distributions shift as well.

In a data stream setup, these distinctions between dataset shifts are less clear, with
significant ambiguity. There is no clear-cut answer for defining training and test data at
any given moment—how far back should training data go, and how far into the future
should test data extend? Additionally, real-world data often involves both X — Y and
Y — X relationships to some extent. In unsupervised setups, prediction typically follows
the X — Y process, where labels are determined based on features. However, a robust
algorithm is expected to adapt only when necessary — by updating the model to reflect
changes — implicitly addressing the Y — X relationship when relevant. Given this
ambiguity, many scenarios may present as concept drift in unsupervised data stream
analysis, making it crucial for methods to be adaptive and robust in handling various
forms of drift.

2.3.2 Outlier Detection

The definition of an outlier is not straightforward. Hawkins [Haw80] provided a popular
definition in colloquial speech: an outlier is an observation which deviates so much
from the other observations as to arouse suspicions that it was generated by a different
mechanism. Similarly, [JMOG] describe outliers as objects that deviate from the general
behavior of a data model, while [CBK09] define outliers as sparse, isolated data items
that exhibit significantly different characteristics from normal data.

These definitions all rely on some notion of normality, which can be formalized in
probability theory, as in early works by and many others since. In this context,
normal behavior is modeled by a probability distribution, and outliers are identified
as observations that fall within low-probability regions, defined by a sufficiently small
threshold of the distribution, where the occurrence of normal data is unlikely.

Outlier detection is essential across various fields and significantly impacts daily life.

It helps monitor login behavior and payment transactions to identify fraud and aids

in medical diagnosis by detecting anomalies in patient data for early disease detection.

13
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Additionally, it plays a crucial role in noise removal during data preprocessing, ensuring
cleaner datasets for analysis. Outlier detection also supports scientific discovery by
uncovering unusual patterns that may indicate new insights. In trending applications like
natural language processing (NLP), computer vision, autonomous driving, and speech
recognition, it enhances model performance and reliability. These examples showcase
just a small sample of the diverse applications of outlier detection.

Outliers, anomalies, and novelties share similar characteristics and are often used inter-
changeably depending on the context. When distinguished, anomalies represent instances
from a different source (e.g., fraud, hacker attacks), while outliers are typically noisy data
points within the normal distribution (e.g., measurement errors) and may be removed
during data cleaning. Novelties occur when the normal distribution shifts, either gradually
or through new patterns. Although detection methods may be similar, their treatment
varies by application. Here, we use "outlier" to refer to all these types, recognizing that
specific contexts may favor one term over another.

time time 1ime

(a) point (b) group (c) contextual

Figure 2.4: Tllustrations of common outlier types in a streaming setup: (a) point outliers,
which deviate individually, (b) group outliers, where multiple data points deviate together,
and (c) contextual outliers, where data points become outliers based on their temporal
context. Outlier points are marked with a bold edge.

Outliers can be characterized in various forms, as outlined by Ruff et al. [RKVT21], who
distinguish between point, group, contextual, low-level sensory, and high-level semantic
outliers. The latter two types are less relevant in this work, as they are more prevalent
in applications like image recognition and natural language processing (NLP). The most
straightforward type is individual instances, such as a sudden spike in sensor readings. In
intrusion detection, hacker attacks often manifest as group outliers, where multiple data
points deviate together. Relevant to this work on streaming data, contextual outliers
frequently appear in time series, where certain instances may be common but become
outliers when they occur at abnormal times. The point, group, and contextual outliers
are visualized in Figure 2.4, within a streaming setup.

Due to the extensive applications and diverse types of outliers, numerous approaches to
outlier detection have emerged across various fields. Ruff et al. [RKVT21] categorize these
methods into shallow and modern deep learning approaches, further dividing them based
on model types such as classification, probabilistic, reconstructive, or distance-based. A
common characteristic in outlier analysis is the lack of labels, as outliers are often defined
by their "non-normal" status relative to the dataset, which leads to a predominance of
unsupervised methods. Given this variety, there is no one-size-fits-all solution; the choice
of approach depends on the data type, context, and specific application requirements.

Clustering is closely related to outlier detection, as outliers are data points that do not
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fit well into any known class. Many clustering algorithms leverage their capabilities to
incorporate outlier detection, assigning either an outlier label or a score that quantifies
the outlierness of analyzed points. In a streaming context, challenges related to data
stream processing (Section 2.1)) and evolving data (Section 2.3.1) are prevalent. Iglesias et
al. [VHZZ23] examine popular outlier detection methods, particularly SDOstream [HIZ20],
which serves as the foundation for the proposed clustering approach in this work, focusing
on its performance in terms of locality (contextual outlierness), relativness (outliers
relative to past data), concept drift, and its runtime and memory efficiency in streaming
setups. The study shows that the SDO family of stream outlier detection methods is
competitive with popular approaches, such as a sliding window version of the Local Outlier
Factor (LOF) algorithm [BKNS00], Robust Random Cut Forests (RRCF) [GMRS16],

RSHash [SA16], a hash-based technique, LODA [Pev16], and xStream [MLATS|, which
project data into a lower-dimensional space.

15
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CHAPTER

Methodology and Experiments

In this chapter, we introduce our proposed methodology, detailing its theoretical under-
pinnings, practical implementation, and empirical evaluation. We explore the core aspects
of our method, explaining its design principles and key parameters. Our approach uses
advanced computational techniques to tackle challenges in data clustering and analysis,
aiming to improve both accuracy and efficiency.

Our method is implemented in C++ with a Python wrapper for easy integration and use.
This combination ensures high performance and flexibility, making it easy to compare
with other methods. We evaluate its effectiveness through extensive testing on various
datasets, demonstrating its robustness and versatility.

The following sections will describe our methodology, including the new algorithm,
parameter choices, and implementation details. We will present experiments to test
our method’s performance and compare it with existing techniques, highlighting its
strengths and areas for improvement. This chapter aims to provide useful insights into
data clustering and its applications.

3.1 Design of SDOstreamclust

The here proposed method SDOstreamclust combines the incremental processing ca-
pabilities of SDOstream [HIZ20] with the robust clustering techniques used in SDO-
clust (see Section [3.1.1 for details on both). The resulting method leverages
both the real-time adaptability of SDOstream and the structured clustering methodology
of SDOclust, thereby offering a powerful approach for streaming data processing and
clustering.

17
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3. METHODOLOGY AND EXPERIMENTS

3.1.1 The Sparse Data Observers principle and precedent algorithms

Sparse Data Observers (SDO) [VZZ18] is an algorithm designed for outlier scoring and
detection. It builds a low-density model of the data during the training phase, enabling
quick analysis and autonomous decision-making. As an eager learner, SDO minimizes
computational costs during application, making it well-suited for big data environments.
Additionally, SDO is robust to parameter variations, ensuring reliable performance with
minimal need for extensive prior knowledge.

In this section, we introduce SDO, which serves as the foundation for the novel algorithm
proposed in this work. We will also cover its advancements in streaming and clustering
applications, offering a detailed overview of the SDO family and its role in supporting
the new method.

Table 3.1: Notation and Definitions

General
v; € R™ Point with index 4
t; € R Timestamp with index @
si €R Outlier score of point with index 4
l; €R Label of point with index ¢
Observer Model
keN Number of observers
reN Number of neighbors to consider
p € (0,1] Fraction of observers to consider idle
w € R™ An observer
Q,Qq Set of (active) observers
N, Na Set of x closest (active) observers
Stream Processing
f€(0,1] Fading parameter
P, €R Observations by w
H, €R Observer w’s age
— P,
P, == Average observations by w
W
L, € RICI Cluster-observations by w
Connected Components Clustering
x €N Local threshold for cutting-off graph edges
¢€10,1] Weight factor regarding locality and globality in thresholds
eeN Minimum number of observers that a cluster can have
he,h!, €R Local(-global weighted) cutoff threshold of the observer w
heR Global density threshold
S A cluster, i.e. a set of active observers
C, L Set of (labeled) clusters
C,c Set of unique cluster labels, a cluster label
L
l, = d Cluster membership vector of w
2 Le
Outlier thresholding
h° relative outlier sensitivity parameter
pY, p?(w) outlier probability of data point v; (w.r.t. observer w)

Note: This table summarizes the key symbols and their definitions used throughout the paper.

18
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3.1. Design of SDOstreamclust

Table |3.1/ is provided to enhance readability and serve as a quick reference for readers.

SDO. The Sparse Data Observers (SDO) algorithm [VZZ18] is an effective method
for outlier detection and scoring. It operates in two distinct phases: LEARNING and
PREDICTION.

In the LEARNING phase, the algorithm builds a low-density model by selecting repre-
sentative data points. During the PREDICTION phase, it computes the outlier score for
new data points based on their distance from and density relative to the model. This
approach enables efficient anomaly detection while ensuring computational efficiency,
making it highly suitable for large-scale data applications.

The detailed steps of the SDO algorithm are as follows and illustrated in Fig. 3.1}

LEARNING

1. Sample: Randomly select k data points from the dataset. These points,
referred to as observers, are used to build a low-density model that captures
the data’s statistical properties.

2. Observe: For each observer, count the number of points within its neigh-
borhood, defined as the = nearest points. This count, known as observations,
serves as a quality metric for the observers.

3. Clean model: Categorize observers into idle and active based on an obser-
vation threshold to exclude outliers and noise. Retain the top 1 — p fraction
of observers as active observers, which are then used to construct the sparse,
representative low-density model.

PREDICTION
1. The outlier score is calculated as the median distance between the data

point in question and its x nearest active observers.

Raw data Sample observers Cleansed model Prediction

Active Observers
% Idle Observers

x  Observers

Figure 3.1: Illustration of the SDO algorithm, showcasing the four key steps involved. In
PREDICTION, outlierness for points is colored according to their scores (redder indicates
a higher outlier score).
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The critical parameter that determines the model size k can be specified externally
or estimated using finite population sampling theory. For this estimation, Principal
Component Analysis (PCA) is employed, as detailed in [[ZHZ23].

SDOclust. Given that SDO constructs a representative model for the data to calculate
an outlier score, it is logical to leverage this model for clustering as well. SDOclust, as
introduced by Iglesias et al. [TZHZ23|, extends the SDO family of algorithms with this
capability.

SDOclust enhances the algorithm by representing observers as nodes in an undirected
graph, which undergoes a connected components clustering (CCC) process [HS00]. A
local cutoff thresholding technique is employed to establish edges between these nodes.
The connected components of the resulting graph are then interpreted as clusters within
the model.

The cutoff threshold h,, for a given observer w is defined as follows:
he = d(w,wey) (3.1)

where w,, denotes the yth-closest observer to w, and d(-) represents the distance function.
Then two observers v, w are connected if their distance is below both their local cutoff
thresholds. In terms of the adjacency matrix A of the graph, this is expressed as:

(3.2)

vw —

1 ifd(v,w) < hy, and d(v,w) < hy,
0 otherwise.

In Fig. 3.2, the mechanism of this concept is illustrated, demonstrating its effectiveness
on non-convex clusters and shapes.

The local cutoff thresholding approach enables the algorithm to identify solutions of
varying densities. However, this method also introduces the risk of connecting closely
located clusters or creating clusters of noise. To mitigate this, a global density threshold
h for the model is computed as the average of the local density thresholds. Subsequently,
a mixture model is applied to determine the final cutoff threshold of an observer w:

ht{u:C'hw"i_(l_C)'hv (33)

where ( is a mixing parameter.

After the graph is established each isolated subgraph is given a unique label c¢. Subse-
quently, each observer w is assigned its own label [,, € C where C' is the set of unique
labels C' = {c1,c,... ¢}

In a final step, the model is refined by removing isolated observers, typically originating
from noisy areas and forming small subgraphs. Subsequently, observers from subgraphs
with fewer than e nodes are removed from the model.
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3.1. Design of SDOstreamclust

Figure 3.2: Illustration of a 2D data cluster shaped like a spiral with added noise (red
dots, 10 percent noisy points). The figure shows the connectedness of points, referred to
as observers, marked with 'x’ (orange if active, grey if inactive). Each observer has a circle
drawn to encompass its x-th closest observer (y = 4). Overlapping circles between two
active observers indicate that they share an edge in the graph, i.e., they are connected.

PREDICTION now operates similarly to SDO, but instead of assigning an outlier score, it
assigns a label to each processed data point. The x nearest active observers to the data
point s are identified, with each observer associated with a label [ € C'. By counting the
occurrences of each label among these x nearest active observers, the most frequent label
or a membership vector is determined and returned.

Raw data Cleansed model Clustered model Prediction

Active Observers
% ldle Observers

o
&

Figure 3.3: Illustration of the SDOclust algorithm, showcasing the key steps involved.
Labels are color-coded for the clustered model and the predictions. Note that no outlier
handling is embedded, so outliers are labeled with a best fit here.

The key steps of the clustering variation of the SDO family of algorithms are illustrated
in Fig. 3.3.
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SDOstream. The SDO algorithm excels at naturally processing streaming data by
using a fixed-size dataset as its model. A key challenge in enhancing this approach
is adjusting the model to integrate new incoming data. To address this challenge,
SDOstream employs a damped time window strategy that focuses on a limited
set of points rather than all past observations, ensuring the model remains up-to-date
and accurate over time.

Algorithm 3.1: SDOstream
Input: Data point (v;,t;)
Set wp < argmincq Py,
Set H, + fti—ti-UH, +1 and P, + fti—t-1)p, Vwe N
Set P, «+ P,+1 YweN
if Q empty or r < —k - In(f) with € R[0, 1] then
if || =k then
‘ Remove wqg from 2
end
Add v; to Q
Set P, <1, and H,, <1
end

© ® N o s W N -

=
= o

To achieve this, SDOstream introduces a fading parameter f € (0,1]. This parameter
controls the rate at which the model adjusts to new data, ensuring the model remains
responsive and accurate over time. To make the fading parameter more intuitive, it is
typically expressed as f = exp(—T~!), where T'€ R*. This formulation allows T to be
interpreted similarly to the window size in a sliding time window approach, providing a
clearer understanding of how quickly old observations are forgotten.

Similar to the SDO algorithm, the observations F,, for an observer w serve as a quality
metric that determines the idle-active split. This value P, is updated using an exponential
moving average approach to adapt to new data. For each processed data point, P, is
updated as follows: P, < f - P, + 1 if w is among the x-closest observers to the data
point, and P, < f - P, if it is not.

Since SDOstream is operating with a fixed-size model and must continuously incorporate
new data, it is essential to regularly replace observers with new data points. A quality
metric like P, should be used for this task. However, a downside of this metric is that
new observers would be constantly replaced, as they inherently have a lower P,, compared
to older ones. To address this, a normalized quality metric P, is introduced, which
adjusts P, in relation to its maximum possible value, here called the observers age H,,.
This maximum possible value can either be updated incrementally for each observer w
or approximated assuming a constant inter-arrival time of new data points, as detailed

in [HIZ20].
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3.1. Design of SDOstreamclust

Similar to the SDO algorithm, new data points are sampled randomly in SDOstream. To
align with the fading parameter f, SDOstream employs a sampling rate designed so that
each observer, on average, is replaced once every time T = ﬁ This corresponds to a

sampling rate of % = —k -In(f) where k is the number of observers. In contrast to the
SDO algorithm, idle observers in SDOstream should not be removed. Instead, they are
retained as they may become active over time.

The detailed framework for LEARNING in the algorithm is outlined in Algorithm [11. The
PREDICTION process remains unchanged to SDO. Compute the median distance between
the processed data point and its x nearest active observers using the currently active
model.

In SDOstream, it is important to note that the data stream is unbounded, preventing the
use of finite populations sampling theory as is done in SDO and SDOclust. Consequently,
the model size must be specified as an external parameter, relying on the user’s knowledge
of the domain to set an appropriate value.

3.1.2 Core algorithm of SDOstreamclust

The primary challenge, compared to SDOstream, lies in the continuous maintenance and
dynamic updating of the graph representation from SDOclust to account for an evolving
set of active observers as the data stream progresses. This difficulty is particularly
pronounced due to the definition of the cutoff threshold (as described in equation (3.1)),
which requires determining the yth-closest observer, denoted as w,,, for each observer
w € ,. Changes in the set of active observers can alter the yth-closest observer for
a given w, leading to subsequent changes in both the global density threshold A and
the entire graph representation, as defined by the corresponding adjacency matrix in
equation (3.2)). Algorithm 3.2 outlines the primary supplementary steps integral to the
SDOstreamclust framework.

Algorithm 3.2: SDOstreamclust
Input: Data point (v;,t;)

1 SDOstream

2 C + Cluster

3 L < Label

4 Set LS « ftiti-1[e Vwe QVeeC

5 Set LS, < L, +1 Vwe L,

The LEARNING phase begins, using the same fitting procedure as in SDOstream (refer to

Algorithm 11). Subsequently, the additional steps unique to SDOstreamclust are executed.
In line 2, the current cluster representation is constructed, as detailed in Algorithm 3.3.

Once the cluster representations are established, they undergo a labeling process, which
is performed in line 3, detailed in Algorithm [3.5. A comprehensive discussion of those
two steps is provided in Section [3.1.3. In the final step of the LEARNING phase (lines
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4-5), the label affiliation statistics are updated. These statistics are essential for both
the PREDICTION phase and the assignment of labels to clusters within the model. This
process starts with applying the predefined fading mechanism, which gradually reduces
the influence of older data, and is followed by updating the statistics based on the labels
observed in the current set L.

In the PREDICTION phase, a cluster label is assigned to the processed data point. Unlike
SDOclust, where each observer w is associated with a unique label [, € C, in this
case, each observer is linked to a cluster-label membership vector 1, € RICl, derived
from previous cluster observations L,,. The membership vector represents the affiliation
probabilities across all known clusters or classes. Consequently, the most dominant
cluster label among the x nearest observers is selected and assigned to the data point, as
determined by:

l; + argmax Z L, (3.4)
ceC weN,

The data structure to be maintained consists of k£ observers, denoted as {2, which
are continuously replaced over time. Each observer w is characterized by its position
(determined by the original data point from which it was sampled), observations F,,, age
H,,, and cluster-observations L, € RI¢l. Throughout the process, P,,, H,, and L, are
updated incrementally. The cluster-observations L, represent a significant enhancement
over SDOstream, as they facilitate the retention of historical statistics crucial for accurate
temporal propagation and the inheritance of labels.

3.1.3 Cluster Formation and Labeling

In the model, a cluster corresponds to a connected component in the graph with at least
e nodes, as discussed in Section 3.1.1. Consequently, a depth-first search (DFS)-inspired
approach, as outlined in Algorithms [3.3| and (3.4, is a natural choice. This method
efficiently gathers observers that constitute a connected component, thereby representing
an individual cluster within the graph.

Algorithm 3.3: Cluster
Output: Set of clusters C
1 for w € Q, do
if w not visited then
S «+ DFS[), w]
if |S| > e then add S to C end
end

[SL TSV V)

6 end
7 return C
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3.1. Design of SDOstreamclust

Algorithm 3.4: DFS

Input: Cluster S, Observer w
Output: Cluster S
Add w to S. Mark w as visited
for v € Q, do
if vw is edge and v not visited then
| S« DFS[S, ]
end
end
return S

N O A W Ny

Since the model (i.e., observers) evolves over time, the graph also undergoes changes.
Consequently, determining whether clusters identified at different time points correspond
to the same cluster is a non-trivial challenge. If the algorithm is robust — meaning the
model parameters are chosen appropriately — observers are unlikely to frequently change
their cluster affiliation. However, the algorithm must also be capable of handling novelty
and change, particularly in relation to the scenarios involving concept drift described
in Section [2.3.1. This ability to adapt is crucial to maintaining accuracy as the model
evolves over time.

The fundamental assumption in labeling clusters over time during stream processing is
that the labeling of observers remains stable and robust. Therefore, if observers are not
replaced too rapidly, it is reasonable to assign a cluster’s label based on a majority vote
reflecting their past affiliations. However, challenges arise in scenarios where two clusters
vote for the same label or when one cluster is absorbed by a larger cluster—situations
commonly referred to as split and merge scenarios. Additionally, new clusters may emerge
over time.

Addressing these challenges requires careful analysis to ensure accurate and adaptive
labeling in dynamic environments. In the case of a split, it is important to determine
whether the new split genuinely represents a robust class or merely reflects model
uncertainty. Conversely, in a merge scenario, it is essential to verify that the merging of
clusters is not a temporary effect caused by noisy data, and that the original cluster is not
prematurely discarded. In general, when new clusters emerge, whether through splitting
or as entirely new formations, it is crucial to confirm that these clusters represent actual
robust classes rather than mere outliers.

To accurately track corresponding clusters over time, it is crucial to maintain statistics
on the affiliation of observers with specific clusters. Similar to the principle where a
data point is monitored by its x nearest observers, a cluster is considered observed by an
observer if the observer belongs to that cluster at the time of observation. As before,
past observations gradually diminish in influence. For each observer w, a record of cluster
observations, denoted as L,,, is maintained. These observations are then utilized both
for labeling new cluster models — represented by the graph at a given time — and for
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3. METHODOLOGY AND EXPERIMENTS
labeling data points during stream processing.
As a strategy for assigning labels to a new cluster model, priority should be given to
clusters that are clearly defined by a majority of their observers’ past label affiliations,
using as much historical information as possible. This approach is particularly critical in
split scenarios, where the larger split should inherit the established label. The smaller
split may be considered a candidate for a novel class, though this possibility requires
future validation. It is essential to ensure that the robustly established class continues to
be represented within the larger split, maintaining continuity and accuracy in labeling.
Consequently, we establish the following procedure for assigning labels to a set of cluster
representations C = {51, 52,...,5,}, where each cluster representation S; is a set of
observers, and for each observer w, its cluster observations L, € RI¢! are known. For
each cluster representation S, we calculate a score s and determine a candidate label ¢
as follows:
. c - c
§= max U; I and ¢ ng;iii U;; I, (3.5)

Here, 1, denotes the cluster membership vector, i.e., the cluster observations L, are
normalized so that their sum equals 1. This normalization ensures that each observer
contributes equally to the label assignment, regardless of their age. The score s determines
the priority queue Q for assigning labels to the cluster representations S. Each cluster
must receive a unique label, meaning that once a label is assigned to one cluster, it cannot
be used for another cluster at this time anymore.

Algorithm 3.5: Label

Input: Clusters C
Output: Labeled clusters £

1 Set priority queue Q from C using criterion (3.5)

2 for S € Q do

3 Drop S from Q

4 if s =0 then

5 Set novel labeled cluster £y <= S

6 continue

7 end

8 if ¢ is available then

9 ‘ Set labeled cluster £z < S and mark ¢ as taken
10 else

11 ‘ Insert S to Q using recalculated criterion (3.5)
12 end
13 end
14 return £
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3.1. Design of SDOstreamclust

In the if-statement beginning at line 4, a new candidate class emerges within the model.
The condition 5 = 0 signifies that all previously recognized classes are already associated
with other clusters where they are more prominent. A new class appears only under
these conditions. Although the class is added to the model, it is not yet guaranteed that
any data point will be assigned to it. Such assignments generally occur when the class
stabilizes within the model and the cluster gradually establishes itself as distinct over
time.

The if-else statement starting at line 8 either assigns a label to the cluster if the candidate
label ¢ is still available, or it triggers a recalculation. This involves updating the priority
queue and proceeding to the next cluster based on the priority.

3.1.4 Nearest-neighbor search

A frequent subtask within the algorithm is performing nearest-neighbor searches in the
model. This is critical for identifying the xz-nearest observer sets, N’ and N, as well as
determining the cutoff threshold h,, for an observer w, as defined in (3.1). In particular,
it is necessary to find the xth closest observer, w.,, for each observer w.

Another related task involves identifying all observers within a specific range when
searching for observers v that have an edge with w (see Algorithm 3.4, line 3). Generally,
the complete graph or its adjacency matrix is not fully known or necessary. Therefore,
candidate observers v are those that are closer to w than the threshold h/,.

This task must be performed repeatedly in a dynamic environment, where the model
frequently undergoes changes. With each processed point, the set of active observers can
change due to the addition of new observers, the removal of old ones, or transitions between
active and inactive states. To address these requirements, we utilize a data structure that
supports efficient z-nearest neighbor searches, range queries and incremental updates,
including insertions, deletions, and replacements.

Hartl [Har23] recommends using M-trees [CPZ¥97] for this purpose. M-trees are partic-
ularly well-suited for streaming scenarios because they allow for the efficient updating
of an existing tree structure. This spatial indexing data structure facilitates efficient
nearest neighbor and range queries within metric spaces. By leveraging M-trees, we
can dynamically adjust the tree structure after its initial construction, ensuring efficient
updates and adaptability in a streaming context.

3.1.5 Outlier thresholding

SDOstreamclust provides an outlierness score by default (SDOstream [HIZ20]) but
generally is not built to handle outlier thresholding internally. A wide range of methods
are available for this task. For example, in m, Han et al. compare 30 different
techniques for identifying outlier thresholds in one-dimensional data, all of which are
available in the Python package PyThresh®.

"https://github.com/KulikDM/pythresh
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While external thresholding is recommended, an option to estimate thresholds internally
is offered. In this approach, an activation function g : RT — [0, 1) based on the hyperbolic
tangent is applied to transform the distances d(v;,w) between data points and observers
into probabilistic outlier scores i.e.

d(vi,w)—hl, ’
Y g ()\ - S ) hl, < d(vi,w)
pi W) = w 36
@) 0 otherwise (3.6)

The underlying intuition is that if a data point lies closer to an observer than the observer’s
cutoff threshold, it is likely to belong to the same cluster as the observer, leading to a
zero probability of being classified as an outlier with respect to that observer. As the
distance between the data point and the observer increases relative to the observer’s
cutoff threshold—representing the local density around the observer—the likelihood of
the point being classified as an outlier also increases proportionally. In Fig. [3.4], this
mechanism is demonstrated using the same setup as in Fig. |3.2.

The parameter h® denotes the number of cutoff thresholds h/, by which a data point
must be separated from its nearest observers to reach a 50 percent probability of being
classified as an outlier. Thus, the scaling factor A for the activation function g(-) is

determined by the equation:
gA-(h°=1))=05 (3.7)

=
o

o
o
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Figure 3.4: 2D data cluster similar to Fig. 3.2. The red dot with a black edge indicates a
processed point, likely an outlier detected by human judgment. The radial color scale
represents outlier probability relative to a highlighted close observer. The blue circle
marks the cutoff threshold (x = 4), and the purple circle indicates the 50% outlier
threshold, defined by the relative outlier sensitivity parameter h° = 2.5.

A data point is classified as an outlier and its cluster label is replaced with the outlier
label if the average probabilistic outlier score among its nearest active observers, p¢,
exceeds 0.5. This average score is computed as follows:
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3.1. Design of SDOstreamclust

p? + meanp}(w) (3.8)

The probabilistic outlier scores p¢(w) can also be interpreted as a measure of how well
an observer w fits the data point v; it is observing. Under this interpretation, the
PREDICTION step, described by equation (3.4), can be adapted to a weighted approach.
In this approach, the cluster label /; is determined by:

l; + argmax Z (1—pf(w)) Ly (3.9)
ceC WEN,

Here, (1 — p?(w)) represents the fit of observer w to the data point, and 1, denotes the
cluster label associated with observer w.

As a final remark, while here the hyperbolic tangent function is employed as the activation
function, it is worth noting that alternative activation functions may also be employed.

3.1.6 Batch processing and input buffer

Although streaming data analysis typically relies on incremental processing, batch opera-
tions can sometimes be advantageous. Batches provide more comprehensive contextual
information for analysis, and in many cases, applications can tolerate batch processing
effectively.

Batch processing is well-suited to the proposed algorithm, requiring only minor adjust-
ments to the usual sequence of operations. Typically, the process follows the order of
prediction, fitting, and then sampling or replacement. In the batch processing framework,
however, sampling or replacement occurs first, necessitating a queue based on the criterion
P,, when multiple observers are to be replaced. This is followed by model fitting and
then the prediction phase. Special attention is required in these latter steps to properly
handle nearest neighbor calculations for points added to the model through sampling.
Specifically, when determining N, N/, or the y-closest observer, the newly sampled points
must be excluded from the computations.

Batch processing enhances efficiency by minimizing the frequency of computationally
intensive graph calculations, which are executed once per batch rather than for each
individual data point. Similarly, an input buffer can be utilized to further optimize
performance. In this approach, the LEARNING phase is postponed until the buffer reaches
its capacity, at which point the learning process is carried out in a single iteration,
creating a virtual batch. As long as the buffer size remains small relative to the dynamics
of the data stream, its impact on overall performance is minimal. The buffer’s main
role is to reduce computational load, which, in the case of SDOstreamclust, is primarily
focused on clustering €2,.
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Cluster observations during batch processing must be slightly modified to account for
batch age for fair scoring. The batch age is defined similarly to observer age and is
updated iteratively:

1 if i =1
HB:{ Gt ) n (3.10)
f i i—1 HB +1 ifix>1

where B = {(vp,, b, )y (Vbys toy)y - -+ (b, , )} denotes the batch. The update is given by:

LE « ftBimtsi) e vy e QVee O

(3.11)
L§)<—LSJ+HB Vee L

where tp, denotes the timestamp of the ith processed batch.

3.1.7 Parameters

Most parameters are inherited from SDO, SDOstream, and SDOclust, as SDOstream-
clust combines and enhances these approaches. A broader discussion can be found

in [VZZ18], [HIZ20], and [IZHZ23]. Below, we categorize and discuss SDOstreamclust

parameters based on their characteristics:

e Rate of Change: Two key parameters in this category are the number of observers k
and the number of neighbors x, both of which influence the model’s responsiveness
to data changes. The number of observers k& and the idle-observer threshold p
together define the size of the active model, approximately (1 — p) - k, directly
affecting its granularity in capturing relevant data patterns. However, there is a
trade-off: a larger model becomes more rigid to changes, while a smaller model can
adapt more readily.

The number of neighbors x determines which aspects of the model gain importance
when processing each data point. A small x can lead to overfitting, making the
model overly sensitive to fluctuations, whereas a high  may oversimplify the model,
resulting in reduced stability and a less accurate representation of the underlying
data patterns.

o Temporal memory: The fading parameter f € (0,1) controls how quickly the model
adapts to new data clusters, while also influencing its stability in the presence
of noise. For ease of interpretation, user input is provided as a time parameter
T € R*. This parameter functions similarly to the window size in sliding window
(SW) approaches, with T' controlling the model’s sensitivity to changes in the data.
The relationship between f and T is defined as f = exp(—T~!). The choice of T is
highly dependent on the application.

Additionally, this parameter influences the rate of change in cluster positions,
controlling how quickly clusters can shift spatially in response to new data.
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o Cluster formation: The parameter x defines the local cutoff thresholds for observers
in the model. In our implementation, x is expressed either as a fraction of the
number of observers k£ or as a minimum value. Intuitively, y should be set lower
when a greater number of distinct clusters is expected, and higher when fewer,
larger clusters are preferred. However, caution is needed: lower y values may lead to
overfitting by creating too many small clusters, while higher values risk underfitting,
failing to capture meaningful distinctions between clusters. The optimal y depends
heavily on the specific application and dataset.

The parameter ¢ controls the trade-off between local and global thresholding when
cutting graph edges: ¢ = 1 corresponds to purely local thresholding, and { = 0
to purely global thresholding. Local thresholding accommodates clusters with
significant density differences but risks merging nearby clusters and forming clusters
in noisy areas. In contrast, global thresholding avoids these mergers but may split
legitimate clusters.

The parameter p cleans the model from outliers and noise. A low p risks including
noise and outliers, while a higher p may oversimplify the model, potentially reducing
its accuracy. Thus, p must strike a balance between computational efficiency and
the model’s ability to accurately represent the data.

The parameter e (minimum observers) prevents noise or outliers from being mis-
classified as clusters, improving robustness. However, if set too high, it risks
overgeneralization.

e OQutlier thresholding: The relative outlier sensitivity parameter h" scales the activa-
tion function used to determine the outlier probability. Higher values of h° result
in fewer points marked as outliers, while lower values increase the rate of marked
outliers.

We anticipate that the parameters for algorithms within the SDO family will demon-
strate considerable robustness. This means that the same parameterization can tolerate
multiple different scenarios while maintaining optimal accuracy, and also that the pa-
rameters tolerate ranges of variation without affecting the accuracy obtained for a given
scenario. This has been convincingly evaluated in SDOclust and recently for
the parameter z in SDO [IMZ24], which stands out as the most stable neighborhood
parameter-dependent anomaly detection algorithm among those evaluated in the cited
work. However, experiments will be conducted to evaluate their performance, with a
more detailed analysis and discussion provided in Section 4.2.

3.1.8 Initialization and Data Integrity

Model initialization. The warm-up phase is a critical initial period in the lifecycle
of a model, where it transitions from an untrained or partially trained state to a more
robust and fully operational status. During this phase, several challenges and issues may
arise that can significantly impact the model’s performance and stability.
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One of the primary concerns during the warm-up phase is model instability. Since the
model is not yet fully trained, its predictions may be unreliable and subject to high
variance. This instability can lead to inconsistent outputs and make it difficult to gauge
the model’s effectiveness accurately.

Another challenge is inadequate learning. In the early stages, the model may not yet have
enough data or experience to capture the underlying patterns in the data effectively. This
can result in poor performance, as the model struggles to learn meaningful representations
from the limited information available.

An essential adaptation for our method during the warm-up phase is the proportional
adjustment of parameters related to the observer size k. Specifically, adjustments may
be necessary for parameters such as the number of neighbors z, the local threshold for
graph cutting x, and the minimum number of observers e. These adjustments ensure
that the method remains effective and robust as the model evolves from its initial, less
stable state.

In the early phase of model training, points that have been sampled and observed
frequently tend to have an advantage due to the smaller model size (i.e., the number of

observers). Assuming randomness in data sampling, the probability of a given observer
z z—1 2 1

k k-1 k—o+2 k—z+1

having observed a particular data point is given by

k
This expression represents the reciprocal of the binomial coefficient , which denotes
x

the number of ways to choose x points from a total of k& observers. This probability
reflects the likelihood of a data point being observed by a specific number of observers
during the initial stages of model development when the model size is still small.

This adjustment simplifies the observation scoring during the warm-up phase, as outlined
in lines 2-3 of Algorithm |11. The updated scoring formula is:

e [ 3] e

Here, the parameters with tildes (I;: and Z) are those used at this time during the warm-up
phase, while k£ and = are the target parameters of the final model. Similarly, the age H,,,
is updated in the same manner as P,,.

Duplicate points. A challenge observed in stream clustering is the frequent recurrence
of identical data points, which can disrupt the clustering process. This issue arises
because only a limited number of observers, denoted as x, can evaluate a given data
point. When more than x observers are assigned to the same point, it becomes unclear
which observer should score the observation, potentially leading to temporal bias.

A more elegant solution is to augment the data point by adding a small noise term in an
additional dimension. Our implementation provides this functionality. The noise term e
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should be chosen such that d(v;,v;) > € for distinct data points v; # v;, ensuring that
identical points remain distinguishable and mitigating the bias introduced by duplicates.

This procedure is implemented but is disabled by default; however, it is highly recom-
mended if the dataset is known to contain duplicate points.

3.2 Evaluation

This section evaluates SDOstreamclust, covering datasets, benchmark algorithms, param-
eter tuning, and performance metrics. All materials and experimental setups are available
in a DOI-citable repository and can be replicated using Docker?. SDOstreamclust
can also be installed via pip [ or directly from the repository™.

3.2.1 Datasets

This section presents the datasets used, featuring both synthetic data and real-world
applications.
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Figure 3.5: The Drifting Conglomerates dataset. Referring to Fig. 2.3, the blue and orange
clusters alternate in frequency, exemplifying sudden and reoccurring drift. The brown
and grey clusters display gradual drift, with brown often preceding a slow replacement by
grey. The dark green cluster follows a spiral pattern, simulating incremental drift while
exhibiting a non-convex shape. The light green and yellow clusters are geometrically
concentric with significantly different densities, moving linearly and further demonstrating
incremental drift while maintaining geometric alignment, which presents additional
challenges due to their proximity and varying density. Outliers are marked in black.

2https://hub.docker.com/r/fiv5/sdostreamclust
3https://pypi.org/project/pysdoclust-stream/
‘https://github.com/CN-TU/pysdoclust—-stream/
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Drifting Conglomerates. The synthetic dataset presents challenges for stream clus-
tering algorithms due to its complex patterns, including simultaneous concept drift,
outliers, noise, non-convex shapes, and varying densities. In two dimensions, it comprises
approximately 10,000 data points across seven types of evolving clusters, serving as
a benchmark for evaluating clustering algorithms’ versatility regarding these complex
patterns. The data is illustrated in Fig. 3.5, color-coded by label.

Specific concept drift. This collection of datasets contains 160 scenarios generated
using MDCstream [[OHZ20|, available for download from the repository [[gl21]. Each
scenario contains 10,000 data points with dimensionality ranging from 3 to 30 and 2 to
10 clusters that vary in size and spatial distribution. The categories are as follows:

a. base refers to the absence of concept drift, characterized by stationary clusters that
appear with consistent frequency,

b. sequential simulates sudden drift, where clusters appear one by one over time,
meaning that no two clusters appear simultaneously,

c. non-stationary simulates both sudden and gradual drifts, as well as reoccurring
contexts. In this type, clusters coexist, appear, and disappear in an arbitrary
manner, and

d. moving involves all clusters moving linearly through space at different speeds,
representing incremental drift.

All datasets in these categories have both a clean version, where outliers are explicitly
excluded, and a normal version, which includes outliers at a rate of less than 5%. Fig.|3.6
illustrates this dataset and its categories using two dimensions and time for visualization.

Real-world datasets. This collection features four datasets originating from diverse
real-world applications, each exhibiting time dependency.

a. Network-traffic flows with 22 numerical features and timestamps, extracted from
the first 10,000 entries of the TII-SSRC-23 dataset. It is used to evaluate Intrusion
Detection Systems [HLA23], with Ground Truth defined by the subtypo attribute
across 6 classes.

b. Occupancy. The dataset [CF16] includes temperature, humidity, light, CO2 con-
centration, and humidity ratio to predict room occupancy (occupied or empty).
It consists of around 8,000 entries recorded every 5 minutes, with timestamps
provided.
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Figure 3.7: Plots of the Real-world Datasets collection. Colored according to the clusters
defined in the Ground Truth.
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c. Fertility vs Income. This dataset, available from Gapminder | and through ver-
sion from [IVZ23], includes average babies per woman and GDP per capita (in
PPP dollars) for 18 countries, with a binary ground truth label: European or
non—-European.

d. Available from the U.S. Census Bureau and the Federal Reserve Economic Database
(FRED) [, the Retail dataset, as used in [[IVZ23], includes a combined time series
of RETAILIMSA, RETAILIRSA, and RETAILSMNSA with approximately 1,000
data points and three distinct classes.

Fig. 3.7 visually illustrates four real-world datasets, providing insight into the challenges
associated with drift, density, and geometry.

3.2.2 Algorithms and Parameters

All algorithm implementations used in the evaluation, except for SDOstreamclust, are
from the River package . Those are

o CluStream maintains statistical information through micro-clusters,
which store temporal data summaries following a pyramidal pattern. When a new
point arrives, it is either added to the closest micro-cluster or, if it doesn’t fit,
space is freed by deleting or merging clusters. This improved version uses Welford’s
algorithm for incremental variance calculation. Since River lacks an offline phase, a
timegap parameter triggers incremental K-Means clustering on the micro-clusters
to form macro-clusters.

o DBStream is a stream clustering algorithm that tracks the density between
micro-clusters using a shared density graph. When a new data point arrives,
the algorithm either creates a new micro-cluster or updates nearby clusters by
adjusting their weights and positions relative to the point. The shared density graph
is updated accordingly, and weak clusters are periodically removed to optimize
performance. For offline clustering, a connectivity graph is built from strong micro-
clusters, and a variant of DBSCAN [EKS*96] is used to form macro-clusters based
on density connections between the clusters.

o DenStream is a stream clustering algorithm that detects clusters with
arbitrary shapes and is robust against noise. It uses core-micro-clusters to summarize
dense areas and employs a pruning strategy to manage potential and outlier micro-
clusters, ensuring memory efficiency. When a new point arrives, it is either merged
into an existing potential or outlier micro-cluster, or a new outlier cluster is created.

Shttps://www.gapminder.org/data/

Shttps://www.kaggle.com/datasets/census/
retail-and-retailers—-sales-time-series-collection

"https://github.com/online-ml/river
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Periodically, micro-clusters with weights below a threshold are deleted. Offline, a
variant of DBSCAN [EKST96] connects density-based potential micro-clusters to
form final clusters.

o StreamKMeans [OMMT02] uses an incremental K-Means approach. Initially, cluster
centers are set using a K-Means instance. As new points arrive, they are added
to a temporary chunk until it reaches its maximum size, at which point a new
incremental K-Means instance processes the chunk, updating the centers. The
chunk is then cleared for new points.

KMeans and TextClust were intentionally excluded from the evaluation, with KMeans not
being incremental and TextClust specializing solely in text clustering. River ﬂm
was chosen for its reliability, performance, and simplicity, providing efficient implementa-
tions of the key clustering algorithms widely recognized in the field.

Table 3.2| shows the hyperparameters set during experimentation for each algorithm.
Each method presents a different constellation of them, but usually with similar functions
that can be summarized in the following groups:

a. number of clusters, in those algorithms that need to be imputed with this value
externally

b. internal update, referring to an internal batch or buffer for updating specific
computations, models or routines

c. rate of change, indicating the inertia of clusters to vary their spatial position

d. cluster formation, defining cluster boundaries, composition, distances, and density
thresholds

e. outlier thresholding, determining coefficients to disclose outliers

f. temporal memory, which sets how long and with what weight past information has
to be retained, affecting also the speed of adaptation to new changes

As in static clustering, it is desirable that the hyperparameters be as minimal as possible,
robust, intuitive and self-adjusting. However, in streaming data analysis, particularly
the parameters related to the memory or temporal window are highly subjective. They
determine whether the algorithm should remember for a long time or forget soon and
become more flexible to change. Such parameters, yet intuitive and easy to tune, are
commonly unavoidable and require the adjustment based on expert knowledge.
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Table 3.2: Hyperparameters. Searched indicates values optimized through Grid Search;
otherwise, they are fixed. Non-listed hyperparameters use default values.

parameter [ type values searched
time_gap internal update I3 no
CluStream n_macro_clusters number of clusters K not
time_window temporal memory [10, 7] yes
max_micro_clusters cluster formation [5 -k, 20 - K] yes
micro_cluster_r_factor cluster formation [1.5, 4] yes
sigma cluster formation [0.1, 5.0] yes
mu cluster formation [0.0, 1.0] yes
halflife rate of change [0.1, 0.9] yes
cleanup_interval internal update 13 no
DBstream clustering_threshold cluster formation [0.1,...,3] yes
fading_factor temporal memory [0.01, 0.5] yes
intersection_factor cluster formation [0.1, 0.9] yes
minimum_weight outlier thresholding [0.1, 0.9] yes
mu outlier thresholding 20 no
DenStream stream_speed internal update I3 no
max_micro_clusters cluster formation [5 - K, 20 - r{] yes
decaying_factor temporal memory [0.1, 0.9] yes
beta outlier thresholding [0.1, 0.9] yes
epsilon cluster formation [0.01, 0.3] yes
chunk_size internal update I3 no
streamKMeans n_clusters number of clusters K no*
halflife rate of change [0.1, 0.9] yes
sigma cluster formation [0.1, 5.0] yes
mu cluster formation [0.0, 1.0] yes
input_buffer internal update I3 no
SDOstreamclust  k rate of change 500f no
outlier_threshold outlier thresholding 2, 7] yes
T temporal memory [k, 7] yes

k: number of clusters, £ = 10: internal update interval, 7 = 0.1 - n: training size, n: data size.
Notation: f < exp(—T~1), h® < outlier_threshold.

. Small datasets (e.g., Retail, Fertility vs. Income) use k=100 observers.
. Clusters input; algorithms leverage Ground Truth (k).

3.2.3 Validation metrics

Since the datasets used in the experiments include ground truth labels, a measure that
assesses the degree of agreement between the algorithm’s predictions and the ground
truth labels is utilized. The Rand Index (RI) [Ran7l] evaluates clustering by comparing
pairs of elements to see if they are assigned to the same or different subsets in both

partitions. Specifically,

Ri— 210 (3.12)

(2)
where a is the number of pairs of elements assigned to the same subset in both partitions,
b is the number of pairs of elements assigned to different subsets in both partitions, and
(Z) is the total number of possible pairs of points.

The Rand Index (RI) has several downsides: it doesn’t account for chance agreement,
lacks normalization, and can give misleadingly high scores for random clustering. The
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Adjusted Rand Index (ARI) [HASH] addresses these issues by adjusting for chance,
providing a normalized and more accurate measure of clustering quality. The Adjusted
Rand Index (ARI) ranges from —1 to 1. A value of 1 indicates perfect agreement between
the clusterings, 0 signifies performance equivalent to random chance, and negative values
suggest that the clustering agreement is worse than what would be expected by chance.

In real-time data streaming, labels often represent a relationship where the input features
depend on the target variable, known as a Y — X problem. This dependency can lead to
a situation where the labeling may not fully align with the underlying characteristics of
the data, even though it serves the application’s purpose. Such a mismatch may obscure
the true data structure, complicating the model’s ability to accurately capture patterns.
In these scenarios, internal validation measures become essential, as they provide an
independent assessment of model performance without relying on potentially inconsistent
labels that may not reflect the evolving geometry of the data.

For the evaluation of existing incremental clustering validation indices (iCVIs), the
separation-based Partition Separation Index (PS) is selected [WY05]. This index assesses
the quality of partitions and is applicable to both static and incremental clustering
problems, particularly excelling at detecting under-partitioning [DSMW20], [Lug08].
Higher values of the PS index indicate better partition quality, making it a useful metric
for evaluating clustering performance. However, since the PS relies on cluster centroids in
its definition, methods that use centroids may achieve better results with respect to this
index. An obvious limitation of this centroid-based approach is its difficulty in handling
non-convex clusters and noise, which can lead to suboptimal evaluations in more complex
data structures.

Incremental clustering validation indices (iCVIs), such as the selected Partition Separation
Index (PS), are constrained by their incremental deployment. Rather than functioning
as strict validation measures, these indices serve as performance monitors, providing
continuous feedback on the clustering process. This ongoing evaluation is particularly
valuable in dynamic, real-time environments where clustering models must continuously
adapt to evolving data distributions. However, internal validation measures specifically
designed to address concept drift, such as the Temporal Silhouette Index (TS) [IVZ23],
offer a more refined assessment. Inspired by the well-known Silhouette Index [Rou87] in
static clustering, the T'S index combines measures of cluster compactness and separation,
incorporating temporal aspects to account for the evolving nature of the data. Higher
values in the range between 0 and 1 indicate better clustering. Like the PS index, the
TS index relies on cluster centroids, inheriting similar limitations when dealing with
non-convex clusters or noisy data. The TS index is configured with its recommended
default parameters w = 100, k¥ = 1000, and ¢ = 1.

In the context of outlier detection, we employ the ROC (receiver operating characteristic)
AUC (area under curve) score as an evaluation metric because of its effectiveness in
addressing imbalanced class labels. This score offers a comprehensive assessment of
a model’s performance by examining both the true positive rate (TPR) and the false
positive rate (FPR).
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The ROC curve plots the FPR on the x-axis against the TPR on the y-axis. FPR
represents the probability of a false alarm, indicating how likely it is for a negative
instance to be misclassified as positive. Increasing the threshold for class labeling reduces
the FPR, as fewer negative instances can exceed this higher threshold. Conversely, TPR
reflects the probability that a positive instance is correctly classified, and lowering the
threshold can maximize this metric, though it also raises the FPR.

The ROC-AUC score quantifies the likelihood that a randomly chosen positive instance
will receive a higher score for the positive class than a randomly chosen negative in-
stance. A classifier should ideally achieve an ROC-AUC score greater than 0.5, indicating
performance better than that of a random classifier [FGGT18]. This capability to
evaluate performance across varying classification thresholds makes ROC-AUC partic-
ularly useful for models dealing with imbalanced class distributions, such as in outlier

detection [HYST17].

3.2.4 Experiments

Evaluation and Comparison. The evaluation consists of three sets of experiments,
all adhering to the same experimental setup. Parameters related to internal update
are configured to process 100 data points, with the initial 200 data points allocated for
algorithm initialization. During the tuning phase, the first 10% of the dataset is used to
optimize the searched parameters listed in Table 3.2.

1. Tuning Phase: Parameter optimization is performed using Optuna [CT19], selecting
the best parameters from 50 combinations generated by a Tree-Structured Parzen
Estimator [Wat23], with ARI as the optimization function.

2. Analysis Phase: Following the tuning phase, the algorithm processes the entire
dataset incrementally. Performance is evaluated using ARI, PS, and TS indices,
and runtime is also recorded.

The experiments are designed to align with the datasets described in Section [3.2.1}

1. Multiple Concept Drift: This experiments dataset features complex scenarios and
diverse concept drift patterns. The goal is to assess the algorithms’ ability to
manage and adapt to multiple, evolving concept drifts.

2. Specific Concept Drift: This set of experiments focuses on how the algorithms
handle distinct concept drift patterns, with and without outliers.

3. Real-world data: This series of tests aims to evaluate the algorithms’ performance
in real-world streaming data scenarios, assessing their practical applicability.
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Parameter Testing. A second set of experiments examines the effects of parametriza-
tion on the performance of SDOstreamclust. In these experiments, parameters are ran-
domly altered across 10,000 configurations using Optuna [CT19] to assess how changes
impact the overall effectiveness and adaptability of SDOstreamclust. The focus is on
systematically exploring different parameter combinations, as outlined in Table 3.3), which
details the parameter search space, including ranges, grid sizes, and scales. The goal is to
evaluate their influence on the primary performance metric, Adjusted Rand Index (ARI),
in order to identify optimal parameter settings and understand the algorithm’s sensitivity
to various configurations. This experiment is applied to the Drifting Conglomerates
dataset, designed to simulate a range of concept drift scenarios, as well as the real-world
datasets from Section [3.2.1. The same setup is evaluated multiple times due to the
stochastic nature of the algorithm (e.g., sampling variability), with 10 repetitions for
the smaller datasets (Retail, Fertility vs Income), where the effect is more pronounced,
and 3 repetitions for the larger datasets (Drifting Conglomerates, Network traffic-flows,
Occupancy). Median ARI values are reported for each experiment to ensure robust
results.

Table 3.3: Parameters explored in the experiments, including parameter type, value
range, type of search range (linear, log, and square), and grid size. Here, an empty entry
for grid size indicates a continuous grid.

[ type range grid size scale
kf rate of change [35, 800] 10 logy
%t rate of change [1, 27] 9  log,
T* temporal memory [50, 2000] log,
outlier_threshold | outlier thresholding [1.1, 10] 10 sq
qv cluster formation [0, 0.5] lin
zeta cluster formation  [0.01, 0.99] lin
chi_prop® cluster formation [0.01, 0.5] log,

Notation: x < |chi_prop - k|, f < exp(—T~ 1), h® < outlier_threshold, p <+ qv.

: Small datasets (e.g., Retail, Fertility vs. Income): range [25, 200], grid size 7.

: Small datasets (e.g., Retail, Fertility vs. Income): range [1, 19], grid size 8.

: Retail: range [50, 250]; Fertility vs. Income: range [50, 500].

: Datasets with > 3 classes (e.g., Drifting Conglomerate, Network traffic-flows): range [0.01, 0.35].

O ¥ o —+

The same experiment, focused solely on outlier detection, is applied to the datasets
with outlier labels in the ground truth, specifically the Drifting Conglomerates. In this
context, parameters related to cluster formation, namely chi_prop and zeta, are not
relevant. The parameters explored in this analysis are summarized in Table 3.4. Median
ROC-AUC scores of 5 repititions are reported for each configuration.

Visualization. Our implementation provides real-time access to the current model
and its active observers (a small set of data points) during the stream analysis process,
enabling effective visualization of the model’s performance. This study employs three well-
performing configurations—small, medium, and large—based on insights from parameter
testing experiments. These configurations, detailed in Table (3.5, allow for an observational
visual analysis of the clustering algorithm.
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Table 3.4: Parameters explored in the experiments related to outlier detection, including
their type, value range, grid size, and scale of the search space.

type range grid size scale
k model size 35 to 800 10 log,
x rate of change 1 to 27 9 log,
T temporal memory 250 to 2000 log,
outlier_threshold outlier thresholding 1.1 to 10 20 sq
qv model s./outlier thr. 0 to 0.5 lin

Notation: f < exp(—T~1), h°® < outlier_threshold, and p ¢ qv.

Table 3.5: Configurations for Different Model Sizes: Parameter settings for small, medium,
and large models, illustrating the effects of chi_prop, k, and T on the clustering
algorithm’s performance in the Drifting Conglomerates dataset.

k ‘ T chi_prop X zeta aqv
small 50 700 0.125 1 0.50 0.02
medium 200 700 0.050 2 0.45 0.10
large 800 1750 0.015 2 0.70 0.20

The analysis is conducted on the Drifting Conglomerates dataset, providing a comprehen-
sive understanding of how the model adapts to varying parameterizations, particularly
the most relevant parameters: chi_prop, k, and T. By comparing these different config-
urations, we can observe the effects of altering these key parameters, thereby gaining
insights into the clustering algorithm’s behavior under diverse conditions, especially in
the context of concept drift.
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CHAPTER

Results and Discussion

In this chapter, we present the results obtained from the experiments, described in
Section [3.2.4, and provide a discussion on their implications. A brief description of the
implementation used for these experiments can be found in the Appendix [I.

4.1 Evaluation and Comparison

In this section, we present the results for each set of experiments individually, followed
by a summary of the overall observations. Given that some algorithms demonstrate
significant sensitivity to parameter settings, the experiments involving Concept Drift and
Real-world Data are conducted five times each. The results are presented as averages to
account for this variability.

Specific concept drift collection. Table |4.1) presents the results of experiments
conducted with this collection, which evaluates algorithm performance across a variety of
specific concept drift scenarios. The table reports the median values for each metric and
runtime, aggregated across all datasets within each category. The results, illustrated in
Figures 4.1 and |4.2, demonstrate the superiority of both DBstream and SDOstreamclust
across all settings and data types, whether stationary or exhibiting different forms of
concept drift, with or without the presence of outliers. In comparison, StreamKMeans
and DenStream show weaker performance, while CluStream consistently exhibits the
lowest performance overall.

In sequential concept drift scenarios, both DBstream and SDOstreamclust experience a
decline in performance. However, the drop is notably less severe for SDOstreamclust, as
illustrated in Figure |4.2. This behavior can be attributed to SDOstreamclust’s tendency
to misclassify the initial points of emerging clusters as outliers, reflecting its cautious
approach to introducing new clusters and its reluctance to prematurely split existing
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4. RESULTS AND DISCUSSION
Table 4.1: Performance results on the Specific Concept Drift experiments. Top results
(within 5% of the best) are highlighted in bold.
base moving non-stationary sequential
algorithm | clean normal clean normal clean normal clean normal
CluSt 0.10 0.0l  0.05 0.02  0.18 0.14 021 0.18
ARI 1 DBst 1.00 1.00 1.00 1.00 1.00 1.00 0.36 0.76
DenSt 0.41 052  0.79 0.77  0.28 0.19  0.00 0.00
SDOstcl | 1.00 0.99 1.00 0.99 0.99 0.99 0.97  0.96
stKMns 0.93 0.62  0.80 0.51  0.92 0.61  0.00 0.67
CluSt -0.02  -0.00  0.04 0.07 018  -0.09 048 0.22
TS 4 DBst 092 091 0.82 0.83 0.94 093  0.32 0.65
DenSt 0.41 0.56  0.59 0.59  0.39 0.29  -0.07 0.11
SDOstcl | 0.88 0.88 0.81 0.81 0.77 080 0.54  0.75
stKMns 0.81 0.56  0.62 0.46  0.78 0.47  0.44 0.69
CluSt 0.38 021 081 0.32  0.49 052  0.97  -0.43
iPS 1 DBst 1.69 -39.46 1.86 -74.10 1.56 -30.06  0.00 -31.89
DenSt 0.65 096 054  1.47 094 0.99 000  0.00
SDOstcl | -5.15  -4.91  -6.90  -4.06 -13.61  -7.29 -17.95 -12.35
stKMns 127  1.08 131 091  1.12 0.75  0.97 0.06
CluSt 89.73 12810 106.81 142.33 24.38  20.62 10451 180.28
time (s) | DBst 6.57 8425  6.94 89.86 4.84 4656  6.13  66.74
DenSt 2.25 240  3.87 417 1.99 215 1.44  1.50
SDOstcl | 27.65  31.67 23.50  33.58 31.16  35.95 41.42  47.94
stKMns 1.78 1.81 1.68 1.75 1.55 1.61 233 2.49
sKMns: StreamKMeans, SDOstcl: SDOstreamclust, CluSt: Clustream, DenSt: DenStream,
DBst: DBstream
ones. In contrast, DBstream tends to overcluster low-density regions, fragment evolving
clusters, and struggles to maintain clear separations between sequentially forming clusters.
While this could also be due to a small training set in the tuning phase leading to poor
parameterization, SDOstreamclust is undoubtedly far more robust with respect to the
challenges posed by sequential cluster appearances.
In both experiments related to concept drift, the results indicate that the PS index
fails to effectively capture performance. This limitation stems from the complex, often
non-convex nature of the data, which poses unique challenges in concept drift scenarios.
In contrast, the TS index offers a clearer representation of performance, as illustrated in
Figures 4.1 and 4.2 (compare ARI (a) with TS (b) and PS (c)).
Another important characteristic is stability, which is highlighted in both figures, show-
casing the superior performance of SDOstreamclust. Its consistent results across various
scenarios reflect the robustness of the algorithm, especially when compared to other
methods that require extensive parameter tuning or are more sensitive to data variations.
This stability aligns with the design philosophy of SDO algorithms, which utilize a
minimal number of parameters and function effectively with default settings. On the
other hand, CluStream’s suboptimal performance can be attributed to its sensitivity to
numerous parameters. Since it relies on k-means internally, which also requires careful
tuning, the overall parameter adjustment for CluStream becomes inherently complex and
challenging.
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Figure 4.1: Box plots showing the aggregated performance indices from the Specific
Concept Drift tests, grouped by datasets with noise (orange) and without noise (blue).
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Figure 4.2: Box plots showing the aggregated performance indices from the Specific
Concept Drift tests, grouped by dataset types: base, moving, non-stationary, and
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4. RESULTS AND DISCUSSION
When considering runtime performance, StreamKMeans and DenStream emerge as
the fastest algorithms. Following closely are SDOstreamclust and DBStream, with
SDOstreamclust demonstrating remarkable stability in its runtime efficiency. Notably,
DBStream requires significantly more computational effort when handling noisy data,
which can negatively impact its overall performance. In contrast, CluStream exhibits
suboptimal runtime characteristics. However, it is important to note that SDOstreamclust
can scale efficiently by leveraging batch processing (in experiment size 1) and input
buffering (in experiment size 10) to optimize runtime, making it a robust choice for
various data scenarios.
Drifting conglomerates and real-world data. The results of these tests are
summarized in Table 4.2 Again, due to the sensitivity of some algorithms’ parameters,
we show the median results of five repetitions.
Table 4.2: Results of the Drifting conglomerates and Real-world data experiments. Top
results (within 5% of the best) are highlighted in bold.
Drifting Fertility Network
algorithm | Conglomerates vs Income traffic-flows Occupancy Retail
CluSt 0.088 0.001 0.265 0.010 0.113
ARI 4 DBst 0.345 0.524 0.000 0.340 0.939
DenSt 0.193 0.001 0.001 0.000 -0.000
SDOstcl 0.953 0.422 0.461 0.118 0.705
stKMns 0.396 0.009 0.060 0.006 0.776
CluSt 0.231 0.141 0.406 0.816 0.312
TS 4 DBst 0.536 0.537 0.585 0.767 0.677
DenSt 0.577 0.057 0.694 -0.054 0.279
SDOstcl 0.783 0.413 0.326 0.647 0.529
stKMns 0.604 0.258 0.595 0.821 0.698
CluSt -1.375 1.011 0.455 0.976 0.384
iPS 1 DBst -18.522 -0.571 0.894 -2.441 1.195
DenSt 0.757 0.663 -1.719 0.000 0.975
SDOstcl -13.257 -4.437 -41.212 -34.916 -7.904
stKMns 1777 1.446 0.196 0.970 1.350
CluSt 8.422 3.550 1154.075 6.612 0.244
time (s) |  DBst 9.085 0.875 9.262 3.368 0.160
DenSt 1.717 0.370 1.720 0.858 0.091
SDOstcl 20.558 0.982 32.950 25.220 0.217
stKMns 1.082 0.260 2.761 0.604 0.064
sKMns: StreamKMeans, SDOstcl: SDOstreamclust, CluSt: Clustream, DenSt: DenStream,
DBst: DBstream
Among the algorithms tested, SDOstreamclust emerges as the most effective for the
Conglomerative Drifting dataset, demonstrating a substantial advantage over the others.
It uniquely manages to handle the simultaneous occurrence of various types of concept
drift specific to this dataset.
For the Retail dataset, DBstream achieves the best clustering performance. However,
both StreamKMeans and SDOstreamclust occasionally merge the upper clusters to some
extent. This behavior is likely due to the proximity of the clusters, their simultaneous
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evolution, and the small number of data points in the intermediate cluster, which may
be considered local outliers near the upper cluster (Fig. 3.7.d).
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Figure 4.3: Bar plots for the Real-world and Drifting Conglomerate performance results.

In the Fertility vs. Income dataset (Fig.[3.7.c), both DBstream and SDOstreamclust are

able to differentiate the two evolving trends (European and non-European countries).

However, SDOstreamclust experiences a decline in performance initially, likely due to the
close proximity of the two groups, which causes overclustering. This might be because
the model is still in its formative stages and not yet fully developed.

The relatively small size of both the Retail and Fertility vs. Income datasets allows
the startup phase to have a more pronounced impact on the overall performance of all
algorithms, as they have less time, relative to the dataset size, to stabilize and form a
robust representation. The limited dataset size may require a more specific setup, such as
fine-tuning algorithm parameters, to ensure adequate model stability and representation
throughout the experimental runs.

The Occupancy dataset (Fig. 3.7.b) poses unique challenges. Only DBstream and
SDOstreamclust manage to track the data’s dynamics, though their results do not match
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the Ground Truth. The difficulty arises from the slow, continuous changes in most features
(temperature, humidity, COz), leading to overlapping Ground Truth classes. The feature
light does change abruptly, but this signal is obscured by the gradual drifts in other
features. When a new light period emerges or ends, DBstream and SDOstreamclust tend
to create new clusters rather than linking to previous ones. CluStream and StreamKMeans
achieve high internal evaluations (PS and TS) because they almost always detect a single
cluster throughout the stream, preventing them from being completely zeroed out as
DenStream is, since internal validation struggles with single-label clusterings.

The complexity of the Network-traffic dataset (Fig. 3.7.a) arises from its sequential class
transitions and the considerable variability differences among its features. SDOstreamclust
is the only algorithm that effectively captures this dynamic and distinguishes the key
classes. However, it frequently detects subclusters and outliers within the primary classes,
attributed to significant intra-class density variations.

4.2 Parameter Testing

In the experiments described in the previous Section |4.1, we evaluated our algorithm with
a primarily out-of-the-box configuration, making only minimal tuning to the temporal
memory parameter 7" and the outlier threshold parameter h°. Despite this limitation,
the algorithm demonstrated competitiveness with existing alternatives. In this section,
we go deeper into the effects of parameterization and its interaction with individual
characteristics of the data.

(a) Drifting Conglomorate (b) Retail (c) Fertility vs Income

-

(d) Network traffic-flows (e) Occupancy

Figure 4.4: Histograms of Adjusted Rand Index (ARI) scores for all experiments, rep-
resenting the performance across different datasets. The x-axis shows the ARI scores,
while the y-axis indicates the frequency of runs that achieved each score.

To achieve this, we conduct a comprehensive evaluation of various parameters, as detailed
in Table 3.3, across the entire dataset, reporting the Adjusted Rand Index (ARI). We also
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investigate unconventional parameter setups that may yield suboptimal scores, which,
while seemingly counterintuitive, provide valuable insights into the algorithm’s behavior.
Notably, we exclude runs with a replacement rate exceeding 0.5, as our streaming setup
prioritizes lightweight processing and speed while maintaining accuracy; thus, we do not
aim for solutions that fully process all points. This filtering results in approximately half
of the evaluated setups. The overall distribution of results is presented in Fig. 4.4, From
this point forward, the different datasets will be consistently color-coded in the figures, as
shown in this histogram illustration. The illustrations reveal that Drifting Conglomerate
(a) and Network Traffic-Flows (d) require less specific setups to achieve optimal results,
while the other three datasets (Retail, Fertility vs Income, and Occupancy) benefit more
from careful fine-tuning.

Parameter importance and correlation. We analyzed the importance of each
parameter using a Lasso regression model to assess their contributions to overall perfor-
mance, as illustrated in Fig. 4.5. This analysis encompasses all applied setups and focuses
specifically on the top 50%. The rationale behind this approach is that excluding poor
combinations is often straightforward without requiring extensive expert knowledge. Thus,
our focus is on analyzing the interactions between the parameters of SDOstreamclust in
decent or good setups, rather than solely identifying non-viable configurations.

e

02 03 04 05 a0 01 0z 03 04 05
importance importance

(a) All runs included (b) Only Top 50% results

Figure 4.5: Parameter importance analysis for all parameters and datasets, contrasting
overall results with those from the top-performing half of the experiments.

When comparing both figures, the x parameter is most significant in the Retail dataset.

This is due to the effectiveness of setups with small models (i.e., small k) for this
dataset. However, if x (which controls the number of observers observing a processed
point) is set too high, the model struggles to distinguish effectively between good and
poor representatives of the underlying data (i.e., observers). In Figure 4.5 (b), it is
clear that this parameter becomes unimportant when chosen appropriately, but can
lead to suboptimal outcomes when selected poorly. Similarly, the gv parameter loses
its importance for the better-performing setups in the synthetically generated Drifting
Conglomerate dataset. This parameter, denoted as p in our algorithm, adds robustness
against noise, outliers, and uncertainty in the data, albeit at the cost of reducing the
model’s capacity to capture patterns. Although this dataset contains artificial noise
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and outliers, it is likely easier to distinguish patterns compared to those from real-world
data, which often have many underlying factors not covered by the data, possibly even
unknown, that contribute to uncertainty. Given the presence of various clusters and
patterns, a larger model size is advantageous for this dataset. Thus, selecting qv becomes
straightforward, focusing primarily on retaining a large enough model while requiring
only minimal safeguards against noise and outliers.

Overall, the most important parameters identified are chi_prop, which controls cluster
formation by determining the likelihood of observers connecting with one another, and
k, the most relevant parameter for defining the model size, representing the number of
observers. The algorithm calculates x as x « [chi_prop - k]|. Other parameters, such
as T and x, appear to be significant only for specific dataset characteristics. For instance,
the Retail dataset, as shown in Fig. 3.7 (d), exhibits sudden changes in trend at various
points, indicating that T may need to be tailored accordingly. Similarly, the Occupancy
dataset also experiences abrupt changes. It is crucial to note that such specific fine-tuning
may not be feasible, as these changes cannot be anticipated without comprehensive
prior knowledge of the data in a real-world context. In contrast, the synthetic Drifting
Conglomerate dataset features a greater number of classes or clusters, suggesting that
the observer parameter x may need to be more specific; thus, a lower x relative to the
model size is potentially important in this scenario. In general, a sufficiently low and
consequently specific x provides robustness against noise. It should only be increased if
there is insufficient incoming information (processed data points) relative to the model
size; otherwise, it may be more beneficial to reduce the model size.

The other parameters, qv, zeta, and outlier_threshold, are of minor importance
for these datasets and appear less relevant. Notably, outlier_threshold governs a
slightly different application related to outlier detection and is tested later separately

As mentioned, the parameters interact with each other. To further investigate this, we
examined correlations among parameters, focusing exclusively on setups that achieved
at least 80% of the highest Adjusted Rand Index (ARI) score. This approach aids in
identifying which parameters exhibit strong interactions for successful configurations, as
illustrated in Fig. 4.6, where the correlations are represented as heatmaps.

Not surprisingly, in all plots, we observe significant interactions between the key parameter
chi_prop and both k and T, as well as with gv and zeta, especially in the Retail and
Occupancy datasets. Notably, chi_prop strongly depends on the model size, largely
driven by k. A finer granularity of observers allows for more precise tuning of their
connectivity, while a denser model provides richer representations of the underlying data.
The combination of T and k controls the replacement rate and the model’s fading memory
effect, further influencing the role of chi_prop. This interaction, and its correlation
with other key parameters, is illustrated in Fig. 4.7.

The parameter gv refines the model in the Retail dataset by pruning observers that are
insufficiently connected to clusters (as seen in the sparse upper section of the brown
cluster in Fig. 3.7/ (d)). This results in a more specific model, which in turn demands
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Figure 4.6: Illustration of correlations among the parameters of SDOstreamclust across
all datasets, highlighting the top results that fall within 25% of the best evaluation scores,
measured by the Adjusted Rand Index (ARI).

a lower value of chi_prop. A similar effect may be observed in the Occupancy and
Fertility vs. Income datasets. Furthermore, the interaction with zeta stems from the
noisy spatial and temporal patterns in the Occupancy dataset, not only on a global scale
but also within the cluster shape and geometry, which necessitate global thresholds. These
thresholds reduce model granularity, requiring larger values of chi_prop to prevent
cluster fragmentation.

The parameter x interacts with k and T, as discussed at the beginning of this section.
The more information available, the more specific the model can be trained (e.g., a lower
x). This interaction is visible to some degree across all analyzed datasets, particularly
for those that perform well with smaller models. The unusually high correlation with
chi_prop suggests that x determines the specificity and granularity of the model more
directly, while the effects of model size and temporal behavior are comparatively less
significant.

The outlier_threshold parameter is particularly relevant in datasets that appear
noisy but lack an explicit outlier class label. Thus, an optimal setup aims to avoid
declaring outliers unnecessarily. This is crucial because it is generally unsafe to assume
that outliers are absent. Experiments for this parameter specifically follow below.

Replacement rate. Lastly, both k and T interact strongly across all datasets, except
for the Occupancy dataset, as they jointly determine the replacement rate, %, which sig-
nificantly impacts the model’s adaptability. However, this also increases the algorithmic
cost, as maintaining the graph via an M-tree and performing node (observer) addition/re-
moval operations—costly actions with a time complexity of O(logn) for an M-tree of size

n—are directly influenced by the replacement rate. Thus, both the replacement rate and
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(a) Drifting Conglomerate (b) Retail (c) Fertility vs Income

(d) Network traffic-flows (e) Occupancy

Figure 4.7: Illustrating the interaction between parameter chi_prop and its most
correlated parameters using parallel coordinates plots across all datasets. Good setups
are highlighted with darker coloring.

the number of observers are key factors in determining the overall algorithmic cost and
runtime. The best results, filtered by the number of observers k and the threshold on
the replacement rate, are shown in Table 4.3/

It is evident that as more information is processed (i.e., with a higher replacement rate),
the results improve; however, this increase comes with higher algorithmic costs. Second,
as observed in the Retail and Fertility vs. Income results, a larger model size (more
observers) is beneficial only if it receives sufficient information to remain updated in the
dynamic environment of data streaming analysis. If new data arrives too slowly (i.e., low
replacement rate), the model becomes overly static, leading to a drastic deterioration in
performance. In smaller datasets with only 2 or 3 classes (such as Retail and Fertility vs.
Income), smaller model sizes prove to be more suitable due to the limited incoming data,
which makes it challenging to maintain larger models dynamically as required.

Another observation is that the replacement rate is significantly more important for
datasets featuring incremental drift, where clusters move spatially over time (see Fig. 3.7
(c) and (d), Fig. 3.5, and Fig.|4.1/(d)). In contrast, the performance of the Network Traffic
Flows dataset is much less influenced by the replacement rate due to its characteristic
of sequentially appearing clusters (see Fig. 3.7 (a) and Fig. 4.1/ (b)). A similar, albeit
slightly lesser, importance can be observed in the Occupancy dataset, which exhibits
sequential but recurring characteristics (see Fig.|3.7 (b)). This indicates that a well-tuned
replacement rate is crucial for effectively addressing incremental drift.
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Table 4.3: Best results (ARI) across all datasets, filtered by configuration with respect
to k (number of observers) and the replacement rate threshold. Lighter text indicates
results inferred from a smaller threshold, while top results (within 3% of the best) are

marked in bold.

replacement rate

k <0.10 <0.15 <025 <035 <0.50
35 0.754 0.817 0.817 0.817 0.817
Conglomerate 50 0.844 0.844 0.844 0.844 0.844
Drift 70 0.844 0.863 0.873 0.873 0.873
100 0.867 0.912 0.912 0.912 0.912
140 | 0.876 0.906 0.939 0.939 0.939
200 0.896 0.940 0.963 0.963
280 0.849 0.960 0.961 0.970
400 0.919 0.943 0.973
560 0.954 0.959
800 0.934
25 0.760 0.900 0.960 0.988
Retail 35 0.587 0.866 0.960 0.970
50 0.733 0.908 0.955
70 0.769 0.938
100 0.795
25 0.806 0.926 0.969 0.969 0.969
Fertility 35 0.723 0.910 0.910 0.942 0.942
vs Income 50 0.781 0.926 0.926 0.962
70 0.759 0.853 0.934 0.934
100 0.781 0.897  0.942
140 0.797 0.897
200 0.815
35 0.536 0.536 0.538 0.538 0.538
Network 50 0.556 0.556 0.556 0.556 0.556
traffic-flows 70 0.548 0.558 0.558 0.558 0.558
100 | 0.553 0.553 0.557 0.558 0.558
140 0.543 0.557 0.557 0.558 0.558
200 0.572 0.572 0.572 0.572
280 0.527  0.572 0.572  0.572
400 0.580 0.580 0.580
560 0.560 0.578
800 0.566
35 0.526 0.526 0.526 0.526 0.526
Occupancy 50 0.560 0.560 0.560 0.560 0.560
70 0.596 0.596 0.596 0.596 0.596
100 0.591 0.591 0.591 0.591 0.591
140 0.571 0.603 0.635 0.635 0.635
200 0.630 0.728 0.728 0.728
280 0.362 0.713 0.713 0.713
400 0.628 0.628 0.628
560 0.722 0.722
800 0.476
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Outlier detection. In Fig. 4.8| similar illustrations as before are employed to present
the evaluation results for outlier detection on the Drifting Conglomerates dataset. The
histogram indicates overall stable performance across all setups. Not surprisingly, the
parameter outlier_threshold emerges as a crucial factor for this application of data
stream analysis. However, when focusing on the top 25% of setups, the temporal memory
parameter T proves to be even more significant, as it is essential for the model to adapt
effectively to changes in the data.
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Figure 4.8: Visualization of outlier detection results on the Drifting Conglomerates
dataset

In contrast to data clustering, the specificity of the model is less critical for outlier
detection; thus, setups with larger x values are permissible and potentially advantageous
to some extent. As illustrated in Fig. 4.9 (c), a more generalized model allows for smaller
outlier thresholds. This is because the model (set of observers) primarily needs to cover
normal points, enabling generalization without requiring specificity in cluster shapes.
Similarly, the number of observers, k, which determines the model size, is less critical in
outlier detection compared to its significance in clustering applications. The parameter
qv serves a similar purpose as in data clustering, focusing on noise cleansing.

Fig. 4.9 (b) demonstrates that smaller values of T are advantageous, indicating that
the model must be able to adapt to the dynamic dataset. Additionally, we observe
that larger values of T strongly necessitate a low outlier_threshold. This is likely
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because the model is too slow to adapt in such setups and compensates by setting
outlier_threshold to a very low value, requiring that outdated observers be hit
with precision to misclassify an outlier as a regular class. Despite this specificity, effective
setups remain possible, not only with high x values (which yield a highly generalized
model detrimental to clustering applications) that often accompany higher values of k
and T (due to the need for a replacement rate lower than 0.5). Dynamic setups (lower T)
do not necessitate an overly generalized approach via high x.

(a) outlier_threshold (b) T (c) x

Figure 4.9: Visualization of outlier detection results on the Drifting Conglomerates
dataset: (a) Parallel coordinates plot for outlier_threshold, (b) for T, and (c) for
x. Darker colors indicate better performance.

It is important to note that the parameters T and k show less correlation compared to their
roles in clustering applications. This indicates that the replacement rate is not as critical
for outlier detection in the analyzed dataset. This point is further supported by Table|3.4,
which demonstrates that better-performing setups can have a higher replacement rate,
but to a lesser degree. The table also confirms that outlier detection performs well across
a variety of setups, as k influences the ranges of T and x as well.

Table 4.4: Best AUC-ROC results for the Drifting Conglomerates dataset, filtered
by configurations regarding k (number of observers) and various thresholds for the
replacement rate. Results inferred from smaller thresholds are presented in lighter text,
while the top results (within 2% of the best score) are highlighted in bold.

replacement rate
k <010 <015 <025 <035 <0.50

35 0.853  0.878 0.878 0.878 0.878
50 0.876 0.880 0.899 0.899 0.899
70 0.869 0.871 0.887 0.893 0.893

100 0.867 0.886 0.8386 0.891 0.913
140 0.866 0.876 0.887 0.887  0.907

200 0.876 0.876  0.882 0.886
280 0.803 0.869 0.881 0.892
400 0.848 0.878 0.878
560 0.855 0.879
800 0.871

It is important to note that this dataset is synthetic, which comes with the significant
drawback that the data shape, aside from the noise, is clearly determined by the available
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features. Consequently, there are no uncertainties or unknown factors or dimensions that
could disturb the algorithm, both in the feature space and in the target space.

4.3 Visualization

In this section, we present the results of our observational visual analysis conducted on
the Drifting Conglomerates dataset using the configurations outlined in Table |3.5. The
visualizations illustrate how the different model sizes (small, medium, and large) and
their respective parameter settings influence the clustering algorithm’s performance in
the presence of concept drift.

First, we look at the medium configuration, concentrating on the key parameters
chi_prop and T. The visualization adopts a film-like approach, presenting snapshots of
the current model (its observers) at regular intervals to illustrate how it evolves with
incoming data. Figure |4.10|showcases the effects of varying chi_prop, while Figure 4.11
illustrates the impact of altering T. Fach snapshot displays the ground truth data on the
left, representing a time window around the moment the model snapshot is captured,
with the current active model presented on the right.

Focusing on the snapshots from Figure |4.10 (b) as a form of ground truth, we can
compare it to its neighboring configurations with adjusted chi_prop. On the left, where
chi_prop is low, we observe that the spiraling cluster tends to fragment compared to
the outer ground truth. This fragmentation occurs because older observers are gradually
replaced, leading to sparser data at those positions in the moving cluster, which the
model struggles to accommodate. Consequently, the model often misinterprets the new
incoming denser data as a new cluster, causing the old fading data—containing vital
cluster history—to become fragmented and lost.

Conversely, on the right, with a higher chi_prop, the two challenging clusters (the
sparse circle and the pointy cluster in the center) falsely connect regularly. When another
moving cluster (the spiral) approaches, the clusters merge and are perceived as one (for
a short time even the in the ground truth brown colored recurring class joins) for some
time by the method in this configuration.

Generally, the sparse circle in combination with the pointy cluster in the center appears
in the good medium model-sized setup as the most challenging. Constantly maintaining
separation while it moves, combined with the additional difficulty of sparsity, poses a
significant challenge. The preferred solution seems to involve allowing fragmentation of
the sparse circle in favor of remaining clearly separated from the pointy central cluster.

Similarly, the parameter T is altered, again using the configuration with medium model
size. Here, we can clearly see how this parameter affects the speed at which older data
is replaced. This is particularly evident when observing the length of the tail of the
spiraling cluster observers and the lengthy or more pointy appearance of the moving
pointy cluster at the center of the sparse circles, as illustrated in Figure [4.11.
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Figure 4.10: Visualization of the evolution of the model observers with varying chi_prop
values across different frames. Each column presents a sequence of snapshots taken at
specific time intervals, illustrating how the model adapts to incoming data. On the left
side of each column, the frames depict the current state of the model, while the final
frame in each column shows the predicted model state. At the end of the sequence, the
overall results are visualized in a 3D plot, where its two features are plotted against time.
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(a) chi_prop = 0.02 (b) chi prop = 0.05 (c) chi_ prop =0.125
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In the setup with a smaller T, the plot of the overall prediction reveals that the model
struggles to remember recurring clusters, treating each appearance as a novelty, and fails
to effectively manage the sparse circle, as no robust history can be maintained. The
memory fades too quickly, and the replacement rate is insufficient to compensate with
new, well-representing observers.

While the effect on classification is not as severe for higher T upon visual inspection,
if the model makes an incorrect initial classification, it becomes rigid and difficult to
correct, leading to worse performance than in more optimal configurations.

The last comparison examines three well-performing configurations presented in Table 3.5,
evaluating their different appearances and abilities to solve the problem at hand. It’s
important to note that the smallest configuration performs significantly worse than the
larger models (small: 0.86, medium: 0.97, large: 0.90 ARI), but it is still impressive
how such a small model is able to capture 7 distinct classes, which were designed to
be challenging with respect to concept drift. The main issue the small model faces is
handling sparse data, while other challenges, including recurring and moving clusters,
appear to be manageable.

The larger model also struggles with the sparse circle cluster because it is too rigid; once
it forms an incorrect representation (often fragmented into two or more clusters), it has
difficulty correcting this. The reason for this is that a larger k also requires a larger T,
which makes the model more robust to some extent but also more rigid (the larger the
model, the more information is necessary to force change). It’s worth noting that as the
model size increases, the algorithmic cost rises, which could be a significant factor in
practical applications.

Finally, in the first snapshots of all models, but especially in the larger models, we observe
initial misclassification during the warm-up phase (which is set to a relatively high value
in this experiment, not making it difficult for the algorithm), from which the algorithm
needs to recover as the model fully grows. As demonstrated by our small model, having
a reduced model size alone does not necessarily mean that data is poorly represented.
This suggests a potential issue with parametrization during the warm-up phase. It may
be worthwhile to explore adapting x, and potentially other parameters, according to the
actual current model size during this phase to mitigate these initial errors.

4.4 Key Findings

The proposed algorithm is evaluated in an out-of-the-box setup where only two pa-
rameters, T and outlier_threshold, are tuned to demonstrate its robustness in
parameterization. It is systematically compared against competitor algorithms, showcas-
ing effectiveness and competitiveness across all datasets, thus supporting the claims made.
The evaluation includes both real-world and synthetic datasets specifically designed to
simulate various forms of concept drift, representing evolving data of different types.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.4. Key Findings

Figure 4.11: Visualization of the evolution of model observers with varying T values
across different frames. Each column presents a sequence of snapshots taken at specific
time intervals, illustrating how the parameter T affects the model’s ability to retain and
adapt to incoming data. On the left side of each column, the frames depict the current

state of the model, while the final frame in each column shows the predicted model state.

At the end of the sequence, the overall results are visualized in a 3D plot, highlighting
the interaction of the model with the evolving data stream.

/e

.
/e
e
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Figure 4.12: Visualization of the evolution of model observers with varying model size k
across different frames, focusing on well-performing configurations, see Table [3.5. Each
column presents a sequence of snapshots taken at specific time intervals, illustrating
how different model sizes influence the model’s ability to retain and adapt to incoming
data. On the left side of each column, the frames depict the current state of the model,
while the final frame in each column shows the predicted model state. At the end of the
sequence, the overall results are visualized in a 3D plot, highlighting the interaction of
the model with the evolving data stream.

,.
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4.4. Key Findings

Parameter testing identifies three critical parameters: chi_prop, which governs cluster
formation and observer connectivity; k, which represents the number of observers and
defines the model size; and T, which establishes a time window, influencing both temporal
memory and the replacement rate in conjunction with k. While other parameters help
fine-tune the algorithm to specific data characteristics and are relatively intuitive to
adjust, these three parameters are essential for overall performance. Despite variations in
parameter settings, the algorithm exhibits robustness across a wide range of configurations,
as demonstrated in Table 4.3. This adaptability underscores its versatility in diverse
environments.

Promising improvements regarding the implementation’s parametrization that may be
worth considering include providing users the option to select the replacement rate as
an independent parameter, either linked to or decoupled from the relationship between

k
T and k (replacement_rate = —). Additionally, since parameter x interacts with the

model size, it may also be beneficial to explore the possibility of defining it as a relative
value to the number of observers k.

A question arises as to whether embedded outlier detection with SDOstreamclust operates
effectively under similar parametrization as clustering. The key distinction is that, in
outlier detection, the model must be more generalized—a difference that is unsurprising
when considering the two applications. Clustering aims to differentiate the shapes

of clusters, whereas outlier detection only requires a characterization of normal data.

The main parameter influencing generalization is x, but as observed, SDOstreamclust
demonstrates parameter robustness with respect to x even in clustering tasks.

The straightforward nature of the model—comprising a set of sampled points, called
observers—facilitates real-time observability of the current state of the model. This allows
for visual inspection of alterations, providing insights into the most relevant parameters
and the functionality of SDOstreamclust. For many applications, this capability enables
real-time monitoring, which is highly valuable.

Overall, the results affirm that the proposed algorithm is both adaptable and effective in
managing concept drift, making it a valuable tool for dynamic clustering scenarios. Its
competitive performance across diverse datasets indicates that it is a robust solution for
real-time data analysis.
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CHAPTER

Conclusions

5.1 Conclusions

In this work, a data stream clustering algorithm, SDOstreamclust, was developed based
on SDOstream [HIZ20], a stream outlier detection algorithm, and SDOclust [[ZHZ23],
a static clustering method. The design goals for SDOstreamclust include scalability
to handle unlimited data streams within resource and time constraints; adaptability
to effectively adjust to evolving data patterns; efficiency, providing a lightweight and
performant solution for real-time processing; interpretability, offering clear insights into
discovered data clusters; an almost parameter-free approach that minimizes adjustment
needs; and robustness, ensuring stability over time with no unexpected performance drifts
or high sensitivity to parameter changes. Together, these goals enable SDOstreamclust
to effectively address the challenges of dynamic data streams.

The algorithm is implemented in C++ for lightweight and fast performance, and it is
wrapped in Python for easy integration and utilization. It is available for use on GitHub !
or installation via pip [, enhancing usability for practitioners. Its syntax is well-known
from scikit-learn, utilizing familiar fit and predict methods.

The algorithm was evaluated in a diverse test environment, focusing on various datasets,
particularly regarding evolving data. It was compared to state-of-the-art alternative
algorithms to demonstrate its competitiveness across different scenarios, highlighting
the importance of robustness in parameterization. This is crucial, as the algorithm
must continue to perform optimally without manual intervention in the face of evolving
data. This thorough assessment emphasized the handling of concept drift and evolving
data, showcasing the algorithm’s adaptability and effectiveness in real-world applications.
Furthermore, the analysis of parameterization tested its robustness, confirming that the

"https://github.com/CN-TU/pysdoclust-stream/
2https://pypi.org/project/pysdoclust-stream/
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algorithm maintains performance under varying conditions with minimal pre-knowledge.
Overall, this evaluation aligns with the initially stated research questions, providing
valuable insights into the algorithm’s capabilities and responsiveness to dynamic data
challenges.

The insights gained from this evaluation confirm the algorithm’s strengths and provide a
clear framework for addressing the research questions that follow.

« RQ1: Performance

How and to what extent can an incremental version of SDOclust improve the
performance of consolidated stream clustering in terms of accuracy and execution
times?

SDOstreamclust exhibits competitive performance relative to state-of-the-art alter-
natives, achieving strong results in accuracy and execution time across a diverse
array of synthetic and real-world datasets. This is accomplished with minimal pa-
rameter tuning, using an out-of-the-box setup. Detailed evaluation and comparison
results can be found in Section [4.1. Furthermore, additional parameter testing
in Section [4.2| suggests that even better performance can be attained with little
additional effort. While the runtime may not be superior, it remains satisfactory,
and the design of SDOstreamclust is highly scalable, making it suitable for speedup
through batch processing and buffering if necessary.

¢ RQ2: Self-adjustment

To what extent can an incremental version of SDOclust effectively self-adjust to
overcome the challenges of stream clustering, especially concept drift? Is it superior
to state-of-the-art alternatives?

The incremental SDOstreamclust effectively adapts to various types of evolving data
(e.g., concept drift), exhibiting no more difficulty with sudden drift scenarios than
with incremental changes. Experiments with specifically designed synthetic data
drifts in Section 3.2 demonstrate that SDOstreamclust significantly outperforms
most state-of-the-art algorithms. While DBStream remains competitive for many
types of concept drift, it falls short in handling sequential sudden drift scenarios.

« RQ3: Applicability

Can interpretability and parameter robustness be maintained in incremental cluster-
ing algorithms while ensuring a lightweight profile? To what extent can the models
and parameters of SDOstreamclust be considered interpretable and robust?

Experiments (see Section 4.2)) show that a wide range of parameterizations is suitable
across all datasets. Three to four key parameters—governing cluster formation,
rate of change, and temporal memory—are critical for successful runs and are
interpretable regarding their interactions with the data and other parameters. The
SDOstreamclust model, composed of sampled points, is inherently simple and
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5.2. Future Work

allows for real-time monitoring. Section 4.3 illustrates this with visualizations
further supporting the interpretability of these key parameters and reinforces their
explainable nature.

5.2 Future Work

This work has designed and implemented a data stream clustering algorithm tested in a
sophisticated environment, successfully meeting its intended characteristics. However,
further improvements are necessary and worth pursuing. Possible enhancements related
to parameterization are discussed in Section 4.4, while adaptations of parameters during
the warm-up phase—when the model is not yet fully grown—are covered in Section 4.3/

We observe that irregular or non-convex cluster shapes require denser representations
to accurately capture their complexity compared to simpler, concentric shapes. To
enhance representation quality, mechanisms should be considered to prevent sparse
cluster representations, particularly for less frequent clusters. In our opinion, preferred
sampling alone is insufficient; the method must also ensure that such sampled observers
maintain their importance to remain in the model. As representation becomes sparser,
a global threshold may be more effective than a local one. Introducing a cluster-global

threshold constrained to specific clusters could further enhance representation accuracy.

Moreover, optimizing runtime efficiency is another area worth exploring. For many
applications or data streams, the steady recalculation of cutoff thresholds may not be
necessary or as critical. Since this operation is rather costly and performed frequently,
improving efficiency in this regard could significantly enhance performance. Investigating
the trade-offs between this optimization and overall performance will be beneficial.

Furthermore, exploring the trade-offs in parameterization for the related but distinct
applications of clustering and outlier detection may yield valuable insights.
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Appendix

I Explanation of the Program Code

The core program is written in C4++ and builds upon the dSalmon framework, available
in the repository!'. The framework implements the SDOstream algorithm [HIZ20], and
we use its M-Tree implementation along with a vector data structure and corresponding
metrics. Another third-party library used in our program is the Boost library?.

The main code files, all contained within the cpp folder, are organized as follows:

e SDOstreamclust.h: The main header file defining the primary class for the
SDOstream clustering implementation. It includes initialization methods, externally
callable methods such as fit (and predict) and observer view functions, as well as
declarations of all class member functions for core processes. This file serves as the
central interface for the SDOstream clustering logic.

e SDOstreamclust_fitpred.h: Contains simple internal scripts for managing
the fit and/or predict operations. These scripts call member functions for sampling,
fitting, graph updating, and predicting, coordinating the overall data processing
workflow.

e SDOstreamclust_sample.h: Provides functions for sampling or replacing data
points from the buffer, essential for maintaining a representative sample set of
observers.

e SDOstreamclust_fit.h: Contains functions specifically for fitting the model
to new incoming data.

e SDOstreamclust_predict.h: Implements prediction functions, enabling the
assignment of new data points to clusters.

e SDOstreamclust_observer.h: Defines a data structure for observers, handling
components responsible for monitoring data points and tracking clusters over time.

"https://github.com/CN-TU/dSalmon
2Boost C++ Libraries, Version 1.83. Available at: https://www.boost .org.
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SDOstreamclust_cluster.h: Defines a data structure representing a cluster,
detailing the internal characteristics and properties.

SDOstreamclust_buffer.h: Implements a data structure for buffering points
temporarily, aiding in efficient data processing.

SDOstreamclust_util.h: Utility functions and helper methods used across
different modules, supporting calculations and auxiliary processes.

Vector.hand util.h: Provide data structures and utility functions used through-
out the clustering framework. These files are sourced from the dSalmon repository.

MTree.h, MTree_impl.h, and PlaceholderQueue.h: Implement the M-Tree
data structure, which is used for efficient nearest-neighbor searches in metric spaces.
These files are also from the dSalmon repository.

tpSDOstreamclust files: These files implement the temporal variation of the
SDOstream algorithm, specifically addressing out-of-phase outliers, as described
in [HVZ24]. They follow the same modular structure as the standard SDOstream-
clust files, with functions tailored to handle time-based adaptations within the
clustering process. Although implemented, these files were not analyzed or tested
as part of this work.

The swig folder contains files for wrapping the C++ implementation with SWIG to
make it accessible from Python. The main files include:

SDOstreamclust.i: This is the main SWIG interface file that defines the in-
terface for wrapping the SDOstream clustering implementation with SWIG to a
Python module. It includes directives to wrap the relevant C4++ headers, including
those for methods, array (data structure) types, distance functions, and numpy
compatibility.

numpy . 1: This file provides the necessary SWIG bindings for numpy, enabling
the efficient handling of array types and ensuring smooth integration with numpy
arrays in Python.

clustering_wrapper.h and clustering_wrapper.cxx: These files define
the SWIG wrapper functions for the clustering implementation, enabling the core
functionality to be accessed from Python.

array_types.h and distance_wrappers.h: These files, sourced from the
dSalmon repository, provide wrappers for array types and distance calculations,
ensuring interoperability between C++ and Python.
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I. Explanation of the Program Code

The python folder contains the Python classes that interface with the SWIG-wrapped
C++ implementation. These files import and utilize the SWIG-generated modules and
define callable functions such as fit_predict and get_observers. The two main
files in this folder are:

e clustering.py: This file defines the SDOstreamclust class, which serves as
the main Python interface for the SDOstreamclust algorithm. It uses the SWIG-
wrapped functions to implement the clustering logic and expose them as Python
methods.

e util.py: This file handles data preprocessing and cleansing tasks. It provides
auxiliary functions that prepare the data for clustering, ensuring that it meets the
necessary format and quality for the algorithm.

The SDOstreamclust class, implemented in clustering.py, serves as an interface
to the proposed algorithm.

Initialization: __init__ ()

e Input:

k (int, default: 300): Number of observers.

T (int, default: 500): Model’s characteristic time.
av (float, default: 0.3): Ratio of unused observers.
x (int, default: 5): Nearest observers for clustering.
metric (str, default: ’euclidean’): Distance metric.

metric_params (dict): Parameters for the metric.

float_type (np.float32/np.float6}, default: np.float64): Precision type.

zeta (float, default: 0.6): Ratio for h.

chi_min (int, default: 8): Minimum observers for h.

chi_prop (float, default: 0.05): Closest observer fraction.

e (int, default: 2): Minimum cluster size.

freq_bins (int, default: 1): Temporal model bins.

max_freq (float, default: 1.0): Temporal model frequency.
outlier_handling (bool, default: False): Outlier handling flag.
rel_outlier_score (bool, default: True): Outlier score type.
outlier_threshold (float, default: 5.0): Outlier threshold.
perturb (float, default: 0.0): Tie-breaking factor.
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— random_sampling (bool, default: True): Enables random sampling.
— input_buffer (int, default: 0): Batch size for processing.
— seed (int, default: 0): Random seed.

¢ Functionality: Validates parameters and initializes the SDOstreamclust algorithm.

e Output: Instance of SDOstreamclust.
Stream Clustering: fit_predict ()

o Input:

— X (ndarray): Input data (n_samples,n__features).

— times (ndarray, optional): Data timestamps.
o Functionality: Processes data, predicts cluster labels, and computes outlier scores.
e Output:

— labels (ndarray): Cluster labels.

— scores (ndarray): Outlier scores.

Observer Retrieval: get_observers ()

¢ Functionality: Retrieves observer information including positions, labels, and
statistics.

e Output:

data (ndarray): Observer positions (n_ observers,n_ features).
— labels (ndarray): Cluster labels.
— observations (ndarray): Moving average of observations.

— av_observations (ndarray): Normalized average observations.

Example usage and a demo are available in the repository .

3https://github.com/CN-TU/pysdoclust-stream/
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Overview of Generative Al Tools
Used

In this thesis, the generative Al tool ChatGPT (versions GPT-4 and GPT-40) was utilized
to enhance the clarity, coherence, and overall readability of the text. It was employed to
refine and reformulate specific sentences, ensuring precise communication while correcting
grammar and spelling errors. ChatGPT served as an assistant, aiding in the refinement
of the text, but was never used to generate substantial portions of the content.

73



“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

List of Figures

2.1

Time Window Models: The figures illustrate different strategies for handling

temporal data in streaming scenarios| . . . . . . . ... L.

2.2

Concept Drift: Real and Virtual, based on [GZB*14]. . . . ... ... ..

2.3

Data Evolution: Concept Drift and Anomalies . . . . ... ... ... ..

11
12

2.4

[lustrations of common outlier types in a streaming setup: (a) point outliers,

which deviate individually, (b) group outliers, where multiple data points

deviate together, and (c) contextual outliers, where data points become outliers

based on their temporal context. Outlier points are marked with a bold edge.|

14

3.1

Illustration of the SDO algorithm, showcasing the four key steps involved. In

PREDICTION, outlierness for points is colored according to their scores (redder

indicates a higher outlier score).| . . . . .. ... ... .00

19

3.2

Ilustration of a 2D data cluster shaped like a spiral with added noise (red

dots, 10 percent noisy points). The figure shows the connectedness of points,

referred to as observers, marked with 'x’ (orange if active, grey if inactive).

Each observer has a circle drawn to encompass its y-th closest observer (xy = 4).

Overlapping circles between two active observers indicate that they share an

edge in the graph, i.e., they are connected. . . . .. ... ... ... ...

Illustration of the SDOclust algorithm, showcasing the key steps involved.

Labels are color-coded for the clustered model and the predictions. Note that

no outlier handling is embedded, so outliers are labeled with a best fit here.|

2D data cluster similar to Fig. The red dot with a black edge indicates a

processed point, likely an outlier detected by human judgment. The radial

color scale represents outlier probability relative to a highlighted close observer.

The blue circle marks the cutoff threshold (y = 4), and the purple circle

indicates the 50% outlier threshold, defined by the relative outlier sensitivity

parameter h® = 2.5, . . ...

28

75



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

35

The Drifting Conglomerates dataset. Referring to Fig. 2.3, the blue and

orange clusters alternate in frequency, exemplifying sudden and reoccurring

drift. The brown and grey clusters display gradual drift, with brown often

preceding a slow replacement by grey. The dark green cluster follows a spiral

pattern, simulating incremental drift while exhibiting a non-convex shape. The

light green and yellow clusters are geometrically concentric with significantly

different densities, moving linearly and further demonstrating incremental drift

while maintaining geometric alignment, which presents additional challenges

due to their proximity and varying density. Outliers are marked in black.| 33
3.6 Examples of the Specific Concept Drift datasets. Clustered data is shown |
( colored while outliers in black. Only three dimensions and time are shown.| 35
[3.7 Plots of the Real-world Datasets collection. Colored according to the clusters |
| defined in the Ground Truth.! . . . ... ... ... ... ... ... ... 36
4.1 Box plots showing the aggregated performance indices from the Specific |

Concept Drift tests, grouped by datasets with noise (orange) and without |

noise (blue).[. . . . . ... 47
4.2  Box plots showing the aggregated performance indices from the Specific |
| Concept Drift tests, grouped by dataset types: base, moving, non-stationary, |
( and sequential. . . . ..o Lo 47
4.3 Bar plots for the Real-world and Drifting Conglomerate performance results.| 49
4.4 Histograms of Adjusted Rand Index (ARI) scores for all experiments, repre- |
| senting the performance across different datasets. The x-axis shows the ARI |
[ scores, while the y-axis indicates the frequency of runs that achieved each |
[7score] o 50
4.5 Parameter importance analysis for all parameters and datasets, contrasting |
| overall results with those from the top-performing half of the experiments.| 51
l4.6 Illustration of correlations among the parameters of SDOstreamclust across |
| all datasets, highlighting the top results that fall within 25% of the best |
| evaluation scores, measured by the Adjusted Rand Index (ARI). . .. .. 53
4.7 Tlustrating the interaction between parameter chi_prop and its most corre- |
( lated parameters using parallel coordinates plots across all datasets. Good |
[ setups are highlighted with darker coloring.| . . . . . . .. ... ... ... 54
4.8 Visualization of outlier detection results on the Drifting Conglomerates dataset| 56
4.9 Visualization of outlier detection results on the Drifting Conglomerates dataset: |
| (a) Parallel coordinates plot for outlier_threshold, (b) for T, and (c) for |
| x. Darker colors indicate better performance. . . . . . . . .. . ... ... 57
76



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.10

Visualization of the evolution of the model observers with varying chi_prop

values across different frames. Each column presents a sequence of snapshots

taken at specific time intervals, illustrating how the model adapts to incoming

data. On the left side of each column, the frames depict the current state of

the model, while the final frame in each column shows the predicted model

state. At the end of the sequence, the overall results are visualized in a 3D

plot, where its two features are plotted against time. . . . . . . . . .. ..

99

4

Visualization of the evolution of model observers with varying T values across

different frames. Each column presents a sequence of snapshots taken at

specific time intervals, illustrating how the parameter T affects the model’s

ability to retain and adapt to incoming data. On the left side of each column,

the frames depict the current state of the model, while the final frame in each

column shows the predicted model state. At the end of the sequence, the

overall results are visualized in a 3D plot, highlighting the interaction of the

model with the evolving data stream. . . .. ... ... ... ... .. ...

61

A1
4.12

Visualization of the evolution of model observers with varying model size

k across different frames, focusing on well-performing configurations, see

Table Each column presents a sequence of snapshots taken at specific

time intervals, illustrating how different model sizes influence the model’s

ability to retain and adapt to incoming data. On the left side of each column,

the frames depict the current state of the model, while the final frame in each

column shows the predicted model state. At the end of the sequence, the

overall results are visualized in a 3D plot, highlighting the interaction of the

model with the evolving data stream. . . . . ... ... ... ... .. ..

77



“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

List of Tables

18

3.2

Hyperparameters. Searched indicates values optimized through Grid Search;

otherwise, they are fixed. Non-listed hyperparameters use default values.|

39

3.3

Parameters explored in the experiments, including parameter type, value

range, type of search range (linear, log, and square), and grid size. Here, an

empty entry for grid size indicates a continuous grid.| . . . . . .. ... ..

42

3.4

Parameters explored in the experiments related to outlier detection, including

their type, value range, grid size, and scale of the search space.| . . . . . .

43

35

Configurations for Different Model Sizes: Parameter settings for small, medium,

and large models, illustrating the effects of chi_prop, k, and T on the clus-

tering algorithm’s performance in the Drifting Conglomerates dataset. . .

43

41

Performance results on the Specific Concept Drift experiments. Top results

(within 5% of the best) are highlighted in bold.| . . . . . . ... ... ...

46

42

Results of the Drifting conglomerates and Real-world data experiments. Top

results (within 5% of the best) are highlighted in bold.|. . . . . . ... ..

48

4.3

Best results (ARI) across all datasets, filtered by configuration with respect

to k (number of observers) and the replacement rate threshold. Lighter text

indicates results inferred from a smaller threshold, while top results (within

3% of the best) are marked in bold.| . . .. . ... ... o0 L.

95

Best AUC-ROC results for the Drifting Conglomerates dataset, filtered by

configurations regarding k (number of observers) and various thresholds for

the replacement rate. Results inferred from smaller thresholds are presented in

lighter text, while the top results (within 2% of the best score) are highlighted

57

79



“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m



List of Algorithms

22

3.1 SDOstream . . . . . . . .. e

23
24
25
26

3.2 SDOstreamclust

3.3 Cluster
3.4 DFS
3.5 Label

Yaylolqig usipn NL 1e wud ul ajgejiene si sisayl SIyl Jo uoisian [euibuo panoidde ay g
Jregbnuian yayiolqlg uaiph NL Jap ue 1si uagrewo|diq 1asalp uoisiaAjeulbliO aonipab ausiqoidde aig

81

qny a8pajmous| JNoA

Srayrolqie



“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

[AMR*12]

[APHWO03]

[Bar(2]

[BFPP06]

[BHT65]

[BKNS00]

[CBKO9]

[CEQZ06]

[CF16]

Bibliography

Marcel R Ackermann, Marcus Mértens, Christoph Raupach, Kamil
Swierkot, Christiane Lammersen, and Christian Sohler. Streamkm-++ a
clustering algorithm for data streams. Journal of Experimental Algorith-
mics (JEA), 17:2-1, 2012.

Charu C Aggarwal, S Yu Philip, Jiawei Han, and Jianyong Wang. A
framework for clustering evolving data streams. In Proceedings 2003
VLDB conference, pages 81-92. Elsevier, 2003.

Daniel Barbard. Requirements for clustering data streams. ACM sIGKDD
FEzplorations Newsletter, 3(2):23-27, 2002.

Christian Béhm, Christos Faloutsos, Jia-Yu Pan, and Claudia Plant. Ro-
bust information-theoretic clustering. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 6575, 2006.

Geoffrey H Ball, David J Hall, et al. ISODATA, a novel method of data
analysis and pattern classification, volume 699616. Stanford research
institute Menlo Park, CA, 1965.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jérg Sander.
Lof: identifying density-based local outliers. In Proceedings of the 2000
ACM SIGMOD international conference on Management of data, pages
93-104, 2000.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):1-58, 20009.

Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. Density-based
clustering over an evolving data stream with noise. In Proceedings of
the 2006 SIAM international conference on data mining, pages 328-339.
STAM, 2006.

Luis M. Candanedo and Véronique Feldheim. Accurate occupancy de-
tection of an office room from light, temperature, humidity and co2

83



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

[CPZ+97]

[CT07]

[CT18]

[CT19]

[DSMW20]

[Edg87]

[EKS196]

[FGGT18]

[GMMOO0]

[GMRS16]

[GZB*14]

[HAS5]

84

measurements using statistical learning models. Energy and Buildings,
112:28-39, 2016.

Paolo Ciaccia, Marco Patella, Pavel Zezula, et al. M-tree: An efficient
access method for similarity search in metric spaces. In VIdb, volume 97,
pages 426-435. Citeseer, 1997.

Yixin Chen and Li Tu. Density-based clustering for real-time stream data.
In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133-142, 2007.

Matthias Carnein and Heike Trautmann. evostream—evolutionary stream
clustering utilizing idle times. Big data research, 14:101-111, 2018.

Matthias Carnein and Heike Trautmann. Optimizing data stream repre-
sentation: An extensive survey on stream clustering algorithms. Business
& Information Systems Engineering, 61:277-297, 2019.

Leonardo Enzo Brito Da Silva, Niklas Max Melton, and Donald C Wunsch.
Incremental cluster validity indices for online learning of hard partitions:
Extensions and comparative study. IEEE Access, 8:22025-22047, 2020.

Francis Ysidro Edgeworth. Xli. on discordant observations. The lon-
don, edinburgh, and dublin philosophical magazine and journal of science,
23(143):364-375, 1887.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In kdd, volume 96, pages 226-231, 1996.

Alberto Fernandez, Salvador Garcia, Mikel Galar, Ronaldo C Prati, Bar-
tosz Krawczyk, and Francisco Herrera. Learning from imbalanced data
sets, volume 10. Springer, 2018.

S Guha, N Mishra, R Motwani, and L. O’Callaghan. Clustering data
streams. In Proceedings 41st Annual Symposium on Foundations of
Computer Science, pages 359-366. IEEE, 2000.

Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust
random cut forest based anomaly detection on streams. In International
conference on machine learning, pages 2712-2721. PMLR, 2016.

Joao Gama, Indré Zliobaité, Albert Bifet, Mykola Pechenizkiy, and Abdel-
hamid Bouchachia. A survey on concept drift adaptation. ACM computing
surveys (CSUR), 46(4):1-37, 2014.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of
classification, 2:193-218, 1985.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

[Har23|

[HawS0]

[HB16]

[HHH*22]

[HIZ20]

[HLA23]

[HSO0]

[HVZ24]

[HYS*17]

[Igl21]

[IMZ24]

[TOHZ20]

1V24]

Alexander Hartl. Anomaly Detection for Network Security based on
Streaming Data. PhD thesis, Technische Universitat Wien, 2023.

Douglas M Hawkins. Identification of outliers, volume 11. Springer, 1980.

Michael Hahsler and Matthew Bolanos. Clustering data streams based on
shared density between micro-clusters. IEEE transactions on knowledge
and data engineering, 28(6):1449-1461, 2016.

Songgiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao.
Adbench: Anomaly detection benchmark. Advances in Neural Information
Processing Systems, 35:32142-32159, 2022.

Alexander Hartl, Félix Iglesias, and Tanja Zseby. Sdostream: Low-density
models for streaming outlier detection. In ESANN, pages 661-666, 2020.

Dania Herzalla, Willian T Lunardi, and Martin Andreoni. Tii-ssrc-23
dataset: Typological exploration of diverse traffic patterns for intrusion
detection. IEEE Access, 2023.

Erez Hartuv and Ron Shamir. A clustering algorithm based on graph
connectivity. Information processing letters, 76(4-6):175—-181, 2000.

Alexander Hartl, Félix Iglesias Vazquez, and Tanja Zseby. Sdooop: Cap-
turing periodical patterns and out-of-phase anomalies in streaming data
analysis. arXiv preprint arXiv:2409.02973, 2024.

Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue,
and Gong Bing. Learning from class-imbalanced data: Review of methods
and applications. Expert systems with applications, 73:220-239, 2017.

F Iglesias. Data for evaluation of stream data analysis algorithms. Mende-
ley Data, 10:c43krdt7h8, 2021.

Félix Iglesias, Conrado Martinez, and Tanja Zseby. Impact of the neigh-
borhood parameter on outlier detection algorithms. In International
Conference on Similarity Search and Applications, pages 88—96. Springer,
2024.

Félix Iglesias, Denis Ojdanic, Alexander Hartl, and Tanja Zseby. Mdc-
stream: Stream data generator for testing analysis algorithms. In Proceed-
ings of the 13th FAI International Conference on Performance Evaluation
Methodologies and Tools, pages 56—63, 2020.

F. Iglesias Vazquez. Sdostreamclust: Stream clustering robust to con-
cept drift - evaluation tests (1.0.0). https://doi.org/10.48436/
xhOw2-qg5x18|, 2024.

85


https://doi.org/10.48436/xh0w2-q5x18
https://doi.org/10.48436/xh0w2-q5x18

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

[IVZ23]

[1ZHZ23]

[IMO6]

[L1082]

[Lug08]

[M*67]

[MHM™*21]

[MLA18]

[MTRAR*12]

[NN19]

[NWN15]

[OMM*02]

86

Félix Iglesias Vazquez and Tanja Zseby. Temporal silhouette: validation of
stream clustering robust to concept drift. Mach. Learn., 113(4):2067-2091,
nov 2023.

Félix Iglesias, Tanja Zseby, Alexander Hartl, and Arthur Zimek. Sdoclust:
Clustering with sparse data observers. In International Conference on
Similarity Search and Applications, pages 185-199. Springer, 2023.

Han Jiawei and Kamber Micheline. Data mining: concepts and techniques.
Morgan kaufmann, 2006.

Stuart Lloyd. Least squares quantization in pcm. IEEFE transactions on
information theory, 28(2):129-137, 1982.

Edwin Lughofer. Extensions of vector quantization for incremental clus-
tering. Pattern recognition, 41(3):995-1011, 2008.

James MacQueen et al. Some methods for classification and analysis
of multivariate observations. In Proceedings of the fifth Berkeley sympo-
stum on mathematical statistics and probability, volume 1, pages 281-297.
Oakland, CA, USA, 1967.

Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier,
Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse
Read, Talel Abdessalem, and Albert Bifet. River: machine learning
for streaming data in python. Journal of Machine Learning Research,
22(110):1-8, 2021.

Emaad Manzoor, Hemank Lamba, and Leman Akoglu. xstream: Outlier
detection in feature-evolving data streams. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery € Data
Mining, pages 1963-1972, 2018.

Jose G Moreno-Torres, Troy Raeder, Rocio Alaiz-Rodriguez, Nitesh V
Chawla, and Francisco Herrera. A unifying view on dataset shift in
classification. Pattern recognition, 45(1):521-530, 2012.

Olfa Nasraoui and C-E Ben N’Cir. Clustering methods for big data
analytics. Techniques, Toolboxes and Applications, 1:91-113, 2019.

Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. A survey on
data stream clustering and classification. Knowledge and information
systems, 45:535-569, 2015.

Liadan O’callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha, and
Rajeev Motwani. Streaming-data algorithms for high-quality clustering.
In Proceedings 18th International Conference on Data Engineering, pages
685-694. IEEE, 2002.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

[Pev16]

[PGR1S]

[Ran71]

[RKV+21]

[RMO9]

[Rou87]

[SA16]

[SFB*13]

[Ste56]

[VHZZ23]

[VZZ18]

[Wat23]

Tomas Pevny. Loda: Lightweight on-line detector of anomalies. Machine
Learning, 102:275-304, 2016.

Divya Pandove, Shivan Goel, and Rinkl Rani. Systematic review of
clustering high-dimensional and large datasets. ACM Transactions on
Knowledge Discovery from Data (TKDD), 12(2):1-68, 2018.

William M Rand. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical association, 66(336):846—
850, 1971.

Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire
Montavon, Wojciech Samek, Marius Kloft, Thomas G Dietterich, and
Klaus-Robert Miiller. A unifying review of deep and shallow anomaly
detection. Proceedings of the IEEE, 109(5):756-795, 2021.

Jiadong Ren and Ruiqing Ma. Density-based data streams clustering over
sliding windows. In 2009 Sixzth international conference on fuzzy systems
and knowledge discovery, volume 5, pages 248-252. IEEE, 2009.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. Journal of computational and applied
mathematics, 20:53-65, 1987.

Saket Sathe and Charu C Aggarwal. Subspace outlier detection in lin-
ear time with randomized hashing. In 2016 IEEE 16th International
Conference on Data Mining (ICDM), pages 459-468. IEEE, 2016.

Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R Hruschka,
André CPLF de Carvalho, and Jodo Gama. Data stream clustering: A
survey. ACM Computing Surveys (CSUR), 46(1):1-31, 2013.

Hugo Steinhaus. Sur la division des corps matériels en parties. Bulletin
de I’Académie Polonaise des Sciences, 1:801-804, 1956.

Félix Iglesias Vazquez, Alexander Hartl, Tanja Zseby, and Arthur Zimek.
Anomaly detection in streaming data: A comparison and evaluation study.
Ezxpert Systems with Applications, 233:120994, 2023.

Félix Iglesias Vazquez, Tanja Zseby, and Arthur Zimek. Outlier detection
based on low density models. In 2018 IEEFE international conference on
data mining workshops (ICDMW), pages 970-979. IEEE, 2018.

Shuhei Watanabe. Tree-structured parzen estimator: Understanding its
algorithm components and their roles for better empirical performance.
arXiw preprint arXiv:2304.11127, 2023.

87



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

[WYO05]

[ZCQJ08]

[ZCY06]

[ZRL96)

88

Kuo-Lung Wu and Miin-Shen Yang. A cluster validity index for fuzzy
clustering. pattern recognition letters, 26(9):1275-1291, 2005.

Aoying Zhou, Feng Cao, Weining Qian, and Cheqing Jin. Tracking clusters
in evolving data streams over sliding windows. Knowledge and Information
Systems, 15:181-214, 2008.

Aoying Zhou, Feng Cao, Ying Yan, Chaofeng Sha, and Xiaofeng He.
Distributed data stream clustering: A fast em-based approach. In 2007
IEEFE 23rd international conference on data engineering, pages 736—745.
IEEE, 2006.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient
data clustering method for very large databases. ACM sigmod record,
25(2):103-114, 1996.



	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Motivation
	Goals
	Methodology
	Structure

	Background Knowledge
	Data stream processing
	Stream Clustering
	Novelty, change and outlier detection

	Methodology and Experiments
	Design of SDOstreamclust
	Evaluation

	Results and Discussion
	Evaluation and Comparison
	Parameter Testing
	Visualization
	Key Findings

	Conclusions
	Conclusions
	Future Work

	Appendix
	Explanation of the Program Code

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

