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Abstract

This thesis explores the application of survival analysis models to predict customer churn
in the edtech sector, an area of growing importance for subscription-based businesses.
By leveraging statistical and machine learning techniques, the study aims to improve
retention models over existing heuristic methods and identify key variables influencing
churn behaviour. The research focuses on using survival analysis, a statistical framework
adept at handling censored data, to predict customer churn and retention duration,
providing more precise and actionable insights.

Drawing from a dataset comprising several hundred thousand customer records with both
time-variant and time-invariant features, this study evaluates classical survival models,
including Kaplan-Meier and Cox Proportional Hazards models, as well as advanced ma-
chine learning techniques like Random Survival Forests and Gradient Boosting Machines.
The incorporation of time-variant data, a novel aspect of this study, enhances model
sophistication and predictive capability.

Results demonstrate that machine learning models outperform traditional heuristic
approaches, achieving higher concordance index and lower integrated Brier scores. Per-
mutation importance methods highlighted variables and features which strongly affected
survival time and its inverse: customer churn. Time-variant data was found to fur-
ther improve model performance although caution must be exercised to ensure correct
interpretation of results.

This work contributes to the literature by extending survival analysis applications to the
edtech sector, where customer retention is critical for sustainable growth. The developed
models form a basis as a testbed for further analysis as new hypothesised variables come
in for testing. However, the lack of readily-available libraries for time-variant analysis,
particularly in Python both highlight the cutting edge nature of time-variant survival
analysis, as well as the risks of productionising time-variant methodologies.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
In subscription businesses where revenues come from recurring payments by customers,
customer retention is considered to be a key component in the sustainability and success
of a business. This is because the cost of acquisition is substantially more expensive than
that of retaining a customer, with five times being the general rule of thumb[1].

As a result, the prediction of how long a customer would stay (customer retention) as well
as what customers are at risk of leaving (customer churn) are crucial in order to reduce
costs of marketing for acquisition and maintain a sustainable profit. Even a modest
5% increase in customer retention rate translates into customer lifetime value (LTV)
improvements of 35-95%[2].

Due to its focus on predicting time-to-event, survival analysis is a commonly-used frame-
work for predicting customer churn and retention, particularly in situations where the
provided data is censored for whatever reason[3]. While there has been a reasonable
coverage of academic papers on the subject, the vast majority of papers published on
survival analysis in a customer churn context since 2015 have been in the telecommuni-
cations, gaming, and finance domains.[4]. It is therefore still an open question on how
applicable these models are in other domains.

In the edtech sector, churn and survival models tend to use heuristic and/or simple
parametric models which do not perform well when market trends or customer makeup
changes. In addition, the little research conducted in this space is focused more on course
and degree-level in traditional educational institutions which only looks at demographic
data[5, 6].

The sponsor of this project is a leading provider of online tutoring services. Being in the
online space, it is able to obtain data in addition to demographic data (e.g. desired goals,
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1. Introduction

opinions of tutors, etc.) which can potentially provide better indications of customer
satisfaction and encourage proactive intervention to improve the service.

It is therefore of interest to find models which both beat the current heuristic models
as well as find variables which have an impact of a customer’s desire to stay with the
subscription.

1.2 Aim of the Work
The goal of this thesis is to determine if a better-performing customer retention model
can be built with available variables compared to naïve or heuristic alternatives. In
addition, the thesis intends to also explore key variables which affect churn behaviour as
well as the extent to which churn behaviour can be influenced.

The research questions asked in this thesis were: -

RQ1 What are the best-performing metrics by Concordance Index (C-index) and Inte-
grated Brier Score (IBS) which are obtainable against a test set by various Survival
Analysis models on the provided customer churn data?

RQ2 Can we reject the null hypothesis that the results of these more sophisticated
Survival Analysis models are the same as those from simple naïve/heuristic models?

RQ3 What variables best explain variation in customer churn behaviour?

1.3 Structure of this Thesis
Following the introduction in the current Chapter (Chapter 1), we will cover general
background of customer analytics and churn, as well as a basic introduction to survival
analysis in the Theoretical Background in Chapter 2. Chapter 3 then covers the state-
of-the-art in survival analysis as well as the various applications thereof that have been
published. In Chapter 4, we will then discuss the dataset and details of the methodological
approach and experiment setup to achieve the goals described above in Section 1.2. We
then present the results of the experiment in Chapter 5, followed by a discussion in
Chapter 6, and concluding remarks in Chapter 7 which will cover the contributions and
limitations of this thesis, as well as recommendations for future tasks to build on this
thesis.
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CHAPTER 2
Theoretical Background

2.1 Customer Analytics in Subscription Businesses
Due to the recent rise of the so-called "sharing economy", where goods and services are
shared amongst multiple users instead of being owned or used by a single party, new
business models have emerged which work appropriately within this context. One of
these business models is the subscription-based business model which has expanded well
beyond its 17th century roots in the publications industry [7].

Organisations with subscription-based business models tend to own unique and hard-
to-replicate assets, which are then converted into a set of standardised products and
services for customers to use. These customers are then encouraged to use the product as
frequently as possible to maximise their investment in the value proposition as they tend
to be locked in via contractual arrangements or high switching costs [8]. An example of
this would be the meal-box company HelloFresh.

In the subscription model, revenue is generated by customers through monthly subscrip-
tion fees, often structured with different pricing tiers based on product. This monthly
recurring revenue (MRR) structure differs fundamentally from traditional businesses
as it faces a higher upfront cost in marketing and sales expenses with these customer
acquisition costs (CAC) being recouped via subscription fees over the customer’s lifetime
as the first monthly fee rarely exceeds the CAC [9]. In fact, it can take approximately 12
months for a typical subscription business to recoup its CAC (Refer Figure 2.1) [10].

The subscription business therefore focuses heavily on relationships with their customers
as retaining customers is crucial to the profitability and sustainability of the company,
especially once a customer passes the breakeven threshold. In order to do this, performance
evaluation of customers through the usage of insightful metrics and key performance
indicators (KPIs) is essential for the company to make relevant managerial decisions

3



2. Theoretical Background

Figure 2.1: Customer cumulative net cashflow after acquisition. An illustrative example
showing the various revenue and cost components over time showing a typical 12 month
breakeven point. Any churn of a customer prior to this point equates to an overall loss
for the company

and maintain existing customers [11]. Some of the key KPIs relevant to this thesis are
described in the following sections.

2.1.1 Lifetime value (LTV)

LTV, also known as Customer Lifetime Value (CLV) in the business is a basic metric
reflecting the potential value of any given customer to the business. In more specific terms,
LTV is the present value of all future cash flows attributed to a customer relationship
[12].

While the specific calculation can vary based on business context, one can define a
customer’s expected LTV at the start of the customer relationship by the formula:

LTVi =
τ�

t=1



E( �Vt)

(1 + d)t−1

�
− C0 (2.1)

where τ represents the chosen observation timeframe, �Vt represents the customer’s net
contribution in period t, d represents the discount rate, and C0 represents the CAC which
is effectively paid at t = 0.
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2.1. Customer Analytics in Subscription Businesses

In terms of the observation timeframe τ , while theoretically one could choose the
customer’s entire lifetime, i.e. τ = ∞, in practice, many firms consider three years to be
a good estimate for a horizon where the business environment would not substantially
change [13]. In addition, having a limited time horizon provides mathematically easier
calculations as will be described in Section 2.2.

In terms of predicting LTV, the discount and CAC components stay reasonably static
while the net contribution component �Vt is affected by many variables which are customer-
specific. Ultimately, these variables affect one or more of the three components which
make up net contribution: -

1. the expected revenues generated by a customer in period t, usually comprising a
MRR component and an ancillary component. In a subscription business model,
the monthly recurring component usually dominates and is thus reasonably static

2. the expected costs of serving the customer in period t, usually cost of goods sold
(COGS) and general fixed costs

3. the duration of the relationship with the customer

In a subscription business model, the first two components of calculating net contribu-
tion �Vt tend not to vary significantly between customers whereas the duration of the
relationship can take any value of t from 0 to τ . Obtaining this value requires a customer
retention model.

2.1.2 Retention and Churn
Analysing customer retention and its inverse customer churn is a critical focus for
companies with a subscription business model. Customer retention is defined as the
probability of a customer of still being a customer at any given period t. In customer
retention modelling, there are two broad classes:

Always-a-Share

In an always-a-share model, customers can switch between customer states as well as
leave the company and return again. These are usually for businesses where switching
costs are low and contracts are generally not enforced. An always-a-share model is usually
modelled as Markov chains. In the context of subscription-based businesses without
contracts, a Markov model has been proven to have a high risk of being substantially
wrong [14].

Lost-for-Good

When a customer leaves the company, they are assumed to be lost forever and will never
return. This is generally more appropriate for contract-based approaches and is the basis
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2. Theoretical Background

for the vast majority of classical retention models, including the one we will be looking
at in the thesis. While there is an argument that LTV is understated in classical models
because it does not take returning behaviour into account [14], we will suggest a possible
way around this in Section 4.

2.2 Survival Analysis
In order to analyse and forecast churn, this thesis looks at a class of statistical methods
known as survival analysis. The outcome variable of interest is almost always time until
an event occurs where an event can be any change in state, be it death, recidivism, or
more specific for our context, customer churn [15].
At first glance, one may think that normal regression and classification methods would
be sufficient to forecast churn and retention; however, customer churn data have some
characteristics which make it challenging to address with traditional methods:

1. Censoring: Any customer data obtained will inevitably include customers who
are still customers with the company; in other words, we do not know the actual
survival time when we train our models. (Refer Figure 2.2). While various sub-types
of censoring exist, in the context of customer churn, only right-censoring (i.e. we
do not know the final time of some subjects) matters.∗

2. Skewness: Times-to-event are rarely distributed normally; instead, customer churn
curves tend to be characterised by a disproportionate number of events early on,
followed by another disproportionate number of events during contract end periods
(Refer Figure 2.3)

The outcomes of survival analysis are quantitatively expressed in a survival function
S(t) and a hazard function h(t).

2.2.1 Survival Function
The survival function S(t) is defined as the probability that a subject does not have
an event occurrence at time t. It can also be defined as the complementary cumulative
distribution function of the subject’s lifetime. Mathematically, it is defined as:

Si(t) = P (Ti > t)
= 1 − Fi(t)

= 1 −
� t

0
fi(u)du

(2.2)

∗The other types of censoring are left-censoring, where we do not know the exact time of beginning
e.g. in a study of cancer where the start point is when cancer is reported, we do not know exactly when
prior to the reporting the cancer occurred; and interval-censoring, where subjects come in and out of a
study when an event occurs e.g. in the same cancer study, follow-up is only done at t = 3 and t = 6 but
the event occurred sometime in between.
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2.2. Survival Analysis

where Ti represents the survival time, Fi(t) represents the cumulative distribution function,
and fi(u) represents the probability density function of subject i. All survival functions
can be modelled as a curve from t = 0 to t = ∞ with the y-axis starting from 1 at t = 0
and reducing downwards towards 0 at t = ∞ (Refer Figure 2.4).

2.2.2 Hazard Function
A related function is the hazard function h(t)i which is the instantaneous potential per
unit time for an event to occur, given that subject i has survived up to time t[15]. It can

Figure 2.2: The concept of censoring illustrated. Dots show time of event. Red lines
represent subjects who have churned, whereas blue lines represent subjects who are still
customers at the end study point, i.e. the cut-off point for training data [16]

.

Figure 2.3: Customer churn by month. An illustrative example showing the larger number
of early churners in months 1-3, as well as at the end of a 12-month contract in months
11 and 12.
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2. Theoretical Background

Figure 2.4: A theoretical survival function illustrating the start at 1 at t = 0 and
approaching 0 as time approaches ∞ [17]

.

also be described as the instantaneous probability that an individual’s survival time T
lies between time t and t + Δt, if the survival time is already greater than or equal to t
or the conditional failure rate [18]. Mathematically, we define this as:

hi(t) = lim
Δt→0

P (t < Ti ≤ t + Δt|Ti ≥ t)
Δt

(2.3)

where Ti represents the survival time of subject i. It is worth noting that a hazard is not
a probability but a probability rate, i.e. the value can change depending on the time
unit used (days, weeks, months) and can also be a value greater than 1.

Hazard functions are distinctive with two main characteristics:

1. the value is always greater than zero

2. there is no upper bound

The hazard function can also be alternatively expressed as a cumulative hazard function
H(t), which is effectively the build-up of hazard over time, or mathematically:

Hi(t) =
� t

0
hi(u)du (2.4)

8



2.2. Survival Analysis

2.2.3 Linking the Survival and Hazard Functions
When either the hazard or survival functions are known, then one can also derive the
other function, which reflects the churn/retention duality. From Equation (2.3), we have:

P (t ≤ t + Δt|Ti ≥ t) (2.5)

From basic conditional probability, we also know that:

P (A|B) = P (A ∩ B)
P (B) (2.6)

Putting these two together, Equation (2.3) then becomes:

hi(t) = lim
Δt→0

P (t < Ti ≤ t + Δt|Ti ≥ t)
Δt

= lim
Δt→0

P (t < Ti ≤ t + Δt) ∩ P (Ti ≥ t)
P (T ≥ t) · Δt

(2.7)

We know that the probability P (t < Ti ≤ t + Δt) and P (Ti ≥ t) at the same time is
exactly the same as P (t < T ≤ t + Δt) as the latter is a subset of the former. Similarly,
we also know from Equation (2.2) that Si(t) = P (Ti > t). Thus, we can put this and
Equation (2.7) in order to produce:

hi(t) = lim
Δt→0

P (t < Ti ≤ t + Δt)
S(t) · Δt

= lim
Δt→0

Fi(t + Δt) − Fi(t)
Δt

· 1
Si(t)

= dFi(t)
dt

· 1
Si(t)

(2.8)

where Fi(t) represents the cumulative distribution function of subject i. Put purely in
terms of Si(t) and noting Equation (2.2), Equation (2.8) then boils down to:

hi(t) = d

dt
(1 − Si(t)) · 1

Si(t)

= − d

dt
Si(t) · 1

Si(t)

(2.9)

Now, if we apply the chain rule of differentiation to a composite function over a log
function, we end up with a familiar looking result:

9



2. Theoretical Background

d

dx
f(g(x)) = f ′(g(x)) · g′(x)

So, d

dx
ln(f(x)) = 1

f(x) · d

dx
f(x)

= d

dx
f(x) · 1

f(x)

(2.10)

This means that the hazard function can be written as:

hi(t) = − d

dt
Si(t) · 1

Si(t)

= − d

dt
ln(Si(t))

(2.11)

And the cumulative hazard function is:

Hi(t) = − ln(Si(t)) (2.12)

In summary, the cumulative hazard rate of subject i at time t can also be defined as the
negative logarithm of the survival function at time t.

Taken together, the relationships between the various functions discussed above are shown
in Figure 2.5.

Figure 2.5: Mathematical entities used in survival analysis and the transformations
between them [19]. PDF represents the probability distributive function, and CDF
represents the cumulative distribution function
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2.3. Survival Analysis Models

2.2.4 Censoring Assumptions
While generally more free from distribution assumptions, survival analysis models instead
lean on several assumptions about how the data is censored. The most important of
these assumptions is that of independent censoring, where the survival time T is
independent of the censoring time C. Another way of looking at it is that within any
given subgroup of subjects, any subjects censored at time t should be representative of
subjects who are at risk at time t.

This assumption is necessary in order to obtain convergence on the likelihood function
L = fi(ti)(δi)Si(Ci)1−δi which is the engine of most of the common models used to
determine the distribution function of survival time T .

It is also worth noting that a stricter definition of censoring called random censoring
exists and is commonly used by authors when they actually mean independent censoring
[20]. In random censoring, the censoring mechanism is assumed to be completely
unpredictable, i.e. censoring occurs by chance rather than any factors about the subjects
themselves.

Under certain circumstances of data, the likelihood function might also be potentially
used, as described by Lagakos [21], these are:

1. Nonprognostic Censoring: The censoring time of any given subject Ci only indi-
cates that the survival time exceeds Ci and gives no further prognostic information
about the survival time of the subject or any other subject in the dataset.

2. Noninformative Censoring: The censoring of a subject does not change the
hazard rate of that subject, or in other words, the distribution of censoring times
does not provide any information about the distribution of survival times and
vice-versa. This property is also known as the constant-sum property [22].

Although methods have been suggested to test for non-informative censoring [23, 24],
we will not go into significant detail as the nature of the dataset used in this thesis
allows us to confirm independent censoring without requiring substantial effort in terms
of distribution testing.

2.2.5 Typical Data Structure for Survival Analysis
When providing data for survival analysis, the general data layout is as illustrated in
Table 2.1. The layout changes slightly when time-variable longitudinal data comes into
play and that will be discussed in Section 2.5.2.

2.3 Survival Analysis Models
In general, survival analysis models are analogous to typical multivariate regression and
classification problems, adapted to take censored data into account.

11



2. Theoretical Background

Subject t e X1 X2 ... Xm

1 t1 e1 X11 X21 ... Xm1
2 t2 e2 X12 X22 ... Xm2
3 t3 e3 X13 X23 ... Xm3
... ... ... ... ... ... ...
n tn en X1n X2n ... Xmn

Table 2.1: The general data input structure for survival analysis. Each subject has
an observed survival time t and an event variable e that shows whether the event in
question has occurred or if the information has been censored. The subject then has as
m explanatory variables (X).

2.3.1 Kaplan-Meier Estimator
The Kaplan-Meier estimator is the primary statistical tool used to estimate a true
survival function from available data and can be considered the ’best’ estimator of
survival probability when no parametric structure is assumed [25]. In comparison to other
parametric estimators, Kaplan-Meier has been found to be unbiased and has minimal
efficiency losses in most cases, except for extreme situations such as extremely small
sample sizes [26].

This estimator is a non-parametric estimator that only requires the time-to-event (or
time-to-censoring) t, and the event status e for every subject. With this information, the
survival function estimator Ŝ(t) is given by:

Ŝ(t) =
�

j:ti≤t

(1 − ej

nj
)[27] (2.13)

where tj is the time at which at least one event e occurred, and nj is the total number of
subjects who have been censored or have not had the event yet at time tj . To derive this,
we take our survival function from Equation (2.2) and express it in terms of the previous
time point t − 1. Therefore:

Si(t) = P (Ti > t)
= P (Ti > t ∩ Ti > t − 1), if T >t, then T >t−1 must also be true.

= P (Ti > t|Ti > t − 1) · P (Ti > t − 1), from conditional probability

= 1 − P (Ti ≤ t|Ti > t − 1) · Si(t − 1)
= 1 − P (Ti = t|Ti ≥ t) · Si(t − 1)
= qi(t) · Si(t − 1)

(2.14)

We now call 1−P (Ti = t|Ti ≥ t−1) as qi(t) for ease of the next steps. By doing recursive
expansion on Equation (2.14), we can conclude that:

12



2.3. Survival Analysis Models

Si(t) = qi(t) · Si(t − 1)
= qi(t) · qi(t − 1)... · qi(0)

=
t�

s=0
qi(s)

(2.15)

Taking the conditional probability formula again, we can express qi(s) as:

qi(s) = 1 − P (Ti = s|Ti ≥ s)

= 1 − P (Ti = s ∩ Ti ≥ s)
P (Ti ≥ s)

= 1 − P (Ti = s)
P (Ti ≥ s)

(2.16)

The probability of a subject i having an event at time s, P (Ti = s) is the number of
events e which occurred at time t = s divided by the total population. Similarly, the
probability that the event is greater than or equal to time s, P (Ti ≥ s) is the number
of subjects who did not have an event occur until time s or later divided by the total
population. Therefore, we can express qi(s) as:

qi(s) = 1 − P (Ti = s)
P (Ti ≥ s)

= 1 − es

ns
)

(2.17)

Combining equations 2.17 and 2.15, taking into account that we are working off a sample
rather than the whole population, and not strictly enforcing the need for time steps to be
uniformly distributed, we finally return to the general Kaplan-Meier estimator equation
at the start of this subsection:

Ŝ(t) =
�

j:ti≤t

(1 − ej

nj
) (2.18)

The result of this formula on a given data sample is a step curve that shows the percentage
of survival over time of a given sample, as shown in Figure 2.6.

One of the main drawbacks of the Kaplan-Meier model is that it is not able to take
any subject covariates into account. In other words, while it is a very good an unbiased
estimator of the true survival curve of a given population, it does not provide much
explanatory power in terms of different variables within a group. However, as described in
Section 2.4, there are ways to compare the survival curves of a small number of categorical
variables with this method.

13



2. Theoretical Background

Figure 2.6: A Kaplan-Meier survival curve produced from the lifelines democracy and
dictatorship dataset with confidence interval bars [19]

.

2.3.2 Cox Proportional Hazards

The Cox proportional hazards model is the most popular model used in survival analysis
[28]. It is a semi-parametric model in that it makes no assumptions about the hazard
function itself, but rather regresses covariates such that it has a multiplicative effect on
the hazard rate at any point along the timeline.

Mathematically, we can define the Cox proportional hazard model as:

h(t, X) = h0(t) × exp(Xβ) (2.19)

where h0(t) represents the base hazard (a non-parametric estimation) and the exponential
part exp(Xβ) represents the partial hazard, which is parametric and based entirely on the
covariate matrix X. In other words, the only time-sensitive part is the base hazard while
the covariates only affect the partial hazard. The partial hazard then has an exponential
function applied to it in order to ensure the hazard function remains positive.

As can be seen from Equation (2.19), the log-partial hazard acts in a very similar way to
linear regression. In fact, most implementations in Python and R also contain the ability
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to include L1 and L2 regularisation [29, 30] in the same way as an ElasticNet based on
the work by Simon et al [31].

In the Cox proportional hazards model, one assumes that the relative risk of an event
occurring β remains constant over time, i.e. the proportional hazards assumption.
This is a direct consequence of the structure of the model; if we assume just a single
covariate x, then our model will be:

h(t, x) = h0(t) · exp(βx) (2.20)

If we assume two subjects (a and b), then the hazards of subjects a and b will always
remain constant for all values of t:

ha(t, xa) = h0(t) · exp(βxa)
hb(t, xb) = h0(t) · exp(βxb)

ha(t, xa)
hb(t, xb)

= h0(t) · exp(βxa)
h0(t) · exp(βxb)

= exp(βxa)
exp(βxb)

= exp [β · (xa − xb)]

(2.21)

Having a dataset which violates the proportional hazards assumption causes a reduction
in overall power of the model as well as the predictive power of other covariates which
themselves have constant hazard ratios due to the inferior fit of the model [32]. Various
methods exist to test the appropriateness of the Cox model on the data such as assessing
the goodness of fit by residuals [33] or using an extended Cox model as described in
Section 2.5.3.

Nonetheless, Stensrud and Philos have argued that within certain limits, the hazard
output of the model is a useful tool in assessing the general magnitude of a covariate’s
effects, i.e. one can interpret the hazard ratio as the weighted average of true hazard ratios
over the time period [34]. Therefore, one must not strictly conform to the proportional
hazards assumption, but it is always appropriate to have a dataset which approximately
meets this assumption [35].

If we do know of variables which cause the dataset to break the proportional hazards
assumption, it is also possible to adjust this by dividing the dataset into relatively
homogeneous strata. This process is known as stratification [36]. This results in
multiple base hazard curves for each of the different strata chosen.

In spite of the need for the proportional hazards assumption to at least approximately
hold, Cox’s proportional hazard model is very powerful particularly in situations where
the underlying base hazard function is unknown. If the correct underlying model is some
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already-known model, the Cox model is known to provide a reasonable approximation of
an already-known model [15].

2.3.3 Parametric Models
When the underlying probability distribution of the dataset is known, one can use
parametric models to model the survival function of the dataset. Once the underlying
model is specified either in terms of the survival times or the logarithm of survival times,
the model can be fitted and estimated using the maximum likelihood estimator.

The most popular of these parametric models are a class of models known as accelerated
failure time (AFT) models [37]. In contrast to the Cox model, AFT models assume that
covariates are proportional with respect to survival time. Mathematically, this
is expressed as:

S2(t) = S1(γt) for all t≥0 (2.22)

where S1(t) is some base known distribution, S2(t) is the distribution for another group,
and γ represents the acceleration factor, typically some regression such as γ = exp(−β⃗X).
A stochastic multiplicative component α based on some distribution g(α) called the
frailty can also be added to the hazard in order to model unobserved effects, resulting
in a survival function of:

S2(t) = S1(γt)α for all t≥0 (2.23)

The benefit of using AFT models are the relatively intuitive nature of the effects of
covariates on the survival time. A general review of the literature suggests AFT models
work very well with biological ageing research [38, 39] but the major key here is that
biological processes are commonly modelled with known statistical distributions such as
the log-normal or exponential distributions [40]. On the other hand, clinical and medical
epidemiology applications tend to show better performance with non-parametric methods
[41]. As we do not want to make any assumptions about the underlying base hazard
function which is not particularly linked to biological processes, parametric models are
beyond the scope of this thesis.

2.4 Evaluation Metrics for Survival Analysis
2.4.1 Log-Rank Test
The log-rank test is used to compare two or more survival functions with each other
[42]. In this sense, it is analogous to the t-test or Pearson’s chi-squared test for survival
analysis. Like those tests, the log-rank test tests the null hypothesis H0 that there is no
difference between the survival functions being compared in the probability of an event e
occurring at any time t.
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The observed events are then compared to the expected number of events at any particular
point in time if the null hypothesis was true. Given two survival curves a and b, the
expected number of events of curve a at time t, E(at) is expressed as:

E(at) = (ea,t + eb,t)(ea,t + sa,t)
nt

(2.24)

where sa,t is the number of subjects still surviving from group a at time t, and nt is the
total number of subjects from both groups. With a calculation at every time point t ∈ T ,
the test-statistic Z can then be calculated as:

Z =
�T

t=1(ea,t − E(at))��T
t=1 Var(ea,t)

(2.25)

The test statistic is then treated as any other with the same p-value rules for significance.

2.4.2 Concordance Index
The concordance index or C-index is the most widely used evaluation metric for survival
analysis models [43]. The value lies between 0 and 1, with a value of 1 meaning that the
survival model perfectly assigns higher risk or hazard scores to subjects who are at a
higher risk of experiencing the event in question while 0.5 means it is basically random
[44]. In other words, the index is a great metric for the discriminatory power of the
model, but does not make any explicit claim on the goodness of fit of the model.

The standard formulation of the concordance index is the Harrell’s estimator which is
the ratio of subject-pairs (i, j) in the dataset with "comparable" (one has a higher risk
score than the other) and "concordant" risk scores (i.e. the one with the higher risk score
has the event earlier) to the total number of "comparable" pairs.

Ĉ =
�

i ̸=j I{T obs
i < T obs

j } · I{Mi > Mj}�
i ̸=j I{T obs

i < T obs
j } (2.26)

where T obs
i is the observed event time of subject i, Mi is the risk score (usually hazard)

of subject i and I is the indicator function.

While it is a highly popular and in some ways intuitive metric, one needs to be aware
of the quirks of C-index. Firstly, as the C-index only uses data with observed event
times, datasets with a high proportion of censored data will very likely result in an
overestimated C-index value. Uno et al have proposed an index based off the inverse
probability of censoring weight (IPCW) which reduces this bias [45].

Secondly, changes and differences in the C-index do not necessarily reflect linearly
to overall performance. For example, an improvement in Ĉ from 0.70 to 0.75 is not
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necessarily the same difference in performance as one from 0.90 to 0.95. As Longato et
al have shown, improving the C-index at the high end (0.90 to 1.0) requires substantially
greater performance improvement compared to improving it at the low end (e.g. 0.50 to
0.60) [43].

Nonetheless, the C-index remains a good metric to use due to its ubiquity and implications
in the experiment with the above caveats in mind will be covered in Section 6.

2.4.3 Brier Scores
While the C-index has good discriminatory power, the Brier score is a metric which
assesses calibration of the model; namely, how accurate a model’s predictions are. The
Brier score is effectively the analogue to a mean squared error at different time points
along the survival curve and takes censored data into account. Noting that it is an
equivalent to mean squared error, the lower a Brier score, the more accurate a model is.
It is based on a proposal by Graf et al [46] and is expressed mathematically as:

BS(t) = 1
N

·
N�

i=1

�
(Ŝ(t | xi))2

Ĝ(Ti)
· I(Ti < t, δi = 1) + (1 − Ŝ(t | xi))2

Ĝ(t)
· I(Ti ≥ t)

�
(2.27)

where Ŝ(t | xi) is the model prediction at time t for subject i with subject i’s covariates
being xi, 1

Ĝ(•) is the IPCW, N is the total number of subjects, and δi is the binary
variable representing whether subject i has had an event at time t or not.

In practice, the IPCW 1
Ĝ(•) is estimated on the survival times and events of the training

set.

Equation (2.27) only provides the Brier score for a given time point on the model. In
order to obtain an overall view of performance for the whole model across the entire time
horizon, one would use the Integrated Brier Score (IBS). This simply takes the integral
of the Brier Scores obtained for every relevant timestep. In other words:

IBS =
� tmax

t1
BS(t)dw(t) for any interval [t1;tmax] (2.28)

where the weighting function w(t) = t
tmax

.

2.5 Incorporation of Time-Variant Data
Frequently in survival analysis, subjects may also have other covariates which vary over
time. In other words, these covariates are time-dependent and fall into two general
categories:
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1. Events: A singular event occurs at a point in time after the study starts; e.g. a
patient receiving a heart transplant, a customer submits an NPS (Net Promoter
Score) response.

2. Continuous Variables: A measured variable across the study period; e.g. a
patient’s blood pressure readings at various time points, a customer’s utilisation of
a product.

Depending on study structures, continuous variables could also potentially be event-
like, in that measurements are made at intervals of study time (e.g. patients only do
measurements at t = 1, 3, 5, 9 while the study incorporates t = 1, 2, 3, ..., 10).

The literature also differentiates between internal time-varying variables (where the
variable changes based on the individual’s own characteristics and therefore ends when
a subject event occurs) and external time-varying variables (where the variable is pre-
determined by some external factor unrelated to the subject) [47]. This differentiation
appears to only be necessary in terms of specific computer-program treatments of the
data; however, in general theoretical terms for algorithms discussed here, there is no
differentiation between the two [15].

2.5.1 Challenges and Considerations

One major consideration in the usage of time-variant data is the risk of immortal time
bias. This is the situation where definitions in study design are set up in such a way that
it is literally impossible for an event to occur before a time-varying variable reaches a
certain threshold or occurs [48]. For example, a Texas Heart Institute survival analysis
which concluded that heart transplant patients have a substantially longer survival time
than non-transplant patients was found by Gail to be biased as the selection criteria
for the study was acceptance to a transplant waiting list. This resulted in the ’received
transplant’ group to have an additional immortal period which is the waiting period
before actually receiving the transplant. In other words, it was only possible by definition
for ’not received transplant’ subjects to have their death event occur during the waiting
time period and ’received transplant’ patients are by definition immortal until the point
they receive their transplant resulting in a significant positive bias in survival time [49].

Similarly, one needs to be careful about cumulative data counts over time. For example, a
breast cancer chemotherapy study showed an apparently strong effect for higher dosages
and breast cancer survival. However, this was driven by the fact that patients are classified
into groups based on the percentage of prescribed dosages. By definition, patients who
died before completing their drug regimen were placed into the low dosage groups and
therefore resulting in the group given high dosages having a positive survival bias [50].

While there is the risk of substantial bias, these issues can be minimised by correct study
design and making sure any groupings are made a priori.
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2.5.2 Data Structure for Time-Variable Data
The standard structure commonly used is a small modification to that described in
Section 2.2.5. Instead of a single row per subject, a subject has multiple rows with
covariates changing based on a (start, stop] format [51].

An example is detailed in Table 2.2.

Subject start stop event X1 X2
1 0 4 False 0.1 1.4
1 4 8 False 0.1 1.2
1 8 10 True 0.1 1.6
2 0 7 False 0.5 1.5
2 7 10 False 0.5 1.4

Table 2.2: An example of time-variant data structure. Each subject may or may not
have multiple rows with start and stop times where events and variables can change. In
this example, X1 is a time-invariant variables while X2 changes over time

2.5.3 Extending the Cox Model
Having time-variant variables would naturally break the proportional hazard assumption
of the Cox model. Therefore, the model in Equation (2.19) is extended to incorporate
these variables as a separate block of predictors:

h(t, X(t)) = h0(t) × exp(Xstβst + Xtv(t)βtv) (2.29)

where matrix X(t) contains static variables Xst and time-variant variables Xtv and a
vector of their respective coefficients βst and βtv.

One can also incorporate a lag-time effect for the time-variant variables. In other words,
if one suspects the effect of a time-variant of any variable Xtv,j only affects the outcome
of the event after a time lag of Lj , one can rewrite Equation (2.29) to say:

h(t, X(t)) = h0(t) × exp(Xstβst + Xtv(t − Lj)βtv) (2.30)

Taking all of this together, we can show the hazard ratio between any two subjects (a
and b) as:

ha(t, xa)
hb(t, xb)

= exp [βst · (xst,a − xst,b) + βtv · (xtv,a(t − Lj) − xtv,b(t − Lj))] (2.31)

While the proportional hazards assumption is broken, it is worth noting that βtv is not
time-dependent and therefore reflects the overall effect of variables Xtv.
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It is also worth noting that the extended Cox model can be used as a way to check if the
proportional hazards assumption is correct. This is done by creating an extended Cox
version of the original Cox model, with the variables of interest being multiplied by some
time function g(t)†. In other words:

h(t, X(t)) = h0(t) × exp(Xβ + X(t)g(t))βtv (2.32)

If the model fulfils the proportional hazard assumptions, we can reasonably expect βtv to
boil down to a zero vector. Therefore, to check the assumption, the two models from
equations 2.19 and 2.32 can be compared with the log-rank test as described in Section
2.4.1.

†g(t) is often simply t or log(t)
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CHAPTER 3
Machine Learning for Survival

Analysis

Applying machine learning (ML) techniques to survival analysis represents the state-of-
the-art in the field. While research guidelines and general overviews have been around
for nearly 10 years [52, 53], a scoping review in 2023 showed only 49 publications in
PUBMED and EMBASE describing ML methods for survival analysis∗ [54].

This chapter thus provides a general overview of ML methods commonly used in the field
of survival analysis.

3.1 Classic ML Methods

3.1.1 Regularisation Methods

In linear regression, regularisation or shrinkage methods are commonly used to reduce
overfitting of models by penalising complexity in variables and promotes simple models
which generalise better [55]. These methods apply just as well onto the standard Cox
regression and come in the usual L1/LASSO (least absolute shrinkage and selection
operator) and L2/Ridge variations which penalise the absolute and squared sum of
regression coefficients respectively.

In most ML applications, both these regularisations will be applied at the same time
with varying ratios using the ElasticNet protocol [56].

∗It is also worth noting that of these 49, nearly half (21) were rejected from the study due to lacking
reporting metrics, ML techniques not being used for survival outcomes, or are reviews rather than new
algorithms
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3.1.2 Support Vector Machines
SVMs work by finding an optimal hyperplane between data points which separates them
linearly with the maximum margin possible. In order to work with data which cannot be
separated linearly, kernel functions are applied to the data which transforms them into
higher dimensions which can then be separated. These have been successfully applied to
many regression and classification problems outside of the survival analysis domain.

In a survival analysis context, SVMs can be applied as either of:

1. A regression problem where the desired outcome is to predict the expected lifetime
of a subject. Shivaswamy et al [57] as well as Khan and Zubek [58] have proposed
different methods of applying penalties to censored data which take into account the
negative bias to ignoring censored data-points if the basic support vector machine
(SVM) regression estimator is used.

2. A ranking problem which uses the SVM classifier where subjects with shorter
survival times are ranked lower than subjects with longer survival times when
all subjects are compared to each other. Algorithms commonly in use have been
proposed by Van Belle et al [59] and Evens and Messow [60].

Van Belle et al conducted a comparison between these two approaches and found that
the ranking method substantially underperforms regression methods [61]. These creates
a challenge as these models are not easily translatable into survival/hazard curves which
are used for evaluating other models in this study. In addition, SVMs are considered
unsuitable for large data sets [54]. As a result, SVMs will remain out of scope of this
thesis.

3.2 Ensemble Methods
Ensemble methods are a collection of models which combine large numbers of so-called
weak learners which perform very poorly on their own, but end up with a much stronger-
performing model when combined.

3.2.1 Random Forests
Random forests are based on simple decision trees as weak learners. Multiple decision trees
are built and trained on a different bootstrap sample (random subset with replacement)
as well as a random subset of features from the dataset. These resulting predictions
from these trees are then aggregated either by majority vote† or by mean prediction
depending on the task (Refer Figure 3.1). Breiman proved that if there are sufficient
trees in the random forest model, the resulting model will always converge and overfitting
is impossible due to the Strong Law of Large Numbers [62].

†It is worth noting that sklearn uses mean probability rather than majority vote for classification
tasks
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Figure 3.1: A diagram showing how a Random Forest is made up of multiple decision
trees; whose results are then aggregated to obtain a final result[63]

While it is well-known for robustness and generally good performance, random forests
are computationally expensive in comparison to classical ML algorithms, particularly
for large datasets with large numbers of trees. While sold as a method which works
well with high-dimensional datasets, studies suggest performance declines significantly
when only a small percentage of features are truly informative, meaning in some cases,
feature selection may still be a worthy endeavour [64, 65]. It is also worth noting, that in
the event that there is a linear relationship between the attributes and the target value,
random forests may not be any better than linear estimators in spite of the substantially
longer computational times involved [66].

In the context of survival analysis, while many have proposed methods which force the
survival analysis problem into either a regression or classification problem which fits
within the original paradigm [67, 68, 69], Ishwaran et al presented another approach
which strictly adhered to the guidelines laid out by Breiman for Random Forests, namely
that all aspects of growing a random forest must take the outcome into account, i.e.
splitting criterion during the growing of the tree must take survival time and event
occurrence into account [70]. This algorithm is described in algorithm 3.1.

Up to line 5, the algorithm is exactly the same as the standard random forest algorithm.
Then, the split is chosen by iterating through all possible variables and split values
finding the one which achieves the greatest difference in survival outcomes. Once the
node cannot form new daughter nodes as the node does not achieve ne > 0, that node is
determined to be terminal.
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Algorithm 3.1: Random Survival Forest Algorithm
1 Draw B bootstrap samples from the original data;
2 for each bootstrap sample do
3 while node_size < nmin do
4 Grow a random forest tree Tb by recursively repeating the following steps

at node;
5 if nevents ≤ 0 then
6 return to parent node and work down another daughter node;
7 else
8 (1) Select m variables at random from the p variables.;
9 (2) Split the node using the variable which maximises survival

difference between daughter nodes;
10 end
11 end
12 Calculate a cumulative hazard function for the tree H(t)
13 end
14 Aggregate the individual tree cumulative hazard functions using a mean function;
15 Using out-of-the-bag data, calculate prediction error for the aggregated

cumulative hazard function;

For every terminal node h, the cumulative hazard function can be described as the
Nelson-Aalen estimator, namely:

Ĥh(t) =
�

tl,h≤t

el,h

Yl,h
(3.1)

where el,h represents the number of events at terminal node h, l represents every time
point with at least one event occurrence, and Yl,h are the number of individual subjects
at risk at time tl,h.

Therefore, for a subject i with covariate matrix xi, the cumulative hazard function is the
relevant terminal node determined by xi, assuming of course that xi ∈ h. Mathematically:

H(t|xi) = Ĥh(t) (3.2)

Taking Equation (3.2) and the average of all cumulative hazard functions, we can conclude
that the function for a dataset with B bootstrap samples is:

H(t) = 1
B

B�
b=1

Hb(t|xb) (3.3)
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Feature Importance in Random Forests

While the traditional way of obtaining feature importance involves cross-validation, a
far more computationally efficient method for random forests is to use Breiman-Cutler
variable importance or permutation importance. The way to calculate is described in the
Manual On Setting Up, Using, And Understanding Random Forests as:

“In the OOB cases for a tree, randomly permute all values of the jth variable.
Put these new covariate values down the tree and compute a new internal
error rate. The amount by which this new error exceeds the original OOB
error is defined as the importance of the jth variable for the tree. Averaging
over the forest yields variable importance [71].”

By using this method, we can obtain feature importance from large random forests
without having to use up precious computational resources.

3.2.2 Relative Risk Forests
As discussed in Section 3.2.1 above, certain forest-like methods exist which do not adhere
to the Breiman guidelines for Random Forests. We discuss one such version here as it
will be relevant when discussing the incorporation of time-variant data in Section 3.4.2.

The Relative Risk Forest - also proposed by Ishwaran et al - treats the survival analysis
problem based on a classification and regression tree (CART) methodology which depends
on the equivalence between a survival tree and Poisson tree likelihoods [69]. To grow the
tree recursively, the deviance residual below is used as a splitting criteria:

di = 2
�
δi log



δi

Ĥ1
0 (ti)θ̂1

b

�
−

	
δi − Ĥ1

0 (ti)θ̂1
b

��
(3.4)

where δi represents censoring information for subject i‡, Ĥ1
0 represents the one-step

Nelson-Aalen estimator at that particular node for that given iteration, and θ̂1
b is the

one-step estimate for node b under the proposed split.

Using this one-step estimate, a new Nelson-Aalen estimator Ĥ2
0 (t) is recalculated using:

Ĥ2
0 (t) =

�
{i:ti≤t}

δi�
b∈T ∗ nb(ti)θ̂1

b
(3.5)

where nb represents all individuals in node b who are at risk at time ti, and T ∗ represents
all terminal nodes in the tree.

‡namely, 1 in the event of a customer churning and 0 if the customer was censored
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The tree is then resplit again until a fixed number of calculations are complete or a
stopping criterion is achieved. Once this occurs, the relative risk tree is fully-grown
and ready to take in new data. At this point, a given covariate set X is then dropped
down the tree and the final-step estimate in the relevant terminal node θ̂h is the relative
risk/hazard rate for the given covariate set.

In the production of the forest, a bootstrap sample of subjects are selected as well as
a random sample of covariates from X are chosen and multiple relative risk trees are
grown as the base learners for the forest. Then, the average final-step estimate is taken
to represent the hazard rate.

3.2.3 Gradient Boosting Models
Unlike random forests, gradient boosting models (GBMs) combine their weak learners in
an additive form, where the addition of each new model ’boosts’ (improves) the currently
existing model. Mathematically, it can be described as:

f(X) =
M�

m=1
g(X; θm)βm (3.6)

where βm represents the weights for base learner function g(X; θm) and θm are parameters
which change with each learner iteration.

In terms of base learners, the user can choose from various simple algorithms although
the most common ones available in relevant Python and R libraries are regression trees,
component-wise least squares (which is an analogue of least-squares regression), and the
stratified Cox models [29, 72].

Whichever base learner is selected, the gradient boosting model (GBM) learns using a
’greedy stage-wise’ process, in which each iteration is fitted such that β⃗m minimises a
loss function (e.g. partial likelihood). The next iteration is then updated with that of
the previous iteration, in other words:

fm(X) = fm−1(X) + f(X; θm)βm (3.7)

Often, regularisation (see Section 3.1.1) or subsampling (where each base learner is fitted
on a random subset of the dataset) will be employed in order to prevent overfitting [73].

3.3 Deep Learning Methods
In terms of state-of-the-art deep learning applications, a review by Wiegrebe et al shows
that the vast majority of the work done in this area are highly-specific applications
focused on estimating patient survival based on high-dimensional data such as CT Scan
images or multiomics data [74].
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The earliest application of deep learning methods is to extend the Cox method beyond
having a linear proportional hazard to having a non-linear proportional hazard. Katzman
et al proposed a feed-forward deep neural network built from multiple Dense layers called
DeepSurv which determines the hazard rate of the subject [75]. Although similar neural
network systems had been proposed in the past [76], Katzman claims this is the first
version of a neural network structure which provided superior results compared to the
standard linear Cox model.

43% of research in deep learning for survival analysis reviewed by Wiegrebe et al expand
upon DeepSurv’s foundations, either tweaking architecture, experimenting with different
loss functions, or incorporating multi-modal input such as unstructured data or image
data on top of the standard tabular data available. In other words, the standard stack of
Dense layers provided by DeepSurv can also incorporate various types of input data such
as X-ray images. See Figure 3.2

Figure 3.2: DeepSurv architecture which incorporates multi-modal input. Inputs are
processed and then fed into the Dense layer stack which outputs the hazard and survival
functions [74].

The other class of deep learning applications reviewed which comprised a further 31%
treat each time point as a discrete classification problem. Because the problem becomes
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a classification one, the methods reviewed are highly variable with a mix of recurrent
neural networks (RNNs), transformers, and feed-forward neural networks. In addition to
varying architectures, the proposed methods cover many different ways of choosing loss
models and parametrising the probability mass function of event occurrences. It is worth
noting that all these methods break away from the survival analysis mathematics that
have been discussed in Chapter 2.

While interesting and novel, the review also emphasised that 87% of the methods discussed
either did not come with code or have been built as bespoke one-shot implementations. In
addition, the methods published rarely discussed optimisation and tuning. A combination
of these issues mean that deep learning methods will remain out of scope for this thesis,
noting that there is already sufficient room for exploration in time-variant data on
classical and ML methods.

3.4 Incorporating Time-Variant Data in ML Methods
The incorporation of time-variant data in more advanced ML models is still relatively novel,
with most literature found on this only published in the last five years [77, 78, 79, 80].

Methods usually cover three different approaches of dynamic estimation, namely where
the hazard function of a subject is continuously updated as new time-varying covariates
appear. These methods are: -

1. Landmark Analysis: This involves building a new standard model (e.g. Cox PH)
at various time points t known as landmark times looking only at subjects which
have survived to the landmark times [81].

2. Joint Modelling: This process models the time-varying covariates jointly with
the event time data process by assuming time-varying and survival processes are
underpinned by the same random effects [82].

3. Counting Process: The counting process splits the follow-up information (i.e. all
covariates after t = 0 into non-overlapping interval sections).

When dealing with ML methods, the most literature has been written about Random
Forest processes which primarily use the counting process above. In 2020, two different
methods were proposed to incorporate time-variant data into the Random Survival Forest
model described in Section 3.2.1.

3.4.1 Random Forest for Survival, Longitudinal, and Multivariate data
(RF-SLAM)

The RF-SLAM method proposed by Wongvibulsin et al utilises a variation of the standard
Random Survival Forest by implementing a preprocessing step to the data prior to creating
the tree. This step involves building discrete units called counting process information
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units (CPIUs)[83]. In effect, the CPIU is similar to the long-format data described in
Section 2.5.2 except all subjects share the same time intervals. Figure 3.3 illustrates how
CPIUs are produced prior to being fed into the random forest.

Figure 3.3: An example of CPIU generation for the RF-SLAM algorithm. Wongvibulsin
used LV Structural Predictors Registry as the data source which includes hospitalisations
due to heart failures (HF in blue diamonds) as a time-varying covariate and SCA (in red
octagons) being the event of interest. The timeline of every subject is cut into similar
multiple discrete pieces which are the CPIUs. Each CPIU then has variables int.n (CPIU
ID), pHF (count of HFs so far), iHF (whether a HF occured during the time point),
iSCA (whether the SCA event occurred or not), and ID n (the ID of the subject) [83].

To deal with the clear loss of independence between CPIUs, the RF-SLAM uses a Poisson
log-likelihood (instead of the traditional log-rank split statistic which depends on the
proportional hazards assumption) as a split criteria. Wongvibulsin describes the Poisson
log-likelihood split statistic as:

�
i∈L

Ti�
t=1

�
−µ̂L

it + yit · log
	
µ̂L

it

��
+

�
i∈R

Ti�
t=1

�
−µ̂R

it + yit · log
	
µ̂R

it

��

−
�
i∈P

Ti�
t=1

�
−µ̂P

it + yit · log
	
µ̂P

it

�� (3.8)

where subject i at time t and a maximum time of T , has an estimated expected number
of events µ̂ and the actual number of observed events y, and these subjects can be parts
of the left node L, right node R, and parent node P .
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The estimated expected number of events µ̂ for subject i at time t at node S is given as:

µ̂S
it = λ̂S

itrit (3.9)

where λ̂ is the estimated event rate and r is the total length of the at-risk time interval.
Each terminal node in the forest is then assigned an estimated event rate based off the
training data using the above calculations called λ̂b. When applying an observation
outside of the training set, the hazard rate is obtained by averaging across all trees in
the forest. Mathematically, the hazard rate for a new subject i at time t with covariates
Xi is:

ĥi(t|Xi) = ΣB
b=1λ̂b(Xi)

B
(3.10)

where b represents any one of B trees in the random forest.
As of the time of writing, no readily available libraries exist for R and for Python.

3.4.2 LTRC Trees
Another group of methods called LTRC trees was proposed Yao et al to estimate
a population-level survival function [84]. These are extensions of random-forest-like
algorithms; namely relative risk and conditional interference forests, which are variations
of random forests which treat the survival question as the standard Classification and
Regression Trees (CARTs) problem solved by standard forest algorithms.
The proposed methods follow a similar process, in that the data is split into the counting
method format described in Section 2.5.2, and then the CPIUs are processed as if they
were independent. Lastly, the survival function estimate is calculated based on the
outputs of the forests and dependent on covariate information up to time t.
In order to incorporate the time-variant data, Yao et al amended the split criteria from
the standard conditional inference and relative risk forests. For example, in Yao’s relative
risk forest implementation, the split criteria referenced in Equation (3.4) is replaced by:
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where L′
l and R′

l represents the starting and ending times t of a CPIU l, and Rh represents
the set of possible time observations (essentially an individual row in the data table
presented in Table 2.2. This then allows the relative risk forest to accept and process
time-variant data and ensures the algorithm only sees data prior to the actual time point.
A CRAN library of these implemented methods was also published by Yao et al in
November 2023 [85].
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CHAPTER 4
Implementation and Employed

Algorithms

4.1 Dataset and Customer Information
Due to commercial requirements, the information on the dataset is kept purposely vague,
with the intention to provide an idea of the size and type of the dataset which is used in
the experiment.
The dataset consists of customer subjects with n in the 105 order of magnitude and
contains information on whether they are churned customers or not (the event), the
total time they have been a customer (the survival or censored time), and 38 time-
invariant variables associated with each individual customer. These variables are a mix
of numerical as well as categorical variables. In addition, there are an additional six
time-variant variables in the dataset covering continuously measured metrics as well as
event occurrences.
The dataset skews towards churned customers with a majority of subjects having had
the event occur as it represents several years of the customer base.
This dataset was split into training and test sets, where the test set consists of several
chosen customer cohorts which comprises approximately 15% of the total dataset. The
test set is only used at the end of the experiment to assess model performance, and
a separate validation set is created through cross-validation during the training and
hyperparameter tuning processes.

4.2 Preprocessing
The vast majority of the pre-processing work was completed at the source, namely sourcing
the appropriate tables, making sure joins are appropriate, and ensuring aggregations
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returned the correct values. Clean raw data was then extracted via SQL code from
company databases and as much as possible, formatting was fixed at source. This data
was then inspected and spot-checked to determine fidelity with the original sources (for
example, confirming with source that customer abc123 actually had six events of variable
x occur) and corrections to the joins were made as needed.

This clean raw data is then further processed as needed to fit the specific model/library
format requirements. Noting that the source of data is assumed to be ’complete’, missing
values (i.e. NAs and inifinity values) were set to zero assuming that either the event did
not occur or no value was collected for the given variable.

4.2.1 Categorical Variables

As most of the categorical variables were nominal and not ordinal, it was chosen to
one-hot encode all categorical variables, i.e. all unique categorical values are converted to
Boolean variables (See Figure 4.1). This did increase the dimensionality of the dataset.

To reduce this effect somewhat, one value from each of the categorical values was chosen
to represent a default customer and columns with those categories were removed, under
the assumption that all 0s across the relevant columns means a 1 for the default category.
To use the example in Figure 4.1, say we select red as the default value for color. This
means column color_red was removed from the dataframe. This resulted in the 31
total variables of the dataset growing by 54% to a total of 48 variables. However, this
was considered an acceptable growth as the dataset could then be cut down again by
using feature selection methods.

Figure 4.1: An example of one-hot encoding showing how all unique values of color are
split into columns with Boolean variables [86].

4.3 Feature Selection

Due to the dimensional growth, particularly from the one-hot encoding discussed in
Section 4.2.1, consideration was given to the need for feature selection, particularly for
computationally-intensive algorithms such as the random forest.
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Some algorithms already have feature selection in-built; for example, sksurv’s Cox
Proportional Hazards estimator comes with ElasticNet capability built in [29], where
coefficients are penalised (See Section 3.1.1 for a more detailed description of how
regularisation works). However, this does not help with the issue of selecting features for
computationally-intensive algorithms.

Another alternative is to implement transformations to the inputs and using these derived
inputs for the algorithms. This is commonly done through regression processes such
as principal component regression (PCR) or partial least squares regression. Both of
these methods construct a set of linear combinations of the original inputs which is then
used as an input [55]. Cox variations of this method exist [87]; however, these methods
reduce interpretability somewhat as resulting analyses of feature importance, e.g. by
looking at the various Cox coefficients, would only show their relation with the principal
components rather than the variables in question. This makes it more difficult to assess
RQ3 in Section 1.2, particularly to a non-scientific corporate audience.

Therefore, it was decided to manually choose features based on the results from imple-
menting feature importance methods. In order to do this, the results of the basic Cox
and Random Forest full models were used to manually decide what should be setup as a
reduced model for testing.

Figure 4.2: An illustrative example of Cox Proportional Hazards coefficients being plotted
to assist with manual decision of what features to keep and what features to drop [19].

The basic Cox model conveniently has coefficients which are a sign of feature importance
in that they show an estimated effect on the partial hazard of a subject at a given point in
time (Refer Figure 4.2). Similarly, standard scikit-learn implementations of feature
importance permutes through the variables, calculates the impurity of child nodes, and
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determines importance of each feature as the magnitude of reduction in impurity due to
a forest split.

Figure 4.3: An illustrative example of permutation importance values from a random
forest being plotted to assist with manual decision of what features to keep and what
features to drop [88].

In addition to the reduced dataset, a minimal dataset was also created which only has
the variables used in the base Kaplan-Meier as well as the six time-variant variables while
half of the subjects were chosen at random to be removed, resulting in a substantially
smaller dataset that has 48.9% of the rows and 38% of the columns.

4.4 Hyperparameter Tuning

Most of the various models described in the following sections come with a range of
various parameters which allow tuning of the model’s performance. Where practical, we
have attempted hyperparameter tuning and the specific hyperparameter grids are shared
in the relevant algorithm section.

The general principle for hyperparameter tuning was to use a Random Search algorithm
with five-fold cross-validation over 50 iterations. This was deemed to be better than
an exhaustive grid search process and both Bengio and Bastra as well as Zheng et al
have shown that a random search can achieve the same performance as grid search with
greater efficiency [89, 90]. This effect and the reasons why this occurs is illustrated in
Figure 4.4.
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Figure 4.4: An illustrative example comparing Grid Search with Randomised Search,
noting that for an important parameter, Randomised Search will look at nine distinct
values while Grid Search is only limited to three, which drives improved efficiency at
finding optimal parameters [89].

As will be further discussed in Section 5, this principle was occasionally not achieved
due to computational issues, and this will also be discussed in the sections pertaining to
those algorithms as well as in Section 6.

4.5 Models Implemented

The following section describes the various models and algorithms tested, as well as
relevant hyperparameters used during the experiment.

4.5.1 Basic Algorithms

Kaplan-Meier Estimator

The Kaplan-Meier estimator is used as the base simple/heuristic model for comparison
with the other following models. Two variables were chosen for stratification purposes
creating a total library of 60 individual K-M curves. When a new entry from the test
set is introduced, the survival curve chosen would be that which matches the correct
variables in the K-M curve library.

The KaplanMeierFitter function from Python’s lifelines library was used to
obtain these curves [19].

Cox Proportional Hazards

The CoxPHFitter function from Python’s lifelines library was used. This function
conveniently also comes with an ElasticNet implementation which was explored for
hyperparameter tuning. The search space consisted of the following hyperparameters:-
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• penalizer: A sequence of 100 equally spaced numbers starting from 0.001 and
going up to 0.1. (np.linspace(0.001, 0.1, 100))

• l1_ratio: A sequence of 50 equally spaced numbers ranging from 0 to 1 where 0
represents a full Ridge regularisation and 1 represents full Lasso (np.linspace(0,
1, 50)).

The best model was decided by the best mean concordance index from the five cross-
validation folds.

In addition, as described in Section 4.3, coefficient summaries from this model are also
obtained to decide on reduced models for the more computationally-expensive models in
the following sections.

Random Forest Survival

The RandomSurvivalForest function from Python’s sksurv library was used. This
implementation is the same one discussed in Section 3.2.1. The search space consisted of
the following hyperparameters:

• n_estimators: A logarithmic sequence of 10 values from 50 going up to 2000.
(np.geomspace(50, 2000, num=10))

• max_depth: A sequence of 16 equally spaced numbers ranging from 2 to 32
(np.linspace(2, 32, 16))

• min_samples_split: A logarithmic sequence of from 21 to 27. (np.logspace(1,
7, base=2, num=7))

• min_samples_leaf: Also a logarithmic sequence of from 21 to 27. (np.linspace(2,
32, 16))

• max_features: The option between the square root of features or the base-2
logarithm of features .(["sqrt", "log2"])

In addition, permutation importance analysis was included to obtain feature importance
values for manual model reduction and feature selection.

Gradient Boosting

While it wasn’t intended in the original brief, we also tested the Python’s sksurv
library’s implementation of gradient boosting. The hyperparameter search space was as
follows:

• n_estimators: A logarithmic sequence of 10 values from 50 going up to 1000.
(np.geomspace(50, 1000, num=10))
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• max_depth: A sequence of 16 equally spaced numbers ranging from 2 to 32
(np.linspace(2, 32, 16))

• min_samples_split: A logarithmic sequence of from 21 to 27. (np.logspace(1,
7, base=2, num=7))

• min_samples_leaf: Also a logarithmic sequence of from 21 to 27. (np.linspace(2,
32, 16))

• learning_rate: A logarithmic sequence of 50 values from 0.0001 going up to 1.
(np.geomspace(1e-4, 1, num=50))

• loss: All available options for the loss function to be optimised was given,
with coxph being the traditional standard using partial likelihood([’coxph’,
’squared’, ’ipcwls’])

• criterion: The criterion used to measure the quality of split ([’friedman_mse’,
’squared_error’])

4.5.2 Time-Variant Methods
As these methods are more cutting edge, there is a severe dearth of available libraries
that address time-variant survival analysis, especially in Python, which is the primary
language used in this work. For example, lifelines in Python provides some time-
variant capability; however, due to the creator’s issues with the potential of immortal
time biases, they chose not to implement the production of survival curves or cumulative
hazard functions to the time-variant functions.

Because of this, and the fact that the basic survival package in R supports some basic
time-variant functionality [91], and the most advanced methods have libraries provided
in R, the analysis pipelines for time-variant covariates were basically rebuilt in R.

Extended Cox Model

The extended Cox model was built from the coxph function from the survival package
in R. While a Ridge penaliser could be applied to the formula, the survival package
was not as flexible in allowing a survival ElasticNet. Therefore, the fit for this was the
standard Cox model and no hyperparameter tuning was conducted.

Options from the glmnet library were also explored to obtain ElasticNet capability as
well as hyperparameter tuning; however, challenges in producing survival curves and fits
on test curves after training for evaluation purposes meant this was not able to be fully
explored by the end of the study period.

The Python application through the lifelines library was also implemented to obtain
rough performance figures as hyperparameter tuning was a possibility. However, as no
straightforward function was provided in the library to obtain survival curves, the R
function was the one that was assessed in Section 5.
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LTRC Relative Risk Forest

We implemented the LTRCforests library provided by Yao et al in their paper on the
algorithm using the extended relative risk forest algorithm [84, 85]. Settings were kept at
default and while there were hyperparameters to explore, it was quickly determined (as
discussed in Section 5.3) that this was not practical even on the reduced and minimal
datasets.

Therefore, three experiments (with the full, reduced, and minimal datasets) were con-
ducted with the time-varying relative risk forest algorithm on recommended settings
based on the paper produced by Yao et al [84], namely:

• ntree: The total number of trees: 100

• mtry: Number of variables sampled for each node:
√

m, where m is the total
number of variables

• nodesize: Average terminal node size:
√

n, where n is the total number of rows
in the data

• nsplit: The number of random splits to consider for each candidate splitting
variable: 10

4.6 Evaluation Metrics
For the purposes of evaluation, a fit was made against the test set, and the Brier Score,
time-dependent AUC, and concordance index were obtained. In addition, the mean
absolute error, mean percentage error, and RMSEs were calculated. For the purposes of
presentation in this thesis, we have limited the fit to the first customer year.

An overall K-M curve for the test set was also drawn and compared to a K-M curve of
the predictions to give a general and more interpretable picture of model performance
across time. However, this is not shared due to commercial sensitivities relating to the
data.

4.7 Hardware
All experiments were conducted on the Fangorn server at TU Wien’s Computational
Statistics Department of the Institute of Statistics and Mathematical Methods in Eco-
nomics.

The cluster comprises two AMD Epyc 9654 96-Core processors running at 2.40 GHz with
768GB of RAM. All experiments were run on CPU and used 50 cores in total to maintain
consistency and to prevent the hogging of shared resources, particularly for extended
runs of the time-variant algorithms.
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CHAPTER 5
Results

The results chapter of this thesis will cover the basic time-invariant and time-variant (aka
time-dependent) methods separately. This allows us to cover the time-variant results in
greater detail and what they imply for future work.

5.1 Basic Methods
Table 5.1 summarises the overall performance of every model across the entire 12-month
period examined for the purposes of assessment. Across every summary metric, the
Random Forest performed best, and was the only model which performed better compared
to the base Kaplan-Meier model.

Model Name C-Index Mean AUC Int. Brier RMSE
Kaplan-Meier (Base) 0.640 0.651 0.175 0.0967
Cox Elastic-Net 0.457 0.504 0.218 0.0760
Gradient Boost 0.661 0.678 0.168 0.0458
Random Forest 0.651 0.738 0.157 0.0356

Table 5.1: Summary of fully-tuned basic algorithm results against the test set, showing
the concordance index, mean area under the curve (AUC), integrated Brier scores, and
RMSEs for every model. To recall, a C-index of 0.50 represents complete randomness,
and 1 represents perfect discrimination, a higher AUC is better, and an integrated Brier
score of 0.25 is considered fully random and lower scores are better.

5.1.1 Findings from General Results
This section will highlight some interesting aspects of the general results in Table 5.1 the
table will be pointed out.
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Kaplan-Meier RMSE: The Kaplan-Meier base model shows better discriminatory
performances in comparison to the Cox Elastic Net as evidenced by the C-index, AUC,
and IBS scores. However, it is interesting to point out a higher RMSE value compared
to the other models suggesting that the base model performs particularly poorly when
dealing with outliers.

ML Methods Show Minor Improvements over Base: The Gradient Boost and
Random Forest algorithms showed better results across all metrics in comparison to the
base Kaplan-Meier model. However, the improvement levels are not particularly large
compared to the base, with the exception of RMSE, which suggests good ability to deal
with outliers.

5.1.2 Findings from Time-Dependent General Results

Noting that average values in Table 5.1 do not necessarily show the whole picture, Figures
5.1 to 5.8 show the time-dependent AUC and Brier scores for each model through the
first year. These provide a better view as to typical performance of models across the
time-period analysed. The observations include:

Short-Term Performance generally better: Across the board (with the Gradient
Boost being the only exception - Refer Figure 5.5), we can see that both the AUC and
Brier scores of all models show substantially better performance prior to the sixth month
of enrolment compared to post-six month. One potential reason for this is that as in any
customer dataset, customers are skewed towards the shorter end of the lifetime scale, in
other words, there are significantly more customers who are short term as opposed to
long term thus providing more data for the model to train on.

Random Forest only algorithm which performed consistently well: Looking
at the Brier score graph in Figure 5.8, the Random Forest is the only algorithm which
consistently stayed below the 0.25 line across the whole time period. The Gradient Boost
showed a similar Brier score curve but stayed generally worse compared to the Random
Forest suggesting similar overall performance, except worse.

5.1.3 Feature Selection

Noting the substantially better performance of the Random Forest algorithm as compared
to the Cox Elastic-Net, it was decided to use solely the permutation importance values
from the Random Forest model in order to generate the reduced dataset for the time-
variant methods. Following the selection process (based on variables where the absolute
feature importance score was close to zero), a reduced dataset was produced which
removed 15 columns resulting in a dataset comprised of 29 variables. This is a reduction
of 34% from the full data-set which consisted of 44 variables in total.

42



5.1. Basic Methods

Figure 5.1: Time-Dependent AUC Curve for the Base Kaplan-Meier

Figure 5.2: Time-Dependent Brier Scores for the Base Kaplan-Meier
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Figure 5.3: Time-Dependent AUC Curve for the Cox Elastic-Net

Figure 5.4: Time-Dependent Brier Scores for the Cox Elastic-Net
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Figure 5.5: Time-Dependent AUC Curve for the Gradient Boost

Figure 5.6: Time-Dependent Brier Scores for the Gradient Boost

45



5. Results

Figure 5.7: Time-Dependent AUC Curve for the Random Forest

Figure 5.8: Time-Dependent Brier Scores for the Random Forest
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5.2 Time-Variant Methods

Similarly to Table 5.1 in Section 5.1, Table 5.2 below summarises the performance of
the time-variant methods in this study. The details for the base Kaplan-Meier is also
provided to faciliate comparison against a known basis. Figures 5.9 to 5.16 follow and
show the individual time-dependent AUC and Brier curves for the time-variant methods.

Model Name C-Index Mean AUC Int. Brier RMSE
Kaplan-Meier (Base) 0.640 0.651 0.175 0.0967
Extended Cox 0.651 0.914 0.076 0.1192
LTRC Forest (full dataset) 0.677 0.771 0.156 0.0989
LTRC Forest (reduced dataset) 0.680 0.775 0.152 0.0965
LTRC Forest (minimal dataset) 0.661 0.678 0.168 0.1679

Table 5.2: Summary of time-variant algorithms used in comparison to the original Kaplan-
Meier base

The Extended Cox results showed substantially more accurate forecasting with better
AUC values and Brier scores across the board, although it showed substantially worse
RMSE values. By contrast, the LTRC forest showed modest improvements over the
Kaplan-Meier as well as the original time-invariant random forest (refer Table 5.1),
although RMSE remained relatively high.

The unexpectedly strong results for the extended Cox model suggests an issue in im-
plementation; one possible cause could be the introduction of immortal time bias in
the actual prediction implementation, which was originally designed for time-invariant
survival analysis. By contrast, the more down-to-earth values of the LTRC forest were
made directly from Yao’s implementation which explicitly discusses creating survival
curves that only take past values into account [84]. This will be discussed further in
Chapter 6.

The reduced dataset produced very similar results to the full dataset with values showing
that manually paring the dataset does have some advantages, such as theoretically better
performance and better generalising ability. On the other hand, the minimal dataset
shows performance that is in between that of the base Kaplan-Meier and the other LTRC
forest models. This shows that the curation of data would be very useful prior to training
any model on Yao’s implementation of the time-variant relative risk forest. For all relative
risk forest models, the time-dependent Brier and AUC curves exhibited similar shapes as
expected.

In Section 5.3, we will further discuss the performance improvements obtained from
the reduced and minimal datasets and the clear advantage that comes from working on
smaller datasets.
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Figure 5.9: Time-Dependent AUC Curve for the Extended Cox Model which incorporates
time-variant variables

Figure 5.10: Time-Dependent Brier Scores for the Extended Cox Model
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Figure 5.11: Time-Dependent AUC Curve for the LTRC Forest model with the full
time-variant dataset

Figure 5.12: Time-Dependent Brier Scores for the LTRC Forest model with the full
time-variant dataset
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Figure 5.13: Time-Dependent AUC Curve for the LTRC Forest model with the reduced
time-variant dataset

Figure 5.14: Time-Dependent Brier Scores for the LTRC Forest model with the reduced
time-variant dataset
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Figure 5.15: Time-Dependent AUC Curve for the LTRC Forest model with the minimal
time-variant dataset

Figure 5.16: Time-Dependent Brier Scores for the LTRC Forest model with the minimal
time-variant dataset
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5.3 Computational Performance
Table 5.3 shows the time required to run the appropriate hyperparameter tuning and to
train the model. For all runs, 50 cores from the Fangorn server described in Section 4.7
were used.

In general, basic methods had acceptable times (except for Gradient Boost) which are
practical for retraining to incorporate new variables or test other hypotheses. Noting the
size of the dataset, Gradient Boost performed substantially worse from a computational
time perspective in comparison with all other methods.

Model Name Time for Hyperparmeter Tuning
Basic Methods

Kaplan-Meier (Base) <1s∗

Cox Elastic-Net 31m 20s
Gradient Boost 117h 56m 01s
Random Forest 1h 46m 00s

Time-Dependent Variable Methods
Extended Cox 3h 36m 27s
LTRC Forest (full) 163h 20m 20s†

LTRC Forest (reduced) 156h 40m 30s
LTRC Forest (minimal) 26h 14m 58s

Table 5.3: Summary of times required to run 50 iterations on a Random Search algorithm
with 5-fold cross-validation for hyperparameter tuning by model type, except for LTRC
relative risk forests where the time shown is for a single iteration training run

As can be expected, incorporating time-dependent variables substantially blew out the
time required to train the models: 7x for the extended Cox model compared to the
normal Cox and 92x when comparing a single full dataset run of the relative risk forest
against the full 50-iteration 5-fold cross-validation training times for the random forest.
Surprisingly, the reduced dataset did not show substantial time improvements over the
full dataset although the minimal dataset had an 84% reduction to 26 hours. Nonetheless,
the substantial time requirements made it impractical to run full hyperparameter tuning
on the time-variant LTRC forest.

∗no hyperparameter tuning was done for the Kaplan-Meier
†time for all LTRC forest runs was for a single run without hyperparameter tuning or cross-validation
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CHAPTER 6
Discussion

6.1 Overall Model Performance
Compared to the most basic model, namely the Kaplan-Meier model stratified by product
type, most models did not perform substantially better at discriminating the order of
client churn (as evidenced by the C-index values obtained in Table 5.1). However, the
random forest managed to obtain substantially improved performance on AUC and
Brier scores, suggesting a substantial increase in accuracy although discrimination still
remains comparable. In other words, the random forest was predicting survival times
more accurately, although it ranks the customers in the test data similarly to the base
model.

The fact that ensemble learners performed substantially better than the Cox equivalent
suggests that the proportional hazard assumption is definitely incorrect, but also that
the variables not used in stratification of the base model provide the strongest signal
and the main driver for survival time. Nonetheless, the ensemble learners, particularly
the random forest appeared to be able to find a signal in the mass of relatively weak
variables. The possibility also remains that there are other variables during the customer
onboarding process which may provide a stronger signal to the model.

However, this performance improvement comes at a substantial computational cost, with
model training requiring several hours for the time-invariant versions. Nonetheless, this
seems to be a reasonable time should the model prove itself useful in predicting the
expected lifetime of a customer.

The pipeline that has been built is capable of taking in any new variables as long as the
data format is in the format described in Sections 2.3 and 2.5.2. This means experiments
can be run with new variables that may potentially provide some predictive power;
however, this also creates the potential risks of data mining and p-hacking.
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6.2 The Value of Time-Dependent Variables
In terms of hypothesised effect, there was a higher expectation that the time-variant
variables would provide a much stronger effect of improvement. As it were, the random
forest implementation provided substantial improvements in accuracy (through the AUC
and Brier score metrics) but only modest improvements in discrimination (through the
C-index).

However, the Cox implementation which severely underperformed in the basic variant
appeared to provide substantial improvements in accuracy with a 0.91 mean AUC value.
This lack of agreement with the relative risk forest is a cause for suspicion, particularly
because of the weaker performance against outliers as evidenced by its substantially
higher RMSE.

While this effect could be true, and other research using similar methodology shows the
same effect whereby the extended Cox performs better than the relative risk forest[92],
certain aspects of the extended Cox implementation gives some reason to pause. As
discussed in Section 4.5.2, the well-received Python lifelines library does not provide
a native function to generate a survival curve, and the R survival package also does
not provide an entirely straightforward survival curve generating function. In both
cases, the authors have provided documentation warning against the immortal time bias
discussed in Section 2.5.1. Although the immortal time bias issue discussed in Section
2.5.1 appears to be avoidable with appropriate study design, the reluctance of the creators
of both available libraries to provide an explicit predictor function and their statements in
documentation about it suggest that the naïve generation of the survival curve somehow
introduces future-timed covariates into the training data. Extensive reading of available
literature did not appear to adequately explain this issue and understanding this would
be highly recommended as a future piece of work.

However, another distinct possibility of the cause of this is simple data leakage. With
the naïve implementation of the Extended Cox and its survival curve generation, future
data could easily be provided to the algorithm which then results in substantially better,
albeit nonsensical predictions.

On the other hand, Yao’s implementation of LTRCForests explicitly discusses the usage
of the counting algorithm in her implementation to avoid this bias. In other words, when
looking at the results of this study, that of the LTRCforest algorithms would be more
reliable.

“To predict, we would need to know the covariates values beyond the observed
times, but if we knew that, we would also know if the subject was still alive
or not!”

(Cam Davidson-Pilon, lifelines author[19])
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6.3 Considerations on Using Time-Dependent Models
Notwithstanding the issues discussed above in Section 6.2, another major consideration
of using time-dependent variables in survival analysis appears to be the cutting-edge
nature of such problems. Unlike most standard machine learning applications where
highly customisable libraries for every implementation are readily available, even for
deep learning applications, libraries for time-varying survival analysis are not as common.
Furthermore, the applications used are clearly designed for low-dimensional and smaller
datasets compared to the ones used in this work.

This work has effectively been a proof of concept to show that it is possible to use these
libraries in a customer churn application; however, in a corporate context which is usually
built towards the Python language, there is a complete dearth of time-variant libraries
for survival analysis.

In addition to the issues discussed in Section 6.2, it would be highly valuable to dedicate
further work to either discovering more efficient algorithms or programming more efficient
implementations which work better with large datasets.
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CHAPTER 7
Conclusion and Future Work

This thesis investigated the application of survival analysis methods to a customer churn
context in the edtech sector. Taking a dataset containing several hundred thousand clients,
we tested and compared various classic statistical approaches as well as machine learning
approaches and compared them to the naïve approach of using simple segmentation
and Kaplan-Meier survival curves. In addition, we also investigated the inclusion of
time-variant variables to determine if the model performed better with their inclusion or
otherwise.

In general, we only obtained a modest improvement with the usage of machine learning
methods, particularly the random forest model. Most of this improvement was in accuracy
(namely, estimation of survival time) as opposed to discrimination (i.e. determining
which subjects will fall away first). As the corporate goal of this project was to improve
estimation, the accuracy improvement is deemed to be satisfactory.

While including time-variant variables appeared to further improve the performance of
our models, it also exposed some potential issues in production-level usage:

Firstly, the lack of available libraries in Python makes it a challenge to integrate into
normal production pipelines. The libraries that are currently available, while academically
robust, struggle when dealing with large datasets even for what in a commercial context
would be considered a modestly-sized dataset.

Secondly, there was a lack of clarity in terms of applying basic survival curve generation
functions to simpler extended Cox functions which created doubt in the results; par-
ticularly as the results suggested simpler Cox functions provided substantially better
performance compared to other methodologies. Investigating this effect would be a good
focus for future work building on this thesis.
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