
An Efficient Data Store for a
Dependable Distributed Control

Unit

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Daniel Achleitner, BSc
Matrikelnummer 00926807

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dipl.-Ing. Dr.techn. Thomas Frühwirth, BSc
Mitwirkung: Dipl.-Ing. Thomas Preindl, BSc

Dipl.-Ing. Stefan Seifried, BSc

Wien, 14. Oktober 2024
Daniel Achleitner Thomas Frühwirth

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

An Efficient Data Store for a
Dependable Distributed Control

Unit

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Daniel Achleitner, BSc
Registration Number 00926807

to the Faculty of Informatics

at the TU Wien

Advisor: Dipl.-Ing. Dr.techn. Thomas Frühwirth, BSc
Assistance: Dipl.-Ing. Thomas Preindl, BSc

Dipl.-Ing. Stefan Seifried, BSc

Vienna, October 14, 2024
Daniel Achleitner Thomas Frühwirth

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Achleitner, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 14. Oktober 2024
Daniel Achleitner

v

Acknowledgements

I would like to thank Wolfgang Kastner and Edgar Eidenberger for the opportunity to
work on this topic at the intersection of two fascinating areas of computer science. I would
also like to thank Thomas Preindl and Stefan Seifried for all their efforts, patience and
the consistent persistence—thanks for taking me on a journey that led to a considerable
expansion of my knowledge and involved many sessions of productive discussion and
interesting ideas. And finally, my deepest gratitude to my parents for their support and
understanding over the years.

vii

Kurzfassung

Brandmeldeanlagen erfüllen eine sicherheitskritische Funktion und müssen zuverlässig
arbeiten. Daher wird eine dezentrale Architektur verwendet, wenn größere Bereiche oder
mehrere Gebäude abgedeckt werden sollen: Autonome Steuereinheiten werden zu einer
verteilten Steuereinheit vernetzt und teilen sich einen gemeinsamen logischen Zustand. Um
Fehlertoleranz und hohe Zuverlässigkeit zu gewährleisten, kann ein kontinuierlich replizie-
render verteilter Datenspeicher verwendet werden. Wie die CAP- und PACELC-Theoreme
zeigen, müssen dabei jedoch Kompromisse eingegangen werden zwischen Datenkonsistenz,
Verfügbarkeit und Latenzzeit.
Im Zuge dieser Arbeit untersuchen wir, ob schwache Konsistenzmodelle – die bessere
Verfügbarkeit, Latenzzeit und Nebenläufigkeit ermöglichen können – für einen korrekten
und sicheren Betrieb auf Hardware mit limitierten Ressourcen ausreichen. Wir identifizie-
ren das schwächste geeignete Konsistenzmodell und entwickeln eine passende Architektur
für einen Datenspeicher, der dieses Modell auf eingebetteten Geräten bereitstellen kann.
Zunächst werden aus den Produktkriterien der europäischen Normenreihe EN 54 die
Anforderungen gesammelt und verwandte Arbeiten zu Konsistenzmodellen und Repli-
kation in verteilten Systemen gesichtet. Dann entwickeln wir, dem Forschungsansatz
der Design Science folgend, iterativ eine Architektur und parallel dazu einen Prototyp.
Der Prototyp ermöglicht es, Probleme des Designs frühzeitig zu erkennen. Schließlich
bewerten wir das Design qualitativ anhand der Anforderungen und testen den Prototyp
mit einer Simulationssoftware. Diese Software kann Netzwerkprobleme wie Latenzzeiten
und Verluste simulieren, um deren Auswirkungen auf den Betrieb zu messen. Das aufge-
zeichnete Protokoll kann zur Überprüfung der Korrektheit in Bezug auf das beabsichtigte
Konsistenzmodell verwendet werden.
Wir zeigen, dass das FIFO/PRAM-Konsistenzmodell den Anforderungen genügt. Das
Modell stellt sicher, dass alle Teilnehmer die Schreiboperationen eines Teilnehmers in
genau der Reihenfolge verarbeiten, in der sie von diesem Teilnehmer durchgeführt wurden.
Wir schlagen eine Erweiterung des NDC-Frameworks vor und bauen unser Design darauf
auf. Das Design beinhaltet einen Algorithmus, der FIFO-konsistente Sichten sicherstellt
und das Risiko von Prioritätsumkehr ausschließt. Optimierungen für das Anti-Entropie-
Protokoll tragen dazu bei, die Latenzzeit gering zu halten. Die Auswertung zeigt, dass
das Design die Anforderungen erfüllen kann. Die Testergebnisse zeigen, dass der Prototyp
in der Lage ist, eine konsistente Sicht bei Netzwerkfehlern aufrechtzuerhalten, allerdings
auf Kosten einer leicht erhöhten Latenzzeit im Vergleich zu Eventual Consistency.

ix

Abstract

Fire Detection and Fire Alarm systems have a safety-critical role and must operate
reliably. Therefore, a decentralized architecture is used when large areas or multiple
buildings need to be covered: Autonomous control units are networked together to form
a distributed control unit and share common logical state. To ensure fault tolerance and
high reliability, a continuously replicating distributed data store may be used. However,
as shown by the CAP and PACELC theorems, there are trade-offs involved between data
consistency, availability, and latency.
In this work, we investigate whether relaxed consistency models—which can obtain better
availability, latency and concurrency—can be sufficient for correct and safe operation on
resource constrained hardware. We identify the weakest consistency model suitable for
the purpose, and develop a software architecture for a data store that can provide the
model on constrained devices.
First, we gather requirements from the product criteria defined by the European Standards
series EN 54 and conduct a review of existing work on consistency models and replication
in distributed systems. Then, following a design science approach, we iteratively develop a
software architecture in parallel to a prototype. The prototype allows early identification
of problems with the design. Finally, we evaluate the design qualitatively against the
requirements and test the prototype with simulation testing software. The software
can introduce networking artifacts—such as latency and message loss—to measure their
effects on the executed operations. The recorded history can be used to verify correctness
with respect to the intended consistency model.
We show that the FIFO/PRAM consistency model is adequate. It ensures that all nodes
observe write operations from one node in the order they were issued by the node. We
propose an extension of the node-wide dot-based clocks (NDC) framework and base
our design on it. The design incorporates an algorithm that provides FIFO consistent
views while ruling out the risk of priority inversion scenarios. Optimizations for the
anti-entropy protocol help to keep latency low. The evaluation finds that the design is
able to meet the requirements. The testing results show that the implemented prototype
is able to maintain a consistent view under network faults, at the cost of a slightly
increased visibility latency compared to eventual consistency.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Aim of the Thesis and Expected Results 2
1.3 Methodology . 3

2 Background 5
2.1 Fire Detection and Fire Alarm Systems 5
2.2 Distributed Systems . 14
2.3 Consistency Models . 22

3 Related Work 31
3.1 Consistency Models . 31
3.2 Network and Safety Architecture . 36
3.3 Consensus and Replication . 40

4 Requirements 49
4.1 Existing Solution . 49
4.2 Requirements Analysis . 54

5 System Design 63
5.1 System Model . 63
5.2 Dot-Based Clocks Framework . 67
5.3 Consistency Models . 69
5.4 Delivery Tracking . 82
5.5 Fault Detection . 83
5.6 Storage Durability and Crash Recovery 84
5.7 Large Value Objects . 87
5.8 Networking Layer Improvements . 88

xiii

6 Evaluation 91
6.1 Qualitative Analysis . 91
6.2 Testing . 97

7 Conclusion 105

A NDC Framework Extensions 107
A.1 Priority-Aware FIFO Algorithm . 107

Overview of Generative AI Tools Used 113

List of Figures 115

List of Tables 117

Acronyms 119

Bibliography 123

CHAPTER 1
Introduction

1.1 Problem Statement and Motivation
Fire Detection and Fire Alarm Systems (FDASs) must operate reliably and be able
to tolerate faults to fulfill their safety-critical role. Modern systems often need to
cover multiple areas, floors, or buildings. For this reason, they employ a decentralized
architecture: Detector and alarm devices such as smoke detectors, manual call points,
sounders, or visual alarm devices, are attached to control units using an electrical bus.
Multiple autonomous control units, in turn, are connected to each other via redundant
network links to form a Distributed Control Unit (DCU) that can cover a wider area.
The control units can share a common logical state by using a distributed data store
(DDS). To be able to provide fault tolerance and high availability, such a data store has
to replicate data continuously.

Distributed systems, however, are hard to design—there are a number of technical
trade-offs involved between data consistency, availability and latency. Every real network
is unreliable and can introduce undesirable artifacts. Messages can be delivered late,
out-of-order, duplicated multiple times, or get lost entirely. These artifacts can cause
nodes of a shared-data system to observe different views of the same logical shared data.
They make reasoning about and testing of a distributed application difficult. For this
reason, data store systems often provide consistency models. A consistency model is a
guarantee a data store can provide to a client application, promising that it will shield the
application from the effects of the underlying unreliable network and only show consistent
views.

Strong consistency models, such as Linearizability or Sequential Consistency, ensure that
all nodes share a very similar view, but they have drawbacks: For example, such a data
store might have to pause any processing of data in case some nodes are not reachable
via the network—to prevent the occurrence of inconsistencies such as stale data or lost

1

1. Introduction

writes. According to the CAP theorem, in case of a network partition, a shared-data
system can either provide strict consistency or availability, but not both. Furthermore,
the PACELC theorem extends this by the notion that even in normal operation, the
system has to choose between preferring either strict consistency or lower latency. These
theorems indicate that while weaker consistency models may require an application to
be able to tolerate more inconsistencies, they can enable better tolerance of network
partitions, better availability and lower latency for data operations.

We observe that not all control functions of an FDAS share the same demands for
reliability and latency: The most critical functions, i.e., alarming in direct proximity to a
fire or smoke hazard, typically do not depend on any data from other control units. They
can be handled autonomously within the control unit itself. For other functions, modest
delays may be acceptable: Safety functions operating in greater physical distance to a
hazard, such as in a different fire protection zone or in an adjacent building, generally
have more relaxed requirements. In less critical functions, it may even suffice to reliably
detect and report a malfunction of the system. Functionality related to maintenance,
such as sensor testing or the distribution of firmware and configuration updates, typically
has service personnel already present on site. In that situation, performance may be more
important than safety so that the system is fully operational again more quickly. The
different functional safety demands on the distributed data store need to be considered
separately for resource constrained devices.

In this work, we focus on a distributed data store for the purpose of an FDAS and
the required consistency model. Due to the mentioned fundamental trade-offs, weak
consistency models are able to obtain better availability in the event of a network partition.
They also have advantages when the network is healthy: Communication latency, resource
usage, concurrency, and throughput can improve. These benefits might enable additional
use cases and simplify engineering.

1.2 Aim of the Thesis and Expected Results
We want to examine whether relaxed consistency models can be sufficient for correct and
safe operation on resource constrained hardware.
Towards this aim, two research questions are defined:

RQ–1: Suitable Consistency Model

What is the weakest consistency model that is suitable for the purpose of a Fire
Detection and Fire Alarm System?

RQ–2: Suitable Technology and Architecture

What technologies and which software architecture can be used to provide that
consistency model on constrained devices?

2

1.3. Methodology

1.3 Methodology

1.3.1 Literature Review

Starting out, we review the existing work on distributed systems. This includes consistency
models, guidelines for network and safety architectures and algorithms for consensus and
replication in distributed data stores.

1.3.2 Requirements Engineering

To be able to determine a suitable consistency model, we have to gather the requirements
for an FDAS application first. We briefly analyze an existing system for its properties
and limitations. We review the European Standards series EN 54, which provides relevant
product standards and application guidelines. Based on these sources, we can identify
functional and non-functional requirements for a data store design. We are then able to
answer Research Question RQ–1.

1.3.3 System Design

Based on the gathered requirements and the determined consistency model, we follow a
design science approach [Hev+04] to iteratively develop and evaluate a proposal for a
system design. Building a prototype in parallel allows to identify any problems with the
design early. Because we are analyzing the problem in the context of resource constrained
devices, we take care to select technologies appropriate for that context. We then can
compare the required properties of the found model with the properties of the found
candidates, choose and combine them and iteratively refine the result. Based on the
proposed system design, we can answer Research Question RQ–2.

1.3.4 Evaluation

We qualitatively evaluate the proposed system design created in the previous step against
the functional and non-functional requirements. Then, we use specialized testing software
to analyze the behavior of our prototype implementation. We utilize the Maelstrom
workbench [Kinb], which includes the Jepsen testing library [KPa]. Maelstrom can
simulate a number of clients that run randomly generated data operations against the
data store. Maelstrom records the invocation and completion or failure of every operation
in a history, which can then be analyzed for compliance to the defined consistency model.
In addition, a graphical timeline of the operations and statistical data is generated,
allowing to draw conclusions about the correctness of the implementation. Various
network artifacts of unreliability can be introduced into the simulated system to study
the effects on the generated history and its correctness. This includes conditions such as
network partitions, latency and message loss.

3

1. Introduction

Structure of the Work
The remainder of the work is structured as follows: The next Chapter 2 introduces
important concepts and terminology related to FDASs, distributed systems and con-
sistency models. Chapter 3 continues with a discussion of existing work related to
consistency models, network and safety architecture, as well as consensus and replication
in distributed data stores. Chapter 4 presents our gathered requirements for a suitable
data store and answers RQ–1. The following Chapter 5 presents our proposed system
design discusses the weighed trade-offs and answers RQ–2. In Chapter 6, we qualitatively
evaluate the design against the gathered requirements. We also use simulation testing
software for distributed data stores to measure our prototype and verify that it can
provide the required consistency model. Finally, we discuss our results and findings in
Chapter 7.

4

CHAPTER 2
Background

The background chapter introduces concepts and terminology which is required for
the rest of the work. This includes basic aspects of Fire Detection and Fire Alarm
Systems (FDASs), the trade-offs involved in distributed systems (DSs) and the well-
known consistency models a distributed data store can offer to simplify the development
of client applications.

2.1 Fire Detection and Fire Alarm Systems
Fire safety is a paramount concern in buildings and industrial facilities. Fires can lead to
severe consequences, including loss of life, property damage and economic setbacks due
to production outages. Apart from preventative measures such as integrating fire safety
policies in building codes, early detection and intervention is essential.

Automated FDASs perform a critical role in fire safety. They continuously monitor the
environment for signs of smoke or fire and can take early intervention action automatically.
The building occupants are warned through audible and visual alarm signals. Additional
action can include alerting emergency responders to the site and communicating with
building control systems to minimize the spread and to facilitate evacuation efforts.

2.1.1 Components and Terminology
To help define the components and terminology, we refer to the relevant European
standards’ series EN 54, “Fire detection and fire alarm systems”. The EN 54 standards
defines product characteristics, test methods and performance criteria for evaluating
and certifying FDAS components [EN 21]. The separate parts concern themselves
with different topics and product groups, as listed in Table 2.1. As a minimum useful
configuration, a system typically consists of detector and alarm devices, a control panel,
a power supply and the necessary cabling between these components.

5

2. Background

Part Group Title
EN 54–1 Introduction Introduction
EN 54–2 Control panels and power supply Control and indicating equipment
EN 54–3 Alarm devices Sounders
EN 54–4 Control panels and power supply Power supply equipment
EN 54–5 Detectors Point heat detectors
EN 54–7 Detectors Point smoke detectors
EN 54–10 Detectors Flame detectors
EN 54–11 Detectors Manual call point
EN 54–12 Detectors Line smoke detectors
EN 54–13 System compatibility Compatibility and connectability

assessment of system components
EN 54–23 Alarm devices Visual alarm devices
EN 54–24 Alarm devices Loudspeakers

Table 2.1: EN 54 standard series (excerpt) [EN 21]

Detectors

Detectors (initiating devices) can be manual or automatic. Manual call points or pull
stations are installed in easily reachable locations and can be actuated by any occupant
that observes smoke or fire [EN 05b]. Automatic fire detectors are sensors that monitor
their environment using different physical measurement principles. When the measured
values cross a predetermined pre-alarm or alarm threshold, the control unit is notified.
These sensors include smoke detectors which sense the presence of smoke particles in the
air [EN 18b], heat detectors which detect rapid rise in temperature [EN 18a] or flame
detectors which detect open flames by monitoring specific optical wavelengths [EN 05a].

Alarm Devices

Alarm devices (notification devices) alert building occupants to the possible danger to
facilitate a timely evacuation. These actors include audible alarm devices (sounders) [EN
19b], which emit a distinctive sound, and loudspeakers which play back voice instructions
for evacuation [EN 08]. Visual alarm devices, which emit bright, flashing lights, are used
to help to alert occupants with hearing impairments [EN 10].

Control Panels and Power Supply

The central and most essential component is the Control and Indicating Equipment (CIE),
Fire Alarm Control Panel (FACP) or Fire Alarm Control Unit (FACU). It monitors
detector signals and activates notification devices when necessary. The control panel
displays the system status and allows control for service and emergency personnel.
Records of any notable events are kept for later inspection. To power the whole system, a
reliable power supply is required. In the event of a power outage, it must keep delivering

6

2.1. Fire Detection and Fire Alarm Systems

Dependability

Threats

Attributes

Means

Faults
Errors
Failures

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability
(Scalability)
(Privacy)

Fault prevention
Fault tolerance
Fault removal
Fault forecasting

Figure 2.1: The dependability tree [ALR01; FKK15]

power from a secondary source for some guaranteed duration, e.g., by using batteries or
an emergency generator [EN 06].

Communication with External Systems

FDASs often interface with external systems. They can be connected to other building
control systems to minimize the spread of dangerous smoke fumes and the fire itself.
This typically involves disabling elevator controls, limiting air movement, improving
ventilation or closing fire safety doors. Outside the building, they can be connected to
the fire department or other external monitoring services for fast emergency response
and to ensure timely maintenance in case of system malfunctions.

2.1.2 Dependability
Dependability of a computing system is the ability to deliver service that can justifiably
be trusted. The concepts of dependability can be separated into three main parts: the
threats to, the attributes of and the means by which dependability can be achieved, as
shown in the taxonomy in Figure 2.1 [ALR01].

Threats

The root cause of a malfunction is called a fault. A fault can be attributed to the influence
of physical effects, or it can be human-made, intentionally or unintentionally. It can
either lay dormant or it can be transiently, intermittently or permanently activated and
produce an error. An error is the part of the system state that may lead to a subsequent

7

2. Background

failure. It is an internal, hidden discrepancy between the intended and the actual state.
If measures are taken to detect and correct the error, it may never surface as a failure. A
failure happens when the error reaches the system boundary and causes the delivered
service to visibly deviate from the intended behavior, failing to meet its specification.
Such a deviation in a subsystem, in turn, can become the fault to the supersystem it
belongs to, where it might again cause another error. This causal relationship between
faults, errors, and failures is called the fundamental chain of threats (Figure 2.2) [ALR01;
FKK15].

activation
Fault

propagation
Error

causation
Failure Fault

Figure 2.2: The fundamental chain of threats to dependability [ALR01]

Attributes

The dependability attributes are the properties that are expected of a dependable
computing system. Availability is the readiness for usage of a service (uptime), while
reliability is the probability that a system will conform to its specification after a given
time. These two properties can be defined in a quantitative manner. Safety is the absence
of catastrophic consequences on the user and the environment. Security entails the
“CIA triad”, the summation of the three properties of availability (for authorized users),
confidentiality (keeping data private) and integrity (keeping data intact). Maintainability
is the system’s capability to be repaired and modified. Scalability and privacy are not
present in the classic dependability tree of Avizienis, Laprie, and Randell, but they are
important for Internet of Things (IoT) devices and embedded computing [FKK15].

Means

The means for dependable systems are the techniques that are used to provide these
properties. Fault prevention includes procedures that are followed to prevent faults during
the design, development and manufacturing phases, e.g., adhering to guidance, following
standards and performing quality control. Fault tolerance aims to put mechanisms in place
to continue delivery of the specified service in the presence of active faults which could
not be prevented. It is commonly implemented by employing redundancy. Fault removal
requires detecting and correcting faults, both during the development phase and the
operational life of the system. During development, it consists of three steps: verification
(testing), diagnosis and correction. Once a system is put into operation, it consists of
corrective or preventative maintenance. Fault forecasting is done by evaluating the system
behavior qualitatively and quantitatively to predict and address likely faults [ALR01].

2.1.3 Networking and Distribution of Control Units
Reliability is an important consideration in FDASs. Standards and local regulation
specify requirements for reliability to ensure that the system functions as intended during

8

2.1. Fire Detection and Fire Alarm Systems

emergencies. These include allowed false alarm rates, mandated detection capabilities
and limits to response times.

Redundancy

Generally, all hardware and software components are imperfect. To achieve high reliability
despite being composed of such flawed components, a system must be tolerant to faults—it
must be able to continue operating as a whole despite some of its components having
failed. To do that, it must be designed with built-in redundancy: extra components
that can take over the function of failed components. Redundancy can be in space
(e.g., building a system with more hardware components than needed) or in time (e.g.,
performing the same operation or sending the same data multiple times) [Sto12].

Centralized Systems

In smaller buildings, a single and centralized FDAS can be sufficiently reliable as critical
key components implemented redundantly. Power supplies can fall back from mains to
battery power, a stand-by secondary processing unit can take over from the primary unit.
The wiring inside the building includes alternate, redundant transmission paths. Often,
a ring topology is used to connect detectors and alarm devices, so that one single wiring
fault such as a short or an open can be detected and tolerated. Centralized units have
the advantage that installation and configuration of the system can be relatively simple
and easy to reason about.

Decentralized Systems

In larger buildings or expansive facilities like an industrial plant or a commercial airport,
however, using only a single control unit would pose significant limitations and risks for
engineering, maintenance and the resulting reliability:

Limited Scalability A single control unit has limitations regarding the number of
zones and devices it can manage, both from the electrical interfacing and its logical
processing capabilities. Raising these limits by engineering a “larger” control unit
may be an expensive endeavor that is not viable.

Single Point of Failure A single control unit represents a single point of failure. If it
malfunctions or becomes compromised, the problem may lead to a complete failure
of the system. Such an impact can be economically severe by interrupting normal
business and production operations.

Maintenance and Testing Performing maintenance and testing on a large, centralized
control unit can be logistically challenging. Shutting down all fire protection for a
larger facility at once is typically not acceptable.

9

2. Background

Figure 2.3: Example topology of a networked FDAS; consisting of four control units,
with redundant connections and local rings of detector and alarm devices1

To avoid these problems, multiple control units are installed for large facilities. They
still protect their assigned areas autonomously, but they can be networked to form a
virtual Distributed Control Unit (DCU) together (Figure 2.3). This allows to implement
control logic that acts across different control units. To some extent, the involved control
units present and act as one single virtual distributed system. By partially hiding the
networking complexity, existing planning and configuration know-how from single-unit
systems can still be used. Maintenance tasks such as monitoring for faults, testing
detector functionality or updating configuration and firmware can be performed more
efficiently, too.

Distributed systems, however, are generally hard to design—there are a number of
technical trade-offs involved, which we discuss in the following Section 2.2. Safety-
relevant functions must continue to work reliably and consistently according to their
specifications, no matter from which unit data originates from and on which unit it is
processed.

Networked CIEs in EN 54

EN 54–01 clarifies the use of terms within the series of standards [Annex B EN 21, p. 20]:
A distributed Control and Indicating Equipment (CIE) in the EN 54 is a single control
unit that is distributed into multiple physical cabinets, connected by some transmission
path. At least one specific cabinet provides manual controls and indications (a control

1Icons: flaticon.com

10

2.1. Fire Detection and Fire Alarm Systems
Le

ve
l 0

Fi
eld

Le
ve

l 1
Co

nt
ro

l
Le

ve
l 2

Su
pe

rv
iso

ry
Le

ve
l 3

Pl
an

ni
ng

Le
ve

l 4
M

an
ag

em
en

t

Sensors, Actuators

PLC

SCADA, HMI

MES

ERP

Communication

Com
m

unication

(a) Production context

Le
ve

l 0
Fi

eld
Le

ve
l 1

Di
str

ib
ut

ed
Le

ve
l 2

Hi
er

ar
ch

ica
l

Le
ve

l 3
Su

pe
rv

iso
ry

Le
ve

l 4
M

an
ag

em
en

t

Detectors, Alarm devices

(Distributed) Control Units
(LAN)

Control Hierarchy
(WAN)

Control
Terminals

Cloud

Communication

Com
m

unication

(b) FDAS context2

Figure 2.4: The Automation Pyramid

panel), but each of the cabinets can have functional devices attached, in particular
detector and alarm devices. A network of CIEs in the EN 54, in turn, is a network of
multiple CIEs, where each node can be either standalone or distributed as defined above.
When we refer to distributed systems or DCUs in this work, we always mean the latter.

EN 54–13, Fire detection and fire alarm systems—Part 13: Compatibility and connectabil-
ity assessment of system components [EN 19a] specifies requirements a system using
networked CIEs must adhere to. Most importantly, transmission time for important
conditions must not exceed 20 seconds, transmission paths must be fault-tolerant and a
faulty unit must be detected by at least one other unit. We consider these requirements
in Chapter 4.

2.1.4 Automation Pyramid
In industrial settings, the overall architecture for automation systems is often illustrated
using the automation pyramid. It is grounded in the standards of ISA-95 and IEC 62264,
but many variations exist in the literature. Typically, the pyramid depicts the functional
hierarchy within a manufacturing enterprise, as shown in Figure 2.4a. Communication
occurs in two different dimensions: horizontally between peers within the same layer and
vertically between systems on different layers.

At the top, corporate IT systems are responsible for high-level business planning, logistics
and managing manufacturing operations (ERP, MES). This happens over regular IT

2Adaption: Stefan Seifried

11

2. Background

networks and does not impose particularly high demands for reliability and the timeframes
involved, which can range from hours to months. In the middle, at level 2, monitoring
and supervision systems (SCADA, HMI) bridge the gap from the IT world into the
operational technology (OT) world of industrial control systems (ICSs). Towards the
bottom, we get into the detailed field level. Sensors provide data for programmable logic
controllers (PLCs), which control the actuators to actually run the physical production
process. Here, specialized field networks or buses are in use, which typically provide high
assurances for reliability, availability, and integrity. Timeframes for control loops are in
the seconds to microseconds range [KF09; Nie+18].

In Figure 2.4b, we have adapted the pyramid to our purpose of a FDAS. In this case,
there is no need for a planning level. However, we have split the control level into two
distinct levels with different concerns.

Level 1 (Distributed) The lower control level contains the individual control units
which serve roughly the same role as PLCs: communicating with field devices
within its assigned area, e.g., a specific building, processing detector data and
triggering alarm devices. These can work autonomously to ensure the safety
relevant functionality for the area, regardless of the state of other parts of the
system. They can be networked together to form distributed control units, sharing
their data store.

Level 2 (Hierarchical) The upper control level forms a hierarchy of control units of a
broad area, aggregating the data of the lower levels. This could include multiple
buildings belonging to an industrial site, an airport or even multiple locations
throughout a city or country. Because of the more limited bandwidth and higher
latency, the aggregated data is only selectively forwarded as far as required.

To ensure the safety relevant functionality cannot be compromised, any communication
flowing downwards from an upper level must be safeguarded. The installed firmware and
critical configuration parameters have to be protected from unauthorized or unintended
changes. Care must also be taken that the functionality cannot be impaired by accidental
or malicious communication errors. If the upper levels simply keep to passive monitoring,
the communication from any higher level can simply be rejected.

2.1.5 Resource Constraints
The small, embedded computers that implement the function of a FDAS are constrained
devices. They need to operate under severely limited resources such as limited processing
power and small amounts of available volatile and non-volatile memory.

In RFC 7228, Bormann, Ersue, and Keränen define constrained nodes and networks:

Constrained Nodes A constrained node is a resource constrained device communicating
over and being part of a network. Some of the characteristics that are otherwise

12

2.1. Fire Detection and Fire Alarm Systems

taken for granted are not attainable on a constrained node. This sets it apart from
the more typical and powerful computing nodes on the Internet like server systems,
desktop/laptop computers or modern smartphones. Optimization for energy and
bandwidth usage is a dominating consideration for the design requirements. Typical
constraints include limited code complexity (ROM and Flash storage), size of state
and buffers (RAM), constraints on the amount of computation achievable per
period of time (processing power) and power usage. Additionally, when deployed
in the field, user interfaces and accessibility may be limited, e.g., to modify the
configuration or deploy updated software [BEK14].

Constrained Networks A constrained network is a network where some characteristics
taken for granted in common link layers are not attainable. Typical constraints
include low achievable bitrate or throughput, high packet loss, high variability of
packet loss, severe penalties for using larger packets or limits on reachability over
time [BEK14].

Constrained-Node Networks A constrained-node network is a network that is being
primarily composed of constrained nodes. It is always a constrained network because
its characteristics are influenced by the constraints of the individual nodes [BEK14].

While distributed systems research often makes an effort to measure and optimize for
network constraints such as bandwidth usage, throughput and latency, constraints on
the nodes themselves are rarely considered. This context has to be kept in mind for
researching related work (Chapter 3), as it restricts the usefulness of many well-established
algorithms and technologies.

13

2. Background

2.2 Distributed Systems
Tanenbaum and Steen provide the following definition as a loose characterization of
a distributed computing system: “A distributed system is a collection of independent
computers that appears to its users as a single coherent system.” ([TS06])

To combine the two aspects of the definition and to achieve common goals as one
system, these independent computers have to collaborate and interact through some
interconnection to share data and coordinate activities. In general, the geographical
scope of a distributed system can vary greatly. It might consist of just a few integrated
circuits that communicate over a shared electrical bus, or it might consist of a planet-wide
network of nodes communicating over the Internet.

2.2.1 Goals
There are different reasons for building a computer system in a distributed fashion.
Achieving these goals make the high effort and complexity involved in development and
operation worthwhile:

Resource Sharing Making it easy for users and applications to access remote resources
in a controlled and efficient way.

Distribution Transparency Hiding the fact that the processes and resources are
physically distributed across multiple computers. This includes access transparency,
location transparency and concurrency transparency.

Openness Offering services according to standard rules, providing portability and
interoperability.

Scalability Allowing for a system to grow easily with respect to some dimension, e.g.,
its size of users or resources, its geographical dimensions or its manageability.

Fault Tolerance Enabling a system as a whole to stay available to some degree despite
malfunctions of one or more components.

2.2.2 Challenges
Designing distributed systems that meet these goals while hiding the complexity and
staying easy to use is a difficult task. There are many technical challenges and trade-
offs involved where there is no single optimal solution that fits all possible application
requirements. Distributed systems differ from traditional software in that the components
must communicate over a network. Any real-world network, however, is unreliable and
has inherent undesirable properties whose effects must be taken into account and planned
for at design time of the system.

14

2.2. Distributed Systems

Fallacies of Distributed Computing

Peter Deutsch and others at Sun Microsystems famously formulated the “Fallacies of
Distributed Computing”, the false assumptions which programmers new to distributed
systems tend to make [TS06]:

1. The network is reliable.
2. The network is secure.
3. The network is homogenous.
4. The topology does not change.
5. Latency is zero.
6. Bandwidth is infinite.
7. Transport cost is zero.
8. There is one administrator.

These fallacies reveal all the properties that must be taken into account when designing
a distributed system: A network is often unreliable, insecure, heterogeneous, etc. What
makes these properties problematic from an engineering standpoint is that they typically
get worse with increasing size and complexity of the system. Development and testing
is typically done with small and reliable local networks where the caused problems can
easily stay latent and hidden. But they can lead to catastrophic results much later once
the system reaches a certain size or complexity, or an unexpected fault happens. Once
triggered, these problems are also hard to debug: Their nondeterministic nature can
make it hard to reproduce the effects reliably and to monitor the activity of the affected
components and connections.

Unreliable Networks

Data packets or messages sent via unreliable, asynchronous networks such as the Internet
are subject to networking conditions that can introduce various artifacts. They may get
dropped and not arrive at the receiver at all. Or, if they indeed do arrive, they may
be received with an arbitrary delay, duplicated multiple times, or in a different order
than they were sent in (Figure 2.5). For an endpoint, it is not possible to tell whether a
missing message is merely delayed or if it has been dropped for good—a dropped message
is a special case of an infinitely delayed message. A network condition that prevents
messages between two nodes from being delivered is called a network partition [Kle17].

Unreliable Clocks

Many embedded devices do not include real-time clocks. Instead, they often keep track
of elapsed time using relatively inaccurate timestamp counter registers. Since these start
counting when a device was powered on or was last reset, the absolute timestamps of
different devices cannot be compared. Even for devices that do include real-time clocks,

15

2. Background

Sender Receiver Sender Receiver

Sender Receiver Sender Receiver

Drop Delay

Duplication Reordering

Figure 2.5: Communication artifacts in unreliable, asynchronous networks

they are of limited use to solve the synchronization problems in a distributed system:
Even if synchronized periodically, they typically do not run accurately enough. To an
application running on the device, the clock may appear to jump back or forth when
time is adjusted during synchronization with an external source such as a Network Time
Protocol (NTP) server. Other common reasons for adjustment include Daylight Saving
Time (DST) coming into effect or leap seconds being applied to account for irregularities
in Earth’s rotation. These can cause wildly inaccurate results when calculating a duration
by simply subtracting two captured timestamps.

To avoid discontinuity problems, many platforms provide monotonic clocks. Monotonic
clocks guarantee to yield continuously increasing timestamps and can be useful for
distributed systems, but working with them has its own pitfalls. The difference between
two monotonic timestamp values can be used to calculate the elapsed duration of time,
but the absolute value is meaningless. It is only meaningful on the associated system,
but cannot be used with timestamps gathered from different systems.

Instead, distributed systems often employ logical clocks. Logical clocks do not measure
elapsed time, but consist of logical counters within the distributed system. They are
incremented on distributed events and can be used to safely and consistently establish
a relative ordering. Lamport timestamps use a simple algorithm to provide a partial
ordering of events. Vector clocks are an extension of the idea which can be used to infer
possible causality between non-concurrent events [Lam78; Kle17].

Unreliable Components

In addition to the network being unreliable in transporting messages between the com-
puters that make up a distributed system, the computers themselves are not reliable.

16

2.2. Distributed Systems

A lot of things can go wrong, from hardware problems to software bugs, leading to
complete or partial faults. It is also possible that correctly working components interact
in unfortunate ways to break some design assumption of the distributed system. For
instance, a very slow I/O-operation, a garbage collection run, or a suspended virtual
machine might pause an important process long enough for the other nodes to detect it
as unreachable or faulted. They then have to take appropriate measures, e.g., choosing a
new replication leader. When the paused process eventually continues, it is important
that instead of simply continuing with its pending tasks, it detects and adapts to the
new situation. In case of a change in leadership, it has to recognize the new leader and
synchronize its state accordingly [Kle17].

2.2.3 Distributed Data Store
A distributed data store (DDS) or shared-data system is a distributed system where
shared data is stored on more than one node. One reason is to keep latency low by
keeping data geographically close to the clients. Another common reason is to increase
availability and fault tolerance by keeping the system working even when some individual
parts have failed, e.g., some nodes being faulty or the network connections between some
nodes being interrupted. Data is also often shared to improve scalability, to increase
throughput and balancing the load by distributing queries onto multiple machines [Kle17].

Clients can connect to a node and invoke operations to query or manipulate the state of
a shared data object, e.g., to read, write, increment or compare-and-swap (CAS) a value.
An operation takes some time to complete and can either succeed or fail. Typically, clients
can access the shared data with full location transparency, i.e., without any concern for
where and how it is actually stored and updated.

Replication

Any changes to the data, however, must be propagated to other nodes so that their
attached clients can see the most recent state. This process is called replication and every
copy of the data is called a replica. Because different clients can concurrently invoke
operations on the same data objects and the underlying unreliable network can drop,
delay, duplicate, or reorder messages unpredictably, arbitrary inconsistency problems can
happen: Conflicting operations may result in replicas applying different writes or writes
getting lost. Clients may not receive the most recent state on a read. A read operation
can even result in an older state being returned than on an earlier read, virtually “going
backwards in time” [Kle17].

These non-deterministic artifacts can make reasoning about and testing of a distributed
application very difficult. Subtle implementation flaws may lay dormant for a long
time, but can result in disastrous bugs and faults if one day, an “unlucky” timing or
fault situation occurs. A system design can make efforts to prevent these artifacts from
happening even when the underlying network is unreliable: Such a contract is called a
consistency model (see Section 2.3).

17

2. Background

Leaders and Followers

There are three different approaches to implement replication, each coming with different
advantages and disadvantages. They differ in conflict resolution and the avoidance of
stale data:

Single-leader replication Clients send all writes to a designated leader node, which
applies the operation and informs all other nodes (the followers) of the changes.
For reads, they can query any node, but may receive stale data due to replication
lag. This approach is popular and easy to reason about: since all writes go through
the leader node, data conflicts do not arise. Properly recovering from faulty nodes
and network interruptions, however, has some complexity where a lot can go wrong:
a recovering follower node has to query and apply all missing changes. A faulty or
unreachable leader node requires a failover : the promotion of a follower node to a
new leader and all clients being reconfigured to send writes to the new leader. A
recovering leader node has to detect whether a failover occurred, and, if so, demote
itself to a follower node and apply all missing changes [Kle17].

Multi-leader replication Clients send all writes to one of several leader nodes, which
can apply the operation and inform the other leaders and any follower nodes of the
changes. This approach can be more robust and provide better performance, but it
is harder to implement and to reason about. Due to the possibility of concurrent
writes, conflicts and consistency problems can occur and have to be prevented or
detected and resolved [Kle17].

Leaderless replication Clients send all writes to several nodes in parallel. For reads,
they also have to query several nodes in parallel to detect stale data and bring it
up to date. Similar to multi-leader replication, this approach can be robust in the
presence of faulty nodes and network interruptions at the cost of higher complexity.
Since there are no leaders and followers, clients have to participate in the process
of resolving conflicts and consistency problems [Kle17].

Partitioning

Instead of keeping multiple copies of the same data on multiple nodes, a dataset can also be
distributed by breaking it up into multiple partitions or shards that are stored on different
nodes. The main reason to do that is to improve scalability, so that datasets that have
grown too big to fit onto one node can be stored. Partitioning can also help to distribute
the query load evenly, avoiding hot spot nodes with a disproportionately high load.
However, the partitioning scheme to use has to be chosen very carefully, depending on the
query requirements of the application and expected the dataset structure. Partitioning is
usually combined with replication, so that even though each data object belongs to exactly
one partition, it may still be stored on several different nodes for fault tolerance [Kle17].

18

2.2. Distributed Systems

Quorums

There are many situations and distributed algorithms where the computers comprising a
distributed system must come to an unanimous decision, e.g., to choose a new leader
node in single-leader system or to decide on accepting a read or a write operation in a
leaderless system. The decision cannot exclusively rely on a single node, because the
node may fail at any time, leaving the system stuck. One common solution is to rely
on a quorum: every node may cast a vote and a successful decision requires a minimum
number of votes. Often, a majority quorum is used which requires votes from strictly
more than half the total nodes in the cluster (N

2 + 1).

An advantage of the method is that a few failed or unreachable nodes do not prevent a
decision and the system can keep working. How many unreachable nodes can be tolerated
can be set by selecting the quorum condition accordingly. Since there can only be one
majority in the cluster, decisions cannot conflict and the result is safe to use to avoid
inconsistency. A drawback is that voting can increase latency, which impacts performance,
and that in case of too many failed or unreachable nodes, operations cannot continue,
which impacts availability. Another drawback is that the number of total nodes needs to
be known to define a majority and to choose an appropriate quorum condition. If nodes
are allowed to join and leave freely, the current number can be difficult to assess [Kle17].

2.2.4 CAP Theorem: Consistency vs. Availability
The CAP theorem or Brewer’s conjecture was presented by Eric Brewer in 2000 [Bre00]
and formally proven by Gilbert and Lynch [GL02]. It describes a trade-off that states
that any shared-data system can fulfill at most two of the following three properties:

Consistency Every read receives either the most recent write or an error.

Availability Every read or write request receives a non-error response.

Partition Tolerance The system continues to operate as a whole despite some messages
being delayed or dropped between nodes.

In principle, the design of a system can forfeit any one of these properties to ensure that
the remaining two can be upheld (shown in Figure 2.6). Under real-world conditions,
however, network partitions do invariably happen sooner or later, so every distributed
data store must be able to tolerate them. Until such a partition is resolved, and the data
can be reconciled, an implementation must either continue running operations to stay
available (AP), or refrain from processing any operations at all to avoid inconsistency
(CP). The first risks inconsistency due to potentially stale data, while the latter reduces
availability. Hence, the theorem can be more clearly phrased as: If there is a network
partition, a data store has to choose between preferring consistency or availability [Bre00;
GL02].

19

2. Background

2.2.5 PACELC Theorem: Consistency vs. Latency
The PACELC theorem was published by Abadi in 2012. It tries to address the problem
that the CAP theorem falls short on describing the desirable properties and trade-
offs involved in the design of a distributed data store. Abadi suspects that system
architects who wanted to gain high availability simply followed the CAP theorem and
reduced the consistency guarantees of their system. This conclusion is flawed: While
network partitions do invariably happen, they are usually a somewhat rare occurrence.
In their absence, the CAP theorem does not impose any restrictions on the possible
consistency/availability guarantees. It is possible for a system to uphold both properties
simultaneously.

During the normal, non-partitioned operation, however, another fundamental trade-off
exists that deserves the same kind of academic scrutiny: A data store has to choose
between either preferring better consistency or lower latency. The reason is that a data
store has to replicate data continuously in advance to be able to provide availability in
case of a network partition. The replication can happen synchronously or asynchronously:

• Synchronous replication requires waiting for confirmation from all replicas before
acknowledging success to the writer. This ensures consistency, but increases the
latency of the write operation.

• Asynchronous replication, in contrast, can acknowledge a write operation immedi-
ately without waiting for any confirmations. This keeps the latency of the write
operation low. Because inconsistent reads can occur on the other replicas in the
meantime, however, consistency is reduced. Alternatively, if a read request is routed
to a specific master node and served from there, consistency can be ensured, but
latency of the read operation may increase instead.

• Hybrid combinations of these two modes, where only some subset of replicas is
updated synchronously, show the same latency/consistency trade-off depending on
the chosen protocol.

To account for this trade-off, Abadi introduced PACELC [Aba12] as an extension to the
CAP theorem. Its letters serve as a useful system to categorize the behavior of distributed
computer systems which replicate data (shown in Figure 2.7): In the case of a network
partition (P), how does the system trade off availability (A) and consistency (C)? This
case corresponds to the CAP theorem. Or else (E), when the system is running normally
in the absence of any network partitions, how does the system trade off latency (L) and
consistency (C)?

20

2.2. Distributed Systems

Availability Partition
ToleranceAP

Consistency

CA CP

Figure 2.6: Venn diagram illustrating the CAP theorem

Yes (P) No (E)

Network
Partition?

Availability or
Consistency?

Latency or
Consistency?

Availability (A) Consistency (C) Latency (L) Consistency (C)

PAC (CAP theorem)

PACELC

Figure 2.7: Flowchart illustrating the PACELC decision tree

21

2. Background

2.3 Consistency Models
In their proof of CAP, Gilbert and Lynch used the definition of atomic or linearizable
consistency:

“There must exist a total order on all operations such that each operation
looks as if it were completed at a single instant. This is equivalent to requiring
requests of the distributed shared memory to act as if they were executing on
a single node, responding to operations one at a time.” ([GL02; Aba12])

This traditional notion of consistency is the strongest and strictest consistency model
for non-transactional, single-object systems: linearizability. While many earlier system
designs aimed to adhere to this strong model, modern systems often implement weaker
and more permissive consistency models to provide better availability, lower latency
and better scalability instead. The popularity of the CAP theorem itself is partially
responsible for this shift [Aba12].

As mentioned in Section 2.2.2, replicating distributed data stores suffer from undesirable
artifacts which can make reasoning and testing hard for system designers and application
developers. A consistency model is a contract an underlying data store can provide to
the application using them. It can state that it prevents these artifacts from happening
at all or, at least, from the application being exposed to them. There is a basic trade-off
involved as these benefits do not come for free. Stronger or stricter consistency models
are difficult to implement in a data store, but they can make the data store easy to use
for the client application. They restrict the attainable level of availability and scalability
and may incur higher latency. Weaker or more permissive consistency models, in contrast,
can enable higher availability, lower latency and scalability, at the cost of the data store
being significantly harder to use for the client application.

2.3.1 Relationships between Consistency Models
Figure 2.8 illustrates the relationship hierarchy of common consistency models. A directed
edge from model A to model B indicates that B implies A, i.e., that any execution
that satisfies model B also satisfies model A. An execution or history is a collection of
operations, including the relative order of their invocation and completion. The models
in the upper part of the diagram have stricter or stronger consistency semantics, while
the models in the lower part have more permissive or weaker semantics.

The models in the left half of the diagram are transactional models, where operations
(transactions) can act on multiple objects at once. These models are similar to, but
not equal, to the traditional isolation levels as defined in the literature for database
systems [Bai+13b]. The models in the right half of the diagram are non-transactional
models, where the available read and/or write operations can only act on single values or
objects. The distributed systems’ literature typically concerns itself predominantly with
these kinds of operations [VV15].

22

2.3. Consistency Models

Single-Object ModelsMulti-Object/Transactional Models

Strict Serializable

Serializable

Repeatable Read Snapshot Isolation

Cursor Stability

Linearizable

Sequential

Monotonic Atomic
View

Read Committed

Read Uncommited

Causal

PRAM / FIFO

Read Your
Writes

Monotonic
Writes

Monotonic
Reads

Writes Follow
Reads

Unavailable

Total Available

Sticky Available

Availability in case of
network failures:

Figure 2.8: Relationship hierarchy between consistency models [Kina; Bai+13b; VV15]

Availability

Not all models in Figure 2.8 can provide availability and keep processing operations in
case of a network partition or failure. The node coloring indicates the kind of availability
that is possible, i.e., that a careful implementation can provide:

Unavailable Data stores guaranteeing any of these strong models can only be available
as long as the network is not faulty—otherwise, some or all nodes have to stop
processing operations to maintain the high expectations of consistency.

Sticky Available Data stores guaranteeing any of these weaker models are available
on non-faulty nodes, as long as connected clients do not switch between different
logical replicas across subsequent operations.

Total Available Data stores guaranteeing any of these weak models are available on
non-faulty nodes, even when the network is completely down and when clients do
switch between different logical replicas. The weak consistency expectations can be
maintained regardless of the network conditions.

There are two different ways for clients to achieve sticky availability: by caching their
writes and keeping a local copy of data, clients can trivially maintain stickiness by
becoming a node themselves. However, such a cache can grow quite large and involved,

23

2. Background

since in case of partial replication it might have to contain data of multiple servers. The
second way is to use sticky routing on the network level, so that clients’ requests are always
routed to the same server. This method can also be difficult: There needs to be some way
to identify the same client on subsequent requests and a way to deal with a previously
contacted server not being available anymore due to faults or maintenance [Bai+13b;
Baib].

2.3.2 Eventual Consistency
Eventual consistency, also called optimistic replication, is a very weak consistency model.
It merely ensures that, if no new updates are made to some data item, eventually all
replicas will converge to a common state and all reads will return the most recent value.

Eventual consistency relies on two properties: total propagation requires that any write
operation eventually reaches each server, so that no replica can stay at an old state
indefinitely. Additionally, consistent ordering requires that all servers do apply (non-
commutative) write operations in the same order, so that all replicas eventually converge to
the same state. The model does not impose any limit on how far a replica may fall behind—
it might be hardly noticeable, only fractions of a second, or very significant intervals such
as hours or days. This drawback can result in high implementation complexity for the
distributed application, but the trade-off is often worthwhile since the data store can
provide high performance and total availability. Stronger consistency models trivially
include eventual consistency, otherwise they would not be very useful [Ter+94; Vog08;
BD13].

Anti-Entropy

Due to unreliable networks or nodes, write operations can always get delayed or lost
during replication. To guarantee the total propagation property, eventually consistent
data stores typically employ anti-entropy protocols. This secondary mechanism keeps
the data of all replicas in sync in case the primary delivery mechanism has failed. In
other words, anti-entropy is used “to lower the convergence time bounds in eventually
consistent systems” [Pet19, p. 244]. These mechanisms can either run on read (read repair),
periodically as a background process (anti-entropy process), or as some combination of
both. They compare the contents of different replicas to find missing updates. These
are then applied to reconcile the contained records and “repair” the contents of the data
store [Kle17, p. 178].

Conflict-Free Replicated Data Types

Conflict-free replicated data types (CRDTs) are data structures useful to implement
eventual consistency. Initially defined by Letia, Preguiça, and Shapiro in 2010 [LPS10],
they can ensure consistency for mutable data in the large scale at a low cost and are
an active and promising area of research. They are categorized into two different types:
state-based CRDTs and operation-based CRDTs.

24

2.3. Consistency Models

For a state-based CRDT, the merge operation is responsible for merging any received
state updates with the own local state. The operation must satisfy three properties so
that all replicas arrive at the same result deterministically and without conflicts:

• Commutativity: application order does not matter (A ∨ B = B ∨ A)
• Associativity: application preference does not matter ((A ∨ B) ∨ C = A ∨ (B ∨ C))
• Idempotence: multiple applications do not matter (A ∨ A = A)

Then, any replica can simply be changed locally without external coordination or any
other complex concurrency control—all replicas will converge to the same common state as
soon as the same collected write operations from all replicas are applied. These properties
make CRDTs particularly well suited for applications with low latency requirements and
intermittent connectivity, e.g., tools for real-time collaboration and mobile computing.
They are no universal solution, however: the design of a CRDT is tightly coupled to
the data model of the application. While simply data structures like increasing counters
and grow-only sets are well understood and quite easy to implement, more advanced
structures quickly get complex and tricky. Typical difficulties include that the overhead
of additional metadata can grow very large and that effective garbage collection of old
data states can be a hard problem to solve [LPS10].

2.3.3 Client-Centric Consistency Models
The following four consistency models, originally developed and described in 1994 by
Terry et al. for the Bayou project, are basic expectations a client application commonly
has for the behavior of a weakly consistent data store from its point of view.

These models are also known as session guarantees, wherein a session is an abstraction
for a long-running sequence of read or write operations that a (mobile) client application
may perform, while being only intermittently connected to the data store. In particular,
applications can create multiple sessions to request different guarantees for different
purposes from the same data store. They can be implemented in a practical and efficient
way by using a version vector for each server. That version vector has to be increased for
every write operation that is applied by the server [Ter+94; TS06].

Read Your Writes

Read Your Writes ensures that for a particular client and a particular data item, a read
operation following an earlier write operation does never return a state before the write
operation took effect. The client can always observe the effects of its own writes. The
model does not constrain when the effects of a write by one client can be observed by
any other clients.

A data store guaranteeing this consistency model cannot—in contrast to the three other
client-centric models described below—provide total availability, it can only provide

25

2. Background

sticky availability: As long as clients do not switch between different nodes, operations
can continue to be processed on all non-faulty nodes. If a client switches nodes and a
network partition prevents propagation of the write operation, it would not be able to
observe the effects of its own writes on the previous node upon a read on the new node.
Then, the only option to prevent that inconsistency is to not apply the write operation
at all and stop being available in case of network partitions [Baib; Bai+13b].

Monotonic Reads

Monotonic Reads ensures that for a particular client and a particular data item, a read
operation does never return an earlier state than the one a previous read has already
seen—it may only go forward and return the same or a more recent state. The model
does not constrain the order in which reads done by different clients observe a state.

A data store guaranteeing this consistency model can achieve total availability. It can do
that by the read operations only returning the effects of writes which have propagated
and are present on all nodes. Then, regardless of which node a client does connect to, it
will never read an earlier state since the same writes have to be present [Baib; Bai+13b].

Writes Follow Reads

Writes Follow Reads ensures that if a client reads some data item and then writes to
another data item, another client that reads the effect of the second write must not see an
earlier state of the first data item than the one the first client has seen. This consistency
model is also known as session causality: It is assumed that since the first client wrote
data after having read data, a causal relationship between the two operations could exist.
For example, the first client could have read some measurement value, decided that it is
outside some acceptable range of values, and triggered an alarm condition as a result.
In that case, it would be strange for another client to notice the alarm but still see the
measurement value as perfectly fine within range.

The model is different from the two session guarantees described above in that it affects
other clients outside the session. The session causality guarantee can be decomposed into
two different constraints on write operations: An ordering constraint so that each write
operation properly follows previous relevant write operations, i.e., is only applied when
they have completed. And a propagation constraint so that all nodes and their attached
clients can only see the effects of a write operation after they have seen all previous write
operation effects on which it depends. For some applications, it can be useful to relax the
Writes Follow Reads guarantee and only require one of these two constraints [Ter+94].

Monotonic Writes

Monotonic Writes ensures that for all clients and a particular data item, writes done by
a particular client must follow previous writes of the same client. The model does not
constrain the order in which writes done by different clients are applied in relation to
each other.

26

2.3. Consistency Models

Like with Writes Follows Reads above, it does affect other clients outside the session, and
it can be decomposed into two separate ordering and propagation constraints [Ter+94].

2.3.4 FIFO/PRAM Consistency
First in, first out (FIFO) consistency, also known as Pipelined RAM (PRAM) consistency,
ensures that for all clients (everywhere), the writes done by one particular client are
observed exactly in the order they were invoked, i.e., the order of writes is preserved
as if they went through a pipeline. It combines the constraints of Read Your Writes,
Monotonic Reads and Monotonic Writes. The model does not constrain the order in
which writes done by different clients are seen in relation to each other.

It was presented by Lipton and Sandberg in 1988 as one of the first described consistency
models, in an effort to improve the performance of concurrent access on shared memory
by different processes in a computer system. There, too, all processes have to see memory
writes from one process in the order they were issued, but memory writes from different
processes may be observed in any order. Like Read Your Writes, FIFO consistency is
sticky available [LS88; Kina].

2.3.5 Causal Consistency
Causal consistency combines FIFO consistency with the session causality of Writes Follow
Reads. It captures the notion that causally related operations should appear in the
same order for all clients, regardless of which client invoked them. Operations which
cannot be causally related, e.g., because they ran concurrently, may appear in different
order to different clients. Like Read Your Writes and FIFO, causal consistency is sticky
available [VV15; Kina].

2.3.6 Sequential Consistency
Sequential consistency is an even stronger consistency model. It implies that all operations
appear to take place in the same consistent total order for all clients. However, in contrast
to causal consistency, it cannot provide availability in case of network partitions: some or
all nodes will be unable to continue running operations. This also implies higher latency
under normal conditions [VV15; Kina].

2.3.7 Linearizability
Linearizability is one of the strongest single-object consistency models. In addition to the
sequential consistency constraint of having all operations appear in the same consistent
total order for all clients, it requires that order to correspond to the real-time order
of the operations. Every operation appears to take place atomically and its effects are
visible to all nodes at the same time. A good example where such a guarantee is useful is
when some nodes interact with each other using a side channel outside the network of
the distributed system [VV15; Kina].

27

2. Background

Linearizability Checkers

To help test whether a concrete implementation claiming to provide linearizability actually
works correctly, dedicated tooling exists. One example is the Porcupine checker [Ath17a],
which implements an algorithm described by Horn and Kroening; Lowe [HK15; Low17].
Generally, an executable model of a system as well as a recorded history of an execution
(all operation invocations and completions in their relative order) is required as input for
a checker. Then, the tooling runs a decision procedure to determine if the given history
is linearizable with respect to the model. That is, whether every operation appears
to execute atomically and instantaneously at some point between the invocation and
response. If any such point cannot be found without causing contradictions, the history
is rejected as non-linearizable. Unless the executable model was defined incorrectly,
the tested implementation the history is sourced from must be faulty. Of course, the
opposite result of a linearizable history does not prove that the tested implementation is
working correctly under all circumstances—however, with randomly injecting faults and
running lots of randomized tests, some level of confidence can be attained. Even though
linearizability checking is NP-complete, on small histories, it can work suitably well in
practice [Ath17b].

2.3.8 Multi-Object Models

While the single-object models described above may need to consider multiple data items
for their consistency guarantees (e.g., in Writes Follow Reads, see 2.3.3), each operation
can only read or modify exactly one item. To modify multiple items, the client has to
issue multiple distinct operations in sequence. Such a sequence is called a transaction,
but if the data store does not provide transactional guarantees, undesirable results can
happen which can be difficult for the application to deal with. These are similar to (but
should not be confused with) the problems that can occur in relational databases. There,
the acronym ACID (atomicity, consistency, isolation, durability) is often used to describe
the desired characteristics the data store should provide.

Atomicity

Missing transactional atomicity can lead to seeing the results of only some, but not all
intended operations of another clients’ transaction. This state can be semantically invalid
for the application and lead to severe problems due to violated invariants.

For example in Figure 2.9, a data store with two accessing clients is shown. Client 1
wants to swap two values stored under key a and b. To do that, it first gets the two values,
and then stores them under their new keys. Then, client 2, with some bad “timing” with
its query, gets the same value x for both keys a and b—the other value, y, temporarily
seems invisible as if it were deleted, a dirty read. Were the two transactions running
sequentially one after another, depending on the order, client 2 would either see a = x
and b = y, or a = y and b = x, but never this intermediate state. Should a transaction

28

2.3. Consistency Models

get(a), get(b)

x, y

get(b)

x

Client 1

Client 2

Store

store(b, x)

ok

store(a, y)

ok

get(a)

x

Figure 2.9: Dirty read timeline: C2 observes the effects of C1’s half-finished transaction

fail to apply completely, the effects of all previous operations in the transaction have to
be rolled back to satisfy the all-or-nothing semantics of atomicity.

Isolation

Missing transactional isolation from concurrent sessions can lead to different outcomes
of the same operations, depending on whether the own transaction ran sequentially or
concurrently with transactions of other clients.

store(a, y)

ok

store(a, x)

ok

get_free_key()

a

get_free_key()

a

Client 1

Client 2

Store

Figure 2.10: Lost update timeline: C2 inadvertently overwrites C1’s value a = x

For example in Figure 2.10, a data store with two accessing clients is shown. Client 1
and client 2 both want to store some values x and y. To do that, they first query for
a free key, then they store their value under the received key. Client 2 could end up
inadvertently overwriting the value a = x from client 1 with its own value a = y. This
is due to both clients seeing the same key as free if both query operations run before

29

2. Background

any of the store operations, causing a lost update. Were the two transactions running
sequentially one after another, depending on the order, the result would be either a = x
and b = y, or a = y and b = x, but there would be no loss of data.

In this simple contrived example, the store could anticipate that the clients want to
store a value after fetching a free key and keep the returned keys reserved for some time
to avoid collisions. In general, however, the store may not know what the clients are
planning to do with the returned data and the clients may not know whether the returned
data is still valid for use. Even if the data is immediately used for further operations,
such as here, network delay and concurrency can lead to loss of data.

Highly Available Transactions

For the client to be safe from such concurrency artifacts, the distributed data store can
implement consistency models that guarantee that such transactional or multi-object
semantics are provided. Bailis et al. find that for less demanding transactional consistency
models, it is even possible to provide high availability. They can continue processing
operations without violating their consistency constraints during network partitions [Baia;
Bai+13b].

30

CHAPTER 3
Related Work

This chapter discusses relevant research for our system design. We briefly consider
consistency models, general principles for safe network communication and replication
algorithms for synchronizing data in a distributed system.

3.1 Consistency Models

As introduced in Section 2.3, a consistency model is a contract some distributed data
store can provide to its users. These models can be classified into two distinct groups:
consistency models for non-transactional systems, where any operation can only affect a
single object, and models for transactional systems, where an operation supports affecting
multiple objects at once.

Viotti and Vukolic [VV15] created a comprehensive overview of consistency notions
in non-transactional distributed storage systems. They formally defined 50 different
consistency semantics from four decades of research. Additionally, Viotti and Vukolic
established a partial order according to the “strength” of the guarantees of each model.
See Section 2.3 for descriptions of the most significant consistency models and their
relation to each other.

Bailis et al. [Bai+13b] considered the problem of providing Highly Available Transactions
(HATs): Transactional guarantees that provide availability even during network partitions
and that do not incur high network latency. Bailis et al. introduced a taxonomy and
analyzed existing ACID isolation and consistency guarantees to identify which ones can
and which ones cannot be achieved in HAT systems, and which semantic compromises
may need to be made to do so.

31

3. Related Work

3.1.1 PRAM/FIFO Consistency Verification

Wei et al. [Wei+16] focused on the verification of Pipelined RAM (PRAM) or FIFO
consistency. They defined the Verifying Pipelined-RAM Consistency (VPC) decision
problem and proved the algorithmic complexity of the general problem as NP-complete.
Wei et al. also described an algorithm called Read-Centric for solving a variant in
polynomial time.

PRAM Consistency

Wei et al. give the following definition of PRAM consistency: “A read/write trace satisfies
Pipelined RAM consistency if and only if for each individual process, there exists a legal
schedule of its visible operations, respecting both program order and write-to order.”
([Wei+16])

In their formal model, an operation is a tuple containing the type of operation (read or
write), the issuing process, the variable being involved and the value either being returned
or being written to that variable. A schedule of a set of operations is a permutation of
the operations with a defined precedence relation. There are two partial orders defined
over the operations: The program order (PO) is the order in which operations are issued
by each process. The write-to order (WR) associates each read with a unique preceding
write (to the same variable) from which it reads the value.1

VPC Decision Problem

Using the definitions above, Wei et al. define VPC as follows:

INSTANCE A read/write trace T. Its size (denoted by n) is defined as the total number
of operations in it.

QUESTION Does T satisfy Pipelined RAM consistency?

Wei et al. define four variants of the general VPC problem from two orthogonal dimensions,
depending on whether there are multiple shared variables involved and whether the values
written to those variables are unique (shown in Table 3.1). By reducing the strongly
NP-complete 3-Partition problem to VPC, they prove that the variants that allow
duplicate values are NP-complete (VPC-SD and VPC-MD). If only unique values are
written to the variables, however, the problem is polynomially tractable (VPC-SU and
VPC-MU). The reason is that with unique values, the corresponding (dictating) write for
a read value can be identified deterministically.

1In other sections of this work, we generally refer to keys instead of variables, to data store clients
instead of processes and to histories or observations instead of traces.

32

3.1. Consistency Models

Single Variable Multiple Variables
Duplicate Values VPC-SD: NP-complete VPC-MD: NP-complete

Unique Values VPC-SU: P VPC-MU: P

Table 3.1: Complexity classes for the VPC problem variants [Wei+16]

The Read-Centric Algorithm for VPC-MU

For the VCP-MU problem, Wei et al. provide a polynomial algorithm called Read-
Centric. Since PRAM consistency is weak and does not require all processes to agree
on a common view of order of the operations, each process can be checked separately.
While write operations from all processes must be considered, read operations from other
processes are invisible and can be ignored—only the own read operations are relevant.

The basic idea of the algorithm is to model the read/write trace of an observation as
a directed graph. Operations are represented as nodes, while precedence relations are
modeled as directed edges. While o1 ≺ o2 denotes a precedence relation between the
operations, D(r) denotes the dictating write for the read operation r. To capture PRAM
consistency, three rules must be applied:

Rule A (program order) For any pair of operations o1 and o2, if o1 ≺P O o2, then
add an edge from o1 to o2. This rule captures the program order for all pairs of
operations issued by the same process.

Rule B (write-to order) For any pair of operations w and r, if w ≺W R r, then add
an edge from w to r. This rule captures the write-to order for all write/read pairs
where the write operation is the dictating write for the read.

Rule C (w’wr order) For any triple of operations w, r and w′ on the same variable, if
w = D(r) ∧ w′ ≺ r, then add an edge from w′ to w, leading to w′ ≺W ′W w ≺W R r.
The rule captures the observation that in a legal PRAM schedule, there cannot be
any other write w′ between a read r and its dictating write operation w = D(r).

After creating nodes for all operations, rules A and B are applied and a transitive closure
of the graph is computed. Then, rule C is applied repeatedly as long as new edges
are produced. Every time new edges are added, the transitive closure is also applied
again. Once no edges can be added anymore, the algorithm is complete. Pipelined RAM
consistency is satisfied if and only if the resulting graph is a directed, acyclic graph
(DAG) [Wei+16].

These steps capture the RW-Closure algorithm with a worst-case time complexity
of O(n5). The Read-Centric algorithm with O(n4) follows the same principle, but
achieves better practical efficiency: Read-Centric processes read operations one by
one and avoids redundant rule applications. Once the algorithm finds a certificate for
inconsistency, it can terminate early, without having to collect all the operations.

33

3. Related Work

3.1.2 Bolt-On Causal Consistency
Bailis et al. [Bai+13a] described an algorithmic solution to upgrade an eventually consis-
tent distributed data store to one that provides convergent causal consistency. That is
accomplished by layering a “bolt-on” shim middleware on top, enabling reuse of existing
and well-tested implementations and a clean separation of concerns. The bolt-on shim
provides the consistency-related safety, while the underlying general-purpose data store
can keep being responsible for liveness, replication, durability, and convergence.

Causality Tracking

As a prerequisite, the causal happens-before relationship between the write operations
must be tracked (see also Section 2.3.5). There are two different ways to accomplish
that: A data store can track potential causality, where for a write operation, all preceding
write operations whose effects may have influenced that operation are taken as a causal
dependency. If a pair of write operations has taken place concurrently, they cannot
depend on one another. Future writes reflect any reads: After a process has seen the effect
of a write operation, then all other processes must also be able to observe the effects of
that operation before applying any future write operations of that process. The approach
is conceptually simple and can be universally applied to all kinds of operations. However,
the strong restrictions on the order of operations can lead to low throughput and high
visibility latency. The visibility latency is the amount of time that the effects of a write
operation must stay hidden due to the operation’s dependencies being missing [Bai+12].

Bailis et al. choose to employ a different approach for their bolt-on consistency algorithm:
That of explicit causality tracking, where the application must capture the causal rela-
tionships between operations on its own. Every write operation has to include a reference
to all previous writes on which it causally depends upon. While explicit tracking places
more of a burden on the application and there is a risk of missing causal relationships,
the method can provide better scalability and throughput performance [Bai+13a].

Implementation

To provide causal consistency, Bailis et al. place a shim layer on top of each node of
the underlying data store. All client operations are processed by the shim layer. The
bolt-on shim tracks causality metadata and maintains its own local data store which is
kept causally consistent at all times. Write operations are applied to the causal data
store immediately. Then, they are forwarded to the underlying data store for distribution
and durability. Processing of read operations, however, is more involved: While the
underlying data store may permit a large variety of operation histories, the causality
shim layer has to restrict the space of executions to those orders that do not violate the
causal consistency model. There are two implementations available for read algorithms:
an optimistic and a pessimistic one.

The optimistic read algorithm immediately returns the causally consistent value in the
causal shim data store. While doing so, it queues the key that was read in a queue for

34

3.1. Consistency Models

the background resolver. The resolver is an asynchronous background process responsible
for fetching new updates, including their causal dependencies, from the underlying data
store. As soon as all causal dependencies are satisfied, the updates are applied to the
causal shim data store and become observable by clients. While this approach results
in fast read operations that satisfy causal consistency, clients might experience poor
visibility latency with unnecessarily stale values.

The pessimistic read algorithm, in contrast, does not return a value immediately. Instead,
it checks the underlying data store for new updates to be applied. Since an update may
causally depend on other updates, the algorithm has to check the data store recursively.
It has to chase the entire dependency chain, resulting in slow read operations. For
practicality, an implementation can mix both approaches. The read operations can trade
off low latency with the staleness of values.

Causal Cuts

Bailis et al. employ causal cuts to determine which set of write operations is safe to apply.
A causally consistent system maintains the invariant that each local store is a causal cut.
Three rules guarantee that no causal dependencies are missing. A set of write operations
is a causal cut if all of their dependencies are:

1. Contained in the causal cut themselves, or
2. happens-before to a same-key write operation already in the causal cut, or
3. concurrent with a same-key write operation already in the causal cut.

{w1, x1, w2, y1, z1}
{x1, w2, y1}

{w1, x1, y1}

{w2}

w1 x1

z1y1

w2

Figure 3.1: Examples of write sets that are causal cuts [Bai+13a]

35

3. Related Work

As an example, consider the write history graph shown in Figure 3.1. Write operations
to the keys {w, x, y, z} are represented by nodes, with their causal happens-before depen-
dencies represented as directed edges. The complete set of write operations is a causal
cut, as are the subsets {w1, x1, y1}, {x1, w2, y1}, {x1, w2, y1} or just {w2}. Sets with
dependencies being missing are not causal cuts, e.g., {w1, z1} or {y1, z1}.

3.2 Network and Safety Architecture

3.2.1 End-to-End Arguments in System Design
In their seminal paper, Saltzer, Reed, and Clark [SRC84] argued for a general end-to-end
design principle for distributed computer systems. In a networked system using layered
communication protocols, functions needed by the application have to be assigned to
a suitable layer. However, it is not always clear which layer that is. Earlier systems
were often designed to provide commonly required functionality—such as reliability and
security—at lower networking layers as part of the communication system itself, only to
discover that this was not sufficient.

Instead, the end-to-end principle arguments that functions which can only be correctly
and completely implemented with the help of endpoints of the communication cannot be
provided solely by the communication system itself. Doing so may be redundant or of
little value, and should only be considered in exceptional cases. Saltzer, Reed, and Clark
discuss a handful of typical examples:

• Ensuring data integrity on a file transmission
• Providing delivery acknowledgments to the sender of a message
• Encrypting the contents of a transmission
• Suppressing duplicate messages
• Guaranteeing first in, first out (FIFO) message delivery

Example: Data Integrity

Consider a file transmission from one host to another host. The underlying communi-
cations system may already ensure the integrity of packets between intermediary hops
(gateways or routers), but that is not sufficient to ensure end-to-end integrity. Data can
still be corrupted while being processed by an intermediate device or while being assem-
bled by the receiving host. To detect such cases, an end-to-end data integrity mechanism
has to be employed. For instance, a checksum of the contents can be calculated by the
sending host and verified by the receiving host after assembling the data. In case the
verification does not succeed, the transfer can be requested a second time.

Note that this functionality cannot be provided by the underlying communications system:
application-level support is required. As soon as such a high-level mechanism is in place,
hop-to-hop corruptions are detected, too—the low-level integrity mechanism is made
redundant. The additional overhead may even prove detrimental to overall performance.

36

3.2. Network and Safety Architecture

Sending everything again when only a few parts were damaged, however, is also not
very efficient. Keeping the low-level mechanism in place may be useful for performance
reasons. In such cases, carefully considered exemptions from the end-to-end principle may
be justified. Overall, placing the functionality solely on application-level but designing it
in a more sophisticated manner may still result in a more robust and scalable design.

Example: Delivery Acknowledgments

A similar argument can be made for a communications system that provides delivery
acknowledgments for sent messages. Knowing only that a message was delivered to a
target host is of limited value. What an application really wants to know is whether the
message was successfully processed and some requested action was taken or not taken.
For simple applications, the target processing can be made resilient enough that one can
assume successful processing upon delivery. But the approach is not sufficient in case the
processing depends on delivery to other hosts or can fail for other reasons, i.e., when a
negative acknowledgment is a possible outcome. In that case, too, the real value lies in
an application-level acknowledgment of successful or failed processing.

3.2.2 Congestion Avoidance and Control
Jacobson [Jac88] introduced many of the congestion avoidance algorithms used in modern
TCP/IP implementations. At the time, the Internet suffered a series of congestion
collapses. A congestion collapse is a dramatic drop of the data throughput between well-
connected nodes due to network congestion. As cause for the problem, they identified the
existing window-based transport protocol implementations behaving suboptimally and
making the problem even worse with excessive retransmissions. As a remedy, Jacobson
introduced seven new algorithms into the 4.3BSD (Berkeley UNIX) implementation of
TCP and measured the improvements.

Conservation of Packets Principle

Jacobson’s algorithms aim to adhere to the conservation of packets principle: A connection
is “in equilibrium” when it runs stable with a full window of data in transit. Then,
a new packet should not be put on the network until an old packet leaves, i.e., it is
acknowledged by the receiver. Jacobson concludes that there are only three ways for
packet conservation to fail, and treats each of these problems in turn:

1. To make sure a connection can even reach an equilibrium state, they use a slow-
start algorithm that gradually increases the amount of data simultaneously allowed
in-transit.

2. To make sure that a sender does not inject a new packet before an old packet
has exited, they make sure that the sender’s retransmit timer properly estimates
round-trip time and implements an exponential back-off timer scheme for repeated
retransmissions.

37

3. Related Work

3. In case an equilibrium cannot be reached due to resource limits along the path,
they propose a congestion avoidance strategy consisting of two components: One
component is that the endpoints must have a way to detect congestion and regulate
utilization accordingly. Since packet loss due to damaged data is rare, they conclude
that packet loss and timeouts are almost always due to network congestion and use
that as a congestion signal. The other component is to ensure that the policies for
window size decrease and increase are chosen carefully. In particular, the decrease
must occur at least as fast as queues are growing (i.e., exponentially) and the
increase is best performed slowly and linearly.

While the introduced algorithms solve the problem of congestion control for unicast
connections, they are not suited for multicast transmissions. The reason is that they
require the participation of the sender and the receiver in tandem.

3.2.3 Safety over EtherCAT (FSoE)
FailSafe over EtherCAT (FSoE) [Gro] is a communication protocol designed for imple-
menting functional safety in industrial automation systems. The protocol is an open
technology based on Ethernet for Control Automation Technology (EtherCAT) and part
of the IEC 61784–3 international standard. FSoE can meet the requirements of Safety
Integrity Level (SIL) 3.

Black Channel Approach

FSoE utilizes a Black Channel approach as main design principle: The underlying network
connection does not perform any safety-related task and serves only as the transmission
medium for safety data containers. The design principle has the advantage that the
transport mechanism and the medium do not have to be included in the safety assessment.
The safety functions are protected from compromise by a combination of measures within
the FSoE safety protocol [Gro] (see also Table 3.2):

• Cyclic redundancy check (CRC) checksums guarantee that the contents of the
received safety data containers are not corrupted.

• Watchdog timers guarantee that in case of any communication error condition, the
devices reset to a safe state (fail-safe, typically upon exceeding 100 ms).

• Consecutive sequence numbers guarantee that any repetition, loss, our out-of-order
delivery of safety data containers is detected and mitigated.

By employing the Black Channel approach, FSoE provides a level of flexibility and
interoperability. Since the specification has no restrictions on the transport mechanism
or medium, system design can be simplified and delivered with lower costs, while being

38

3.2. Network and Safety Architecture

Error / Measure Sequence Watchdog Connection CRC
Number ID Calculation

Unintended repetition ✓ ✓
Loss ✓ ✓ ✓
Insertion ✓ ✓
Incorrect sequence ✓ ✓
Corruption ✓
Unacceptable delay ✓
Masquerade ✓ ✓
Repeating memory errors in
switches

✓ ✓

Incorrect forwarding between
segments

✓

Table 3.2: Safety measures in Safety over EtherCAT [Gro]

robust, adaptable and maintaining the required functional safety standards. Safety-
relevant data can share the infrastructure and travel on the same network as any other
data.

3.2.4 Design of FoundationDB
Zhou et al. [Zho+21] described the basic design principles and architecture of Foun-
dationDB, a distributed and transactional key-value store. These include transaction
management, replication strategies as well as their approach for effective simulation
testing. The software was open-sourced in 2018, is designed for horizontal scaling and
offers strong guarantees for data consistency and durability. The transaction processing
employs multiversion concurrency control (MVCC) for reads, optimistic concurrency
control (OCC) for writes and provides the transactional consistency model of serializable
isolation. While scope and goals of FoundationDB are very different from this work, we
can learn from the design principles and the robust event-based testing.

Design Principles

The paper outlines four main design principles for FoundationDB: Divide-and-Conquer
or separation of concerns decouples transaction management, the distributed storage and
distributed configuration system from each other and allows them to scale independently.
Within these systems, sub-systems are split up into separate processes that are assigned
various roles, e.g., timestamp management, commit acceptance or conflict detection.
Making failure a common case allows to reduce all failure handling to a single, well-
tested recovery operation. The principle provides the assurance that even unforeseen
or uncommon failure scenarios can be handled by the robust recovery operation. Fail
fast and recover fast strives to minimize the Mean-Time-To-Recovery (MTTR), which

39

3. Related Work

includes the time to detect a failure, shutdown the transaction management system and
to recover. Simulation testing relies on a deterministic simulation framework to test the
correctness of the implementation, both efficiently and with repeatability [Zho+21].

Deterministic Simulation Testing

As Zhou et al. put it, testing and debugging distributed systems is “at least as hard as
building them.” Many sources of non-determinism can expose subtle bugs and break
implicit design assumptions, leading to severe data corruption that may not be discovered
for months. FoundationDB includes a deterministic simulation framework to end-to-end
test the system and to reliably trigger and reproduce defects.

For the approach to work well, the data store system is fundamentally designed with
simulation in mind: Instead of multithreaded concurrency, FoundationDB uses Flow, a
C++ extension for asynchronous, actor-based concurrency. All sources of nondeterminism
and communication are abstracted away and there are interfaces to inject unusual (but
possible) behavior, e.g., to fail an operation that usually succeeds or to delay an operation
that usually completes fast. The simulator runs composable, randomized workloads in
a discrete-event simulation and injects various faults to test the system’s robustness.
Among these faults, there are node crashes and reboots, as well as network faults such as
network partitions and high communications latency. Conditional coverage macros are
used to measure the effectiveness of the simulation and tune the scenario to increase the
likelihood of achieving rare conditions [Zho+21].

Strengths and Limitations

The main advantage of discrete simulation testing is that defects can be found quickly.
Bugs can be fixed early in testing instead of late in production, and can be traced
back more easily to the related change that caused them. Discrete-event simulation
can run arbitrarily faster than real time. By fast-forwarding the clock to the next
event, the simulator can simulate long stretches of time. By running simulations in
parallel, rare bugs can be triggered with a higher probability. However, the simulation
is not suitable to detect performance issues. It is also unable to test code that does
not support the simulator, such as third-party dependencies and parts of the code that
are not implemented using the Flow extension. Bugs in critical dependent systems or
misunderstandings of their contract can lead to issues not detectable by this kind of
testing [Zho+21].

3.3 Consensus and Replication
3.3.1 Raft
Raft [OO14] is a consensus algorithm for managing a replicated log. The algorithm, pre-
sented by Ongaro and Ousterhout, produces a result equivalent to Lamport’s Paxos [Lam98],
but aims to be easier to understand. That is accomplished by separating the key elements

40

3.3. Consensus and Replication

of consensus—leader election, log replication, and safety—and by enforcing a stronger
degree of coherency to reduce the number of states that have to be considered.

Overview

Raft is a single-leader replication algorithm (see also Section 2.2.3): A designated leader
node is responsible for managing the replicated log. The leader accepts append operations
for new log entries, replicates them to other nodes and determines when it is safe for all
nodes to apply them to their state machines. Raft divides time into terms that represent
the reign of an elected leader node. Log entries always flow in one direction: from leaders
to followers. Raft maintains the following five properties [OO14]:

• Election Safety: At most one leader can be elected in a term. Since a successful
election requires a majority of the votes of all nodes, it can only result in one leader.

• Leader Append-Only: The log is immutable—a leader only appends new entries to
the log, but never overwrites or deletes existing ones. Immutability simplifies the
implementation and enables log matching.

• Log Matching: Logs that contain an entry with the same index and term are
identical in all preceding entries. The property is maintained by two mechanisms:
the leader never changing any entries in its log and the followers performing a
consistency check. Followers only append a received log entry if the previous entry
matches the expected index and term. Since the check is done for each individual
entry, the entire resulting log must be identical.

• Leader Completeness: If a log entry is committed in a term, then that entry will be
present in the logs of all leaders for all later (higher-numbered) terms.

• State Machine Safety: If a node has applied a log entry at a given index to its state
machine, no other node will ever apply a different log entry for the same index. In
conjunction with the previous property, all nodes will apply exactly the same set of
log entries to their state machines, in the same order.

Leader Election

In Raft, each participating node is in one of three states: leader, candidate, or follower.
To maintain its role, the leader must periodically send heartbeat messages to all followers.
When these messages are not received anymore, a new leader has to be elected. Any
follower node that detects this condition can become a candidate, vote for itself, and
requests votes from the other nodes. If a majority of cluster nodes voted for the candidate,
it becomes the leader for that term and starts sending heartbeat messages. If another
node claims leadership or if no candidate achieves a majority, the term ends early, the
candidate switches back into follower state and a new election starts. Randomized election
timeouts help to prevent split votes and ensure quick resolution.

41

3. Related Work

Log Replication

With a leader node established, normal log replication takes place: Clients can send their
requests to the leader node, which appends entries to its log and sends them to followers.
Once a majority of followers acknowledge, the entry is considered safely replicated and
can be committed, i.e., applied to the leader’s state machine. This ensures that even if
some nodes are slow to acknowledge, fail to apply the log entry or do not receive it at
all, execution is not delayed. If a follower’s log becomes inconsistent due to crashes or
failures, the leader forces the follower’s log to match by overwriting mismatching entries
with its own.

Safety

Raft guarantees that each node’s state machine applies the same commands in the same
order. This is achieved through log matching and the Leader Completeness property,
which ensures that the leader contains all committed entries from previous terms. Raft
uses the voting process to keep a candidate from winning if it has an outdated log. To
eliminate the risk of a log entry being overwritten by a future leader, Raft never commits
log entries from previous terms, even if they have been acknowledged by a majority of
followers—once an entry from the current term is committed, previous term entries will
be indirectly committed, too. Leaders retry indefinitely to send unacknowledged entries,
which makes the protocol resilient to crashes and restarts of follower nodes.

Cluster Membership Changes

Raft handles membership changes through a two-phase transition. Directly switching
from one cluster configuration to the next would be unsafe, since servers switch at different
times—for a brief period, two leaders could be elected for the same term. First, the
cluster enters a transitional configuration of joint consensus, where any node in either
the old or new configuration can serve as leader, and log entries are replicated to both
sets. A majority from both configurations is required to commit an entry. Once the
transitional configuration is committed safely, the cluster fully transitions to the new
configuration, which avoids the risk of split-brain scenarios.

Log Compaction

Raft manages the continuous growth of its log through periodic compaction. Ongaro
and Ousterhout discuss two approaches: One method is snapshotting, where the entire
state is written to stable storage, allowing nodes to discard any older log entries. As no
cluster coordination is necessary, each node can take snapshots independently at any time.
Followers that lag significantly behind may require log entries the leader has already
discarded—in that case, they have to receive a complete snapshot from the leader to
catch up. Alternatively, a continuously running incremental compaction spreads out the
compaction process over time, reducing the impact on normal replication operation. The
existing Raft protocol can already support an implementation using log-structured merge

42

3.3. Consensus and Replication

trees (LSMs) [O’N+96], where the data can be compacted when merging it into the next
level of the data structure.

Strengths and Limitations

Raft is a consistency algorithm with high understandability. With a single elected leader
node, Raft can provide linearizable consistency. The safety has been verified using a TLA+
formal specification [OO14] and proven in practice in numerous implementations, e.g., in
CockroachDB (a distributed SQL database), or etcd (a strongly consistent distributed
key-value data store) [Etc].

However, to ensure the strict consistency model, read operations must go through the
leader node, too. To avoid the risk of returning stale data, the leader may not simply
return the data it already has. Instead, it has to communicate with its followers first to
check which of its entries have really been committed and to make sure that it does not
have to yield to a more recently elected leader. That results in a considerable latency
for all operations and limits throughput. The algorithm is not tolerant of Byzantine
faults: All nodes trust the elected leader to follow the protocol and to send data that is
trustworthy and correct [OO14].

3.3.2 Merkle Search Trees

Auvolat and Taïani [AT19] presented an efficient way to implement state-based CRDTs
(see also Section 2.3.2). At the core of their contribution lies a tree data structure, the
Merkle Search Tree (MST), which is used to efficiently compare and reconcile the datasets
stored on two different hosts.

Efficient Synchronization

An MST is a specialized Merkle Tree [Mer87] that combines three properties [AT19]:

• A given set of items has a unique and deterministic tree representation,
• the order of the inserted keys is preserved, and
• trees are always kept in balance.

Together with a collision-resistant hash function, these properties permit an efficient
remote comparison of trees: By only comparing the root hashes, the equality of the
whole dataset can be determined at once. If both instances contain the same items, the
Merkle hashes of the roots will be the same. But if the hashes differ, the trees cannot
contain the same items. Then, the comparison can continue to compare the hashes on
the next lower level. Subtrees with the same hash can be skipped entirely. In this way,
item ranges that contain differences can be narrowed down quickly. Only these ranges
must be exchanged to synchronize the stored items. With a balanced tree, the number of
required hash comparisons is logarithmic to the number of stored items.

43

3. Related Work

x2 x3 x4 x6 x7 x8

x11x9

x5x1 x10

Root

Layer 2
hB(xi) = 00X...

Layer 1
hB(xi) = 0XX...

Layer 0
hB(xi) = XXX...

Figure 3.2: Structure of a Merkle Search Tree [AT19]

Deterministic Tree Construction

Auvolat and Taïani base the tree construction on a collision-resistant hash function. The
hash function must have a negligible probability of finding two strings with the same
hash, and it must project values uniformly. Modern hash functions such as SHA-512
satisfy these requirements. MSTs have a similar structure as B-trees, which are commonly
used in relational database management systems (RDBMSs) for indexing. B-trees are a
generalized, shallower form of binary trees, allowing for nodes to include pointers to more
than two subtrees. This structure allows for faster traversal than binary trees. Typically,
the node size is chosen to fit into a machine’s memory page [AT19].

For MSTs, however, the shape of the tree is derived from the deterministic randomness
of the used hash function (shown in Figure 3.2). The nodes are composed of a set of
items that define how the space of keys is split, and of a set of pointers to the subtrees
that contain the items for each interval in the split. To implement key-value maps, an
item consists of a key that can be accompanied by a (CRDT) value. The subtree pointer
consists of the computed hash value of the targeted node’s contents (a block). The hash
function has a secondary purpose: The tree layer an item will be stored in is determined
by the zero-prefix-length of the computed hash value hB(xi) (shown on the right hand
side). If the output of the hash function is binary (Base B = 2), an upper layer contains
about half the number of items of the next layer below. If the output is hexadecimal
(B = 16), an upper layer contains only about one sixteenth of the items of the next layer
below. The depth of the tree is about logB n of the number of nodes. Item operations
such as reads, puts and deletes can be implemented with a time complexity of O(logB n).
In combination with the order of the keys, the deterministic structure achieves structural

44

3.3. Consensus and Replication

unicity: Regardless of the order that a set of items was inserted into the tree in, there is
only one possible representation as an MST [AT19].

Strengths and Limitations

MSTs are particularly suited for replication in large, open networks where nodes may join
and leave with a high frequency. Auvolat and Taïani use probabilistic gossiping for peers
to synchronize their datasets and propagate changes. By using the same synchronization
mechanism for replication, anti-entropy and recovery from faults, all three operations
can share the same well-tested and robust code path. An additional benefit is that MSTs
can provide causal consistency. This is due to a full state merge happening on every
replication (gossip event) and the use of a separate buffer to hold partially received
information until it can be merged in safely all at once.

The merge procedure optimizes for minimal bandwidth usage at the cost of higher
worst-case replication latency: Several network roundtrips may be required to identify all
differing blocks between two peer nodes. As a consequence of the probabilistic gossiping,
there is no upper bound for the propagation delay until a change has been synchronized
to all reachable nodes. There is also no built-in mechanism for delivery acknowledgment.

3.3.3 Bitmap Version Vectors
An alternative technique for replication and anti-entropy was introduced by Gonçalves
et al. [Gon+15; Pet19]: Bitmap version vectors (BVVs).

Dotted Bitmaps

The central idea of the approach is that conventional version vectors can be enhanced with
dotted bitmaps. These bitmaps serve as logical clocks, both for nodes and for the causality
of individual items in the store. A dot represents a pair of a node identifier and version
number, uniquely identifying every single write operation in the distributed data store
together. The assigned version numbers are taken from a strictly monotonically increasing
counter within the node. With these dots, every node keeps track of all observed write
operations of every peer node. During a peer-wise anti-entropy synchronization, the nodes
can efficiently compare their node logical clocks to retrieve all missing write operations.

The node logical clocks can be stored as BVVs, a compact representation as a vector of
base/bitmap pairs, as shown in Figure 3.3. The base (green) represents all consecutive
update versions up to the given version number, while the bitmap (orange) contains a
single bit for every remaining distinct version number. The least significant bit is the first
bit from the left. Each bit is a flag that stores whether the node has already received
and processed the update operation with that version number issued by that peer node.
Whenever a leading zero-bit (gap) of the bitmap is filled, the BVV can be compacted.
The leading one-bits are then removed from the bitmap and added to the base counter.
With that compact representation, the space the logical clock takes up depends on the

45

3. Related Work

00012/8)}

0002/0),

011012/22), 1 1 1 0 1 1 0 1

1 1 1 1 0 0 0

1 0 0 0 1 0 0 0

1 2 3 4 5 6 7 8

nC

nB

nA{ nA => (3,

nB => (5,

nC => (1,

Version

...

...

...

1

Figure 3.3: Node Logical Clock, implemented as Bitmap Version Vector [Gon+15]

number of peer nodes and the number of gaps, but is independent of the amount of past
versions [Gon+15].

Causal Context

Gonçalves et al. also include a per-object version vector to track the happens-before
relationship between update operations. One dotted causal container (DCC) is kept
for every stored item. The DCC contains a map of dots to current values, as well as a
version vector with past causal information, the causal context. Whenever a client issues
a read request, it receives an opaque causal context together with the current value. By
passing the context again on a subsequent write operation, the updated value is stored
with a causal relationship to the read version. The data store uses the causal context
to decide whether value updates supersede each other (one happens-before the other) or
they took place concurrently with each other. Concurrently written values are kept until
overwritten with a newer version. To querying clients, they are returned as a list—leaving
conflict resolution to their discretion [Pet19, p. 249].

NDC Framework: DottedDB

Gonçalves et al. evolved the dotted bitmaps concept to the node-wide dot-based clocks
(NDC) framework [Gon+17]. Here, BVVs are called dotted version vectors (DVVs)
and DCCs are called NDC objects. The framework aims to solve scalability challenges
associated with the high internal complexity of distributed key-value storage systems:

• Conflict Detection: efficient detection through the comparison of object logical
clocks

• Node Churn: reduced metadata pollution due to leaving nodes by stripping their
metadata from object logical clocks over time

• Distributed Deletes: efficient handling of deletes by employing the node logical
clocks instead of depending on separate tombstone objects

46

3.3. Consensus and Replication

• Anti-Entropy Repair : efficient anti-entropy synchronization through peer-wise
comparison of the node logical clocks and exchange of missing objects only

To evaluate the design, Gonçalves et al. built a prototype data store called DottedDB
and tested it against MerkleDB, an otherwise identical data store that uses Merkle
Trees instead. Both variants use Erlang and are based on the Riak Core framework for
distributed systems [Gon16].

Strengths and Limitations

Compared to Merkle trees, DVVs require less computational effort, less bandwidth and
only one network roundtrip to exchange metadata during an anti-entropy synchronization.
Deleted keys and old value versions can be cleaned up fully as soon as the update has
been replicated to all other replica nodes. Over time, the causality metadata stored in
the key logical clock is slowly integrated into the advancing node clock. This has the
advantage that for retired or unreachable nodes, the per-object metadata that has to be
kept converges to zero [Gon+17].

The DVV concept is less well suited, however, for large, open networks, where there may
be a high amount of node churn. The reason is that the metadata size of the node logical
clock grows linearly with the number of nodes in the network—still reachable nodes as
well as any nodes that participated in the past. The kept metadata for a past node
cannot be cleaned (automatically). Should the node reappear, the metadata is required
for efficient synchronization of the replicas [AT19].

47

CHAPTER 4
Requirements

Towards answering Research Question RQ–1 for a suitable consistency model, we take a
look at the system requirements for a Fire Detection and Fire Alarm System (FDAS)
first.

Approach
Designing a modern FDAS system as a greenfield project clearly is too vast an undertaking
for this work. The normative documents (e.g., EN 54 [EN 21]) seem to be written to
match the properties of existing systems predating the standards instead of aiming
for detailed and unambiguous specifications for new systems. Therefore, we follow a
brownfield approach: We design a new data store component that can fit into the space
of an already existing solution or be combined with other components.

First, we consider the decisions an existing solution took in the design space. Then,
we determine functional and non-functional requirements for a new design, including a
rationale for each item.

4.1 Existing Solution
This section considers an existing implementation of an FDAS DCU. The description is
only a short overview, meant to convey additional background and to help inform the
following phases of requirements gathering and system design.

4.1.1 Functional Overview
The existing FDAS solution is a distributed system supporting up to 16 member nodes.
Each node consists of a control unit that functions autonomously, but shares event and

49

4. Requirements

control data with the other control units. The system was designed with high reliability
requirements and constrained hardware in mind. The design follows a highly integrated
approach to optimize for low memory usage, storage capacity and link data rates. As a
consequence, the design puts restrictions on modularity, interchangeability and future
extensibility.

Distributed Event Data Processing

Whenever a notable event at a control unit changes the state of a logical entity, the node
broadcasts a message to share the new state with all other control units. The receiving
control units then apply the state to their local copy of the entity. This way, the data of
the whole system is kept in perpetual synchronization.

In regular intervals, each unit runs a control loop that evaluates a set of pre-programmed
rules. A stable snapshot of the data serves as input. A matching condition can trigger
local events or set local state. The conditions take the form of boolean circuits, where
logical operators such as AND, OR, NOT, etc. can be combined into bigger, reusable
logic blocks. Most of these operators are purely functional and do not store any state
(combinational logic [TS99, p. 655]). There are, however, some stateful operators available,
e.g., event counters, edge detectors and flip-flops. Their output state does not only depend
on the present input state, but on the sequence of past input states as well (sequential
logic [TS99, p. 685]). The control rules are set on initial deployment of the system.
Afterwards, they are usually modified only due to structural or regulatory changes.

Local Area Network Protocol

To transmit the messages, an application-specific LAN protocol is used for point-to-point
connections between pairs of nodes. To achieve the required level of reliability, the
protocol supports line, ring, and mesh network topologies. In addition, connections
between nodes can be double-redundant, utilizing RS 485, optical fiber or TCP/IP
overlay networking as the underlying link channel.

Flooding Routing Algorithm

To send messages throughout the local network, a flooding routing algorithm is employed.
Each node acts as a router and forwards received messages through every outgoing link,
except the one it arrived on [TW10, pp. 368–370]. Routing nodes keep track of forwarded
messages to avoid relaying them a second time: Each message is tagged with a sequence
number that is strictly monotonically increasing per originator node and channel. A
routing node then stores the previously relayed sequence number per origin and only
forwards messages with a higher sequence number. In case there is a gap between these
numbers, the message is relayed but the counter is kept until the missing message is
received. The algorithm ensures messages spread quickly and are delivered to all reachable
parts of the network, but stop circulating eventually. Even unicast messages addressed
to only one receiver have to be forwarded to all nodes to ensure they reach the recipient.

50

4.1. Existing Solution

Link-Level Reliability

At the individual link level between nodes, care is taken to ensure reliable message
broadcasting. For every message forwarded to a neighboring node, the forwarding node
awaits an acknowledging response. There are three possible outcomes:

Acknowledgment The neighboring node has successfully received the message. As
soon as all neighbors have acknowledged successful delivery, the forwarding node
may remove the pending message from its buffer.

Busy The neighboring node cannot process the message at the moment. Typically, this
happens because its message buffer is full. The forwarding node must keep the
pending message in its buffer and retry delivery at a later time. This response is
used to exert back-pressure, a mechanism we look at closer in the next Section 4.1.2.

No Response The neighboring node is not reachable. Either the network link or the
node itself is faulty. The forwarding node must keep the pending message in its
buffer and retry delivery for a while, but after a timeout it may give up and drop
the message. In that case, the node broadcasts a fault message to inform the other
nodes in the cluster of the faulty link or node.

FIFO Consistency

Every message is tagged with a unique tuple consisting of three elements: (Sender
identification, Channel number, Sequence number). The sender ID is the statically
assigned node address within the system. The channel number specifies one of four
available independent channels. For every channel within the sender, the sequence
numbers for newly generated messages are assigned in strictly monotonically increasing
order. With these sequence numbers, received messages are only made visible to the
application once all the preceding messages for the same sender and channel have been
received and processed.

This algorithm results in FIFO or PRAM consistency semantics [LS88] for each channel:
Any pair of messages sent by a specific sender on the same channel are observed by every
node in the order they were sent in. But messages from different senders or on different
channels may be observed in arbitrary order (see also Section 2.3.4 on page 27).

4.1.2 Limitations for Scalability

The existing solution has proven its merits in the field and has been improved continuously.
However, fundamental design decisions justified by the embedded systems available at
the time may be limiting scalability on more capable modern hardware and covering
additional use cases.

51

4. Requirements

Flooding Routing Algorithm

Flooding is tremendously robust and simple to setup, but may be wasteful in case not all
nodes need the information [TW10, pp. 368–370]. While it may work sufficiently well
for line and ring topologies, the algorithm is inefficient for mesh topologies: A node can
receive the same packet again and again from every one of its links. For the system as a
whole, this means that a significant proportion of the network bandwidth and processing
power is used for sending, receiving and then discarding packets with contents that are
already known.

Hop-to-Hop Reliability

The existing solution ensures reliable transmission on every link between two nodes, but
does not include end-to-end acknowledgment. Instead, it operates on the assumption
that when every individual link is reliable (hop-to-hop), a message routed over multiple
links will also be delivered reliably (end-to-end). That assumption, however, may not be
true in every case. The end-to-end arguments made in Section 3.2.1 on page 36 support
these observations:

• With no end-to-end confirmation of message delivery, the message sender has to
trust that the network communication works well, with no low-impact recovery
strategy being available if it does not. This approach demands a high degree of
reliability for the message forwarding on the nodes themselves: If a node crashes in
the critical time window between acknowledging a received message and waiting on
the acknowledgment for the forwarded message, the message might get lost.

• Crashed or unreachable nodes in the cluster cannot be directly detected without a
separate watchdog function. Their identity can only be inferred from the generated
link fault messages, which also requires having static knowledge of the configured
network topology available to draw the conclusion.

• All the synchronous acknowledgment response messages incur significant overhead
for the system, in particular during normal operation without any message loss
occurring. As the underlying hard-wired physical links typically have a very low
loss rate, this is the common state. This is in stark contrast to shared medium
technologies such as radio links, where hop-to-hop acknowledgment can be a useful
addition to end-to-end delivery confirmation to improve overall efficiency. Addition-
ally, keeping at most one message in flight while waiting for the acknowledgment
severely limits the throughput of the links.

Back-Pressure Congestion Handling

The existing solution uses hop-by-hop back-pressure to handle congestion (see also [TW10,
pp. 400–401]). When new messages arrive to the system at a faster rate than they can
cross the network and depart the system, message buffers of the nodes are going to run

52

4.1. Existing Solution

full eventually. With its buffers full, a node can only respond with BUSY to new message
transmission attempts. This will cause the preceding node’s message buffers to also
run full, propagating the condition back towards the sender and exerting back pressure
throughout the network. Since nodes are not allowed to drop any messages—unless a link
is detected as completely faulty—the congestion eventually reaches and blocks all nodes
from sending new messages. This may cause several unwanted effects in combination
with other design decisions:

• By introducing even more messages into an already stressed system, retried trans-
missions and newly generated link fault messages can lead to a positive feedback
loop. The feedback loop can further escalate the situation, with no mechanisms
being available to detect and mitigate the congestion. Once the system has reached
some tipping point, it can only stabilize again by nodes resetting themselves after
some time without progress. The buffered messages may be lost in the process.

• Back-pressure congestion handling can impact messages indiscriminately: Messages
from all senders or channels can be blocked simultaneously with no effective
prioritization. During idle periods of low data rates, everything might be okay, but
once the system is busy with high data rates, the behavior can result in problematic
outcomes. A low-priority, but high-volume bulk transfer (e.g., a firmware update
image) can easily delay or block messages of higher priority (e.g., a detector
triggering a critical condition).

• In case the network topology contains loops, the congestion might lead to a deadlock
when the four necessary Coffman conditions are met (Mutual Exclusion, Hold and
Wait, No Preemption, and Circular Wait) [CES71]. All nodes might be blocked
from forwarding their buffered messages indefinitely. Then, recovery is only possible
by restarting nodes, interrupting links or purging pending message buffers.

By-Channel Consistency Semantics

With by-channel FIFO consistency semantics, causally related messages sent on different
channels or by different senders can arrive in arbitrary order. Depending on the complexity
of the programmed logical conditions, the effect can lead to confusing or incorrect results.
For example, a node might detect a critical condition and trigger an alarm state. If
both state changes are sent on different channels, a receiver might observe the alarm
state itself before it can observe the condition that triggered it. When a condition only
matches the alarm state, it should trigger reliably—however, if a condition expects the
correct order of events, it might not reliably trigger.

53

4. Requirements

4.2 Requirements Analysis
Based on the regulatory framework and the scalability limitations of the previously
described existing solution, we pursue a bottom-up approach to defining the requirements.

4.2.1 Overview
We want to gather the requirements for a reliable data store for usage in a Fire Detection
and Fire Alarm System (FDAS). The system consists of a set of networked Fire Alarm
Control Units (FACUs), which together form a dependable Distributed Control Unit
(DCU). By writing to the shared data store, every node can share its current state and
the state of attached detector and notification devices. By reading from the shared data
store, every node can access the most recent states of the other nodes in the cluster and
their attached devices. Using these operations, the control units can transparently utilize
states of other nodes as source input for their programmed control loop.

Since an FDAS is a safety-relevant building system, the data store has to provide a high
reliability. It must be highly available and fault-tolerant, i.e., be able to maintain proper
operation in the event of failures or faults in one or more of its components. In particular,
loss of network connectivity and crashes of individual nodes must be tolerated without
reducing overall system availability and without losing any stored data.

4.2.2 Functional Requirements (FR)
Functional requirements specify what the system should do in terms of features and
capabilities.

Data Storage and Querying

For the basic data storage and query capabilities, we can consult the compliance require-
ments listed in the EN 54–13 standard, which concerns itself with the assessment of
system component compatibility and connectability [EN 19a]. In Section 4.3.5, which
gives the requirements that apply when a network technology is used as transmission
path between different system components, we find useful baseline provisions:

“4.3.5 (d) if the configuration is designed to transmit a functional condition
(such as fire alarm, fault warning, disablement. . .) from one CIE to any other
CIE through the network, then the transmission time shall be determined
by the applicable product standard. However, where this is not the case,
transmission time shall be within 20 s;
4.3.5 (e) if the configuration is designed to transmit an activation message(s)
from one CIE to any other CIE through the network, then the transmission
time shall be within 20 s and the relevant output shall be activated at the
other CIE as specified in EN54–2 or EN54–16;” ([EN 19a, p. 12])

54

4.2. Requirements Analysis

For our purposes, the Control and Indicating Equipment (CIE) is equivalent to a control
unit that contains a data store, and the given functional conditions and output activation
messages are equivalent to the item values inside. Then, we can conclude that 20 seconds
are a suitable upper boundary for the transmission time of value changes in the absence
of faults.

FR–1: Limited Transmission Time

Changed data items must be readable on all reachable nodes within 20 seconds.

Identifiable Source

Section 4.3.5 also has a provision about the traceability of significant functional conditions:

“4.3.5 (f) if the configuration is designed to transmit a fire alarm, fault warning
or disablement condition from one CIE to any other CIE through the network,
it shall be possible to identify at least the CIE from which the information
originated;” ([EN 19a, p. 12])

For our design, it is not clear whether this provision translates into a requirement for the
data store or one for the application itself. While the data store likely needs to keep track
of this information anyway, the application can easily solve this without involvement of
the data store. It can include the node ID with the data item key or value, or establish a
unique mapping by some other method. For instance, if each key is assigned an owner
node and that is the only one allowed to write to it, the requirement is satisfied.

Failure Detection

In case of loss of communication to a network node, we can find the maximum allowed
time interval until the fault must be reported:

“4.3.5 (g) a loss of communication to a network node shall cause at least
one CIE to enter the fault warning condition within 100 s. In the case of
a hierarchical system, the main CIE shall enter the fault warning condition
within 20 s of the original fault warning condition;” ([EN 19a, p. 13])

According to EN 54–01, a hierarchical system is “a system comprising more than one
CIE in which a CIE is designated as main unit which is able to receive and transmit
signals to any subsidiary CIE and to indicate the status of any subsidiary CIE” ([EN
21, p. 11]). For our design, we do not want to restrict the allowed configurations and
use cases. However, since the two provisions overlap, we can satisfy both of them by
mandating their union:

55

4. Requirements

FR–2: Unreachable Node Detection

Unreachable nodes must be detected by at least one other node within 20 seconds.

Fault Tolerance and Availability

Fault tolerance and availability are usually categorized towards the non-functional
requirements. For a safety relevant system, however, these concerns are essential: We
want the system to fulfill its function with high reliability. It has to tolerate link and
node failures well, as described in Section 2.1. A distributed data store (DDS) can
only provide availability when the data is replicated between nodes, as discussed in
Section 2.2. Otherwise, one faulty link or non-responding node may render parts of the
data completely unavailable until the issue is resolved.

FR–3: Continuous Data Replication

Data items must be continuously replicated across nodes.

In case of a component failure, the rest of the system should be able to continue to
function. This requirement is at odds with strong consistency models (Sequential and
Linearizable), as they cannot stay available in case of network partition—some or all
nodes would have to pause operations to ensure consistency.

FR–4: High Availability

The remaining nodes of the distributed data store must remain available for
operations in case of a component failure (network partition or node crash).

When reachable again, the replication process should continue to synchronize the contents
of the data store. It must not lose any changes that were made in the meantime to the
data items on either side of the partition, as this could lead to an incorrect operation of
the control logic.

FR–5: Fault Recovery

When a node becomes reachable again after a component failure (network partition
or node crash), changed data items must be synchronized without any loss of data.

Data Consistency

The rationale for requiring data consistency is simple in principle: when we apply the
same control logic to the current state of the system (input state) on different nodes,
we expect it to lead to the same results (output state). This means that all nodes
have to have the same consistent view of the current system state (represented by the
values within the data store). In other words, mere implementation details of the data

56

4.2. Requirements Analysis

store, effects of the data replication and of the underlying unreliable network must not
negatively impact the required functionality.

Under that condition, there is a relationship between the control logic and the consistency
model: The more expressive the control logic is (allowed to be), the stricter the required
consistency model must be to guarantee for the condition to hold. Or, inversely, the
weaker the guaranteed consistency model is, the more limited the control logic has to
be. A weaker consistency model, however, offers the opportunity of lower latency and
better availability for the data store. This is the fundamental trade-off the PACELC
theorem concerns itself with (see Section 2.2.5 on page 20). As these properties are
among the goals for our design, we consider several consistency model candidates for
their implications towards the control logic (see also Section 2.3 on page 22):

FIFO/Pipelined RAM Consistency Nodes are guaranteed to observe the writes of
any other node in the order they were issued in. Control logic can depend on
seeing one node’s state changes in their correct order, which may be important to
recognize signal edges or an alarm status that follows a critical condition. Since the
correct order is a common expectation, the data store must guarantee the FIFO
model at the least.

Causal Consistency In addition to FIFO, nodes are guaranteed to observe causally
related writes from all nodes in the same order. Control logic can depend on seeing
the correct order of causally related state changes, even if they happen on different
nodes. The need for this model depends on two conditions: First, are there state
changes performed on different nodes with a causal relationship to each other?
For instance, a control rule that sets a local output state based on a foreign input
state would meet the criterion. And second, does the control logic have to support
arbitrary logical conditions that depend on the order of state changes from different
nodes? The answer is not clear—one could argue that this kind of complexity
should be avoided in any case. However, should the need arise, an existing data
store can be retrofitted with a software layer ensuring causal consistency. Bailis
et al. presented a suitable algorithm in “Bolt-on causal consistency” (see also
Section 3.1.2 on page 34).

Sequential Consistency In addition to causal consistency, nodes are guaranteed to
observe all writes from all nodes in the same total order. This model (as well as
the even stronger linearizability) cannot be available in the event of a network
partition: Some or all nodes can be unable to make progress with their read and
write operations [VV15]. This drawback is undesirable for a safety relevant system
with a requirement for high availability.

From weighing the different benefits and drawbacks of these models, we conclude that
FIFO consistency is a suitable minimal requirement, with causal consistency being an
optional upgrade path.

57

4. Requirements

FR–6: FIFO/PRAM Consistency

Data item changes issued by a specific node must be observed in the order they
were issued in, by every node in the system.

Prioritization

Not all data items or state changes carry the same urgency. While functional conditions
such as alarm, fault or disablement are critical to be transmitted as fast as possible,
background and maintenance data such as sensor self-monitoring data, firmware or
configuration updates are not. But with equal treatment, low-priority but high-volume
messages can easily delay or drown-out high-priority messages. That scenario is known
as priority inversion: The effectively achieved priority can end up being the opposite of
the actually intended message priority.

Note that the requirement may be at odds with Requirement FR–6, the consistency
model required above. While a priority mechanism aims to deliver a certain subset of
messages earlier at the expense of others, a consistency mechanism’s goal is to deliver
the messages in a consistent and deterministic order. Unless these two order happen to
match, the mechanisms may conflict with each other. For that reason, the consistency
model has to be aware of priorities and tolerate missing messages adequately.

FR–7: Priority for Important Items

Changes to important data items should be replicated with priority. In case of
network congestion, low priority items should be dropped first. With a priority-
aware FIFO consistency model, missing updates of low-priority items should not
delay delivery of high-priority data items (priority inversion).

4.2.3 Non-Functional Requirements (NFR)

Non-functional requirements specify criteria that can be used to judge the operation of a
system, rather than specific behaviors.

Scalability

To be able to grow easily and be future-proof and evolvable, the system should have
good scalability. For one, it should handle a growing network size well. We also want the
ability to incorporate new functionality and to support a growing number of stored data
items. Growths in these dimensions should not disrupt the expected functionality and
should not negatively impact performance characteristics disproportionately.

58

4.2. Requirements Analysis

NFR–1: Functional Scalability

The data store should be able to handle a growing number of participating replica
nodes and stored data items without disproportionately impairing the expected
functionality.

We want to avoid designing a distributed system with a positive feedback loop in case of
component faults. Error messages generated for delivery problems, for instance, should
not lead to even more error messages generated when these, too, cannot be delivered.
Otherwise, the system is at risk from making a dire situation even worse for itself, which
can escalate quickly and surprisingly, disrupting even otherwise unaffected functionality.
In the worst case, the system may get so unstable that only a hard reset can restore
operation.

NFR–2: Fault Scalability

The data store should be able to tolerate a growing amount of component faults
without disproportionately impairing the expected functionality.

Modularity

To keep maintainability and future adaptability high, we want to avoid creating a tightly
coupled architecture. Instead, different concerns should be kept modular and separate
where possible.

NFR–3: Modularity

Different concerns of the data store should be kept separate in the software
architecture. Different components should be modular, encapsulate their internal
details and have well-defined interfaces with minimal surface area.

Low Resource Usage

The individual nodes must run on resource constrained embedded devices. The resource
requirements have to be appropriately low, including limited needs for processing power,
memory usage and network bandwidth—see also Section 2.1.5 on page 12.

NFR–4: Low Resource Usage

A node has to run well on resource constrained embedded devices.

4.2.4 Non-Requirements (NR)
Non-requirements clarify non-goals for the design of the system. They are not exhaustive,
but should help inform the design process and avoid unintended growth in scope.

59

4. Requirements

Data Integrity and Authentication

Ensuring the integrity of received data is important for every system that communicates
over a network, to protect it from accidental malfunctions and from deliberate tampering.

For one, a message’s data content can be damaged or truncated in transit. To detect and
discard malformed data, checksums such as Cyclic redundancy check (CRC) are typically
calculated and verified by lower layers of the networking stack. The Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) protocols, for instance, include a
16-bit checksum field in the header section. When communicating via such a protocol,
there is no need for the distributed data store to include an additional checksum.

NR–1: No Integrity Check of Received Data

The data store can trust the received data and does not need to check its integrity.

For malicious manipulation of data a checksum is not sufficient. An adversary can
calculate a new checksum that matches the modified payload. To protect from attacks,
the sender would need to calculate and attach a cryptographic signature for the receiver
to authenticate. Additionally, the required key material would have to be securely
distributed to all legitimate nodes beforehand.

The EN 54 standards do not mandate authentication. They may trust that the physical
security of the building is sufficiently high. If needed, authentication could be added as a
separate lower networking layer. For instance, Transport Layer Security (TLS), Internet
Protocol Security (IPsec), and other virtual private network (VPN) protocols provide
mutual authentication and secure encrypted communication.

NR–2: No Authentication of Received Data

The data store does not need to securely authenticate the sender of received data.

A Byzantine fault condition, where a node does not follow the defined protocol, is hard
to detect and mitigate. For instance, a node may “lie” and forward different values to
different receivers. Or appear as functioning to one observer, but failed to another one.
The remaining nodes would need to reach consensus on excluding the faulty node, while
making sure that the nodes taking part in the decision are not faulty, too. Since the
EN 54 standards do not mandate Byzantine fault tolerance, our design does not require
a built-in strategy for resilience.

NR–3: No Byzantine Fault Tolerance

The data store does not need to be resilient to individual nodes not following the
defined protocol.

60

4.2. Requirements Analysis

Dynamic Group Membership

The nodes participating in the distributed data store are known upon deployment of
the system. Configuring them statically avoids significant complexity in the design.
Depending on the chosen consistency model, safely transitioning the membership at
runtime without violating the consistency constraints even for brief moments is a separate
challenge. The Raft protocol, for example, supports dynamic changes of the members
of the group. To reconfigure its cluster at runtime, Raft follows a carefully designed
two-phase transition process, where consensus on the membership itself is required at all
times (see also Section 3.3.1 on page 40).

NR–4: No Support for Dynamic Group Membership

The data store does not need to support dynamic change of the set of nodes
that make up the distributed data store. A statically configured, up-front set of
participating nodes is sufficient.

Transaction Support

Transactions are operations which act atomically on multiple data items. They are
applied either to all or to none of them, and observers should not see an intermediate
state. Requiring support for transactions has severe implications on the design of the
data store and its consistency model—see Section 2.3.8 on page 28 for some concerns
that would need to be considered and addressed in that case. For the purposes of our
FDAS application, however, we expect single-object operations to be sufficient. We only
need to support read and write operations for single items.

NR–5: No Transaction Support

The data store does not need to support transactions, i.e., operations which act
atomically on multiple data items at once. Single-item read and write operations
are sufficient.

Multi-Writer Data Items

Unlike in other typical applications, we do not expect multiple nodes to share and write
to the same data items. The items represent state bound to a single location: A value
that was measured at a physical sensor, a condition that was triggered at a control unit.
Even configuration or firmware updates originate from some central interface where a
maintenance technician can connect their equipment.

Consequently, every data item can be assigned to a single owner node. Only that node
may write new values, which are then propagated throughout the distributed system to
other nodes’ item replica. We expect the non-requirement to simplify the implementation
of concerns such as conflict resolution, scalability, and data consistency. Should support

61

4. Requirements

for multi-writer data items be required in the future, a mitigation strategy can be used:
Every writer can write to a separate copy of the item (e.g., by prefixing the node ID).
With that strategy, the application is responsible for keeping the values synchronized
and resolving any conflicts.

NR–6: No Multi-Writer Data Items

The data store does not need to support multiple nodes writing to the same data
items. It is sufficient that every item belongs to an owner node, which is the only
one that may issue write operations.

4.2.5 Research Question RQ–1

What is the weakest consistency model that is suitable for the purpose of a Fire
Detection and Fire Alarm System?

As discussed with Requirement FR–6, we determine FIFO or Pipelined RAM consistency
to be sufficient to cover the basic use cases of an FDAS. Causal consistency, the next
stronger model, could ease programming of the control logic for advanced conditions
without weakening availability, but is by no means required.

62

CHAPTER 5
System Design

In Chapter 4, we defined a set of requirements for a distributed data store. In this chapter,
we develop a corresponding system design in order to answer Research Question RQ–2.

Approach

First, we research existing approaches, algorithms, and technologies for similar problems
(see Chapter 3). Next, we define the system model and the interface a client application
can use to interact with the stored data. As described in Section 2.2, distributed systems
involve technical trade-offs that have to be weighed carefully against each other. There
are no optimal solutions that fit all applications equally well—instead, we consider the
benefits and drawbacks to find a good match to the requirements. Finally, we develop a
prototype implementation to evaluate the design.

5.1 System Model

The Control and Indicating Equipment (CIE) nodes that make up a networked FDAS
need to share their state with each other. The state consists of the most recently observed
input values of the attached sensors (detectors) as well as the most recently produced
output values. An output value can represent the state of the attached actuators (alarm
devices) or any internally calculated value. In the PLC world, this is also known as the
“process image”. The complete state image could grow quite large. Most values, however,
are not expected to change all that often. To save network bandwidth, only changed or
outdated values should be propagated.

63

5. System Design

Client API

Client Application

Node-to-Node API

Data Store Node

Transport Layer

Network Layer

Link Layer N
et

w
or

ki
ng

 S
ta

ck

A
pp

lic
at

io
n

Pl
at

fo
rm

Figure 5.1: Layered Architecture: Platform for the Application

5.1.1 Key-Value Store
An effective way to divide the state image into smaller parts is to use a key-value paradigm.
The individual input and output values can each be assigned to a unique and constant
key. Choosing suitable keys is entirely up to the application. In our case, for example,
it could be a single detector number, or a combined tuple of prefix, line number and
individual element number.

The distributed data store consists of a set of nodes. Each node has its own storage,
a unique ID and can communicate with other nodes by asynchronous message passing.
Messages can arrive delayed, in different order or get lost entirely. Nodes can crash and
restart, recovering their previous state from stable storage. Or they can fail indefinitely,
and be replaced by a new node with a new ID and an empty state. Objects stored in the
data store are replicated across all nodes.

5.1.2 Co-Located Clients
In a general distributed data store (DDS), a client can issue requests to any node of
its choosing, and it may switch between different nodes. The latter, however, can have
implications on the perceived data consistency.

For our design, instead, we expect the client application to always issue request to the
same node (sticky client). Usually, the application will be co-located and run on the same
physical device. In that case, the client-to-node latency is negligible and the availability
for some consistency models can be better (sticky availability, see also Section 2.3). A
few clients may not be co-located and query remote nodes instead, e.g., control panels or
cloud API gateways. To maintain a consistent view, remote clients should refrain from
switching between nodes, but the increased latency and reduced availability should be
acceptable for these non-critical monitoring functions.

64

5.1. System Model

Node 1

Partition 1
Leader

Partition 2
Follower

Partition 3
Follower

Partition 4
Follower

Node 2

Partition 1
Follower

Partition 2
Leader

Partition 3
Follower

Partition 4
Follower

Node 3

Partition 1
Follower

Partition 2
Follower

Partition 3
Leader

Partition 4
Follower

Node 4

Partition 1
Follower

Partition 2
Follower

Partition 3
Follower

Partition 4
Leader

Figure 5.2: Replicated Data Partitions

5.1.3 Global Object Replication

In a general distributed data store using partitioning, objects are assigned to a partition
that is replicated to a certain subset of nodes. If a node is queried for data it is not a
replica node for, it must forward the request and wait for the results. This can result in
considerable read latency for the client. In case of a network partition when none or not
enough nodes are reachable, the request cannot be answered successfully.

For our design, instead, we mandate that the system always replicates all objects to
all nodes. As a result, we can provide high availability for read operations: Regardless
of network partitions or node crashes, as long as the client application can reach the
local replica node, all objects are available in the most recently replicated version. Write
operations also have good availability, as writing into the local store always succeeds. As
soon as connectivity is restored, the update can either be sent out actively or synchronized
by the anti-entropy process.

In general distributed systems terms, our design is a special case of replicated partitions,
with the partitions being implicit and hidden to the client application (shown in Figure 5.2;
see also Section 2.2.3). The data items are partitioned by the owning node. The owning
node serves as leader node that accepts write operations. All other nodes serve as
followers that maintain a read-only replica. In our case, the purpose of that setup is to
maximize data availability while minimizing query latency.

5.1.4 Unreliable Networking Stack

From the underlying networking stack, we merely require best-effort delivery. In line with
the end-to-end principle, we shift the responsibility for reliable operation upwards, from
individual networking links and nodes to the distributed data store itself. We expect the
approach to enable better scalability and adaptability. Additionally, we can benefit from
the robustness of existing, well-tested protocols such as TCP or UDP.

65

5. System Design

5.1.5 Client API

The database is a key-value store, where objects can be accessed by their key. To issue
operations, a client first has to connect to the client API of its data store node and
establish a session.

Session Parameters

The session does not start or manage any sort of transaction. Instead, it merely allows
the client to configure the common parameters that affect all operations issued within
the session:

• Consistency model: eventual, FIFO, or priority-aware FIFO
• Minimum priority filter: cut-off for priority-aware FIFO

Operations

A client can issue requests to a node using one of the following operations: It can read
an objects’ current value (get), write a new value (put), or query the set of existing keys
within the store (keys).

• get(K) → V
• put(K, V)
• keys() → {K1, K2, . . .}

Removal of items is not required—to free the space taken up by a large value, the
application can simply overwrite the key with an empty value. While the expected size
for keys and individual values is typically very small, the store has to support a significant
number of keys without negatively impacting replication performance (NFR–1). Due to
the sticky and usually co-located clients, the API can also more easily be extended later.
Due to the global object replication, the set of existing keys can easily be queried locally
and does not have to be collected from several nodes.

Extended Operations

It may be convenient for the application to be able to subscribe to data items of interest
and be actively notified for any value changes (subscribe). The application developers
may also desire a way to check successful delivery of a previously written value (delivered),
which could also work subscription-based (observable) or require regular polling using a
previously returned update identifier.

• subscribe(K) → Observable(V) → {V1, V2, . . .}
• delivered(U) → Observable(N) → {N1, N2, . . .}

U . . . update ID returned by a previous put(K, V) → U
N . . . node ID

66

5.2. Dot-Based Clocks Framework

5.2 Dot-Based Clocks Framework

As starting point for our design, we select the node-wide dot-based clocks (NDC) frame-
work by Gonçalves et al. [Gon+17]. It uses dot-based clocks, which are based on Bitmap
version vectors (BVVs), to detect concurrent writes and to provide eventual consistency
(see also Section 2.3.2 on eventual consistency and Section 3.3.3 on BVVs).

Merkle Trees could have been an interesting alternative mechanism for replication, anti-
entropy, or both. They can efficiently determine differences between node replicas, as
described by Auvolat and Taïani [AT19]. We decided not to pursue this approach: Merkle
Trees use more computational effort to calculate the block hashes and can require several
network roundtrips for synchronization. In addition, their strengths lie in managing a
sizable network with high node churn. We do not expect that scenario for our application
(see also Section 3.3.2).

5.2.1 Adjustable Parameters

In [Gon+17], Gonçalves et al. describe the replication and anti-entropy algorithms of
the NDC framework. Several adjustable parameters and details are left for a concrete
implementation to decide on, most notably:

• The assignment strategy of item keys to replica nodes,
• the lower-level details of client-to-node and node-to-node network communication,
• the replication and broadcast mode among the peer nodes, and
• peer selection and schedule interval for the anti-entropy background process.

The assignment of keys to replica nodes must be static and known to every node. For our
prototype, we decide to distribute every item to all nodes. This strategy favors availability
and latency: Client queries can simply be answered from the local store without requiring
network communication. In the future, more sophisticated distribution strategies may be
utilized. Replicating objects only to certain subsets of nodes could improve functional
scalability and reduce resource usage on nodes, at the cost of an higher read latency and
lower availability during network partitions. In case nodes regularly join or leave the
system, a strategy to redistribute existing objects may be needed to ensure desired levels
of availability.

5.2.2 Prototype Implementation

We started our prototype by implementing the NDC algorithms in C#/.NET 8. To debug
the implementation and to verify that the functionality matches the expected behavior,
we simulated all nodes in a single local process using async/await-based coroutines for
all tasks. We ensured that the implementation behaves in the expected way by running
some fundamental tests using the NUnit [Nun] unit test framework.

67

5. System Design

Networking Layer

To test the prototype using multiple connected nodes, we had to build a networking layer
that supports the required remote procedure calls (RPCs). We chose well-established
protocols that are suited for constrained nodes and are available as ready-to-use, open
source components. The goal was to keep the required efforts for implementing and
debugging the networking layer at a minimum. While these specific libraries are built for
the .NET platform, they can easily be swapped out against their protocol-compatible
native implementations which are well suited for embedded platforms.

• protobuf-net [Proa] for message serialization (Protocol Buffers compatible)
• NetMQ [Net] as lightweight messaging middleware (ZeroMQ compatible)

At first, we used the ZeroMQ Request/Reply socket pairs for the communication of clients
to nodes and of nodes to each other. These are simple to start out with and to debug
problems within the data store’s communication logic, but their strict internal state
machine is problematic for robustness: When request/reply messages are lost by the
network or discarded due to a timeout, these socket types stay blocked in the waiting
state and are unusable for any further communication. For RPCs where we need to
wait for replies that contain the result of the call, we switched to Request/Router pairs,
but configured the sending socket to use a relaxed version of the state machine and to
correlate matching request/reply pairs using request identifiers. Otherwise, there is a
risk of returning delayed reply messages that belong to earlier requests. For messages
between nodes which we want to send-and-forget, we switched to the fully asynchronous
Dealer/Router pairs.

With that, we are ready to extend the algorithms to meet our requirements’ demands
regarding replication of writes, the anti-entropy mechanism and the consistency models
provided for the application clients.

5.2.3 Replication Mechanism

We require data items to be continuously replicated across nodes (Requirement FR–3)
to ensure a high availability of the FDAS (Requirement FR–4) (see also Section 2.2.3).
The NDC framework, as used in DottedDB, provides these for eventual consistency. It’s
protocol uses asynchronous message passing to send any changes to an item’s values to
all other nodes that replicate that key [Gon+17].

Asynchronous Replication Messages

The asynchronous, best-effort replication minimizes write latency at the cost of some risk
of inconsistency, since there is no (immediate) acknowledgement mechanism. In terms of
PACELC, with a low read quorum and/or high write replication count, the system can be
classified as PA/EL: If a network partition occurs, it gives up consistency for availability.
Under normal operation, it gives up consistency for lower latency (see also Section 2.2.5).

68

5.3. Consistency Models

For our needs, asynchronous replication seems fine. We want low write latency and
do not require immediate durability. For tracking of successful delivery, depending on
the acceptable delay, we can either extend the replication with an acknowledgement
mechanism or utilize the synchronization metadata which the anti-entropy process already
keeps (see Section 5.4 below).

5.2.4 Anti-Entropy Mechanism
When a data store node becomes reachable again after a network fault or partition,
it’s replicated items must be synchronized to reflect their most recently written values
(Requirement FR–5). To that purpose, the NDC framework includes an anti-entropy
background process that runs periodically. It chooses a peer node at random and sends a
synchronization request which includes the own node clock. That synchronization partner
compares the received node clock with its own and sends back any missing objects for
the node to apply (see also Section 2.3.2).

5.3 Consistency Models
Out of the box, the NDC framework only provides a weak consistency model: eventual
consistency [Gon+17]. With eventual consistency, the store merges value updates on
arrival, and they are immediately visible to client queries. This happens either by the
normal replication process or by the anti-entropy background synchronization.

In addition, we want to provide the FIFO/PRAM Consistency (FR–6) with Priority for
Important Items (FR–7). As all consistency models have benefits and drawbacks, the
client application shall be able to select the appropriate model for every session. All
operations issued within the session have to adhere to the selected model, shielding the
application from arbitrary network behavior. The application can use several differently
configured sessions concurrently, but its design should be careful about comparing or
otherwise mixing the obtained data values.

5.3.1 Causal Context
The key to the framework’s elegance lies in the causal context that is captured for every
write operation (see also Section 3.3.3). To the client application, the causal context is
an opaque object that simply is stored on reads and supplied again on subsequent writes.
Internally, it consists of a version vector of past update IDs that shows for every pair of
write operations whether they have a happens-before relationship to each other or if they
were issued concurrently (see also Section 2.3.5).

If one write operation happened-before the other, its value is superseded and can simply
be replaced. But if the write operations happened concurrently, all their values are kept
and returned as a set on a get query. Conflict resolution between these values has to
be done by the application. Upon the next write, when passing the previously returned
causal context, these values are marked as happened-before the newly written single

69

5. System Design

value and replaced. Passing the causal context “confirms” that the concurrent values
were seen and handled accordingly.

Single Writer Causal Context

With a single writer per item (Non-Requirement NR–6), we do not expect any concurrent
writes or conflicts in regular operation. When supplying an empty causal context (or none
at all) with a write, the NDC framework uses a minimal causal context that is always
true: It simply marks all previous writes by the same node as happened before that write.
Thus, unless we need to track causal relationships between writes from different nodes
(to provide causal consistency), supplying the causal context is fully optional. It can be
omitted from the client API and kept internal to the data store.

There is one exception: When an existing node is replaced or assigned a new node ID
and writes new values to the same items, it has to supply the appropriate causal context
to replace the previously written values. Otherwise, because of the two different node
IDs, the new values are seen as concurrently written and the old values are kept (see also
Section 5.6).

Merge Operations

The causal context allows all NDC replicas to eventually converge to the same state,
an essential property for eventual consistency (see Section 2.3.2). The merge operation
is commutative and idempotent: The resulting value depends only on the set of write
operations that were merged in, not on their order or whether they were applied multiple
times. In this regard, the objects kept in the NDC Storage behave like state-based CRDTs
(see also Section 2.3.2).

5.3.2 FIFO Consistency
Due to Requirement FR–6, we need the data store to provide the FIFO/PRAM consistency
model. That is, the effects of writes issued by a specific client session (and thus, through
a specific node) must be observed in the order they were issued in, by every client in
the system. For writes to the same key, the merge operation already ensures that using
the causal context—once replaced, superseded values can never reappear. Values written
to different keys, however, can appear to a client in the arbitrary order the replication
messages arrive in. For FIFO compliance, this visibility order needs to strictly correspond
to the write order.

We can continue to use the NDC data structures and merge algorithms in principle, but
we have to delay merging the received value updates until all previous updates issued
by the same node are merged. Since the FIFO model has strictly more constraints than
the eventual model, its visible value versions are always either equal or older than the
value versions of the eventual model, effectively trading off the stronger consistency with
higher latency.

70

5.3. Consistency Models

Partial Segment Partial Segment

a=0 b=0 a=1 ? c=0 a=2 c=1 ?

1 2 3 4 5 6 7 8

b=3 c=2

9 10

FIFO
1-3 Eventual

nB Store: nA

nA a=0 b=0 a=1 c=0 a=2 c=1 b=3 c=2b=2 a=3

Primary Segment

(a) Received updates from node A

Range Role Values
1–3 Primary a = 1, b = 0
5–7 Partial a = 2, c = 1

9–10 Partial b = 3, c = 2

(b) Stored buffer segments for node A

Model Effective Values*

FIFO a = 1, b = 0, c = ∅
Eventual a = 2, b = 3, c = 2

(c) Values by consistency model

Figure 5.3: FIFO replication data at node B

FIFO Replication

Since the NDC framework already keeps track of all seen writes (update IDs) within
the Node Clock (NC), FIFO consistency can be implemented without changes to the
replication protocol. We only have to handle missing updates differently. In case there is
a gap between adjacent update IDs, we know that a write must have been issued by the
respective peer node, but we know neither the written value nor the affected key.

To ensure consistent visibility order, value versions must only be made visible to a client
application when the node has received and processed all previous writes issued by the
same node, i.e., up to the first gap. The dotted version vector (DVV) entries kept in the
NC are very efficient for that purpose: Value versions whose IDs are in the gap-less base
section can be shown to the client, those in the bitmap section must stay hidden. This
FIFO condition is easy to check and verify, but to be able to answer queries, additional
data has to be kept in the FIFO specific storage. The reason is that the NDC framework
merges in received updates immediately on arrival and keeps only the latest effective
value versions in its eventual storage. When processing a query in FIFO mode, instead,
we may need to return the values of earlier versions.

For example, refer to the situation shown in Figure 5.3a. Node B has only received eight

71

5. System Design

Eventual FIFO

Update received:
(Node ID, Update ID, Key, Value) Tuple

Eventual
Store

FIFO
Store

Segment
Buffer

Merge into
Store

Merge into
Store Adjacent to

another Segment

Add or merge
Partial

No
Adjacent to Primary

Yes

Create
Partial

Segment

Figure 5.4: Flowchart showing FIFO update processing

of the 10 value updates issued by node A to the keys {a, b, c}. The eventual store has
already merged in all received updates (Figure 5.3c). Simply returning its values could
violate the FIFO condition: When a gap gets filled afterwards, we may show updates
out-of-order. For gap 8, for example, a = 3 may appear after c = 2 is already seen.
Notice that the shown effective values in Figure 5.3c are under the assumption that only
node A has written to these keys—otherwise, the known primary segments of other nodes
need to be merged in, too.

To solve this problem and keep the data available in the required granularity, we introduce
a segment buffer per node within the store, as shown in Figure 5.3b. A segment is a
contiguous range of covered update IDs, accompanied by their merged effective values.
The primary segment has a special role: It covers the complete range until the first gap.
As it is compliant at all times, its effective values can be—merged with the primary
segments for other nodes—returned to clients querying in FIFO mode. The other partial
segments hold buffered values that are not yet visible to clients and must be kept separate
per node. Whenever an arrived update fills a gap, the adjacent segments can be merged
together to form a larger segment. Their adjacent ranges can be combined, and their key
values can be merged using the causal context. See Figure 5.4 for a high level overview of
the data flow. For a more detailed description of our extensions to the NDC framework,
see Appendix A on page 107.

72

5.3. Consistency Models

These segments have two significant benefits that keep FIFO order reassembly reasonably
efficient: First, a node only has to keep as many segments in memory as there are gaps.
As all gaps get filled eventually, only the primary segments remain, their combined value
converging against the contents of the eventual store. Second, within every segment,
only the most recent, effective value per key has to be kept. As segments can only be
merged in full, other value versions are no longer required. In Figure 5.3a, for instance,
the contents of updates 1 and 5 (a = 0; c = 0) can be dropped, as they are superseded by
updates 3 and 7 in their respective segment (a = 1; c = 1).

For our proof-of-concept prototype, we store the segments in a sorted list and use a
binary search algorithm to lookup segments which are adjacent to or contain the ID of
a received update. To achieve better insertion and removal efficiency, a binary search
tree could be utilized instead (amortized time complexity O(log n) instead of O(n)). The
Linux kernel, for example, uses a red-black tree to store out-of-order packets for a TCP
socket [Lin, include/linux/tcp.h, Line 245].

FIFO Anti-Entropy

The FIFO replication can be implemented without any protocol changes. But the same
is not true for the periodic anti-entropy synchronization between peer nodes. The reason
is that the built-in NDC sync response only returns the resulting eventual value for each
key where updates are missing, but not the individual updates that were merged in until
that point. In case there were gaps in the node clock of the originating node, these values
are not compliant to the FIFO condition and cannot be used. They cannot be split up
again into the required segments.

For example, consider the situation shown in Figure 5.5a: The node under consideration,
node C, has only received eight of the 10 updates issued by node A, updates 4 and 8
are missing and show up as gaps in the DVV. A client querying in FIFO mode can only
see the effective values from the compliant segment, 1–3. A client querying in eventual
mode, however, can see the merged set of all known value versions, as the visibility order
and gaps do not matter.

When node C sends an anti-entropy synchronization request to node B, node B compares
the received node clock with its own—it has update 4, but update 8 is missing in its store,
as well. Node B identifies update 4 as missing and sends a response with the resulting
eventual value for the affected key, b = 3. Ideally, the new FIFO segment after the
synchronization would comprise updates 1–7 instead of merely 1–3, but node C cannot
safely apply updates 4–7 without also applying 9–10. In case the missing update 8 writes
to some key other than b or c, the required visibility order would be violated (shown in
Figure 5.5b).

While technically not violating FIFO consistency, this visibility delay is not desirable for
a safety-relevant control system. A few lost update messages with unfortunate timing
can lead to a large amount of value updates being hidden unnecessarily.

73

5. System Design

a=0 b=0 a=1 ? c=0 a=2 c=1 ?

1 2 3 4 5 6 7 8

b=3 c=2

9 10

nC Store: nA

FIFO
1-3 Eventual

nB Store: nA a=0 b=0 a=1 b=2 c=0 a=2 c=1 ? b=3 c=2

(a) Initial state before anti-entropy: known updates issued by node A

?

?

b=2 c=0 a=2 c=1

1 2 3 4 5 6 7 8

b=3 c=2

9 10

FIFO
1-3 Eventual

nB Store: nA a=0 b=0 a=1 b=2 c=0 a=2 c=1 b=3 c=2

nC Store: nA A
E
Sy

nc

a=0 b=0 a=1

(b) Anti-entropy without primary segment sync: node C still shows updates 1–3

?

?

b=2 c=0 a=2 c=1

1 2 3 4 5 6 7 8

b=3 c=2

9 10

FIFO
1-7 Eventual

nB Store: nA a=0 b=0 a=1 b=2 c=0 a=2 c=1 b=3 c=2

nC Store: nA A
E
Sy

nc

a=0 b=0 a=1

(c) Anti-entropy with primary segment sync: node C shows updates 1–7

Model Range Effective Values
FIFO 1–3 a = 1, b = 0, c = ∅
FIFO 1–7 a = 2, b = 2, c = 1

Eventual* 1–10 a = 2, b = 3, c = 2

(d) Effective values by consistency model and covered range

Figure 5.5: Lagging FIFO values without primary segment sync

74

5.3. Consistency Models

To solve that problem and provide better Fault Scalability (Requirement NFR–2), we
extend the synchronization protocol to include missing values from the FIFO specific
storage, separately. The receiving node still only gets the effective value per key (the
result from merging the primary segments per node). But since the source node is barred
from merging in non-compliant segments, too, the node can trust the peer and merge it
in (Figure 5.5c).

Notice that the effective values of the eventual model (shown in Figure 5.5d) are equal
before and after the anti-entropy synchronization—the reason is that the missing update
4 (b = 2) is already superseded by update 9 (b = 3).

Synchronization of Buffered Partial Segments

With the extended protocol, synchronizing nodes only exchange missing values from the
already FIFO compliant primary segments. Instead of a node being able to assemble
partial segments by itself, it has to wait until one of the peer nodes was able to merge its
partial segments. To avoid an unnecessary visibility delay, the buffered partial segments
should also be included in the response to an anti-entropy synchronization request.
Adjacent segments can then be assembled as soon as possible. The protocol optimization
enables a faster and more robust recovery phase after any kind of network partition
(Requirement NFR–2).

Suppose, for example, the situation shown in Figure 5.6a. Of the updates 1–3 from node
A, nodes B, C and D have each only received one item via replication. For the first
synchronization sync, node D selects node C as random partner. For the second sync
partner, it selects node B. When synchronizing only the FIFO store, node D receives no
updates in the first step, and receives only update 4 in the second. Due to the gap for
update 5, the node can only show the range 1–4 to clients, 5 and 6 have to stay hidden
(Figure 5.6b). To be able to show the whole range 1–6, the node would either have to
select node A by chance, or in specific order node B and then node C.

With synchronization of partial segments, however, a partial segment for update 5 can
be received in the first sync. After the second sync cycle, all segments for the range 1–6
can already be merged and shown to clients (Figure 5.6c). The random order of the
anti-entropy synchronization has less chance to negatively impact the visibility delay.

Invisible Intermediate Versions

Since version gaps can only be filled, never reappear, update IDs can only migrate from
the bitmap section to the base section of a BVV. For the same node and consistency
model, an older version of an item’s value can never reappear after a newer version is
visible. What can occur, however, is that when only one gap is filled by the anti-entropy
process, several later versions can appear FIFO at once. Only the last effective version’s
value is returned. The querying client has no chance to observe the missed intermediate
versions. The application design must take the possibility of such artifacts (time seemingly

75

5. System Design

?

? ?a=0 b=0

1 2 3 4 5 6

FIFO
1-3

nB Store: nA a=0 b=0

a=0 b=0nC Store: nA

nA a=0 b=0 c=0 b=1 c=1a=1

nD Store: nA

c=0

c=0

c=0

a=1

b=1

c=1

(a) Initial state before anti-entropy: known updates issued by node A

?

?a=0 b=0

1 2 3 4 5 6

FIFO
1-4

nB Store: nA a=0 b=0

a=0 b=0nC Store: nA

nD Store: nA

c=0

c=0

c=0

a=1

b=1

c=1a=1 Fi
rs

t s
yn

c
[-]

Se
co

nd
 sy

nc
 [4

]

(b) AE without partial segment sync: node D only shows updates 1–4

?

a=0 b=0

1 2 3 4 5 6

FIFO
1-6

nB Store: nA a=0 b=0

a=0 b=0nC Store: nA

Fi
rs

t s
yn

c
[5

]

nD Store: nA

c=0

c=0

c=0

a=1

b=1

Se
co

nd
 sy

nc
 [4

]

a=1 c=1b=1

(c) AE with partial segment sync: node D shows all updates 1–6

Figure 5.6: Lagging FIFO values without synchronization of partial segments

76

5.3. Consistency Models

“skipping forward”) into consideration and must not expect to see every single version
without gaps.

To support querying missed values, the get operation would require some kind of cursor
and return all versions since the last read. A subscription-based API like subscribe
could indeed emit all missed versions’ values in order. Whether this is worth the effort,
however, is questionable. The semantic difference to the get operation and the possibility
of receiving several values in very short order could increase the application’s complexity
and lead to interpretation errors that are difficult to debug. Such errors would only
happen under specific circumstances after relatively rare network partitions. Therefore,
the safest subscription design surely is to refrain from returning any missed values at all.
Value changes should be emitted only after a replication or anti-entropy synchronization
operation has run to completion.

5.3.3 Priority-Aware FIFO Consistency
Due to Requirement FR–7, the data store needs to be able to handle certain updates
with priority in case of network congestion.

Priority Assignment

As a prerequisite, items within the data store and their replicated update messages must
be assigned and tagged with the priority class they belong to. Within the data store,
this can be as simple as recognizing well-known key prefixes, e.g., P0-P3 for the four
priority level classes {Pp | p ∈ (0, 3)} in our prototype. Any other classification scheme
can be used, as long as all nodes employ the same assignment and the classification of
data items does not change over time.

Network Level Support

Many networking implementations take effort to avoid network congestion from happening
in the first place (see Section 3.2.2 on page 37). However, if congestion does happen at
any point on the transmission path, there are two different strategies: To not allow any
messages to be discarded; or to build the system resilient enough that it can tolerate and
recover from missing messages.

In the first case, once the forwarding buffer of a networking node is full, no further
incoming messages can be accepted until the pending messages can be forwarded to the
next node. This creates back-pressure that propagates backwards towards the sender.
Unless the logical transmission paths for different priorities are entirely independent of
each other, a congestion can block all messages equally. The strategy can be resource
efficient, as the sender can immediately forget about a message once it is sent and
acknowledged on link level—all responsibility for delivery is on the intermediate nodes
within the network. But the approach mandates a high degree of control over the network
and reliability from every single networking node. It can also severely reduce throughput

77

5. System Design

of the system, due to the overhead of all the link level acknowledgement messages. Some
kind of recovery strategy has to be in place to maintain system functionality in any case
(e.g., message loss due to a node failure).

An alternative that should scale better is to build a robust delivery confirmation and
resending mechanism into the endpoints (following the end-to-end design principle,
see Section 3.2.1 on page 36). With end-to-end acknowledgement, the system does not
require link-level reliability and can tolerate networking failures better. The forwarding
nodes are allowed to drop messages at any time. In case of congestion, the lowest-
priority messages can be dropped first, and the freed capacity used to deliver more
critical messages. To enable quality of service (QoS) traffic shaping with networking
hardware—which cannot parse our custom payload format—the replication messages
need to be tagged with their internal priority class. Tagging can be accomplished by
assigning different VLAN priority tags (Ethernet, IEEE 802.1Q) or different destination
ports per priority level (TCP/UDP). Details on these mechanisms are outside the scope
of this work.

Data Store Support

As mentioned in Requirement FR–7, message prioritization is at odds with the goals
of FIFO or stricter consistency models. Missing or dropped low-priority messages, e.g.,
from congestion control done by the networking stack, can affect delivery of high-priority
messages. The mechanism enforcing a plain FIFO consistency may have to hide or hold
back high-priority messages to avoid an inconsistently ordered view, working against the
indented urgency.

We want to avoid this effect of priority inversion. The delivery of high-priority value
updates should not be delayed only because some low-priority value updates are missing.
We could enforce FIFO ordering only within each priority level and show updates that
belong to different levels in arbitrary order. That model could, however, easily lead
to obscure race conditions and application errors in case of any causal relationships
between updates of data items of different priority. We want to shield the application
from arbitrary behavior as much as possible.

To keep an intuitive expectation of FIFO ordering, instead, we introduce filtered FIFO
views: When establishing a new session in FIFO mode, a client can choose the priority
cut-off, the minimum priority level it is still interested in. If the lowest possible priority
(bulk) is selected, the client will see all items and their value updates in strict FIFO
order—exactly as before with plain FIFO. But when a higher priority level is selected, the
client will only see items and value updates of that level or higher. With lower-priority
items hidden, the data store can safely ignore their arrival order during enforcement of
the consistency model and return the value updates of higher-priority items earlier.

These filtered views should provide a useful compromise between consistency and delivery
latency. For the most critical items, however, eventual consistency is better suited. It
can minimize latency by having updates visible immediately upon arrival.

78

5.3. Consistency Models

P3

P2

P1

P0

994 996 998 1000992

W

999

W W

W

W

W

WWW

993 995 997

WW

991

W

W

1

Dist.

4

4

8

Prio.

Figure 5.7: FIFO Priority/Predecessor Distances for Update 1000

Priority/Predecessor Vector

In contrast to plain FIFO replication, maintaining a FIFO consistency that is priority-
aware requires extending the NDC framework’s data types and replication protocol. That
is because when there is a gap in the NC (an update issued by another node is missing),
we have no way of knowing which data item that write operation has affected, and
therefore, which priority level the missing update belongs to. If it is below our priority
cut-off, we could safely ignore that gap and make the later updates visible. But if it is
equal or above our priority cut-off, we must consider that gap and keep later updates
hidden.

To solve that problem, we extend the object data structure that is kept in the NDC
Storage (ST). For every key, it keeps a mapping of concurrent dot-values and the most
recent causal context. For every dot/value pair, we add a priority/predecessor vector of
previous update IDs per priority. That is, for each priority level, what is the immediately
preceding update issued by the same node that has an equal or higher priority. In terms
of distance, it indicates how many update IDs in between can safely be ignored—as they
were assigned to lower-priority updates. All updates up until that predecessor ID must
have been received without any gaps for the update to be applied and made FIFO visible.
The higher the priority, the larger we expect the distance to be. Or, conversely, the
smaller (the more far back) we expect the predecessor update ID to be. By storing the
priority/predecessor vector together with the existing dot/value pair, their lifetimes are
coupled, and the vector will be disposed by the existing NDC merge algorithm.

Implementation

With the priority/predecessor vector included with every single value update, extending
the algorithm from Section 5.3.2 for prioritization support involves two steps. First, we
maintain a separate, filtered FIFO store per priority level, which contains only values
for items with equal-or-higher priority. By reading from the correct store, the client

79

5. System Design

Prio. Predecessor
P3 Update 992
P2 Update 996
P1 Update 996
P0 Update 999

(a) Predecessor IDs

Prio. Distance
P3 8
P2 4
P1 4
P0 1

(b) Relative Distances

Prio. Distance
P3 8
P2 —
P1 4
P0 —

(c) Stripped Distances

Figure 5.8: FIFO Priority/Predecessor Vector Representations for Update 1000

991 992 993 994 995 996 997 998 999 1000

P0

P1

P2

P3

W W W W W W

W

W

W

W

WW

W

W

W

W

W

W

W

Partial segment covering 8 update IDs

1

4

4

8>1

4

11111111 1

2

>1

>1 2

Prio.
Store

Figure 5.9: Partial FIFO segments per priority-specific store

session will receive results that match the minimum priority cut-off of its choice. When
building and merging our global primary and partial segments, we ignore all updates
of lower priority than the store threshold. For every inserted update, we look up the
predecessor and add all update IDs in between to the partial segment’s range, regardless
of whether they were received or not. As a result, gaps caused by missing update IDs of
lower priorities do not prevent merging of partial segments into the primary segment.

Figure 5.9 illustrates these partial segments with their minimal range determined by the
priority/predecessor vector. Update 1000 arrives with the same vector that was shown in
Figure 5.8. The vector values, indicating the distance to the priority-specific predecessor,
determine the minimal length of the partial segment (shown as number in every writes’
cell). It does not matter which key’s value update 1000 actually writes to. Contrast this
with Figure 5.3a on page 71 for general FIFO consistency, where partial segments could
only cover an update range when every single update has been received. The lowest
priority store P0, which contains the values of all keys, has exactly the same behavior, as

80

5.3. Consistency Models

the distance to the predecessor is always 1.

Size Optimization

The priority/predecessor vector has to be included with every update operation and
within the objects exchanged during the anti-entropy synchronization. To reduce the
amount of data that has to be serialized and stored by every node, two optimizations are
possible.

First, instead of including the complete predecessor ID, only the relative distance to the
update ID can be given (Figure 5.8b). The distance numbers are smaller and can be
efficiently encoded in ProtoBuf’s Base 128 Varint encoding scheme [Prob]. Second, the
distance to the lowest priority predecessor will always be 1—the write operation simply
FIFO-depends on the immediately preceding write issued by the same node. Entries with
this default distance can be omitted. Adjacent priority levels will often have the same
distance. Since the distance of a higher level entry cannot be smaller than any lower level
entry, for the same distance, only the lowest-level entry has to be kept—all higher entries
can also be omitted (Figure 5.8c). The missing values can be back-filled on the receiver’s
side. This last optimization, however, is only beneficial with a substantial number of
priority levels. In our example with four possible priorities, four values have to be sent in
any case (distance array [1, 4, 4, 8] vs. stripped distance map {P1 = 4, P3 = 8}).

5.3.4 Causal Consistency

Providing causal consistency is not one of the requirements we defined for the data store.
If there are causal dependencies between write operations (value updates) processed by
different nodes, the implemented application logic and the programmable control logic
could benefit from them appearing in their correct causal order. With weaker models,
the visibility order of causally related writes observed and issued by different nodes can
be arbitrary. Note that due to its strictness, the latency between arrival and visibility of
a value update can be even higher with this model than with FIFO consistency.

Causal Cuts Middleware

The NDC framework already uses a suitable causal context to distinguish between value
updates with a happens-before causal relationship and those that happened concurrently.
Thus, as a prerequisite, the application client needs to supply the proper causal context
with every issued write operation, that is, the causal context that is returned with the
previous, causally related get operation. With this partial ordering available, we could
implement a visibility middleware that ensures operations are safe to apply using Causal
Cuts, as described in “Bolt-on causal consistency” (see also Section 3.1.2) [Bai+13a].

81

5. System Design

5.4 Delivery Tracking
There are two ways to support the extended delivered operation and confirm successful
delivery of updated values. First, we can use the node clock data that is already
kept synchronized by the anti-entropy background process. Second, to provide faster
confirmations, we could extend the replication process to actively acknowledge received
updates.

5.4.1 Anti-Entropy Tracking
For the purpose of anti-entropy synchronization and efficient cleanup of fully replicated
values, the NDC framework maintains a cache of other peer’s states, as exchanged in the
last round of pair-wise anti-entropy synchronization. We can compare the node/update
identifier pair of interest with the kept data structures. When it’s present within a
peer’s entry in the Node Clock (NC), we can confirm delivery to that peer. When it’s
present in the Watermark (WM), we can confirm delivery to all peers—the WM is used
to determine when an update is present on all peers and can be safely removed from the
Dot-Key Map (DKM).

One caveat of this convenient method is that the delay until acknowledgement depends
upon the interval and peer selection of the anti-entropy process. To ensure a useful
worst-case notification latency, these parameters need to be selected carefully.

5.4.2 Replication Tracking
To speed up the process and confirm successful delivery faster in the absence of net-
work problems, the asynchronous replication RPC (update) could be extended to reply
with an Acknowledgment (ACK) confirmation message. The reply can be processed
asynchronously, without delaying the pending put operation the client is waiting on.

Since these messages are delivered on a best-effort base and can get lost or delayed at
any time, this approach should only be used in addition to the anti-entropy tracking,
not instead of it. Sending a separate ACK for every replicated value will also result
in significantly increased network traffic and wasted bandwidth due to all the message
overheads. Functional Scalability (Requirement NFR–1) should be kept in mind: To
avoid self-limiting the update processing rate of the data store, ACK message could be
broadcast in regular intervals and contain a BVV to batch confirm all updates received
in between.

5.4.3 Application Level Tracking (End-To-End)
While these mechanisms can acknowledge delivery to a data store node, they can not
confirm that an updated value was indeed seen and processed by the application. The
changed value might not be queried by the client, or it might be made visible only with
significant latency due to constraints imposed by the consistency model.

82

5.5. Fault Detection

For this reason, following the end-to-end design principle (Section 3.2.1) might be a
good idea for delivery confirmation, too. Instead of relying on data store metadata, the
application can simply maintain data items that signal observation of important changes.
Doing so, however, can lead to updates written by different nodes causally depending
on each other. Using a causal consistency model is recommended to avoid inconsistency
bugs.

The usefulness of delivery tracking depends on its intended purpose within the application
design. The application should not try to implement a retry mechanism—that is the
responsibility of the data store. Instead of the pessimistic approach (tracking delivery of
every single update) an optimistic approach (assume successful delivery, unless faults are
detected) can provide better scalability for control and monitoring purposes.

5.5 Fault Detection
Fault conditions such as faulty links or unresponsive nodes must be detected (Require-
ment FR–2). Such reports are used to alert the staff on site and logged for upcoming
maintenance work. They might also serve as input for the programmable FDAS control
logic, e.g., to close fire doors by releasing their magnetic door holders as a precaution.
There are multiple different ways to detect faults, which can also be combined.

5.5.1 Link Level Detection
Network links can detect that their direct partner is not available or has not sent anything
in a long time and generate link-fault messages. Static knowledge of the configured
network topology is required to infer the faulty or unreachable nodes. The approach
(alone) is inflexible and cannot provide end-to-end monitoring.

5.5.2 Data Store Metadata
As the data store already needs to keep track of the state of other peer nodes, similar to
Section 5.4 above, existing anti-entropy metadata can be used. While the replication
mechanism is abstractly defined as using asynchronous message passing, it can be
implemented so that connectivity errors, e.g., from lower layer protocols such as TCP,
are reported.

In contrast to link level detection, this method at least provides node-to-node fault
monitoring, and there is no static knowledge of the network topology required. The
approach can be efficient, as no additional network messages are required. The same
caveats apply, however: The timeout after the last successful connection must be carefully
considered. For the pairwise anti-entropy synchronization, for example, there is a trade-
off: To save network bandwidth, the interval should not be too short. Otherwise, a
large amount of traffic are useless messages which do not yield any missing items to
synchronize. To detect faults within a short time, however, the interval has to be kept

83

5. System Design

short. The approach mixes different concerns and introduces some dependencies between
architecture layers.

5.5.3 Application Level Fault Detection (End-To-End)
Similarly to delivery tracking, relying on data store metadata alone cannot detect faults,
hangs or crashes of the application. Instead, the application can implement its own
mechanism to detect faulty or unreachable nodes. For instance, nodes can regularly
broadcast a heartbeat signal to prove their healthiness using the distributed data store.
They can write their uptime, wall-clock time or any other regularly changing value to a
well-known key. Other nodes can periodically read the replicated value from their own
data store and compare the value with a previous version. The result shows that the
node itself is healthy and that the replication messages have successfully propagated.

Comparing heartbeat signals obtained from sessions with different consistency models
can be useful: While a positive eventual signal shows node and connection healthiness
at the moment, a positive FIFO signal confirms that the replicated updates (for that
specific priority level) are up-to-date, too. A lagging FIFO heartbeat signal hints that
other updates from the node may be lagging, too.

Note that this mechanism is unidirectional: A node can determine the liveness of another
node, but it does not know whether its own heartbeat signals (and thus, replication
messages) are received by others. A bidirectional, roundtrip confirmation may be
beneficial for a safety-relevant FDAS application: Upon detecting isolation from the
rest of the DCU, the node could switch its control logic to a better suited mode for
autonomous operation. In principle, the causal context accompanying the heartbeat
signal could be used to include the node clock of the sending node. The heartbeat signal
would not only confirm liveness, but also show a baseline of the updates successfully
received up to that point.

5.6 Storage Durability and Crash Recovery
For our NDC-derived store, each node continuously maintains five data structures.
These are used to answer client queries, apply received replication updates and perform
anti-entropy synchronizations [Gon+17]:

• Node Clock (NC): a set of all dots from current and past versions seen by this node
(a DVV per node);

• Dot-Key Map (DKM): a mapping of locally stored data item version dots to the
keys they belong to (required by the anti-entropy protocol);

• Watermark (WM): a cache of node clocks from every peer (required to know when
a dot is present in all peers and can be removed from the DKM);

84

5.6. Storage Durability and Crash Recovery

• Non-Stripped Keys (NSK): a set of local object keys whose causal context is not
yet empty (required for the regular causality stripping background task);

• Storage (ST): a mapping of keys to objects, which contain the item value versions
that are not yet obsoleted.

With these five data structures, the NDC framework implements eventual consistency
very efficiently: Old value versions and object metadata that are no longer required are
removed as early as possible. While NC and ST keep essential replication and value
data, DKM, WM and NSK keep additional metadata to facilitate efficient anti-entropy
synchronization and cleanup.

To answer queries with priority-aware FIFO consistency, additional sets of these data
structures are needed. Instead of just keeping the most recently known value version,
as sufficient for eventual consistency, they must preserve the value versions that are
guaranteed to be made visible in FIFO order. If there are no replication updates missing
and thus no gaps, these value versions are equal—but if there are gaps, the FIFO version
can be older than the eventual version (see Section 5.3). Per supported priority level, we
need to keep an additional separate instance of the store, consisting of a tuple of NC, ST,
DKM, WM and NSK.

5.6.1 Durability
The node’s own clock entry within the NC should be stored using durable, non-volatile
memory, where it can be recovered from in case of a node crash. The other data structures
can be kept in ephemeral memory as their most recent contents can be learned back from
other nodes.

A hybrid approach is also feasible: Keep the most recent state in memory and, using an
additional background task, periodically flush a consistent snapshot to durable storage.
With this trade-off, regular operations can be processed quickly in-memory and wear
on the storage media is reduced. In case of a node restart or crash, the majority of the
data can be reloaded from storage instead of relying on the slow synchronization over
the network.

5.6.2 Unknown Node Clock: Write Impediment
With an unknown value of the own node clock (the last assigned update ID), the successor
update ID and the causal context for the next write cannot be reliably generated.

Simply using an approximate clock is problematic: If the used clock is too advanced,
some update IDs between the real and the used clock are never assigned. These IDs
represent gaps that can never be filled, as no node is able to provide their values during
anti-entropy synchronization. For the eventual storage, these gaps do not impact query
functionality. For FIFO specific storages, these gaps prevent each node from making
progress and result in stale values being returned for queries. But if the used clock is

85

5. System Design

too far behind, some update IDs between the used clock and the real clock are used
twice, with different items or values. These duplicate update IDs can lead to lost or
inconsistent values between different nodes, at least until the node clock has caught up
and the update IDs are unique again.

While we should take effort to prevent it in the first place, there are two strategies to
recover from the loss of the node clock: We can try to learn back our own previous clock
from other nodes, or assign a new node ID so that the node clock can simply start from
zero again.

Best-Effort Clock Recovery Strategy

We could try to learn back our own lost clock entry by doing a few anti-entropy synchro-
nization process rounds with other peers. Due to the eventual nature of the data store,
however, we cannot reliably determine when we have fully caught up, and when it is safe
to start processing client’s writes. We can only learn a minimum value, which might be
too low and run the risk of creating duplicate update IDs.

To mitigate that risk, we can add some safety offset to skip ahead—missing update IDs are
safer than duplicate ones. To avoid producing stuck FIFO stores due to globally missing
update IDs, we should issue the first write with a generous priority/predecessor vector
that allows the priority stores to skip any gaps (risking some FIFO consistency violation
for a short amount of time). With careful selection of the parameters of synchronization
quorum and safety offset, this recovery strategy could work sufficiently well.

New Node ID Strategy

As an alternative, we could “forget” our old node ID and assign a new one. With a
new, initial node clock, we can immediately start processing writes. To write to the
same data items, we just have to be careful to include the old node ID with the highest
possible update ID within the causal context. Otherwise, the new items will be detected
as concurrent: The new versions will be merged with the old ones instead of replacing
them.

There are three preconditions, however: The node needs to be able to allocate a unique
and unused new node ID, without the risk of collisions with other nodes. Peer nodes
must be able to learn of the new node’s existence and be able to reach it afterwards for
replication and anti-entropy rounds. Additionally, other nodes must be able to learn that
the old node is gone and cannot be reached anymore, perhaps by marking it as replaced
or by giving up connection attempts after some amount of exponential back-off cycles.

As we did not plan for dynamic cluster membership (Non-Requirement NR–4), all three
mechanisms would need to be implemented first. The last one could take effort, as an
unreachable node prevents the NDC framework from removing some associated metadata.
A node that never returns can cause a memory leak.

86

5.7. Large Value Objects

5.6.3 Missing Data: Read Impediment

Like for the unknown node clock above, for lost values of data store items, we can learn
them back over time from peer nodes. But we cannot reliably determine when we have
fully caught up. To avoid returning value versions that are too stale, it could be a good
idea to refrain from answering client queries until successful synchronization with some
quorum of peers was successfully performed.

5.7 Large Value Objects
An exceptional case are large objects shared using the data store, e.g., config packages
to deploy or firmware update blobs to install. There are two different key mapping
strategies.

5.7.1 Key Mapping Strategies

The whole object can be put into a single item. While simple for the application, the
data store has to be able to support replicating large values. Transmitting the whole
value at once may run the risk of blocking other items of higher priority. The value would
need to be split into small chunks and transmitted in well dosed batches, an assembled
to a whole object again once all chunks are received.

Alternatively, the object can be mapped to a range of keys, e.g., the target addresses where
firmware blocks should be written to. In that case, single-item put and get operations
may turn out to be an inefficient bottleneck. Operations which can efficiently read or
write a whole key range may be required. Also, without support for transactions that
group the writes together, keys with their data segments may appear to a receiving client
in any arbitrary order. Transmitting a high number of changed items at once can also
still easily overwhelm link capacity or replication mechanism and block higher priority
items.

In addition to the mapping strategy, there is the general unicast-over-multicast and
storage problem: When putting their value into data items, blobs whose contents may
only be required by one or a few nodes need to be replicated to all replica nodes. Keeping
the network load low requires an efficient network-assisted multicast and/or a flexible
replication mechanism with support for subscriptions to keys or key ranges—which in
itself may be in conflict with the promised consistency model.

5.7.2 Hybrid Push-Pull Dissemination

Both of these problems can be solved simultaneously with a hybrid push-pull approach.
By distinguishing between objects with small and large value through a threshold size or
an explicit write parameter, they can be treated differently. The suitable trade-offs can
be selected separately.

87

5. System Design

For small objects, a push-based approach is most efficient. Directly include the value
in the replication updates that are propagated to all replicas for that key. The value
is immediately available (low read latency) and stays available in case other nodes are
unreachable (high fault tolerance).

For large objects, instead, a pull-based retrieval approach can be favored. Only use the
data store itself for announcement and coordination, e.g., include a reference to the
owning node and a content hash. Should a client be interested in loading a blob, it can
be retrieved with a separate bulk distribution mechanism. Since large objects generally
are not high priority items, delayed availability and reduced fault tolerance is acceptable.

A dedicated configuration and firmware file deployment service could be implemented
based on an efficient block exchange mechanism, e.g., hash lists as used in the Syncthing
Block Exchange Protocol [Syn] or Merkle trees [Mer87]. An additional benefit of a separate
service is that it allows for better retrieval decisions: By having more information available
than the data store itself, only blocks that are required have to be transmitted, e.g.,
by checking whether the firmware version already matches the installed one or by only
requesting blocks for changed partitions.

5.8 Networking Layer Improvements
Efficiency and security of the data store and its applications could be improved by tuning
key aspects of the underlying networking stack. As these aspects are important to
consider in a real-world deployment, we only mention them briefly as the scope of the
work is primarily on the data store’s design.

5.8.1 Efficient Routing
Without an efficient routing algorithm, multi-path networking topologies can cause much
of the available link bandwidth to be wasted, transporting redundant messages the
receiver has already seen. For better efficiency, a more sophisticated routing protocol can
be used. For example, Babel is a distance-vector routing protocol which avoids loops
and can adjust itself quickly to changes in the network topology, such as switching from
a faulty link to an available redundant backup link [CS21].

5.8.2 Efficient Multicast
Multicast communication over unicast links is always possible by using application layer
multicast, as we did in our prototype implementation for the peer replication messages.
The sender can send a separate copy of the same message to every recipient. While
simple to implement, the approach can limit scalability: It places a greater load on the
sender/forwarding nodes and wastes bandwidth on the intermediate network links.

With support from the lower layers in the networking stack, a more efficient variant can
be possible: network-assisted multicast. Copies of the message are only generated as

88

5.8. Networking Layer Improvements

required by the forwarding nodes. Our replication messages are an ideal use case, as they
are sent identically to every peer node. Large value object distribution for configuration
or firmware updates, as described in Section 5.7, could also benefit.

5.8.3 Message Authentication
Secure authentication mechanisms are essential in any real-world deployment to ensure
the integrity of received messages before trusting and processing their contents.

Otherwise, malicious adversaries can easily tamper with message content or inject entirely
fabricated messages. Not only can they manipulate the value of any data store item, but
also disrupt the operation of the entire DDS and compromise safety-relevant functionality
of the system. By sending update operations with an arbitrary, far ahead causal context,
for example, the FIFO stores in our NDC-based system are not allowed to merge them.
Instead, they have to keep them in cache in case the “missed” messages arrive—which
will never happen if they don’t exist anywhere. These caches can easily be overwhelmed
by lots of bogus operations, leading to high resource usage and even displacement of the
authentic operations.

To protect from such attacks and increase the system’s robustness, all nodes can calculate
and attach a cryptographically secure digital signature to every sent message. The
signature allows all participants to verify the authenticity of all received messages and
ignore them otherwise. For use on constrained devices, the signing and verification
algorithms have to be selected with care. Modern embedded platforms often already
provide hardware acceleration for cryptographic operations. Additionally, the key material
needs to be securely distributed to all legitimate nodes and kept up to date. To solve
this problem well is a challenge in itself.

Research Question RQ–2

What technologies and which software architecture can be used to provide that
consistency model on constrained devices?

We find the NDC framework from Gonçalves et al. to be suitable as base technology for
a distributed data store running on constrained devices. It provides eventual consistency
with continuous replication and periodic anti-entropy synchronization for high availability.
To support the consistency model demanded by RQ–1, we develop a priority-aware FIFO
consistent view that can optionally be layered on top and is fully transparent to the client
application. To facilitate testing and maintain modularity, we design our proof-of-concept
prototype with clear, minimal interfaces towards the client application and towards
the underlying network functionality. We make an effort to keep communication logic,
consistency-specific processing, configuration context and background tasks separate from
each other for unit testability and future extensibility.

89

CHAPTER 6
Evaluation

We designed and prototyped a distributed key-value data store. In this chapter, we
evaluate the design against the requirements defined in Chapter 4. Chapter 5 documents
the details of the design process and the resulting prototype.

6.1 Qualitative Analysis
The prototype data store we developed is a proof-of-concept on how the functional require-
ments can be met. Because the implementation is not optimized well for performance
and low resource usage, measuring these properties does not yield meaningful results.
Instead, we argue based on how a production-grade application based on our design could
meet the non-functional requirements.

6.1.1 Functional Requirements
FR–1: Limited Transmission Time

Changed data items must be readable on all reachable nodes within 20 seconds.

As the data store has to rely on the underlying networking layers to deliver its replication
messages in time, by itself, it cannot ensure fulfillment of this requirement. However,
the design makes an effort to keep the replication latency low. Due to the asynchronous
replication of value updates, unreachable nodes do not delay or prevent messages from
being sent out to other nodes (Section 5.2). Assuming the network delivers messages in
time, the remaining sources of latency consist of the message processing time and the
visibility delay introduced by the consistency model.

Under normal operation, the processing time on the receiving nodes is negligible. Using
eventual consistency, changed values are readable as soon as the messages have been

91

6. Evaluation

processed. Using the FIFO consistency mode, however, visibility may be delayed until
either the underlying network delivers all preceding replication messages (of equal or
higher priority), or until the anti-entropy background process can retrieve them from a
peer node (Section 5.3.2). The latter can easily exceed the mandated transmission time,
but as a fallback mechanism, it is only relevant in case the network already has failed to
deliver the replication messages in time.

FR–2: Unreachable Node Detection

Unreachable nodes must be detected by at least one other node within 20 seconds.

In Section 5.5, we considered possible variants of detecting faulty links or crashed nodes.
Application-level, end-to-end heartbeats can utilize the infrastructure of the distributed
data store while staying independent of its inner workings. Every node can confirm
its liveness by regularly updating a well-known key in the data store (e.g., every five
seconds). A detection mechanism can trigger after two or three missed heartbeat intervals.
Additionally, since the FIFO consistency mechanism must preserve the visibility order,
an up-to-date heartbeat signal queried in FIFO mode confirms that all values written by
that node up until that point must have been received, too.

FR–3: Continuous Data Replication

Data items must be continuously replicated across nodes.

The requirement for replication is met by the NDC-based design: The NDC-based data
store uses a replication mechanism to broadcast changed items values and a robust
anti-entropy background synchronization task to ensure any deviations do not persist
(see Section 5.2.3 on page 68).

FR–4: High Availability

The remaining nodes of the distributed data store must remain available for
operations in case of a component failure (network partition or node crash).

The requirement for high availability is also met by the NDC-based design: Due to
continuous replication between all nodes, read operations only need to query the nodes’
local store, which always succeeds with low latency. Write operations can also always
successfully update the local store. The replication mechanism is fully asynchronous:
Write operations do not wait for delivery or confirmation of the replication messages.

To favor availability and low latency, our prototype design has two key differences from
the original NDC framework (see also Section 5.2.1). First, we replicate keys to all nodes
instead of only a selected subset. The data is always available locally, in contrast to the

92

6.1. Qualitative Analysis

original framework where the queried coordinator node might need to forward the query
and wait for the result. The second key difference is that we do not expose the quorum
parameter and default it to 1. With a quorum larger than 1, a read operation would
need to wait for receiving the values from multiple replica nodes [Gon+15; Gon+17].

FR–5: Fault Recovery

When a node becomes reachable again after a component failure (network partition
or node crash), changed data items must be synchronized without any loss of data.

The requirement for fault recovery, too, is met by the NDC-based design. Order, lateness
or duplication of replication messages do not affect the resulting value of a data item—the
causal context always ensures that any merge operation only overwrites obsolete value
versions (Section 5.3.1). Should a message get lost entirely, the periodic anti-entropy
background synchronization process retrieves the missing data on its next run with any
peer that received the update.

Should multiple nodes change the same items concurrently, all values are kept and
returned after the merge. Due to NR–6 (No Multi-Writer Data Items) we do not expect
this to happen in regular FDAS operation, but we have made an effort to keep the
functionality intact, even for the FIFO consistency models. Otherwise, the data store
would need an intrinsic method for conflict resolution instead of simply leaving the task
to the application itself.

FR–6: FIFO/PRAM Consistency

Data item changes issued by a specific node must be observed in the order they
were issued in, by every node in the system.

The requirement for data consistency is met by the FIFO extension to the NDC frame-
work (Section 5.3.2 on page 70). When requested by a client session, changes issued by
the same node (and, in turn, all its clients) will be observed strictly in the order they
were executed in. Changes issued by different nodes can appear in any order.

However, a client might not be able to observe every single value version as multiple
versions can appear at the same time. Even when using multiple sessions concurrently, a
client’s view will be consistent as long as two conditions are met: The sessions must not
use different consistency modes and the client must not switch between different nodes
(sticky connection). Otherwise, the obtained query results are no better than eventual
consistency and must be handled with the appropriate caution.

93

6. Evaluation

FR–7: Priority for Important Items

Changes to important data items should be replicated with priority. In case of
network congestion, low priority items should be dropped first. With a priority-
aware FIFO consistency model, missing updates of low-priority items should not
delay delivery of high-priority data items (priority inversion).

Similar to FR–1, this requirement cannot be delivered by the data store alone. The
store has to rely on the underlying network to do priority-aware congestion control.
The priority-specific FIFO consistency stores, however, provide a useful middle ground
between the comfort of the general FIFO consistency model and the low-latency of
eventual consistency. By filtering and ignoring low-priority items, high-priority items can
be shown earlier (Section 5.3.3 on page 77).

No. Summary Met through
FR–1 Limited Transmission Time Low-latency design of the replication mech-

anism and the underlying network
FR–2 Unreachable Node Detection Application level heartbeat mechanism
FR–3 Continuous Data Replication NDC-based replication mechanism
FR–4 High Availability NDC-based replication between all nodes
FR–5 Fault Recovery NDC-based anti-entropy mechanism
FR–6 FIFO/PRAM Consistency FIFO consistency mode
FR–7 Priority for Important Items Priority-aware FIFO consistency mode and

congestion control of the underlying net-
work

Table 6.1: Summary of functional requirements

6.1.2 Non-Functional Requirements
NFR–1: Functional Scalability

The data store should be able to handle a growing number of participating replica
nodes and stored data items without disproportionately impairing the expected
functionality.

The five important data structures of the NDC framework consist of maps and sets on
item keys and node/update ID pairs (dots, see also Section 5.6). In our prototype, the
keys consist of text strings and the node and update IDs consist of 32-bit integer values.
The data structures are implemented as hash maps and hash sets to optimize for an
efficient lookup, which is particularly important during the anti-entropy synchronization
process. That way, the time complexity for processing client operations and replication
messages is O(1) on average, with respect to the number of nodes and of stored keys.

94

6.1. Qualitative Analysis

Some stored metadata requires O(n2) (WM) or O(n ∗ m) (causal context per ST object)
of memory space for n nodes and m keys, respectively.

In general, the data structures in the FIFO specific storage share these characteristics.
Only when messages are lost or arrive out-of-order, partial segments must be additionally
maintained (inserted, merged and retrieved) in a buffer—the complexity of these opera-
tions scales with the number of contiguous segments, but is also O(1) on average with
respect to the number of nodes and of stored keys. The FIFO implementation requires
additional memory for a separate copy of the five NDC maps and sets per supported
priority level, but the contained instances of keys, dots, priority vectors and values are
immutable and can be shared between different consistency stores.

NFR–2: Fault Scalability

The data store should be able to tolerate a growing amount of component faults
without disproportionately impairing the expected functionality.

Faults can result in network partitions or node crashes. When a node is reachable
again after a network partition, the anti-entropy synchronization can retrieve the missed
updates all at once. When a node comes back up again after a crash, the same is true.
Only updates which were neither sent to any other node nor saved in durable storage are
not recoverable. This may be a problem when the node counter was saved to durable
storage, but the message itself was not, and the node creates a gap in its assigned message
IDs after recovery—as the message does not exist anywhere, the gap can never be filled.
An implementation with durable storage must take care of such corner cases, but we did
not implement a solution (see also Section 5.6.1).

When messages are lost or extensive reordering is required, the FIFO mechanism has to
maintain (insert, merge and retrieve) pending segments (see also Section 5.3.3). The time
complexity of buffer inserts and lookups grows with the number of contiguous segments
instead of the number of individual missing updates—a network partition might cause
100 missing messages, but if their message IDs fall into a contiguous range, only one
partial segment is needed. The size of the anti-entropy synchronization response grows
with the number of keys with missing updates and the number of FIFO priority levels.
For the FIFO specific storage instances, buffered partial segments may also be included.
The number of segments to be transferred grows with the number of affected keys and
the number of missed consecutive updates.

Non-reachable nodes can inhibit the eviction of metadata for obsolete value versions (from
the DKM and WM). To prevent exhaustion of storage space, some cleanup strategy is
recommendable for nodes that never return. Due to NR–4, we did not design a mechanism
with our prototype.

95

6. Evaluation

NFR–3: Modularity

Different concerns of the data store should be kept separate in the software
architecture. Different components should be modular, encapsulate their internal
details and have well-defined interfaces with minimal surface area.

In our prototype, we separate different layers and components with abstract interfaces
to avoid unintended coupling and enable module replacement with little effort. For
example, we defined the client-to-node application programming interface (API) and
the node-to-node communications interface first and wrote unit tests against simple
in-process stub implementations. Only later, once the algorithms were functioning
reasonably well, we swapped them against a networking implementation capable of
connecting different processes and machines. By using the Protocol Buffers format for
message serialization and the ZeroMQ protocol as communication middleware, each
can easily be swapped out against similar implementations. Similarly, the different
consistency-model-specific data store instances hide their internal structure and expose
only a limited set of non-destructive methods to other parts of the program. Apart from
keeping the implementation details malleable, this design also simplifies refactoring and
can help prevent programming errors.

NFR–4: Low Resource Usage

A node has to run well on resource constrained embedded devices.

The NDC-based design has the advantage that it requires only simple calculations from
the participating nodes and has low metadata overhead. The metadata for obsolete
value versions can be removed as soon as every node has confirmed replication (using
the WM cache of node clocks). In their paper, Gonçalves et al. evaluate their data store
against a similar implementation using Merkle trees. They find that the NDC variant, in
comparison, requires less network bandwidth and provides lower replication latency than
the Merkle tree variant in scenarios where there is little node churn and the changes have
little spatial locality [Gon+17].

No. Summary Met through
NFR–1 Functional Scalability Efficient value lookups
NFR–2 Fault Scalability Efficient anti-entropy synchronization and

segment buffering
NFR–3 Modularity Modular design
NFR–4 Low Resource Usage NDC-based replication

Table 6.2: Summary of non-functional requirements

96

6.2. Testing

6.2 Testing

To analyze our prototype implementation, we utilized specialized testing software for
distributed systems. We are interested in the implementation’s behavior in the presence
of simulated stress conditions. These tools do not prove correctness, but they can reveal
flaws in the design, in our prototype implementation and even in our understanding of
the problems that occur in distributed systems.

6.2.1 Maelstrom and Jepsen

We use the Maelstrom workbench [Kinb], based on the Jepsen testing library [KPa],
both by Kingsbury. These tools are written in the Clojure programming language, a
Lisp dialect for the Java Virtual Machine. Maelstrom runs random data operations
generated by the generator against the implementation and records a log of all issued
operations. These include the operation parameters, the obtained result or error, and the
invocation and completion timestamps. After the run, the history of the operations can
be analyzed by a workload-specific set of checkers. These checkers can report problems
such as consistency violations or generate additional results, e.g., render a graphical
timeline or calculate message statistics. Any errors logged by the tested nodes are also
included.

Each test run is highly configurable: The workload specifies the semantics of the dis-
tributed system, i.e., which RPC functions are available for the distributed system under
test and what generator and set of checkers to use. Apart from the workload, the number
of node instances to spawn must also be set. Several other parameters are available to
fine tune the aggressiveness of the test run. These parameters include the amount of
workers that issue operations concurrently, the approximate target rate of requests per
second, simulated network latency and message loss. For the latter, nemesis processes
can be enabled to inject random faults.

JSON Protocol

As a prerequisite for testing, we had to swap out the networking layer of our proof-
of-concept prototype implementation. We built an adapter for the Maelstrom JSON
RPC protocol [Kinb, doc/protocol.md] over standard input/output instead of the
Protobuf/ZeroMQ networking used up to that point. The client API needs to be able to
handle requests sent by the simulated Maelstrom clients.

Swapping out the network layer should not affect the significance of the results: The same
logical messages are just encoded differently and transferred over another asynchronous
channel. The only effect we expect is a higher processing latency, since the encoding
process and intermediate buffering may not be as efficient. However, it should be negligible
compared to the latency of any real network connection and the simulated latency we
plan to introduce.

97

6. Evaluation

The internal messages used for node-to-node replication and anti-entropy synchronization,
too, need to be wrapped in a JSON envelope for routing. Routing via Maelstrom provides
two benefits: Our internal messages will also be affected by the simulated latency and
injected faults. And Maelstrom will render them in the generated graphical timeline and
message statistics.

The protocol includes a list of error codes hat can be returned for a non-succeeded
operation. Maelstrom assigns them two distinct classes: definite and indefinite. A
definite error code (e.g., abort or not-supported) means that the operation definitely did
not (and never will) happen. An indefinite error code (timeout or crash), instead, means
that the operation might or might not have taken place. It could also still take effect at
a later time. While operations resulting in a definite error can be safely ignored by a
checker to improve performance, indefinite errors must still be considered.

6.2.2 Lin-kv Workload

Out of the predefined Maelstrom workloads [Kinb, doc/workloads.md], lin-kv is the
best matching starting point for our scenario. It simulates and validates a linearizable,
non-transactional key-value store with three available RPC operations: write, read, and
atomic compare-and-swap (CAS). Internally, each key of the distributed data store is
mapped to a model of a linearizable register. When the simulation run is complete,
the recorded history is evaluated with the Knossos checker [KPb] for any consistency
violations.

To get familiar with these tools and to debug our implementation of the JSON protocol,
we tested our prototype against the lin-kv workload first. For CAS, we implemented only
a non-atomic read-then-write compound operation for compatibility. Simply aborting
and returning a not-supported result would have been sufficient, too, but resulting in
worse availability results.

For concurrent write operations, our prototype does not do any conflict resolution.
Instead, all concurrent values are returned as a list on the next read. Since the Maelstrom
RPC result (read_ok) can only handle a single value, we abort the operation and return
an error code, instead. Error results reduce the calculated availability, but are irrelevant
for the consistency check.

Results (lin-kv)

We configured the workload to run with a cluster of four simulated nodes, 16 concurrent
client processes and a duration of 60 seconds. The other simulation parameters were
varied, as shown in Table 6.3. Note that since Jepsen randomizes the generated operations
and injected faults, these are one time results and not exactly comparable and repeatable.

The first four columns show the test configuration: consistency mode, target rate of
operations per second, mean simulated latency and simulated network faults. The

98

6.2. Testing

Configuration Results
Mode Rate Latency Faults R/W Rate Linearizable?

Event. 5 0 None 1.0 / 1.7 OK
Event. 5 0 Partition 1.2 / 1.7 Not OK
Event. 5 250 None 1.0 / 1.7 Not OK
Event. 5 250 Partition 1.0 / 1.6 Not OK
Event. 500 0 None 113.0 / 157.1 Not OK
Event. 500 0 Partition 116.7 / 162.6 Not OK
Event. 500 250 None 35.0 / 111.3 Not OK
Event. 500 250 Partition 40.7 / 111.3 Not OK
FIFO 5 0 None 1.2 / 1.6 OK
FIFO 5 0 Partition 1.3 / 1.6 Not OK
FIFO 5 250 None 1.1 / 1.7 Not OK
FIFO 5 250 Partition 1.2 / 1.5 Not OK
FIFO 500 0 None 114.8 / 162.1 Not OK
FIFO 500 0 Partition 114.8 / 161.4 Not OK
FIFO 500 250 None 31.5 / 106.3 Not OK
FIFO 500 250 Partition 44.3 / 113.4 Not OK

Table 6.3: Consistency results for lin-kv runs (4 Nodes, 60s, No Read Quorum)

Configuration Results
Mode Rate Latency Faults R/W Rate Linearizable?

Event. 5 0 None 1.0 / 1.6 OK
Event. 5 0 Partition 0.7 / 1.1 OK
Event. 5 250 None 1.2 / 1.6 Not OK
Event. 5 250 Partition 0.6 / 1.1 Not OK
Event. 500 0 None 114.1 / 156.0 Not OK
Event. 500 0 Partition 45.0 / 65.8 Not OK
Event. 500 250 None 2.1 / 3.4 Not OK
Event. 500 250 Partition 0.9 / 1.8 Not OK
FIFO 5 0 None 1.2 / 1.8 OK
FIFO 5 0 Partition 1.3 / 1.7 OK
FIFO 5 250 None 0.9 / 1.6 Not OK
FIFO 5 250 Partition 0.4 / 0.9 OK
FIFO 500 0 None 109.9 / 158.5 Not OK
FIFO 500 0 Partition 28.4 / 43.2 Not OK
FIFO 500 250 None 2.1 / 3.6 Not OK
FIFO 500 250 Partition 0.7 / 1.8 Not OK

Table 6.4: Consistency results for lin-kv runs (4 Nodes, 60s, Read Quorum 4)

remaining columns show the measured results: the rate of successfully completed read
and write operations per second and the result of the linearizability checker.

We observe that with a low mean target rate and without network partitions, a run
may result in a linearizable history. With a higher mean target rate and/or a partition
nemesis that isolates network segments randomly from each other, however, consistency
errors are found with a high probability.

99

6. Evaluation

With the same settings, but a full read quorum of 4 nodes, more runs with a low mean
target rate are linearizable Table 6.4. The reason lies in the complete non-availability
during periods of network partition: With no read operations returning values, none of
them can be inconsistent. The mean rate of successfully completed read operations is
significantly reduced by the presence of network partitions.

Identified Problems of the Prototype

This test allowed us to fix minor problems not noticed up until that point. The node’s
internal data store could stay locked and block other operations while waiting for a reply
during the anti-entropy synchronization or fetching a value with a read quorum. Some
internal RPC commands did not reliably cancel after the configured timeout, leaving the
node blocked and unable to process further requests.1

When fetching a value with a read quorum 1 < RQ < N , no further nodes were queried
in case a node of the randomly chosen initial set was not responsive. The read operation
resulted in a timeout instead. Additionally, fetching a value with a read quorum is
only compatible with our implementation of FIFO consistency when the queried replicas
do not vary. Otherwise, the resulting inconsistent view is comparable to a non-sticky
client switching between different nodes. Since support for read quora is not among our
requirements and not well tested, these problems were not unexpected.

6.2.3 Fifo-kv Workload
For more meaningful results, we have to develop a better matching Maelstrom workload
for our implementation. fifo-kv can reuse the existing read/write RPC operations of
lin-kv, but needs a modified generator and a different checker.

Generator

The existing generator searches through every permutation of concurrent operations to
reveal any dormant linearizability problems. For every key to test, randomly mixed
read/write operations are generated with random values. These are then invoked on a
random checker process that happens to be free. To match the goals of our design, we
need to reduce that entropy step-by-step.

First, we remove the non-supported CAS operation and modify the generation of write
operations: Instead of using random numbers, we use strictly increasing values that are
only assigned once. This way, values returned by later read operations can be traced
to the associated write unambiguously, which is a prerequisite for the FIFO/PRAM
checking algorithm [Wei+16].

In addition, concurrent writes from different nodes need to be restricted. We only want to
allow writes to keys “owned” by a specific client/node (due to Non-Requirement NR–6).

1These problems are typical examples of the challenges described in Section 2.2: While the network
works sufficiently well, they can lay dormant for a long time, but cause catastrophic results later.

100

6.2. Testing

Due to the design of Jepsen, that is not straightforward to accomplish. At the time of
generation, it is not yet known which process will be chosen to execute the write. At
the time of execution, however, it is already too late: We can change the key or the
target node of the operation, but the change will not be reflected in the already stored
history. One simple solution is to filter the operations on execution: We can immediately
abort any operation that would write to a key owned by a different node. Apart from
the inefficiency, a drawback of this workaround is that the rate of operations per second
and the availability statistics are not accurately calculated anymore.

FIFO/PRAM Checker

To inspect the written history for inconsistencies, we cannot utilize the Knossos checker
because it is too strict. Instead, we employ the checking algorithm described in Sec-
tion 3.1.1 on page 32 [Wei+16]. Wei has kindly shared a Java implementation [Wei13]
which we could use. We only had to implement an observation file loader for reading the
Extensible Data Notation (EDN) trace file written by Jepsen (history.edn).

To verify our implementation, we extended our prototype’s consistency unit tests to write
out read/write traces, both in Eventual and in FIFO consistency mode sessions. While
read operations only create entries in the mode-specific trace, write operations need to be
included in both—they affect all (later) reads. These traces include the scenarios shown
in Figure 5.5 and Figure 5.6 (pages 74/76). For illustration, we included the two graphs
generated from checking the first scenario: In eventual mode (Figure 6.1a), the algorithm
determines that the graph contains cycles—indicating an inconsistent order of operations
was found—and terminates early. In FIFO mode (Figure 6.1b), in contrast, no cycles
are found. All operations seem to be in FIFO-consistent order and the algorithm only
terminates once it has processed the whole trace.

One problem only became apparent once we tried to check a large trace including simulated
network faults. The checker would crash, being unable to find the corresponding write
operation for a read value. The reason turned out to be quite simple: The write operation
had indeed taken effect, but with the returned write_ok confirmation message being lost,
Maelstrom had logged the result as a timeout error instead. We had to modify the history
loading code to include all write operations that might have taken effect—successfully
completed ones, but operations resulting in an indefinite error, too.

101

6. Evaluation

readinc/fifo_syncup_ev.edn_2

GAWM1

GAWM2

0

1

2

wa_0 wb_0 wa_1 wb_2 wc_0 wb_3

1

wa_2 wc_2

3

wc_1

ra_2

wa_3

24

ra_3rb_3 rc_2

ra_2
[a=[wa_3]
 b=[wb_3]
 c=[wc_2]]

ra_2
[a=[wa_2]
 b=[wb_2]
 c=[wc_0]]

rb_3
[a=[wa_3]

 b=[wb_3,wb_2]
 c=[wc_1,wc_0]]

rb_3
[a=[wa_3]
 b=[wb_3]

 c=[wc_1,wc_0]]

rc_2
[a=[wa_3]
 b=[wb_3]

 c=[wc_2,wc_1,wc_0]]

rc_2
[a=[wa_3]
 b=[wb_3]
 c=[wc_2]]

(a) Eventual mode: Inconsistent trace for node C (graph contains cycles)

readinc/fifo_syncup_fifo.edn_2

GAWM1

GAWM2

0

1

2

wa_0 wb_0 wa_1

rb_0

wb_2

ra_1

wc_0

rb_2

wa_2 wc_1

1

ra_2

wa_3

rc_1

wb_3

ra_3

wc_2

rb_3 rc_2

ra_1
[a=[wa_1]
 b=[wb_0]

 c=[]]

ra_1
[a=[wa_1]
 b=[wb_0]

 c=[]]

rb_0
[a=[wa_1]
 b=[wb_0]

 c=[]]

rb_0
[a=[wa_1]
 b=[wb_0]

 c=[]]

ra_2
[a=[wa_2]
 b=[wb_2]
 c=[wc_0]]

ra_2
[a=[wa_2]
 b=[wb_2]
 c=[wc_0]]

rb_2
[a=[wa_2]
 b=[wb_2]
 c=[wc_0]]

rb_2
[a=[wa_2]
 b=[wb_2]
 c=[wc_0]]

rc_1
[a=[wa_2]
 b=[wb_2]

 c=[wc_1,wc_0]]

rc_1
[a=[wa_2]
 b=[wb_2]
 c=[wc_1]]

ra_3
[a=[wa_3]
 b=[wb_2]
 c=[wc_1]]

ra_3
[a=[wa_3]
 b=[wb_2]
 c=[wc_1]]

rb_3
[a=[wa_3]
 b=[wb_3]
 c=[wc_1]]

rb_3
[a=[wa_3]
 b=[wb_3]
 c=[wc_1]]

rc_2
[a=[wa_3]
 b=[wb_3]
 c=[wc_2]]

rc_2
[a=[wa_3]
 b=[wb_3]
 c=[wc_2]]

(b) FIFO mode: Consistent trace for node C (acyclic graph)

Figure 6.1: FIFO checking graphs for the scenario from Figure 5.5

102

6.2. Testing

Configuration Results
Mode Rate Latency Faults R/W Rate Visibility Latency FIFO?

Event. 5 0 None 1.6 / 0.4 2 / 6 OK
Event. 5 0 Partition 1.7 / 0.4 2 / 6 OK
Event. 5 250 None 1.6 / 0.5 6 / 260 OK
Event. 5 250 Partition 0.8 / 0.3 4 / 259 OK
Event. 500 0 None 309.9 / 37.9 1 / 3 OK
Event. 500 0 Partition 304.8 / 38.3 1 / 3 Not OK
Event. 500 250 None 212.6 / 23.2 34 / 287 OK
Event. 500 250 Partition 171.6 / 23.0 28 / 287 Not OK
Event. 1000 0 None 591.9 / 72.7 1 / 2 OK
Event. 1000 0 Partition 528.8 / 72.5 1 / 2 Not OK
Event. 1000 250 None 295.6 / 30.2 27 / 279 OK
Event. 1000 250 Partition 309.4 / 36.1 18 / 277 Not OK
FIFO 5 0 None 2.0 / 0.4 2 / 7 OK
FIFO 5 0 Partition 1.8 / 0.5 2 / 7 OK
FIFO 5 250 None 1.4 / 0.3 15 / 268 OK
FIFO 5 250 Partition 0.9 / 0.5 2 / 386 OK
FIFO 500 0 None 306.7 / 38.5 1 / 3 OK
FIFO 500 0 Partition 288.3 / 38.4 1 / 3 OK
FIFO 500 250 None 181.6 / 20.0 44 / 296 OK
FIFO 500 250 Partition 168.7 / 20.1 36 / 311 OK
FIFO 1000 0 None 587.1 / 70.6 1 / 3 OK
FIFO 1000 0 Partition 479.7 / 72.2 1 / 2 OK
FIFO 1000 250 None 340.8 / 35.4 25 / 277 OK
FIFO 1000 250 Partition 220.7 / 29.3 7 / 296 OK

Table 6.5: Consistency results for fifo-kv runs (4 Nodes, 60s)

Results (fifo-kv)

Table 6.5 shows the results from varying the same parameters, but using the dedicated
fifo-kv workload. Note the additional column showing the measured median visibility
latency of a written value in milliseconds, both on the writing node itself and as end-to-end
latency on other nodes (which includes network latency).2

As shown by the results, client sessions in eventual consistency mode quickly suffer from
FIFO consistency errors when network faults are injected. Sessions that use FIFO mode,
in contrast, are able to maintain a consistent view for the client. The data consistency
comes at the cost of a slightly increased value for the visibility latency. Interestingly,
while the consistency checks for runs with rate 5 or 500 only took a few seconds at
most, checking the rate 1000 runs can already take several minutes. It is possible
that the checker’s single-threaded implementation is not very efficient. But most likely,
the computational complexity of the algorithm simply results in a steep increase in
computation time for the tens of thousands of operations that are logged in the history.

2The measured latencies allow a comparison of the runs with each other, but general performance
conclusions should not be drawn: The prototype is not optimized for performance, the values were not
measured accurately and do include significant overhead.

103

6. Evaluation

Summary
We evaluated the design qualitatively against the requirements. We found that a data
store module built on that design can deliver the mandated properties in principle.
Requirements such as FR–1 or FR–7, however, cannot be ensured by the data store alone.
They depend on the implementations of the underlying support modules (networking,
durable storage). The non-functional requirements are hard to evaluate for a design
where many implementation details are either left open or entirely out of scope. Fault
Scalability (NFR–2), in particular, depends on not only one, but all components involved
in a system to handle faults well.

In addition, we used simulation testing to measure the prototype’s behavior. We had
to implement a JSON protocol adapter to allow Maelstrom to communicate with our
prototype. We prepared a dedicated fifo-kv workload for Maelstrom with a customized
generator and checker. Instead of all nodes writing to all keys, our generator generates
writes for the keys owned by a node. Instead of generating values randomly, a unique
value is used for each generated write operation. This enabled us to use the Read-
Centric algorithm for the VPC-MU problem (multiple variables, unique values) to check
the recorded traces for compliance with FIFO/PRAM consistency. Finally, we could
execute 24 simulation runs to compare different configurations using our workload. The
simulation results show that sessions in FIFO mode complied to FIFO consistency under
all tested configurations—at the cost of some increased visibility latency in comparison
to eventual sessions. We also found that the complexity of the checking algorithm seems
to quickly reach the limits of computational feasibility. Traces of larger size, e.g., for
long-term tests or load tests, would require splitting them into separate parts that can
be analyzed separately.

104

CHAPTER 7
Conclusion

Fire Detection and Fire Alarm Systems have a safety-critical role and must operate
reliably. Therefore, a decentralized architecture is used to cover large areas or multiple
buildings: Autonomous control units are networked together to form a Distributed
Control Unit. One way for sharing the state with each other—while staying tolerant to
network or node faults—is to use a continuously replicating distributed data store with
key-value semantics. However, there are trade-offs involved concerning data consistency,
availability, and operations latency.

This work was focused on the design of a data store module fit for that purpose. Inspired
by the CAP and PACELC theorems, we wanted to find out whether relaxed consistency
models—which can allow for higher availability and lower latency—can be sufficient for
correct and safe operation on constrained hardware. We gathered requirements from the
product criteria defined by the European Standards series EN 54 and found that the
FIFO consistency model should be adequate for the basic use cases (RQ–1). The model
simplifies application development by preventing write operations performed by the same
node from being observed out-of-order.

After reviewing existing work, we based the design of our system on the node-wide dot-
based clocks framework—which provides eventual consistency using robust asynchronous
schemes for replication and anti-entropy. We extended the framework by an optional
algorithm to ensure FIFO consistent views for client applications. Item priorities can be
taken into account to prevent priority inversion—missing lower-priority items delaying
delivery of high-priority items (RQ–2). In parallel, we used an iterative approach to
build a prototype implementation. This helped to identify and correct problems early:
For instance, we observed that in FIFO mode, the anti-entropy synchronization could
result in an unnecessarily high visibility latency. We resolved the problem by having
peers exchange buffered segments, too.

105

7. Conclusion

Finally, we evaluated the design qualitatively against the requirements and used simulation
testing to measure the prototype’s behavior. The simulation results show that the data
store behaved as expected under network partitions and communications latency. Sessions
in FIFO mode complied to FIFO consistency under all tested configurations—they only
displayed a slightly increased visibility latency in comparison to eventual sessions.

In PACELC [Aba12] terminology, our proposed design belongs to the PA/EL class.
Instead of strict consistency, we prioritize availability during a network partition, and
lower latency during normal operation. It may seem that an important quality is given
up here. However, strict consistency can work against functional safety: Systems based
on Linearizability or Sequential Consistency cannot stay available during some network
failures—they have to pause operations. This includes reading already existing data from
local storage: A system with strict consistency must ensure that the data has not gone
stale, as another node could have written a new version in the meantime.

During the analysis, we found that the existing solution (Section 4.1) also provides FIFO
consistency, but has the drawback that the replication process is synchronous and tightly
coupled between nodes. The scheme can be resource efficient under normal operation,
but minor faults have a risk of causing cascading failures. Its synchronous nature makes
it difficult to contain faults and isolate high-priority functions from problems occurring in
lower-priority functions. In other words: By using asynchronous replication instead, our
design did not have to choose weaker consistency guarantees to improve fault tolerance
and, potentially, availability and throughput. However, the proposed design is not a
complete solution and depends on other modules for lower-level functionality. Solving
the associated problems well is an entirely different effort.

Future Work
A more comprehensive evaluation could help form a better picture, including measuring
the behavior in various load, fault, and recovery scenarios. A formal specification of the
algorithms could offer additional insight and enable verification of the consistency and
safety properties, e.g., with TLA+ [Lam99] or PlusCal [Lam09]. Implementing causal
consistency could ensure safe usage of stateful logical operators in all cases. Dynamic
node membership could simplify deployment and maintenance: As we have seen in
Raft (described in Section 3.3.1), cluster reconfiguration requires careful consensus to
rule out the risk of split-brain scenarios. Advanced strategies for data partitioning and
distribution could improve scalability and reduce resource usage on nodes. And lastly,
with the growing interconnectedness of systems, safety increasingly depends on security.
Authentication and validation of received data are a prerequisite for guaranteeing the
integrity of the data store. The trust model from peer-to-peer computing—where there
is no single central authority and the peers do not trust each other—could be useful in
an embedded context, too.

106

APPENDIX A
NDC Framework Extensions

In this supplemental chapter, we include pseudocode for our extensions to the algorithms
of the node-wide dot-based clocks (NDC) framework [Gon+17, p. 199] by Gonçalves
et al.

A.1 Priority-Aware FIFO Algorithm
While the base design only provides eventual consistency to its clients, these extensions
maintain a separate FIFO store for every supported minimum priority level. Any updates
that are not yet FIFO compliant are kept in a separate segment buffer that is not visible
to clients. For a general overview, see Section 5.3 on pages 69–81.

A.1.1 Data Structures
The NDC framework keeps five distinct data structures on a data store node i [Gon+17,
p. 198]. In addition to this original set for eventual consistency, we keep a separate set
for every minimal FIFO priority level p we want to be able to answer client queries for:
Node Clock (NCi,p), Dot-Key Map (DKM i,p), Watermark (WM i,p), Non-Stripped Keys
(NSKi,p) and Storage (ST i,p). The contents of these data structures correspond to the
primary segments that are always kept FIFO compliant.

In addition, we need storage for the buffered partial segments. For every node ID, BSi,p

contains a separate set of segments. Each of these segment covers a non-overlapping
range of contiguous update IDs and contains a mapping of keys to objects. It is similar
to the structure of ST i,p, but updates issued by different source nodes are kept strictly
separate instead of being merged together. The reason is that the FIFO condition is
evaluated by node ID and they may become compliant at different times. BSi,p is kept
normalized, i.e., the segments are sorted for fast access and adjacent segments are merged
together for efficient storage.

107

A. NDC Framework Extensions

Using the notation from Gonçalves et al., the structure of the partial segments buffer
can be described as:

BS
.= I ↪→ (R × (K ↪→ O))⏞ ⏟⏟ ⏞

Partial Segments

With R being non-overlapping intervals of update IDs and O being the NDC objects,
extended with a priority/distance map DV per value version:

O
.= ((I × N)⏞ ⏟⏟ ⏞

Dots

↪→ (V × (P ↪→ N)⏞ ⏟⏟ ⏞
DV

)) × (I ↪→ N)⏞ ⏟⏟ ⏞
CC

And the following symbols for sets:

• I . . . Node identifiers
• N . . . Update identifiers (natural numbers)
• K . . . Keys
• V . . . Values
• P . . . Priority levels

A.1.2 FIFO Hooks
When the data store receives an updated object from a client or replication operation,
it is applied using the update function (Algorithm A.1). We rename the existing
NDC function to eventual_update and wrap it to call the priority-specific FIFO
fifo_update hook once for every priority level. The fetch object fetching function
and the sync_clock and sync_repair procedures for anti-entropy synchronization
are wrapped in a similar fashion to collect from or apply to either the eventual store or
the priority-specific FIFO stores.

A.1.3 Replication
Update Processing

The fifo_update procedure considers and merges or buffers a newly received update
(Algorithm A.2). In case the key’s assigned priority level is below the minimum priority
for the store, the update is not relevant and can safely be ignored. If allowed by the FIFO
condition, i.e., merging would not create gaps in the node clock (fifo_can_merge),
the object with all version values is merged immediately into the primary segment. This
is the common case in the absence of dropped or reordered updates.

Otherwise, a partial segment is constructed for every separate version value contained in
the object and added to the partial segment buffer using fifo_buffer_segment. For
the lowest priority level, the range covers only the one update ID itself. For higher levels,
it covers all update IDs since the predecessor of equal-or-higher priority. Afterwards,
fifo_check_segments is called to check whether now, any of the partial segments
from that node can be merged.

108

A.1. Priority-Aware FIFO Algorithm

Algorithm A.1: Required Hooks at Node i

1 Function update(Key k, Object o):
2 o := eventual_update(k, o)
3 for p ∈ P do fifo_updatep(k, o)
4 return o

5 Function fetch(Key k, Priority p):
6 if p = ∅ then
7 o := eventual_fetch(k)
8 else
9 o := fifo_fetchp(k)

10 return o

11 Function sync_clock(SyncRequest req):
12 rep[∅] := eventual_sync_clock(req[∅])
13 for p ∈ P do
14 rep[p] := fifo_sync_clockp(req[p])
15 return rep

16 Procedure sync_repair(SyncResponse rep):
17 eventual_sync_repair(rep[∅])
18 for p ∈ P do fifo_sync_repairp(rep[p])

Algorithm A.2: FIFO Update Processing at Node i, Priority Store p

1 Procedure fifo_update(Key k, Object o):
// ignore updates for lower-priority keys

2 if prio(k) ≤ p then return
// short circuit the common case: try to merge straight in

3 if {(n, c, v, dv) ∈ o | fifo_can_merge(n,fifo_get_range(c, dv))} then
4 fifo_merge(k, o)
5 return

// buffer a partial segment for each version value
6 for (n, c, v, dv) ∈ o do
7 o′ := split(o, n, c)
8 segment := (fifo_get_range(c, dv), k, o′)
9 fifo_buffer_segment(n, segment)

10 fifo_check_segments(n)

11 Function fifo_can_merge(NodeId n, Range r):
// FIFO condition: no gaps in between node clock and range

12 return min(r) ≤ base(NCi,p) + 1
13 Function fifo_get_range(UpdateId c, PriorityDistance dv):

// range covers update ID and all since the predecessor
14 predecessor := c − dv[p]
15 return [predecessor + 1, c]

109

A. NDC Framework Extensions

Algorithm A.3: FIFO Segment Operations at Node i, Priority Store p

1 Procedure fifo_buffer_segment(NodeId n, Segment s):
2 BSi,p[n] := BSi,p[n] ∪ s

// sort and merge adjacent segments (implementation omitted)
3 normalize(BSi,p)

4 Procedure fifo_check_segments(NodeId n):
// merge partial segments with no gap left

5 while fifo_can_merge(n, range(min(BSi,p[n]))) do
6 (r, k, o) := pop(min(BSi,p[n]))
7 fifo_merge(k, o)

8 Procedure fifo_merge(Key k, Object o):
// add all update IDs from range to node clock

9 for (n, c, v, dv) ∈ o do
10 covered := fifo_get_range(c, dv)
11 NCi,p[n] := NCi,p[n] ∪ covered

// merge into the primary segment
12 store(k, o)

Partial and Primary Segment Operations

Whenever a partial segment is added to the buffer within fifo_buffer_segment,
the buffers contents are normalized. The segments are sorted by the first update
ID of their range and adjacent segments are merged together. The ordering allows
fifo_check_segments to efficiently query and test the first partial segment from the
buffer. If no gaps remain between node clock and the first update ID of the range, it can
be removed and merged into the primary segment using fifo_update. In contrast to
the update function from the NDC framework, we first have to add all covered update
IDs to the node clock. Otherwise, gaps would remain for the never-seen updates of lower
priority levels and prevent the FIFO store from making progress.

A.1.4 Anti-Entropy

Sync Clock

The NDC anti-entropy algorithm runs as a periodic background task. The node A
chooses a random peer node B to sync with and sends its node clock. B receives the
node clock, and within the sync_clock function, computes the differences to its own
clock to return any missing objects for node A. For the FIFO specific data store, we
wrap this function as fifo_sync_clock and run it once for every priority level. We
extend the response to include partial segments from the buffered segments cache BSi,p.
We include any segment whose range covers update IDs missing from the peer’s node
clock.

110

A.1. Priority-Aware FIFO Algorithm

Algorithm A.4: FIFO Anti-Entropy at Node i, Priority Store p

1 Function fifo_sync_clock(NodeId j, NodeClock NCj,p):
2 (i, NCi,p, O) := sync_clock(j, NCj,p)

// include partial FIFO segments missing from peer clock
3 for (n, s) ∈ BSi,p do
4 if max(range(s)) > base(NCj,p[n]) then
5 S := S ∪ {n, s}
6 return (i, NCi,p, O, S)
7 Procedure fifo_sync_repair(NodeId j, NodeClock NCj,p, KeyObjects O,

PartialSegments S):
// call NDC sync_repair to merge in the received objects

8 sync_repair(j, NCj,p, O)

// merge FIFO peer clock to close any gaps in our clock
9 for {n ∈ NCi,p | n ∈ peers(i)} do

10 NCi,p[n] := NCi,p[n] ∪ NCj,p[n]
// add received partial segments to our buffer

11 for {(n, s) ∈ S | n ∈ peers(i)} do
12 fifo_buffer_segment(n, s)
13 fifo_check_segments(n)

Sync Repair

Upon receiving the response, node A calls the sync_repair procedure. We wrap this
function as fifo_sync_repair and run it once for every priority level. First, we call
the sync_repair procedure to store the received objects and update all data structures.
In contrast to the original algorithm, we can then merge the node clock entries for all
nodes instead of only for the peer node. Since the sending side is also a FIFO compliant
data store, we can trust (and verify) that the entries contain no gaps. Additionally, we
add the received partial segments to our buffer and check whether any of them are now
gap-free and can be merged into the primary segment.

111

Overview of Generative AI Tools
Used

“I hereby declare that, with the exception of the written text included in the
appendix section, no generative AI tools were used in the creation of this
thesis. Furthermore, no substantial text passages were adopted from any
generative AI tools.
This declaration includes the following prompt and the application used to
generate the aforementioned text in the appendix section:
Prompt: Write a short declaration for my thesis in which I declare that,
with exception of this written text in the appendix section, no generative
AI tools were used and no substantial text passages were adopted from such
tools. Include this prompt and the application used, including the product
name and version number/date.
Application: OpenAI’s ChatGPT, based on the GPT-4 architecture, ac-
cessed in August 2024.” ([Ope24])

113

List of Figures

2.1 The dependability tree . 7
2.2 The fundamental chain of threats to dependability 8
2.3 Example topology of a networked FDAS 10
2.4 The Automation Pyramid . 11
2.5 Communication artifacts in unreliable, asynchronous networks 16
2.6 Venn diagram illustrating the CAP theorem 21
2.7 Flowchart illustrating the PACELC decision tree 21
2.8 Relationship hierarchy between consistency models 23
2.9 Example timeline of a dirty read . 29
2.10 Example timeline of a lost update . 29

3.1 Examples of write sets that are causal cuts 35
3.2 Structure of a Merkle Search Tree . 44
3.3 Bitmap Version Vector . 46

5.1 Layered Architecture: Platform for the Application 64
5.2 Replicated Data Partitions . 65
5.3 FIFO replication data at node B . 71
5.4 Flowchart showing FIFO update processing 72
5.5 Lagging FIFO values without primary segment sync 74
5.6 Lagging FIFO values without synchronization of partial segments 76
5.7 FIFO Priority/Predecessor Distances . 79
5.8 FIFO Priority/Predecessor Vector Representations 80
5.9 Partial FIFO segments per priority-specific store 80

6.1 FIFO checking graphs for the scenario from Figure 5.5 102

115

List of Tables

2.1 EN 54 standard series . 6

3.1 Complexity classes for the VPC problem variants 33
3.2 Safety measures in Safety over EtherCAT 39

6.1 Summary of functional requirements . 94
6.2 Summary of non-functional requirements 96
6.3 Consistency results for lin-kv runs (4 Nodes, 60s, No Read Quorum) . . . 99
6.4 Consistency results for lin-kv runs (4 Nodes, 60s, Read Quorum 4) 99
6.5 Consistency results for fifo-kv runs (4 Nodes, 60s) 103

117

Acronyms

ACID atomicity, consistency, isolation, durability. 28

ACK Acknowledgment. 82

API application programming interface. 64, 66, 70, 77, 96, 97

BVV bitmap version vector. 45, 46, 67, 75, 82

CAS compare-and-swap. 17, 98, 100

CIE Control and Indicating Equipment. 6, 10, 11, 55, 63

CRC cyclic redundancy check. 38, 60

CRDT conflict-free replicated data type. 24, 25, 43, 44, 70

DAG directed, acyclic graph. 33

DCC dotted causal container. 46

DCU Distributed Control Unit. 1, 10, 11, 49, 54, 84, 105

DDS distributed data store. 1, 2, 17, 31, 56, 64, 65, 89, 105

DKM Dot-Key Map. 82, 84, 85, 95, 107

DS distributed system. 5

DST Daylight Saving Time. 16

DVV dotted version vector. 46, 47, 71, 73, 84

EDN Extensible Data Notation. 101

ERP Enterprise Resource Planning. 11

EtherCAT Ethernet for Control Automation Technology. 38

119

FACP Fire Alarm Control Panel. 6

FACU Fire Alarm Control Unit. 6, 54

FDAS Fire Detection and Fire Alarm System. 1–5, 7–10, 12, 49, 54, 61–63, 68, 83, 84,
93, 105

FIFO first in, first out. 27, 32, 36, 51, 53, 57, 58, 62, 66, 70–73, 75, 78–81, 84–86, 89,
92–95, 100, 101, 103–108, 110, 111

FSoE FailSafe over EtherCAT. 38

HAT Highly Available Transaction. 31

HMI Human Machine Interface. 12

ICS industrial control system. 12

IoT Internet of Things. 8

IP Internet Protocol. 37, 50

IPsec Internet Protocol Security. 60

IT information technology. 11

JSON JavaScript Object Notation. 97, 98, 104

KV key-value. 39, 43, 44, 46, 91, 98, 105

LAN local area network. 50

LSM log-structured merge tree. 42

MES Management Execution Systems. 11

MST Merkle Search Tree. 43–45

MTTR Mean-Time-To-Recovery. 39

MVCC multiversion concurrency control. 39

NC Node Clock. 71, 79, 82, 84, 85, 107

NDC node-wide dot-based clocks. 46, 67–73, 79, 81, 82, 84–86, 89, 92–96, 105, 107, 108,
110

NSK Non-Stripped Keys. 85, 107

120

NTP Network Time Protocol. 16

OCC optimistic concurrency control. 39

OT operational technology. 12

PLC programmable logic controller. 12, 63

PRAM Pipelined RAM. 27, 32, 33, 51, 57, 62, 70, 100, 104

QoS quality of service. 78

RDBMS relational database management system. 44

RPC remote procedure call. 68, 82, 97, 98, 100

SCADA Supervision, Control and Data Acquisition. 12

SIL Safety Integrity Level. 38

ST Storage. 70, 79, 85, 95, 107

TCP Transmission Control Protocol. 37, 50, 60, 65, 73, 78, 83

TLS Transport Layer Security. 60

UDP User Datagram Protocol. 60, 65, 78

VLAN virtual local area network. 78

VPC Verifying Pipelined-RAM Consistency. 32, 104

VPN virtual private network. 60

WM Watermark. 82, 84, 85, 95, 96, 107

121

Bibliography

[Aba12] Daniel Abadi. “Consistency Tradeoffs in Modern Distributed Database Sys-
tem Design: CAP is Only Part of the Story”. In: Computer 45.2 (Feb. 2012),
pp. 37–42. doi: 10.1109/mc.2012.33. url: https://doi.org/10.
1109/mc.2012.33.

[ALR01] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. “Fundamental
concepts of dependability”. In: Department of Computing Science Technical
Report Series (2001).

[AT19] Alex Auvolat and François Taïani. “Merkle search trees: Efficient state-based
CRDTs in open networks”. In: 2019 38th Symposium on Reliable Distributed
Systems (SRDS). IEEE. 2019, pp. 221–22109.

[Ath17a] Anish Athalye. Porcupine: A fast linearizability checker in Go [Software].
2017. url: https://github.com/anishathalye/porcupine (visited
on 11/02/2023).

[Ath17b] Anish Athalye. Testing Distributed Systems for Linearizability. 2017. url:
https://anishathalye.com/testing-distributed-systems-
for-linearizability/ (visited on 11/02/2023).

[Baia] Peter Bailis. HAT, not CAP: Introducing Highly Available Transactions.
url: http://www.bailis.org/blog/hat-not-cap-introducing-
highly-available-transactions/ (visited on 10/19/2023).

[Baib] Peter Bailis. Stickiness and Client-Server Session Guarantees. url: http:
//www.bailis.org/blog/stickiness- and- client- server-
session-guarantees/ (visited on 08/31/2023).

[Bai+12] Peter Bailis et al. “The potential dangers of causal consistency and an explicit
solution”. In: Proceedings of the Third ACM Symposium on Cloud Computing.
2012, pp. 1–7.

[Bai+13a] Peter Bailis et al. “Bolt-on causal consistency”. In: Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data. Associa-
tion for Computing Machinery (ACM), June 2013. doi: 10.1145/2463676.
2465279. url: https://doi.org/10.1145/2463676.2465279.

123

https://doi.org/10.1109/mc.2012.33
https://doi.org/10.1109/mc.2012.33
https://doi.org/10.1109/mc.2012.33
https://github.com/anishathalye/porcupine
https://anishathalye.com/testing-distributed-systems-for-linearizability/
https://anishathalye.com/testing-distributed-systems-for-linearizability/
http://www.bailis.org/blog/hat-not-cap-introducing-highly-available-transactions/
http://www.bailis.org/blog/hat-not-cap-introducing-highly-available-transactions/
http://www.bailis.org/blog/stickiness-and-client-server-session-guarantees/
http://www.bailis.org/blog/stickiness-and-client-server-session-guarantees/
http://www.bailis.org/blog/stickiness-and-client-server-session-guarantees/
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2463676.2465279

[Bai+13b] Peter Bailis et al. “Highly available transactions”. In: Proceedings of the
VLDB Endowment 7.3 (Nov. 2013), pp. 181–192. doi: 10.14778/2732232.
2732237. url: https://doi.org/10.14778/2732232.2732237.

[BD13] Philip A. Bernstein and Sudipto Das. “Rethinking eventual consistency”.
In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’13. New York, New York, USA: Association
for Computing Machinery, 2013, pp. 923–928. isbn: 9781450320375. doi:
10.1145/2463676.2465339. url: https://doi.org/10.1145/
2463676.2465339.

[BEK14] Carsten Bormann, Mehmet Ersue, and Ari Keränen. Terminology for Constrained-
Node Networks. RFC 7228. May 2014. doi: 10.17487/RFC7228. url:
https://www.rfc-editor.org/info/rfc7228.

[Bre00] Eric A. Brewer. “Towards robust distributed systems (abstract)”. In: PODC:
Proceedings of the nineteenth annual ACM symposium on Principles of
distributed computing. ACM, July 2000. doi: 10.1145/343477.343502.
url: https://doi.org/10.1145/343477.343502.

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. “System Deadlocks”. In:
ACM Comput. Surv. 3.2 (June 1971), pp. 67–78. issn: 0360-0300. doi: 10.
1145/356586.356588. url: https://doi.org/10.1145/356586.
356588.

[CS21] J. Chroboczek and D. Schinazi. The Babel Routing Protocol. RFC 8966. RFC
Editor, Jan. 2021.

[EN 05a] EN 54–10:2002+A1:2005. Fire detection and fire alarm systems—Part 10:
Flame detectors—Point detectors. 2005.

[EN 05b] EN 54–11:2001+A1:2005. Fire detection and fire alarm systems—Part 11:
Manual call point. 2005.

[EN 06] EN 54–2:1997+A1:2006. Fire detection and fire alarm systems—Part 2:
Control and indicating equipment. 2006.

[EN 08] EN 54–24:2008. Fire detection and fire alarm systems—Part 24: Component
of voice alarm systems—Loudspeakers. 2008.

[EN 10] EN 54–23:2010. Fire detection and fire alarm systems—Part 23: Fire alarm
devices—Visual alarm devices. 2010.

[EN 18a] EN 54–5:2017+A1:2018. Fire detection and fire alarm systems—Part 5: Heat
detectors—Point heat detectors. 2018.

[EN 18b] EN 54–7:2018. Fire detection and fire alarm systems—Part 7: Smoke detectors—
Point smoke detectors using scattered light, transmitted light or ionization.
2018.

[EN 19a] EN 54–13:2017+A1:2019. Fire detection and fire alarm systems—Part 13:
Compatibility and connectability assessment of system components. 2019.

124

https://doi.org/10.14778/2732232.2732237
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.17487/RFC7228
https://www.rfc-editor.org/info/rfc7228
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/356586.356588
https://doi.org/10.1145/356586.356588
https://doi.org/10.1145/356586.356588
https://doi.org/10.1145/356586.356588

[EN 19b] EN 54–3:2014+A1:2019. Fire detection and fire alarm systems—Part 3: Fire
alarm devices—Sounders. 2019.

[EN 21] EN 54–1:2021. Fire detection and fire alarm systems—Part 1: Introduction.
2021.

[Etc] etcd: Raft library for maintaining a replicated state machine [Software]. url:
https://github.com/etcd-io/raft (visited on 11/13/2023).

[FKK15] Thomas Frühwirth, Lukas Krammer, and Wolfgang Kastner. “Dependability
Demands and State of the Art in the Internet of Things”. In: 2015 IEEE
20th Conference on Emerging Technologies & Factory Automation (ETFA).
2015, pp. 1–4. doi: 10.1109/ETFA.2015.7301592.

[GL02] Seth Gilbert and Nancy Lynch. “Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services”. In: ACM SIGACT
News 33.2 (June 2002), pp. 51–59. doi: 10.1145/564585.564601. url:
https://doi.org/10.1145/564585.564601.

[Gon+15] Ricardo Gonçalves et al. “Concise server-wide causality management for
eventually consistent data stores”. In: Distributed Applications and Interop-
erable Systems: 15th IFIP WG 6.1 International Conference, DAIS 2015,
Held as Part of the 10th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015,
Proceedings 15. Springer. 2015, pp. 66–79.

[Gon16] Ricardo Jorge Tomé Gonçalves. DottedDB: A Distributed Key-Value Store
with “Server Wide Clocks” [Software]. 2016. url: https://github.com/
ricardobcl/DottedDB (visited on 03/27/2024).

[Gon+17] Ricardo Jorge Tomé Gonçalves et al. “DottedDB: Anti-Entropy without
Merkle Trees, Deletes without Tombstones”. In: 2017 IEEE 36th Symposium
on Reliable Distributed Systems (SRDS). 2017, pp. 194–203. doi: 10.1109/
SRDS.2017.28.

[Gro] EtherCAT Technology Group. Safety over EtherCAT (FSoE) Introduc-
tion and Overview. url: https://www.ethercat.org/download/
documents/Safety_over_EtherCAT_Overview.pdf (visited on
01/11/2024).

[Hev+04] Hevner et al. “Design Science in Information Systems Research”. In: MIS
Quarterly 28.1 (2004), p. 75. doi: 10.2307/25148625. url: https:
//doi.org/10.2307/25148625.

[HK15] Alex Horn and Daniel Kroening. “Faster linearizability checking via P-
compositionality”. In: (2015). arXiv: 1504.00204 [cs.DC].

[Jac88] V. Jacobson. “Congestion Avoidance and Control”. In: SIGCOMM Comput.
Commun. Rev. 18.4 (Aug. 1988), pp. 314–329. issn: 0146-4833. doi: 10.
1145/52325.52356. url: https://doi.org/10.1145/52325.
52356.

125

https://github.com/etcd-io/raft
https://doi.org/10.1109/ETFA.2015.7301592
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://github.com/ricardobcl/DottedDB
https://github.com/ricardobcl/DottedDB
https://doi.org/10.1109/SRDS.2017.28
https://doi.org/10.1109/SRDS.2017.28
https://www.ethercat.org/download/documents/Safety_over_EtherCAT_Overview.pdf
https://www.ethercat.org/download/documents/Safety_over_EtherCAT_Overview.pdf
https://doi.org/10.2307/25148625
https://doi.org/10.2307/25148625
https://doi.org/10.2307/25148625
https://arxiv.org/abs/1504.00204
https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/52325.52356

[KF09] Ingmar Kellner and Ludger Fiege. “Viewpoints in Complex Event Pro-
cessing: Industrial Experience Report”. In: Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems. DEBS ’09.
New York, NY, USA: Association for Computing Machinery, 2009. isbn:
9781605586656. doi: 10.1145/1619258.1619271. url: https://doi.
org/10.1145/1619258.1619271.

[Kina] K. Kingsbury. Jepsen: Consistency Models. url: https://jepsen.io/
consistency (visited on 07/24/2023).

[Kinb] Kyle Kingsbury. Maelstrom: A workbench for writing toy implementations
of distributed systems [Software]. url: https://github.com/jepsen-
io/maelstrom (visited on 08/15/2024).

[Kle17] Martin Kleppmann. Designing data-intensive applications. Sebastopol, CA:
O’Reilly Media, Mar. 2017.

[KPa] K. Kingsbury and K. Patella. Jepsen: A framework for distributed systems
verification, with fault injection [Software]. url: https://github.com/
jepsen-io/jepsen (visited on 08/15/2024).

[KPb] Kyle Kingsbury and K. Patella. Knossos: Verifies the linearizability of ex-
perimentally accessible histories [Software]. url: https://github.com/
jepsen-io/knossos (visited on 08/15/2024).

[Lam09] Leslie Lamport. “The PlusCal Algorithm Language”. In: Theoretical Aspects
of Computing-ICTAC 2009, Martin Leucker and Carroll Morgan editors.
Lecture Notes in Computer Science, number 5684, 36-60. (Jan. 2009). url:
https://www.microsoft.com/en-us/research/publication/
pluscal-algorithm-language/.

[Lam78] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed
system”. In: Communications of the ACM 21.7 (July 1978), pp. 558–565.
doi: 10.1145/359545.359563. url: https://doi.org/10.1145/
359545.359563.

[Lam98] Leslie Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput. Syst.
16.2 (May 1998), pp. 133–169. issn: 0734-2071. doi: 10.1145/279227.
279229. url: https://doi.org/10.1145/279227.279229.

[Lam99] Leslie Lamport. “Specifying Concurrent Systems with TLA+”. In: Calcu-
lational System Design (Apr. 1999), pp. 183–247. url: https://www.
microsoft.com/en- us/research/publication/specifying-
concurrent-systems-tla/.

[Lin] Linux Kernel (6.10.2). url: https://git.kernel.org/pub/scm/
linux/kernel/git/stable/linux.git/tree/?h=v6.10.2 (visited
on 07/20/2024).

[Low17] Gavin Lowe. “Testing for linearizability”. In: Concurrency and Computation:
Practice and Experience 29.4 (2017), e3928.

126

https://doi.org/10.1145/1619258.1619271
https://doi.org/10.1145/1619258.1619271
https://doi.org/10.1145/1619258.1619271
https://jepsen.io/consistency
https://jepsen.io/consistency
https://github.com/jepsen-io/maelstrom
https://github.com/jepsen-io/maelstrom
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/knossos
https://github.com/jepsen-io/knossos
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v6.10.2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v6.10.2

[LPS10] Mihai Letia, Nuno Preguiça, and Marc Shapiro. “Consistency without Concur-
rency Control in Large, Dynamic Systems”. In: SIGOPS Oper. Syst. Rev. 44.2
(Apr. 2010), pp. 29–34. issn: 0163-5980. doi: 10.1145/1773912.1773921.
url: https://doi.org/10.1145/1773912.1773921.

[LS88] Richard J. Lipton and Jonathan Sandberg. PRAM: A scalable shared memory.
Tech. rep. CS-TR-180-88. Princeton University, Department of Computer
Science, Sept. 1988.

[Mer87] Ralph C. Merkle. “A digital signature based on a conventional encryption
function”. In: Conference on the theory and application of cryptographic
techniques. Springer. 1987, pp. 369–378.

[Net] NetMQ: A 100% native C# port of the lightweight messaging library ZeroMQ
[Software]. url: https://github.com/zeromq/netmq (visited on
05/01/2024).

[Nie+18] Matthias Niedermaier et al. “Efficient Passive ICS Device Discovery and Iden-
tification by MAC Address Correlation”. In: Electronic Workshops in Com-
puting. BCS Learning & Development, Aug. 2018. doi: 10.14236/ewic/
ics2018.3. url: https://doi.org/10.14236/ewic/ics2018.3.

[Nun] NUnit: A unit-testing framework for all .NET languages [Software]. url:
https://nunit.org/ (visited on 06/15/2024).

[O’N+96] Patrick O’Neil et al. “The log-structured merge-tree (LSM-tree)”. In: Acta
Informatica 33.4 (June 1996), pp. 351–385. issn: 1432-0525. doi: 10.1007/
s002360050048. url: http://dx.doi.org/10.1007/s002360050048.

[OO14] Diego Ongaro and John Ousterhout. “In Search of an Understandable
Consensus Algorithm”. In: 2014 USENIX Annual Technical Conference
(USENIX ATC 14). Philadelphia, PA: USENIX Association, June 2014,
pp. 305–319. isbn: 978-1-931971-10-2. url: https : / / www . usenix .
org/conference/atc14/technical-sessions/presentation/
ongaro.

[Ope24] OpenAI. ChatGPT. 2024. url: https://chatgpt.com/share/0bcc3401-
b69c-4444-b919-1adb2a9e8181 (visited on 08/01/2024).

[Pet19] Alex Petrov. Database Internals: A deep dive into how distributed data
systems work. O’Reilly Media, 2019.

[Proa] protobuf-net: Protocol Buffers library for idiomatic .NET [Software]. url:
https://github.com/protobuf-net/protobuf-net (visited on
05/01/2024).

[Prob] Protocol Buffers: Base 128 Varint Encoding. url: https://protobuf.
dev/programming-guides/encoding/#varints (visited on 06/03/2024).

[SRC84] Jerome H Saltzer, David P Reed, and David D Clark. “End-to-end arguments
in system design”. In: ACM Transactions on Computer Systems (TOCS) 2.4
(1984), pp. 277–288.

127

https://doi.org/10.1145/1773912.1773921
https://doi.org/10.1145/1773912.1773921
https://github.com/zeromq/netmq
https://doi.org/10.14236/ewic/ics2018.3
https://doi.org/10.14236/ewic/ics2018.3
https://doi.org/10.14236/ewic/ics2018.3
https://nunit.org/
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
http://dx.doi.org/10.1007/s002360050048
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://chatgpt.com/share/0bcc3401-b69c-4444-b919-1adb2a9e8181
https://chatgpt.com/share/0bcc3401-b69c-4444-b919-1adb2a9e8181
https://github.com/protobuf-net/protobuf-net
https://protobuf.dev/programming-guides/encoding/#varints
https://protobuf.dev/programming-guides/encoding/#varints

[Sto12] Christian Storm. “Fault Tolerance in Distributed Computing”. In: Specifica-
tion and Analytical Evaluation of Heterogeneous Dynamic Quorum-Based
Data Replication Schemes. Wiesbaden: Vieweg+Teubner Verlag, 2012, pp. 13–
79. isbn: 978-3-8348-2381-6. doi: 10.1007/978-3-8348-2381-6_2.
url: https://doi.org/10.1007/978-3-8348-2381-6_2.

[Syn] Syncthing Block Exchange Protocol. 2013. url: https://docs.syncthing.
net/specs/bep-v1.html (visited on 03/27/2024).

[Ter+94] D.B. Terry et al. “Session guarantees for weakly consistent replicated data”.
In: Proceedings of 3rd International Conference on Parallel and Distributed
Information Systems. 1994, pp. 140–149. doi: 10.1109/PDIS.1994.
331722.

[TS06] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Prin-
ciples and Paradigms (2nd Edition). USA: Prentice-Hall, Inc., 2006. isbn:
0132392275.

[TS99] Ulrich Tietze and Christoph Schenk. Halbleiter-Schaltungstechnik. 11th ed.
Springer-Verlag, 1999.

[TW10] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. 5th ed.
Upper Saddle River, NJ: Pearson, Sept. 2010. isbn: 978-0-13-212695-3.

[Vog08] Werner Vogels. “Eventually Consistent: Building Reliable Distributed Sys-
tems at a Worldwide Scale Demands Trade-Offs Between Consistency and
Availability.” In: Queue 6.6 (Oct. 2008), pp. 14–19. issn: 1542-7730. doi:
10.1145/1466443.1466448. url: https://doi.org/10.1145/
1466443.1466448.

[VV15] Paolo Viotti and Marko Vukolic. “Consistency in Non-Transactional Dis-
tributed Storage Systems”. In: CoRR abs/1512.00168 (2015). arXiv: 1512.
00168. url: http://arxiv.org/abs/1512.00168.

[Wei13] Hengfeng Wei. PRAM consistency checking in the context of distributed
shared memory systems [Software]. 2013. url: https://github.com/
hengxin/ConsistencyChecking (visited on 08/15/2024).

[Wei+16] Hengfeng Wei et al. “Verifying Pipelined-RAM Consistency over Read/Write
Traces of Data Replicas”. In: IEEE Transactions on Parallel and Distributed
Systems 27.5 (2016), pp. 1511–1523. doi: 10.1109/TPDS.2015.2453985.

[Zho+21] Jingyu Zhou et al. “FoundationDB: A distributed unbundled transactional
key value store”. In: Proceedings of the 2021 International Conference on
Management of Data. 2021, pp. 2653–2666.

128

https://doi.org/10.1007/978-3-8348-2381-6_2
https://doi.org/10.1007/978-3-8348-2381-6_2
https://docs.syncthing.net/specs/bep-v1.html
https://docs.syncthing.net/specs/bep-v1.html
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1145/1466443.1466448
https://arxiv.org/abs/1512.00168
https://arxiv.org/abs/1512.00168
http://arxiv.org/abs/1512.00168
https://github.com/hengxin/ConsistencyChecking
https://github.com/hengxin/ConsistencyChecking
https://doi.org/10.1109/TPDS.2015.2453985

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement and Motivation
	Aim of the Thesis and Expected Results
	Methodology

	Background
	Fire Detection and Fire Alarm Systems
	Distributed Systems
	Consistency Models

	Related Work
	Consistency Models
	Network and Safety Architecture
	Consensus and Replication

	Requirements
	Existing Solution
	Requirements Analysis

	System Design
	System Model
	Dot-Based Clocks Framework
	Consistency Models
	Delivery Tracking
	Fault Detection
	Storage Durability and Crash Recovery
	Large Value Objects
	Networking Layer Improvements

	Evaluation
	Qualitative Analysis
	Testing

	Conclusion
	NDC Framework Extensions
	Priority-Aware FIFO Algorithm

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Acronyms
	Bibliography

