
Comprehensive Visualizations for
the Historical Analysis of Issue
Tracking Systems in Software

Engineering Education

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Markus Lupinek, BSc
Matrikelnummer 11776820

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 10. Jänner 2025
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Comprehensive Visualizations for
the Historical Analysis of Issue
Tracking Systems in Software

Engineering Education

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Markus Lupinek, BSc
Registration Number 11776820

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, 10th January, 2025
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Comprehensive Visualizations for
the Historical Analysis of Issue
Tracking Systems in Software

Engineering Education

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Markus Lupinek, BSc
Matrikelnummer 11776820

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 10. Jänner 2025

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Markus Lupinek, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Jänner 2025
Markus Lupinek

vii

Danksagung

Ich möchte meinem Betreuer meinen herzlichen Dank aussprechen. Ohne seine Unter-
stützung wäre der erfolgreiche Abschluss dieser Arbeit nicht möglich gewesen. Außerdem
danke ich den Teilnehmern der Interviewrunden für ihre Zeit und ihre wertvollen An-
merkungen. Ebenso danke ich meiner Familie und meinen Freunden für ihre ständige
Unterstützung während meines Studiums.

ix

Acknowledgements

I would like to express my sincere gratitude to my supervisor. Without his support, the
successful completion of this work would not have been possible. I also want to thank
the participants of the interviews for their time and valuable feedback. Additionally, I
am grateful to my family and friends for their constant support throughout my studies.

xi

Kurzfassung

Die Softwareentwicklung und ihre Methoden haben sich in den letzten Jahren weiterent-
wickelt. So hat sich in der Vergangenheit bemerkbar gemacht, dass Systeme zur Erfassung
von Tickets für Funktionsanfragen und Softwarefehler sowie Plattformen zur Verteilung
des Quellcodes an Beliebtheit gewonnen haben. Es ist daher nicht verwunderlich, das
vermehrt Softwareengineering-Lehrveranstaltungen auf solche Systeme zurückgreifen
und diese für unterschiedliche Zwecke nutzen. Während der Entwicklung eines Softwa-
reprojekts kann sich in diesen Systemen, auch als Software-Repositories bekannt, eine
Vielzahl an Daten ansammeln. Diese Daten stellen eine wahre Goldmine an Wissen dar,
welche eine solide Entscheidungsgrundlage bieten kann. Allerdings erschwert die Tatsache,
dass diese Information nur in textuelle Form zu Verfügung stehen, den Analyseprozess
erheblich. Visualisierungen haben sich bei der Interpretation solcher Daten als hilfreich
erwiesen, jedoch besteht eine Nische, wenn es um die Visualisierungen von historischen
Ticketdaten im Kontext der Softwareengineering-Lehre geht.

In dieser Diplomarbeit wird diesbezüglich der bestehende Informationsbedarf untersucht
und ein Ansatz vorgestellt, der das Visualisieren von Software-Repositories ermöglicht.
Um dies zu erreichen, wurde zunächst eine Literaturrecherche durchgeführt, um den
Informationsbedarf der Entwickler festzustellen. Diese dienten als Grundlage für die
Gestaltung mehrerer Konzepte, die anschließend mithilfe von semi-strukturierten Ex-
perteninterviews validiert und priorisiert wurden. Anhand der Ergebnisse wurde in den
darauffolgenden Phasen ein Prototyp in mehreren Iterationen entwickelt und mithilfe
von szenariobasierten Interviews evaluiert.

Die befragten Experten bestätigten die Nützlichkeit des Prototyps im Kontext der Lehre.
Die Visualisierungen der Metriken, wie die Verteilung von Tickets innerhalb eines Projekts,
die Statusänderungen der Tickets und die Beteiligungen an Tickets veranschaulichen
den evolutionären Verlauf eines Projekts. Dadurch erhalten sowohl Studierende als auch
Lehrkräfte wertvolle Einblicke in die Entwicklung des Projekts bis hin zum finalen Stand.
Allerdings müssen noch Design- und Usability-Probleme behoben werden, damit ein
solches System für Projekte in der Softwareengineering-Lehre von Nutzen sein kann.

Keywords: Softwarevisualisierung, Softwareevolutionsvisualisierung, Problemverfolgungs-
system, Versionskontrollsystem, Softwareengineering-Lehre

xiii

Abstract

Software engineering and its methods have evolved in recent years. In the past, it has
become increasingly popular to use systems to create tickets for feature requests and
software defects, as well as platforms for distributing source code. It is therefore not
surprising that more and more software engineering courses are using such systems
for various purposes. During the development of a software project, a large amount
of data can accumulate in these systems, also known as software repositories. This
data represents a veritable gold mine of knowledge that can provide a solid basis for
decision-making. However, the fact that this information is only available in textual form
makes the analysis process considerably more difficult. Visualizations have proven to
be helpful in interpreting such data, but there is a niche when it comes to visualizing
historical ticket data in the context of software engineering education.

This thesis investigates the existing information needs and presents an approach for
the visualization of software repositories. To achieve this, a literature review was
conducted to determine the information needs of developers. This served as a basis
for the design of several concepts, which were then validated and prioritized with the
help of semi-structured expert interviews. In the subsequent phases, based on the
results, a prototype was developed in several iterations and evaluated with the help of
scenario-based interviews.

The interviewed experts confirmed the prototype’s usefulness in an educational context.
The visualizations of the metrics, such as the ticket distribution within a project, ticket
status changes and the participation in tickets, effectively illustrate the evolution of
a project. This provides both students and teaching staff valuable insights into the
development of the project up to its final stage. However, design and usability issues
must be resolved to ensure the system’s applicability for projects in software engineering
education.

Keywords: Software Visualization, Software Evolution Visualization, Issue Tracking
System, Version Control System, Software Engineering Education

xv

Contents

Kurzfassung xiii

Abstract xv

Contents xvii

1 Introduction 1
1.1 Problem Description . 1
1.2 Expected Results . 2
1.3 Structure . 3

2 Theoretical Background 5
2.1 Fundamentals . 5
2.2 Related Work . 14

3 Research Design 25
3.1 Research Questions . 25
3.2 Methodology . 25

4 Semi-Structured Expert Interviews 29
4.1 Concept . 29
4.2 Interview Design . 39
4.3 Results . 39
4.4 Requirements . 50

5 Implementation 53
5.1 Architecture . 53
5.2 Extraction Layer . 55
5.3 Processing Layer . 66
5.4 Visualization Layer . 69

6 Scenario-Based Evaluation 75
6.1 Design . 75
6.2 Results . 77

xvii

6.3 Threats to Validity . 87

7 Discussion 89

8 Conclusion 93
8.1 Future Work . 94

List of Figures 95

List of Tables 97

Listings 99

Acronyms 101

Literature References 103

Online References 113

Appendix 115
Semi-Structured Expert Interview Questionnaire 115
Scenario-Based Evaluation Questionnaire 125

CHAPTER 1
Introduction

The following chapter provides an introduction to the topic of this master thesis. At the
beginning, the problem is described, which is followed by the expected results of this
thesis. Subsequently, the structure of this thesis is detailed.

1.1 Problem Description
Agile Project Management (APM) is becoming increasingly popular in software develop-
ment as with this sort of methods, projects are developed over multiple iterations and
can be adapted to the rapidly changing needs of the software world [26]. In order to
make students aware of the software project development process, the Project Based
Learning (PBL) approach has proven to be helpful, as it emphasizes applying theoretical
foundations of software engineering in practice [16, 32, 66].

Projects in software engineering courses are often used with the intention of exposing
students to the challenges of industrial software development. Although software engi-
neering education projects aim to simulate these conditions, projects in an educational
context differ from professional software projects. On the one hand, student projects are
usually small to medium-sized, limited in scope, and limited in length. While profes-
sional software development projects often involve large teams, educational projects are
usually limited to a manageable number of students. The focus is on meeting academic
requirements, applying theoretical concepts in practice, and learning new technologies
[28, 49, 72].

At the Vienna University of Technology, in software engineering courses such as Software
Engineering Project (SE PR) and Advanced Software Engineering (ASE), groups of
up to six students are formed after they have passed the individual phase. Over the
course of the semester, these student groups work on a software project consisting of
multiple parts, which they must successfully complete over several iterations using APM

1

1. Introduction

methods. To support team collaboration, Issue Tracking Systems (ITSs) are utilized to
track functional requirements and software defects. On the other hand, Version Control
Systems (VCSs) are used to distribute the source code within the team. Over the lifespan
of a project, the repositories of these systems can accumulate a large amount of data
[11, 23, 57]. This gold mine of knowledge can be valuable for both students and teaching
staff, either as a solid foundation for decision-making during the project’s development
or to produce more objective estimations during its evaluation. However, the amount
and complexity of this data, makes the historical analysis challenging, as the data and
the relationships between entities (e.g. software issues and their corresponding commits)
is typically available in textual form. Although the data in the repositories reflects the
historical progression of a project, exploring its evolution remains difficult due to a lack
of adequate aids.

In order to facilitate the derivation of information from software repositories, previous
research in the field of software visualization has shown that illustrations of software
data are an efficient way to provide this information. In the past, attention has been
primarily paid to the visualization of data which can be extracted from the software
repositories of VCSs [19, 21, 30, 36]. However, in the context of software engineering
education, data from ITSs received less attention. Furthermore, scientific visualizations
often rely on simple representations that are sufficient for overviews, but when detailed
historical information needs to be explored, these are no longer suitable. This master
thesis aims to close this gap by developing comprehensive visualizations that can be
used for the historical analysis of a software project. The developed visualizations are
designed to visualize various aspects, including the distribution of software issues, work
distribution based on contributions to software issues, and the lifecycle of software issues,
reflected by their status changes—all data which can be extracted from ITSs.

1.2 Expected Results
In general, this thesis aims to determine how a visualization tool can facilitate the analysis
of a software project in an educational context. To explore this, visualizations are created
to display the project’s history based on the data accumulated in ITSs. The following
hypothesized benefits are expected:

• Identification of Code Hotspots: Determine which areas of the codebase undergo
frequent changes and are prone to defects.

• Identification of Bottlenecks: Analyze which issue statuses have the longest ticket
dwell times.

• Distribution of Work: Assess which team members have worked on specific software
issues to understand workload distribution and contributions.

• Trend Recognition: Detect whether a process or workflow has a measurable impact
on the project’s progress and outcomes.

2

1.3. Structure

The proposed key features of this prototype are:

• A historical view providing information on which software issues have caused
changes in which source code areas (e.g., packages, files, etc.) and how these
changes have been distributed across the entire project.

• A historical view providing information about the lifecycle of software issues by
showing how long each issue ticket remained in each issue status.

• A historical view providing information about contributions to software issues by
showing which individuals participated to which tickets by making changes to them.

1.3 Structure
The structure of this thesis is divided as follows: Chapter 1 provides an introductory
overview of the problem and the expected results. In Chapter 2, the foundations for this
thesis and the related work are detailed. Chapter 3 defines the research questions and
the methodology to answer these research questions. Chapter 4 describes the design of
the visualizations and the results of the semi-structured interviews. The implementation
of the visualizations can be found in Chapter 5, and the subsequent evaluation of the
illustrations is found in Chapter 6. After discussing the results in Chapter 7, this thesis
and future work are concluded in Chapter 8.

3

CHAPTER 2
Theoretical Background

This chapter provides the theoretical knowledge relevant to this thesis. Section 2.1 covers
the fundamental concepts, while Section 2.2 provides an overview of the current state of
research.

2.1 Fundamentals

This section provides fundamental information about the terminology and concepts that
are relevant to this thesis. First, Section 2.1.1 describes the basics of Project Management
(PM) and how APM differs from Traditional Project Management (TPM). Section 2.1.2
and Section 2.1.3 detail functionalities as well as basic metrics of VCSs and ITSs. Finally,
essential information about the data visualization is given in Section 2.1.4.

2.1.1 Project Management

According to Project Management Institute (PMI) [58], a project is a temporary group
activity designed to produce a unique product, service or outcome. It has a beginning and
an end, described by the delivery of the expected result [60]. A project is characterized
by a prescribed time for completion and a limited budget. It further defines goals
and a number of activities to achieve these goals [63]. As defined by PMI [58], PM
is the accumulation of knowledge, expertise and methodology used to bring a project
to its objectives safely, efficiently and successfully and to meet the requirements and
expectations of the project’s stakeholders. Kerzner [41] describes PM as the planning and
controlling of resources over a short period of time in order to achieve specific goals. Both
TPM and APM methods have been derived from the best practices of the engineering
and management disciplines [25].

5

2. Theoretical Background

Figure 2.1: Life cycle of TPM [60]

Traditional Project Management

Usually, TPM is a linear process where, in the most cases, the phases are executed
consecutively [26, 60]. As seen in Figure 2.1 it consists of multiple phases. In the initiation
phase, the project scope and constraints on resources in terms of time, manpower, and
budget are described. In the planning phase, the project documents needed for the
implementation as well as the control of the project are defined. During the execution
phase, the project activities are carried out, building the path to the project’s success.
Monitoring and controlling compares the planned results with the real results to identify
areas where adjustments are necessary. Lastly, in the closing phase, it is determined
whether all planned work has been completed and accepted by all participants [41, 60,
63].

In the traditional approach, it is expected that each phase will be executed only once and
that already completed phases will not be revisited [8]. The well-structured process and
the importance of requirements are among the advantages of this approach. However, in
software engineering, TPM quickly reaches its limits, as a project can lose its sequential
flow. In addition, it can be difficult for customers to define all requirements at the
beginning of the project, leading to potential problems [8, 63]. It assumes flawless
knowledge of the goals and their solutions. The lack of flexibility and the impossibility to
adjust schedule, resources and scope are disadvantages in today’s complex and fast-paced
project environment [8, 26].

Agile Project Management

APM is an iterative and incremental process where stakeholders and developers work
closely together to understand the scope, identify requirements, and prioritize features

6

2.1. Fundamentals

Figure 2.2: Life cycle of APM [8]

[8]. APM practices are flexible, light and collaborative and have been strongly affected
by the concepts of agile software development [63]. It is based on the four core principles
found in the Agile Manifesto, which are paraphrased as follows [2, 26, 46]:

1. "Individuals and interactions over processes and tools"

2. "Working software over comprehensive documentation"

3. "Customer collaboration over contract negotiation"

4. "Responding to change over following a plan"

APM consists of a number of short iterative planning and development cycles, called
iteration, as seen in Figure 2.2. An iteration is a short period of time during which
an agile team works on a predefined number of tasks. These are used to divide a long
project into smaller pieces [8]. At project start, planning and requirement definition are
done. Following the feature-driven management approach, the project scope and the
specifications are adapted to a prioritization of project features. In subsequent iterations,
planned, implemented and tested functionalities are delivered to the customer [63]. In
contrast to TPM, APM tries to adapt to uncertainty, allowing changes to be incorporated
even in the late stages of project [2]. Due to its iterative nature, APM allows continuous
reviews and adjustments to any adaptation requests from stakeholders [8].

2.1.2 Version Control System
A VCS, also often called Revision Control System (RCS), is a widely used system for
the development of software products. It saves changes made to the source code, makes
historical versions of the software available to the user [11, 42, 62, 71, 79] and stores

7

2. Theoretical Background

(a) CVCS (b) DVCS

Figure 2.3: Types of VCSs [15]

versioned data for each file [62]. A VCS also allows changes to be made in the form of
deleting or adding code without affecting the current, functioning version. If there are
breaking changes, they can be reverted [11, 79]. Since VCS manages all versions of the
code, users are encouraged to work together on one project [79].

Types

According to Chacon and Straub [15], in addition to Local Version Control Systems
(LVCSs), there are two different types of VCSs, namely Centralized Version Control
Systems (CVCSs) and Distributed Version Control Systems (DVCSs).

Centralized Version Control System A CVCS (Figure 2.3a) is a type of VCS where
the files are hosted centrally on a single server [15, 22, 71, 79] and where users check out the
latest version of the files. With CVCSs, team members can get an approximate overview
of what other people in the team are doing. A CVCS also requires less administrative
effort, as it does not manage local repositories of individuals. However, it has some
disadvantages as in the event of a system failure, nobody can make changes to the central
version, or if the server’s memory fails without backup, the entire history can be lost [15].

Distributed Version Control System A DVCS is a type of VCS where users have
a complete copy of the repository in addition to the server, as seen in Figure 2.3b [15,
22, 71, 79]. Contributors make changes to the local repository and share them with the

8

2.1. Fundamentals

server if they consider it necessary [79] and since the changes are made locally, it is faster
than CVCSs [71]. In the event of a complete system failure, a local repository can be
used to restore the old state of the server [15, 79]. Furthermore, contributors do not have
to be core members of a repository to perform basic tasks such as merging branches or
reverting states [15, 59, 79].

A well known DVCS is Git, which available on all development systems due to its free
software license [67, 71]. Compared to its predecessors, software revisions in Git have
become first-class citizens, as every user has a copy of the repository and manage these
revisions [67]. Unlike other VCSs, Git works with a stream of snapshots, where each time
a change is made and saved, a snapshot of the entire project is created. Rather than
saving files that have not changed, Git creates links to the original files [15].

Principles

This section introduces the fundamental concepts of VCSs which form the backbone of
collaborative software development workflows.

Software Repository A software repository is a central location where information
about various activities is recorded, including both VCSs and ITSs. Due to the large
amount of data stored in a software repository, it can be efficiently used for data analysis
[11, 23, 57].

Commit A commit is the process of saving changes, deletions and additions made by
a user to source files in a software repository [3]. In Git, a snapshot of the entire project
is taken, with the latest commit representing the current version of the project [33, 71].
In general, files can be in the following states [71]:

• Modified: Changes have been made to a file.

• Staged: Changes made are prepared for the commit.

• Committed A file is located in a snapshot of the project.

Each commit is linked to its predecessor and successor, and together all commits represent
the history of a software project [33].

Branch A branch is a separate development line of program code that evolves indepen-
dently of the stable version of the project [33, 56, 70]. A single repository can consist
of several branches [33] which allows users to split tasks among themselves without
interfering with other tightly coupled tasks [70, 79]. Modifications to one branch have
no impact on other branches [56]. Branching also makes software easier to maintain by
reducing the risk of unwanted changes [70]. The most recent commit is referred to as
the head of the branch (HEAD), and it moves forward as new commits are added to the
branch [33].

9

2. Theoretical Background

Merge A merge is the process of combining changes of two branches into one branch
[33, 56], a so-called three-way merge. This involves three versions of the project: two
independently developed branches and their common ancestor. The changes from both
branches are applied to create a merged version of the software [14, 78]. If changes were
made to the same parts of the code, a conflict arises, which must be manually resolved
by the developer [14, 33, 78]. Merging can be divided into three groups [14, 78]:

1. Unstructured merge: This approach recognizes differences based on plain text. A
conflict occurs when changes have been made at the same location in the code,
which is then passed on to the user for manual resolution [14, 78].

2. Structured merge: To increase merge accuracy, the structured merge attempts to re-
solve conflicts automatically by analyzing the structure of the artifacts. Approaches
may use context-free and context-sensitive syntax [14] or represent artifacts as
graphs or abstract syntax trees [14, 78].

3. Semi-structured merge: This approach is a combination of unstructured and
structural merge. Software artifacts are represented as trees, providing information
about how nodes and subtrees can be merged. With abstraction, the approach can
discover ordered elements. If the structured merge is not able to resolve a conflict
automatically, the unstructured merge is used to resolve the conflict [14].

Merge Request A Merge Request (MR) in GitLab1, also known as Pull Request in
GitHub2 or BitBucket3 [53], is a process to integrate changes of the source branch into
the target branch [4, 27, 34]. This typically involves merging a feature branch into the
master branch, or merging a master branch into a release branch [53]. MRs are often
used to review changes that have been made to the code. They consist of a request
description, changes to the code, possible reviews to the changes, status about pipelines
to see if the tests passed and if the software can build, a comment section to discuss the
changes and a list of commits with a comparison view to see the differences between the
source and the target branch [27, 34].

2.1.3 Issue Tracking System
A software issue ticket is a report in natural language often used for various changes made
in a software project. These changes can include feature requests, bug reports, common
development tasks or any work related to a project [45, 47, 48, 73]. The information in
an issue ticket is stored in multiple fields, such as title, description, comments, etc. To
each software issue, deadlines and developers responsible can be added. Due to the rich
amount of information stored in issue tickets throughout the development of a software

1https://about.gitlab.com/, Accessed: 23.08.2024
2https://github.com/, Accessed: 23.08.2024
3https://bitbucket.org/, Accessed: 23.08.2024

10

https://about.gitlab.com/
https://github.com/
https://bitbucket.org/

2.1. Fundamentals

Figure 2.4: Example of a referenced issue in a commit message in GitLab1

project, they serve as a good source of documentation [45, 47]. Each ticket is normally
assigned a status, describing its current implementation phase [74].

An ITS supports the software development process by tracking the large number of
software issues that arise during development and maintenance. This is achieved by
providing a feature-rich environment for reporting and managing issues [10]. Proper use
of an ITS can bring many benefits, such as increased software quality and user satisfaction.
Furthermore, ITSs improve communication and productivity within the team and thus
reduce the costs of a project. From an agile process perspective, ITSs support agile
development practices. Usually, boards are used to visualize the status of the issues and
thus the status of the project, which adds further advantages [74]. Well-known ITSs
include Jira4, Bugzilla5, GitHub2 and GitLab1. These tools are used by large open source
projects such as Apache6 or Spring7, with GitHub2 and GitLab1 also providing a VCS in
addition to the issue management system [10, 73].

Software issues and commits are different artifacts created in separate systems. To
establish a link between an issue ticket and the associated commits, the issue identifier is
entered into the commit message [52, 61, 68]. An example of this in GitLab1 can be seen
in Figure 2.4. References between issues and commits are necessary for various software
engineering tasks such as bug and feature localization and the analysis of commits [61].

4https://www.atlassian.com/de/software/jira, Accessed: 23.08.2024
5https://www.bugzilla.org/, Accessed: 23.08.2024
6https://www.apache.org/, Accessed: 23.08.2024
7https://spring.io/, Accessed: 23.08.2024

11

https://www.atlassian.com/de/software/jira
https://www.bugzilla.org/
https://www.apache.org/
https://spring.io/

2. Theoretical Background

Figure 2.5: Information process of data visualization [44]

They are also often used to evaluate effort and to understand software development [68].
However, a link may not be available for various reasons. In such cases, it can be useful
to recover them with the help of suitable tools and thus improve the link quality [61, 68].

2.1.4 Data Visualization

Data, in various forms, is usually raw, unprocessed information that has no meaning [45].
There are two types of data: primary and secondary data. Primary data is data that
is collected directly for a specific study purpose, while secondary data is processed and
analyzed data, used for a different purpose [1]. Information, on the other hand, is data
that has been processed in such a way that it can be understood by the viewer [44].

Data visualization involves using computers to transform data into a visual form. For
example, Kard et al. [40] defines the visualization of data as "The use of computer-
supported, interactive, visual representations of data to amplify cognition". It is a
technique that allows to describe a large amount of data in a comparable and simple way
[51] and makes it possible to represent large amounts of data very quickly. Additionally,
it helps users quickly recognize patterns by gaining a basic understanding of either small
or large datasets. The cognitive system enables the viewer of a visualization to interpret
the data and derive useful information. This process is shown in Figure 2.5 [44].

12

2.1. Fundamentals

Visualization applications provide users with intuitive ways to analyze and explore data,
recognize patterns, explore correlations, and support various activities [9]. According to
Bikakis [9] they should deal with the following aspects:

• Real-Time Interaction: A system that responds in an acceptable time, enabling
interactions with countless data points from a dataset through efficient and scalable
techniques.

• On-the-Fly Visualization: Support for on-the-fly visualization of data is required,
since in many cases pre-processing is not possible.

• Visual Scalability: Problems such as information overloading should be circumvented
using data abstraction mechanisms.

• User Assistance and Personalization: The capability to adapt to different user
exploration scenarios and assist users in understanding the data.

Data visualization can be classified into two categories: information visualization and
scientific visualization. Both fields aim to make raw data more understandable by
transforming it into a visual form [44, 50].

• Information visualization: Specializes in illustrating abstract data (e.g., business
data). Common methods include tables, diagrams, trees, maps or scatter plots [44,
51].

• Scientific visualization: Focuses on representing physical data (e.g., data about the
human body or environment). Simulations, wave forms or volumes are commonly
used to represent the data [44, 51].

To create meaningful data visualizations, for either scientific or informatic purposes,
certain criteria must be met to answer questions and provide insights. First, the visu-
alization must be readable in such a way that the data can be easily understood and
interpreted. Additionally, users should be able to distinguish past knowledge from the
visualized data. Lastly, the data should be presented in a way that it supports the user
in exploring the data [44].

Software Visualization

Software visualization is a scientific field that focuses on the illustration of data that
can be derived from software artifacts (e.g., the source code of a program) [43], giving
shape to the otherwise invisible and intangible software [35]. Especially in large and
complex systems, knowledge about the code can be lost due to the software’s life span
and maintenance activities. Original developers may have taken on new tasks, and
related documentation might not be updated. Small changes can lead to errors, which

13

2. Theoretical Background

(a) Ticket lifetime visualization (b) Ticket feature visualization

Figure 2.6: Software issue visualization tool by [38]

further leads to low productivity. Software visualization can help to increase developers’
productivity and aid understanding complexity. It provides new developers with insights
into how code works and helps developers remember details [5]. The representation of
software data is often used in the areas of software maintenance and reverse engineering,
where large amounts of data need to be analyzed [43]. According to Koschke [43], the
simplest form of software visualization is the textual representation of software artifacts.

2.2 Related Work
The following section provides an overview of the current state of the areas Software
Visualization8, Information Needs and Software Engineering Education9. After outlining
the academic state of research for the aforementioned fields, the differences between the
existing works and this thesis are described.

2.2.1 Current State of Research
In the following section, the current state of research in the fields of Software Visualization8,
Information Needs and Software Engineering Education9 are described.

Software Visualization

In the domain of Software Visualization8, extensive research has been done on visualizing
data from software collaboration tools. The software issue illustration tool of Ishizuka
et al. [38] provide developers with insights into the evolution of a software project and the
effects of changes made during the development process by categorizing and visualizing
software issue tickets. The categorization process first extracts the title, description,
and commit comments, then uses a clustering algorithm to group them. Two views

8https://vissoft.info/, Accessed: 23.08.2024
9https://conferences.computer.org/cseet/, Accessed: 23.08.2024

14

https://vissoft.info/
https://conferences.computer.org/cseet/

2.2. Related Work

Figure 2.7: Fine-grained issue tale view [31]

are available to display the data: a ticket lifetime visualization and a ticket feature
visualization. Figure 2.6a shows the heatmap of the ticket lifetime visualization. This
visualization helps prioritize categories by highlighting ticket features with higher request
rates. The brightness of a cell corresponds to the number of open tickets. The ticket
feature visualization (Figure 2.6b), on the other hand, shows relationships between ticket
categories. Both visualizations are designed to facilitate new team members in reviewing
tickets and prioritizing which features to work on first [37, 38].

The visual analytic tool of Fiechter et al. [31] enables users to view the evolutionary
process of software issues. This is done by modeling the project as object nodes and
edges. The nodes represent commits, issues, pull requests, contributors, comments, labels
and events, whereas the edges describe the relationship between the nodes, such as
authorship relations to indicate the association between a node and its creator. Together,
all events and actors then represent, as Fiechter et al. say, the tale of a software issue.
Two visualizations can be used to analyze either individual or all software issue tickets
within a project: a fine-grained and a coarse-grained view. Figure 2.7 shows the detailed
view of one software issue. Over the course of three months, three developers carried out
more than 150 commits and nine pull requests. In the coarse-grained illustration, each
issue is visualized by a striped rectangle, where each stripe represents an object node.
The height describes the number of objects, while the width of a rectangle indicates the
duration of the issue [31].

The bug analytics platform in*Bug from Dal Sassc and Lanza [20] uses interactive
visualizations to compare, understand and explore bug repositories. This tool provides
both an overview of the data in a repository and fine-grained visualizations for detailed
defect analysis. The overview offers insights into the lifetime of the bugs and includes
a panel to filter and sort bug reports and another panel for project switching. The
fine-grained view supplies the user with information about the persons involved in a

15

2. Theoretical Background

Figure 2.8: Fine-grained visualization of in*Bug [20]

bug (Figure 2.8, Number 2). Additionally, the detailed bug lifetime visualization gives
information about the creation date of a bug, when it has been worked on, and whether it
has been fixed or not (Figure 2.8, Number 3). In addition to a list of events that happened
in connection with the bug report (Figure 2.8, Number 4), the tool also provides an area
summarizing the most important metadata (Figure 2.8, Number 1) [20, 21].

BugMaps [36] is another software defect visualization tool that allows for the analysis
and exploration of bugs in software projects with the goal of answering questions about
lifetime, distribution, evolutionary behavior and stability. The architecture of the system
consists of two components: a mapping module and a visualization module. The mapping
module collects data in the form of log messages from VCSs and ITSs. Extensible Markup
Languages (XMLs) parsers are used to extract the necessary information and to assign
the bugs to the relevant classes. The visualization module then gets the aforementioned
data, computes measures on bugs, and provides the data to the user with interactive
visualizations. BugMaps offers two analysis browsers. The history browser allows users
to display various bug measurements and the number of defects per class or package over
their lifetime. The snapshot browser can be used to visualize the number of bugs per
class and the lifetime of the bugs, as shown in Figure 2.9. Furthermore, the source code
of the clicked class is displayed [36].

Like BugMaps, the approach of D’Ambros et al. [19] aims to visualize data accumulated
in bug reports. The authors focus on the bug states in which a software defect can
be found. The tool offers two visualizations for the analysis of a system: the System
Radiography View and the Bug Watch View. The System Radiography View aims to
identify where many defects are located within a system by illustrating the distribution of

16

2.2. Related Work

Figure 2.9: Bug lifetime and number of bugs visualization [36]

issues, highlighting components with the most open (not yet fixed) bugs, and showing the
lifetime of a bug (first to last mention of the bug). When analyzing a subset or a single
defect, the Bug Watch View can be used to display bugs affecting a set of components
over time, allowing users to find the most significant ones [19].

The interactive visualization dashboard for provenance of software development from
Schreiber et al. [64] aims to provide software project managers with insights to development
process changes, development progress and interactions between developers and external
participants. The tool achieves this by extracting data from ITSs and release systems.
The dashboard includes the following views:

1. A tree map visualization that gives insights into the commits made by users to
repositories.

2. A timeline that shows the distribution of weekly summarized events over time.

3. An event timeline that represents the development activities of a project over time.

RepoVis by Feiner and Andrews [30] is a tool that offers a visual overview of the structure,
evolution and status of Git repositories. The system consists of a backend and a frontend,
where the backend clones a Git repository and extracts source code, commit messages,
and other metadata, making them available to the frontend via Representational State
Transfers (RESTs) requests. For the visualization, four predefined modules are available:
last modifications, developers, file types and issues. Each entry from a module is then
represented by a different color and assigned to the corresponding files, folders and lines

17

2. Theoretical Background

Figure 2.10: Comprehensive visual overview of RepoVis [30]

of code, as seen in Figure 2.10. Additionally, the system provides a legend for the color
resolution and a timeline with which the Git repository can be visualized at different
timestamps. Furthermore, this system includes a full text search function, allowing the
user to search specific terms or use pre-defined search shortcuts containing multiple terms.
The results are then shown by highlighting the corresponding files [30].

Gitinspector10 is a visual analytical tool for software repositories. It primarily shows
statistics about the authors of a software repository, as seen in Figure 2.11. Additionally,
a timeline analysis shows the workload and activity of each author, and by default, only
source files are included in the analysis. Initially, the tool was developed to retrieve
repository information from student projects in the object-oriented programming project
course at Chalmers University of Technology11 and Gothenburg University12. Some of
Gitinspector10’s features include views about cumulative work by each author, statistical
timeline analysis and scans for file types found in the repository.

Information Needs

In a software engineering context, information needs were analyzed by Buse and Zim-
mermann [13]. In their survey, they interviewed 110 developers and managers about
analytical decision-making. It turned out that data and metrics about a software project
are among the most important factors in the decision-making process of managers. In

10https://github.com/ejwa/gitinspector, Accessed: 23.08.2024
11https://www.chalmers.se/en/, Accessed: 23.08.2024
12https://www.gu.se/en, Accessed: 23.08.2024

18

https://github.com/ejwa/gitinspector
https://www.chalmers.se/en/
https://www.gu.se/en

2.2. Related Work

Figure 2.11: Gitinspector’s10 contributor visualization

contrast, developers rate their personal experience as an important factor. As for artifacts,
they indicated that many provide valuable information. Features, components and bug
reports were among the most important artifacts for managers. Developers rated classes,
functions and tests as very important. Additionally, the participants described scenarios
in which they would use analytical tools to make decisions; most of them can be assigned
to testing, refactoring, release planning and inspection. Furthermore, the authors of the
study mentioned important characteristics that any analytical tool should follow. These
tools should be easy to use, produce fast and concise output, and be interactive. Common
types of analysis include examining trends, addressing urgent events, mapping trends
into the future, and summarizing the vast amount of data generated by the software
product [13].

Buse and Zimmermann [13] also noted that participants considered information about
the past of a project to be more important than trying to predict the future of a project.
Moreover, predicting the future is significantly more difficult than finding information
about a past or current status [13]. Codoban et al. [17] further examined developers’
motivations for researching software history and the challenges they face in doing so. The
study consisted of two phases: a qualitative and a quantitative method. For the former,
14 experienced developers were interviewed to explore the above points. For the latter, a
survey of 217 people was conducted to quantify the responses. The results showed that
recent history and old history are used for different purposes. Recent history becomes
more relevant for gaining insights into changes made to the project or understanding
work in progress, while old history becomes more relevant for recovering lost knowledge in
software history or learning how a project evolved over time. The study also revealed that,

19

2. Theoretical Background

besides non-informative commit messages and tangled changes, information overload is
one of the top challenges developers face when researching software history[17].

Tao et al. [69] examined the understanding of code changes in the software development
process and the tools used by developers. The data was collected through a large online
survey, followed by a series of email interviews. In the online survey, participants were
asked about the most common scenarios in which understanding of code changes is
required and how often they experience these scenarios. Participants indicated that they
most often need to understand code changes when reviewing other people’s code for
comments or approval, or to quality-check their own code. Another common scenario for
understanding changed code is when a new defect is introduced. Furthermore, the study
identified 15 information needs, with the following two being of particular interest [69]:

• "Is this changed location a hotspot for past changes?"

• "Is this changed location a hotspot for past bug-fixes?"

Begel and Zimmermann [7] present the results of two surveys on questions software
engineers would like data scientists to investigate. In the first survey, 1500 software
engineers were asked to list five questions they would like data scientists to investigate.
The responses of 203 software engineers were summarized into 145 questions and grouped
into 12 categories. The questions then got split into subsets of questions and sent to a
new sample of 2500 software engineers to rate the most important questions to work on.
Among the top-rated questions, the following two are the most promising ones related to
the topic of this thesis [7]:

• "Which test strategies find the most impactful bugs (e.g., assertions, in-circuit
testing, A/B testing)?"

• "In what places in their software code do developers make the most mistakes?"

Bomström et al. [12] explored information needs and their presentation in agile software
development by surveying three small to medium-sized companies. The results of the
study show that it is important for the participants to have detailed information about
the functional requests they receive. This includes details such as when a request was
received, who received it, and the underlying problem. Additionally, information about
the structure of the software and its evolution is considered useful for answering questions
about the system and its development over time. Finally, the paper points out that
information should be presented in such a way that allows for easy interpretation, enabling
users to examine details and connections [12].

20

2.2. Related Work

Software Engineering Education

Software engineering education, like software engineering, is a young discipline that
combines theory and practice to equip undergraduates with the necessary concepts and
principles to solve real-world problems. Both hard and soft skills are required in software
engineering education. The capability to communicate and to collaborate with other
people is just as important as developing and testing software [54].

ITSs and VCSs have been widely used in software engineering education in the past
and have proven particularly useful in courses where students work in small groups on a
project over an extended period of time [24, 45, 65, 72]. The data that accumulates in
the repositories makes it easier for the teaching staff to analyze groups, thus allowing
for fair grading within the group [18]. Liu [45] and Tushev et al. [72] explored in their
classes that ITSs and VCSs need a learning curve before they can be used effectively in a
project. Liu [45] also reported that due to the use of ITSs, the number of failing teams
within a class has been reduced, and teams with significant problems can no longer hide
them until the last day of delivery. Collaboration tools were also used to coordinate
teams in courses where team members come from different universities, simulating the
software industry globalization [29].

Jones [39] and Coppit [18] described how they used ITSs and VCSs to evaluate the
work of individual students in group projects. Jones [39] used the commit history of
Subversion (SVN) to compare the weekly work summaries each student submitted in
order to rate the completeness and accuracy of the report. Coppit [18] described how a
large project was successfully implemented in a university course. The course participants
were divided into subgroups and assigned task areas. The team members chose a group
leader who, in addition to planning the team’s tasks, also had weekly meetings with
the other group leaders. This simulated a real-world environment. An ITS and VCS
were used to distribute the code and coordinate the work packages. Students were given
points for each completed task, and these points were used to calculate the grade [18].
Data from ITSs and VCSs have also been displayed to indicate the distribution of work
within teams, although the intervals at which they are presented to the teams vary [16,
28, 55]. Chen et al. [16] developed a system that provides weekly insights into the efforts
and participation of a team.

The work of Eraslan et al. [28] presented the effects of using GitLab13 metrics to show
students their performance. They focused on the number of assigned and complete issue
tickets and the number of commits made to the repository. At two checkpoints during
the project, the teams were shown their report, whereby each team got only its own data.
At the first checkpoint session, the report included the number of assigned and completed
tasks and the number of commits for each student. For the second checkpoint session,
the report also showed the number of commits for each student per week. The data was
visualized in the form of tables and interactive graphs. Figure 2.12 shows an example of
such a report. Students on the course were, with few exceptions, satisfied with the use of

13https://about.gitlab.com/, Accessed: 23.08.2024

21

https://about.gitlab.com/

2. Theoretical Background

Figure 2.12: Checkpoint session report of [28]

(a) Commits per month

(b) Commits per year

Figure 2.13: The number of commits per month and year [55]

checkpoint sessions and the metrics used in these sessions. However, they also noted that
the number of issues assigned and completed was the more useful metric [28].

Similarly, Parizi et al. [55] built a multidimensional monitoring service that enables stack
holders to view team contributions at any time by providing the necessary information
to a Git repository, as seen in Figure 2.13. The system then creates a series of reports
containing visualized metrics such as (number of commits, number of merge pull requests,
number of files, total lines, time spent) for each team member and the team as a whole.

22

2.2. Related Work

Additionally, the collaborators are evaluated and assigned into the following categories
based on their performance: Excellent, Good, Satisfactory, Poor and Unacceptable.
The author emphasizes the importance of further data analysis as seemingly poorer
performance, such as a lower number of commits, might be due to solving a more
challenging problem [55].

2.2.2 Distinction from Current Research
Based on the literature research conducted in this chapter, to my knowledge, there is
no similar solution to the idea proposed in this master thesis that has been performed
in the field of software engineering education. Most of the systems described in Section
2.2.1 focus on giving users insight into contributor participation in a project based on
basic metrics such as the number of commits contributed or number of resolved issues
[16, 18, 28, 55]. However, no work addresses metrics like the local distribution of issues,
participation (any form of interaction with an issue beyond assigning it to a person, such
as referencing an issue in a commit message or changing the issue description) in issues,
and the lifecycle (representation of the status changes) of issues.

Furthermore, no tool was found in the area of software visualization that is comparable
to the solution developed in this thesis, though the work of Fiechter et al. [31] and Hora
et al. [36] are the most similar. BugMaps [36] provides statistics on the local distribution
of software defects but does not show these for functional requests or other project-related
tasks, which can also be tracked with software issues. Furthermore, due to the chosen
visualization method, it is not clear if a bug affects multiple classes. The visualizations of
Fiechter et al. [31], on the other hand, focus on any type of software issue. Although these
illustrations could show participation and status changes, they do not give an insight
into the distribution of software issues within a project. Additionally, the information
about the entire history of a software issue or the project is visualized, but there is no
possibility to narrow it down to show visualizations for a specific period (e.g., for one
project management iteration). Finally, both tools use data from either GitHub14 or
Jira15/Bugzilla16, but not from GitLab13 repositories, the collaboration tool used for the
courses SE PR and ASE.

The visualizations created in this master thesis fulfill the information needs to be described
in Section 2.2.1 in multiple forms. First, the tool presents the history of a software project
by illustrating the software issues on a timeline (e.g., the date an issue was created),
which is important for various reasons, as addressed in [13, 17]. Second, the study of Tao
et al. [69] and Begel and Zimmermann [7] has shown that there is an interest in finding
out where clustering occurs. Due to the distribution visualization of the software issues
and locations (packages, classes), accumulations can be assessed by the tool. Lastly, by
displaying historical data, the tool also makes it possible to identify trends and thus
analyze possible strategies, as mentioned in [7].

14https://github.com/, Accessed: 23.08.2024
15https://www.atlassian.com/de/software/jira, Accessed: 23.08.2024
16https://www.bugzilla.org/, Accessed: 23.08.2024

23

https://github.com/
https://www.atlassian.com/de/software/jira
https://www.bugzilla.org/

CHAPTER 3
Research Design

This chapter describes the research questions defined in this thesis and the methodology
used to answer these questions

3.1 Research Questions
This section defines the research questions RQ1 - RQ3 that form and guide the scope of
this thesis.

RQ1 a) What information needs exists for a detailed analysis of software issues that
can be used for software engineering education?

b) What visual aspects are necessary to support detailed analysis of software
issues in software engineering education?

RQ2 How do experts rate the proposed visualization concepts for use in software
engineering education?

RQ3 a) How do the experts evaluate the visualization developed with regard to its
hypothesized benefits in software engineering education?

b) How effective is the developed visualization compared to traditional methods
in software engineering education?

3.2 Methodology
The following section describes a five-phased methodological approach, derived from
Wieringa’s [75] engineering cycle, used to obtain the results of this master’s thesis.
This engineering cycle extends the design cycle, which consists of the tasks of problem

25

3. Research Design

investigation, treatment design, and treatment validation, by implementing and evaluating
a validated treatment in the real world. In the first phase (Section 3.2.1) a literature and
tool research were conducted in order to investigate the problem. Section 3.2.2 describes
the steps that were taken to design the concept, and Section 3.2.3 outlines the validation,
which was done by carrying out semi-structured expert interviews. Subsequently, the
validated design was implemented with an iterative process (Section 3.2.4) and evaluated
with scenario-based expert interviews (Section 3.2.5).

3.2.1 Literature Research
Phase 1 was concerned with the investigation of the problem. As suggested by Wieringa
[75], a systematic scientific literature review was performed to obtain an overview of the
current state of the art in the following research areas:

1. Software Visualization1

2. Information Needs

3. Software Engineering Education2.

As a starting point, software visualization approaches that attempt to solve a similar
problem were researched. The search engines Google Scholar3 and IEEE Xplore4 were
used to find academic papers related to the research fields of this thesis. The majority
of them were found in ACM5 and IEEE6 databases. Further publications were found
through the cited sources of the found papers or by papers referencing the papers already
found. Google Scholar3 and Connected Papers7 were used for this purpose. With the
results of the literature research, RQ1a was answered.

3.2.2 Conceptual Design
In Phase 2, the treatment was designed. Artifacts, for this master thesis visualizations,
were created that could solve the investigated problems from the literature review
described in Section 3.2.1. These were established on the basis of necessary functionalities
that were missing in similar works. First, the main features were sketched, and then
mock-ups were designed. These visualizations were then used to present the features in
the semi-structured expert interviews. The results of this phase were taken to answer
RQ1b.

1https://vissoft.info/, Accessed: 23.08.2024
2https://conferences.computer.org/cseet/, Accessed: 23.08.2024
3https://scholar.google.com/, Accessed: 23.08.2024
4https://ieeexplore.ieee.org/Xplore/home.jsp, Accessed: 23.08.2024
5https://dl.acm.org/, Accessed: 23.08.2024
6https://www.ieee.org/, Accessed: 23.08.2024
7https://www.connectedpapers.com/, Accessed: 23.08.2024

26

https://vissoft.info/
https://conferences.computer.org/cseet/
https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.ieee.org/
https://www.connectedpapers.com/

3.2. Methodology

3.2.3 Semi-Structured Expert Interviews
In Phase 3, the designed treatment was validated to examine whether the artifacts
created could help achieve the goals. As mentioned by Wieringa [75], the easiest way
of validating a treatment is to get expert opinions on how the artifacts interact with
the problem context and what effects they would have. Therefore, a qualitative method
with the support of a questionnaire was conducted. For the questionnaire, the survey
software Google Forms8 was used. The participants were asked to evaluate the features
illustrated by the mockups. To do this, respondents had to rate the usefulness of
the visualizations. Participants of this interview were mainly software engineers with
educational experience. Feedback received through interviews was then incorporated into
the design of the visualizations, and features rated more important were implemented
earlier than lower-rated features. To answer RQ2, the results of the interview session
were taken into account.

3.2.4 Implementation
In Phase 4, the visualizations were developed using an iterative development approach.
A prototype was developed based on the mock-ups mentioned in Section 3.2.2 and the
requirements identified in Phase 3. Due to the iterative development process, after each
iteration, assumptions and possible extensions were discussed. The final visualizations
were then defined as the working prototype and utilized for the scenario-based expert
evaluation.

3.2.5 Scenario-Based Expert Evaluation
In Phase 5, after the completion of the prototype, the purposefulness of the developed
visualizations was evaluated. Again, interviews with experts, mainly with experience in
software engineering education, were chosen to rate the implementation. Scenarios were
defined in advance and solved in a given context using the developed illustrations. In
addition to the usefulness of the visualizations, the interviewees also had to describe how
they would solve these scenarios using other technologies. In order to minimize incorrect
results, each participant received a short introduction before executing the scenarios
and answering the questions. Subsequently, the results were analyzed and interpreted to
answer RQ3.

8https://www.google.com/intl/de_at/forms/about/, Accessed: 23.08.2024

27

https://www.google.com/intl/de_at/forms/about/

CHAPTER 4
Semi-Structured Expert

Interviews

The following chapter details the process of developing and validating the visualization
concepts. The concepts are first described in more detail in Section 4.1. Further, Section
4.2 outlines the design of the first interview session before Section 4.3 - 4.4 concludes
the chapter with the results of the interviews and the determined requirements of the
prototype.

4.1 Concept
Based on the scientific literature review of the current state of the art and additional data
available in ITS repositories, potential features for historical analysis of software issues
were defined. The features are summarized in Table 4.1 and realized by the visualization
concepts in this section.

Feature Description Source
F-1 Show which areas are hotspots for frequent changes [13, 69]
F-2 Show the working time of changes [13]
F-3 Show the issue status changes of software issues
F-4 Show contributions of team members [16, 28, 55]
F-5 Show general information on software issues [28]
F-6 Show historical and evolutionary information [12, 13, 17]
F-7 Filter results based on multiple criteria [17]
F-8 Compare multiple versions of history [17]

Table 4.1: Overview of the proposed features

29

4. Semi-Structured Expert Interviews

Figure 4.1: First vision that implements the features from Table 4.1

The conceptualization phase consisted of two stages. In the first stage, rough sketches
of the illustrations were created using the drawing tool Inkspace1, a tool for creating
two-dimensional vector graphics. These initial visualizations, shown in Figure 4.1, consist
of three sub-graphs: the top one showing the distribution of software issues within a
project, the middle one showing the status changes of all issues, and the bottom one
showing the developers involved in each issue. Additionally, there is an option to filter
the issue tickets according to different criteria and a legend to resolve the meaning of
the points and their colors. This graphic served as a preliminary draft of the idea,
but was not sufficient for the detailed concepts needed for the interviews. It quickly
became apparent that distinguishing tickets was difficult and that the visualization lacked
meaning. However, as these and potential further changes would have required significant
effort, it was decided to implement the sketches with the help of a visualization library.

In the second phase, the mock-ups for the interviews were created using the React2 graph
library Recharts3, which offers an easy way to create charts with React2 components,

1https://inkscape.org/, Accessed: 23.08.2024
2https://react.dev/, Accessed: 23.08.2024
3https://recharts.org/en-US/, Accessed: 23.08.2024

30

https://inkscape.org/
https://react.dev/
https://recharts.org/en-US/

4.1. Concept

Figure 4.2: Local distribution of software issues with a Git-like graph

leveraging lightweight dependencies on D3.js4 submodules. Recharts3 provides several
chart types and allows for testing these charts on the fly by customizing the data. The
following sections 4.1.1 - 4.1.4 describe the visualizations that were created during the
second phase.

4.1.1 Issue Distribution (F-1, F-2, F-6)
This section describes the views that represent the local distribution of software issue
tickets within a project. The purpose of these graphics is to provide the user with a way
to better assess which areas of the software project change frequently. Modifications can
result from change requests, tasks, discovered bugs or other types of changes that can be
tracked within an issue ticket.

Figure 4.2 shows a visualization representing the local distribution of software issues in a
Git-like graph. In this view, the x-axis corresponds to the time, showing the project’s
timeline, while the y-axis represents the software locations, which can be either folders,
packages or files. Each software issue is denoted by a unique color and may consist of
several points, each point representing a change to a location made as part of a commit.
However, it should be noted that a commit can only be associated with an issue if the issue
identifier is mentioned in the commit message. When a commit affects multiple locations,
each location is assigned its own point. The x-axis shows the temporal occurrence of
the commits, allowing the viewer to determine the approximate processing time of the
software issue. Each commit is linked to its predecessor. If a location has already been
changed in the course of an issue, the predecessor is the previous change to that location.
If the location is changed for the first time, the closest commit is selected, considering
both temporal and spatial proximity.

This creates a Git-like graph, which is often used to interpret the history of a VCS and is
easy to understand for those familiar with Git. Another advantage of this visualization
is that it minimizes confusion between issue tickets that introduce changes in multiple

4https://d3js.org/, Accessed: 23.08.2024

31

https://d3js.org/

4. Semi-Structured Expert Interviews

places, as each issue ticket is uniquely colored. Furthermore, this graphic has a practical
side effect as it offers the possibility of early detecting merge conflicts since it is common
practice in software development to create a dedicated branch for an issue.

The next visual representations, shown in Figure 4.3 provide a slightly different view
of the distribution of software issue tickets in a project. Again, folders, packages, and
files are shown on the y-axis, with each location represented by a horizontal bar, which
may consist of multiple sub-bars. The sub-bars are coded in different colors to represent
different software issues. The width of the bars is determined by various attributes
displayed on the x-axis. For this concept, the number of attributes that influence the
size of the bar was limited to the following three:

1. Number of commits: The width of the bar depends on the number of commits
associated with a location and issue, as shown in Figure 4.3a.

2. Duration to resolve an issue: In Figure 4.3b the time taken to resolve an issue
affects the size of the bar. More precisely, it is affected by the time elapsed between
two commits, which are then summed up to give a total length.

3. Number of changed lines of code: The width of a bar is affected by the number of
lines of code that have been modified during the course of an issue. This includes
added and removed code lines, as illustrated in Figure 4.3c.

Due to the simplicity of this visualization, it should be easy to compare the locations
within the software and x-values can be adapted to the needs of the viewer. Again, due
to the different colors representing the issues, one issue ticket cannot be mistaken with
another issue ticket. Compared to the visualization in Figure 4.2, this approach does
not provide a detailed overview in a single graph, but collectively, all three visualizations
offer a comprehensive overview of the local distribution of software issues in a project.

Lastly, the illustration in Figure 4.4 also provides an overview of the local distribution of
software issues. Compared to the visualizations in Figure 4.3, the same attributes are
considered here, but the values are of relative nature. Each attribute corresponds to its
own pie chart, with the number of commits in yellow, the time required to solve an issue
in blue, and the number of changed lines of code in red. Each location is represented
by a segment with an associated average value. This visualization provides the coarsest
overview among all visualizations in this section.

4.1.2 Issue Status Changes (F-3, F-6)
This section considers views that visualize the status changes of all software issues in a
project, allowing the user to analyze the status a particular software issue has been in,
how long it has remained in a particular status, and the average duration a software issue
stays in each status. The following status are considered in these views: Open, Develop,
Test, Review and Closed.

32

4.1. Concept

(a) Local distribution of software issues (number of commits)

(b) Local distribution of software issues (duration of issue)

(c) Local distribution of software issues (number of changed code lines)

Figure 4.3: Local distribution of software issues with different attributes

33

4. Semi-Structured Expert Interviews

Figure 4.4: Local distribution of software issues with the attributes Number of commits,
Duration to resolve issue, Number of changed code lines as relative values

The representation in Figure 4.5a illustrates the evolution of issue status changes for
each software issue ticket in a given project in the form of a line diagram. The y-axis
shows the distinct issue identifiers, and the x-axis displays the timeline. The line chart
visualizes the states a software issue has been in, with each phase represented by a unique
color. In this view, the status Open is displayed in blue, the status Develop is shown
in green and status Test and Review are presented in red and orange respectively. A
transition from one status to the next is represented by a point, with the color of the
point corresponding to the color of the new status. This makes it clear at which point in
time an issue changed to which status.

In comparison, the visualization in Figure 4.5b provides information about how long an
issue remains in a status on average. This is done using a radar chart where the different
issue states are displayed in the corners of the chart. The size of an entry depends on
the average issue processing time in a status. Furthermore, a distinction can be made
between different types of issues, such as change request or a software defect, as shown
in the example of Figure 4.5b. These two visualizations allow the user to analyze the
lifecycle for individual issues as well as for all issues in the entire project.

4.1.3 Issue Contributions (F-2, F-4, F-6)
The views in this section are intended to support analysis of the contributions per student.
Viewers can find out which team members have worked on which software issue and how
much time they spent on them. These visualizations also provide an overview of the
distribution of work within the project team. Contributions to an issue can be made in
several ways, including adding commits that reference the issue identifier in the commit
message or by editing the description of the software issue.

The visualization in Figure 4.6 shows student contributions using a line graph. Team

34

4.1. Concept

(a) Visualization of software issues and their duration in a software issue status

(b) Visualization of the average duration in a software issue status

Figure 4.5: Software issue status visualizations

Figure 4.6: Students contributions to software issues

35

4. Semi-Structured Expert Interviews

(a) Students and the software issues they worked
on

(b) The average tracked time on software issues
for each student

Figure 4.7: Work distribution visualization

members who have contributed to a software project are listed on the y-axis, while the
project’s timeline is shown on the x-axis. Each software issue ticket is represented by a
line, with each line displayed in a unique color assigned to a software issue. Whenever a
developer contributes a change to an issue, a point is added to the corresponding line at
the time the change was made. This visualization enables viewers to see not only the
contributors of a specific issue ticket, but also the contributions to the entire project,
highlighting how work has been distributed among the students.

An alternative approach was taken for the illustrations in Figure 4.7. The visualization in
Figure 4.7a shows the students who have contributed changes to a project on the x-axis,
while the y-axis shows the hours each contributor has tracked. Each team member is
represented by a bar, divided into sub-bars, while a sub-bar corresponds to a software
issue in a unique color. The height of each sub-bar depends on the number of hours spent
on that ticket. The total bar represents the total time a user has spent on all issues. The
illustration in Figure 4.7b uses a radar chart to provide insight into the average processing
time in hours for an issue type for each student. In this example, a distinction is made
between change requests and bug tickets. Users of this visualization can compare team
members based on the time spent and the involvement with the tickets. Additionally,
they can also see which developers were involved in which types of issues and how much
time they spent on them on average.

4.1.4 General Issue Information (F-5)
The visualizations in Figure 4.8 are designed to provide a general overview of the number
of software issues in a project over a given period. The line graph in 4.8a allows the

36

4.1. Concept

(a) Number of software issues in a project

(b) Number of issues resolved in a project

(c) Average number of issues created, grouped by weekday

Figure 4.8: General issue information

37

4. Semi-Structured Expert Interviews

(a) Filter options (b) Collapsible folder structure

Figure 4.9: Possible filter options

viewer to see how many issue tickets were active in a project at any given time, referring
to all issues whose status was not Closed. The x-axis represents the time, while the
y-axis plots the number of software issues. Each time an issue is created or closed, it
is represented in this graph with a new point, increasing or decreasing the number of
issue tickets by one. The next graph in Figure 4.8b is a cumulative representation of the
resolved software issues, which is increased with each closed issue ticket. The last chart
in Figure 4.8c uses bars to show the average number of issues created on a weekday over
a given period of time. All of these illustrations distinguish between different types of
issues, in these examples between software defects and software issues that are not bugs.

4.1.5 Filters and Version Comparison (F-6, F-7, F-8)
During the development of a project, a large amount of data can accumulate in the
repositories of ITSs. This makes it difficult to narrow down the appropriate subset,
especially when analyzing a specific area. To counteract this and to adapt to the search
the user needs, the visualizations provide functionality to filter the data. A possible set
is shown in Figure 4.9. The filters should be able to display software issues only for a
particular selection, a type (e.g., only bug tickets) or in a selected time range. It should
also be possible to only show issues that contain a minimum number of commits, tracked
time and lines of code changed. In addition, there should be an option to compare two

38

4.2. Interview Design

areas of a project with each other (e.g., two visualizations from different time periods
side by side). The collapsible folder structure in Figure 4.9b allows users to view software
issues for a specific location by only visualizing changes for the folders, packages, and
files in that location.

4.2 Interview Design
A series of semi-structured expert interviews were conducted to determine the importance
and order of the implementation of the visualizations. A qualitative approach was
chosen, supported by a set of guiding questions asked during the interview session. These
questions were divided into three sections, each area dealing with a different topic and
containing both open and closed questions. The first section covered the background of
the person. Questions were asked about demographics, experience in software engineering,
software engineering education, ITSs and VCSs. The second part of the survey assessed
the relevance of the proposed features. The questionnaire can be found in Appendix 8.1.

To introduce the participants to the topic of this master thesis, a short explanation of
the problem and the proposed solution approach was provided. In total, five individuals
working in software engineering education were questioned during the interviews. The first
meeting served as a rehearsal to test the quality of the questions and make improvements.
The feedback showed that the purpose of the interviews needed to be explained more
clearly in the introduction, and some visualizations needed more detailed descriptions.
It was not clear to the expert that the visualization of the software issue included not
only bug tickets, but also issues created for other purposes, such as change requests.
Additionally, for the visualization in Figure 4.2, there was confusion as the expert thought
the locations on the y-axis refer only to folders, and it was not described in enough detail
that the visualizations should also work for packages or files.

In order to provide participants with as much scheduling flexibility as possible, the
interviews were conducted remotely using Zoom5. This tool also allowed the interviews to
be recorded, enabling responses to open-ended questions to be added after the interview
sessions, with the interviews lasting an average of 35 minutes.

4.3 Results
The following section provides a detailed summary of the results of the expert interviews.
A total of four developers, with experience in software engineering and software engineering
education, participated in the interviews.

4.3.1 Demographics
The first two questions addressed the demographic information of the interviewees.
Answer options were provided for both questions. Participants could also specify their

5https://zoom.us/, Accessed: 23.08.2024

39

https://zoom.us/

4. Semi-Structured Expert Interviews

0

1

2

3

4

18-24 25-34 35-44 45-54 > 55
Age in years

(a) Age of participants

0

1

2

3

4

female male other
Gender

(b) Gender of participants

Figure 4.10: Demographics of participants

Bugzilla

Flyspray

Gerrit

GitHub

GitLab

Jira

nTask

Redmine

YouTrack

0 1 2 3 4
Number of participants

Figure 4.11: Used ITSs and VCSs

gender identity. As shown in Figure 4.10, all participants indicated that they were
between 25 and 34 years old, and all of them identified themselves as male.

40

4.3. Results

0

1

2

3

< 1 1-5 6-10 11-15 > 15
Experience in years

(a) Experience in software engineering

00

11

22

< 1 1-5 6-10 11-15 > 15
Experience in years

(b) Experience in education

00

11

22

33

< 1 1-5 6-10 11-15 > 15
Experience in years

(c) Experience with ITSs

00

11

22

33

< 1 1-5 6-10 11-15 > 15
Experience in years

(d) Experience with VCSs

Figure 4.12: Experiences of participants

41

4. Semi-Structured Expert Interviews

4.3.2 Experiences
The next four questions focused on the participants’ experience with the areas of software
engineering, software engineering education, ITSs and VCSs. Answer options reflected
their experience in years, with ranges of less than one year, 1-5 years, 6-10 years, 11-15
years and more than 15 years. Figure 4.12 shows the responses to those questions. All
participants, except Participant 1 (11-15 years), reported 6-10 years of experience in
software engineering (Figure 4.12a). In terms of software engineering education, both
Interviewees 1 and 4 reported 6-10 years experience, while Interviewee 2 and 3 answered
this question with 1-5 years experience. Regarding experience with software maintenance
tools, Developer 3 had the least experience with ITSs (1-5 years) and Developer 4 had
the most experience with VCSs (11-15 years). All other interviewees mentioned 6-10
years experience for both ITSs and VCSs.

Q7 aimed to identify which ITSs and VCSs have been used by the software engineers.
Participants were given a selection of the most popular tools in these categories. As shown
in figure 4.11, all participants were used with GitHub6 and GitLab7. Redmine8 was used
by all participants except Participant 3, and the most interviewees were also familiar
with Jira9, Gerrit10, and Bugzilla11. Finally, YoutTrack12, Flyspray13, and nTask14 were
among the least used software collaboration tools.

4.3.3 Importance Evaluation
The questions in this section focused on determining the usefulness of the proposed
visualizations and prioritizing their implementation. Participants rated each visualization
on a scale from 1 to 5, with 1 being Not useful and 5 being Very useful.

State of the Art

Before evaluating the effectiveness of the proposed features, Q8 and Q9 assessed the
usefulness of the issue boards provided by ITSs, with Q9 focusing on the effectiveness
of historical data analysis. Interviewees were given a screenshot of an issue board from
a project in software engineering education, where all tickets were in the column Done.
The results of these questions are presented in Figure 4.13. For Q8, the respondents gave
a mean score of 4.25. Developer 1 noted that even if tickets are only in the Done column,
it is still useful information. Participant 3 added that, issue boards should be used in
every project, as they clearly show which person is working on which task and which

6https://github.com/, Accessed: 23.08.2024
7https://about.gitlab.com/, Accessed: 23.08.2024
8https://www.redmine.org/, Accessed: 23.08.2024
9https://www.atlassian.com/de/software/jira, Accessed: 23.08.2024

10https://www.gerritcodereview.com/, Accessed: 23.08.2024
11https://www.bugzilla.org/, Accessed: 23.08.2024
12https://www.jetbrains.com/de-de/youtrack/, Accessed: 23.08.2024
13https://github.com/flyspray/flyspray, Accessed: 23.08.2024
14https://www.ntaskmanager.com/, Accessed: 23.08.2024

42

https://github.com/
https://about.gitlab.com/
https://www.redmine.org/
https://www.atlassian.com/de/software/jira
https://www.gerritcodereview.com/
https://www.bugzilla.org/
https://www.jetbrains.com/de-de/youtrack/
https://github.com/flyspray/flyspray
https://www.ntaskmanager.com/

4.3. Results

Q9: How useful is the
information presented in the

issue board to obtain
historical data?

Q8: How useful is the
information presented in the

issue board for you?

1 2 3 4 5
Rating

Figure 4.13: Score of issue board questions

Q12: Visualization - Average number
of issues created by

weekday

Q11: Visualization - Cumulative number
of issues resolved

Q10: Visualization - Current number
of issues

1 2 3 4 5
Rating

Figure 4.14: Score of general issue information visualizations

tasks need to be completed. However, except for Interviewee 3, who thinks that some
historical insights can be gathered from issue boards (e.g. by sorting the closed issues),
all participants rated the usefulness of issue boards for historical data with Not useful,
resulting in a mean score of 1.25. These results indicate that issue boards are not very
useful for historical data, and that additional presentation methods are needed for such
purposes.

43

4. Semi-Structured Expert Interviews

Q17: Visualization - Distribution of
issues (average)

Q16: Visualization - Distribution of
issues (changed code lines)

Q15: Visualization - Distribution of
issues (time)

Q14: Visualization - Distribution of
issues (commits)

Q13: Visualization - Distribution and
lifetime of issues

1 2 3 4 5
Rating

Figure 4.15: Score of issue distribution visualizations

General Issue Information (F-5)

Figure 4.14 shows the interviewees’ responses to Q10-Q12, rating the purposefulness of
the visualizations that provide general issue information (Figure 4.8). Developers 1, 3,
and 4 rated the feature from Q10 (Figure 4.8a) with a score of 4. Interviewee 1 noted
that distinguishing between the different issue types could be helpful, and Interviewee 3
felt that it could be helpful to see how the groups have worked in software engineering
courses. With a mean rating of 3.5, this visualization performed better than the other
two visualizations from Q11 (Figure 4.8b, mean score: 2.75) and Q12 (Figure 4.8c, mean
score: 3.25). According to Participant 3, the visualization from Q11 does not provide any
additional information, and the same information can be obtained from the chart in Q10.
The software engineers found the information in the visualization from Q12 interesting,
but only Developer 4 knew how he would utilize it.

44

4.3. Results

Q19: Visualization - Average time
in an issue status

Q18: Visualization - Detailed issue
status changes for selected

issues

1 2 3 4 5
Rating

Figure 4.16: Score of issue status changes visualizations

Issue Distribution (F-1)

Q13-17 asked about the usefulness of visualizations that provide information on the local
distribution of software issues within a project. The evaluation results are shown in Figure
4.15. The developers rated the visualization from Q13 (Figure 4.2) with a mean score
of 4.25. All participants agreed that this chart could be useful, but both Interviewees 3
and 4 noted that the visualized information might be overwhelming in larger projects.
Participant 1 suggested that information on whether an issue was referenced in multiple
branches would also be useful. Among the graphs from Q14-Q16, which differ in the
values shown on the x-axis, the chart of Q16 (Figure 4.3c) received the highest score,
with a mean rating of 4.25. The interviewees criticized the charts from Q14 (Figure 4.3a,
mean rating: 3.5) and Q15 (Figure 4.3b, mean rating: 3), noting that the values could be
influenced by undesirable parameters. On the one hand, the commit behavior can vary
greatly within a team, and on the other hand, the time elapsed between the commits
does not necessarily reflect how long the issue was worked on. This is not the case with
the visualization from Q16, though Interviewee 1 added that major refactoring changes
should be filtered out as they could skew the results. The diagram in Figure 4.4 referred
to in Q17 was rated a 3 by all participants except Participant 1. Here, they agreed that
the information was better represented by the visualizations in the previous questions
(Q14-Q16).

Issue Status Changes (F-2)

The next two questions, Q18 (Figure 4.5a) and Q19 (Figure 4.5b), focused on the
visualizations that provide users with information about the status changes of issues.
The rating results of these functionalities can be seen in Figure 4.16. All respondents
except Participant 4, who gave it the rating 4, deemed the chart from Q18 as Very Useful.
Participant 1 and Participant 3 added that this could address the issue raised in Q9

45

4. Semi-Structured Expert Interviews

Q22: Visualization - Average spent
time on issue types

Q21: Visualization - Developers and
there contributions to issues

Q20: Visualization - Contributions to
each issue

1 2 3 4 5
Rating

Figure 4.17: Score of issue contributions visualizations

regarding the historical analysis. Interviewee 1 also noted that this visualization could
provide insights into the issue tracking behavior of a project group and how it evolved
over the project’s duration. Regarding Q19, Participant 1 felt that the illustration was
too coarse, and prefers to view information for individual issues. However, Interviewee 4,
gave this visualization a score of 5, highlighting that confidence intervals could provide
additional valuable information. Q18 received a mean rating of 4.75, which was one point
higher than Q19.

Issue Contributions (F-3, F-4)

The next three questions focused on the purposefulness of the visualizations, providing
insights into software issues and developers’ involvement. The results for these questions
are shown in Figure 4.17. Q21 (Figure 4.7a) received the highest mean score of 4.75.
The interviewees found this illustration particularly helpful in an educational context
for assessing various groups. Participant 1 suggested that such a visualization could be
helpful with other metrics, such as the number of commits or changes. The chart in Q20
(Figure 4.6) received a mean score of 4. Developer 3 mentioned concerns about the lines,
as they could suggest connections between users that do not exist. Q22, focusing on the
visualization shown in Figure 4.7b received the lowest mean score with 3.5. Participants
noted distortions in reality, such as one contributor working on many issues briefly while
another working on a few issues over a longer period of time. They further mentioned
that the information could be skewed by too many developers in a project.

46

4.3. Results

Q25: Show issues for
a specific folger/package

1 2 3 4 5
Rating

Figure 4.18: Score of folder/package selection

Filters and Version Comparison (F-6, F-7)

The questions in this section focused on determining the most useful filters. All developers,
except for Developer 2, rated the filter in Q25 (Figure 4.9b) as Very useful (Figure 4.18).
All of them were of the opinion that such functionality is particularly necessary when
it comes to analyzing large software repositories. The results of the other filters can be
seen in Figure 4.19. The interviewees varied in their opinions on the filters. Participant
3 considered displaying a certain subset of issues (Q27) essential for large projects, while
Participant 2 rated this as neutral. Filters from Q26 and Q28 received the highest rating
of 4.75, deeming them crucial. Filters from Q29 and Q30 were noted to depend on the
project culture, such as how issues are managed (reopened or recreated) and developers
commit behavior. Regarding Q32, Participant 1 emphasized that the type of changes
that matter must be taken into account.

Q33, focused on whether it makes sense to compare two different filtered versions
of a project (Figure 4.20). For this question, the opinions of the interviewees varied.
Participants 2 and 3 found such a feature to be very useful. On the other hand, Participant
1 mentioned that while this view is especially important in management, comparing two
versions that differs too much makes no sense.

Additional remarks

Finally, the respondents had the opportunity to add remarks on the provided visualization
or suggest additional features that could be helpful for the historical analysis of software
issues. Comments relevant to previous sections (Section 4.3.3 - 4.3.3) have already been
incorporated there. Participant 3 mentioned that including information about Continuous
Integration/Continuous Deployment (CI/CD), a paradigm aimed at automating the build
process and enabling shorter release cycles [77], could provide additional value. Participant
4 suggested that a visualization similar to the one in Figure 4.2 could also be interesting
for different programming languages. Regarding additional filters, every participant who
answered this question expressed a desire for the ability to filter by specific contributors
or by the number of contributors.

After the interviews were completed, the participants’ answers were transferred to a
spreadsheet, and the mean score for the answers was calculated. The values were used as

47

4. Semi-Structured Expert Interviews

Q32: Filter - Changed code lines

Q31: Filter - Spent time

Q30: Filter - Number of commits

Q29: Filter - Reopened issues

Q28: Filter - Date range

Q27: Filter - Specific issues

Q26: Filter - Issue types

1 2 3 4 5
Rating

Figure 4.19: Score of filters

48

4.3. Results

Q33: Compare two states
of a project

1 2 3 4 5
Rating

Figure 4.20: Score of compare functionality

a guide to prioritize the development of the proposed features and can be found in Table
4.2 and Table 4.3. It was decided to implement all visualizations and filters with a rating
of 4

Visualizations Mean Value
Q18 - Status changes 4.75
Q21 - Contributions per individual 4.75
Q13 - Distribution and time of software issues 4.25
Q16 - Distribution of software issues - lines of code 4.25
Q20 - Contributions to software issues 4
Q19 - Average issue status duration 3.75
Q10 - Number of software issues 3.5
Q14 - Distribution of software issues - commits 3.5
Q12 - Software issues per weekday 3.25
Q17 - Average commits, time and lines of code 3.25
Q22 - Average contributions 3.25
Q15 - Distribution of software issues - time 3
Q11 - Cumulative number of software issues 2.75

Table 4.2: Visualizations ranked by mean value

4.3.4 Threats to Validity

This section describes a set of threats that could affect the validity of the proposed
visualizations and filters.

Number of Participants

The first threat to validity is the number of participants selected for the semi-structured
expert interviews. Four people participated in the interviews. This sample may be too
small to generalize the quantitative results of this interview, as this would normally
require a larger number of randomly selected participants [6].

49

4. Semi-Structured Expert Interviews

Filters Mean Value
Q18 - Folder structure 4.75
Q21 - Software issue type 4.75
Q13 - Software issue selection 4.75
Q16 - Date range 4.5
Q20 - Spent time 4.5
Q19 - Reopened software issues 4.25
Q10 - Comparison 4.25
Q14 - Lines of code changed 4
Q12 - Number of commits 3.25

Table 4.3: Filters ranked by mean value

Participant Selection

Next, the selection of participants could be a potential threat to validity. For the
interviews, all participants were members of the staff team of SE PR and ASE. Since
the visualizations to be developed will be evaluated using data from these courses, the
selection of participants was limited. This led to a selection bias and should be taken into
account in a possible future extension to other courses. Furthermore, the demographics
of the selected participants could be a threat as they are all in the same age range and
from the same gender.

Questionnaire

Lastly, the questions asked during the interview may have been misunderstood. Although
each participant had the opportunity to ask questions in case of misunderstanding, they
could have given random ratings. This would not have been noticed because of the
predetermined set of answers. By using mock-ups, it is also possible that visualizations
rather than the usefulness of the features were rated.

4.4 Requirements
The following section describes the list of functional and non-functional requirements
created for the software issue visualizations. These requirements were constructed based
on the deficiencies of existing work and the results of the interviews from Section 4.3.
They served as the basis for the further steps of this thesis. The requirements were used
to develop the prototype and also served as the foundation for deriving the scenarios
used to evaluate the implementation in Chapter 6.

Issue Distribution (R-1)

The prototype must assign each software issue to a local area (e.g., file, folder, package)
based on the commits referenced in the issue. Additionally, it must be possible to see how

50

4.4. Requirements

many changes (lines of code added and removed) are made by a commit, and hence how
many changes are made by an issue in an area. It should also provide insight into the
processing time of an issue based on the time passed between the first and last referenced
commit. This should clarify which areas of the project are subject to frequent changes.

Issue Status Changes (R-2)

The prototype must visualize each status change of each software issue. In addition, the
visualization should provide insight into the time of change. These changes should then
reflect the life cycle of the issues.

Issue Contribution (R-3)

The prototype must assign each software issue to project members based on the involve-
ment referenced in the issue. The visualization should also show which issues a developer
was involved in, and how much time the developer spent on it, providing an overview of
the distribution of work within the project team.

Issue Details (R-4)

The prototype must be able to provide additional detailed information for all visualizations.
Furthermore, selected configuration values and identification features, such as colors,
should be clarified using a legend.

Issue Filtering (R-5)

The prototype must be able to filter the software issues displayed by the visualizations
according to different criteria, and thus adapt the visualized result to the user’s needs.

Version Comparison (R-6)

The prototype must be able to compare two filtered versions of a software project, allowing
users to see the differences between two versions and providing a foundation for trend
analysis.

Historical information (R-7)

The prototype must display data from the past to the current state for visualizations of
issue distribution, issue status changes, and issue contribution to show the evolution of a
project.

51

CHAPTER 5
Implementation

This chapter describes the implementation of the visualizations. Section 5.1 first outlines
the layers of the visualization tool and the architecture used to implement these layers.
Section 5.2 and 5.3 explain the process used to retrieve the necessary data from the
repositories of VCS and ITS. Finally, Section 5.4 describes the experiences made in
developing the different views for analyzing software issues.

5.1 Architecture
This section provides an overview of the basic components of the proof of concept and their
relationships. It also describes which technologies used to implement these components.
As shown in figure 5.1, the prototype consists of three layers: the Extraction Layer
(EL), the Processing Layer (PL), and the Visualization Layer (VL). The EL and PL are
responsible for the data preparation, divided into two layers to provide data from both
archived and server-hosted GitLab1 software repositories, while the VL displays the data
using the validated illustrations from Chapter 4.

5.1.1 Extraction Layer
The task of EL is to extract the data required for visualization from archived software
repositories and make it available to the PL via a REST interface. Care was taken to
ensure that the interface is similar to the REST endpoints of GitLab2, so that both
archived repositories can be visualized using EL and server-hosted repositories without
EL. Furthermore, it was ensured that the data of a project is stored in a separate database,
isolated from the data of other projects. The following technologies have been used to
implement this layer:

1https://about.gitlab.com/, Accessed: 23.08.2024
2https://docs.gitlab.com/ee/api/rest/, Accessed: 23.08.2024

53

https://about.gitlab.com/
https://docs.gitlab.com/ee/api/rest/

5. Implementation

Figure 5.1: Architecture used to visualize software issues

• Kotlin3/Java4, which was used as the main programming language in the backend
layers to minimize the need for boilerplate code compared to Java3.

• Maven5, which was used as a build and dependency management tool.

• Spring Boot6, which was used to develop the RESTful services in the backend. More
precisely, the packages Spring Boot Starter Data JPA7 and Spring Boot Starter
Web8 were used for this implementation.

• SQLite9, which was used as a file based Structured Query Language (SQL) database.
To use SQLite9 with Hibernate, the packages SQLite JDBC10 and Hibernate
Community Dialects11 were necessary.

3https://kotlinlang.org/, Accessed: 23.08.2024
4https://www.java.com/en/, Accessed: 23.08.2024
5https://maven.apache.org/, Accessed: 23.08.2024
6https://spring.io/projects/spring-boot, Accessed: 23.08.2024
7https : / / mvnrepository . com / artifact / org . springframework . boot /

spring-boot-starter-data-jpa, Accessed: 23.08.2024
8https : / / mvnrepository . com / artifact / org . springframework . boot /

spring-boot-starter-web, Accessed: 23.08.2024
9https://www.sqlite.org/, Accessed: 23.08.2024

10https://github.com/xerial/sqlite-jdbc, Accessed: 23.08.2024
11https : / / mvnrepository . com / artifact / org . hibernate . orm /

hibernate-community-dialects, Accessed: 23.08.2024

54

https://kotlinlang.org/
https://www.java.com/en/
https://maven.apache.org/
https://spring.io/projects/spring-boot
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-jpa
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-jpa
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-web
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-web
https://www.sqlite.org/
https://github.com/xerial/sqlite-jdbc
https://mvnrepository.com/artifact/org.hibernate.orm/hibernate-community-dialects
https://mvnrepository.com/artifact/org.hibernate.orm/hibernate-community-dialects

5.2. Extraction Layer

• FasterXML/jackson12 which was used for serializing Java objects to JavaScript
Object Notation (JSON) and vice versa.

5.1.2 Processing Layer
The PL is responsible for fetching the data from a software repository using the provided
REST interface. The data is processed, related and made available to the VL via another
REST interface. As with the EL, project data is stored in a separate database, and as
both have similar functionality, the same technology stack as described in Section 5.1.1
was used for this layer.

5.1.3 Visualization Layer
The task of VL is to read the pre-processed data from PL and forward it to the charts
for visualization. Additionally, this layer provides various filters to adapt the results to
the user’s needs. The following technology stack was used to implement this layer:

• TypeScript13 which was used as the main programming language in the frontend to
add type support to JavaScript.

• Next.js14, which allows for building web applications quickly and easily.

• Recharts15, which were used to build the illustrations.

• NPM16, which was used to manage the packages needed for this layer.

• MUI17, which contains a wide range of Material UI18 components used for user
input of any form.

5.2 Extraction Layer
The EL is responsible for selectively retrieving data from archived software repositories
and making it available to the PL via a REST interface. The special characteristic of
this interface is its similarity to the REST interfaces defined by GitLab1. This makes
it possible to analyze repositories that are hosted on a server in addition to archived
repositories by replacing the EL with the active repository. Section 5.2.1 first examines
the data and its structure, which is mined by EL. The components of this layer are then
discussed in Section 5.2.2 - Section 5.2.4.

12https://github.com/FasterXML/jackson, Accessed: 23.08.2024
13https://www.typescriptlang.org/, Accessed: 23.08.2024
14https://nextjs.org/, Accessed: 23.08.2024
15https://recharts.org/en-US/, Accessed: 23.08.2024
16https://www.npmjs.com/, Accessed: 23.08.2024
17https://mui.com/, Accessed: 23.08.2024
18https://m3.material.io/, Accessed: 23.08.2024

55

https://github.com/FasterXML/jackson
https://www.typescriptlang.org/
https://nextjs.org/
https://recharts.org/en-US/
https://www.npmjs.com/
https://mui.com/
https://m3.material.io/

5. Implementation

project

export

tree

project

issues.ndjson

project_members.ndjson

milestones.ndjson

...

repo

.git

...

Figure 5.2: Structure of the data

5.2.1 Data Structure
As a starting point, a couple of archived student projects from the course SE PR were
provided, and in a first step, these were analyzed. Each project consisted of two parts:
a export archive and a repo folder. The former contained all the information about
the software repository such as software issues, project members, milestones or general
project information, which was created by GitLab’s1 export functionality19. The repo
folder, on the other hand, provided, besides the project’s source code, Git-related data
such as commits and branches.

Next, the export archive was decompressed so that the extracted archive and the
repo folder were the root level of the project. Figure 5.2 shows the directory structure
and the files contained in the directory. It should be noted that export contains
many more files, but only those relevant to the implementation of the visualization
are shown. This includes the files issues.ndjson, project_members.ndjson and
milestones.ndjson. All of these were available in the Newline Delimited JavaScript
Object Notation (NDJSON) format, a format in which each line of the NDJSON file is
mapped to an object in an array. For this reason, in this section, they are presented in a
prettified form for better readability.

Issues

All tracked software issue tickets from a project are stored in the issues.ndjson file,
with each line of this file corresponding to one software issue. An issue ticket object

19https://docs.gitlab.com/ee/user/project/settings/import_export.html,
Accessed: 23.08.2024

56

https://docs.gitlab.com/ee/user/project/settings/import_export.html

5.2. Extraction Layer

contains numerous pieces of information, some of which are particularly relevant for the
implementation of the prototype. Listing 5.1 provides an overview of what such a JSON
object looks like. Besides title, issue identifier (iid) and assigned milestone, each issue
stores the time of creation (created_at) and closing (closed_at). The notes object
provides rich data, as all events created in connection with software issues are stored
here. This includes all commits where the issue identifier was referenced in the commit
message, as well as the tracked time for an issue ticket. Furthermore, any changes made
to the issue, such as changing the issue title, are also stored here. For each of these
entries, the user who made the change and the timestamp at which the change was made
are saved.

1 {
2 ...
3 "title": "User Story ...",
4 "created_at": "2020-04-21T11:43:55.496Z",
5 "iid": 3,
6 "closed_at": "2020-05-08T...",
7 "milestone": {
8 "title": "M1"
9 },

10 "notes": [
11 {
12 "note": "mentioned in commit a...",
13 "author_id": 468,
14 "created_at": "2020-05-05T...",
15 },
16 {
17 "note": "added 3h of time spent",
18 },
19 {
20 "note": "changed title ...",
21 },
22 ...
23]
24 }

Listing 5.1: Example of an exported issue object

Two areas where GitLab1 lacks functionality are identifying the type of issues and tracking
issue status changes. In order to determine the type of issue, it was decided to search
the description and the title for defined keywords such as Bug or Defect, or to determine
the commit behavior (e.g., if there have been no commits, then it is most likely an
organizational issue). For the issue status changes, the resource_label_events
object in the issues file, as shown in Listing 5.2, provides valuable information. During

57

5. Implementation

the analysis of the projects, it was recognized that the students used these labels to mark
the phase a software issue was in. Each addition and removal of a label is stored, along
with the developer who made the change and the timestamp of when it was added or
removed.

1 {
2 "resource_label_events": [
3 {
4 "action": "add",
5 "created_at": "2020-04-27T...",
6 "label": {
7 "title": "In Progress",
8 }
9 },

10 {
11 "action": "remove",
12 "created_at": "2020-05-04T...",
13 "label": {
14 "title": "In Progress",
15 }
16 }
17]
18 }

Listing 5.2: Example labels to indicate status changes

Project Members and Milestones

Information about project members can be found in project_members.ndjson. It
lists all users assigned to a GitLab1 project, including their email, username, and the
time they were added to the project. An example of such an entry is shown in Listing 5.3.
Additionally, all milestones of a project are stored in milestones.ndjson, as shown
in Listing 5.4. Besides the title and the description of the milestone, it also contains the
date (due_date) until when the milestone was planned.

58

5.2. Extraction Layer

1 {
2 "created_at": "2020-04-22T...",
3 "user": {
4 "email": "student1@student.tuwien...",
5 "username": "student1"
6 }
7 }

Listing 5.3: Example of an exported project member

1 {
2 "title": "M1",
3 "description": "Issue description",
4 "due_date": "2020-05-07",
5 ...
6 }

Listing 5.4: Example of an exported milestone

Commits

The repo folder can be used to obtain commits referenced in the issues in Listing 5.1. In
addition to the source code of the software, the folder also contains a .git directory,
which can be used to query Git-related data. The project’s detailed information about the
commits can be extracted from the repository using the command git log -p -all.
Relevant information includes the commit hash used to identify a commit, the commit
message, the source files changed as part of the commit, and the changes themselves,
indicated by a plus (+) for added lines and a minus (-) for removed lines. An example of
such a commit can be seen in Listing 5.5.

59

5. Implementation

1 !!commit d0bd6483a93eeb67b...!!
2 ...
3 --- a/.../Component.ts
4 +++ b/.../Component.ts
5 @@ -83,7 +83,7 @@ export class Component ...
6 <- const example = ...>
7 $+ let example = ...$
8 ...
9 @@ -144,7 +144,7 @@ export class Component ...

10 <- const example2 = ...>
11 $+ let example2 = ...$
12 ...

Listing 5.5: Example of extracted commit

Files and Folders

As a final source of information, all the source files and the folders in which they are
located can be found with the command git ls-files, which prints out the path and
name of every file in the Git repository. This is needed in order to assign the location of
the changed files to the issues. An example of the result of this command can be seen in
Listing 5.6.

1 backend/mvnw.cmd
2 backend/pom.xml
3 backend/src/main/.../BackendApplication.java
4 ...
5 frontend/src/app/app.module.ts
6 frontend/src/app/.../component1.css
7 frontend/src/app/.../component1.html
8 ...

Listing 5.6: Example of extracted files and folders

5.2.2 Routing and Data Source

To ensure that the data of one repository is isolated from the data of other repositories,
a multi-tenant approach was chosen for the EL. All requests reach the same applica-
tion, which then selects the correct database based on a value set in the request and
executes the operation [76]. To implement this, the data was stored in a file-based
SQLite database, and routing to the appropriate database was enabled using Spring’s

60

5.2. Extraction Layer

AbstractRoutingDataSource20. The latter is a Java interface that can dynamically
determine the actual database in which the data persists. To distinguish the respective
databases, the project names of the exported software repositories were used. The
Java mechanism ThreadLocal21 is used to ensure that REST requests, bound to a
thread, actually address the correct database by making sure that each thread accesses
its own copied instance of a variable. Together, these two components form the routing
mechanism of this application.

Listing 5.7 provides an idea of how the routing was implemented. Two classes were
created: DBManager and DBInterceptor. The first class provides the ThreadLocal
variable, stores the keys to the data sources, and is also responsible for managing the
databases. New databases can be added using a method that adds a data source to a
ConcurrentHashMap. Additionally, it was declared as a Bean, an object managed by
the Spring Inversion of Control (IoC) container, so that it can be used to select the data
source. Therefore, the determineCurrentLookupKey method has to be implemented.
When a request reaches the EL, it must be ensured that the appropriate key is assigned
to the ThreadLocal. This task is handled by the DBInterceptor, a class derived
from HandlerInterceptor22, which reads the project name from the request path
and assigns it to the ThreadLocal. Spring will then ensure that the operation reaches
the correct database.

20https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/
springframework/jdbc/datasource/lookup/AbstractRoutingDataSource.html, Accessed:
23.08.2024

21https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html,
Accessed: 23.08.2024

22https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/
springframework/web/servlet/HandlerInterceptor.html, Accessed: 23.08.2024

61

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/datasource/lookup/AbstractRoutingDataSource.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/datasource/lookup/AbstractRoutingDataSource.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/HandlerInterceptor.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/HandlerInterceptor.html

5. Implementation

1 class DBManager {
2 val context = ThreadLocal<String>()
3 val dataSources: MutableMap<Any, Any> = ConcurrentHashMap()
4
5 @Bean
6 fun dataSource(): DataSource {
7 sourceRouting = object : AbstractRoutingDataSource() {
8 override fun determineCurrentLookupKey(): Any {
9 return context.get()

10 }
11 }.apply{setTargetDataSources(dataSources) ... }
12
13 return sourceRouting
14 }
15 fun addDB(name: String) { ... }
16 // Addidional methods
17 ...
18 }
19
20 class DBInterceptor(db: DBManager): HandlerInterceptor {
21 override fun preHandle(...) {
22 ...
23 db.context.set(groupeId)
24 }
25 }

Listing 5.7: Database routing with ThreadLocal and AbstractRoutingDataSource

5.2.3 Initialization
The initializers are responsible for populating the databases on startup of the application.
As mentioned in Section 5.2.1, the data for a project is extracted from various sources:
the exported NDJSON files for issues, project_members and milestones, and
the Git commands to gather the commit, folder and file information. Five initializers
have been developed to perform this task and are executed when the layer is started. In
Spring, this behavior can be implemented using the CommandLineRunner23 interface.
This Bean is called when the application context is loaded and is used for tasks that
should be executed when the application starts, such as initializing databases in this case.

Listing 5.8 shows the structure of the implemented CommandLineRunner. It takes
the path to the root directory containing the exported repositories from a configurable

23https://docs.spring.io/spring-boot/docs/current/api/org/springframework/
boot/CommandLineRunner.html, Accessed: 23.08.2024

62

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/CommandLineRunner.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/CommandLineRunner.html

5.2. Extraction Layer

variable in the application.yml file. After checking whether the folder for a project
has the same structure as shown in Figure 5.2, a new thread is started to initialize the
data. If no database exists for this project, it is added to the available data sources using
the DBManager mentioned in Section 5.2.2 and the initialization processes for issues,
project members, milestones, commits, folders and files are started. By binding the data
source information to the thread, this process can be run in parallel.

1 @Bean
2 fun runner(
3 ... // injection of initializers and dbManager
4): CommandLineRunner {
5
6 return CommandLineRunner {
7 val path = ... // get configured path
8 // check whether structure of the data is valid
9

10 Thread {
11 dbManager.addDB(it.fileName.toString())
12 issueInitializer.initIssues(path)
13 fileInitializer.initFiles(path)
14 userInitializer.initUsers(path)
15 commitInitializer.initCommits(path)
16 }.start()
17 }
18 }

Listing 5.8: Intitialization of database

Issue, Project Member and Milestone Initializer

The information about software issues, team members and milestones of a software
repository are provided by the corresponding NDJSON files. FasterXML was used to
extract this data. The class ObjectMapper24 from this library was used to convert the
JSON objects into a list of Plain Old Java Object (POJO). Kotlin’s Data Classes25 were
used to build these POJO. To ensure seamless conversion, it was necessary that the Data
Classes have the same structure as the exported issues, project_members, and
milestones files. The modules KotlinModule26 and JavaTimeModule27, had to

24https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/
jackson/databind/ObjectMapper.html, Accessed: 23.08.2024

25https://kotlinlang.org/docs/data-classes.html, Accessed: 23.08.2024
26https : / / javadoc . io / doc / com . fasterxml . jackson . module /

jackson-module-kotlin/2.12.2/index.html, Accessed: 23.08.2024
27https://fasterxml.github.io/jackson-modules-java8/javadoc/datetime/2.9/

com/fasterxml/jackson/datatype/jsr310/JavaTimeModule.html, Accessed: 23.08.2024

63

https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/jackson/databind/ObjectMapper.html
https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/jackson/databind/ObjectMapper.html
https://kotlinlang.org/docs/data-classes.html
https://javadoc.io/doc/com.fasterxml.jackson.module/jackson-module-kotlin/2.12.2/index.html
https://javadoc.io/doc/com.fasterxml.jackson.module/jackson-module-kotlin/2.12.2/index.html
https://fasterxml.github.io/jackson-modules-java8/javadoc/datetime/2.9/com/fasterxml/jackson/datatype/jsr310/JavaTimeModule.html
https://fasterxml.github.io/jackson-modules-java8/javadoc/datetime/2.9/com/fasterxml/jackson/datatype/jsr310/JavaTimeModule.html

5. Implementation

be registered to allow the ObjectMapper to correctly use the Data Classes and convert
the timestamps. An example of this can be seen in Listing 5.9.

1 @Bean
2 fun objectMapper(): ObjectMapper =
3 ObjectMapper()
4 .registerModule(KotlinModule.Builder().build())
5 .registerModule(JavaTimeModule())
6
7 fun init(
8 path: String,
9 objectMapper: ObjectMapper

10) {
11
12 objectMapper
13 .readerFor(Dto::class.java)
14 .readValues<Dto>(File("$path/...")) // Path to file
15 .also {
16 // store data
17 }
18 }

Listing 5.9: NDJSON file converter

Commit, Folder and File Initializer

Since the commit, file and folder information was not available in NDJSON format, a
different approach had to be taken for the respective initializers to extract this data.
Therefore, the class ProcessBuilder28 (Listing 5.10) was used to execute the Git-
related commands, mentioned in Section 5.2.1 and 5.2.1. The results of these commands
were then iterated line by line. For the commits, the corresponding commit information
was extracted using defined regex patterns (e.g., to determine the commit author). Care
had to be taken in distinguishing the commits, as the commit’s information was completed
with the hash of a subsequent commit. This was not needed for the files, as each line of the
result represented a separate file. However, the necessary information about the folders
in which the files were located had to be extracted from the file paths. Additionally,
files and folders were given different flags to distinguish them from each other and an
identifier entry pointing to the parent node.

28https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html,
Accessed: 23.08.2024

64

https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html

5.2. Extraction Layer

1 fun init(path: String) {
2
3 ProcessBuilder("git", "ls-files")
4 .apply { directory(File("$path/repo"))}
5 .start().inputStream().bufferedReader().useLines {
6 // Process results
7 }
8 }

Listing 5.10: Git-related command execution

5.2.4 REST Interfaces
As already mentioned in the beginning of this chapter, the goal of the EL was to provide
an archived software repository with an interface in such a way, that the EL can be
swapped with an active hosted repository. Since various information about GitLab1

repositories can be queried via REST endpoints, it was decided to implement interfaces
that are similar to GitLab’s1. Spring’s RestController29 was used to create these
interfaces, which can be used to create restful web services with little configuration. The
entry point of the following eight operations were defined using GetMapping30:

• GET /repository/tree: Returns all folders and files in a Git repository. All
child nodes are connected to the parent node by the parent identifier.

• GET /users: Returns all users of a project.

• GET /milestones: Returns all milestones of a project.

• GET /repository/commits: Returns all commits of a repository. This includes
the commit message, author, and time of the commit. Changes introduced by a
commit are not listed here.

• GET /repository/commits/<commit_hash>/diff: Returns the changes
made by a commit. The hash of the commit can be retrieved by the previous REST
request.

• GET /issues: Returns all tracked issues of a project.

• GET /issues/<issue_id>/notes: Returns all notes associated with an issue.
These notes include the commits and the time tracked referenced to a software
issue.

29https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/
springframework/web/bind/annotation/RestController.html, Accessed: 23.08.2024

30https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/
springframework/web/bind/annotation/GetMapping.html, Accessed: 23.08.2024

65

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RestController.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RestController.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/GetMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/GetMapping.html

5. Implementation

• GET /issues/<issue_id>/resource_label_events: Returns all resource
labels for a software issue.

5.3 Processing Layer

The task of the PL is to fetch the data from software repositories, process the information,
and establish relationships among the data. This layer accesses the data through the
REST endpoints provided by GitLab1 repositories. These interfaces offer a variety of
information, which had to be tailored to the needs of the visualizations of this thesis. The
development of this layer and the VL builds upon the EL due to the available archived
repositories from the course SE PR. However, since EL builds an identical REST interface
as GitLab1, any publicly accessible GitLab1 repository could be visualized. Theoretically,
the extraction layer could also be replaced by another mining backend that extracts data
from other ITS. The PL should still be able to prepare the data for visualization, as long
as it can access the data similarly.

Like the EL, this layer was implemented using Spring. The application uses a multitenant
approach, where data from each repository is stored in its own database and all data
sources can be reached through the same application. PL is divided into three layers: a
database and routing mechanism, several initializers that gather and process the data,
and various REST endpoints that pass the processed data to the visualizations. Besides
the possibility to configure the username, passwords, and the location for the databases,
users can also configure custom issue states for which the application will search. For
these configurations, a application.yml file was provided.

5.3.1 Routing and Initialization

As with EL and as described in more detail in Section 5.2.2, the routing of this service
was implemented using Spring’s AbstractRoutingDataSource, the Java mechanism
ThreadLocal and an interceptor were used. The interceptor assigns a value sent with
the REST request to the ThreadLocal. This ensures that the correct data source is
determined when the operation is applied. SQLite was chosen as the database engine for
PL. However, the key for routing in this layer is no longer the repository name, but the
base URL of the project where the information is available.

Five initializers were developed to retrieve the project information from the endpoints
described in Section 5.2.4. In order to access the data, Spring’s RestTemplate31, a
client for sending Hypertext Transfer Protocol (HTTP) requests, was used. Kotlin’s Data
Classes were also used to convert the responses from JSON format into POJOs. Listing
5.11 provides a snippet of how this was implemented.

31https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/
springframework/web/client/RestTemplate.html, Accessed: 23.08.2024

66

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

5.3. Processing Layer

1 fun init(
2 url: String,
3 restTemplate: RestTemplate,
4) {
5
6 restTemplate.getForObject(
7 url,
8 Array<Dto>::class.java
9)?.forEach {

10 // store data
11 }
12 }

Listing 5.11: Data gathering of PL

In contrast to EL, in PL the initializers for populating the database are not executed
automatically when the application is started. In this layer, the initializers are triggered
by the following REST command:

• POST /initRepo: Which expects the repository URL and starts the initialization
of the data sources.

File, Folder, Milestone and User Initializer

The initializers for files, folders, milestones, and users gather information required
by the other initializers but do not reference other information themselves, which is
why these must be run at the beginning. To achieve this, the corresponding REST
endpoints are called. The FileInitializer iterates over the results and checks for
each file/folder whether the parent folder has already been saved. If this is the case,
the identifier of the parent folder is referenced to the current file/folder; otherwise, the
folder is at root level and no folder is referenced. This approach is feasible, due to
the nature of the data, no child node will be processed until the parent node has been
processed. The UserInitializer and the MilestoneInitializer simply retrieve
their information and store it in the database, with the former filtering out all users whose
username is not a matriculation number (a seven-digit unique identification number for
students).

Commit and Issue Initializer

The initializers for fetching commits and issues have to be launched after the aforemen-
tioned initializers. The CommitInitializer first fetches all of a project’s commits,
takes each commit hash, and then calls the appropriate endpoint that returns the changes
to a particular commit. These changes are returned as a list, where changes to a file
are grouped into the same list entry. For each change, a database record is created that

67

5. Implementation

references the changed file, including the number of lines of code added and removed.
Each commit then references its changes and contains the time at which the commit were
made.

The last initializer retrieves all the issues, extracts the issue identifier, and then requests
the notes and resource_label_events from their corresponding endpoints. The
information in the notes is used to find the commits that reference the issue in the
commit message. The commits found are then associated with the appropriate issue and
user. As the commits do not have a user record at this point, they are updated with the
information from the issue ticket. The tracked time for each user and other changes made
to the issue can also be extracted from the notes. Reopened issues can be recognized by
the fact that they have an entry in notes that indicates that the issue has been opened.
This is not the case for software issues that were not reopened. Issue status can vary
from project to project, but each issue ticket can be assigned an Open and Closed status,
as information is available about when the issue was created and when it was closed.
As already mentioned in Section 5.2.1, additional status can be read via the retrieved
labels, which contain the times when a particular label was added to or removed from a
software issue. Since these labels do not necessarily have to reflect the status of an issue,
the labels that represent a status can be configured before the application is launched.
Another piece of information that cannot be derived directly from the issue is the issue
type. However, to distinguish between different types of issues, the title and description
of each issue are searched for specific keywords. If they contain a keyword, the issue is
labeled as a software defect. If no code changes were made by the issue, it is labeled as
an organizational issue.

5.3.2 Data Model
Figure 5.3 provides an overview of the tables and their connections to each other, along
with the cardinalities used to store the repository data:

• IssueEntity: This table provides access to all information related to software issues.
In addition to the issue identifier, title, and creation date, each issue contains a list
of commits, time logs, and status changes.

• UserEntity: This table stores all usernames and user identifiers.

• MilestoneEntity: This table stores all milestones and their start and end dates.

• LocationEntity: This table stores all files and folders, their paths, and an entry for
the parent folder.

• TimeEntity: This table provides all the time logs that users have tracked for an
issue.

• ChangeEntity: This table lists all changes made to an issue via notes and the user
responsible for the change.

68

5.4. Visualization Layer

Figure 5.3: Data model of PL

• StatusChangeEntity: This table stores all issue status changes to a ticket and when
they were made.

• CommitEntity: All commits are provided in this table, and a commit is associated
with a user. It also stores the time the commit was made, and a list of the changes
made by the commit.

• CommitChangeEntity: This table contains the number of lines of code added and
removed by a commit for each file and commit.

5.4 Visualization Layer
This section describes the steps taken to create the visualization layer for the prototype.
The conceptual ideas in Section 4.1 served as the basis for the development of the
visualizations, although they were adapted when necessary due to technical limitations of
the charting library. Figure 5.4 shows the structure of the VL. It consists of three parts.
On the left side of the dashboard (Figure 5.4, Number 1), the user has a sidebar where
the visualizations can be controlled with the following elements:

• Repository (Figure 5.5, Number 1): This is the initialization point for the software
issue charts. The PL to process the data is started via the URL to a software
repository that provides the raw data of a software repository using REST endpoints.
When the initialization process is complete, the user is notified. Figure 5.5, Number
1 shows the URL to a project made queryable via the EL.

69

5. Implementation

Figure 5.4: Distribution of issues

Figure 5.5: Information and control elements in the sidebar

70

5.4. Visualization Layer

• Filter (Figure 5.5, Number 2): In order to control the visualizations according to
the user’s needs and to narrow down the results, the user has several filter criteria
available. Software issues can be filtered by issue type, referenced project milestones,
a timeframe in which the issue was closed, issue identifiers, time tracked, number
of lines of code changed, and contributors involved. Each time the user clicks the
Apply Filter button, an object is updated with the values set by the filter criteria.
The visualization component responds to this update by sending a HTTP request
and passing the filter object to the PL. The visualization is then re-rendered based
on the response received from the server.

• Folder (Figure 5.5, Number 3): The visualization result can be further restricted
using an expandable tree view. If a directory is clicked on, only the issues that
have caused changes in this folder are displayed. A directory in which there is only
one other subdirectory is skipped to ensure better usability.

• Legend (Figure 5.5, Number 4): The legend provides the user with additional
information about the visualizations. It shows the software repository from which
the visualized data comes and the area of the software project that is being visualized.
It also shows the corresponding color for all issues and for each issue status.

In the top bar (Figure 5.4, Number 2), the user can navigate to each visualization and
compare two filtered versions. The remaining space of the VL (Figure 5.4, Number 3) is
dedicated to the illustrations.

5.4.1 Issue Distribution

Figure 5.4 shows the final result of the illustration showing the distribution of software
issues. It is based on the ideas of the visualizations in Figure 4.2 and Figure 4.3c. The
graph consists of two sub-charts, a scatter chart (Figure 5.4, Number 4a) and a vertical
stacked bar chart (Figure 5.4, Number 5a). On the y-axis, the folders/files of the current
directory are listed and can be changed using the folder structure (Figure 5.5, Number
3). In contrast to the concept, the left subchart displays the timestamps on the x-axis,
ensuring that an entry is created for each day and that it is at least 100 pixels wide, as
it was difficult to keep the points apart in a project that extends over a longer period
of time. As a result, the left partial chart can become very wide when displaying a
long period of time, and the right partial chart can extend beyond the right edge of the
screen. CSS32 with the overflow: auto33 property were used to prevent this behavior.
However, this meant that the y-axis was only visible at the beginning of the chart. Since
Recharts does not provide sticky axes that move with the scrollbar, this behavior had
to be implemented in a roundabout way. An element can be moved using the CSS

32https://developer.mozilla.org/en-US/docs/Web/CSS, Accessed 23.08.2024
33https://developer.mozilla.org/en-US/docs/Web/CSS/overflow, Accessed 23.08.2024

71

https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow

5. Implementation

Figure 5.6: Issue status changes

function transform: translate34, and the element.scrollLeft35 property sets
the number of pixels to scroll from the left edge of the element. The container’s scroll
event could then be used to move the axis using the aforementioned function and property.

As in the concept, the dots represent commits, with the color indicating which issue they
belong to. While in the concept the first commit of a location was linked to the last
commit of the closest location, this has been abandoned for better visibility. Compared
to the concept, little has changed in the right subchart. The x-axis still shows the number
of code changes, and changes to an issue are highlighted in color. However, the width
of the bars has been adjusted so that they can be combined with the lines in the left
sub-chart. Both the left and right subchart offer the option of clicking on the drawn
entries to provide the viewer with additional information in the form of a tooltip. In the
scatter plot (Figure 5.4, Number 5a), the hash, which clearly identifies the commit, the
time and person who made the commit, the number of code changes, and the files that
were changed are shown. The bar plot (Figure 5.4, Number 5b) lists all issues and the
number of changes per issue that can be assigned to an area. It also adds up the changes
to show the total and the average number of changes.

5.4.2 Issue Status Changes
Figure 5.6 shows the final visualization, which shows the status changes for a software
issue. Again, the final result of the implementation phase differs only minimally from
the idea in the concept shown in figure 4.5a due to the high rating in the interviews.
The issues are shown on the y-axis and the time on the x-axis. The component assigns
a height or width to each value on the axis based on the number of issues and project

34https : / / developer . mozilla . org / en-US / docs / Web / CSS / transform-function /
translate, Accessed 23.08.2024

35https : / / developer . mozilla . org / en-US / docs / Web / API / Element / scrollLeft,
Accessed 23.08.2024

72

https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/translate
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/translate
https://developer.mozilla.org/en-US/docs/Web/API/Element/scrollLeft

5.4. Visualization Layer

Figure 5.7: Issue contribution and compare functionality

duration, again ensuring that both the height and width of the chart do not exceed the
assigned space. The tooltip for this chart provides additional information about an entry.
The viewer is informed about the exact time when the status change occurred, the length
of time the issue was in that status, and the status. Each status change is represented by
a point, and if there is another state change, this point is connected to the next point so
that the line represents the time the issue has been in an issue status.

A color gradient has been defined for drawing the line so that the line becomes more of
the same color as it gets closer to a point, which makes the transition from one status
to the next more smooth. This also has the pleasant side effect that several colors
can be assigned to a line and its points, which would not be possible without a color
gradient due to another limitation of the Recharts. The performance advantages over an
implementation where the color change is realized by multiple lines, each representing an
issue state, are obvious. However, when defining a color gradient for a chart in which the
data differ by only one value (as with this chart, a straight line is drawn in which only
the x-values change and the y-values remain the same), care must be taken to ensure that
at least one value differs. Otherwise, the line will not be drawn. Therefore, during the
rendering process, the y-value of the first entry in the data set was changed minimally
(in this case, it was reduced by 0.001).

73

5. Implementation

5.4.3 Issue Contribution
Figure 5.7 shows the final illustration of project team members and their contributions
to each issue ticket. This is the combined implementation of the concept ideas from
Figure 4.6 and Figure 4.7a. All users who contributed changes to software issues during
the project’s implementation are plotted on the y-axis. In the left part of the graph
(Figure 5.7, Number 2), as in the previous visualizations, care has been taken to ensure
that each entry on the x-axis has a minimum width and that the graph does not extend
beyond the defined area for better visibility. The colored points associated with an issue
correspond to each type of participation, but unlike the concept idea, only the dots of
a team member are connected. The stacked bar chart (Figure 5.7, Number 3), which
shows time in hours on the x-axis and where the width of a bar can be used to determine
how much time a person has tracked for an issue, has two differences from the concept.
Again, as with the bar graph to visualize the distribution, care was taken to ensure that
the bars could be combined with the lines. Therefore, the width of the bars and the
orientation of the chart had to be changed from horizontal to vertical.

Both graphs have tooltips that can be used to display detailed information about an
entry. In the scatter plot, the exact time of the change and information about what
changed is displayed for each point (in the example in Figure 5.7, Number 2, both a
commit and a time entry for an issue were referenced). The bar chart, on the other
hand, shows all issues and the cumulative time logged for each user. In addition, all of a
person’s hours are summed up to show the total time and average time per issue worked.

Figure 5.7 also illustrates the comparison functionality of the dashboard, which can be
accessed for all visualizations via the top bar. In this view, the graph is rendered twice,
one for Version 1 and Version 2. Both project versions have their own sidebar that can
be used to control the respective graphs, and the desired sidebar can be selected via a
tab, as shown in 5.7, Number 1.

74

CHAPTER 6
Scenario-Based Evaluation

This chapter describes the evaluation process for the developed issue visualizations.
This involved a series of expert interviews, where scenarios were derived based on the
requirements outlined in Section 4.4. Section 6.1 first describes the interview procedure
and the example project used to apply the scenarios. The outcomes of the interviews are
then summarized in Section 6.2.

6.1 Design

This section provides an overview of how the interviews were conducted for the evaluation
of the visualizations by first outlining the framework of the interview round (Section
6.1.1) and then describing the example project on which the scenarios were performed
(Section 6.1.2).

6.1.1 Procedure

In order to evaluate the developed visualizations and thus answer RQ3, a series of
scenario-based evaluations were conducted. During the interview sessions, the final
implementation was used to solve the pre-defined scenarios, guided by a questionnaire
created with Google Forms1, and can be found in Appendix 8.1. The latter consisted of
several parts, with the first section dealing with the collection of demographic data and
experience in the field of software engineering and software maintenance systems.

1https://www.google.com/intl/de_at/forms/about/, Accessed: 23.08.2024

75

https://www.google.com/intl/de_at/forms/about/

6. Scenario-Based Evaluation

The remaining sections focused on the scenarios, which included:

• A description of the scenario and the problem.

• The questions to be answered using the final implementation.

• Alternative state-of-the-art approaches to solve this scenario.

• The evaluation of the performance in the scenario and evaluation of the scenario.

The participants had to solve the following scenarios with the help of the implemented
visualizations:

1. Scenario: Detailed software issue information

2. Scenario: Overview of software issue distribution

3. Scenario: Overview of software issue contributions

4. Scenario: Overview of software issue status changes

5. Scenario: Software issue comparison

As in the validation phase, the interviews were conducted using the conferencing tool
Zoom2. This approach allowed for more flexibility in scheduling the meetings, and the
meetings could be documented using its built-in recording feature. The benefit of this
method was that it preserved the natural flow of conversation without the need for pauses
to write down answers to open-ended questions, ensuring the exact wording could be
reproduced during the analysis.

Each interview started with an introduction to the topic and the problem that the
visualizations aimed to solve. The interviewees were then shown how the prototype works,
how the software issue illustrations are structured, and how they can be interacted with.
During the interviews, the prototype ran locally on the interviewer’s computer. The web
application ran in a browser window controlled by the interviewer and transmitted to the
participants via screen sharing. The questionnaire was opened in a separate tab, enabling
quick transitions between questions and the visualizations to answer the questions. Since
usability of the implementation was out of scope of this master thesis, the participants
were advised to consider this when evaluating the visualizations for use in each scenario.

A total of five people participated in visualization evaluation. The interviews lasted an
average of 50 minutes, with the first session serving as a pilot evaluation. This pilot
was used to identify any inconsistencies in the prototype and the questionnaire. Three
issues emerged from the initial interview session, which were addressed in a subsequent

2https://zoom.us/, Accessed: 23.08.2024

76

https://zoom.us/

6.2. Results

iteration. First, the interviewee noted that some questions were unclear and only became
understandable after further explanation by the interviewer. Second, it was observed
that certain scenarios were not adequately aligned with the objectives necessary to
demonstrate that the requirements were met. Third, going through the questions showed
that the illustrations still revealed some bugs that needed to be fixed.

6.1.2 Example Project
The software project used as the basis for answering the questions in the scenarios was a
student project developed as part of SE PR in a preceding semester. The project consists
of two parts: a backend, developed in Java3, which uses REST endpoints to perform
Create, Read, Update and Delete (CRUD) operations on a database, and a frontend,
developed with Angular4, which communicates with the backend via REST commands.
This project was provided as a compressed file with the structure outlined in Section
5.2.1 using EL. A total of:

• six students worked on this project,

• creating 151 issues, most of which resulted in changes to the project’s source code,

• with the majority of the issues passing through the states Opened, In Analysis, In
Progress, In Testing, Tested, and Closed.

6.2 Results
The following section presents the results of the interviews conducted to evaluate the
developed visualization concepts. As with the interviews used to validate the mock-
ups described in Chapter 4, demographic data and experience in the field of software
engineering, as well as experience with software maintenance tools, were gathered first.
These details are provided in Section 6.2.2. The scenarios, the questions asked in those
scenarios, and the interviewees’ responses are discussed in Sections 6.2.3 - 6.2.7.

6.2.1 Demographics
The first two questions dealt with the participants’ age and gender. All respondents
indicated that they were between 25-34 years old and identified as male, as shown in
Figure 6.1.

6.2.2 Experiences
The following four questions explored the participants’ experience in the areas of software
engineering, software engineering education, as well as with ITSs and VCSs. Figure

3https://www.java.com/en/, Accessed: 23.08.2024
4https://angular.dev/, Accessed: 23.08.2024

77

https://www.java.com/en/
https://angular.dev/

6. Scenario-Based Evaluation

0

1

2

3

4

18-24 25-34 35-44 45-54 > 55
Age in years

(a) Age of participants

0

1

2

3

4

female male other
Gender

(b) Gender of participants

Figure 6.1: Demographics of participants

6.2 visualizes the participants’ responses, with experience represented in years. The
interviewees could choose from the following options: less than one year, 1-5 years, 6-10
years, 11-15 years, and more than 15 years. Three out of four software engineers reported
having 6-10 years of background in software engineering, while one participant reported
11-15 years of experience in this area. In contrast, one person stated having less than one
year of experience in software engineering education, while the remaining participants had
at least 6-10 years of experience. Additionally, all developers answered having worked
6-10 years with ITSs, and except one person (11-15 years), all respondents had used
VCSs for 6-10 years.

78

6.2. Results

0

1

2

3

< 1 1-5 6-10 11-15 > 15
Experience in years

(a) Experience in software engineering

00

11

22

33

< 1 1-5 6-10 11-15 > 15
Experience in years

(b) Experience in education

0

1

2

3

4

< 1 1-5 6-10 11-15 > 15
Experience in years

(c) Experience with ITSs

00

11

22

33

< 1 1-5 6-10 11-15 > 15
Experience in years

(d) Experience with VCSs

Figure 6.2: Experiences of participants

79

6. Scenario-Based Evaluation

6.2.3 Scenario: Detailed software issue information (R-4, R-5, R-7)
In order to demonstrate that the visualization fulfills R-4, detailed information had to
be obtained from the example project. Therefore, participants were asked to analyze a
specific software issue and investigate where changes related to this issue were made, the
issue’s current status, and which individuals were involved in addressing it. Using all
available visualizations, the participants had to answer the following three questions:

1. a) During the implementation of Issue-3, how many commits were created and
referenced?

b) Which files were changed by Issue-3?

2. a) What issue status did Issue-3 have?
b) How long did Issue-3 remain in status In Testing?

3. a) Which developers contributed changes to Issue-3?
b) Is there a developer who has only tracked time, but has not made any other

contribution to Issue-3?

Overall, all interviewed software engineers were able to answer the questions using
the developed dashboard, with minor assistance from the interviewer. In order to
answer Question 1.b, Participant 1 needed a reminder that a tooltip containing detailed
information about a commit, including the files changed, was available. Similarly,
Participants 3 and 4 required the same reminded when answering Question 3.b, as the
needed information was also accessible through the tooltip. However, the interviewees
noted that in a different setting, where they were using the visualization independently,
they might have intuitively hovered over the chart entries to trigger the tooltip. All
other questions, where the information was directly readable from the visualizations,
were answered correctly by all participants.

Figure 6.3 visualizes the usefulness of the graph and the scenario, rated by the interview
participants. All developers agreed, on a score of 4 out of 5 for the illustration’s ability
to provide necessary information. The reasons for the point deduction varied among the
participants. Due to changes that were committed in a short period of time, it is possible
that multiple commits are represented by a single entry in the visualization. Participant 1
suggested a visual indication, making it more likely for users to click on such points. Two
commits with similar timestamps but occurring in different locations are not grouped
together. Both Participant 2 and Participant 4 initially thought these were the same
commit, as they appeared really close on the x-axis. Upon clicking, they realized these
were separate commits. They recommended an indicator in the visualization to make
this distinction clearer.

Regarding the visualization of files changed by a software issue, Participant 1 mentioned,
modifying the bar chart to allow switching between displaying the number of lines of code

80

6.2. Results

Usefuleness of the scenario

Usefulness of the prototype
for obtaining this information

1 2 3 4 5
Rating

Figure 6.3: Usefulness of scenario: "Detailed information about a software issue"

added/ removed and the number of files changed, which would make it easier to answer
Question 1.b. All participants agreed that different types of contributions (e.g., commits
or changes to issue descriptions) should be encoded differently in the visualization to aid
in easier distinction. Furthermore, three out of four participants rated the scenario as
Very Useful. They agreed that this information could be very valuable in an educational
context, such as evaluating student projects, as it quickly reveals which student was
involved in which software issue. Additionally, Participant 2 mentioned that this could
also be effectively used in management.

When discussing state-of-the-art methods for obtaining the information described in this
scenario, the participants mentioned different approaches. Developer 1 mentioned that
he would have searched for the issue platforms like GitLab5 or GitHub6 but noted that a
comparable time-based representation would not be available. Developer 2 stated that he
would have exported the data, loaded it into a database, and then queried it, preferring
raw data due to difficulties with the user interface of the ITS. Participants 3 and 4 stated
they would have used tools like Sourcetree7, Gitinspector8 to analyze Git history, review
the change history of software issue statuses, and search for the issue in GitLab’s5 spent
time listings. However, all participants agreed that the developed visualization simplified
the process of obtaining this information.

6.2.4 Scenario: Overview of software issue distribution (R-1, R-7)
In this scenario, the interviewees were tasked with gaining an overview of where, in
the source code, changes were made due to software issues. They needed to identify
which files underwent the most modifications, which issues were responsible for these

5https://about.gitlab.com/, Accessed: 23.08.2024
6https://github.com/, Accessed: 23.08.2024
7https://www.sourcetreeapp.com/ and Accessed: 23.08.2024
8https://github.com/ejwa/gitinspector, Accessed: 23.08.2024

81

https://about.gitlab.com/
https://github.com/
https://www.sourcetreeapp.com/
https://github.com/ejwa/gitinspector

6. Scenario-Based Evaluation

modifications, and how much time these modifications took. To narrow down the number
of issues, a period of one month was selected, and one package in the backend of the
project was chosen. Using the issue distribution visualizations, the participants had to
answer the following questions:

1. a) Based on the number of lines of code added and removed, which of the files
has changed the most?

b) Excluding the files that had no changes, which of the files has changed the
least?

2. a) Which file was changed by the largest number of issues?
b) Regarding the previous file, which issues caused its changes?

3. Which issue has changed the most files?

4. How much time has passed between the first commit and the last commit of this
issue?

All questions were correctly answered by the interview participants, and most of them
could be quickly resolved with a simple glance at the illustration. Unlike the first scenario,
the participants were already more familiar with the visualization and were able to
find detailed information, such as the required one for Question 2.b, without assistance
from the interviewer. However, Question 3.b posed more of a challenge, as it required
identifying the issue that caused changes in the most areas. This information could
only be determined by counting the number of colors in the visualization, which was
not immediately intuitive. To estimate the working time of a software issue (Question
4), Participants 1, 3, and 4 read the timestamps on the x-axis and approximated the
duration based on this. Participant 2, on the other hand, relied on the tooltip to answer
the question, as it provided exact dates for the entries. He noted that this approach was
effective in this particular scenario, where a manageable number of locations were being
accessed. However, he pointed out that this method might be less practical if an issue
ticket affected a larger number of files.

The results of the usefulness of the illustration and the scenario can be seen in Figure 6.4.
Participant 1 rated the visualization as Very useful, as he had no problems retrieving the
required information and thinks that the dashboard effectively visualizes it. However,
Participants 2, 3, and 4 had several complaints to deny a full rating for the graph. First,
they noted that the choice of colors used to differentiate the software issues was too
random. They struggled to distinguish between two similar colors, visualized next to
each other - a problem that may have been strengthened by the reduced quality of screen
sharing. They suggested that the colors for issues visualized next to each other should be
more distinct to avoid confusion. Another point they raised was that, unlike in Scenario
1, more locations were displayed on the y-axis, making it difficult for them to match the
entries in the bar chart with the y-axis. They felt that a grid could have helped make

82

6.2. Results

Usefuleness of the scenario

Usefulness of the prototype
for obtaining this information

1 2 3 4 5
Rating

Figure 6.4: Usefulness of scenario: "Overview of software issue distribution"

these connections easier. Additionally, they found that the illustration was not ideal for
answering Question 3. Developers 2 and 4 would have preferred a reversed view that lists
files for each issue. Participant 1 suggested that including relevant information in the
legend for each issue entry would also help for gathering this information.

This scenario received a mean rating of 3.75 points from the respondents. Participant 1
mentioned that he wasn’t entirely sure how he would use this information, noting that this
might be due to the fact that such data isn’t typically accessible with other tools, resulting
in a lack of experience with it. Developer 2, however, could see this information being
useful for issue analysis, for example, to determine if a software issue was too broadly
defined and should have been separated into smaller issues, particularly if it impacted
too many files or if the resolution time was too long. Regarding the current methods
available for obtaining this information, the participants provided similar answers to
those given in Scenario 1. They would have either worked directly with the raw data or
combined issues in an ITS with the Git history. However, they all agreed that there is no
way to achieve this in the manner the visualization does.

83

6. Scenario-Based Evaluation

Usefuleness of the scenario

Usefulness of the prototype
for obtaining this information

1 2 3 4 5
Rating

Figure 6.5: Usefulness of scenario: "Overview of software issue contributions"

6.2.5 Scenario: Overview of software issue contributions (R-3, R-7)
To show that the visualization implementation can be used to get an overview of the
issue contribution, the participants had to answer questions about which group member
contributed to which software issue and how the work was distributed within the team.
As with Scenario 2, a period covering two project management iterations was selected.
The following questions had to be answered using the visualization results:

1. a) Which team member was involved in the most issues?
b) Which team member was involved in the least issues?

2. a) Which team member has tracked the most time?
b) Which team member has tracked the least time?

3. a) Which issue had the most time tracked?
b) Which person tracked the most time on the previous issue?
c) Regarding the previous person, did that person also contribute the most

changes?

For this scenario, most of the questions were answered without much effort by the
interviewees, even though they had chosen different approaches in some cases. However,
Questions 1.a and 3.a posed more of a challenge, taking the software engineers more
time to resolve, though in the end they succeeded. This is reflected by the rating, which
can be seen in Figure 6.5. With a mean score of 3.5 points, the dashboard performed
worse for the information retrieval in this scenario compared to the previous scenarios.
The participants noted that the visualizations were not specifically designed to address
some questions in this scenario. For Question 1.a they mentioned that the possibility of

84

6.2. Results

two consecutive issues being represented by similar colors affected their initial judgment
of which entry had the biggest width. Developer 1 suggested an additional metric to
make the distinction clearer, or a hover feature that would quickly reveal whether the
entries belong to the same software issue or not. In his opinion, the tooltip provides the
desired information too slowly. For Question 3.a the same issue regarding color selection
was applied. Another point of critique was that the software issue with the most time
spent on it could only be found by repeatedly using a filter option. One software engineer
suggested adding a functionality to sort issues by tracked time. Participant 2 also noted
that the illustration was well-suited for the remaining questions.

Two participants rated the usefulness of the scenario as neutral, as they were unsure of
its practical application. Participant 3 said it is Very Useful, while Participant 1, similar
to Scenario 2, could not assess how useful the scenario was due to his lack of experience
with such metrics. Nevertheless, when discussing traditional methods for solving such
questions, the developers agreed that they would have typically searched for the software
issues using the user interface of an ITS. They also acknowledged that a summary view
like the one provided by the visualization would be a better approach solving it.

6.2.6 Scenario: Overview of software issue status changes (R-2, R-7)
In this scenario, the interviewees were required to analyze the lifecycle of software issues.
The goal was to identify when software issues transitioned to a specific status and how
long they remained in that status. Participants were asked to perform this analysis for a
project management iteration and then analyze issues of the types Defect and Issue (i.e.,
all issues that are not classified as software defects). The following questions had to be
answered:

1. How long did it take for issues of type Defect to move from status Open to status
Closed?

2. How long did it take for issues of type Issue to move from status Open to status
Closed?

In this scenario, the participants had no trouble answering the questions. Although none
of the participants felt confident in providing an exact result, they made estimates and
concluded that, for the analyzed project management iteration, on average, issues of the
type Defect transitioned more quickly from the status Opened to Closed. Looking at
the evaluation of the visualization in Figure 6.6, it can be seen that the opinion of the
usefulness of the dashboard for obtaining this information varied. Unlike Participant
1 (Score: 5) and Participant 4 (Score: 4), Participants 2 and 3 rated the visualization
with 2 points out of 5. Developer 2 pointed out that the total transition time of an issue
had to be calculated by summing the individual time spans in each status. Additionally,
Developer 3 added that the color gradient intended to clarify status transitions was more
confusing than helpful.

85

6. Scenario-Based Evaluation

Usefuleness of the scenario

Usefulness of the prototype
for obtaining this information

1 2 3 4 5
Rating

Figure 6.6: Usefulness of scenario: "Overview of software issue status changes"

The scenario itself received a mean usefulness rating of 4.25 from the developers. Only
Participant 1 was unsure about what he would do with the provided information of the
visualizations. When asked about alternative methods to obtain the same information
without the visualization, most participants stated that they would have used a project
management tool to filter the relevant software issues and calculate the average time
to close them. Participant 2 added that he would have preferred this method over the
implemented visualization.

6.2.7 Scenario: Software issue comparison (R-6)
In the final scenario, respondents were asked to compare two filtered versions and answer
questions about the distribution of issues and work among the team members. For the
first version, Spring-1 and Sprint-2 were selected, and for the second version, Sprint-3
and Sprint-4 were chosen. The following questions had to be answered:

1. a) Which component received the most changes in Sprint-1 and Sprint-2?
b) Which component received the most changes in Sprint-3 and Sprint-4?

2. a) How was the distribution of work between the team members in Sprint-1 and
Sprint-2?

b) How was the distribution of work between the team members in Sprint-3 and
Sprint-4?

As for the previous scenarios, the interview participants were able to compare different
versions of a project and had no difficulty in answering the questions. For instance,
they noticed that in the first four project management iterations, the work was not
evenly distributed, as one group member worked on significantly more issues and tracked

86

6.3. Threats to Validity

Usefuleness of the scenario

Usefulness of the prototype
for obtaining this information

1 2 3 4 5
Rating

Figure 6.7: Usefulness of scenario: "Issue comparison"

almost twice as much time as the other members. They also observed that one student
invested very little time in the project during the first iterations. The comparison
feature of the visualization received an average rating of 4.5 from all the interviewed
software engineers, reflecting its strong performance, as shown in Figure 6.7. Participant
3 noted the visualization’s usefulness in showing who worked on which issues and how
contributions evolved over time. Developer 2 added that while this approach works well
for a student project conducted over a short period, comparisons might be more difficult
in larger projects.

Also illustrated in Figure 6.7, most of the interviewees rated such a scenario to be useful.
Participant 2 mentioned that these illustrations are particularly valuable when examining
the evolution of a project, such as determining whether all group members contributed
from the beginning. Compared to traditional tools, they preferred the visualization.
Participant 1 noted that, without the illustrations, he would have filtered the software
issues by iterations and kept each iteration open in separate browser tabs for comparison.
Developer 2 would have searched the git logs for the corresponding issue identifiers and
then grouped them to find out how many lines of code were changed. Interviewee 4 would
have used a table, provided by SE PR and ASE that shows the tracked time per week for
each student but noted that it wouldn’t provide any information about the code changes.

6.3 Threats to Validity

This section describes potential threats that could impact the validity of the scenario-based
evaluation.

87

6. Scenario-Based Evaluation

6.3.1 Number and Demographics of Participants
One threat to validity is the number of participants selected for the scenario-based
evaluation. Similar to the semi-structured expert interviews for the validation of the
visualization concepts, four people participated in the interviews. The size of the sample
may be too small to generalize the results of this evaluation, as normally a larger number
of selected participants is required. Additionally, the diversity of the selected participants
could be a threat, as all interviewees identified as male and reported being between 25
and 34 years old.

6.3.2 Scenarios
The scenarios used to evaluate the visualization pose another potential threat. First,
the scenario explained, and the questions asked during the interview may have been
misunderstood. Although participants were given the opportunity to ask clarifying ques-
tions, misunderstandings could still lead to random or inaccurate ratings. Furthermore,
the choice of unsuitable scenarios could influence the purposefulness of the developed
dashboard. For this reason, questions were introduced at the end of each scenario to
evaluate the usefulness of the scenario.

88

CHAPTER 7
Discussion

This chapter reflects the results of this master thesis by answering the research questions
from Section 3.1.

RQ1a: What information needs exists for a detailed analysis of software issues
that can be used for software engineering education? The results of the scientific
literature review and the analysis of the results of the semi-structured expert interviews
were used to identify existing information needs related to ITSs. First, software engineers
prefer to obtain historical and evolutionary information about a software project [12, 13,
17] since it can be used either to recover lost knowledge or to track work in progress [17].
It is preferable due to the lower effort compared to tools that try to make predictions
about the future [13]. There is also a need to identify potential trends, which can be
accomplished by comparing multiple versions of the history [17]. Furthermore, it has been
explored that both hotspots for frequent changes and the duration of processing are of
great importance [69]. This information can be used, for example, to determine whether
parts of the source code are prone to software defects. Particularly in the area of software
engineering education, it has become apparent that there is a need for information about
the distribution of work among students in a project group [16, 28, 55]. Finally, the
interviews confirmed that issue status lifecycle can provide a good overview of a project,
although such a feature is not currently available in tools like GitLab1.

RQ1b: What visual aspects are necessary to support detailed analysis of soft-
ware issues in software engineering education? In order to create comprehensive
visualizations for the detailed analysis of software issues, visualization concepts were
developed based on the information needs explored in RQ1a. In order to present these as
simply as possible, only graph-based techniques were used. Scatter plots, stacked bar

1https://about.gitlab.com/, Accessed: 23.08.2024

89

https://about.gitlab.com/

7. Discussion

charts, and radar charts were used to illustrate the information and multiple views were
chosen to avoid overloading the visualizations with information. Entries in the graphs
can be distinguished by both, their color and their spatial position. Colors were used
to differentiate between software issues or their status, while spatial position is used to
differentiate between source code areas or project members. Additionally, a number of
interaction mechanisms have been integrated to improve the analysis of the data. These
include a filter to adapt the results to the user’s needs, on-demand details in the form of
a legend or tooltip to present additional information, scrolling to navigate through the
data, and a collapsible folder tree to show files and subfolders in a selected folder.

RQ2: How do experts rate the proposed visualization concepts for use in soft-
ware engineering education? The concepts developed were then validated through
semi-structured expert interviews with experts experienced in software engineering and
software engineering education. All except one visualization concept received a mean
rating of 3 or higher. The visualization concepts that show the distribution of issues
(Figure 4.2 and Figure 4.3c), their life cycle based on status changes (Figure 4.5a), and
student contributions to software issues in the context of the project timeline were rated
positively. Similarly, the visualization that lists the issues each student tracked time for
was also well-rated (Figure 4.7a). Less well received were illustrations based on relative
values and general information. The majority of the suggested filters were rated by
respondents as helpful and necessary for a large amount of data.

RQ3a: How do the experts evaluate the visualization developed with regard
to its hypothesized benefits in software engineering education? In general,
the functionality of the implemented visualizations was rated useful with regard to the
hypothetical benefits of identification of code hotspots, bottlenecks, distribution of work
and trends. The majority of the questions in the defined scenarios could be answered
with the help of the implemented illustrations and the filters. In some cases, however, the
participants of the interviews had to be supported with small hints. A significant issue
with the illustrations was the use of colors to differentiate between software issues or their
status. The chosen color palette sometimes led to confusion, particularly when similar
colors were used for issues that were displayed next to each other. With a mean rating of
3.25 points, the visualizations received the lowest rating in the scenario for software issue
lifecycle inspection. The highest mean score of 4.75 was given to the visualizations for
the version comparison scenario to show the ability to analyze trends.

RQ3b: How effective is the developed visualization compared to traditional
methods in software engineering education? For the majority of the questions
asked in the scenarios, the participants of the interviews preferred the visualizations
over the conventional method of obtaining the information. In the majority of cases, the
interviewees would have tried different approaches of extracting the information from the
repositories of ITSs and VCSs and linking them together. This would involve querying
raw data and utilizing the user interfaces of these systems. The participants agreed that

90

the implemented visualizations offered historical insights not easily obtainable from other
tools. The comparison functionality that enables the comparison of, for example, two
different periods of a project was also rated as an effective method for analyzing the
evolution of a project.

91

CHAPTER 8
Conclusion

In this thesis, visualizations were developed that provide users with a decision-making
basis with data from ITS software repositories. This approach was designed specifically
for the field of software engineering education. As part of this work, a scientific literature
review was conducted, which revealed that the visualization tools in both scientific and
educational contexts in previous work have mainly specified data from VCS repositories.
ITS repositories have received less attention. Furthermore, it was explored that scientific
visualizations often rely on simple representations that are sufficient for overviews, but
when detailed historical information needs to be explored, these are no longer suitable.
In addition, the research and semi-structured expert interviews revealed that software
engineers have a need for both historical information and data on the distribution and
participation of various data sources. Therefore, an approach has been developed that
focuses on visualizing the distribution of software issues, contributions to these issues,
and their status changes in an attempt to fill this knowledge gap.

Based on the results of the literature research, concepts for possible visualizations were
developed to illustrate the aforementioned metrics. These visualizations were then
validated through five semi-structured expert interviews. The interviewees were software
engineers with experience in software engineering education, and the feedback showed
that most of the concepts were considered useful. This validation served as a foundation
to decide which visualizations should be implemented for a proof of concept. The
visualizations were developed in an iterative process, where improvements were discussed
and incorporated at the end of each iteration. First, the data preparation components
were developed. To allow the visualizations to interact with existing software repositories,
whether they are actively hosted on a server or archived, the extraction and processing of
the data was split into two layers, allowing the user to connect the visualizations directly
to either an active or archived repository. The visualizations were then built on top of
these two layers.

93

8. Conclusion

The final implementation was then evaluated using scenario-based expert interviews. A
total of five participants took part in the interviews, whereby care was taken to ensure
that they were software engineers with experience in the field of education. The usefulness
of historical project analysis based on software issue data was confirmed in an educational
context, as it was possible for the interview participants to gain a deeper understanding
of the project’s history and its development up to the current state. Additionally, the
developers provided further suggestions for improving the visualizations.

8.1 Future Work
Due to the time constraints of this thesis, not all ideas and features could be realized.
This section describes possible approaches for future work in this field.

The visualizations currently developed focus mainly on distribution, status changes and
contributions to software issues. However, there is potential to explore and evaluate
further visualizations that consider additional metrics. As mentioned in Chapter 4, data
related to CI/CD in particular would be of great interest. For example, visualizations
could show in which areas CI/CD pipelines were triggered more frequently, who initiated
them and what status they had. Furthermore, the visualizations with lower ratings from
the first round of interviews, as described in Chapter 4, could be revised and validated.

Additionally, it could be investigated how the visualization concepts perform in the
context of a software engineering course and whether they can be used effectively both
by teaching staff to assess groups and by students to support decision-making. The
experts’ improvement suggestions described in Chapter 6 should be taken into account
and integrated.

As already described in Chapter 1, the focus of this thesis was on the development of
visualizations that are specifically suitable for projects in the field of software engineering
education. Since real-world projects differ in terms of the number of developers and
the time scope, future work could investigate how the visualization concepts need to
be adapted accordingly. Subsequent research could then investigate the use of these
concepts in real-world software projects.

94

List of Figures

2.1 Life cycle of TPM [60] . 6
2.2 Life cycle of APM [8] . 7
2.3 Types of VCSs [15] . 8
2.4 Example of a referenced issue in a commit message in GitLab111 11
2.5 Information process of data visualization [44] 12
2.6 Software issue visualization tool by [38] 14
2.7 Fine-grained issue tale view [31] . 15
2.8 Fine-grained visualization of in*Bug [20] 16
2.9 Bug lifetime and number of bugs visualization [36] 17
2.10 Comprehensive visual overview of RepoVis [30] 18
2.11 Gitinspector’s8108contributor visualization 19
2.12 Checkpoint session report of [28] . 22
2.13 The number of commits per month and year [55] 22

4.1 First vision that implements the features from Table 4.1 30
4.2 Local distribution of software issues with a Git-like graph 31
4.3 Local distribution of software issues with different attributes 33
4.4 Local distribution of software issues with the attributes Number of commits,

Duration to resolve issue, Number of changed code lines as relative values 34
4.5 Software issue status visualizations . 35
4.6 Students contributions to software issues 35
4.7 Work distribution visualization . 36
4.8 General issue information . 37
4.9 Possible filter options . 38
4.10 Demographics of participants . 40
4.11 Used ITSs and VCSs . 40
4.12 Experiences of participants . 41
4.13 Score of issue board questions . 43
4.14 Score of general issue information visualizations 43
4.15 Score of issue distribution visualizations 44
4.16 Score of issue status changes visualizations 45
4.17 Score of issue contributions visualizations 46
4.18 Score of folder/package selection . 47
4.19 Score of filters . 48

95

4.20 Score of compare functionality . 49

5.1 Architecture used to visualize software issues 54
5.2 Structure of the data . 56
5.3 Data model of PL . 69
5.4 Distribution of issues . 70
5.5 Information and control elements in the sidebar 70
5.6 Issue status changes . 72
5.7 Issue contribution and compare functionality 73

6.1 Demographics of participants . 78
6.2 Experiences of participants . 79
6.3 Usefulness of scenario: "Detailed information about a software issue" . . . 81
6.4 Usefulness of scenario: "Overview of software issue distribution" 83
6.5 Usefulness of scenario: "Overview of software issue contributions" 84
6.6 Usefulness of scenario: "Overview of software issue status changes" 86
6.7 Usefulness of scenario: "Issue comparison" 87

96

List of Tables

4.1 Overview of the proposed features . 29
4.2 Visualizations ranked by mean value . 49
4.3 Filters ranked by mean value . 50

97

Listings

5.1 Example of an exported issue object 57
5.2 Example labels to indicate status changes 58
5.3 Example of an exported project member 59
5.4 Example of an exported milestone . 59
5.5 Example of extracted commit . 60
5.6 Example of extracted files and folders 60
5.7 Database routing with ThreadLocal and AbstractRoutingDataSource . 62
5.8 Intitialization of database . 63
5.9 NDJSON file converter . 64
5.10 Git-related command execution . 65
5.11 Data gathering of PL . 67

99

Acronyms

APM Agile Project Management. 1, 5, 6, 7, 95

ASE Advanced Software Engineering. 1, 23, 50, 87

CI/CD Continuous Integration/Continuous Deployment. 47, 94

CRUD Create, Read, Update and Delete. 77

CVCS Centralized Version Control System. 8, 9

DVCS Distributed Version Control System. 8, 9

EL Extraction Layer. 53, 55, 60, 61, 65, 66, 67, 69, 77

HTTP Hypertext Transfer Protocol. 66, 71

IoC Inversion of Control. 61

ITS Issue Tracking System. 2, 5, 9, 11, 16, 17, 21, 29, 38, 39, 40, 41, 42, 53, 66, 77, 78,
79, 81, 83, 85, 89, 90, 93, 95

JSON JavaScript Object Notation. 55, 57, 63, 66

LVCS Local Version Control System. 8

MR Merge Request. 10

NDJSON Newline Delimited JavaScript Object Notation. 56, 62, 63, 64, 99

PBL Project Based Learning. 1

PL Processing Layer. 53, 55, 66, 67, 69, 71, 96, 99

PM Project Management. 5

101

PMI Project Management Institute. 5

POJO Plain Old Java Object. 63, 66

PR Pull Request. 10

RCS Revision Control System. 7

REST Representational State Transfer. 17, 53, 54, 55, 61, 65, 66, 67, 69, 77

SE PR Software Engineering Project. 1, 23, 50, 56, 66, 77, 87

SQL Structured Query Language. 54

SVN Subversion. 21

TPM Traditional Project Management. 5, 6, 7, 95

VCS Version Control System. 2, 5, 7, 8, 9, 11, 16, 21, 31, 39, 40, 41, 42, 53, 77, 78, 79,
90, 93, 95

VL Visualization Layer. 53, 55, 66, 69, 71

XML Extensible Markup Language. 16

102

Literature References

[1] Basant Lal Agarwal. Basic statistics. New Age International, 2006.
[2] Adebayo Agbejule and Lassi Lehtineva. „The relationship between traditional

project management, agile project management and teamwork quality on project
success“. In: (). doi: 10.1108/IJOA-02-2022-3149. url: https://www.
emerald.com/insight/1934-8835.htm.

[3] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. „What’s a typical
commit? A characterization of open source software repositories“. In: IEEE In-
ternational Conference on Program Comprehension (2008), pp. 182–191. doi:
10.1109/ICPC.2008.24.

[4] Jeroen van Baarsen. GitLab Cookbook. eng. 1st ed. Birmingham: Packt Publishing,
2014. isbn: 9781783986842.

[5] T. Ball and S.G. Eick. „Software visualization in the large“. In: Computer 29.4
(Apr. 1996), pp. 33–43. issn: 00189162. doi: 10.1109/2.488299. url: http:
//ieeexplore.ieee.org/document/488299/.

[6] Sebastian Baltes and Paul Ralph. „Sampling in Software Engineering Research:
A Critical Review and Guidelines“. In: (2021). doi: 10.1007/s10664-021-
10072-8.

[7] Andrew Begel and Thomas Zimmermann. „Analyze this! 145 questions for data
scientists in software engineering“. In: Proceedings of the 36th International Confer-
ence on Software Engineering - ICSE 2014 (2014), pp. 12–23. issn: 02705257. doi:
10.1145/2568225.2568233. url: http://dl.acm.org/citation.cfm?
doid=2568225.2568233.

[8] Thomas Bergmann and Waldemar Karwowski. „Agile project management and
project success: A literature review“. In: Advances in Intelligent Systems and
Computing 783 (2019), pp. 405–414. issn: 21945357. doi: https://doi.org/
10.1007/978-3-319-94709-9_39. url: https://link.springer.com/
chapter/10.1007/978-3-319-94709-9_39.

[9] Nikos Bikakis. „Big Data Visualization Tools“. In: Encyclopedia of Big Data
Technologies (Jan. 2018), pp. 1–8. doi: 10.1007/978-3-319-63962-8_109-2.
url: http://arxiv.org/abs/1801.08336%20http://dx.doi.org/10.
1007/978-3-319-63962-8_109-2.

103

https://doi.org/10.1108/IJOA-02-2022-3149
https://www.emerald.com/insight/1934-8835.htm
https://www.emerald.com/insight/1934-8835.htm
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/2.488299
http://ieeexplore.ieee.org/document/488299/
http://ieeexplore.ieee.org/document/488299/
https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1145/2568225.2568233
http://dl.acm.org/citation.cfm?doid=2568225.2568233
http://dl.acm.org/citation.cfm?doid=2568225.2568233
https://doi.org/https://doi.org/10.1007/978-3-319-94709-9_39
https://doi.org/https://doi.org/10.1007/978-3-319-94709-9_39
https://link.springer.com/chapter/10.1007/978-3-319-94709-9_39
https://link.springer.com/chapter/10.1007/978-3-319-94709-9_39
https://doi.org/10.1007/978-3-319-63962-8_109-2
http://arxiv.org/abs/1801.08336%20http://dx.doi.org/10.1007/978-3-319-63962-8_109-2
http://arxiv.org/abs/1801.08336%20http://dx.doi.org/10.1007/978-3-319-63962-8_109-2

[10] Tegawende F. Bissyande, David Lo, Lingxiao Jiang, Laurent Reveillere, Jacques
Klein, and Yves Le Traon. „Got issues? Who cares about it? A large scale inves-
tigation of issue trackers from GitHub“. In: 2013 IEEE 24th International Sym-
posium on Software Reliability Engineering (ISSRE). IEEE, Nov. 2013, pp. 188–
197. isbn: 978-1-4799-2366-3. doi: 10.1109/ISSRE.2013.6698918. url:
http://ieeexplore.ieee.org/document/6698918/.

[11] John D Blischak, Emily R Davenport, and Greg Wilson. „A Quick Introduction to
Version Control with Git and GitHub Introduction to Version Control“. In: (2016).
doi: 10.1371/journal.pcbi.1004668. url: https://git-scm.com/
downloads/guis.

[12] Henri Bomström, Markus Kelanti, Elina Annanperä, Kari Liukkunen, Terhi Kil-
amo, Outi Sievi-Korte, and Kari Systä. „Information needs and presentation
in agile software development“. In: Information and Software Technology 162
(Oct. 2023), p. 107265. issn: 09505849. doi: 10 . 1016 / j . infsof . 2023 .
107265. url: https://linkinghub.elsevier.com/retrieve/pii/
S0950584923001192.

[13] Raymond P L Buse and Thomas Zimmermann. „Information needs for software
development analytics“. In: Proceedings of the 2012 International Conference on
Software Engineering. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 987–
996. isbn: 978-1-4673-1067-3. url: http://dl.acm.org/citation.cfm?id=
2337223.2337343.

[14] Guilherme Cavalcanti, Paola Accioly, and Paulo Borba. „Assessing Semistructured
Merge in Version Control Systems: A Replicated Experiment“. In: International
Symposium on Empirical Software Engineering and Measurement 2015-November
(Nov. 2015), pp. 267–276. issn: 19493789. doi: 10.1109/ESEM.2015.7321191.

[15] Scott Chacon and Ben Straub. Pro Git. eng. 2nd ed. Berkeley, CA: Apress, 2014.
isbn: 978-1-4842-0077-3. doi: 10.1007/978-1-4842-0076-6. url: http:
//link.springer.com/10.1007/978-1-4842-0076-6.

[16] Hsi-Min Chen, Bao-An Nguyen, and Chyi-Ren Dow. „Code-quality evaluation
scheme for assessment of student contributions to programming projects“. In:
Journal of Systems and Software 188 (June 2022), p. 111273. issn: 01641212. doi:
10.1016/j.jss.2022.111273. url: https://linkinghub.elsevier.
com/retrieve/pii/S0164121222000358.

[17] M Codoban, S S Ragavan, D Dig, and B Bailey. „Software history under the lens:
A study on why and how developers examine it“. In: 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). Sept. 2015, pp. 1–10.
doi: 10.1109/ICSM.2015.7332446.

[18] David Coppit. „Implementing large projects in software engineering courses“. In:
Computer Science Education 16.1 (2006), pp. 53–73. issn: 17445175. doi: 10.
1080/08993400600600443. url: https://www.tandfonline.com/doi/
abs/10.1080/08993400600600443.

104

https://doi.org/10.1109/ISSRE.2013.6698918
http://ieeexplore.ieee.org/document/6698918/
https://doi.org/10.1371/journal.pcbi.1004668
https://git-scm.com/downloads/guis
https://git-scm.com/downloads/guis
https://doi.org/10.1016/j.infsof.2023.107265
https://doi.org/10.1016/j.infsof.2023.107265
https://linkinghub.elsevier.com/retrieve/pii/S0950584923001192
https://linkinghub.elsevier.com/retrieve/pii/S0950584923001192
http://dl.acm.org/citation.cfm?id=2337223.2337343
http://dl.acm.org/citation.cfm?id=2337223.2337343
https://doi.org/10.1109/ESEM.2015.7321191
https://doi.org/10.1007/978-1-4842-0076-6
http://link.springer.com/10.1007/978-1-4842-0076-6
http://link.springer.com/10.1007/978-1-4842-0076-6
https://doi.org/10.1016/j.jss.2022.111273
https://linkinghub.elsevier.com/retrieve/pii/S0164121222000358
https://linkinghub.elsevier.com/retrieve/pii/S0164121222000358
https://doi.org/10.1109/ICSM.2015.7332446
https://doi.org/10.1080/08993400600600443
https://doi.org/10.1080/08993400600600443
https://www.tandfonline.com/doi/abs/10.1080/08993400600600443
https://www.tandfonline.com/doi/abs/10.1080/08993400600600443

[19] Marco D’Ambros, Michele Lanza, and Martin Pinzger. „"A Bug’s Life" Visualizing a
Bug Database“. In: 2007 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis. IEEE, June 2007, pp. 113–120. isbn: 1-4244-0599-8.
doi: 10.1109/VISSOF.2007.4290709. url: http://ieeexplore.ieee.
org/document/4290709/.

[20] Tommaso Dal Sassc and Michele Lanza. „A closer look at bugs“. In: 2013 First
IEEE Working Conference on Software Visualization (VISSOFT). IEEE, Sept. 2013,
pp. 1–4. isbn: 978-1-4799-1457-9. doi: 10.1109/VISSOFT.2013.6650542. url:
http://ieeexplore.ieee.org/document/6650542/.

[21] Tommaso Dal Sasso and Michele Lanza. „In bug: Visual analytics of bug reposi-
tories“. In: 2014 Software Evolution Week - IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, Feb.
2014, pp. 415–419. isbn: 978-1-4799-3752-3. doi: 10.1109/CSMR-WCRE.2014.
6747208. url: https://ieeexplore.ieee.org/document/6747208/.

[22] Brian De Alwis and Jonathan Sillito. „Why are software projects moving from
centralized to decentralized version control systems?“ In: Proceedings of the 2009
ICSE Workshop on Cooperative and Human Aspects on Software Engineering,
CHASE 2009 (2009), pp. 36–39. doi: 10.1109/CHASE.2009.5071408.

[23] Mário André F. De Farias, Methanias Colaço, Manoel Mendonça, Renato Novais,
Luís Paulo Da Silva Carvalho, and Rodrigo Oliveira Spínola. „A systematic mapping
study on mining software repositories“. In: Proceedings of the ACM Symposium
on Applied Computing 04-08-April-2016 (Apr. 2016), pp. 1472–1479. doi: 10.
1145/2851613.2851786. url: http://dx.doi.org/10.1145/2851613.
2851786.

[24] Daniel Dietsch, Andreas Podelski, Jaechang Nam, Pantelis M Papadopoulos, and
Martin Schäf. „Monitoring Student Activity in Collaborative Software Develop-
ment“. In: (). doi: https://doi.org/10.48550/arXiv.1305.0787.

[25] Dutt. Software Project Management. eng. 1st edition. Pearson India, 2015. isbn:
9389552788.

[26] Tore Dybå, Torgeir Dingsoyr, and Nils Brede Moe. „Agile project management“.
In: Software Project Management in a Changing World 9783642550355 (Mar.
2014), pp. 277–300. doi: 10.1007/978-3-642-55035-5_11. url: https:
//link.springer.com/chapter/10.1007/978-3-642-55035-5_11.

[27] Keith Engwall and Mitchell Roe. „Git and GitLab in Library Website Change
Management Workflows“. In: Code4Lib Journal 48 (May 2020). issn: 1940-5758.
url: https://journal.code4lib.org/articles/15250.

[28] Sukru Eraslan, Kamilla Kopec-Harding, Caroline Jay, Suzanne M. Embury, Robert
Haines, Julio César Cortés Ríos, and Peter Crowther. „Integrating GitLab metrics
into coursework consultation sessions in a software engineering course“. In: Journal
of Systems and Software 167 (Sept. 2020), p. 110613. issn: 01641212. doi: 10.

105

https://doi.org/10.1109/VISSOF.2007.4290709
http://ieeexplore.ieee.org/document/4290709/
http://ieeexplore.ieee.org/document/4290709/
https://doi.org/10.1109/VISSOFT.2013.6650542
http://ieeexplore.ieee.org/document/6650542/
https://doi.org/10.1109/CSMR-WCRE.2014.6747208
https://doi.org/10.1109/CSMR-WCRE.2014.6747208
https://ieeexplore.ieee.org/document/6747208/
https://doi.org/10.1109/CHASE.2009.5071408
https://doi.org/10.1145/2851613.2851786
https://doi.org/10.1145/2851613.2851786
http://dx.doi.org/10.1145/2851613.2851786
http://dx.doi.org/10.1145/2851613.2851786
https://doi.org/https://doi.org/10.48550/arXiv.1305.0787
https://doi.org/10.1007/978-3-642-55035-5_11
https://link.springer.com/chapter/10.1007/978-3-642-55035-5_11
https://link.springer.com/chapter/10.1007/978-3-642-55035-5_11
https://journal.code4lib.org/articles/15250
https://doi.org/10.1016/j.jss.2020.110613
https://doi.org/10.1016/j.jss.2020.110613
https://doi.org/10.1016/j.jss.2020.110613

1016/j.jss.2020.110613. url: https://linkinghub.elsevier.com/
retrieve/pii/S0164121220300911.

[29] J. Favela and F. Pena-Mora. „An experience in collaborative software engineering
education“. In: IEEE Software 18.2 (Mar. 2001), pp. 47–53. issn: 07407459. doi:
10.1109/52.914742. url: http://ieeexplore.ieee.org/document/
914742/.

[30] Johannes Feiner and Keith Andrews. „RepoVis: Visual Overviews and Full-Text
Search in Software Repositories“. In: 2018 IEEE Working Conference on Software
Visualization (VISSOFT). IEEE, Sept. 2018, pp. 1–11. isbn: 978-1-5386-8292-0.
doi: 10.1109/VISSOFT.2018.00009. url: https://ieeexplore.ieee.
org/document/8530126/.

[31] Aron Fiechter, Roberto Minelli, Csaba Nagy, and Michele Lanza. „Visualizing
GitHub Issues“. In: 2021 Working Conference on Software Visualization (VIS-
SOFT). IEEE, Sept. 2021, pp. 155–159. isbn: 978-1-6654-3144-6. doi: 10.1109/
VISSOFT52517.2021.00030. url: https://ieeexplore.ieee.org/
document/9604892/.

[32] Maria Lydia Fioravanti, Bruno Sena, Leo Natan Paschoal, Laíza R. Silva, Ana
P. Allian, Elisa Y. Nakagawa, Simone R.S. Souza, Seiji Isotani, and Ellen F.
Barbosa. „Integrating Project Based Learning and Project Management for Software
Engineering Teaching: An Experience Report“. In: Proceedings of the 49th ACM
Technical Symposium on Computer Science Education. SIGCSE ’18. Baltimore,
Maryland, USA: Association for Computing Machinery, 2018, pp. 806–811. isbn:
9781450351034. doi: 10.1145/3159450.3159599. url: https://doi.org/
10.1145/3159450.3159599.

[35] Denis Gračanin, Krešimir Matković, and Mohamed Eltoweissy. „Software visual-
ization“. In: Innovations in Systems and Software Engineering 1.2 (Sept. 2005),
pp. 221–230. issn: 16145046. doi: 10.1007/S11334-005-0019-8. url: https:
//link.springer.com/article/10.1007/s11334-005-0019-8.

[36] Andre Hora, Nicolas Anquetil, Stephane Ducasse, Muhammad Bhatti, Cesar Couto,
Marco Tulio Valente, and Julio Martins. „Bug Maps: A Tool for the Visual Ex-
ploration and Analysis of Bugs“. In: 2012 16th European Conference on Software
Maintenance and Reengineering. IEEE, Mar. 2012, pp. 523–526. isbn: 978-0-7695-
4666-7. doi: 10.1109/CSMR.2012.68. url: http://ieeexplore.ieee.
org/document/6178935/.

[37] Ryo Ishizuka, Hironori Washizaki, Yoshiaki Fukazawa, Shinobu Saito, and Saori
Ouji. „Categorizing and Visualizing Issue Tickets to Better Understand the Fea-
tures Implemented in Existing Software Systems“. In: Proceedings - 2019 10th
International Workshop on Empirical Software Engineering in Practice, IWESEP
2019 (Dec. 2019), pp. 25–30. doi: 10.1109/IWESEP49350.2019.00013.

106

https://doi.org/10.1016/j.jss.2020.110613
https://doi.org/10.1016/j.jss.2020.110613
https://doi.org/10.1016/j.jss.2020.110613
https://doi.org/10.1016/j.jss.2020.110613
https://linkinghub.elsevier.com/retrieve/pii/S0164121220300911
https://linkinghub.elsevier.com/retrieve/pii/S0164121220300911
https://doi.org/10.1109/52.914742
http://ieeexplore.ieee.org/document/914742/
http://ieeexplore.ieee.org/document/914742/
https://doi.org/10.1109/VISSOFT.2018.00009
https://ieeexplore.ieee.org/document/8530126/
https://ieeexplore.ieee.org/document/8530126/
https://doi.org/10.1109/VISSOFT52517.2021.00030
https://doi.org/10.1109/VISSOFT52517.2021.00030
https://ieeexplore.ieee.org/document/9604892/
https://ieeexplore.ieee.org/document/9604892/
https://doi.org/10.1145/3159450.3159599
https://doi.org/10.1145/3159450.3159599
https://doi.org/10.1145/3159450.3159599
https://doi.org/10.1007/S11334-005-0019-8
https://link.springer.com/article/10.1007/s11334-005-0019-8
https://link.springer.com/article/10.1007/s11334-005-0019-8
https://doi.org/10.1109/CSMR.2012.68
http://ieeexplore.ieee.org/document/6178935/
http://ieeexplore.ieee.org/document/6178935/
https://doi.org/10.1109/IWESEP49350.2019.00013

[38] Ryo Ishizuka, Hironori Washizaki, Naohiko Tsuda, Yoshiaki Fukazawa, Saori Ouji,
Shinobu Saito, and Yukako Iimura. „Categorization and Visualization of Issue Tick-
ets to Support Understanding of Implemented Features in Software Development
Projects“. In: Applied Sciences 2022, Vol. 12, Page 3222 12.7 (Mar. 2022), p. 3222.
issn: 2076-3417. doi: 10.3390/APP12073222. url: https://www.mdpi.
com/2076-3417/12/7/3222/htm%20https://www.mdpi.com/2076-
3417/12/7/3222.

[39] Curt Jones. „Using subversion as an aid in evaluating individuals working on a
group coding project“. In: J. Comput. Sci. Coll. 25.3 (Jan. 2010), pp. 18–23. issn:
1937-4771.

[40] Stuart T Kard, Jock D Mackinlay, and Ben Scheiderman. Readings in Information
Visualization, Using vision to think. 1999. isbn: 1558605339.

[41] Harold Kerzner. Project management : a systems approach to planning, scheduling,
and controlling. eng. 10th ed. Hoboken, N.J.: Wiley, 2009. isbn: 0470503831.

[42] Ali Koc and Abdullah Uz Tansel. „A Survey of Version Control Systems“. In: 2011.
url: https://api.semanticscholar.org/CorpusID:41570936.

[43] Rainer Koschke. „Software visualization in software maintenance, reverse engineer-
ing, and re-engineering: A research survey“. In: Journal of Software Maintenance and
Evolution 15.2 (Mar. 2003), pp. 87–109. issn: 1532060X. doi: 10.1002/SMR.270.

[44] Qi Li. „Overview of Data Visualization“. In: Embodying Data (2020), pp. 17–47.
doi: 10.1007/978-981-15-5069-0_2. url: https://link.springer.
com/chapter/10.1007/978-981-15-5069-0_2.

[45] Chang Liu. „Using Issue Tracking Tools to Facilitate Student Learning of Commu-
nication Skills in Software Engineering Courses“. In: 18th Conference on Software
Engineering Education & Training (CSEET’05). IEEE, Apr. 2005, pp. 61–68. isbn:
0-7695-2324-2. doi: 10.1109/CSEET.2005.40. url: http://ieeexplore.
ieee.org/document/4698909/.

[47] Thorsten Merten, Matus Falis, Paul Hubner, Thomas Quirchmayr, Simone Bursner,
and Barbara Paech. „Software Feature Request Detection in Issue Tracking Sys-
tems“. In: 2016 IEEE 24th International Requirements Engineering Conference
(RE). IEEE, Sept. 2016, pp. 166–175. isbn: 978-1-5090-4121-3. doi: 10.1109/RE.
2016.8. url: http://ieeexplore.ieee.org/document/7765522/.

[48] Thorsten Merten, Bastian Mager, Paul Hübner, Thomas Quirchmayr, Barbara
Paech, and Simone Bürsner. „Requirements Communication in Issue Tracking
Systems in Four Open-Source Projects“. In: 2015, pp. 114–125. url: https:
//ceur-ws.org/Vol-1342/.

107

https://doi.org/10.3390/APP12073222
https://www.mdpi.com/2076-3417/12/7/3222/htm%20https://www.mdpi.com/2076-3417/12/7/3222
https://www.mdpi.com/2076-3417/12/7/3222/htm%20https://www.mdpi.com/2076-3417/12/7/3222
https://www.mdpi.com/2076-3417/12/7/3222/htm%20https://www.mdpi.com/2076-3417/12/7/3222
https://api.semanticscholar.org/CorpusID:41570936
https://doi.org/10.1002/SMR.270
https://doi.org/10.1007/978-981-15-5069-0_2
https://link.springer.com/chapter/10.1007/978-981-15-5069-0_2
https://link.springer.com/chapter/10.1007/978-981-15-5069-0_2
https://doi.org/10.1109/CSEET.2005.40
http://ieeexplore.ieee.org/document/4698909/
http://ieeexplore.ieee.org/document/4698909/
https://doi.org/10.1109/RE.2016.8
https://doi.org/10.1109/RE.2016.8
http://ieeexplore.ieee.org/document/7765522/
https://ceur-ws.org/Vol-1342/
https://ceur-ws.org/Vol-1342/

[49] Megha Mittal and Ashish Sureka. „Process mining software repositories from
student projects in an undergraduate software engineering course“. In: Companion
Proceedings of the 36th International Conference on Software Engineering. ICSE
Companion 2014. Hyderabad, India: Association for Computing Machinery, 2014,
pp. 344–353. isbn: 9781450327688. doi: 10.1145/2591062.2591152. url:
https://doi.org/10.1145/2591062.2591152.

[50] Sarhan M Musa, Cajetan Akujuobi, Matthew N O Sadiku, Adebowale E Shadare,
Cajetan M Akujuobi, and Roy G Perry. „Publication Impact Factor (PIF): 1.02
www.sretechjournal.org DATA VISUALIZATION“. In: International Journal of
Engineering Research And Advanced Technology (2016). issn: 2454-6135. url:
https://www.researchgate.net/publication/311597028.

[51] Muskan, Gurpreet Singh, Jaspreet Singh, and Chander Prabha. „Data Visualiza-
tion and its Key Fundamentals: A Comprehensive Survey“. In: 7th International
Conference on Communication and Electronics Systems, ICCES 2022 - Proceedings
(2022), pp. 1710–1714. doi: 10.1109/ICCES54183.2022.9835803.

[52] Giang Nguyen-Truong, Hong Jin Kang, David Lo, Abhishek Sharma, Andrew E. San-
tosa, Asankhaya Sharma, and Ming Yi Ang. „HERMES: Using Commit-Issue Link-
ing to Detect Vulnerability-Fixing Commits“. In: 2022 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). IEEE, Mar. 2022,
pp. 51–62. isbn: 978-1-6654-3786-8. doi: 10.1109/SANER53432.2022.00018.
url: https://ieeexplore.ieee.org/document/9825835/.

[53] Adam O’Grady. „Issues to Merge Requests“. eng. In: GitLab Quick Start Guide.
United Kingdom: Packt Publishing, Limited, 2018. isbn: 9781789534344.

[54] Sofia Ouhbi and Nuno Pombo. „Software Engineering Education: Challenges and
Perspectives“. In: 2020 IEEE Global Engineering Education Conference (EDUCON).
Vol. 2020-April. IEEE, Apr. 2020, pp. 202–209. isbn: 978-1-7281-0930-5. doi:
10.1109/EDUCON45650.2020.9125353. url: https://ieeexplore.
ieee.org/document/9125353/.

[55] Reza M. Parizi, Paola Spoletini, and Amritraj Singh. „Measuring Team Members’
Contributions in Software Engineering Projects using Git-driven Technology“. In:
2018 IEEE Frontiers in Education Conference (FIE). Vol. 2018-October. IEEE,
Oct. 2018, pp. 1–5. isbn: 978-1-5386-1174-6. doi: 10.1109/FIE.2018.8658983.
url: https://ieeexplore.ieee.org/document/8658983/.

[56] Shaun Phillips, Jonathan Sillito, and Rob Walker. „Branching and merging: An
investigation into current version control practices“. In: Proceedings - International
Conference on Software Engineering (2011), pp. 9–15. issn: 02705257. doi: 10.
1145/1984642.1984645.

[57] Wouter Poncin, Alexander Serebrenik, and Mark Van Den Brand. „Process mining
software repositories“. In: Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR (2011), pp. 5–13. issn: 15345351. doi:
10.1109/CSMR.2011.5.

108

https://doi.org/10.1145/2591062.2591152
https://doi.org/10.1145/2591062.2591152
https://www.researchgate.net/publication/311597028
https://doi.org/10.1109/ICCES54183.2022.9835803
https://doi.org/10.1109/SANER53432.2022.00018
https://ieeexplore.ieee.org/document/9825835/
https://doi.org/10.1109/EDUCON45650.2020.9125353
https://ieeexplore.ieee.org/document/9125353/
https://ieeexplore.ieee.org/document/9125353/
https://doi.org/10.1109/FIE.2018.8658983
https://ieeexplore.ieee.org/document/8658983/
https://doi.org/10.1145/1984642.1984645
https://doi.org/10.1145/1984642.1984645
https://doi.org/10.1109/CSMR.2011.5

[58] Project Management Institute Inc. (PMI). „A Guide to the Project Management
Body of Knowledge“. eng. In: A Guide to the Project Management Body of Knowl-
edge (PMBOK ® Guide) – 7th Edition and The Standard for Project Management.
United States: Project Management Institute, Inc. (PMI), 2021, pp. 1–2. isbn:
9781628256642.

[59] Christian Rodriguez-Bustos and Jairo Aponte. „How Distributed Version Control
Systems impact open source software projects“. In: IEEE International Working
Conference on Mining Software Repositories (2012), pp. 36–39. issn: 21601852. doi:
10.1109/MSR.2012.6224297.

[60] Jihane Roudias. Mastering principles and practices in PMBOK, PRINCE2, and
Scrum : using essential project management methods to deliver effective and efficient
projects. eng. 1st edition. FT Press project management series. Upper Saddle River,
New Jersey: Pearson Education/FT Press, 2015.

[61] Hang Ruan, Bihuan Chen, Xin Peng, and Wenyun Zhao. „DeepLink: Recovering
issue-commit links based on deep learning“. In: Journal of Systems and Software
158 (Dec. 2019), p. 110406. issn: 01641212. doi: 10.1016/j.jss.2019.
110406. url: https://linkinghub.elsevier.com/retrieve/pii/
S0164121219301803.

[62] Nayan B. Ruparelia. „The history of version control“. In: ACM SIGSOFT Software
Engineering Notes 35.1 (Jan. 2010), pp. 5–9. issn: 0163-5948. doi: 10.1145/
1668862.1668876. url: http://doi.acm.org/10.1145/1668862.
1668876.

[63] Hanadi Salameh. „What, When, Why, and How? A Comparison between Ag-
ile Project Management and Traditional Project Management Methods“. In: In-
ternational Journal of Management Reviews Vol.2, (Oct. 2014). url: https:
//www. eajournals. org/wp- content/uploads/What- When- Why-
and-How-A-Comparison-between-Agile-Project-Management-and-
Traditional-Project-Management-Methods.pdf.

[64] Andreas Schreiber, Lynn von Kurnatowski, Annika Meinecke, and Claas de Boer.
„An Interactive Dashboard for Visualizing the Provenance of Software Develop-
ment Processes“. In: 2021 Working Conference on Software Visualization (VIS-
SOFT). IEEE, Sept. 2021, pp. 100–104. isbn: 978-1-6654-3144-6. doi: 10.1109/
VISSOFT52517.2021.00019. url: https://ieeexplore.ieee.org/
document/9604814/.

[65] Sergey A Shershakov, Sergey S Shershakov, and Alexey A Mitsyuk. „Term Projects
Workflow for Modern Software Engineering Education“. In: (2017). doi: 10.
13140/RG.2.2.23674.18889. url: https://www.researchgate.net/
publication/318494889.

109

https://doi.org/10.1109/MSR.2012.6224297
https://doi.org/10.1016/j.jss.2019.110406
https://doi.org/10.1016/j.jss.2019.110406
https://linkinghub.elsevier.com/retrieve/pii/S0164121219301803
https://linkinghub.elsevier.com/retrieve/pii/S0164121219301803
https://doi.org/10.1145/1668862.1668876
https://doi.org/10.1145/1668862.1668876
http://doi.acm.org/10.1145/1668862.1668876
http://doi.acm.org/10.1145/1668862.1668876
https://www.eajournals.org/wp-content/uploads/What-When-Why-and-How-A-Comparison-between-Agile-Project-Management-and-Traditional-Project-Management-Methods.pdf
https://www.eajournals.org/wp-content/uploads/What-When-Why-and-How-A-Comparison-between-Agile-Project-Management-and-Traditional-Project-Management-Methods.pdf
https://www.eajournals.org/wp-content/uploads/What-When-Why-and-How-A-Comparison-between-Agile-Project-Management-and-Traditional-Project-Management-Methods.pdf
https://www.eajournals.org/wp-content/uploads/What-When-Why-and-How-A-Comparison-between-Agile-Project-Management-and-Traditional-Project-Management-Methods.pdf
https://doi.org/10.1109/VISSOFT52517.2021.00019
https://doi.org/10.1109/VISSOFT52517.2021.00019
https://ieeexplore.ieee.org/document/9604814/
https://ieeexplore.ieee.org/document/9604814/
https://doi.org/10.13140/RG.2.2.23674.18889
https://doi.org/10.13140/RG.2.2.23674.18889
https://www.researchgate.net/publication/318494889
https://www.researchgate.net/publication/318494889

[66] Maurício Souza, Renata Moreira, and Eduardo Figueiredo. „Students Perception
on the use of Project-Based Learning in Software Engineering Education“. In:
Proceedings of the XXXIII Brazilian Symposium on Software Engineering. SBES
’19. Salvador, Brazil: Association for Computing Machinery, 2019, pp. 537–546.
isbn: 9781450376518. doi: 10.1145/3350768.3352457. url: https://doi.
org/10.1145/3350768.3352457.

[67] Diomidis Spinellis. „Git“. In: IEEE Software 29.3 (May 2012), pp. 100–101. issn:
0740-7459. doi: 10.1109/MS.2012.61. url: http://ieeexplore.ieee.
org/document/6188603/.

[68] Yan Sun, Qing Wang, and Ye Yang. „FRLink: Improving the recovery of missing
issue-commit links by revisiting file relevance“. In: Information and Software
Technology 84 (Apr. 2017), pp. 33–47. issn: 09505849. doi: 10.1016/j.infsof.
2016.11.010. url: https://linkinghub.elsevier.com/retrieve/
pii/S0950584916303792.

[69] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. „How
do software engineers understand code changes?: an exploratory study in indus-
try“. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. FSE ’12. New York, NY, USA: ACM, 2012,
51:1–51:11. isbn: 978-1-4503-1614-9. doi: 10.1145/2393596.2393656. url:
http://doi.acm.org/10.1145/2393596.2393656.

[70] Alexander Tarvo, Thomas Zimmermann, and Jacek Czerwonka. „An integration
resolution algorithm for mining multiple branches in version control systems“. In:
IEEE International Conference on Software Maintenance, ICSM (2011), pp. 402–
411. doi: 10.1109/ICSM.2011.6080807.

[71] Mariot Tsitoara. Beginning Git and GitHub. eng. 1st ed. Berkeley, CA: Apress L.
P, 2019. isbn: 1484253124. doi: 10.1007/978-1-4842-5313-7.

[72] Miroslav Tushev, Grant Williams, and Anas Mahmoud. „Using GitHub in large
software engineering classes. An exploratory case study“. In: Computer Science Ed-
ucation 30.2 (Apr. 2020), pp. 155–186. issn: 17445175. doi: 10.1080/08993408.
2019.1696168. url: https://www.tandfonline.com/doi/abs/10.
1080/08993408.2019.1696168.

[73] Andric Valdez, Hanna Oktaba, Helena Gomez, and Aurora Vizcaino. „Sentiment
Analysis in Jira Software Repositories“. In: 2020 8th International Conference in
Software Engineering Research and Innovation (CONISOFT). IEEE, Nov. 2020,
pp. 254–259. isbn: 978-1-7281-8450-0. doi: 10.1109/CONISOFT50191.2020.
00043. url: https://ieeexplore.ieee.org/document/9307811/.

[74] Joakim Verona. „Issue Tracking“. eng. In: Practical DevOps. United Kingdom:
Packt Publishing, Limited, 2016. isbn: 9781785882876.

110

https://doi.org/10.1145/3350768.3352457
https://doi.org/10.1145/3350768.3352457
https://doi.org/10.1145/3350768.3352457
https://doi.org/10.1109/MS.2012.61
http://ieeexplore.ieee.org/document/6188603/
http://ieeexplore.ieee.org/document/6188603/
https://doi.org/10.1016/j.infsof.2016.11.010
https://doi.org/10.1016/j.infsof.2016.11.010
https://linkinghub.elsevier.com/retrieve/pii/S0950584916303792
https://linkinghub.elsevier.com/retrieve/pii/S0950584916303792
https://doi.org/10.1145/2393596.2393656
http://doi.acm.org/10.1145/2393596.2393656
https://doi.org/10.1109/ICSM.2011.6080807
https://doi.org/10.1007/978-1-4842-5313-7
https://doi.org/10.1080/08993408.2019.1696168
https://doi.org/10.1080/08993408.2019.1696168
https://www.tandfonline.com/doi/abs/10.1080/08993408.2019.1696168
https://www.tandfonline.com/doi/abs/10.1080/08993408.2019.1696168
https://doi.org/10.1109/CONISOFT50191.2020.00043
https://doi.org/10.1109/CONISOFT50191.2020.00043
https://ieeexplore.ieee.org/document/9307811/

[75] Roel J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. eng. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. isbn: 978-
3-662-43838-1. doi: 10.1007/978-3-662-43839-8. url: https://link.
springer.com/10.1007/978-3-662-43839-8.

[76] Haitham Yaish and Madhu Goyal. „A multi-tenant database architecture design
for software applications“. In: Proceedings - 16th IEEE International Conference
on Computational Science and Engineering, CSE 2013 (2013), pp. 933–940. doi:
10.1109/CSE.2013.139.

[77] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, and Massimiliano Di Penta.
„CI/CD Pipelines Evolution and Restructuring: A Qualitative and Quantitative
Study“. In: 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 2021, pp. 471–482. doi: 10.1109/ICSME52107.2021.
00048.

[78] Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, and Fei He. „On the methodol-
ogy of three-way structured merge in version control systems: Top-down, bottom-up,
or both“. In: Journal of Systems Architecture 145 (Dec. 2023), p. 103011. issn:
1383-7621. doi: 10.1016/J.SYSARC.2023.103011.

[79] Nazatul Nurlisa Zolkifli, Amir Ngah, and Aziz Deraman. „Version Control System:
A Review“. In: Procedia Computer Science 135 (Jan. 2018), pp. 408–415. issn:
1877-0509. doi: 10.1016/J.PROCS.2018.08.191.

111

https://doi.org/10.1007/978-3-662-43839-8
https://link.springer.com/10.1007/978-3-662-43839-8
https://link.springer.com/10.1007/978-3-662-43839-8
https://doi.org/10.1109/CSE.2013.139
https://doi.org/10.1109/ICSME52107.2021.00048
https://doi.org/10.1109/ICSME52107.2021.00048
https://doi.org/10.1016/J.SYSARC.2023.103011
https://doi.org/10.1016/J.PROCS.2018.08.191

Online References

[33] Git Glossary. Accessed: 23.08.2024. url: https://git- scm.com/docs/
gitglossary.

[34] GitLab Merge Request. Accessed: 23.08.2024. url: https://docs.gitlab.com/
ee/user/project/merge_requests/.

[46] Manifesto for Agile Software Development. Accessed: 23.08.2024. url: https:
//agilemanifesto.org/.

113

https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/user/project/merge_requests/
https://agilemanifesto.org/
https://agilemanifesto.org/

Appendix

Semi-Structured Expert Interview Questionnaire

115

Scenario-Based Evaluation Questionnaire

125

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Description
	Expected Results
	Structure

	Theoretical Background
	Fundamentals
	Related Work

	Research Design
	Research Questions
	Methodology

	Semi-Structured Expert Interviews
	Concept
	Interview Design
	Results
	Requirements

	Implementation
	Architecture
	Extraction Layer
	Processing Layer
	Visualization Layer

	Scenario-Based Evaluation
	Design
	Results
	Threats to Validity

	Discussion
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Listings
	Acronyms
	Literature References
	Online References
	Appendix
	Semi-Structured Expert Interview Questionnaire
	Scenario-Based Evaluation Questionnaire

