
Verifikation von nebenläufigen
Programmen in schwachen

Speicher-Modellen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Hannes Dallinger
Matrikelnummer 11775789

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof.Dr. Johann Blieberger
Mitwirkung: Dr. techn. Dipl-Ing. (FH) MSc MBA Patrick Denzler

Wien, 27. Jänner 2025
Hannes Dallinger Johann Blieberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Verification of concurrent
programs in weak memory

models

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Hannes Dallinger
Registration Number 11775789

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof.Dr. Johann Blieberger
Assistance: Dr. techn. Dipl-Ing. (FH) MSc MBA Patrick Denzler

Vienna, January 27, 2025
Hannes Dallinger Johann Blieberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Hannes Dallinger

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 27. Jänner 2025
Hannes Dallinger

v

Danksagung

Ich möchte meine aufrichtige Dankbarkeit gegenüber meinen Betreuern, Ao.Univ.Prof.Dr.
Johann Blieberger und Dr. techn. Dipl.-Ing. (FH) MSc MBA Patrick Denzler, für ihre
Unterstützung und ihr Feedback während dieser Thesis zum Ausdruck bringen.

Weiters möchte ich auch meiner Familie für ihre ständige Ermutigung und ihr Verständnis
danken. Ihre Unterstützung war von unschätzbarem Wert und hat mir während meines
Studiums sehr geholfen.

vii

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Ao.Univ.Prof.Dr. Johann
Blieberger and Dr. techn. Dipl-Ing. (FH) MSc MBA Patrick Denzler, for their support,
guidance, and feedback throughout this thesis.

I also want to thank my family for their constant encouragement and understanding.
Their support has been invaluable and helped me during my studies.

ix

Kurzfassung

Moderne Processoren nutzen schwache Speichermodelle, um die Ausführung von Code zu
optimieren. Im Vergleich zu sequentiell konsistenten Speichermodellen erlauben schwache
Speichermodelle die Umordnung von Codeanweisungen. Während dies das Verhalten
eines Single-Thread-Programmes nicht verändert, kann es in Multicore-Systemen Fehler
verursachen indem Ausführungsreihenfolgen zwischen Threads ermöglicht werden, die
ansonst nicht möglich wären. Diese Fehler sind für Entwickler oft schwer zu erkennen
und zu verstehen.

Diese Thesis schlägt vor, mithilfe von Kronecker Algebra mögliche Ausführungsreihenfol-
gen von Multithread-Programmen innerhalb schwacher Speichermodelle zu modellieren.
Dies kann dann verwendet werden, um Race Conditions im System zu erkennen. Der
Fokus liegt dabei speziell auf schwachen Speichermodellen die Release-Acquire Semantiken
nutzen.

Im Rahmen der Arbeit wird ein Prototyp entwickelt, der das System zur Erkennung
von Race Conditions in Multithread-Programmen einzusetzen, die in LLVM-Bytecode
kompiliert wurden, um zu zeigen, dass das System in der Lage ist, in Programmen
Probleme zu identifizieren, die unter Verwendung von Release-Acquire Speichermodellen
auftreten, obwohl das Programm unter sequentiellen Speichermodellen korrekt war.

Der Prototyp bewies die Korrektheit der sequentiellen Versionen von Petersons und
Dekker’s Algorithmus und erkannte auch die Fehler, die auftreten, wenn sie nahezu
unverändert unter der Verwendung von Release-Acquire-Speichermodellen ausgeführt
werden.

xi

Abstract

Modern Central Processing Units (CPUs) utilize weak memory models to optimize code
execution. Compared to sequential consistent memory models, weak memory models
allow the reordering of code instructions. While this does not alter the behavior of a
single-thread program, it can cause bugs in multicore systems by allowing execution
orders between threads that would otherwise not be possible. These errors are often
problematic for the developer to detect and understand.

This thesis proposes to use Kronecker Algebra to model possible execution orders of
multithreaded programs within weak memory models. The output of such a toolchain
can then be used to detect race conditions within the system. It focuses explicitly on
weak memory models using release-acquire semantics.

Alongside the thesis, a prototype is developed for the proposed system to detect race
conditions in multithreaded programs compiled into LLVM-bytecode. This is done to
show that the system can detect problems caused when running a program using release-
acquire memory models. However, the program was correct under sequential memory
models.

The prototype correctly proved the correctness of the sequential versions of Peterson’s
and Dekker’s Algorithm. Moreover, the prototype detected the errors that arise when
Peterson’s and Dekker’s Algorithms run without modifications using release-acquire
memory models.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Aim and Research Questions . 3
1.2 Outline . 4

2 Background 5
2.1 Sequential Consistency . 5
2.2 Release-Acquire . 6
2.3 LLVM . 6
2.4 Race Condition . 11
2.5 Kronecker Algebra . 15

3 Building the Matrix Representation 31
3.1 Program Skeleton . 31
3.2 Setting Dependencies . 37

4 Prototype 45
4.1 Creating Blocks . 45
4.2 Building the Skeleton . 46
4.3 Dependencies . 46
4.4 Optimization . 47
4.5 Collecting Further Information . 49
4.6 Detecting Dependency Type . 49
4.7 Creating the Graph . 50
4.8 Detecting Errors . 52

5 Examples 55
5.1 Peterson’s Algorithm - Sequential Consistent Version 55
5.2 Peterson’s Algorithm - Release-Acquire Version 59

xv

5.3 Peterson’s Algorithm - Modified Release-Acquire Version 62
5.4 Dekker’s Algorithm - Sequential Consistent Version 64
5.5 Dekker’s Algorithm - Release-Acquire Version 68
5.6 Dekker’s Algorithm - Modified Release-Acquire Version 71

6 Related Work 75
6.1 Dynamic Partial Order Reduction . 75
6.2 Iris . 76
6.3 Context Bound Analysis . 77

7 Discussion 79
7.1 Time . 80

8 Conclusion and Future Work 83

List of Figures 85

List of Tables 87

List of Algorithms 87

Bibliography 89

CHAPTER 1
Introduction

When developing programs, many developers make assumptions about the program and
its execution that do not always hold. One of these assumptions is that the compiled
machine code is executed with a sequentially consistent memory model.

Sequential consistency is the traditional model for executing code. Executing code
sequentially consistently means that the instructions are executed in the order of the
program code. While this makes programs very predictable and would make it easy to
reason about a program’s behavior, this usually does not hold for performance reasons.

Modern Central processing units (CPUs) make use of weak memory models. Weak
memory models weaken the constraints of sequential consistency by allowing the compiler
and CPU to reorder instructions in ways that do not change the result of those instructions.
This allows the CPU to maximize its available resources by, for example, fetching multiple
values from memory in parallel or calculating multiple values at once.

Furthermore, it can schedule the execution of slow instructions before faster ones. This has
the effect that multiple faster instructions can be done in parallel during the calculation
of the slow instruction. Once the slow one is finished, any other instruction that depends
on its result can be executed. If, instead, multiple slow instructions were done in parallel,
followed by the slow one, all instructions dependent on the slow one now have to wait
for them to complete. At the same time, the CPU may run idle since there might be no
independent instructions for it to execute in parallel.

Another case that can cause the execution order to differ from the order written by the
programmer is when compile-time optimizations reorder the code. This might be done to
better utilize the CPU pipeline, branch prediction, or similar systems used by the CPU
to speed up code execution.

A second assumption many developers make is to assume that the effect of every instruc-
tion is seen immediately by all other threads and in the same order. This is not the case.

1

1. Introduction

1 a = 0
2 b = 0
3
4 thread0 {
5 a = 1
6 p r i n t (b)
7 }
8
9 thread1 {

10 b = 1
11 p r i n t (a)
12 }

Figure 1.1: Race Condition Caused by Delayed Synchronization

ready == 1start

ready = 0

sync critical work

ready = 1

end

false

true

(a) Program Order

ready == 1start

ready = 0

ready = 1

sync critical work

end

false

true

(b) Possible Execution Order

Figure 1.2: Example How Optimization Might Influence Execution Order

Instead, every thread may observe writes to memory in different orders; this allows, for
example, both threads in Figure 1.1 to print 0 since both threads might still read an old
value even though the other thread has overwritten it.

The previously mentioned changes in execution order are designed not to change the
program in ways that impact the result of it. However, this is only true for single-threaded
applications since the optimizations are done per thread. Figure 1.2a shows, assuming

2

1.1. Aim and Research Questions

the check and setting of ready is done atomically, a way of how synchronization-critical
code can be wrapped to ensure multiple threads cannot enter the critical section at the
same time. Without any optimization, this code would work fine even in multithreaded
programs. However, during optimization, the instruction reading and modifying the
ready variable will be considered independent of the synchronization-critical code, which
allows the CPU to execute both simultaneously; the resulting possible execution order
can be seen in Figure 1.2b. This order makes it possible for the variable ready to be
reset to 1 before the critical code is finished and, for this reason, allows multiple threads
to enter the section simultaneously which can cause a race condition.

A race condition occurs in a system when multiple threads attempt to modify or access
shared resources simultaneously. This might cause the program to be unpredictable since
its result can depend on the order in which the threads access the shared resources. Race
conditions will be further explained in Section 2.4.

Developers can use atomic instructions and memory fences to ensure that neither the
compiler nor the CPU reorders synchronization-critical code. Using them allows the
programmer to restrict the compiler and CPU’s ability to reorder instructions and ensure
data synchronization between threads. Thus, they are critical for the correct execution
of the program.

However, setting these memory fences is not always easy, and bugs caused by wrong
synchronization in weak memory models are not easily detectable by a developer. Even
though the problem is undecidable [AAAK19], many verification tools have been developed
to help developers detect problems caused by wrong synchronization [LR09, AAC+12,
BM08, AAAK19].

1.1 Aim and Research Questions
The aim of this thesis is to develop a new approach to address the previously mentioned
issues using Kronecker Algebra. Kronecker Algebra allows the modeling of reordered
instruction, the interleaving of concurrent programs [BB14], as well as the detection of
race conditions within the program [Bli15].

The following research questions (RQs) were formulated to support the aim and structure
of the research process.

• RQ1: Can Kronecker Algebra effectively capture the interactions between threads
in concurrent programs following the release acquire model?

• RQ2: To what extent can Kronecker Algebra assist in detecting and resolving data
races in programs using the release acquire model?

• RQ3: What are the limitations and challenges of applying Kronecker Algebra to
verify the correctness of concurrent programs under the release acquire model?

3

1. Introduction

1.1.1 Delimitations
The system will prioritize using Kronecker Algebra extensively but not exclusively, to
ensure that the time required to verify smaller algorithms remains reasonable.

This also means it will not focus on fixing the state explosion caused by the amount of
possible interleavings between the threads.

Lastly, the system will not allow for any dynamic creation of threads during execution.

1.2 Outline
The thesis contains two parts. In the first part, a system that uses Kronecker Algebra to
detect race conditions within programs using weak memory models will be developed.
The second part will develop a prototype that applies the developed system to programs
compiled to LLVM-bytecode. Applying the prototype to several examples shows that
the system can correctly detect race conditions. Further, related work will be shown in
Section 6.

4

CHAPTER 2
Background

This chapter will explain the memory models used in the thesis. Further, a short overview
of LLVM, race conditions, and Kronecker Algebra will be given.

2.1 Sequential Consistency
Sequential consistency ensures that all threads see every write-to memory in the same
order. This makes working with programs using sequential consistency intuitive since
every read is guaranteed to read the newest value of the system. Note that this system
does not require that every write is immediately synchronized over all threads, only that
the write is synchronized to a thread before that thread reads the value.

On its own, this does not prevent race conditions. Take the following program execution
as an example:

• Thread A: read value x

• Thread B: read value x

• Thread A: calculate based on x and save it back to x

• Thread B: calculate based on x and save it back to x

In this example, the calculation of thread A is overwritten by thread B with a value that
is based on a read that occurred before thread A wrote that value. Algorithms have been
developed to prevent this from happening. Section 2.4 will provide further details.

5

2. Background

2.2 Release-Acquire
A concurrent program that is correct under a sequential memory model is not always
correct under a weak memory model. For this reason, different types of synchronization
techniques exist. One of those techniques is the release-acquire memory model.

In the release-acquire model, memory accesses are categorized into releases and acquires.
A release operation typically stores a value in a shared memory location, while an acquire
operation is associated with loading a value from a shared memory location. These
operations serve as synchronization points between different memory accesses in the
program that define which instructions must be performed before and after.

In the case of a thread performing a release operation on a shared memory location, all
memory writes performed before the release are guaranteed to be visible to other threads
that perform an acquire operation on the same memory afterward. This ensures that
ordering constraints are preserved across threads. Furthermore, the acquire-operator
guarantees that no memory writes after the instruction is moved to before the acquire-
instruction.

Using these two operators, a programmer can ensure the order of execution to make sure
no reordering can occur that threatens the correctness of the concurrent system.

2.3 LLVM
Low-Level Virtual Machine [llvb], or LLVM, is a compiler infrastructure designed to
generate code as well as to analyze and optimize it. It was initially implemented for C
and C++ but has since been used for many other programming languages like Swift,
Rust, and Zig, having compilers that utilize LLVM.

At the core of LLVM is an intermediate representation language that serves as a platform-
independent abstraction of program code. This intermediate language allows any opti-
mization techniques implemented for LLVM to be used in any programming language
that utilizes LLVM for code generation. It also makes it easier to support different
architectures since one compiler, compiling the intermediate language to the target
architecture, can be reused by different languages.

2.3.1 Code Structure
LLVM programs are divided into one or multiple modules. In the case of compiling C
code using LLVM, each module is equivalent to an object file. Each module consists of
global variables and functions.

A function is then divided into one or multiple blocks. A block consists of a list of
one or multiple instructions containing exactly one terminator instruction at the end.
Terminator instructions alter the control flow of the program, like, for example, RET or
BR. Since these terminator instructions are only allowed at the end of the block, and

6

2.3. LLVM

all control flow-altering instructions jump to the beginning of a block, this means that
assuming sequential consistency, when a block is entered, all instructions within the
block are executed one after the other with no control flow allowing any instruction to
be skipped or repeated till the execution of the block is completed.

Some important LLVM instructions for this thesis can be seen in Table 2.1.

It is important to mention that ALLOCA returns a pointer to the created address and
globals pointers to the values. For this reason, to access or change the values, a STORE
or LOAD is needed.

7

2. Background

N
am

e
U

sa
ge

O
ve

rv
ie

w
ST

O
R

E
ST

O
R

E
<

ty
>

<
va

>
,p

tr
<

po
>

St
or

es
va

lu
e

in
<

va
>

to
<

po
>

as
ty

pe
<

ty
>

ST
O

R
E

at
om

ic
<

ty
>

<
va

>
,

pt
r

<
po

>
<

or
>

,a
lig

n
<

al
>

At
om

ic
ve

rs
io

n
th

at
us

es
th

e
or

de
rin

g
<

or
>

an
d

al
ig

n-
m

en
t

<
al

>
LO

A
D

<
re

>
=

LO
A

D
<

ty
>

,p
tr

<
po

>
sa

ve
s

th
e

va
lu

e
of

<
po

>
of

ty
pe

<
ty

>
in

to
<

re
>

<
re

>
=

LO
A

D
at

om
ic

<
ty

>
,p

tr
<

po
>

<
or

>
,a

lig
n

<
al

>
At

om
ic

ve
rs

io
n

th
at

us
es

or
de

rin
g

<
or

>
an

d
al

ig
nm

en
t

<
al

>
BR

B
R

i1
<

co
n>

,l
ab

el
<

ift
ru

e>
,l

ab
el

<
if-

fa
lse

>
if

va
lu

e
in

<
co

n>
is

0
ju

m
p

to
bl

oc
k

<
iff

al
se

>
el

se
to

<
ift

ru
e>

BR
la

be
l<

de
st

>
U

nc
on

di
tio

na
lj

um
p

to
bl

oc
k

<
de

st
>

IC
M

P
<

re
>

=
ic

m
p

<
co

>
<

ty
>

<
op

1>
<

op
2>

Co
m

pa
re

s
th

e
va

lu
es

<
op

1>
an

d
<

op
2>

of
ty

pe
<

ty
>

us
in

g
th

e
op

er
at

or
in

<
co

>
re

tu
rn

in
g

1
to

<
re

>
if

co
m

pa
ris

io
n

is
tr

ue
or

0
ot

he
rw

ise
,o

r
a

lis
t

of
su

ch
va

lu
es

if
<

op
1>

an
d

<
op

2>
ar

e
lis

ts
.

Po
ss

ib
le

va
lu

es
of

<
co

>
ca

n
be

se
en

in
Ta

bl
e

2.
2

<
re

>
=

icm
p

sa
m

es
ig

n
<

co
>

<
ty

>
<

op
1>

<
op

2>
gu

ar
an

te
es

th
at

<
op

1>
an

d
<

op
2>

ha
ve

th
e

sa
m

e
sig

n

R
ET

R
ET

<
ty

>
<

va
>

R
et

ur
ns

va
lu

e
<

va
>

of
ty

pe
<

ty
>

fro
m

th
e

fu
nc

tio
n

R
ET

vo
id

R
et

ur
n

fro
m

a
vo

id
fu

nc
tio

n
PH

I
<

re
>

=
PH

I<
ty

>
[<

va
l>

,<
bl

>
],

...
sa

ve
s

<
va

l>
of

ty
pe

<
ty

>
to

<
re

>
if

la
st

ex
ec

ut
ed

bl
oc

k
wa

s
<

bl
>

A
LL

O
C

A
<

re
>

=
A

LL
O

C
A

<
ty

>
al

lo
ca

te
s

m
em

or
y

fo
r

ty
pe

<
ty

>
on

th
e

st
ac

k,
re

tu
rn

s
po

in
te

r
to

da
ta

Ta
bl

e
2.

1:
Li

st
of

Im
po

rt
an

t
LL

V
M

In
st

ru
ct

io
ns

[ll
va

],
(O

pt
io

na
lV

al
ue

s
A

re
N

ot
In

cl
ud

ed
in

U
sa

ge
)

8

2.3. LLVM

Name Operation
eq equal
ne not equal
ugt unsigned greater than
uge unsigned greater than
ult unsigned less than
ule unsigned less or equal
sgt signed greater than
sge signed greater or equal
slt signed less than
sle signed less or equal

Table 2.2: List of Possible ICMP Operators

2.3.2 LLVM API

The LLVM API is part of the LLVM project and contains tools to parse and modify
the intermediate language of LLVM. This structure makes implementing new tools for
analyzing and optimizing code easier and allows them to be used on all languages that
compile to LLVM bytecode.

The LLVM API can load a LLVM code file using the parseIRFile function and the
function returns an LLVM module object that already contains much-needed information.
The following will list important types and valuable functions of the LLVM API.

Module

The module class represents an LLVM module and allows access to the filename using
getName, but most importantly, allows access to an iterator over all functions using
functions as well as globals to access an iterator over global variables.

Function

It represents both function declaration and definition. Both can be differentiated using
the isDeclaration function. It also contains an iterator to iterate through all blocks
of the function.

BasicBlock

Represents a LLVM Block. Most notably, the class contains an iterator that allows itera-
tion through all block instructions in order. Further, the functions llvm::predecessors
and llvm::successors, when called on a block, return all possible predecessor and
successor blocks, which allows to follow the control flow through the blocks easily.

9

2. Background

Value

Value is the base class for many other classes, including BasicBlock, Instruction,
GlobalValue, ConstantInt, and ConstantData.

It is used as the return value of many functions that have to return many different types.
The function llvm::dyn_cast allows a program to verify the exact type and cast it
so that the return value can be handled differently depending on the exact type.

Use

Use is another subclass of Value and the parent class of everything that can be
passed as an argument to an instruction. This includes all the previously mentioned
Value subclasses: BasicBlock, Instruction, GlobalValue, ConstantInt, and
ConstantData.

Instruction

This is the base class for all LLVM Instructions. Some important functions the class
provides are:

• getParent: returns block instruction is part of

• operands: returns iterator over all arguments given to the instruction

• getOpcode: allows verification of which type of instruction it is.

• getNextNode (getNextNonDebugInstruction): returns the instruction that,
in code, is written directly after the given one (ignoring debug instructions)

• getPrevNode (getPrevNonDebugInstruction): returns the instruction that,
in code, is written directly above the given one (ignoring debug instructions)

Once cast to the specific subtype representing the exact LLVM instruction, the spe-
cific class contains functions to more easily differentiate between the return values of
operands.

For example, the class PHINode contains the functions getIncomingValue and
getIncomingBlock to easily access which value a variable is set to when which
BasicBlock was the predecessor block, while the class ICmpInst contains
getPredicateName to easily access and differentiate between the different compare
operators given in Table 2.2.

10

2.4. Race Condition

read A

modify A

write A

read A

modify A

write A

Thread 1 Thread 2

(a) Simple Program With Race Condition

read A

modify A

write A

read A

modify A

write A

Thread 1 Thread 2

(b) Possible Execution Order

Figure 2.1: Example Read-Modify Race Condition

2.4 Race Condition
Race conditions are a significant problem when dealing with concurrent programs [NM92].
These conditions occur when the outcome of a program depends on the sequence or
timing of uncontrollable events. In essence, multiple threads or processes compete for
shared resources, and the execution outcome becomes unpredictable due to the timing of
their operations.

Usually, the cause of race conditions is the lack of synchronization between concurrent
processes that access shared resources like files or variables. When multiple threads or
processes attempt to access and modify these resources simultaneously, the final state
of the resource becomes dependent on the timing and interleaving of their operations.
This leads to inconsistent or erroneous behavior of the program, often resulting in bugs,
crashes, or security vulnerabilities.

There are different forms of race conditions:

• Read-Modify-Write

• Check-Then-Act

A Read-Modify-Write race occurs when multiple threads access the same resource, modify
it, and then save it back. This can result in one of the modifications being lost.

Figure 2.1b shows such an example. In the example, thread 1 and thread 2 read the
value of A, followed by thread 1 modifying and saving the values, followed by thread 2
modifying and saving different values.

11

2. Background

check A

abort continue

modify A

Thread 1 Thread 2

false
true

(a) Simple Program With Race Condition

check A

continue

modify A

Thread 1 Thread 2

true

false

(b) Possible Execution Order

Figure 2.2: Example Check-Then-Act Race Condition

Since both threads read the original value first, both modify it using that original value.
When one thread saves its modified value, the second one completely overwrites it with a
value that does not depend on the value written by the previous thread, thus effectively
voiding the execution of the first one as if it never occurred.

A Check-Then-Act race happens when a thread checks for a specific condition to hold
and then acts depending on the result of the previous check. A second thread may modify
resources used in the condition check in between it occurring and the first thread acting
on the check, treating the resource as if the condition holds while it no longer does. An
example can be seen in Figure 2.2b.

There have been algorithms developed to ensure that such problems cannot arise, and
so only one thread has access to a variable from when it reads the value till it saves a
calculated value based on it.

Two examples of such algorithms are Dekker’s Algorithm [Dij62] and Peterson’s Algorithm
[Pet81]. Implementations of these algorithms can be seen in Figure 2.3.

2.4.1 Peterson’s Algorithm
Peterson’s Algorithm [Pet81] works by each thread first setting a variable that signals
its intent to enter the critical section, followed by a turn variable that gives priority to
another thread. Depending on what process_1 does during the time process_0 is
setting those variables, one of three scenarios can happen when checking the condition as
seen in line 8 in Figure 2.3a.

process_1 is not trying to enter the critical section, in which case flag[1] is false, and
turn equals 1 when process_0 is checking the while condition. Thus, the condition is
false, and process_0 can enter the critical section.

process_1 is currently in the critical section. As can be seen in Figure 2.3a, this means
that process_1 has set flag[1] to true. Since process_0 is setting turn to 1, both
parts of the while condition hold, and it awaits process_1 to exit the critical section
and reset flag[1] to false in line 25.

12

2.4. Race Condition

process_1 is also trying to enter the critical section. In this case, it depends on which
order the turn variable is set. If process_0 sets turn first, then process_1 will
overwrite the value. This causes the while condition of process_0 to be false and it
enters the critical section while process_1 waits. Otherwise, the roles are reversed,
and process_1 can enter.

2.4.2 Dekker’s Algorithm
Dekker’s Algorithm [Dij62] uses the same variables, but it differs in when and how they
are checked. As can be seen in Figure 2.3b, when it tries to enter the critical section,
it only sets its flag variable to true in line 6. After this, the same three scenarios can
happen.

process_1 is not trying to enter the critical section, in which case flag[1] is false. Thus,
when process_0 is checking the outer while condition, the condition is false, and the
thread skips the loop and enters the critical section.

process_1 is currently in the critical section. In this case, it depends on the current
value of turn. If turn is 0, process_0 is looping in the outer loop till process_1 exits
the critical section. Otherwise, it will enter the if condition and loop within the inner
loop till process_1 exits the section.

process_1 is also trying to enter the critical section. In this case, both threads will
enter the loop, and depending on the current value of turn, one of the two threads will
enter the if condition, disabling its intent to enter the section to allow the other thread
to enter.

13

2. Background

1 bool f l a g [2] = { false , fa l se } ;
2 int turn = 0 ;
3
4 void process_0 () {
5
6 f l a g [0] = true ;
7 turn = 1 ;
8 while (f l a g [1] && turn == 1)
9 continue ;

10 // Begin C r i t i c a l Sec t ion
11
12 // End C r i t i c a l Sec t ion
13 f l a g [0] = fa l se ;
14 }
15
16 void process_1 () {
17
18 f l a g [1] = true ;
19 turn = 0 ;
20 while (f l a g [0] && turn == 0)
21 continue ;
22 // Beginning C r i t i c a l Sec t ion
23
24 // End C r i t i c a l Sec t ion
25 f l a g [1] = fa l se ;
26 }

(a) Peterson’s Algorithm

1bool f l a g [2] = { false , fa l se } ;
2int turn = 0 ;
3
4void process_0 () {
5
6f l a g [0] = true ;
7while (f l a g [1]) {
8i f (turn != 0) {
9f l a g [0] = fa l se ;
10while (turn != 0)
11continue ;
12f l a g [0] = true ;
13}
14}
15// Beginning C r i t i c a l Sec t ion
16
17// End C r i t i c a l Sec t ion
18turn = 1 ;
19f l a g [0] = fa l se ;
20}
21
22void process_1 () {
23
24f l a g [1] = true ;
25while (f l a g [0]) {
26i f (turn != 1) {
27f l a g [1] = fa l se ;
28while (turn != 1)
29continue ;
30f l a g [1] = true ;
31}
32}
33// Beginning C r i t i c a l Sec t ion
34
35// End C r i t i c a l Sec t ion
36turn = 0 ;
37f l a g [1] = fa l se ;
38}

(b) Dekker’s Algorithm

Figure 2.3: C Implementation of Peterson’s and Dekker’s Algorithm (turn and flag
Must Be Sequentially Consistent Atomics)

14

2.5. Kronecker Algebra

1start

2

3

4 5d
a

b

c f

e

Figure 2.4: FSM F0

2.5 Kronecker Algebra
Kronecker Algebra expands the standard matrix operations (e.g., matrix addition, matrix
multiplication). At its core is the Kronecker Product.

The following is an overview of the necessary parts of Kronecker Algebra as described in
the Kronecker Booklet [Bli15].

2.5.1 Finite State Machine (FSM) as Matrix
Every FSM can be converted into an n by n matrix, with n being the number of states
in the FSM. This is done by labelling every node with a unique number from 1 to n and
then creating an n by n matrix where every transition within the FSM from a starting
node with the ID s to an end node with the ID e is added to the matrix by setting the
value at row s and column e to the label of the transition and all elements not set in this
way being set to 0.

Take the FSM F0 in Figure 2.4 as an example. This finite state machine can be converted
into a 5 by 5 matrix by setting the following positions.

• (1, 1) to value d

• (1, 2) to value a

• (1, 3) to value b

• (2, 4) to value c

• (3, 5) to value e

• (4, 5) to value f

This results in the following matrix:

15

2. Background

�����
d a b 0 0
0 0 0 c 0
0 0 0 0 e
0 0 0 0 f
0 0 0 0 0

�����
It is important to know that this loses the information about which nodes are considered
end and starting nodes. To not lose this information we can create an initial node vector
and an end node vector.

The initial node vector of an m by m matrix is a vector of size m in which all elements
are set to 0 except for elements with the ID of starting nodes. In the example above this
results in the vector SF0 = (1, 0, 0, 0, 0).

Equally, we can create the end node vector by only marking elements that share the ID
with end nodes. This results in the end node vector

EF0 =

�����
0
0
0
0
1

�����
for the example above.

From now on, all 0 values of matrices will be represented with a dot for readability.
Furthermore, it is assumed that all used FSMs only have one starting node, which will
always be given the id 1. If this is applied to the matrix above, the result is the following:

�����
d a b . .
. . . c .
. . . . e
. . . . f
.

�����
2.5.2 Kronecker Product
The Kronecker Product is denoted by ⊗ and defined as:

A ⊗ B =

� a1,1 · B . . . a1,n · B
...

am,1 · B . . . am,n · B

�
For a matrix A of dimensions m by n.

16

2.5. Kronecker Algebra

1start 2

3

4

g

h

i
j

Figure 2.5: FSM F1

As an example, the Kronecker Product of the FSM in Figures 2.4 and 2.5 is:

�����
d a b . .
. . . c .
. . . . e
. . . . f
.

����� ⊗

���
. g . .
. . h i
. j . .
. . . .

��� =

���������������������������������������

. dg . . . ag . . . bg

. . dh di . . ah ai . . bh bi

. dj . . . aj . . . bj

.

. cg

. ch

. ci

. cj

. eg . .

. eh ei

. ej . .

.

. fg . .

. fh fi

.

. fj . .

.

.

.

.

���������������������������������������

Its graph representation is given in Figure 2.6 and the resulting FSM with all not reachable
nodes removed in Figure 2.7.

17

2. Background

Figure 2.6: Result of the Kronecker Product of the Automata Shown in 2.4 and 2.5

Figure 2.7: Result of the Kronecker Product of the Automata Shown in 2.4 and 2.5
Without Unreachable Nodes

18

2.5. Kronecker Algebra

As seen in the figures, this results in a new FSM equivalent to the two automata running
in lockstep, which ends as soon as one of them runs into a dead end. But note that not
all nodes that have no outgoing edges are valid end nodes of our new graph.

To calculate all valid start and end nodes of a graph A ⊗ B we first have to create the
initial state vectors SA and SB as well as the final state vectors EA and EB. Then the
initial state vector of A ⊗ B can be calculated using SA ⊗ SB with the final state vector
being calculated as EA ⊗ EB.

19

2. Background

2.5.3 Synchronized Kronecker Product

The Synchronized Kronecker Product, denoted for clarity as ⊗̇, is equivalent to the
standard Kronecker Product with one difference. Every matrix element resulting from
the Kronecker Product is set to 0 if its value is not equal to xx, with x being some label
name or x otherwise.

As an example, the Kronecker Product of the matrix representations of the automata
shown in Figure 2.8 and Figure 2.9 is:

�����
. a . . .
. . b . .
. . . c .
. . . . c
.

����� ⊗
�. a .

. . b

. . c

� =

����������������������������

. . . . aa

. ab

. ac

. ba

. bb

. bc

. ca

. cb . . .

. cc . . .

. ca .

. cb

. cc

.

.

.

����������������������������

While its Synchronized Kronecker Product is:

�����
. a . . .
. . b . .
. . . c .
. . . . c
.

����� ⊗̇
�. a .

. . b

. . c

� =

20

2.5. Kronecker Algebra

1start 2 3 4 5a b c c

Figure 2.8: FSM F2

1start 2 3a b

c

Figure 2.9: FSM F3

1start 5 9 12 15a b c c

Figure 2.10: Result of the Synchronized Kronecker Product of the Automata F2 and F3

����������������������������

. . . . a

.

.

.

. b

.

.

.

. c . . .

.

.

. c

.

.

.

����������������������������

The graphical representation can be seen in Figure 2.10. As can be seen, the graphs in
Figures 2.10 and 2.8 are equivalent except for the node IDs and thus isomorphic.

However, there are matrices where this is not the case. Take the matrix representations
of the Figures 2.11 and 2.9 as an example:

���
. a . .
. . c .
. . . c
. . . .

��� ⊗̇
�. a .

. . b

. . c

� =

21

2. Background

1start 2 3 4a c c

Figure 2.11: FSM F4

���������������������

. . . . a

.

.

.

.

. c . . .

.

.

. c

.

.

.

���������������������
Note that the label a is in the 5th column of the result matrix, but the two c labels are
in rows 6 and 9, which means they are unreachable. In this example, the resulting graph
only contains one edge with the label a, meaning it is not isomorphic to the left operator
of the Synchronized Kronecker Product.

When analyzing the two examples, someone might realize that in the first example, the
FSM in Figure 2.8 can be simulated by the FSM in Figure 2.9, while in the second 2.9
cannot simulate 2.11 and make the conclusion that the operation results in an isomorphic
graph if the right side of the operator simulates the left side and a non-isomorphic graph
if not.

This is not necessarily the case. As an example, take the Synchronized Kronecker Product
between Figure 2.12 and Figure 2.9:

�. a .
. . b
. . .

� ⊗̇
�. a .

. . b

. . c

� =

��������������

. . . . a

.

.

.

. b

.

.

.

.

��������������
22

2.5. Kronecker Algebra

1start 2 3a b

Figure 2.12: FSM F5

1start 5 9a b

Figure 2.13: Result of Synchronized Kronecker Product of the Automata F5 and F3

While the resulting graph in Figure 2.13 is isomorphic to the one in Figure 2.12, the
FSM in 2.9 does not halt in the end node when reaching the end node of 2.12.

The final nodes of a graph calculated using the (Synchronized) Kronecker Product can be
calculated by building the Kronecker Product of the vectors containing the final nodes of
the underlying graphs.

If both conditions are satisfied, graph A is isomorphic to graph A⊗̇B, and both have
equivalent final nodes. All execution orders of graph B can also be found in graph A
with the difference that graph A might encounter labels not present in graph A.

2.5.4 Kronecker Sum

Kronecker Sum is defined for matrix A and matrix B as:

A ⊕ B = A ⊗ In + Im ⊗ B

With A being an m by m, B an n by n matrix, and Ik the k by k identity matrix.

As an example, the Kronecker Sum between FSMs shown in Figures 2.14a and 2.14b is:

���
. a b .
. . . c
. . . d
. . . .

��� ⊕
�. e .

. . f

. . .

� =

���
. a b .
. . . c
. . . d
. . . .

��� ⊗
�1 . .

. 1 .

. . 1

� +

���
1 . . .
. 1 . .
. . 1 .
. . . 1

��� ⊗
�. e .

. . f

. . .

� =

23

2. Background

���������������������

. . . a . . b

. . . . a . . b

. a . . b . . .

. c . .

. c .

. c

. d . .

. d .

. d

.

.

.

���������������������

+

���������������������

. e

. . f

.

. . . . e

. f

.

. e

. f . . .

.

. e .

. f

.

���������������������

=

���������������������

. e . a . . b

. . f . a . . b

. a . . b . . .

. . . . e c . .

. f c .

. c

. e . d . .

. f . d .

. d

. e .

. f

.

���������������������
Similar to the Kronecker Product, this produces a new FSM, a combination of the two
input FSMs. However, unlike the Kronecker Product, where the result is that the two
input FSMs are executed in lockstep, the Kronecker Sum results in a Finite State Machine
equivalent to executing all interleavings of the input FSMs.

24

2.5. Kronecker Algebra

1start

2 3

4

a b

c d

(a) FSM F6

1start

2

3

e
f

(b) FSM F7

Figure 2.14: Examples FSM for Kronecker Sum

1start

4 27

5 38

69

10

11

12

eab

fa

b

a

b

ec

f

c

c

e

d

fd

d

e

f

Figure 2.15: Result of Kronecker Sum Between F6 and F7

25

2. Background

1start

52 3

46 7

8

c a b

a

b c b c

a

b a c

(a) FSM F8

1start

2

3

a

c

(b) FSM F9

Figure 2.16: Examples FSM for Kronecker Skip

2.5.5 Kronecker Skip

Kronecker Skip is defined as:

A ⊙ U = AV ⊗ Im + AS ⊗̇ U

With AV being the matrix A with all elements that exist in U set to 0, AS being A with
all elements that do not exist in U set to 0, and Im being an identity matrix of size m
with m being the size of matrix U .

As an example, take the Kronecker Skip of the graphs in Figures 2.16a and 2.16b:

������������

. c b . a . . .

. . . b . a . .

. . . c . . a .

. a

. . . . c b . .

. b

. c

.

������������
⊙

�. a .
. . c
. . .

� =

26

2.5. Kronecker Algebra

1start

7 14

20 18

24

b a

a b c

c b

Figure 2.17: Result of Kronecker Skip Between F8 and F9

������������

. . b

. . . b

.

.

. b . .

. b

.

.

������������
⊗

�1 . .
. 1 .
. . 1

� +

������������

. c . . a . . .

. a . .

. . . c . . a .

. a

. . . . c . . .

.

. c

.

������������
⊗̇

�. a .
. . c
. . .

� =

27

2. Background

��

. b

. b

. b

. b

. b

. b

. .

. .

. .

. .

. .

. .

. b

. b

. b

. b . .

. b .

. b

. .

. .

. .

. .

. .

. .

��

+

28

2.5. Kronecker Algebra

��

. a

. c

. .

. a

. .

. .

. a

. c

. .

. a .

. .

. .

. .

. c

. .

. .

. .

. .

. .

. c

. .

. .

. .

. .

��

=

29

2. Background

��

. b a

. c . b

. b

. b

. b a

. b

. a

. c

. .

. a .

. .

. .

. b

. c . b

. b

. b . .

. b .

. b

. .

. c

. .

. .

. .

. .

��
The graph representation can be seen in Figure 2.17. The graph shows that the resulting
FSM is equivalent to the graph left of the operator but with all paths removed in which
an edge with the label a does not precede an edge labeled c.

30

CHAPTER 3
Building the Matrix

Representation

The following sections explain how a list of instructions and LLVM blocks can be converted
into a matrix representation.

3.1 Program Skeleton
The first step is to generate a matrix that represents the program’s basic structure. This
means the matrix should contain all instructions and should already respect control flow
dependencies. This means the matrix should model the program as if all its instructions
are entirely independent.

3.1.1 Generating Blocks
A list of matrices can be generated in the first step, with each matrix representing all
possible execution orders within one LLVM block. The simplest version to do this is to
calculate the Kronecker Sum of a list of matrices of the form

�
. x
. .

�

for every instruction x contained in the block. Figure 3.1a shows the result of a Kronecker
Sum operation between three matrices with the instructions a, b, and c.

While this way of modeling a block works for many blocks, it has two flaws:

Firstly, modeling many dependencies between instructions in two different blocks is
challenging. For this reason, a pseudo instruction will be added that will be labeled using

31

3. Building the Matrix Representation

start

c a b

a

b c b c

a
b a c

(a) Basic Block Conversion

start

b00

i00

i01

i02

i01
i02

i00

i02

i00

i01

i02 i01 i00

(b) Block Conversion with Pseudo Element

Figure 3.1: Example Creation of Blocks

bxx (xx being a unique numeric ID for each block). Further, all regular instructions will,
from now on, be labeled using ixx. The purpose of these pseudo instructions is to model
dependencies that ensure that all instructions within a block must be executed after a
specific instruction. For us to be able to use the label for this purpose, we have to ensure
that our pseudo instruction is guaranteed to be executed first within the block. This can
be done by taking the Kronecker Sum of all instructions, including the pseudo-instruction,
and applying the Kronecker Skip with matrices of the form:

�. bxx .
. . iyy
. . .

�

For each instruction ID, y within the block, and xx is the ID of that block’s pseudo-
instruction. So, for a block with the ID 00 and the instructions i00, i01, and i02, the
block conversion would be done using the following formula:

�
. b00
. .

�
⊕

�
. i00
. .

�
⊕

�
. i01
. .

�
⊕

�
. i02
. .

�
⊙

32

3.1. Program Skeleton

�. b00 .
. . i00
. . .

� ⊙
�. b00 .

. . i01

. . .

� ⊙
�. b00 .

. . i02

. . .

�
The resulting FSM can be seen in Figure 3.1b.

The second problem is that if we continue with these blocks, we will run into the problem
of them not being able to model loops. For now, the goal of the blocks is that a Kronecker
Sum of all blocks in a program results in a matrix that models all possible executions if
all dependencies are ignored. However, since the Kronecker Sum only creates possible
interleavings between the FSM, the result cannot contain a loop if none of the input
matrices contain one.

For this reason, if a block is part of a loop, which means there is some path through the
program that starts and ends at that block, the possibility of every instruction within the
block being succeeded by itself at some point must be modeled. Therefore, the matrices
to model the existence of an instruction with the ID xx are modified to the following:

�
. ixx

ixx .

�

and

�
. byy

ixx .

�

It is used to model the dependency that the instruction ixx must be preceded by the
block-specific pseudo instruction byy. A resulting example graph can be seen in Figure
3.2. Note that this introduces the limitation that an instruction has to be executed
before the block is executed a second time. This is deliberate and will be explained in
Section 3.1.2.

Also note that the block in Figure 3.2 can be simplified by creating a graph that merges
both nodes that have outgoing b00 edges, meaning all incoming edges of the node that is
marked green instead point to the starting node marked in blue. This halves the size of
the graph representing that block and makes all graphs using that block smaller. From
now on, the “loop-block” will be simplified.

3.1.2 Limitations of Loops
Loops cause a unique challenge when modeling them using matrix representation. When
modeling the function in Figure 3.3a, the matrix representation should show that there is
the possibility that the calculation within the loop is executed multiple times. To model
this, the last edge of the part of the graph that models the inside of the loop can target
the node before the check within the while loop is done, as seen in Figure 3.3b.

33

3. Building the Matrix Representation

b00

i00 i02 i01

i02 i01i00 i01i00 i02

i01 i02 i00

b00

i00i02i01

i02i01i00i01 i00i02

i01i02i00

Figure 3.2: Block Conversion with Loop

34

3.1. Program Skeleton

1 void f oo (){
2 while (x > 0){
3 x = x − a − b ;
4 }
5 bar () ;
6 }

(a) Simple loop program

1start

2

3 4

5

6

x>0

fetch a
fetch b

fetch b
fetch a

calculate

bar

(b) Tree Representation

Figure 3.3: Example of a Loop That Can Be Modelled in Matrix Form

However, not every loop can be modeled so easily. When looking at an example where
an instruction is not producing any output used by any other instruction within the loop
or its conditions, problems in modeling them occur. Following are two groups of loops
where this is the case:

1. Produced value is only used after the loop terminates (3.4a).

2. Produced value is only used by other threads (3.4b).

In the example in Figure 3.3b all instructions within the loop must be finished before
a new iteration can start. This means the instructions can only be delayed till the
beginning of the next loop iteration. In the Figures 3.4a and 3.4b this is not the case,
instead the instructions calculating and modifying y can be delayed till the following
iteration of the loop or even till after termination of the loop. This has the effect that not
only do we have to model the situation in which our first iteration of the loop executes
this instruction, but we also have to model the situation in which this iteration delays
it. This has the effect that the model has to show that the second iteration of the loop
can either execute the instruction not at all or up to twice, depending on if it delays the
execution, executes the instruction of the previous loop, or executes the instruction of
this and the previous loop.

Every following iteration suggests that the next iteration might execute the instruction
again. Since the modeled graph does not model the exact amount of iterations, and

35

3. Building the Matrix Representation

1 void f oo (){
2 while (x > 0){
3 y += 1 ;
4 x −= b ;
5 }
6 p r i n t (y) ;
7 }

(a) Loop Instruction is Independent of Other
Instruction Within the Loop

1 void f oo (){
2 while (x > 0){
3 x −= b ;
4 y = foobar () ;
5 }
6 bar () ;
7 }

(b) Produced Value is Independent of Every-
thing That is Executed Within the Thread

Figure 3.4: Examples of Loops Not Easily Modeled

detecting the maximum amount of iterations in many cases is impossible, an infinite
amount of iterations would need to be modeled to model all possible execution orders.
This would result in an infinite graph and, therefore, an infinite matrix, which is not
usable for any further analysis.

The way of generating the blocks is described in the previous sections, results in a graph
in which those situations are not possible. Instead, the resulting graph models a program
in which all loop instructions must be executed before the next iteration starts. This, of
course, might cause false negatives in such cases.

An argument might be made that only modeling a small number of iterations of every
loop might be enough to detect the majority of errors. This would allow for unrolling
the loops and would reduce the size required to model such problems to a finite space,
but this will not be explored any further in this thesis.

3.1.3 Generating the Skeleton

The matrix resulting from the Kronecker Sum of the matrices from the previous steps
does not yet respect the program’s control flow. Currently, it allows all blocks and their
containing instructions to be executed in an arbitrary order. The following describes
how a matrix can be created that, when applied using Kronecker Skip, results in a new
matrix that respects control flow dependencies.

We start by adding an edge from node 1 to 2 for the first block and labeling the edge with
the name of the pseudo instruction of that block. After that, we repeat the following.

If the block has a single successor, add an edge labeled with the successor block name to
either a new node, in case the successor block has not been reached before, or a node
that already has a predecessor edge with that label.

If the block has multiple successors, add a new edge labeled with the name of the
instruction that decides which successor block is chosen to a new node. Then, add an

36

3.2. Setting Dependencies

edge for each successor block, labeled with that successor’s name, to an existing node
with a predecessor edge with that label or a new node if such a node does not exist.

Adding the jump instructions ensures that all instructions of the successor blocks are
executed after the condition that decides which successor is chosen. This enforces
dependencies caused by control flow.

This skeleton-matrix could be replaced with several matrices of similar style as the one
explained in Section 3.2 between the LLVM BR and similar end-instructions and its
successor blocks pseudo-instructions. However, merging those dependencies into one
skeleton matrix makes setting dependencies easier. Furthermore, as will be seen in
Section 4.4, this is an optimization implemented in the prototype that decreases the
calculation time by reducing the number of Kronecker operations and allows the removal
of multiple BR instructions from the graph.

3.2 Setting Dependencies
This section focuses on how the matrices are constructed to model an instruction i00
depending on an instruction i01. For the simplest form, this was already shown in
Section 3.1.1 where the following matrix

�. b00 .
. . i00
. . .

�
was used for non-loops and the matrix

�
. b00

i00 .

�

for loops to ensure b00 always precedes i00.

This was enough to create the blocks since, by the nature of LLVM blocks, all instructions
within the block are executed whenever the block is entered without any conditional
executions, which would result in some instructions only being executed sometimes or
multiple times.

3.2.1 Dependency on Previous Iteration of a Loop
Even if both instructions are within the same LLVM block, the previously shown two
“simple” rules are insufficient. Take the code in Figure 3.5a as an example; the print
statement and the assignment to a will be combined into the same LLVM block. Since
the print statement is outputting the value of the variable a, starting from the second
iteration of the loop, it depends on the assignment of the previous iteration.

37

3. Building the Matrix Representation

1 a = 0 ;
2
3 foo {
4 while X:
5 p r i n t (a)
6 a = a + 1
7 }

(a) Example in Which In-
struction Depends on the Pre-
vious Iteration of Loop

1 a = 0 ;
2
3 foo {
4 i f X:
5 a = 1
6 p r i n t (a)
7 }

(b) Example in Which In-
struction Depends on Instruc-
tion Inside Condition

1 a = 0 ;
2
3 foo {
4 a = 1
5 while X:
6 p r i n t (a)
7 }

(c) Example in Which Instruc-
tion in Loop Depends on In-
struction Outside It

Figure 3.5: Different Dependency Examples

If we label the print statement i00 and the assignment i01, then the rule:

�
. i01

i00 .

�

would ensure that the print cannot be moved before the assignment. More precisely,
it would ensure that, when executing the code, any i00 is always preceded by an i01
without another i00 being in between them.

But our execution order is i00, i01, i00, i01, i00, i01, . . . , with the first i00 not being
preceded by an i01. Therefore, the matrix would not cause the intended result.

In this specific case, the fix is to ignore that dependency altogether. As explained before,
the graph is modeled so that all instructions must be executed before the block can be
executed again. This means the construction of the graph already ensures that i00 and
i01 of the first iterations are both executed before the block is reentered and, therefore,
that the assignment i01 of the first iteration is executed before the print i00 of the second
iteration.

Once we look outside a single block, we see many more cases in which the above rules
are insufficient. Two further examples can be seen in Figures 3.5b and 3.5c.

3.2.2 Dependency With Condition
The basics of Figure 3.5b can be expressed with the block-matrices:

�. b00 .
. . i00
. . .

�
�. b01 .

. . i01

. . .

�
�. b02 .

. . i02

. . .

�
combined with the skeleton

38

3.2. Setting Dependencies

�����
. b00 . . .
. . i00 . .
. . . b01 b02
. . . . b02
.

�����
with i00 being the condition, i01 being the assignment, i02 the print statement, and the
bxx being block instructions. Applying the skip operator with the basic rule:

�. i01 .
. . i02
. . .

�
results in the matrix:

��������������

. b00

. . i00

. . . b02 b01

.

. b02 i01 . .

. i01 .

. b02 .

. i02

.

��������������
A graphical representation with and without the applied rule can be seen in Figures 3.6a
and 3.6b.

In the context of FSM as matrices, note that this is an equivalent but simplified version
of the matrix where unnecessary rows and columns were removed and the rest reordered
since otherwise, the matrix would be significantly harder to read and not fit into the
document.

The path i00, i02 in the resulting matrix is not correctly modeled. While in row 3 the
execution splits between the blocks b02 and b01, the first one leads to row 4, which does
not contain further instructions. This means this path terminates before i02 is ever
executed. This instruction is missing because the rule says that i02 has to be preceded
by an i01, which, in this case, it would not. Therefore, the calculation removes the
instruction.

Thus, the rule has to model that i02 can be executed without i01 being executed before,
but only if i01 is bypassed; otherwise, i01 has to be contained in the path before i02.
The corrected matrix is:

39

3. Building the Matrix Representation

start

b00

i00

b02

i02

b01

b02
i01

i01 b02i02

i02
i01

(a) Without Rule

start

b00

i00

b02
b01

b02
i01

i01
b02

i02

(b) With Incorrect Rule

start

b00

i00

b02
b01

b02
i01

i01
b02

i02

i02

(c) With Correct Rule

Figure 3.6: Example of Applied Dependencies in Program With Rule

���
. b01 . i02
. . i01 .
. . . i02
. . . .

���
which, when applied with the skip operator, results in the following simplified matrix.

��������������

. b00

. . i00

. . . b02 b01

. i02

. b02 i01 . .

. i01 .

. b02 .

. i02

.

��������������
3.2.3 Dependency With Only One Part in Loop
The example in Figure 3.5c can be modeled with the matrices:

40

3.2. Setting Dependencies

�. b00 .
. . i00
. . .

� �
. b01

i01 .

� �
. b02

i02 .

�

combined with the skeleton

���
. b00 . .
. . b01 .
. . . i01
. b02 . .

���
with i00 being the assignment, i01 being the condition and i02 being the print statement.
Applying any of the simple rules results in the following simplified matrix:

�������������������������������������

. b00

. . b01 i00

. . . . i01 i00

. b01

. b02 i00

. i01

. i00 b01

. b02

. i02 b01

. i00 i01

. b01

. i02 i01

. i00

. i01 . . .

. i02 . . .

. b02 . .

. b01 .

. i01

.

�������������������������������������
Their graph representations are given in Figure 3.7 to make them easier to read. The
graph shows that both rules only model the program if it is guaranteed to be terminated
after precisely one iteration.

This is because both simple rules demand that an i00 precedes each i02. Since i00 is
only executed once, this limits i02 to be executed only once. The correct rule has to
model that after i00, i02 can be executed infinitely often or never. For this reason, the
rule has to be:

41

3. Building the Matrix Representation

Figure 3.7: Visualization of Figure 3.5c With Applied Simple Rules
42

3.2. Setting Dependencies

�
. i00
. i02

�

which, when applying it using Kronecker Skip on the original matrix, results in:

�����������������������

. b00

. . b01 i00

. . . . i00 . i01

. . . . b01

. i01

. b02

. i00 . b02

. i00 . b01 . .

. . . i02 b01 . . .

. i01

. i00 . i01 .

. i00

. i02

�����������������������
The graphical representation can be seen in Figure 3.6c

3.2.4 More Complex Rules
From the previous sections, we can derive a set of rules:

• Rule if both instructions are part of the same loop
If both instructions are part of the same loop then what would be the end node of
the rule, meaning the node that has no outgoing edges, is instead replaced with
the ID 0 which is the ID of the starting node.

• Rule for conditionals
If an instruction might be bypassed during execution, meaning one might be
executed without the other, then apply the rule as seen in 3.2.2.

• Rule if only one instruction is part of a loop and the second is not
In that case, apply the rule as seen in 3.2.3.

• Rule if the instruction is dependent on the previous iteration of a loop
Ignore the dependency.

By combining these rules, more complex rules can be derived.

43

CHAPTER 4
Prototype

The prototype can be divided into three components. A C++ component that interacts
with the LLVM API to extract all required information from the LLVM bytecode. A
framework that is written in Ada to handle the Kronecker operation, for the operations, it
uses a modified version of the lazy implementation explained the Kronecker Booklet [Bli15].
An analyzer that takes the resulting graph and checks it for possible race conditions.

4.1 Creating Blocks

The first step is to build the blocks needed to apply the system that was explained in
the previous section to LLVM. After loading the byte file using parseIRFile, the API
allows iterating over all functions and their blocks within the module and further over
each instruction of each block.

Assigning every block and instruction a unique ID gives the prototype all the information
needed to build the blocks. Nevertheless, at this stage, the prototype already filters out
instructions that will not be needed later. Since the prototype builds one matrix per
function and considers that matrix one thread, it is not important what the function
returns, making RET instructions uninteresting. Thus, they are removed. ALLOCA
instructions are also removed. They only create new space on the stack. Since we are only
interested in when and which instructions interact with this piece of memory, not when it
is created, they can be safely removed. In the case of BR instructions, not all are removed.
First, conditional BR instructions are used since they are used in constructing the skeleton.
Second, if a block is part of a loop and would otherwise not contain instructions, the BR
instruction is kept. Otherwise, this would cause errors for some optimizations that will
be explained in Section 4.4.

45

4. Prototype

4.2 Building the Skeleton
The skeleton is created as described in Section 3.1.3. To get the successor blocks of an
LLVM block, the function llvm::successor is used and, in cases with more than one
successor block, the instruction that decides which successor will be executed can be
accessed using BasicBlock::getTerminator.

4.3 Dependencies
In the next step, the prototype has to find all instruction dependencies. Since the
skeleton already handles control flow dependencies, there are three remaining types of
dependencies:

• Operator Dependencies

• Memory Dependencies

• Atomic Dependencies

4.3.1 Operator Dependencies
An operator dependency is a dependency between two instructions where one instruc-
tion directly uses the output of a second instruction. The llvm::Instruction type
contains the operands function to access all arguments of an instruction. This func-
tion returns an iterator over objects of type llvm::Use. This object is of subtype
llvm::Instruction if the argument is calculated directly (without being saved into
any local or global variables in between) by a preceding instruction. Which means there
is a dependency between those two instructions.

4.3.2 Memory Dependencies
Memory dependencies can be found similarly. Suppose an object returned by operands
is an ALLOCA instruction. In that case, it usually loads or stores to the memory address
reserved by the ALLOCA instruction. Similarly, if it is of type llvm::GlobalVariable,
it reads or writes to a global variable. Since the value returned by ALLOCA as well as
global variables are pointers to their values, it requires LOAD and STORE instructions to
access and modify. Therefore, to track memory dependencies, it is enough to track which
values those two operations modify or read.

To access which variable is written or read, the instruction can be cast to either an
llvm::LoadInst or llvm::StoreInst, which both contain a getPointerOperand
function returning which variable is modified. Note that the prototype assumes no pointer
arithmetic occurs and that the memory addresses are not passed to the function using
arguments or other means.

46

4.4. Optimization

To set write dependencies, it iterates through all instructions in written order, and for all
STORE that write to a global variable or to a memory created using ALLOCA, it iterates
forward and backward till all paths either have no successor or it reaches a STORE writing
to the same part of memory. If during this, a LOAD to the same memory is encountered,
a dependency is set, but it continues to search for a STORE. This is because while any
modification to execution order should not change what value is read by a LOAD since
the load does not change the value, multiple reads to the same value can be reordered.
Only its order relative to STORE operations to the same value has to be fixed.

4.3.3 Atomic Dependencies
The last type of dependencies is the restrictions caused by release-acquire or sequentially
consistent atomic instructions.

The getOrdering function can detect if a load or store instruction is atomic. The
values it can return that are implemented in the prototype are:

• NonAtomic

• Acquire

• Release

• AcquireRelease

• SequentiallyConsistent

Once an instruction is detected to be sequentially consistent, every preceding and following
instruction can be marked as depending on the atomic instruction; this can be repeated
till another sequentially consistent instruction is reached. The same is true for acquire
and release operations, only that since they only limit the reordering into one direction,
for release, only dependencies to preceding instructions have to be set, in case of release
only succeeding instructions.

4.4 Optimization
While the above-described way of creating a graph representing all possible execution
orders works, it results in a needlessly big matrix, which in the prototype results in very
long calculation times, even with minimal programs.

As seen by the definition of the Kronecker Product in Section 2.5.2, the Kronecker Product
between an m × m and an n × n matrix results in a new matrix of size m · n × m · n.
This is also true for the Kronecker Sum and Kronecker Skip because of the use of the
Kronecker Product in their definitions.

47

4. Prototype

Since all our dependencies are modeled by a matrix of at least size 2×2, every dependency
at least doubles the size of the resulting matrix. For this reason, reducing the number of
Kronecker operations will significantly reduce the time needed for calculation.

Some ways of reducing dependencies have already been mentioned in the sections ex-
plaining the detection of dependencies.

One way of ultimately reducing the problem of slow calculations would be to circumvent
Kronecker Algebra and build the matrix concerning all dependencies in code, which
would remove the slowdown caused by big matrix calculations. While this would work,
this thesis’s point is to explore its building using Kronecker Algebra. Therefore, only a
limited number of optimizations are used. The following describes some optimizations
that are used in the prototype.

Another way of reducing the amount of dependencies was already described in Section 3.1.
In many cases, it merges a significant amount of dependencies needed to ensure the
correct control flow between blocks into a single matrix. Similarly, we can reduce the
amount of dependencies by building the diamond-shaped block matrix in code. This also
allows it to model a block part of a loop without the inefficiency explained in 3.1.1 and
shown in Figure 3.2.

A second optimization in the prototype is to respect trivial dependencies when generating
blocks. A dependency between two instructions is considered trivial if both are within
the same block. So when generating the block that contains the instructions i00 and i01,
and there exists a dependency that enforces i00 has to execute before i01, then instead
of generating all possible paths the way it was described before, it only generates the
paths in which i00 is reached before i01.

This not only reduces the size of the block matrix by reducing the number of nodes
required to model it but also reduces the number of skip operators since the dependency
does not have to be calculated later on, reducing the matrix size even further.

The last form of optimization that is included in the prototype makes use of the pseudo
instructions as well as the way the skeleton is built. The acquire memory fence ensures no
instruction after it is moved in front of the fence. This means there must be a dependency
from every dependency after the fence to the fence itself.

This causes many dependencies that can be simplified by creating a dependency from
the succeeding block to the fence. By construction, all block instructions depend on
the block’s pseudo instruction and all succeeding blocks due to the dependencies from
the control flow. This means that all dependencies from an acquire memory fence to
an instruction outside the block of the memory fence can be simplified by dependencies
between the direct succeeding blocks to the memory fence. The same can be done for
sequential memory fences.

48

4.5. Collecting Further Information

4.5 Collecting Further Information
Extracting the dependencies from the program is not enough to perform the complete
analysis. The phase that will be explained in Chapter 4.8, information about which of
the IDs represents which instructions, what arguments it, as well as what arguments
it is called with, and whether it is a global variable, local variable, or constant value is
needed.

How to access the needed information has already been mentioned. One important
argument that was not mentioned is constant values. In LLVM, those are represented
using the class llvm::ConstantData. Therefore, the llvm::dyn_cast function can
be used to check if an argument of type Use is constant data. The prototype currently only
checks for integer values. Thus, a cast to llvm::ConstantInt is performed instead,
which allows it to extract the number value of the argument using getSExtValue.

4.6 Detecting Dependency Type
As explained in Section 3.2, there is not one matrix that works for all dependencies that
have to be set. For this reason, the program needs to collect some data to check which
rules from Section 3.2 it has to apply.

These checks can be done by simply analyzing if the (both direct and indirect) successors
and predecessors satisfy certain conditions.

• Dependencies part of the same loop: Start at the block that contains one of the
instructions and follow its successors, if a path can be found that ends at the same
block and contains the block of the second instruction the two instructions are part
of the same loop.

• Dependency part of independent loop: Do the same as above, but this time, check
if a path can be found that ends at the same block but does not contain the block
of the second instruction.

• Dependency can be bypassed: Check if, starting from the instruction, there is a
path that terminates by reaching an end block but does not contain the instructions
that depend on it.

• Instructions are not part of the same block: Trivially check if the parent blocks of
the instructions are the same.

The rules in Section 3.2 can be used to build a matrix fitting each dependency; using
these conditions,

49

4. Prototype

4.7 Creating the Graph
As mentioned, the prototype uses an Ada library using the lazy implementation as
explained in the Kronecker Booklet [Bli15]. The lazy implementation intends to reduce
the amount of unnecessary calculated values. While this cuts down on calculation speed,
it still causes the Kronecker calculation to be a significant bottleneck.

Table 4.1 shows the time required to calculate:

�. a .
. . b
. . .

� ⊙
�. a .

. . b

. . .

� ⊙
�. a .

. . b

. . .

� ⊙ . . .

The table shows exponential time scales with the number of skip operators. Section 5
shows that the amount of dependencies, even with optimizations, is already greater than
the maximum 15 shown in the table. This means that, even with better hardware, this
way of calculating the control flow graph will hit a limit at small examples.

The problem is that the lazy algorithm used by the library is not very good at handling
situations that make the internal tree used in the calculation very tall instead of wide,
since then the number of values that have to be calculated repeatedly outweighs the
number of calculations saved by not calculating values that are not required.

While the Kronecker Sum is associative and can be reordered to form a wider tree, this
is not true for Kronecker Skip.

The prototype uses the library, but after each calculation step, it is forced to resolve
all rows of the matrix that are reachable in the context of considering it an FSM to
optimize the calculation. Using those values creates a new matrix with all unnecessary,
unreachable rows and columns removed. Any following operation is done with this new
matrix.

This still has the effect that many (but not all) unnecessary values are never calculated
while also not recalculating values repeatedly. Table 4.2 shows that this system can
handle significantly more skip operations than before, but as can be seen in Tables 4.3
and 4.4, the inefficiency when calculating Kronecker Sums remains.

The calculation performed for the last two mentioned tables is:

�
. a
. .

�
⊕

�
. a
. .

�
⊕

�
. a
. .

�
⊕ . . .

While the lazy algorithm is better equipped at handling the Kronecker Sums when
the internal tree created is very flat, meaning instead of A ⊕ B ⊕ C ⊕ D calculate
(A ⊕ B) ⊕ (C ⊕ D), this is still significantly slower than the above-described method.
This will be shown in Section 7.1.

50

4.7. Creating the Graph

n
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

tim
e

0.
01

8
0.

01
8

0.
01

9
0.

01
9

0.
02

0
0.

01
9

0.
02

7
0.

03
8

0.
05

6
0.

10
8

0.
20

7
0.

41
6

0.
84

0
1.

87
3

4.
19

0

Ta
bl

e
4.

1:
Av

er
ag

e
Ex

ec
ut

io
n

T
im

e
in

Se
co

nd
s

of
Li

br
ar

y
fo

r
n

K
ro

ne
ck

er
Sk

ip
s

n
10

20
30

40
50

60
70

80
90

10
0

tim
e

0.
18

1
0.

31
4

0.
44

9
0.

58
1

0.
71

6
0.

85
3

0.
98

2
1.

12
0

1.
25

6
1.

40
0

Ta
bl

e
4.

2:
Av

er
ag

e
Ex

ec
ut

io
n

T
im

e
in

Se
co

nd
s

of
C

us
to

m
C

al
cu

la
tio

n
fo

r
n

K
ro

ne
ck

er
Sk

ip
s

n
1

2
3

4
5

6
7

8
9

10
11

12
tim

e
0.

01
8

0.
01

8
0.

01
9

0.
02

7
0.

04
6

0.
09

7
0.

22
9

0.
55

0
1.

37
7

3.
36

7
8.

26
7

20
.2

00

Ta
bl

e
4.

3:
Av

er
ag

e
Ex

ec
ut

io
n

T
im

e
in

Se
co

nd
s

of
Li

br
ar

y
fo

r
n

K
ro

ne
ck

er
Su

m
s

n
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

tim
e

0.
02

4
0.

04
1

0.
05

6
0.

06
8

0.
08

4
0.

10
9

0.
13

7
0.

19
2

0.
30

1
0.

52
6

1.
03

0
2.

06
7

4.
37

0
9.

38
7

21
.1

83

Ta
bl

e
4.

4:
Av

er
ag

e
Ex

ec
ut

io
n

T
im

e
in

Se
co

nd
s

of
C

us
to

m
C

al
cu

la
tio

n
fo

r
n

K
ro

ne
ck

er
Su

m
s

51

4. Prototype

1 thread0 {
2 a = 1 ;
3 }
4
5 thread1 {
6 while a != 1 :
7 continue
8 foo ()
9 }

Figure 4.1: Example Where Kronecker Sum of Threads is Not Enough

The previous sections provide all the information to the prototype to create all matrices
needed; the prototype now calculates the Kronecker Sum of all block matrices within
one function, followed by the Kronecker Skip of all found dependencies to create a
graph representation of a single thread using the way of calculating described. Another
Kronecker Sum with a second thread gives a new graph that shows all possible orders in
which the two functions can be executed if they are entirely independent. However, if
the two threads are independent of each other, the problem of detecting bugs caused by
weak memory models is trivial since they are caused when multiple threads interact.

The graph is then passed to the analyzation unit described in the next section for less
trivial examples.

4.8 Detecting Errors
For example, thread 0 sets global variable a to value 1 when the threads interact. At
the same time, thread 1 waits till variable a takes on the value 1, as seen in Figure 4.1,
the Kronecker Sum of their matrices will allow for the path, thread 1 loads value for a,
thread 1 compares the loaded value with 1. Thread 1 executes foo, even though that
path should be impossible, assuming there is no third thread writing to a.

An interpreter is executed on the graph from the starting node to respect interactions like
this. If there is more than one successor node, then a copy of the interpreter, including
its current state, is run on each of the successor states.

The state of the interpreter contains the following:

• the ID of the node in which it was reached

• a list of variable-value pairs saving the current variable assignments

• the last two blocks that were reached for each thread

• the next block that has to be executed for each thread

52

4.8. Detecting Errors

The interpreter deals with many trivial cases like add, greater than, equal, and similar
operations by simply calculating the result based on the current state and modifying the
current state accordingly. The following will explain how the interpreter handles more
interesting operations.

4.8.1 Conditional Jumps
LLVM has multiple types of instructions that alter the control flow. Since the BR
instruction is the only required for the examples in Section 5, it will be explained here.
Note that other control flow-altering instructions can be handled similarly.

The BR instruction comes in two forms: unconditional and conditional. The uncondi-
tional BR instruction can be ignored since the skeleton used in constructing the graph
already guarantees the following next pseudo-instruction following an unconditional BR
instruction, which must be the pseudo-instruction representing the block it would jump
to.

This is different in the case of the conditional BR instruction. Since the construction of
the graph does not take into account what values the variables that the jump instruction
depends on have, there will be a path where the jump instruction is followed by the, in
this situation, false block as well as a path where the correct block follows it.

For this reason, when reaching a BR instruction, the interpreter saves which block should
be entered next. If the interpreter then reaches a pseudo-instruction that does not
represent the block that should follow the jump instruction, that specific interpreter
terminates, and its result is ignored.

Note that due to the construction of the skeleton containing the conditional BR in-
struction, with dependencies to all successor blocks, as well as the construction of the
blocks guaranteeing that the BR instruction of a block always depends on the pseudo
instruction of that block, a situation in which two BR instructions follow each other
without a pseudo instruction in between is not possible. For this reason, only saving one
successor block per thread is enough.

4.8.2 PHI Instructions
The LLVM PHI instruction returns a specific value depending on which block the second
last block entered within the thread of the PHI instruction. For this reason, the prototype
always has to save the last two pseudo instructions that got reached in each thread.
When a PHI instruction is executed, the value can be set depending on the saved last
block.

Due to the skeleton used in the construction of the graph, which guarantees the control
flow between blocks is equivalent between the pseudo instruction in the graph and the
blocks in LLVM byte code, this models PHI instructions equivalent to how they are
handled in code.

53

4. Prototype

4.8.3 Preventing Infinite Loops
Like every interpreter running on Turing-complete languages, there is a chance it runs
into an infinite loop. If we take the example given in Figure 4.1, the resulting graph from
this program will contain the cycle that indefinitely checks for a not to have the value 1
without the value of a ever being set.

The prototype saves a list of all states it has reached to counteract this situation. It
terminates if any interpreter reaches a state that has been seen before, independently of
whether it was reached by the interpreter itself or any copy.

For the examples in Section 5, this would be enough. All examples given have a finite
amount of variables that take on only a finite amount of values, with the number of
nodes in the graph and the number of blocks being finite in all programs. This means
the amount of states is also finite. However, this might not necessarily be the case
(for example, any program that contains an (infinite) loop that increases the value of a
variable).

A simple counter can be added that counts the number of steps an interpreter has taken
to counteract this, with the interpreter terminating when it has reached a maximum
explored depth.

4.8.4 Detecting Race Conditions
In the examples given in Section 5, the critical section is represented by a single store
operation to a non-atomic global variable, which LLVM compiles to a single STORE
operation each. Suppose a path is found where those two instructions are executed back
to back, meaning without any other instruction between them. In that case, there is
no possibility that an instruction enforces which of the two comes first. Note that the
two instructions are from different threads and, for this reason, do not have direct data
dependencies between them that would have been set using Kronecker Algebra, meaning
their execution order is not restricted relative to each other. This further means that if
the critical section would be made out of more than one instruction (as an example, a
typical three-instruction load value, modify value, and save value could be such a critical
section), those instructions could be reordered with the instructions of the critical section
of the second thread, resulting in a race condition. If a situation like this is found by the
interpreter, the path taken so far is displayed and the interpreter stopped.

The prototype is not designed to detect which instructions are critical; therefore, it takes
two instructions representing the critical sections as input. Each copy of the interpreter
saves the path it has so far taken; if it reaches a point in which both the last reached
instruction and the current one are equal to the given critical sections, then it has found
a possible execution order in which the program runs into a race condition and outputs
the taken path.

54

CHAPTER 5
Examples

In the following section, the results of the prototype when applied to some examples will
be presented.

5.1 Peterson’s Algorithm - Sequential Consistent Version
It is expected that no problems will be found in the sequentially consistent version of
Peterson’s Algorithm since it is known to be correct. The implementation’s C and LLVM
codes can be seen in Figures 5.1 and 5.2. Since the prototype is not implemented to
handle arrays, the array holding the intent to enter is split into two separate variables.

The first stage is to build the graph for all possible execution orders. The following list
lists all dependencies the prototype detects, excluding those it optimizes away. Note
instruction ix is the x’th instruction of the function as found in Figure 5.2 with numbering
starting at 0 and with the second thread continuing to number after the last instruction
of the first thread. When applying this system to the code in Figure 5.2, the critical
instructions get the labels i12 and i27.

Dependencies in the first thread caused by sequential instructions are:

i00 – i01 i01 – b01 i03 – i04 i03 – i05 i03 – b02 i03 – b03 i01 – i03
i11 – i03 i06 – i07 i06 – b03 i05 – i06 i04 – i06 i03 – i06 i12 – i13
i09 – i13 i10 – i13

Dependencies caused by dependency chains are:

i03 – i04 i04 – i05 i06 – i07 i07 – i09 i09 – i10

55

5. Examples

atomic_int f lag_0 = 0 ;
atomic_int f lag_1 = 0 ;
atomic_int turn = 0 ;
i n t c r i t i c a l ;

void process_0 () {

f lag_0 = 1 ;
turn = 1 ;
whi l e (f lag_1 && turn == 1)

cont inue ;

c r i t i c a l = 17 ;

f lag_0 = 1 ;
}

Figure 5.1: One Thread of Peterson’s Algorithm in C

Dependencies caused by reading memory another instruction writes to, as well as depen-
dencies caused by writing to memory other reads from:

i01 – i06 i00 – i13

Dependencies for the second thread look the same in all examples.

A graphical representation of the resulting matrix can be seen in Figure 5.3. Since the
code of the second thread is almost identical, the graph looks identical to this graph. As
to be expected, when the interpreter is run on the Kronecker Sum of this graph, it cannot
find any errors, meaning it does not find a valid path in which the two instructions that
represent our critical section, i12, and i27, can be executed back to back.

56

5.1. Peterson’s Algorithm - Sequential Consistent Version

@flag_0 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@flag_1 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@turn = dso_loca l g l o b a l i 32 0 , a l i g n 4
@ c r i t i c a l = dso_loca l g l o b a l i 32 0 , a l i g n 4

d e f i n e dso_loca l void @thread1 () #0 {
s t o r e atomic i 32 1 , ptr @flag_0 seq_cst , a l i g n 4
s t o r e atomic i 32 1 , ptr @turn seq_cst , a l i g n 4
br l a b e l %1

1 :
%2 = load atomic i32 , ptr @flag_1 seq_cst , a l i g n 4
%3 = icmp ne i32 %2, 0
br i 1 %3, l a b e l %4, l a b e l %7

4 :
%5 = load atomic i32 , ptr @turn seq_cst , a l i g n 4
%6 = icmp eq i32 %5, 1
br l a b e l %7

7 :
%8 = phi i 1 [f a l s e , %1] , [%6, %4]
br i 1 %8, l a b e l %9, l a b e l %10

9 :
br l a b e l %1, ! l lvm . loop ! 6

10 :
s t o r e i 32 19 , ptr @ c r i t i c a l , a l i g n 4
s t o r e atomic i 32 0 , ptr @flag_0 seq_cst , a l i g n 4
r e t void

}

Figure 5.2: LLVM Version of Peterson’s Algorithm

57

5. Examples

start

i00

i01

i03

i04

i05

i06

i07

i09

i09

i10

i12

i13

i11

i03

Figure 5.3: Single Thread Graphical Representation of Peterson’s Algorithm With Pseudo
Instructions Removed

58

5.2. Peterson’s Algorithm - Release-Acquire Version

5.2 Peterson’s Algorithm - Release-Acquire Version
The second example will be made with a modified version of Peterson’s Algorithm that
uses Release-Acquire semantics instead. The only changes that have been made are to
change all atomic STORE instructions to use release memory ordering and for atomic
LOAD instructions to use acquire memory ordering. The modified LLVM code can be
found in Figure 5.4.

The dependencies found that are caused by release-acquire instructions are the following:

i00 – i01 i03 – i04 i03 – i05 i03 – b02 i03 – b03 i06 – i07 i06 – b03
i12 – i13 i10 – i13 i09 – i13

Dependencies caused by dependency chains and dependencies caused by memory read-
s/writes stay the same.

As can be seen, release acquire already has significantly fewer dependencies than the
sequential version. The resulting graph can be seen in Figure 5.5. Immediately, this
graph is significantly less restrictive than the one resulting from the sequential consistent
version of Peterson’s Algorithm.

The analyzing part of the prototype now returns multiple error paths. One of which is
the following (pseudo instructions have been removed for readability):

i03, i04, i05, i09, i10, i18, i19, i20, i24, i25, i27, i12

As can be seen, this path reaches a state where the two critical instructions, i27, and
i12, are executed one after the other, meaning the interpreter has reached a state where
both critical sections can be entered simultaneously. This happens because it skips the
execution of i00 (setting flag_0) and i01 (setting turn) in thread1 till it has already
checked the condition of the while-loop and evaluates it as false. Since neither i00 nor
i01 have been executed, turn and flag_0 still have their default values of 0. Since the
condition for the second thread to enter the critical section is already satisfied if flag_0
is 0, it can enter the critical section. Now that both threads are within the critical section,
they can, back to back, execute the critical instructions i12 and i27. This can also be
seen in Figure 5.5.

So the problem is that thread1 can delay setting the flag and the turn value. But why?
The reason is quite simple: setting the values are both release operations, and while this
means that no instruction before the release can move to after it, it does not limit any
successor instructions to be moved before it. Hence, such instructions can be moved
forward till either:

• Another instruction with memory dependencies to turn or flag_0 is reached.

• A release instruction limits its delay.

59

5. Examples

@flag_0 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@flag_1 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@turn = dso_loca l g l o b a l i 32 0 , a l i g n 4
@ c r i t i c a l = dso_loca l g l o b a l i 32 0 , a l i g n 4

d e f i n e dso_loca l void @thread1 () #0 {
s t o r e atomic i 32 1 , ptr @flag_0 r e l e a s e , a l i g n 4
s t o r e atomic i 32 1 , ptr @turn r e l e a s e , a l i g n 4
br l a b e l %1

1 :
%2 = load atomic i32 , ptr @flag_1 acquire , a l i g n 4
%3 = icmp ne i32 %2, 0
br i 1 %3, l a b e l %4, l a b e l %7

4 :
%5 = load atomic i32 , ptr @turn acquire , a l i g n 4
%6 = icmp eq i32 %5, 1
br l a b e l %7

7 :
%8 = phi i 1 [f a l s e , %1] , [%6, %4]
br i 1 %8, l a b e l %9, l a b e l %10

9 :
br l a b e l %1, ! l lvm . loop ! 6

10 :
s t o r e i 32 19 , ptr @ c r i t i c a l , a l i g n 4
s t o r e atomic i 32 0 , ptr @flag_0 r e l e a s e , a l i g n 4
r e t void

}

Figure 5.4: LLVM Version of Peterson’s Algorithm Using Release Acquire

In the case of the first, the only other instruction that accesses the same memory is i06,
the load instruction that fetches the value of turn for the condition. The problem is that
this instruction is never reached in this particular path since flag_1 being false already
satisfies the condition to enter the critical section, meaning the check for the value of
turn is bypassed.

The only other release instruction for the second point is after the critical section. This
gives other threads the time to enter the critical section before thread0 sets the values
to prevent them.

Since both cases do not prevent i00 and i01 from being delayed till after the critical
section, the error path given by the prototype is correct.

60

5.2. Peterson’s Algorithm - Release-Acquire Version

Figure 5.5: Single Thread Graphical Representation of Peterson’s Algorithm Using
Release Acquire With Pseudo Instructions Removed

61

5. Examples

@flag_0 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@flag_1 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@turn = dso_loca l g l o b a l i 32 0 , a l i g n 4
@ c r i t i c a l = dso_loca l g l o b a l i 32 0 , a l i g n 4

d e f i n e dso_loca l void @thread1 () #0 {
s t o r e atomic i 32 1 , ptr @flag_0 r e l e a s e , a l i g n 4
s t o r e atomic i 32 1 , ptr @turn r e l e a s e , a l i g n 4
f ence acq_rel
br l a b e l %1

1 :
%2 = load atomic i32 , ptr @flag_1 acquire , a l i g n 4
%3 = icmp ne i32 %2, 0
br i 1 %3, l a b e l %4, l a b e l %7

4 :
%5 = load atomic i32 , ptr @turn acquire , a l i g n 4
%6 = icmp eq i32 %5, 1
br l a b e l %7

7 :
%8 = phi i 1 [f a l s e , %1] , [%6, %4]
br i 1 %8, l a b e l %9, l a b e l %10

9 :
br l a b e l %1, ! l lvm . loop ! 6

10 :
s t o r e i 32 19 , ptr @ c r i t i c a l , a l i g n 4
s t o r e atomic i 32 0 , ptr @flag_0 r e l e a s e , a l i g n 4
r e t void

}

Figure 5.6: Corrected LLVM Release Acquire Version of Peterson’s Algorithm

5.3 Peterson’s Algorithm - Modified Release-Acquire
Version

To modify Peterson’s Algorithm to work correctly with release-acquire, an additional
fence has to be added to ensure the two problematic instructions are not moved after the
check. The modified code can be seen in Figure 5.6 and the resulting graph in Figure 5.7.
The graph shows that the i00 and i01 instructions can no longer be moved after the
critical section, and the analyzer run over the Kronecker Sum of the two threads detects
no errors.

62

5.3. Peterson’s Algorithm - Modified Release-Acquire Version

start

i00

i01

i02

i04

i05

i06

i07

i08i10

i10

i11

i13

i14

i12

Figure 5.7: Single Thread of Corrected Peterson’s Algorithm Using Release-acquire With
Pseudo Instructions Removed

63

5. Examples

5.4 Dekker’s Algorithm - Sequential Consistent Version
Dekker’s Algorithm is another synchronization algorithm known to work under sequential
consistency. For the prototype to be able to operate on it, the code again has to be
modified to use two separate variables, flag_0 and flag_1, instead of an array. The
resulting C code can be seen in Figure 5.8 and its LLVM equivalent in Figure 5.9.

Dependencies in the first thread caused by sequential instructions are:

i00 – b01 i02 – i03 i02 – i04 i02 – b02 i02 – b08 i00 – i02 i16 – i02
i05 – i06 i05 – i07 i05 – b03 i05 – b07 i04 – i05 i03 – i05 i02 – i05
i08 – b04 i07 – i08 i06 – i08 i05 – i08 i10 – i11 i10 – i12 i10 – b05
i10 – b06 i08 – i10 i13 – i10 i14 – b07 i12 – i14 i11 – i14 i10 – i14
i18 – i19 i17 – i18 i04 – i18 i03 – i18 i02 – i18

Dependencies caused by dependency chains are:

i02 – i03 i03 – i04 i05 – i06 i06 – i07 i10 – i11 i11 – i12

Dependencies caused by reading memory another instruction writes to, as well as depen-
dencies caused by writing to memory other reads from:

i00 – i08 i14 – i08 i08 – i14 i05 – i18 i10 – i18 i00 – i19 i14 – i19

The resulting single-thread graph output by the prototype can be seen in Figure 5.10.

Again, as expected, the analyzing part of the prototype does not detect any errors.

64

5.4. Dekker’s Algorithm - Sequential Consistent Version

atomic_int turn = 0 ;
atomic_int f lag_0 = 0 ;
atomic_int f lag_1 = 0 ;
i n t c r i t i c a l = 0 ;

void thread1 () {
f lag_0 = 1 ;
whi l e (f lag_1) {

i f (turn == 1) {
f lag_0 = 0 ;
whi l e (turn == 1) ;
f lag_0 = 1 ;

}
}

c r i t i c a l = 15 ;

turn = 1 ;
f lag_0 = 0 ;

}

Figure 5.8: One Thread of Dekker’s Algorithm in C

65

5. Examples

@flag_0 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@flag_1 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@turn = dso_loca l g l o b a l i 32 0 , a l i g n 4
@ c r i t i c a l = dso_loca l g l o b a l i 32 0 , a l i g n 4

d e f i n e dso_loca l void @thread1 () #0 {
s t o r e atomic i 32 1 , ptr @flag_0 seq_cst , a l i g n 4
br l a b e l %1

1 :
%2 = load atomic i32 , ptr @flag_1 seq_cst , a l i g n 4
%3 = icmp ne i32 %2, 0
br i 1 %3, l a b e l %4, l a b e l %14

4 :
%5 = load atomic i32 , ptr @turn seq_cst , a l i g n 4
%6 = icmp ne i32 %5, 0
br i 1 %6, l a b e l %7, l a b e l %13

7 :
s t o r e atomic i 32 0 , ptr @flag_0 seq_cst , a l i g n 4
br l a b e l %8

8 :
%9 = load atomic i32 , ptr @turn seq_cst , a l i g n 4
%10 = icmp ne i32 %9, 0
br i 1 %10, l a b e l %11, l a b e l %12

11 :
br l a b e l %8, ! l lvm . loop ! 6

12 :
s t o r e atomic i 32 1 , ptr @flag_0 seq_cst , a l i g n 4
br l a b e l %13

13 :
br l a b e l %1, ! l lvm . loop ! 8

14 :
s t o r e i 32 15 , ptr @ c r i t i c a l , a l i g n 4
s t o r e atomic i 32 1 , ptr @turn seq_cst , a l i g n 4
s t o r e atomic i 32 0 , ptr @flag_0 seq_cst , a l i g n 4
r e t void

}

Figure 5.9: One Thread of Dekker’s Algorithm in LLVM

66

5.4. Dekker’s Algorithm - Sequential Consistent Version

Figure 5.10: Graphical Representation of One Thread of Dekker’s Algorithm 67

5. Examples

5.5 Dekker’s Algorithm - Release-Acquire Version
Dekker’s Algorithm can also be converted to release-acquire like Peterson’s Algorithm.
The resulting LLVM code can be seen in Figure 5.11. The critical instructions are i17
and i38.

This time, the analyzer again outputs multiple error paths; the shortest (with pseudo
instructions removed) is:

i02, i03, i04, i23, i24, i25, i17, i38

The problem is again very similar to the one in the release-acquire version of Peterson’s
Algorithm. The i00 instruction that should set the global flag_0 is delayed till after
the critical section. Again, this could happen in the real application since no instruction
interacts with flag_0 between i00 and the critical instruction i17 except for i08, which
is bypassed in this execution order. This means no memory dependencies are enforcing
the instruction to be executed earlier. Furthermore, no release instruction executed on
that path would require i00 not to be moved after it. This means delaying i00 is possible,
and the error was detected correctly.

68

5.5. Dekker’s Algorithm - Release-Acquire Version

@flag_0 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@flag_1 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@turn = dso_loca l g l o b a l i 32 0 , a l i g n 4
@ c r i t i c a l = dso_loca l g l o b a l i 32 0 , a l i g n 4

d e f i n e dso_loca l void @thread1 () #0 {
s t o r e atomic i 32 1 , ptr @flag_0 r e l e a s e , a l i g n 4
br l a b e l %1

1 :
%2 = load atomic i32 , ptr @flag_1 acquire , a l i g n 4
%3 = icmp ne i32 %2, 0
br i 1 %3, l a b e l %4, l a b e l %14

4 :
%5 = load atomic i32 , ptr @turn acquire , a l i g n 4
%6 = icmp ne i32 %5, 0
br i 1 %6, l a b e l %7, l a b e l %13

7 :
s t o r e atomic i 32 0 , ptr @flag_0 r e l e a s e , a l i g n 4
br l a b e l %8

8 :
%9 = load atomic i32 , ptr @turn acquire , a l i g n 4
%10 = icmp ne i32 %9, 0
br i 1 %10, l a b e l %11, l a b e l %12

11 :
br l a b e l %8, ! l lvm . loop ! 6

12 :
s t o r e atomic i 32 1 , ptr @flag_0 r e l e a s e , a l i g n 4
br l a b e l %13

13 :
br l a b e l %1, ! l lvm . loop ! 8

14 :
s t o r e i 32 15 , ptr @ c r i t i c a l , a l i g n 4
s t o r e atomic i 32 1 , ptr @turn r e l e a s e , a l i g n 4
s t o r e atomic i 32 0 , ptr @flag_0 r e l e a s e , a l i g n 4
r e t void

}

Figure 5.11: LLVM Version of Dekker’s Algorithm Using Release Acquire

69

5. Examples

Figure 5.12: Single Thread Graphical Representation of Dekker’s Algorithm Using Release
Acquire With Pseudo Instructions Removed70

5.6. Dekker’s Algorithm - Modified Release-Acquire Version

5.6 Dekker’s Algorithm - Modified Release-Acquire
Version

Modifying Dekker’s Algorithm to work using the release-acquire model only requires one
additional fence. The modified code can be seen in Figure 5.13 and the resulting graph in
Figure 5.14. The graph shows that the i00 instruction is now guaranteed to be executed
first, and the analyzer runs over the Kronecker Sum of the two threads and detects no
errors.

71

5. Examples

@flag_0 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@flag_1 = dso_loca l g l o b a l i 32 0 , a l i g n 4
@turn = dso_loca l g l o b a l i 32 0 , a l i g n 4
@ c r i t i c a l = dso_loca l g l o b a l i 32 0 , a l i g n 4

d e f i n e dso_loca l void @thread1 () #0 {
s t o r e atomic i 32 1 , ptr @flag_0 r e l e a s e , a l i g n 4
f ence acq_rel
br l a b e l %1

1 :
%2 = load atomic i32 , ptr @flag_1 acquire , a l i g n 4
%3 = icmp ne i32 %2, 0
br i 1 %3, l a b e l %4, l a b e l %14

4 :
%5 = load atomic i32 , ptr @turn acquire , a l i g n 4
%6 = icmp ne i32 %5, 0
br i 1 %6, l a b e l %7, l a b e l %13

7 :
s t o r e atomic i 32 0 , ptr @flag_0 r e l e a s e , a l i g n 4
br l a b e l %8

8 :
%9 = load atomic i32 , ptr @turn acquire , a l i g n 4
%10 = icmp ne i32 %9, 0
br i 1 %10, l a b e l %11, l a b e l %12

11 :
br l a b e l %8, ! l lvm . loop ! 6

12 :
s t o r e atomic i 32 1 , ptr @flag_0 r e l e a s e , a l i g n 4
br l a b e l %13

13 :
br l a b e l %1, ! l lvm . loop ! 8

14 :
s t o r e i 32 15 , ptr @ c r i t i c a l , a l i g n 4
s t o r e atomic i 32 1 , ptr @turn r e l e a s e , a l i g n 4
s t o r e atomic i 32 0 , ptr @flag_0 r e l e a s e , a l i g n 4
r e t void

}

Figure 5.13: Corrected LLVM Release Acquire Version of Dekker’s Algorithm

72

5.6. Dekker’s Algorithm - Modified Release-Acquire Version

Figure 5.14: Single Thread of Corrected Dekker’s Algorithm Using Release Acquire With
Pseudo Instructions Removed 73

CHAPTER 6
Related Work

As mentioned in Chapter 1, many approaches already exist to verify concurrent programs
in weak memory models. In the following, some will be presented.

6.1 Dynamic Partial Order Reduction
One way of finding concurrency bugs is with stateless model checkers [AAJN18]. A
stateless model checker explores all possible combinations of thread scheduling and
detects possible concurrency bugs.

One big problem of stateless model checkers is that the exponentially growing number of
possible scheduling orders requires much time. For this reason, stateless model checkers
use different ways to reduce the amount of thread scheduling combinations.

Partial order reduction is one such technique. It divides different execution orders into
equivalent classes, with each order in an equivalent class having all statements that
interact with data of other threads executed in the same order. Since all members of one
equivalence class execute similarly, only one of the orders in the equivalence class has to
be checked.

For weak memory models, one equivalence class is called a Shasha-Snir trace. In such a
trace, there are three different kinds of relations statements can have:

• program order: gives a total order for the events for a thread

• coherence: gives a total order for the writes to a shared variable

• read-from: connects every write to all the reads it depends on

75

6. Related Work

Different weak memory models use different kinds of relations differently. Even though
this strongly reduces the amount of analyzed execution orders, it is far from optimal.
The result might still be equivalent in cases where only coherence relations differ.

The paper focuses on an algorithm that weakens Shasha-Snir traces, so even fewer orders
must be explored.

6.2 Iris
Iris [KDD+17] is a framework for higher-order concurrent separation logic. It allows
users to customize the framework to suit any language featuring operational interleaving
semantics, and it can then reason about programs using the logic selected.

Both GPS and RSL from the following sections can be encoded into Iris and used for
program verification for programs using the Acquire-Release memory models.

6.2.1 GPS
GPS (or Ghosts, Protocols, and Separation) is a program logic designed to be a full
suite of modern verification techniques for reasoning over weak memory models [TVD14].
Those verification techniques include ghost states, protocols, and separation logic. In the
following, these three are explained.

Protocol

When threads interact, reasoning about the interference between them must be done.
One common way to reason about them is invariants, meaning rules that hold over the
entire duration of the interaction. One of the mechanisms used is called ‘rely-guarantee,’
and the ‘rely on‘ is the state transitions the thread might perform and guaranteeing the
environment’s transitions.

For this, GPS supports protocols similar to concurrent logic protocols that are modified
to be sound when under weak memory models.

Ghost States

Ghost states are used to enforce the program’s correct behavior. Control flow, permissions,
and execution history could otherwise not be properly handled.

The PL protocol already has a built-in form of ghost states that can, for example,
summarize previous control flow. However, to support ownable/permissions resources, a
system called ghosts in the form of partial commutative monoids is needed.

Separation and Ownership

Many parts of concurrent programs are still independent of each other, meaning many
parts of a thread can be executed in parallel with parts of a different thread without the

76

6.3. Context Bound Analysis

two threads having to interact since both are using (owning) different resources. Many
program logics allow this ownership of resources to be transferred to other threads.

The GPS PL protocol also allows threads to transfer ownership of resources, but with
the restriction, the thread receiving the owned resources must operate to synchronize.
This is done to achieve soundness of the program logic.

6.2.2 Relaxed Separation Logic
The paper introduces a program logic to reason about concurrent programs running under
the relaxed memory model of C11 [VN13]. The programming language is developed
on top of concurrent separation logic, a program logic with the restriction that they
only allow a thread to access data not owned by the thread using atomic operators with
limited options to change ownership of data. This prevents data races.

Relaxed separation logic extends concurrent separation logic by allowing different own-
ership changes dependent on the used atomic. It adds proof rules for the different C11
atomic operators.

Relaxed separation logic is used for verification in the Linux kernel project [TDV15].

6.3 Context Bound Analysis
The following sections focus on a group of related papers that explore the use of Context
Bound Analysis to reduce concurrent programs to a sequential one to apply analysis
techniques that are known to work on sequentially consistent programs to detect errors
in concurrent ones.

6.3.1 Context Bound to Sequential Analysis
This paper focuses on a reduction from a concurrent program to an equivalent sequential
program that models all executions for a fixed amount of context switches [LR09].

It achieves this by dividing the threads into ordered chunks of execution contexts; within
one execution context, only one thread is executed, and after that execution context, it
switches to the following execution context or the next of a different thread. This switch
is referred to as a context switch.

To be more precise, if a program has two threads (T1, T2). Both of those threads are
divided into up to K chunks (c1

0, c1
1, . . . , c1

K for T1 and c2
0, c2

1, . . . , c2
K for T2). Then T1

starts executing from c1
0 for the first m chunks. After this, it switches control to T2,

which now starts executing from c2
0, after which control is given back to T1, and execution

continues at c1
m.

Before each swap, the local state is saved, and if the same thread resumes, it continues
using the same local state but with all changes to global data made by other threads.

77

6. Related Work

Due to the local state having to be remembered during the execution of other threads
and the exponential number of orders, the different thread chunks can be executed, so
this way of analysis takes much memory.

To reduce the amount of memory needed, the paper suggests instead changing the thread
T1 so more chunks can be executed before a view switch occurs. This is done by analyzing
the effects of chunks (in the above example, the chunks c2

0 − c2
n) might have on the

execution starting at c1
m. This way, those effects can be applied to thread T1 without

switching to T2 and, therefore, having to save the local state. Those assumed effects of
T2 on T1 can be verified when executing T2.

6.3.2 K-Bounded Computations
While the paper in 6.3.1 can reduce the memory required for verification, it only applies
to multithreaded programs with a fixed, finite, and known amount of threads.

To solve this problem, K-bounded computation is introduced. K-bounded computation
restricts the amount of context-switches of each thread to K but allows for the dynamic
creation of new threads during execution [ABQ09]. Further, the amount of context
switches of newly created threads is limited to the amount of context switches of the
thread creating it reduced by 1.

6.3.3 VBMC
This paper [AAAK19] presents a prototype for verifying concurrent programs that use
release-acquire semantics. Since the state reachability problem is still undecidable under
release-acquire, a new version of context bounding, called view-bounding, is presented.

Since every thread in release acquire has its view on the system’s current state due to
writes not necessarily being synchronized with others immediately.

The prototype is a polynomial-time code-to-code translation between a program that
uses release-acquire semantics and a second program that holds that for every bounded
view-switching execution of the original program, there is a context-bound execution for
the second one under sequential consistency.

This results in a reduction to a context-bounded state reachability problem for sequential
consistency and allows for existing verification tools that assume sequential consistency
to be used to verify concurrent programs.

78

CHAPTER 7
Discussion

The first research question of this thesis asked if Kronecker Algebra effectively captured
the interactions between the threads of concurrent programs using the release acquire
model. In the prototype, this was not achieved. Because of the explosion of time
complexity, which will be explained more closely below, the prototype reduces its use
of Kronecker Algebra to the creation of a control flow graph that models all possible
execution orders of a singular thread.

But this does not mean that modelling the interactions between the threads is not
possible if the prototype is given more time and/or the Kronecker Calculations are further
optimized. In Section 8 there will be a short overview of how the system might be
expanded so it also models the interactions between the threads.

The next question was to what extent Kronecker Algebra can assist in detecting and
resolving data races in programs using the release acquire model. As seen in Section 5 the
prototype successfully uses the generated control flow graph to verify basic algorithms
and can help a user identify possible race conditions and therefore help with resolving
such problems.

The last question was about which challenges and limitations are faced when trying to
verify programs using Kronecker Algebra. As explained in Section 3.1.2 the system used
in the prototype has the possibility of false negatives. While this type of false negative
might be able to be fixed by modifying the way Kronecker Algebra is used to generate
the Control Flow graph, a second problem, state explosion, is not that easily fixable.

As will be shown in Section 7.1, the time needed for the Kronecker Calculations is the
biggest part of the total time needed for verification.

For this reason, while having a mathematical way to calculate the possible execution orders
of a program is interesting, it seems unlikely it will be used outside of the verification of
simple algorithms.

79

7. Discussion

7.1 Time
Table 7.1 shows the required time for the different examples. The tests were performed
using an i5-1340P. The first thing it shows is that even though optimization focuses
on reducing the amount of Kronecker Algebra, it still takes up most of the time in all
examples. The second thing it shows is that the examples using Dekker’s Algorithm
take significantly longer than those using Peterson’s Algorithm. This is primarily caused
by the LLVM-compiled version of Dekker’s Algorithm having more instructions and
requiring more dependencies to be modeled.

Comparing the times to VBMC [AAAK19], this is significantly slower. Their prototype
was able to find errors in the release-acquire versions of Dekker’s and Peterson’s Algorithms
within 0.85 and 0.26 seconds, even though the benchmark was performed on hardware
that is outperformed by the one used for the tests in Table 7.1. The benchmarks given
in [AAAK19] also include times for further tools, namely those that outperform both
VBMC and the prototype in this thesis when detecting errors within two threads of those
interacting algorithms.

As was already mentioned in Section 4.7, a version of the prototype using lazy calculation
was also created, but as can be seen in Table 7.2, this increases the time required for the
calculation further.

80

7.1. Time

ex
am

pl
e

pe
te

rs
on

r-
a

pe
te

rs
on

co
rr

ec
t

r-
a

pe
te

rs
on

de
kk

er
r-

a
de

kk
er

co
rr

ec
t

ra
-d

ek
ke

r
de

pe
nd

en
ci

es
(m

s)
9.

68
9.

29
8.

55
9.

29
9.

65
10

.4
5

kr
on

ec
ke

r
(s

)
1.

52
1.

74
1.

70
18

.7
3

19
.8

0
27

.4
4

an
al

ys
is

(m
s)

73
.7

17
6.

86
65

.3
1

42
.4

8
99

.4
4

65
.7

2
to

ta
l(

s)
1.

60
1.

93
1.

78
18

.7
8

19
.9

1
27

.5
2

Ta
bl

e
7.

1:
R

eq
ui

re
d

T
im

e
to

A
na

ly
ze

th
e

Ex
am

pl
es

ex
am

pl
e

pe
te

rs
on

r-
a

pe
te

rs
on

co
rr

ec
t

r-
a

pe
te

rs
on

de
kk

er
r-

a
de

kk
er

co
rr

ec
t

ra
-d

ek
ke

r
kr

on
ec

ke
r

(s
)

2.
27

2.
48

2.
66

55
.4

1
57

.2
0

70
.8

5

Ta
bl

e
7.

2:
R

eq
ui

re
d

T
im

e
fo

r
K

ro
ne

ck
er

C
al

cu
la

tio
ns

us
in

g
La

zy
C

al
cu

la
tio

ns
w

ith
a

Ba
la

nc
ed

Tr
ee

81

CHAPTER 8
Conclusion and Future Work

In the thesis, we developed a way that uses Kronecker Algebra to build a Control Flow
Graph of a program running under weak memory models that an interpreter can then use
to detect data races within the program. The system was implemented in a prototype
that takes a program written in LLVM bytecode. It correctly verified the correctness of
Dekker’s and Peterson’s Algorithms under sequential consistency and detected errors in
their trivial release-acquire form.

In the prototype developed, the exponential growth in the time needed to calculate the
graph results in testing bigger algorithms already taking a significant amount of time,
with testing entire subsections of a program within a reasonable time being impossible.

In future work, the maximum size of the tested code can most likely be increased by
further optimizing the Kronecker calculations. As mentioned in Section 4.7, the library
is most efficient when dealing with flat trees, and the main advantage of the used system
only applies if it is working with very narrow trees. Since the order of Kronecker Sums has
no influence on the result, the Kronecker Sums to create the blocks or, if the optimization
that matrices of blocks are created in code and not calculated, the Kronecker Sums to
merge the blocks into one graph can be optimized.

The library also provides ways of using caching calculated values to minimize recalculating
them in the future. Thus it might be possible to reduce the time needed if values in key
locations within the program are cached.

Furthermore, currently, the system uses Kronecker Algebra exclusively to build the
program’s Control Flow Graph by adding a single label per instruction to the graph.
Instead of adding multiple versions of instruction, for example, in the case of conditional
instructions, add one label representing the instruction evaluating to true and one in
which it evaluates to false. One can then use dependencies to ensure that, depending on
the last instruction assigned to the variable and the value it assigns to, only the label
representing the conditional instruction evaluating the correct value is used.

83

8. Conclusion and Future Work

While such a system would most likely be capable of verifying programs using Kronecker
Algebra and without the need for the interpreter, due to the inefficiency of Kronecker
Algebra, this would reduce the program’s size, and it can verify within a reasonable time
even more.

84

List of Figures

1.1 Race Condition Caused by Delayed Synchronization 2
1.2 Example How Optimization Might Influence Execution Order 2

2.1 Example Read-Modify Race Condition . 11
2.2 Example Check-Then-Act Race Condition 12
2.3 C Implementation of Peterson’s and Dekker’s Algorithm (turn and flag Must

Be Sequentially Consistent Atomics) . 14
2.4 FSM F0 . 15
2.5 FSM F1 . 17
2.6 Result of the Kronecker Product of the Automata Shown in 2.4 and 2.5 . 18
2.7 Result of the Kronecker Product of the Automata Shown in 2.4 and 2.5

Without Unreachable Nodes . 18
2.8 FSM F2 . 21
2.9 FSM F3 . 21
2.10 Result of the Synchronized Kronecker Product of the Automata F2 and F3 21
2.11 FSM F4 . 22
2.12 FSM F5 . 23
2.13 Result of Synchronized Kronecker Product of the Automata F5 and F3 . . 23
2.14 Examples FSM for Kronecker Sum . 25
2.15 Result of Kronecker Sum Between F6 and F7 25
2.16 Examples FSM for Kronecker Skip . 26
2.17 Result of Kronecker Skip Between F8 and F9 27

3.1 Example Creation of Blocks . 32
3.2 Block Conversion with Loop . 34
3.3 Example of a Loop That Can Be Modelled in Matrix Form 35
3.4 Examples of Loops Not Easily Modeled 36
3.5 Different Dependency Examples . 38
3.6 Example of Applied Dependencies in Program With Rule 40
3.7 Visualization of Figure 3.5c With Applied Simple Rules 42

4.1 Example Where Kronecker Sum of Threads is Not Enough 52

5.1 One Thread of Peterson’s Algorithm in C 56
5.2 LLVM Version of Peterson’s Algorithm . 57

85

5.3 Single Thread Graphical Representation of Peterson’s Algorithm With Pseudo
Instructions Removed . 58

5.4 LLVM Version of Peterson’s Algorithm Using Release Acquire 60
5.5 Single Thread Graphical Representation of Peterson’s Algorithm Using Release

Acquire With Pseudo Instructions Removed 61
5.6 Corrected LLVM Release Acquire Version of Peterson’s Algorithm 62
5.7 Single Thread of Corrected Peterson’s Algorithm Using Release-acquire With

Pseudo Instructions Removed . 63
5.8 One Thread of Dekker’s Algorithm in C 65
5.9 One Thread of Dekker’s Algorithm in LLVM 66
5.10 Graphical Representation of One Thread of Dekker’s Algorithm 67
5.11 LLVM Version of Dekker’s Algorithm Using Release Acquire 69
5.12 Single Thread Graphical Representation of Dekker’s Algorithm Using Release

Acquire With Pseudo Instructions Removed 70
5.13 Corrected LLVM Release Acquire Version of Dekker’s Algorithm 72
5.14 Single Thread of Corrected Dekker’s Algorithm Using Release Acquire With

Pseudo Instructions Removed . 73

86

List of Tables

2.1 List of Important LLVM Instructions [llva], (Optional Values Are Not Included
in Usage) . 8

2.2 List of Possible ICMP Operators . 9

4.1 Average Execution Time in Seconds of Library for n Kronecker Skips . . . 51
4.2 Average Execution Time in Seconds of Custom Calculation for n Kronecker

Skips . 51
4.3 Average Execution Time in Seconds of Library for n Kronecker Sums . . . 51
4.4 Average Execution Time in Seconds of Custom Calculation for n Kronecker

Sums . 51

7.1 Required Time to Analyze the Examples 81
7.2 Required Time for Kronecker Calculations using Lazy Calculations with a

Balanced Tree . 81

87

Bibliography

[AAAK19] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankara-
narayanan Krishna. Verification of programs under the release-acquire seman-
tics. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 1117–1132, New
York, NY, USA, 2019. Association for Computing Machinery.

[AAC+12] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson,
and Ahmed Rezine. Counter-example guided fence insertion under tso. In
Cormac Flanagan and Barbara König, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 204–219, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[AAJN18] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong
Ngo. Optimal stateless model checking under the release-acquire semantics.
Proc. ACM Program. Lang., 2(OOPSLA), oct 2018.

[ABQ09] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded
analysis for concurrent programs with dynamic creation of threads. In
Stefan Kowalewski and Anna Philippou, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 107–123, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[BB14] Bernd Burgstaller and Johann Blieberger. Kronecker algebra for static
analysis of Ada programs with protected objects. In Ada-Europe International
Conference on Reliable Software Technologies, pages 27–42. Springer, 2014.

[Bli15] Johann Blieberger. The Kronecker Booklet. https://kronalg.
blieberger.at/kb.pdf, 2015.

[BM08] Sebastian Burckhardt and Madanlal Musuvathi. Effective program verification
for relaxed memory models. In Aarti Gupta and Sharad Malik, editors, Com-
puter Aided Verification, pages 107–120, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[Dij62] Edsger Wybe Dijkstra. Over de sequentialiteit van procesbeschrijvingen. 1962.

89

https://kronalg.blieberger.at/kb.pdf
https://kronalg.blieberger.at/kb.pdf

[KDD+17] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor
Vafeiadis. Strong logic for weak memory: Reasoning about release-acquire
consistency in iris. In 31st European Conference on Object-Oriented Pro-
gramming (ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[llva] llvm. Llvm language reference manual.

[llvb] llvm. llvm-project. https://github.com/llvm/llvm-project/
tree/main.

[LR09] Akash Lal and Thomas Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Formal Methods in System Design, 35:73–97,
2009.

[NM92] Robert HB Netzer and Barton P Miller. What are race conditions? some
issues and formalizations. ACM Letters on Programming Languages and
Systems (LOPLAS), 1(1):74–88, 1992.

[Pet81] Gary L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12:115–116, 1981.

[TDV15] Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. Verifying read-copy-
update in a logic for weak memory. SIGPLAN Not., 50(6):110–120, jun
2015.

[TVD14] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: navigating weak
memory with ghosts, protocols, and separation. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, page 691–707, New York, NY, USA,
2014. Association for Computing Machinery.

[VN13] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: A program
logic for c11 concurrency. In Proceedings of the 2013 ACM SIGPLAN In-
ternational Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA ’13, page 867–884, New York, NY, USA, 2013.
Association for Computing Machinery.

90

https://github.com/llvm/llvm-project/tree/main
https://github.com/llvm/llvm-project/tree/main

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim and Research Questions
	Outline

	Background
	Sequential Consistency
	Release-Acquire
	LLVM
	Race Condition
	Kronecker Algebra

	Building the Matrix Representation
	Program Skeleton
	Setting Dependencies

	Prototype
	Creating Blocks
	Building the Skeleton
	Dependencies
	Optimization
	Collecting Further Information
	Detecting Dependency Type
	Creating the Graph
	Detecting Errors

	Examples
	Peterson's Algorithm - Sequential Consistent Version
	Peterson's Algorithm - Release-Acquire Version
	Peterson's Algorithm - Modified Release-Acquire Version
	Dekker's Algorithm - Sequential Consistent Version
	Dekker's Algorithm - Release-Acquire Version
	Dekker's Algorithm - Modified Release-Acquire Version

	Related Work
	Dynamic Partial Order Reduction
	Iris
	Context Bound Analysis

	Discussion
	Time

	Conclusion and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

