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Kurzfassung

Diese Diplomarbeit untersucht Methoden zur Verbesserung des Verständnisses komplexer
Graphen durch die Einführung neuer Varianten des Storyplan Problems. Es werden das
Planare Geometrische Storyplan, das Planare Topologische k-StoryPlan,
das Planare Geometrische k-StoryPlan, das Minimale Planare Topologische
StoryPlan und das Minimale Planare Geometrische StoryPlan Problem
untersucht, wobei die NP-Schwere all dieser Probleme nachgewiesen wird.
Ein Storyplan ist eine Methode, welche einen Graphen G = (V, E) in mehrere Frames
aufteilt, sodass jedes einen induzierten Teilgraphen von G repräsentiert. Die Frames sind
chronologisch angeordnet, wobei in jedem Frame ein neuer Knoten erscheint. Diese Praxis
erleichtert das Verständnis der Graphen, indem diese in kleinere, überschaubare Teile
zerlegt werden. Allerdings ist das Aufteilen in mehrere Teilgraphen nicht ausreichend.
Jedes Frame muss auch einfach zu interpretieren sein. Das motiviert die Entwicklung
neuer Varianten des Storyplan Problems.
Unsere Arbeit baut auf der Forschung von Binucci et al. [2] auf. Diese haben das Planare
Topologische StoryPlan Problem (PTOP-SP) eingeführt, wo jedes Frame eine
planare Zeichnung sein muss und alle Kanten als Jordankurven dargestellt werden. Wir
erweitern diese Grundlage durch die Einführung fünf neuer Varianten.
Beim Planaren Geometrischen StoryPlan Problem (PGEO-SP) muss die Zeich-
nung jedes Frames planar sein und alle Kanten müssen geradlinig dargestellt werden, um
für ein besseres Verständnis der einzelnen Frames zu sorgen.
Das Planare Topologische k-StoryPlan Problem (PTOP-k-SP) und das Pla-
naren Geometrischen k-StoryPlan Problem (PGEO-k-SP) haben die selben
Einschränkungen für die Zeichnungen der einzelnen Frames wie PTOP-SP und PGEO-
SP, erlauben jedoch, dass mehrere Knoten in einem Frame auftauchen dürfen, um die
Gesamtanzahl der benötigten Frames zu reduzieren.
Das Minimale Planare Topologische StoryPlan Problem (MIN-PTOP-SP) und
das Minimale Planaren Geometrischen StoryPlan Problem (MIN-PGEO-SP)
wollen die Anzahl der Frames minimieren, um jeweils den kleinstmöglichen planaren
topologischen beziehungsweise planaren geometrischen Storyplan zu erhalten.
Der Hauptbeitrag dieser Arbeit ist ein Beweis durch Gegenbeispiel, dass PGEO-SP und
PTOP-SP zwei distinkte Probleme sind. Weiters zeigen wir, dass alle fünf Probleme
NP-schwer sind und PTOP-k-SP sogar NP-vollständig ist.
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Abstract

This thesis investigates methods for improving the comprehension of complex graphs
by introducing new variations of the storyplan problem. We explore the Planar
Geometric Storyplan, the Planar Topological k-StoryPlan, the Planar
Geometric k-StoryPlan, the Minimal Planar Topological StoryPlan, and
the Minimal Planar Geometric StoryPlan problems, providing novel insights
into graph representation and establishing the NP-hardness of each of these problems.
A storyplan is a technique in which a complex graph G = (V, E) is split into multiple
frames, each representing an induced subgraph of G. The frames are ordered chronologi-
cally, with one new vertex appearing in each frame. This process helps simplify graph
comprehension by breaking it into smaller, more manageable parts. However, simply
dividing the graph into subgraphs may not be sufficient. Each frame must also be easy to
interpret, which motivates the development of new variations of the storyplan problem.
We build on the work of Binucci et al. [2], who introduced the Planar Topological
StoryPlan problem (PTOP-SP), where each frame must be a planar drawing and all
edges are represented by Jordan arcs. Our contributions expand on this foundation by
proposing five novel variations.
In the Planar Geometric StoryPlan problem (PGEO-SP), the drawing of each
frame must be planar, and all edges must be embedded as straight-lines for better clarity
of the single frames.
The Planar Topological k-StoryPlan problem (PTOP-k-SP) and the Planar
Geometric k-StoryPlan problem (PGEO-k-SP) have the same restrictions on the
embedding of each frame as PTOP-SP and PGEO-SP, respectively, but allow multiple
vertices to appear in the same frame to reduce the total number of frames needed.
The Minimal Planar Topological StoryPlan problem (MIN-PTOP-SP) and
the Minimal Planar Geometric StoryPlan problem (MIN-PGEO-SP) seek to
minimize the number of frames to obtain the smallest possible planar topological or
planar geometric storyplan, respectively.
The main contribution of this thesis is a proof by counterexample showing that PGEO-SP
is distinct from PTOP-SP. We then prove that PGEO-SP is NP-hard. In addition,
we show that PTOP-k-SP is NP-complete and PGEO-k-SP is NP-hard, for general
values of k. Finally, we demonstrate that the minimization variants MIN-PTOP-SP and
MIN-PGEO-SP are NP-hard.
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CHAPTER 1
Introduction

1.1 Problem statement and motivation
Graphs are powerful tools for representing and abstracting relationships and structures
in various domains, from social networks to biological systems. However, visualizing the
entire graph structure at once can be overwhelming when dealing with complex graphs. A
practical method to make these graphs more comprehensible is to break them down into
smaller, more manageable components. The concept of a storyplan provides a solution to
this problem, where a graph is decomposed into a series of frames, each representing an
induced subgraph on the vertices of the original graph. The frames have a chronological
order, each introducing one new vertex, thus simplifying the visualization process.
In a storyplan of a given graph G = (V, E), each vertex and edge of G must appear in at
least one frame. The frames follow a strict total order, with the restriction that vertices
can only appear once and must remain present until all edges incident to them have been
introduced. Furthermore, the embeddings of vertices and edges over multiple frames
cannot change. While this technique significantly aids comprehension, it is not enough
to merely split a graph into subgraphs and draw them separately. The challenge lies in
ensuring that each individual frame is easy to understand while maintaining the overall
structure of the graph. To better understand the concept of storyplans, see Figure 1.1,
which shows an example of a storyplan for the well-known graph K3,3 and illustrates how
a graph is revealed incrementally across multiple frames.
The original Planar StoryPlan problem, introduced by Binucci et al. [2], imposes
additional constraints: every frame must be planar, and edges must be represented as
Jordan arcs. This results in a simplified representation of complex graphs that generalizes
planarity. However, we argue that further improvements can be made. In this thesis, we
present five unexplored variations of the Planar StoryPlan problem intending to
simplify graph representation further and examine the computational complexity of these
five problems.
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1. Introduction

Figure 1.1: An example of a planar storyplan of the graph K3,3, from left to right, top to
bottom. Each frame shows one new vertex getting activated (green). Vertices and edges
in light grey are yet to be activated, while light blue represents those that have already
disappeared.

From now on, we will refer to the original planar storyplan problem as the Planar
Topological StoryPlan problem (PTOP-SP) to achieve a clear and intuitive
distinction between it and the new problem variants we introduce in this thesis. These
variations are the following:

• The Planar Geometric StoryPlan problem (PGEO-SP): A stricter version
of PTOP-SP where all edges are drawn as straight-lines, instead of as Jordan arcs.
The simplification of the edges leads to better readable frames. This problem is
the main subject of this thesis.

• The Planar Topological k-StoryPlan problem and the Planar Geomet-
ric k-StoryPlan problem: Versions of PTOP-SP and PGEO-SP that limit the
total number of frames by letting multiple vertices appear at the same time.

• The Minimal Planar Topological StoryPlan problem and the Minimal
Planar Geometric StoryPlan problem: Versions of PTOP-SP and PGEO-
SP that ask for the minimum number of frames required to represent the graph
accurately as a planar topological or planar geometric storyplan, respectively.

2



1.2. State of the art

1.2 State of the art
The Planar StoryPlan problem is a relatively new problem; so far, only a handful
of important results and variants have been established.

The primary influence on this thesis is the noteworthy paper by Binucci et al. [2],
which introduced the Planar StoryPlan problem. They showed that the Planar
StoryPlan problem is NP-complete, using a reduction from One-In-Three 3SAT to
show NP-hardness. Furthermore, they provided two fixed-parameter tractable (FPT)
algorithms, one based on the vertex cover number and the other based on the feedback
edge set number. The vertex cover number refers to the smallest set of vertices that
covers all edges in the graph, while the feedback edge set number is the smallest number
of edges whose removal makes the graph acyclic.

Furthermore, Binucci et al. established that for partial 3-trees (i.e., graphs with treewidth
at most 3), a planar storyplan always exists and can be computed in linear time. Finally,
they introduced a variant of the Planar StoryPlan problem where the total order
of vertices is predetermined and showed that this variant is also NP-complete.

Multiple open problems are also mentioned in the paper by Binucci et al. as well, among
these other versions of the StoryPlan problem. One of them is the restriction of the
edges to only allow straight-line drawings for them instead of Jordan arcs. Precisely, the
main problem that we explore in this thesis.

Another notable contribution to the research of storyplans is from Fiala et al. [7], who
introduced and studied forest and outerplanar storyplans. In these storyplan types, each
frame must be a drawing of a planar forest (a collection of trees) or an outerplanar
drawing (a planar embedding of a graph where all vertices lie on the outer face of
the drawing), respectively. They provided efficient algorithms for the construction
of geometric storyplans for certain graph families, where such storyplans always exist.
Furthermore, Fiala et al. established and proved a chain of strict containment relationships
between different graph classes. In particular, the classes that admit forest, outerplanar,
and planar storyplans, as well as the class that includes all graphs:

Gforest ⊊ Gouterplanar ⊊ Gplanar ⊊ G

They also identified specific graph classes that always admit a geometric outerplanar
storyplan or a geometric forest storyplan, respectively.

In a similar line of research, Borrazzo et al. [4] introduced the concept of graph stories,
which bear similarities to storyplans in that they also use multiple drawings of induced
subgraphs of a given graph G but differ in that they have a fixed window given by an
integer w, where one vertex is active. Precisely, this fixed window entails that some edges
of the graph G may never appear in any of the drawings of a graph story. Borrazzo et al.
focused on finding upper bounds for grid sizes that allow all drawings of graph stories of
paths, respectively, trees to be planar and straight-line.

3



1. Introduction

The same graph story definition was extended by Di Battista et al. [6] in their paper.
They formulate the problem of drawing a graph story by mapping the vertices only to
w + k given points, where w is again an integer representing the fixed window of drawings
in which each vertex is active and k is an optimization integer that should be as small as
possible. They showed that even for constant values of k, the problem remains NP-hard
and FPT when parameterized by w + k. They also defined different families of graph
stories and established several important properties for these families.

Schaefer’s work [12] delves into various notions of planarity, including outerplanarity and
simultaneous planarity. A simultaneous drawing is a drawing of two or more graphs,
which might share a common subset of vertices and edges that contains all the vertices
and edges of all these graphs. If the drawings of the individual graphs maintain planarity,
while the only line crossings in the simultaneous drawing are those between edges of
different graphs, then the graphs are simultaneously planar. This problem is of particular
interest in the context of the StoryPlan problem, as it involves multiple independent
graphs and focuses on identifying commonalities between them. This idea is similar to
the relationship between neighboring frames in a storyplan.

Lastly, Fink et al. [8] explored the complexity of simultaneous planarity, proving its
NP-hardness and providing several FPT algorithms for drawing simultaneous planar
graphs.

1.3 Contribution
In this thesis, we expand upon existing research by introducing new variants of the
StoryPlan problem and investigating their computational complexity. Our primary
contribution is the introduction and study of the Planar Geometric StoryPlan
problem, which serves as the central focus of this work.

The core research question we explore is whether the Planar Geometric StoryPlan
problem is distinct from the Planar Topological StoryPlan problem, mainly if
they define the same set of yes-instances. For planar graphs, it is well known through
Fáry’s theorem [9] that every planar graph has a planar straight-line embedding. However,
whether this also applies to planar storyplans is not immediately apparent. To answer this,
we investigate in Chapter 3 (Subset relation of the Planar Geometric StoryPlan
problem) whether every graph that admits a planar topological storyplan also admits a
planar geometric storyplan. The reverse direction is trivial, as any geometric drawing is
inherently a valid topological drawing. So, every graph that admits a planar geometric
storyplan also automatically admits a planar topological storyplan, as any geometric
drawing of a frame is also a valid topological drawing of the same frame. Therefore,
our research focuses primarily on determining whether the relation between the set of
yes-instances of both problems is a proper subset relation.

We demonstrate that the Planar Geometric StoryPlan problem is indeed distinct
by providing a concrete example of a graph that is a yes-instance for the Planar

4



1.3. Contribution

Topological StoryPlan problem but a no-instance for the Planar Geometric
StoryPlan problem. This shows that these two problems have different sets of graphs
as their affirmative instances.

Once we establish that the Planar Geometric StoryPlan problem defines a unique
set of yes-instances, we turn to its computational complexity. In Chapter 4 (NP-hardness
of PGEO-SP), we show that the Planar Geometric StoryPlan problem remains
NP-hard. This result is attained by an adaptation of the NP-hardness proof of the
Planar Topological StoryPlan problem that was presented in [2] to contain only
geometric constructions.

In Chapter 5 (Further Results), the final part of this thesis, we introduce optimization
variants of the StoryPlan problem. We first define the Planar k-StoryPlan
problem, which asks, given a graph G and an integer k, with k ≤ n, whether G admits a
storyplan with exactly k frames. This question is feasible as a k-storyplan allows multiple
vertices to appear in the same frame. Subsequently, we define the Minimal StoryPlan
problem as the problem that asks for the smallest integer k such that a given graph G still
admits a k-storyplan. Based on these two definitions, we define the Planar Geometric
k-StoryPlan problem, the Planar Topological k-StoryPlan problem, the
Minimal Planar Topological StoryPlan problem and the Minimal Planar
Geometric StoryPlan problem as variants of the Planar k-StoryPlan problem
and the Minimal StoryPlan problem using storyplans, where all drawings are planar
and the edges are drawn as Jordan arcs (for the topological variants) or straight-lines
(for the geometric variants), respectively. We establish that for general values of k,
the Planar Topological k-StoryPlan problem is NP-complete and the Planar
Geometric k-StoryPlan problem is NP-hard, while the optimization variants, the
Minimal Planar Topological StoryPlan problem and the Minimal Planar
Geometric StoryPlan problem, are both NP-hard.

5





CHAPTER 2
Preliminaries

Before delving into the core of the thesis, we must first introduce several crucial formal
definitions to understand the subsequent proofs and results.

Graph Drawing and Planarity. A drawing Γ of a graph G = (V, E) is a mapping
that assigns each vertex in V to a point in R2, and each edge in E to a Jordan arc
connecting its two corresponding endpoints, without passing through any other vertices.
The drawing Γ is planar if no edges cross each other and geometric if each edge is drawn
as a straight-line between its endpoints.

(b) (c) (d)(a)

Figure 2.1: This Figure illustrates the differences between (a) a non-planar drawing,
(b) a non-planar geometric drawing, (c) a planar drawing and (c) a planar geometric
drawing. All four illustrations are drawings of the same graph. The colors help visualize
the vertices and edges in the different drawings.

A graph G is considered planar if it admits a planar drawing, i.e., if some drawing Γ of
G exists in which no edges cross. Each planar drawing divides the plane into disjoint
regions called faces. The infinite region is called the outer face. A planar embedding E of

7



2. Preliminaries

G is an equivalence class of planar drawings that define the same faces and share the
same outer face.

Graph Terminology. We use the following terminology to describe relationships
between vertices in a graph:

For a graph G = (V, E) and two vertices a, b ∈ V we say that a vertex a can see (or
reach, or is connected to, or share an edge with, or has a common edge with) another
vertex b in graph G = (V, E), if G has an edge e = {a, b}.

Let V (f) denote the set of vertices that lie on the boundary of a face f in a planar
drawing of a graph.
Remark 2.1. The set V (f) represents the vertices that any new vertex v, placed inside
face f , can reach using topological edges without violating planarity. If the face f is
convex, this also holds for geometric edges.

We define [n] as an abbreviation for the set {1, 2, . . . , n}.

Let N [v] denote the neighborhood of a vertex v, including v itself, i.e., the set containing
v and all its adjacent vertices.

Storyplan. The formal definition of a storyplan adapted from previous work by Binucci
et al. and by Fiala et al.

Definition 1. Let G = (V, E) be a graph with n vertices. A planar storyplan S =
⟨τ, {Di}i∈[n]⟩ of G is a pair defined as follows.
The first element is a bijection τ : V → [n] that imposes a strict total order on the vertices
of G based on their appearance in the storyplan S. For each vertex v ∈ V , let iv = τ(v)
and let jv = maxu∈N [v]τ(u). The interval [iv, jv] is the lifespan of v. We say that v
appears at step iv, is visible at step i for each i ∈ [iv, jv], and disappears at step jv + 1.
Note that a vertex disappears only once all its neighbors have appeared.
The second element of S is a sequence of drawings {Di}i∈[n], called the frames of S. For
each i ∈ [n] the drawing Di must satisfy the following conditions:
i) Di is a drawing of the graph Gi induced by the vertices visible at step i, ii) Di is planar,
iii) the point representing a vertex v is the same over all drawings that contain v, and iv)
the curve representing an edge e is the same over all drawings that contain e.

The Planar Topological StoryPlan problem then asks, given a graph G = (V, E),
does G admit a planar (topological) storyplan?

For the planar geometric storyplan, we add the following condition that must hold for
each drawing Di with i ∈ [n]: v) the curve representing an edge e must be a straight-line.

The Planar Geometric StoryPlan problem then asks, given a graph G = (V, E),
does G admit a planar geometric storyplan?

8



Complete Bipartite Graphs. A graph G = (V, E) is called a complete bipartite graph,
if its vertices can be split into two sets V1 and V2, such that V1 ∩ V2 = ∅, and for all
vertices holds v ∈ Vi : N [v] = V{1,2}\{i} for i ∈ {1, 2}. So, E contains all possible edges
over the vertices in V1 and V2, for which holds that one endpoint is in V1 and the other
in V2, and no other edges.

To efficiently work with complete bipartite graphs in Chapter 4 (NP-hardness of PGEO-
SP), we need the following two results from the work of Binucci et al. [2]. The proof of
the lemma can be found in the same paper.

Lemma 2.1. Let Ka,b = (A ∪ B, E) be a complete bipartite graph with a = |A|, b = |B|,
and 3 ≤ b ≤ a. Let S = ⟨τ, {Di}i∈[a+b]⟩ be a storyplan of Ka,b. Then, exactly one of A
or B is such that all its vertices are visible at some i ∈ [a + b].

Definition 2. For a complete bipartite graph Ka,b with 3 ≤ b ≤ a and a storyplan S of
Ka,b, we call fixed the partite set of Ka,b whose vertices are all visible at some step of S,
and flexible the other partite set.

Remark 2.2. For a complete bipartite graph Ka,b with 3 ≤ b ≤ a and a storyplan S,
precisely one side of Ka,b must be fixed in S and the other must be flexible in S.

9





CHAPTER 3
Subset relation of the Planar

Geometric StoryPlan problem

In this chapter, we will show that the Planar Topological StoryPlan problem and
the Planar Geometric StoryPlan problem describe different sets of yes-instances.
By definition, we know that the set of graphs that are yes-instances of PGEO-SP is a
subset of the graphs that are yes-instances of PTOP-SP. To show that this is a proper
subset relation, we will show the existence of a graph G that has a solution in PTOP-SP,
but for which no valid PGEO-SP drawing can exist. We will start by defining G, then we
will give an example of a PTOP-SP drawing of G, and subsequently, we will show why G
cannot be drawn as an instance of the Planar Geometric StoryPlan problem. For
the counterexample to the assumption that both problems are equal, we will first create a
construction with the help of some assumptions that cannot be drawn with straight-lines
without introducing intersections, then show why this construction must always appear
in one frame of every geometric storyplan drawing of G, and at last demonstrate why we
can remove each of the helping assumptions. Thereby proving that G is a no-instance of
PGEO-SP.

3.1 The definition of the counterexample graph G

To establish an understanding of the counterexample graph G that will show the difference
between the instances spaces of PTOP-SP and PGEO-SP, we will first describe the graph
in terms of the structures that were used to build the graph, and then we will give formal
definitions of G, one written and one visual.

11



3. Subset relation of the Planar Geometric StoryPlan problem

3.1.1 The structure
Our graph G = (V, E) contains two quadrangles Q = ({v1, v2, v3, v4}, {e1, e2, e3, e4}) and
Q′ = ({v′

1, v′
2, v′

3, v′
4}, {e′

1, e′
2, e′

3, e′
4}), where v1, v2, v3, v4 are the vertices and e1, e2, e3, e4

the edges of the quadrangle Q, and v′
1, v′

2, v′
3, v′

4 are the vertices and e′
1, e′

2, e′
3, e′

4 are the
edges of the quadrangle Q′. The defining factor of the graph is the existence of eight
additional structures Si, also called the apex-structures, with the following structure:
one vertex aq

i , also called the quadrangle-apex, as it is connected to all vertices of
both quadrangles and another vertex ae

i , also called the edge-apex, that is connected
to aq

i and two vertices of each quadrangle, also called vφ(i) (v′
φ(i)) and vφ(i+1) (v′

φ(i+1))
of the quadrangles Q (Q′) respectively. Both of these vertices are incident to the
same edge eφ(i) (e′

φ(i)) of the quadrangle Q (Q′). The function φ : N → [4] maps the
indices of the structures Si to the indices of the vertices and edges of the quadrangles:
φ(i) = ((i − 1) mod 4) + 1.

There are four individual structures Si with i ∈ {1, 2, 3, 4}, each one defined by different
edges eφ(i) and e′

φ(i) of the quadrangles Q and Q′. The other four structures Si with
i ∈ {5, 6, 7, 8}, have the same neighborhoods of adjacent vertices in Q and Q′ as the first
four structures, based on the function φ, so the following statements hold: NG(aq

i ) \ ae
i =

NG(aq
i−4) \ ae

i−4 and NG(ae
i ) \ aq

i = NG(ae
i−4) \ aq

i−4 for all i ∈ {5, 6, 7, 8}. Due to this
similarity between each structure Si and Si+4 for i ∈ {1, 2, 3, 4}, we will call these
structures that have the same neighborhoods concerning the vertices of the quadrangles
structure siblings. For most of our proof, we will talk about the first four structures Si

with i ∈ [4], but we will need their siblings later in the proof.

The edges between one of the quadrangle-apex vertices aq
i and the vertices of quadrangle

Q (Q′) will be annotated with EQ,aq
i

(EQ′,aq
i
), similarly, the edges between one of the

edge-apex vertices ae
i and the vertices vφ(i) (v′

φ(i)) and vφ(i+1) (v′
φ(i+1)) will be annotated

with Eeφ(i),ae
i

(Ee′
φ(i),ae

i
). Figure 3.1(a) shows an example of this structure.

The apex-triangle Ai is a planar drawing of a subgraph of G consisting only of the two
apex vertices aq

i and ae
i and one of the quadrangles Q or Q′ and all their induced edges.

The drawing is of such a form that both apex vertices are part of the outer face of Ai,
and they lie in different half-spaces created by the edge eφ(i) or e′

φ(i) depending on the
used quadrangle. The outer face of Ai always has a triangular shape, hence the name
apex-triangle. Figure 3.1(b) depicts an example of an apex-triangle.

3.1.2 Formal representations
Based on the definition of the structures that build G, we will now define G in terms
of an adjacency table 3.1 and a visual graph representation in Figure 3.2. In the visual
graph representation, every structure Si with i ∈ {1, 2, 3, 4} has its unique color to make
it more recognizable. S1 is blue colored, S2 is green colored, S3 is purple colored, and S4
is brown colored. The structures Si with i ∈ {5, 6, 7, 8} are not drawn explicitly but are
also represented by their siblings.
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3.1. The definition of the counterexample graph G

aqi

aei

vφ(i)
vφ(i+1)

Q
eφ(i)

Q�

Si

(a)

aqi

aei

vφ(i)
vφ(i+1)

Q
eφ(i)

Ai

(b)

Figure 3.1: (a) A straight-line drawing of an induced subgraph of G, showing the two
quadrangles Q and Q′ and one of the structures Si. The two quadrangles Q and Q′ are
black, and the edges of the structure Si is presented in colors. The edges EQ,aq

i
and

EQ′,aq
i

between the quadrangle-apex aq
i and the vertices of both quadrangles are magenta,

and the edges incident to ae
i are blue (those are the edges Eeφ(i),ae

i
, Ee′

φ(i),ae
i
, and ai).

(b) An apex-triangle Ai consists of the apex vertices aq
i and ae

i , one quadrangle Q, and all
their induced edges. The defining factor of the apex-triangle is that both apex vertices
must lie in the outer face of this drawing.

For the representation via an adjacency table, we will define some additional vertex sets:
Qa is the set of all quadrangle-apex vertices, and Qv is the set of all quadrangle vertices.
Based on its definition, G has 24 vertices, 152 edges, a minimum degree of five, and a
maximum degree of fourteen.
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3. Subset relation of the Planar Geometric StoryPlan problem

ae1

ae2

aq4

aq3

aq2

ae4

ae3

aq1

Figure 3.2: Graph G, the two quadrangles Q and Q′ are black, and every structure Si

for i ∈ [4] has its unique color. The sibling structures are omitted in the drawing, as
the coordinates of the embedding of their vertices and edges can be identical to the
coordinates of the embeddings of the vertices and edges of the four structures shown in
this figure.
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3.1. The definition of the counterexample graph G

Vertex Adjacent vertices
v1 v2 v4 Qa ae

1 ae
4 ae

5 ae
8

v2 v1 v3 Qa ae
1 ae

2 ae
5 ae

6
v3 v2 v4 Qa ae

2 ae
3 ae

6 ae
7

v4 v1 v3 Qa ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 Qa ae
1 ae

4 ae
5 ae

8
v′

2 v′
1 v′

3 Qa ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 Qa ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 Qa ae
3 ae

4 ae
7 ae

8
aq

1 Qv ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 Qv ae
2

ae
2 v2 v3 v′

2 v′
3 aq

2
aq

3 Qv ae
3

ae
3 v3 v4 v′

3 v′
4 aq

3
aq

4 Qv ae
4

ae
4 v1 v4 v′

1 v′
4 aq

4
aq

5 Qv ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 Qv ae
6

ae
6 v2 v3 v′

2 v′
3 aq

6
aq

7 Qv ae
7

ae
7 v3 v4 v′

3 v′
4 aq

7
aq

8 Qv ae
8

ae
8 v1 v4 v′

1 v′
4 aq

8

Table 3.1: Table representation of G. In the leftmost column, all vertices of G are listed.
To the right, all vertices adjacent to that respective vertex are listed. (Qa is the set of all
quadrangle-apex vertices, and Qv is the set of all quadrangle vertices.)

15



3. Subset relation of the Planar Geometric StoryPlan problem

3.2 Yes-instance of PTOP-SP
We can easily find a valid planar topological storyplan of the graph G by splitting G
into eight frames. Every frame contains the quadrangles Q and Q′ and exactly one of
the structures Si. this can be seen in the Figures 3.3, 3.4, 3.5, and 3.6, as well as in
the respective Tables in Appendix A. Every figure shows two frames at once, as each
structure and its sibling have the same neighborhood relations with the vertices of the
quadrangles and, therefore, can be drawn in the same manner.

With these figures and the ordering of the frames, we have shown an example of a planar
topological storyplan of G. The existence of such a storyplan proves that G is indeed a
yes-instance of PTOP-SP.

aq1

ae1

vφ(1)
vφ(2)

Q

eφ(1)

Q�

S1

Figure 3.3: The first two frames of graph G. In the second frame, the structure S5 can be
placed in the same position as S1. Resulting in an equivalent frame, the only difference
being that the apex vertices aq

5 and ae
5 are used instead of aq

1 and ae
1.
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3.2. Yes-instance of PTOP-SP

aq2 ae2vφ(3)

vφ(2)
Q

eφ(2)

Q�

S2

Figure 3.4: The graph’s G third and fourth frame. The structure S6 replaces S2 in the
fourth frame.

aq3

ae3

vφ(3)vφ(4)
Q

eφ(3)

Q�

S3

Figure 3.5: The fifth and sixth frames of the graph G. The structure S7 replaces S3 in
the sixth frame.
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3. Subset relation of the Planar Geometric StoryPlan problem

aq4

ae4

vφ(1)

vφ(4)

Qeφ(4)

Q�

S4

Figure 3.6: The seventh and eighth frames of the graph G. The structure S8 replaces S4
in the eighth frame.
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3.3. No-instance of PGEO-SP

3.3 No-instance of PGEO-SP
After establishing that a planar topological storyplan exists for G, we now have to show
that no sequence of frames of G can exist that would form a valid planar geometric story-
plan to prove that G is a no-instance of PGEO-SP. We start by creating a contradiction
using a straight-line non-crossing drawing of both quadrangles Q and Q′ as well as one
of the apex-structures Si in one frame, and then we argue why this construction must
appear in at least one frame of every possible planar geometric storyplan of G. Finally,
we will deal with assumptions and special cases that we omitted in the first part of the
proof.

3.3.1 Towards a contradiction
As mentioned, our first step towards a contradiction is to show that a planar straight-line
drawing of one apex-structure Si and the quadrangles Q and Q′ can create an impossible
solution. Therefore, all lemmas in this subsection, from Lemma 3.1 to Lemma 3.7, only
concern planar straight-line drawings.

To start arguing, we will begin with the assumptions that one of the quadrangles lies
inside the other and that the inner quadrangle forms a convex polygon without any
parallel edges. Later, we will show why these restrictions are unnecessary, but in the
beginning, they help us make the main points of our counterexample understandable
without losing ourselves in edge cases. Note that an assumption is only applied to a
Lemma if explicitly mentioned. This will allow us to reuse some of the Lemmas later in
this proof.

We start our construction by starting from the outside of the graph, moving inwards,
going through all possible placements of the vertices, and fixing outer vertices first before
moving towards inner vertices. Firstly, we will show that starting from two quadrangles
placed inside each other, we will end at the apex-triangle Ai for our structure Si and its
connection to the inner quadrangle. Then, we will show that from the apex-triangle Ai,
we will always have two structures Si, for which no planar geometric embedding exists.

Due to the symmetric structure of G, we can assume w.l.o.g. that for the remainder
of this proof the inner quadrangle is Q = ({v1, v2, v3, v4}, {e1, e2, e3, e4}) and the outer
quadrangle is Q′ = ({v′

1, v′
2, v′

3, v′
4}, {e′

1, e′
2, e′

3, e′
4}).

Lemma 3.1. Given an embedding of two quadrangles Q and Q′ that do not intersect
and a structure Si as defined above, then all vertices of Si must be placed in the face
between the two quadrangles.

Proof. With the given embedding of Q and Q′, they define three faces in the plane, as
every quadrangle is a cyclic graph of four vertices that splits the face into which it is
drawn into two new faces. Let us call these faces fQ, fbetween, and fQ′ , where fQ is the
face that is only incident to Q, fbetween is the face between the two quadrangles, and fQ′

is the face only incident to Q′.
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3. Subset relation of the Planar Geometric StoryPlan problem

Every structure Si contains two vertices aq
i and ae

i with a common edge ai. Therefore,
both of these vertices must be placed in the same face. Otherwise, the edge ai would cross
one of the edges of one of the quadrangles, making the drawing non-planar. Furthermore,
both vertices of Si have connections to both quadrangles.

We will use the vertex sets of the faces defined by the two quadrangles Q and Q′ to show
in which face aq

i and ae
i must be placed.

V (fQ) = {v1, v2, v3, v4}
V (fbetween) = {v1, v2, v3, v4, v′

1, v′
2, v′

3, v′
4}

V (fQ′) = {v′
1, v′

2, v′
3, v′

4}

All of the vertices in the neighborhood of the quadrangle-apex aq
i must be reachable from

within the face where aq
i is placed. Placing aq

i in a face where one of its neighboring
vertices cannot be reached must again introduce an intersection with one of the edges
of one of the quadrangles, destroying the planarity property of the resulting drawing.
As V (fbetween) ∪ {aq

i , ae
i } = N [aq

i ], whereas V (fQ) ∪ {aq
i , ae

i } ⊂ N [aq
i ] and also V (fQ′) ∪

{aq
i , ae

i } ⊂ N [aq
i ], it becomes apparent that fbetween is the only face from where all the

neighboring vertices of aq
i can be reached without introducing line-crossings. Therefore,

the structure Si must be placed in the face fbetween between the two quadrangles Q and
Q′.

An adaption of Lemma 3.1 to our situation, where one quadrangle lies inside of the
other quadrangle, is visualized in Figure 3.7. The figure shows an example of one of the
structures Si placed in the faces inside, between, and outside two quadrangles. However,
the lemma already told us that the apex-structures Si must be placed in the face inside
the outer quadrangle Q′ and outside the inner quadrangle Q.

aqi

aei

aqj

aej

aqk

aek

Figure 3.7: The left shows two quadrangles with one Si inside the inner one. The middle
shows the structure Si placed between the two quadrangles, and the right has a structure
Si outside of both quadrangles. Of those three, only the graph in the middle is planar.

The core idea behind our counterexample revolves around the inner quadrangle and the
structures Si for i ∈ [4] that we have defined previously. Neither of the quadrangles
itself could create any contradiction. The outer quadrangle acts as a support structure
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3.3. No-instance of PGEO-SP

that imposes certain restrictions, which we will use to create the contradiction with the
inner quadrangle. By itself, the outer quadrangle is relatively harmless, as each of the
structures Si can be drawn inside a quadrangle without creating any line crossings, as
seen in Figure 3.8.

aq1

ae1
aq2

ae2

aq3

ae3
aq4ae4

Figure 3.8: This Figure shows that each structure Si separately can be placed inside of a
quadrangle without any problems.

The construction of our graph can be done step by step. The positions of the outer
quadrangle are already fixed, as those have to stay the same over all frames, and we will
now discuss how we have to place the apex vertices aq

i and ae
i , for i ∈ [4]. The positions

of the inner quadrangle must stay the same over multiple frames, but when constructing
the first Si, we can still move them around. However, they must also stay in that place
for the other structures. We will show that no matter how we place the apex vertices and
the inner quadrangle Q, we will always end up with structures Si for which we cannot
find a planar geometric embedding.

In this step, we take a look at the existing faces and then decide into which face an
apex vertex needs to be placed, and based on the edges that apex vertex shares with
the outer quadrangle, how this apex vertex must be placed in that face. New faces are
created by placing an apex vertex in a face and drawing all the edges it shares with the
outer quadrangle. The interesting question is, in which of these faces must the inner
quadrangle lie? The next lemma will deal with those faces.

Lemma 3.2. Given two quadrangles Q and Q′ that lie inside of each other, a vertex aq
i

that is connected to all vertices of both Q and Q′, as well as another vertex ae
i that is

connected to two adjacent vertices vφ(i) (v′
φ(i)) and (vφ(i+1)) v′

φ(i+1) of each quadrangle
respectively and to the vertex aq

i ,
1) aq

i must be placed in the face between Q and Q′ in such a way that Q lies in the same
newly created face fφ(i) as the vertices v′

φ(i) and v′
φ(i+1),

2) and ae
i must be placed in the face fφ(i) in such a way that Q lies in the same newly

created face as both apex vertices aq
i and ae

i .
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3. Subset relation of the Planar Geometric StoryPlan problem

Proof. 1) Placing aq
i in the inner face of Q′ and only drawing the edges it shares with the

outer quadrangle creates four new faces f1, f2, f3, and f4, with the following vertex sets:

V (f1) = {aq
i , v′

1, v′
2}

V (f2) = {aq
i , v′

2, v′
3}

V (f3) = {aq
i , v′

3, v′
4}

V (f4) = {aq
i , v′

1, v′
4}

The quadrangle-apex aq
i can be placed so that the inner quadrangle Q could be in any of

these faces. Depending on the index i of aq
i and ae

i , there is exactly one face, namely fφ(i)
that contains the vertices (v′

φ(i)) and v′
φ(i+1). The edge-apex ae

i needs to connect to these
two vertices and two vertices of the inner quadrangle Q. So, let us assume that Q is in
one of the other faces. Then, no face contains all adjacent vertices of ae

i , and therefore,
no matter where we place ae

i , we would always introduce line crossings. Therefore, Q
must lie in the same face as the vertices v′

φ(i) and v′
φ(i+1), which is the face fφ(i). This is

possible, as there is one face that contains both v′
φ(i) and v′

φ(i+1) and we stated before
that Q can lie in any of these newly created faces.

2) As just established, fφ(i) is the only face that contains all adjacent vertices of ae
i ,

therefore, ae
i must be placed in the face fφ(i). So, again placing ae

i in the face fφ(i) and
only drawing the edges it shares with the outer quadrangle creates three new faces fφ(i),1,
fφ(i),2, and fφ(i),3 with the following vertex sets:

V (fφ(i),1) = {ae
i , v′

φ(i), v′
φ(i+1)}

V (fφ(i),2) = {ae
i , aq

i , v′
φ(i)}

V (fφ(i),3) = {ae
i , aq

i , v′
φ(i+1)}

The edge-apex ae
i can again be placed so that the inner quadrangle Q could be in any

of these faces. Both apex vertices aq
i and ae

i share edges with the inner quadrangle Q,
therefore ae

i must be placed in such a way that Q lies either in the face fφ(i),2 or fφ(i),3.
Would Q lie in the other face fφ(i),1, then the quadrangle-apex aq

i could not directly
connect to Q and multiple edge crossings would be introduced into the drawing when
drawing the edges between Q and aq

i . Therefore, this cannot happen as we require our
drawings to be planar.

The just discussed Lemma 3.2, with all the newly created faces and possible placements
for one specific apex vertex pair aq

i and ae
i , is also visualized in Figure 3.9

Based on two quadrangles that lie inside of each other and one structure Si, we know
from the Lemmas 3.1 and 3.2 that in order to be able to find a planar drawing of Si, Q′,
and the edges between those two sets EQ′,Si

, while still being able to draw the edges
between Si and Q, we get the following intermediate result:
Q lies inside a triangular face consisting of the two apex vertices aq

i , ae
i , and one of the

vertices of the outer quadrangle. It is still open, how the two apex vertices need to be
placed in relation to Q?
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3.3. No-instance of PGEO-SP

aqi aqi

aqi

aqi

aqi

aqi

aqi

aei

aei

aei

Figure 3.9: On the left, we see one fixed placement for the outer and the inner quadrangle
and the edges that connect to ae

i marked in violet. In the middle, we see the possible
placements for aq

i , where only the upper one is legitimate as all others split both violet
edges so that there is no possible placement for ae

i that could lead to a planar drawing.
On the right, we see the possible placements for ae

i . Here, the upper right drawing is
invalid, as there is no way to draw edges between aq

i and the inner quadrangle that would
lead to a planar drawing. So, the two drawings in the second and third row of the right
column represent the only feasible placements for aq

i and ae
i .

Lemma 3.3. Given two edges ea,b = {a, b}, and ex,y = {x, y}, where the vertices a, b, x,
and y form a clique. We are looking for a planar straight-line drawing of those edges
and their connecting edges. Extending any edge e to infinity defines two half-spaces h+

e

and h−
e . If the vertices x and y lie in the same half-space h+

ea,b
or h−

ea,b
(w.l.o.g. let us

assume these vertices lie in half-space h+
ea,b

), then the vertices a and b must lie in different
half-spaces h+

ex,y
and h−

ex,y
.
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3. Subset relation of the Planar Geometric StoryPlan problem

Proof. Let us assume both vertices a and b lie in the same half-space defined by ex,y,
w.l.o.g. let us assume this is the half-space h+

ex,y
. Now we have to draw the edges ea,x,

ea,y, eb,x, and eb,y. When drawing the edges ea,x and eb,y, we create a closed face in the
form of a convex quadrangle. The quadrangle must be convex as the vertices x and y
lie in the same half-space h+

ea,b
. Drawing one of the other two edges ea,y, eb,x splits this

quadrangle into two triangular faces, let us say w.l.o.g. that the edge ea,y was drawn, so
now we have two faces fa,x,y and fa,b,y. The remaining edge eb,x cannot be drawn in any
of these faces but must cross the edge ea,y and thereby create an intersection. Therefore,
this assumption must be wrong, and a and b must lie in different half-spaces defined by
ex,y. Then it is possible to draw the edges ea,x and ea,y in one half-space and the edges
eb,x, and eb,y in the other half-space. This results in a planar drawing of all our vertices
and concludes this proof.

To repeat, the quadrangle vertex aq
i is connected to all vertices of Q, while ae

i is only
connected to the vertices vφ(i) and vφ(i+1) of Q. These vertices are incident to the edge
eφ(i). Now taking Lemma 3.3 and applying it to our situation, with aq

i and ae
i being the

vertices a and b in the lemma, as well as setting the vertices vφ(i) and vφ(i+1) to x and y.
The vertices vφ(i) and vφ(i+1) must lie in the same half-space defined by the edge eaq

i ,ae
i

as Q needs to completely lie in one face, and eaq
i ,ae

i
is one of the border edges of the face

which contains Q. We now get that the apex vertices aq
i and ae

i must be placed in such a
way that both of them lie in different half-spaces defined by the edge evφ(i),vφ(i+1) . More
informally, the apex vertices must lie on different sides of the inner quadrangle Q.

Lemma 3.4. Given a convex quadrangle Q, a vertex aq
i that is connected to all vertices

of Q, as well as another vertex ae
i that is connected to two adjacent vertices vφ(i) and

(vφ(i+1)) of Q and to the vertex aq
i . The vertices vφ(i) and (vφ(i+1)) are incident to the

edge eφ(i). It is already established that both aq
i and ae

i must lie outside of Q and in
different half-spaces h+

eφ(i)
or h−

eφ(i)
defined by the edge eφ(i).

We are looking for a planar straight-line drawing. Then ae
i must lie in the half-space

h+
eφ(i)

, the half-space that lies completely outside of Q, and aq
i must lie in the half-space

h−
eφ(i)

, the half-space that contains all vertices of Q.

Proof. Let us assume that ae
i lies in the half-space h−

eφ(i)
, then from Lemma 3.3 we know

that aq
i must lie in half-space h+

eφ(i)
. As Q is convex and by the definition of the half-spaces

defined by the edge eφ(i), all vertices of Q must lie inside half-space h−
eφ(i)

. The edge-apex
vertex ae

i is connected to the vertices vφ(i) and (vφ(i+1)), together they form a cycle. As
ae

i lies outside of Q, the remaining vertices of Q would need to be inside this cycle. The
cycle is fully inside the half-space h−

eφ(i)
and per assumption the quadrangle-apex vertex

aq
i must lie in half-space h+

eφ(i)
. However, aq

i has edges to all vertices of Q, so also to
the vertices inside this cycle built by ae

i and the edge eφ(i). This leads to a nonplanar
drawing and, therefore, to an unfeasible solution. So our assumption cannot be true and
per contradiction ae

i must lie in the half-space h+
eφ(i)

and aq
i must lie in the half-space

h−
eφ(i)

.
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3.3. No-instance of PGEO-SP

The application of the Lemmas 3.3 and 3.4 to our situation is also shown in Figure 3.10.

aqi

aqi

aqi aqi

aei

aei aei

aei

Figure 3.10: On the left, we see the face defined by aq
i and one edge of the outer

quadrangle, and ae
i placed inside that face. In the middle graphs, we see the different

possible positions of the edge of the inner quadrangle in contrast with the positions of aq
i

and ae
i . In the lower middle graph, both these vertices lie on the same side of the edge

eφ(i), which leads to line crossings. On the upper middle graph, we see the vertices placed
on different sides of the edge eφ(i), which leads to a valid planar straight-line drawing.
On the right, we see the same graph again, but the two missing vertices of the inner
quadrangle are added, showing that those have to be placed on the same side of eφ(i) as
aq

i .

Corollary 3.1. Given the graph G, where the convex quadrangle Q lies inside of the
quadrangle Q′, and structures Si for i ∈ [4], Q and Si always form the apex-triangle Ai

as defined in Subsection 3.1.1 (The structure).

Proof. Starting from the graph G, where two quadrangles lie inside each other, by
applying Lemma 3.1, we get that the structures Si must be drawn between those two
quadrangles. Lemma 3.2 describes into which newly formed faces the apex vertices must
be placed and in which face the inner quadrangle Q must lie. The Lemmas 3.3 and 3.4
establish, where the apex vertices aq

i and ae
i must lie in relation to a convex quadrangle Q.

This brings us to a position where Q lies in a face that is incident to both apex vertices,
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3. Subset relation of the Planar Geometric StoryPlan problem

and these apex vertices lie in different half-spaces defined by the edge eφ(i) of Q. So Q
and the structure Si are building precisely the apex-triangle Ai for each i ∈ [4].

Remark 3.1. Corollary 3.1 describes exactly the steps of the proof that we have taken
so far. These steps are also illustrated in Figure 3.11. With that, we get from two
quadrangles that lie inside of each other to the point that the four structures Si and the
inner quadrangle Q must form four the apex-triangles Ai, one for each i ∈ [4].

Q�

aqi

aei AiQ

Figure 3.11: This Figure shows how we went from the outer quadrangle Q′ to the
apex-triangle Ai. The new edges in every step are represented in blue, and Ai is drawn
in orange.

So far, we have established that when using straight-line edges, aq
i and ae

i must lie
on different sides of the inner quadrangle. Then, there are two possible scenarios, as
shown in Figure 3.12, one without any line crossings and one with line crossings. The
existence of line crossings between one of the corners of the inner quadrangle and one
of the quadrangle-apexes aq

i depends solely on the position of the four vertices of the
inner quadrangle in relation to the position of aq

i . So far, we have only fixed the faces
in which our vertices must lie and did not need to find fixed positions for them. Due
to the existence of our four structures Si, where their respective edge-apexes ae

i are all
connected to different sides eφ(i) of the inner quadrangle Q, we would have to find a
position for the four vertices of the inner quadrangle Q such that all four structures Si

can be drawn planarly using straight-line edges.

We will now look at the defining property that decides whether line crossings between
the inner quadrangle Q and one aq

i exist. To draw straight-line edges between aq
i and the

vertices of Q, aq
i must be able to see all of the vertices of Q. This fact is formalized in

the following Lemma 3.5, and this Lemma is also visualized in Figure 3.13.

Lemma 3.5. Given a convex quadrangle Q, a vertex aq
i that is connected to all vertices

of Q, as well as another vertex ae
i that is connected to the edge eφ(i) of Q and to the

vertex aq
i . Each edge ei of Q defines two half-spaces, where the positive half-space h+

ei

looks away from Q and the negative half-space h−
ei

contains Q. It is already established
that both aq

i and ae
i must lie outside of Q, and that ae

i must lie in the half-space h+
eφ(i)

and aq
i must lie in the half-space h−

eφ(i)
. (So Q and Si build an apex-triangle Ai.) We

are looking for a planar straight-line drawing. Then, in order for a planar straight-line
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aqi

aei

aqj

aej

Figure 3.12: To the left in green, we see a structure where aq
i can connect to all corners

of the quadrangle, with straight-line edges. To the right in blue, we see a structure where
this is impossible.

drawing to exist, aq
i must lie in the intersection of the half-spaces h+

eφ(i−1)
, h+

eφ(i+1)
, and

h−
eφ(i)

.

Proof. Each vertex vφ(i), i ∈ [4] of Q can only be seen from a vertex that lies in one of
the positive half-spaces that are defined by one of the edges of Q that contain that vertex
vφ(i). These are the half-spaces h+

eφ(i−1)
and h+

eφ(i)
. Now as aq

i must be able to see all of
the vertices of Q for each vertex vφ(i), aq

i must either lie in h+
eφ(i−1)

and h+
eφ(i)

. As we
already know aq

i lies in the half-space h−
eφ(i)

, this means that in order for aq
i to be able

to see the vertex vφ(i), aq
i must lie in the half-space h+

eφ(i−1)
, and in order to be able to

see vφ(i+1), aq
i must lie in the half-space h+

eφ(i+1)
. If aq

i lies inside the half-spaces h+
eφ(i−1)

and h+
eφ(i+1)

the remaining two vertices of Q, vφ(i−2) and vφ(i+2) are also covered by those
half-spaces. This concludes the proof.

In Lemma 3.5 we established that aq
i must lie in the intersection of the half-spaces h+

eφ(i−1)
,

h+
eφ(i+1)

, and h−
eφ(i)

to be able to draw straight-line edges between aq
i and all vertices of

the inner quadrangle. Every vertex placed in the intersection of the half-spaces h+
eφ(i−1)

and h+
eφ(i+1)

can see all vertices of the quadrangle Q. As we assumed that Q is a convex
quadrangle with no parallel edges, such an intersection must always exist. The question
then remains whether the intersection of these two half-spaces lies inside of the half-space
h−

eφ(i)
or not. This is the deciding property, whether a planar drawing of the structure Si

and the inner quadrangle Q can exist. Figure 3.14 shows different possibilities for the
positions of these half-spaces.
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aqi

aeih+
eφ(i)

h−
eφ(i)

∩ h+
eφ(i+1)

h+
eφ(i−1)

∩ h−
eφ(i)

h+
eφ(i−1)

∩ h−
eφ(i)

∩ h+
eφ(i+1)

h−
eφ(i)

eφ(i)

eφ(i+1)eφ(i−1)

h+
eφ(i−1)

h+
eφ(i+1)

Figure 3.13: This graph shows the three defining half-planes. First, a horizontal line that
splits the half-planes h+

eφ(i)
and h−

eφ(i)
and also separates aq

i and ae
i . Second and third,

the half-planes h+
eφ(i−1)

and h+
eφ(i+1)

defined by the side edges of the inner quadrangle. aq
i

is placed inside the intersection of the latter two half-planes and, therefore, can see all
vertices of the inner quadrangle.

So, we defined the defining property for one aq
i . For the other quadrangle-apexes aq

i this
property stays the same with the caveat that the half-space h−

eφ(i)
, where the intersection

of the other two half-spaces h+
eφ(i−1)

and h+
eφ(i+1)

must happen, is defined by another edge
of the quadrangle. As a quadrangle has four sides, there are two pairs of opposed sides,
and every pair has the same two neighboring edges. The first pair consists of the edges
e1 and e3, and the second pair of the edges e2 and e4, where each pair has the other pair
as neighboring edges.
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aqi
aqj

aqk aql

h+
eφ(l−1)

∩ h+
eφ(l)

∩ h+
eφ(l+1)

h+
eφ(i−1)

∩ h−
eφ(i)

∩ h+
eφ(i+1)

h+
eφ(j−1)

∩ h−
eφ(j)

∩ h+
eφ(j+1)

Figure 3.14: To the left, we see two quadrangles, where the half-planes defined by the side
edges intersect above the grey horizontal half-plane, which allows a planar drawing of aq

i

and its edges with the inner quadrangle. To the right, we see two quadrangles, where
the half-planes defined by the side edges intersect below the horizontal half-plane. As aq

i

must be placed above that horizontal half-plane, there does not exist a valid position for
aq

i that does not create line crossings. These line crossings are represented in red.

This means that for structures Si, where i = 1 or i = 3, the half-spaces h+
e2 and h+

e4
must intersect. For i = 1 in the half-space h−

e1 and for i = 3 in the half-space h−
e3 . The

problem now arises as it is not possible for the half-spaces h+
e2 and h+

e4 to intersect both
in half-space h−

e1 and in half-space h−
e3 , but only in one of those two, as Lemma 3.6 will

show.

Lemma 3.6. Given a convex quadrangle Q with no parallel edges, the outer half-spaces
defined by the edges of two opposing sides always intersect. However, this intersection of
the two outer half-spaces of opposing sides of Q cannot lie in both inner half-spaces of its
neighboring sides. Or formally:

(h−
eφ(i)

∩ h+
eφ(i+1)

∩ h+
eφ(i+3)

= ∅) ∨ (h−
eφ(i+2)

∩ h+
eφ(i+1)

∩ h+
eφ(i+3)

= ∅).

(h−
eφ(i+1)

∩ h+
eφ(i)

∩ h+
eφ(i+2)

= ∅) ∨ (h−
eφ(i+3)

∩ h+
eφ(i)

∩ h+
eφ(i+2)

= ∅).

Proof. We know that in Euclidean Geometry, every pair of two non-parallel lines must
have an intersection point. Therefore, it also holds that the half-spaces defined by two
edges must have an intersection, no matter which of the two half-spaces defined by an
edge one regards. This then obviously also holds for the opposing sides of any convex
quadrangle.
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3. Subset relation of the Planar Geometric StoryPlan problem

Let us say w.l.o.g. that we are looking for the intersection of the outer half-spaces
of the edges eφ(i+1) and eφ(i+3). By definition, we know that the intersection of the
outer half-spaces must lie outside of the quadrangle Q. Further, both edges eφ(i) and
eφ(i+2) have one of their incident vertices on the edge eφ(i+1) and the other one on the
edge eφ(i+3). Now w.l.o.g. let us say that the edge eφ(i+2) is the edge closer to the
intersection point of the half-spaces h+

eφ(i+1)
and h+

eφ(i+3)
than the edge eφ(i). As the edge

eφ(i+2) spans from one half-space h+
eφ(i+1)

to the other h+
eφ(i+3)

it must always have the
same orientation in relation to the intersection point of the two half-spaces. In formal
terms, the intersection of h+

eφ(i+1)
and h+

eφ(i+3)
will always lie in the half-space h+

eφ(i+2)
and

therefore the cut of the half-spaces h−
eφ(i+2)

, h+
eφ(i+1)

, and h+
eφ(i+3)

will always be empty so
we get: h−

eφ(i+2)
∩ h+

eφ(i+1)
∩ h+

eφ(i+3)
= ∅.

If, on the other hand, the edge eφ(i) is closer to the intersection of the two outer half-
spaces, we get by the same argumentation steps that h−

eφ(i)
∩ h+

eφ(i+1)
∩ h+

eφ(i+3)
= ∅. So it

must always hold that:
(h−

eφ(i)
∩ h+

eφ(i+1)
∩ h+

eφ(i+3)
= ∅) ∨ (h−

eφ(i+2)
∩ h+

eφ(i+1)
∩ h+

eφ(i+3)
= ∅). (3.1)

Trivially, the same steps apply if the outer half-spaces are defined by the edges eφ(i) and
eφ(i+2). Therefore, the following must also always hold:

(h−
eφ(i+1)

∩ h+
eφ(i)

∩ h+
eφ(i+2)

= ∅) ∨ (h−
eφ(i+3)

∩ h+
eφ(i)

∩ h+
eφ(i+2)

= ∅).

Applying the above lemmas leads us to a final Lemma 3.7 and the conclusion of our
proof.

Lemma 3.7. Given a convex quadrangle Q with no parallel edges, apex-structures Si for
i ∈ [4], containing a vertex aq

i that is connected to all vertices of Q, as well as another
vertex ae

i that is connected to the edge eφ(i) of Q and to the vertex aq
i . The apex vertices lie

outside of Q in different half-spaces of the edge eφ(i). (So Q and all of the apex-structures
Si build apex-triangles Ai for i ∈ [4].) Then for four structures Si that are connected to
all edges ei of the quadrangle Q respectively, there are two of those structures for which
no planar geometric embedding can be found.

Proof. Let us assume a planar geometric embedding can be found for all the apex-
structures Si. Applying the Lemmas 3.4 and 3.5 gives that under the given assumptions,
a planar straight-line drawing of a structure Si can only exist when the half-spaces h+

eφ(i−1)
,

h+
eφ(i+1)

, and h−
eφ(i)

intersect. We want this to happen for all four of our apex-structures
Si. So we get that we need the following inequalities to hold:

I1 : h−
eφ(1)

∩ h+
eφ(2)

∩ h+
eφ(0)

̸= ∅.

I2 : h−
eφ(2)

∩ h+
eφ(3)

∩ h+
eφ(1)

̸= ∅.

I3 : h−
eφ(3)

∩ h+
eφ(4)

∩ h+
eφ(2)

̸= ∅.

I4 : h−
eφ(4)

∩ h+
eφ(5)

∩ h+
eφ(3)

̸= ∅.
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3.3. No-instance of PGEO-SP

Now, applying the φ function, we get the following inequalities:
I1 : h−

e1 ∩ h+
e2 ∩ h+

e4 ̸= ∅.

I2 : h−
e2 ∩ h+

e3 ∩ h+
e1 ̸= ∅.

I3 : h−
e3 ∩ h+

e4 ∩ h+
e2 ̸= ∅.

I4 : h−
e4 ∩ h+

e1 ∩ h+
e3 ̸= ∅.

As we want to find a valid drawing for all four structures, all of the above formulas need
to hold. Similarly, when we want to find valid drawings for multiple structures Si, their
respective formulas must hold simultaneously.
However, from Lemma 3.6, we know that for every convex quadrangle Q the following
holds:

(h−
eφ(i)

∩ h+
eφ(i+1)

∩ h+
eφ(i+3)

= ∅) ∨ (h−
eφ(i+2)

∩ h+
eφ(i+1)

∩ h+
eφ(i+3)

= ∅).

(h−
eφ(i+1)

∩ h+
eφ(i)

∩ h+
eφ(i+2)

= ∅) ∨ (h−
eφ(i+3)

∩ h+
eφ(i)

∩ h+
eφ(i+2)

= ∅).

Applying the φ function to these formulas for any i ∈ N leads to the following formulas:
(h−

e1 ∩ h+
e2 ∩ h+

e4 = ∅) ∨ (h−
e3 ∩ h+

e2 ∩ h+
e4 = ∅).

(h−
e2 ∩ h+

e1 ∩ h+
e3 = ∅) ∨ (h−

e4 ∩ h+
e1 ∩ h+

e3 = ∅).
Now inserting the formulas I1, I2, I3 and I4 into these formulas gives us the following:

¬I1 ∨ ¬I3.

¬I2 ∨ ¬I4.

Therefore, from the formulas I1 and I3, one cannot hold, and the same applies to the
formulas I2 and I4. So we get a contradiction to our assumption that we can find a
planar geometric drawing for all structures Si.
From these equations, we get that for a convex quadrangle Q, we can find valid drawings
for the structures Si that connect to the edge e1 or the edge e3, but not for both. The
same holds for structures Si that connect to the edges e2 and e4; only one can be satisfied.
So, for a convex quadrangle with no parallel edges, a planar geometric drawing can
be found for exactly two structures, and two structures will always lead to non-planar
drawings.

We mentioned above that starting from two quadrangles inside each other, we get to
the apex-triangle Ai. This apex-triangle Ai is the starting point of Lemma 3.7. So, in
total, we get that under our assumptions that both quadrangles Q and Q′ lie inside of
each other, where Q is the inner quadrangle, and that Q is convex and has no parallel
edges, that of the four apex-structures Si, two do not have a planar geometric embedding.
Thereby, we have shown that our construction creates two situations for which no planar
straight-line drawing exists. In a PGEO-SP, every frame must be a planar straight-line
drawing, so we get that, as long as there is a frame for every apex-structure Si with
i ∈ [4] containing that Si as well as the inner quadrangle Q and the outer quadrangle Q′,
then our contradicting construction must appear in two of those frames.
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3. Subset relation of the Planar Geometric StoryPlan problem

3.3.2 Applying the line crossings to a frame

We have shown that two structures Si create a line crossing with the inner quadrangle Q
if the structures lie outside Q. Now, we still have to show that the inner quadrangle and
each respective structure must also be visible simultaneously in one of the frames of a
drawing of a storyplan, such that one frame that contains a line crossing must exist.

From the definition of the storyplan problem, we know that one vertex – after it is drawn
– can only disappear in one frame fk if all its incident edges were also drawn in one of the
frames fj with j ≤ k. For ease of understanding, we assume that the structures Si with
i ∈ [8] will appear in their ordering in the storyplan. So for all m ∈ [8], holds that if Sm

appears in frame fj and disappears in frame fj+1, every structure So with m < o, can
only appear in frames fk with j ≤ k.

We know that every aq
i is connected to the corners of both quadrangles. If two of those

quadrangle-apexes aq
i were active in the same frame, we would get multiple line crossings.

This situation can be seen in Figure 3.15. This must happen as one aq
i , let us call it aq

j ,
and the inner quadrangle split the plane into five faces. Now, to place another aq

i , let us
call it aq

k, in the same frame, it must lie inside one of those faces. aq
k cannot lie inside

the inner quadrangle, as it could not have crossing free edges with the outer quadrangle
if it lies inside the inner quadrangle. So four faces remain, each defined by aq

j and two
of the corners of the quadrangle. So, no matter in which of those four faces we place
aq

k, it can only connect to the two corners of the quadrangle that define that particular
face without creating line crossings. However, as each frame must contain all the edges
existing between its active vertices, we must also connect aq

k with the two corners of the
quadrangle that define other faces. In order to reach these corners, those connecting edges
must intersect with some of the edges between aq

j and the quadrangle. This situation can
be seen in Figure 3.16. Therefore, when two vertices aq

j and aq
k are active in the same

frame, we always get a non-planar graph and, thereby, an illegal frame. Based on this,
we know that our assumption must be wrong, and therefore, every aq

i must be active in a
different frame.

Do both quadrangles have to be active simultaneously as each aq
i ? For aq

i to disappear
again, it must first see every corner of both quadrangles at least once. Now, let us
assume that the two quadrangles are not active simultaneously. This would mean that
w.l.o.g. the inner quadrangle is active first, all connections to aq

i are drawn, then the
inner quadrangle disappears, and the outer quadrangle is active afterward. However,
as we established, different quadrangle-apexes aq

i must be active in different frames, all
with edges to all corners of both quadrangles. So, the inner quadrangle cannot disappear
before the outer quadrangle is drawn as it must be active in at least one frame with each
aq

i . It could only disappear after being in a frame with the last quadrangle-apex aq
8. The

outer quadrangle must also share one frame with each quadrangle-apex aq
i . So, both

quadrangles must be active in the same frame with aq
1; otherwise, aq

1 could not disappear.
Both quadrangles Q and Q′ also have to share frames with each other and all aq

j with
1 < j < 8, as there is still another aq

i appearing later in the storyplan, so they cannot
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aqi

aqj

Figure 3.15: Two quadrangle-apexes aq
i are active in the same frame. Drawn with all

their connections to both quadrangles.

aqi

aqj

Figure 3.16: If two quadrangle-apexes aq
i are active in the same frame, there must always

be line crossings between their edges with the inner quadrangle.

yet disappear. For the last of the quadrangle-apexes aq
i , aq

8 we have that both the outer
and the inner quadrangle are active before aq

8 is drawn, and they both still need the
connections to aq

8 before they can disappear. This means that both quadrangles must
still be active in the frame where aq

8 appears. Therefore, every aq
i has at least one frame

that it shares with all vertices of both quadrangles.

As there is an edge between each aq
i and its respective ae

i , both of them must be active
together in at least one frame. However, ae

i must only be active in the same frame as the
two respective vertices of both quadrangles adjacent to it. Therefore, for the first and

33



3. Subset relation of the Planar Geometric StoryPlan problem

the last ae
i , we can draw ae

i before, respectively, after the other non-adjacent vertices of
the quadrangles are drawn. As can be seen in Figure 3.17. Nevertheless, the edge-apexes
ae

i for i ∈ {2, 3, 4, 5, 6, 7} still have to share one frame with all of the vertices of both
quadrangles.

aq1

ae1

aq1
aq3

ae3

aq2

ae2

aq4 aq4

ae4

Figure 3.17: Showing six frames representing the inner quadrangle with the structures Si

for i ∈ [4].

In total, we get that for each of the inner structures Si for i ∈ {2, 3, 4, 5, 6, 7}, there must
exist one frame where aq

i , ae
i , and both quadrangles Q and Q′ are active at the same

time.

Our construction can be avoided twice, once for the first and once for the last structure
built. Now, if we only had four apex-structures Si, then this would be a problem, as
the two problematic structures that introduce the line crossings could be drawn as the
first and the last structure, where these structures do not have to be fully represented,
and the line crossings that they introduce could be avoided. That is precisely the reason
why we needed eight structures. With eight structures, we have four structures that
would introduce line crossings. Two can be avoided by making them the first and the last
structures to be drawn. Nevertheless, the other two problematic structures must appear
in the frames between, where the full apex-structure Si and the quadrangles Q and Q′ are
active simultaneously. This is why, given our assumptions that both quadrangles Q and
Q′ lie inside of each other, where Q is the inner quadrangle, and that Q is convex and has
no parallel edges, a planar geometric storyplan for our graph G cannot exist. With that,
we have shown that indeed, for our assumptions, G is a yes-instance for PTOP-SP, but a
no-instance for PGEO-SP, which in turn proves that under our assumptions PTOP-SP
and PGEO-SP are different problems.

The argumentation of the last paragraph can be generalized into the following remark:

Remark 3.2. Given that two of the structures Si for i ∈ [4] have no valid planar drawing
with Q, using the structure siblings, our graph G cannot have a planar geometric storyplan
and is, therefore, a no-instance of PGEO-SP.
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3.3.3 Dealing with our assumptions
In our proof, we made several assumptions. We will show why our proof works even
when we drop those assumptions. The assumptions were that the inner quadrangle must
be convex, cannot contain parallel edges, and that the two quadrangles are placed inside
of each other.

Concave inner quadrangle

The first assumption we will tackle is that the inner quadrangle must be convex. We will
show that using a concave quadrangle also leads to the necessity of the existence of line
crossings for half of the apex-structures Si and thereby creates the same problems when
used in an attempt to create a valid PGEO-SP drawing of our graph G.

Every concave quadrangle has the same “boomerang”-shape. This “boomerang”-shape
creates a distinction between the “outer” and the “inner” edges of the quadrangle in the
context of the “curvature” of the “boomerang”. The “inner” edges are the ones that are
incident to the one concave vertex in the quadrangle – a quadrangle can, at most, have
one concave vertex in a straight-line Euclidean drawing.

In the situation where ae
i is connected to one of these “inner” edges eφ(i), Si could be

drawn in two ways, as illustrated by Figure 3.18. Either the focus lies on aq
i being able

to see all vertices of the inner quadrangle, but then aq
i and ae

i must lie in the same
half-plane h+

eφ(i)
and line crossings between the edges that connect them to the edge eφ(i)

must exist, as was shown in Lemma 3.3. The other possibility would be to put aq
i and

ae
i in different half-spaces h+

eφ(i)
and h−

eφ(i)
. However, this leads to an intersection of the

edge that connects the concave vertex of the inner quadruple with aq
i with one of the

edges of Q. A concave vertex can only be seen from vertices in the intersection of the
outer half-spaces of its incident edges. As established in Lemma 3.4 aq

i must lie in the
inner half-space of the edge eφ(i), which in our case is one of the incident edges of the
concave vertex. Therefore, no valid placement for aq

i can be found that allows a planar
straight-line drawing of a concave Q and Si.

So again, as this holds for both of the “inner” edges of a concave quadrangle Q, we get
that we have two situations where multiple apex-structures Si cannot be drawn together
with both quadrangles with straight-line edges without introducing line crossings. That
was precisely the property of our construction using a convex quadruple that we used in
our proof to create a contradiction. Therefore, no matter whether we use a concave or a
convex inner quadruple, no PGEO-SP drawing of our graph G can exist.
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aei aej

aqj

aqi

Figure 3.18: Here, we see both possible drawings of a structure Si if the inner quadrangle
is concave. On the left, aq

i can see all vertices of the quadrangle, but a line crossing
with one of the edges of ae

i exists. On the right, the edges of aq
i and ae

i do not intersect,
but the edge between aq

i and the middle vertex of the “boomerang” shaped quadrangle
crosses through the quadrangle. So, in both cases, we have a non-planar drawing.

Parallel inner quadrangle

If the inner quadrangle has parallel edges, it would be a parallelogram, a rectangle, or a
trapezoid, and then the placement of the quadrangle-apexes aq

i would be problematic. We
discussed above in Lemma 3.5 that aq

i must be placed in the intersection of half-planes of
opposing sides of the quadrangle. (This was also visualized in Figures 3.13 and 3.14.) If
two of these opposed sides of the quadrangle are parallel, they only intersect at infinity,
which we cannot draw in our PGEO-SP drawing. Therefore, having an inner quadrangle
with parallel sides leads to either six of the apex-structures Si not being able to be
drawn together with both quadrangles with straight-line edges without introducing line
crossings in the case of a trapezoid or even all eight of the apex-structures Si in the case
of a rectangle or parallelogram.

Other positions for the quadrangles

We assumed that the quadrangles must be placed inside each other, creating an inner
and an outer quadrangle. If the two quadrangles are not placed inside each other, they
must be placed next to each other in the outer face. In Lemma 3.1 we showed that the
apex-structures Si must be placed in the face between the two quadrangles. This means
that each Si must lie outside of both quadrangles in the outer face of our drawing.

In our proof dealing with quadrangles inside of each other, we created the contradicting
construction starting from the apex-triangles Ai. We now have to show that even when
the quadrangles lie next to each other, one of the quadrangles will always form the
apex-triangles Ai for i ∈ [4] when drawn with the apex-structures Si.

Now, when the quadrangles do not lie inside each other but next to each other, two
possible scenarios can occur when drawing a structure Si with one of the quadrangles
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3.3. No-instance of PGEO-SP

(w.l.o.g. with Q). Either both apex vertices are part of the outer face of the newly
drawn structure Si or the edge-apex ae

i lies inside one of the triangular faces that the
quadrangle-apex aq

i defines with the quadrangle Q, as can be seen in Figure 3.19. Now,
in the first case, Si and Q already form an apex-triangle Ai, and the other quadrangle
Q′ must also lie in that outer face, so also Si and Q′ form an apex-triangle A′

i. In the
second case, the other quadrangle Q′ must be placed into one of the triangular inner
faces, with one vertex of Q, aq

i , and ae
i as the vertices that defined that face before Q′

was placed into it. Now we can apply the Lemmas 3.3 and 3.4 in the same manner as
in the inside-outside case of our proof, and we get that now Q′ and Si also build an
apex-triangle.

aei

aqi aqj

aej

Q

Q�

Q

Q�

Figure 3.19: This figure shows the two possible ways to place two quadrangles next to
each other and connect the apex vertices to them.

Lemma 3.7 requires that one quadrangle forms apex-triangles with all structures Si

for i ∈ [4]. So far, we have shown that when we draw two quadrangles next to each
other together with the structure Si, one of the quadrangles and the structure Si will
always form an apex-triangle. What remains to be seen is whether the same quadrangle
always forms an apex-triangle. From the situations we just discussed, only once does
a quadrangle Q and a structure Si not form an apex-triangle Ai. That was where the
edge-apex ae

i lies inside one of the triangular faces that the quadrangle-apex aq
i defines

with the quadrangle Q. Now the question becomes, if for one structure Si the edge-apex
ae

i lies inside one of the triangular faces that the quadrangle-apex aq
i defines with the

quadrangle Q, is it then possible that for another structure Sj , where i ̸= j, the edge-apex
ae

j lies inside one of the triangular faces that the quadrangle-apex aq
j defines with the

quadrangle Q′. Or, in simpler terms, if Si and Q define a face that includes Q′, is it
possible for a different Sj , that Q′ and Sj define a face that includes Q?
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3. Subset relation of the Planar Geometric StoryPlan problem

First, we define a “smaller” relation (≺) between two polygons. Imagine a convex hull
over two polygons that do not intersect each other. For the ≺-relation, we examine the
edges of the convex hull that connect the two polygons. Now, there are two possible
cases: either there are two such lines, then we can use the distance of the polygons to
the intersection point of these two lines to determine which polygon is bigger, or there is
no such line. The last case can only happen when one polygon is concave, and the other
polygon lies wholly “within” the concave part of the first polygon. Both cases of this ≺
relation are also represented in Figure 3.20.

A ≺ BA B
A ≺ B

A
B

A

B

BA
A ≺ B A � B

Figure 3.20: This figure shows the four possible cases of the ≺-relation, defined through
the convex hull over two non-intersecting polygons A and B. In green are the non-input-
polygon edges of the convex hull.

Formal definition of the ≺-relation between two polygons
In a convex hull CA,B over two non-intersecting polygons A and B, each of the vertices
of CA,B belongs to either polygon A or polygon B. As we know, a convex hull always
returns a clockwise order of its vertices, so we can give the vertices of the convex hull
a numbering based on their order and the polygon they originate from. The vertices
are called vP

i , where P is the polygon they belong to and i is their respective index
individually counted for each polygon. VP is the set of vertices of polygon P .

We can distinguish two cases, one where all vertices of the convex hull only belong to one
of the polygons, so VA ∩ VCA,B

= ∅ ∨ VB ∩ VCA,B
= ∅, or the case where both polygons

contribute to the vertices of the convex hull, so VA ∩ VCA,B
≠ ∅ ∧ VB ∩ VCA,B

≠ ∅. (If it
is clear from context which convex hull is meant, we will omit its indices.)

In the first case, where only one polygon contributes to the vertices of the convex hull
CA,B, so VA ∩ VC = ∅ ∨ VB ∩ VC = ∅ holds, we say that polygon A is “bigger” than
polygon B, written A ≻ B (or equally B is “smaller” than polygon A, written B ≺ A) if
no vertex of B is part of the convex hull CA,B, so VB ∩ VC = ∅ holds.
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3.3. No-instance of PGEO-SP

In the second case, where both polygons contribute vertices to the convex hull, so
VA ∩ VC ≠ ∅ ∧ VB ∩ VC ̸= ∅ holds, as the polygons A and B do not intersect each other
we get that there are precisely two non-input-polygon edges (vA

i , vB
j ) of the convex hull

CA,B , such that one vertex of the edge belongs to polygon A and the other vertex belongs
to polygon B.These edges can either be parallel or not.

If these edges are not parallel, we can use an extension of those edges to determine which
polygon is “bigger”. Two non-parallel lines must always intersect in Euclidean space; let
us call that intersection point p. Now, we can compare the distance between the points p
and vA

i to the distance between p and vB
j . A ≻ B (or equally B ≺ A), if the distance

between the intersection point p and the vertex vA
i is bigger than the distance between p

and the vertex vB
j . So it holds that |vA

i − p| > |vB
j − p|.

One polygon A is “equal sized” to another polygon B, written A ⋍ B, if and only if the
two non-input-polygon edges (vA

i , vB
j ) of the convex hull CA,B are parallel. However, the

extensions of those edges are not identical.

In the edge case, where the two non-input-polygon edges (vA
i , vB

j ), (vA
k , vB

l ) of the convex
hull CA,B are parallel and the extensions of those edges are identical, then A ≻ B (or
equally B ≺ A), if the distance between the two vertices on that line that belong to A is
bigger than the distance between the two vertices on that line that belong to B, so the
following equality holds: |vA

i − vA
k | > |vB

j − vB
l |.

a ≺ b
a

b a ba � b

Figure 3.21: This figure shows the two possible cases of the ≺-relation between two line
segments, defined through the convex hull over two non-crossing line segments a and b.
In green are the non-input edges of the convex hull.

Formal definition of the ≺-relation between two line segments.
Similar to the “smaller” relation between two polygons, we can define a “smaller” relation
between two line segments that are not crossing and not part of the same line. Let us
call the line segments a and b, where a = (va

1 , va
2) and b = (vb

1, vb
2). The convex hull Ca,b

over a and b always has the edges {a, (va
1 , vb

1), b, (vb
2, va

2)}. Both cases of this relation are
represented in Figure 3.21.

A line segment a is “equal sized” to a line segment b, written a ⋍ b, if and only if the
edges (va

1 , vb
1) and (vb

2, va
2) are parallel to each other.

If the edges (va
1 , vb

1) and (vb
2, va

2) are not parallel, their extensions form an intersection
point p. Now a line segment a is “bigger” than a line segment b, written a ≻ b (or equally
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3. Subset relation of the Planar Geometric StoryPlan problem

b is “smaller” than line segment a, written b ≺ a), if and only if the distance between p
and va

1 is bigger than the distance between p and vb
1. So it holds that |va

1 − p| > |vb
1 − p|.

Remark 3.3. We just witnessed that the cases of the formal definition for the ≺-relation
between two line segments are a subset of the cases covered in the formal definition of
the ≺-relation between two polygons. The missing cases are the ones that cover concave
polygons. This is no issue, as line segments cannot be concave. So, a ≺-relation between
a line segment and a polygon is also well-defined when combining both formal definitions.

A
A ≺ B

B

p

vA1

vB1

vA2

vB2

Figure 3.22: This figure shows how Thales theorem can be applied to determine which
one of two polygons is bigger by comparison of two parallel lines going through the
polygons.

Remark 3.4. The most common case that one polygon or line segment A is bigger than
another B is when there are two non-input-polygon edges (vA

i , vB
i ) of the convex hull

CA,B which are not parallel. The definition used the intersection point between these
lines and the distance from the intersection point to the endpoints of these edges to
determine which one of the polygons is bigger. Using Thales’s theorem, it is also possible
to draw two parallel lines through vA

i and vB
i , measure the length of the segment of these

lines that lies between the two edges, and use these lengths to determine which of the
polygons is bigger. The polygon with the longer line segment is the bigger one. This
remark is visualized in Figure 3.22.
Remark 3.5. The last case of the definition, in which the two non-input-polygon edges
of the convex hull C are parallel to each other and their extended lines are identical,
can only occur when one of the polygons is concave, the other polygon lies inside of the
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3.3. No-instance of PGEO-SP

“concave” part of the first polygon, and a vertex or edge of the second polygon lies on the
convex hull of the first polygon. In this scenario, the first polygon is obviously the bigger
one.

Definition 3. If for two polygons A and B, it holds that A and B are of equal size,
A ⋍ B, or that A is “smaller” than B, A ≺ B, then we can also write A ⪯ B. This is
also called A is “smaller than or equal” to B.

Remark 3.6. The ⪯-relation between non-intersecting polygons and lines has the following
properties: it is reflexive (∀p ∈ P , p ⪯ p), antisymmetric (∀p, q ∈ P , p ⪯ q ∧ q ⪯ p ⇒
p = q), and strongly connected (∀p, q ∈ P, p ⪯ q ∨ q ⪯ p). Interestingly, it is not a
transitive relation and, therefore, does not define an order over polygons and lines. A
counterexample against the transitivity of the ⪯-relation is shown in Figure 3.23. Proofs
for these properties are omitted as these are relatively trivial.

A

B

C

A � B

B � C

C � A

Figure 3.23: An example showing that the ⪯-relation is not transitive. In dark green,
we see that A ≻ B holds; in orange, we see that B ≻ C holds, which, according to
transitivity, should give us A ≻ C. However, in purple, we see that the reverse is true,
and C ≻ A holds.

We must also define a direction towards a vertex in a triangular face and a width measure
inside a triangular face towards a point. This is also visually represented in Figure 3.24.

Definition 4. The direction of a triangular face f towards one of its incident vertices v
is the directional vector going from the middle of the edge e opposite to v directly to v.
Taking a point p inside of f and laying a line parallel to e through p, then the width of
the face at p in direction v⃗ is the distance from one side of the face to the other along
this parallel line.
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3. Subset relation of the Planar Geometric StoryPlan problem

v

f e

p�v

Figure 3.24: This figure shows a triangular face f , with one edge e and an opposing
vertex v. Then, the direction of f towards v is represented by the purple vector v⃗. The
blue line represents the width of the face at point p in direction v⃗.

We can now apply these new definitions in the following lemmas.

Lemma 3.8. If for a single edge eB of a polygon B it already holds that A ≺ eB, where
A is another polygon, then A ≺ B must also hold.

Proof. We already know from our assumption that A ≺ eB. As eB is only an edge, we
can be sure that VA ∩ VC ̸= ∅ for the convex hull CA,eB

between the polygon A and the
edge eB. Also, the extensions of the non-input-polygon edges (vA

i , veB
j ) of CA,eB

cannot
be identical, as for this scenario to occur, eB would need to be concave, which a single
edge cannot be. Therefore, only one case of the definition of the ≺-relation remains. So
we know the edge eB must be bigger than the polygon A because the non-input-polygon
edges of the convex hull CA,eB

have an intersection point p and the distance from p to
vA

j must be smaller than the distance from p to veB
i . Applying Remark 3.4, we also know

that drawing a line parallel to eB through any point of A, let us take the vertex vA
i , and

measure the length from one end of the convex hull to the other will result in a line
segment smaller than eB.

Now, regarding the convex hull CA,B over the polygons A and B, there are two possibilities:
either both endpoints of eB are still part of CA,B or they are not. In the first case, the
two non-input-polygon edges (vA

i , vB
j ) of CA,B are the same as the two non-input-polygon

edges of CA,eB
. As the same edges form the same extended lines, they also share the

same intersection point p, and therefore, it still holds that |vA
i − p| > |vB

j − p|. In the
second case, where one or both vertices of eB are not part of the convex hull CA,B, this
must mean that eB lies within the convex hull CA,B and that the convex hull along the
direction of eB became bigger than the length of eB . We know that the polygon A stayed
the same, so the line segment going through eB is bigger than a parallel line segment
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3.3. No-instance of PGEO-SP

going through vA
i . Applying Thales’ theorem and Remark 3.4, we again get A ≻ B. So,

in both cases, we get the desired result that A ≻ B holds.

A ≺ eB
A

A ≺ BA B

eB

eB

A ≺ B

A B

eB

Figure 3.25: On the left, we see an edge eB bigger than the polygon A. On the right, we
see the two possibilities for a polygon B that contains the edge eB.

Lemma 3.9. If a polygon P ′ lies entirely inside a triangular face f , then if one of the
edges of f belongs to a polygon P , it holds that P ′ ≺ P .

Proof. Per assumption, we know that there is a triangular face f with one edge e that
belongs to polygon P . As f is triangular, one vertex of f is not part of e but lies on the
opposite side of the face; let us call this vertex v. Furthermore, the width of the face f in
direction v⃗ is at most the length of e. We also know that the polygon P ′ lies completely
within the face f . This means that the width of the face f at any point of P ′ in direction
v⃗ is always smaller than the length of e.

The ≺-relation between two polygons is defined through their convex hull. Let us start
by considering the convex hull CP ′,e of the polygon P ′ and the edge e. As P ′ lies within
the triangular face f , we can assume that the two non-input-polygon edges (vP ′

i , ve
j ) of

CP ′,e have an intersection point p. We already established that the width of f at any
point of P ′ in direction v⃗ is smaller than e, so this also holds at vertex vP ′

i . The line
segment parallel to e going through vP ′

i that goes from one end of the convex hull to the
other can at most be as big as the width of f at vP ′

i , as P ′ lies wholly within f . Now we
can apply Thales’s theorem, and by Remark 3.4, we get that P ′ ≺ e holds. Furthermore,
as e is an edge of the polygon P , we get from Lemma 3.8 that also P ′ ≺ P must hold.
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3. Subset relation of the Planar Geometric StoryPlan problem

f

P �

Pa

Pc

Pb

a

b

c

P � ≺ b

P � ≺ c

P � ≺ a

Figure 3.26: This figure shows a triangular face f , a polygon P ′ inside of f , and the
convex hulls between P ′ and each of the edges of f separately. It is clear to see that the
edges a, b, and c are bigger than P ′, and therefore by Lemma 3.8 that also any polygon
P that contains one of a, b, or c as an edge is bigger than P ′.

Lemma 3.10. Given two quadrangles Q and Q′ that are positioned next to each other
as well as a structure Si, where we are looking for a planar straight-line drawing, then
the edge-apex ae

i can only lie inside one of the triangular faces that the quadrangle-apex
aq

i defines with the quadrangle Q if Q ≻ Q′.

Proof. Every face defined by the quadrangle Q and the quadrangle-apex aq
i is either a

triangular face or the outer face. For the triangular faces, it holds that the faces reduce in
width in the direction of the point aq

i . We know that ae
i lies inside one of these triangular

faces by assumption; let us call it f . By definition of Si, ei of Q must then be the edge
of f opposite to aq

i . The apex structure Si includes edges between Q′ and ae
i and edges

between Q′ and aq
i , so the quadrangle must be placed in a face neighboring both apex

vertices. Remember, we are looking for a planar straight-line drawing. As ae
i was placed

in the triangular face f , Q′ must also be placed inside the former face f .

So we have that Q′ lies inside the triangular face f , which on one border has the edge
ei of Q. Therefore, the preconditions for Lemma 3.9 are fulfilled, which means we can
apply Lemma 3.9 and get that Q ≻ Q′. This concludes the proof.

Corollary 3.2. Given the graph G, where the convex quadrangles Q and Q′ lie next to
each other and it holds that Q ≻ Q′, then the structure Si always forms an apex-triangle
Ai with the quadrangle Q′ for each i ∈ [4].
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3.3. No-instance of PGEO-SP

Proof. Based on Lemma 3.10, we know that for a structure Si, the edge-apex ae
i can

only lie inside one of the triangular faces that the quadrangle-apex aq
i defines with the

quadrangle Q if Q is the “bigger” of the two quadrangles (Q ≻ Q′). Now, as only one
quadrangle can be “bigger” than the other, the reverse cannot be true (Q′ ⊁ Q), and
it is not possible to find a structure Sj , where i ̸= j, such that the edge-apex ae

j lies
inside one of the faces that the quadrangle-apex aq

j defines with the quadrangle Q′. So, if
Q ≻ Q′ holds, Q′ will form an apex-triangle Ai with every structure Si for i ∈ [4].

Now we can apply Lemma 3.7 to Q′ and the apex-triangles Ai for i ∈ [4] and again get
that there are two apex-structures Si for which no planar geometric embedding can be
found. So, even allowing other positions for the quadrangles Q and Q′ does not change
the outcome of our proof. A planar geometric storyplan for G still does not exist.

3.3.4 The contradiction

Lemma 3.11. The graph G does not admit a planar geometric storyplan.

Proof. The graph G contains two quadrangles Q and Q′ and eight structures Si for i ∈ [8].
We can now differentiate the different possible positions of these two quadrangles. First
distinction, they can either 1) be situated next to each other or 2) one can lie inside the
other. In the case 1), we can again differentiate whether both quadrangles are 1.a) of the
same size or 1.b) of different sizes. For case 1.a), we established in Subsubsection 3.3.3
(Other positions for the quadrangles) that the only way that one quadrangle (w.l.o.g. Q′)
does not form apex-triangles with the apex vertices is in the case that the edge-apex
ae

i lies inside one of the triangular faces that the quadrangle-apex aq
i defines with Q′.

However, by Lemma 3.10, we know this can only occur if Q′ ≻ Q holds, which contradicts
our assumption that both quadrangles are of equal size. Therefore, both quadrangles
form eight apex-triangles Ai with the structures Si, one for each i ∈ [8]. Four of these
apex-triangles cannot be drawn planarly using straight-lines (see Lemma 3.7). In case
1.b), we have that one of the quadrangles is bigger, w.l.o.g. Q ≺ Q′ holds. Now the
smaller quadrangle Q, can either be 1.b.a) convex or 1.b.b) concave. Similarly, in case 2),
the quadrangle on the inside, w.l.o.g. Q, can again either be 2.a) convex or 2.b) concave.
For the convex cases 1.b.a) and 2.a), we know by the Corollaries 3.1 (case 2.a) and 3.2
(case 1.b.a) that Q forms apex-triangles Ai with the structures Si for every i ∈ [8]. Again,
by Lemma 3.7, we have that four of these apex-triangles cannot be drawn planarly using
straight-lines. For the concave cases 1.b.b) and 2.b), we have shown in Subsubsection
3.3.3 (Concave inner quadrangle) that again four of the eight structures Si cannot be
drawn planarly using straight-lines.

So we have shown that no matter how we place the two quadrangles and in which form
they are, always four of the structures Si cannot be drawn planarly using straight-lines.

In Subsection 3.3.2 (Applying the line crossings to a frame) we have shown that for six
of the eight structures, one frame must exist such that the whole structure Si is active.
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3. Subset relation of the Planar Geometric StoryPlan problem

Combining the last two results, we get that at least two problematic structures must
occur in any possible drawing of a storyplan of G. As these two structures Si cannot be
drawn with straight-lines without introducing line-crossings, we get that the graph G
does not admit a planar geometric storyplan.

3.4 Conclusion of the proof

Theorem 1. The Planar Topological StoryPlan problem and the Planar
Geometric StoryPlan problem are two distinct problems.

Proof. By showing that a graph G exists (for its definition see Section 3.1) that admits a
planar topological storyplan (see Section 3.2), but that does not admit a planar topological
storyplan (see Section 3.3), we proved that the yes-instances of the Planar Geomet-
ric StoryPlan problem are a proper subset of the yes-instances of the Planar
Topological StoryPlan problem, which in extension establishes that the Pla-
nar Topological StoryPlan problem and the Planar Geometric StoryPlan
problem themselves are two distinct problems.

3.4.1 Why choose quadrangles and not other polygons?
The same proof with an inner and an outer polygon connected by structures Si should
also work with little adaption for any n-gon with n > 4. The last step of constructing
the contradiction would need to be adapted, as polygons with more than four sides have
more cases for different structures of the inner n-gon that need to be considered. Lemma
3.5 must still be applied to find proper placements for the quadrangle-apexes aq

i , but as
long as it can be shown that at least two sides of the n-gon lead to invalid positions, a
contradiction can be found. We expect this to work for any n-gon with n > 4, but as
the proof would need to cover more variations in the structure of the inner n-gon, we
decided to stick to the smallest n-gon for which such a proof could be found.

Using triangles does not work. For the structures we use, there always exists a way to
draw them without any intersections when applied to a triangle. We know from Lemma
3.5 that we can always find a valid placement for aq

i as long as the outer half-spaces
defined by the incident edges of the edge eφ(i) intersect in the half-space h−

eφ(i)
. As

the incident edges themselves always intersect in the third vertex of the triangle, this
always holds for all three edges of a triangle. An example of such a valid drawing of the
apex-structures Si and the inner triangle T is also shown in Figure 3.27.

So, quadrangles are the smallest n-gons for which our proof works, which is exactly why
we used them.
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aq1

ae1

ae2

aq2

aq3

ae3

Figure 3.27: Showing a possible drawing of the apex-structures Si for a triangle. The
important part here is that there are no intersections between any of the edges connecting
the quadrangle-apexes aq

i to the triangle and the edges that define the triangle itself.

3.4.2 Why do we need two quadrangles?
As we saw in the proof above, planar geometric frames can easily be found for apex-
structures Si and one quadrangle Q. Either place the structures inside of Q or outside of
Q so that the edge-apex ae

i does not lie in the outer face of the drawing.

We needed a second quadrangle Q′ to enforce that for one of the quadrangles, the
apex-structures Si must be drawn on the outside of that quadrangle in such a way that
both apex vertices lie on different sides of that quadrangle. Given that situation, we
then could apply the Lemma 3.7 to show that there are apex-structures Si for which no
planar geometric drawing can be found and use the knowledge of Remark 3.2, which tells
us that therefore no planar geometric storyplan can exist for the graph G.

We could have also found a different construction that uses more than two quadrangles,
but as two were already sufficient for our proof, we used exactly two to keep the proof
as simple as possible. We needed to use two quadrangles and could not just use one
quadrangle and one simpler polygon like a triangle because in a storyplan, we are
concerned with the existence of a drawing, which means we cannot decide which polygon
is placed where, so we needed two polygons that, under the right circumstances, each
could lead to an impossible drawing and where the right circumstances are precisely the
existence of another quadrangle.

47





CHAPTER 4
NP-hardness of PGEO-SP

In this chapter, we look at the complexity of the Planar Geometric StoryPlan
problem. Binucci et al. not only established PTOP-SP but also proved that it is
NP-complete in the same paper [2]. We will prove that even though PGEO-SP is a
different problem than PTOP-SP, it is still NP-hard. We will also discuss why the
NP-completeness of PGEO-SP is uncertain.

To prove the NP-hardness of PGEO-SP, we will recreate the proof of the NP-hardness of
PTOP-SP as presented in [2]. The original proof is a reduction proof from One-In-Three
3SAT to PTOP-SP. One-In-Three 3SAT is a variant of 3SAT, which asks whether
there is a satisfying assignment in which exactly one of the three literals in each clause
is true. We will now adapt this proof to a reduction from One-In-Three 3SAT to
PGEO-SP. The aspects of the proof that do not concern explicit drawings, like the formal
definitions, can be taken one-to-one from the original proof. However, the aspects of the
proof that use gadgets to show the reduction must be adapted.

We define a formula φ as a 3SAT formula over N variables {xi}i∈[N ] and M clauses
{Ci}i∈[M ]. We then construct an instance of PGEO-SP based on a satisfying assignment
with exactly one true literal in each clause of that formula φ, i.e., a graph G = (V, E)
consisting of clause, variable, and wire gadgets, which are built as follows. (The definitions
for the gadgets are taken verbatim from [2].) See Figure 4.1 for a visual representation of
these gadgets.

Variable Gadget Each variable xi is represented in G by a copy K(xi) of K3,3 (see
Figure 4.1(a)). Let Ai and Bi be the two partite sets of K(xi), which we call the v-sides
of K(xi). A true (false) assignment of xi will correspond to set Ai being flexible (fixed)
in a putative storyplan of G (see Definition 2).

Clause Gadget Consider a copy of K2,2,2 = (U1 ∪ U2 ∪ U3, F ). An extended K2,2,2 is
the graph obtained from any such a copy by adding three vertices s1, s2, s3, such that
these three vertices are pairwise adjacent, and each sj is adjacent to both vertices in
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Ai Bi

U1

s1 s3

U3

U2 s2

U

W (lij)

Ai Bi

(a) K(xi) (b) K(Ci) (c) W (lij)

K(C1)

W (l11) W (l21) W (l31)

K(x1) K(x2) K(x3)

(d) Schematization of (x1 ∨ ¬x2 ∨ ¬x3)

Figure 4.1: Illustration of the various types of gadgets and how they are connected.

Uj , for j ∈ {1, 2, 3}. In the following, s1, s2, s3 are the special vertices of the extended
K2,2,2, while the other vertices are the simple vertices. A clause Ci is represented in G
by an extended K2,2,2, denoted by K(Ci) (see Figure 4.1(b)). In particular, we call each
of the three sets of vertices Uj ∪ {sj} a c-side of K(Ci). The idea is that K(Ci) admits a
storyplan if and only if exactly one c-side is flexible (each c-side will be part of a K3,3,
see the wire gadget below).

Wire Gadget Refer to Figure 4.1(c). Let xi be a variable having a literal lij in a clause
Cj . Any such variable-clause incidence is represented in G by a set of three vertices,
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which we call the w-side W (lij). All vertices of W (lij) are connected to all vertices of one
of the three c-sides of K(Cj), which we call U , such that the graph induced by W (lij) ∪ U
in G contains a copy of K3,3. Also, each vertex of W (lij) is connected to all vertices of
the v-side Ai (Bi) if the literal is positive (negative), such that the graph induced by
W (lij) ∪ A (W (lij) ∪ B) in G is a copy of K3,3. Also, note that each c-side of K(Cj) is
adjacent to exactly one w-side.

The following lemma and its proof is no new result but taken from the original storyplan
paper [2]. We did not want to omit this part of the proof, as it helps to form a complete
picture of the NP-hardness of the Planar Geometric StoryPlan problem. The
wording of the proof of the following lemma is our own.

Lemma 4.1. If graph G admits a planar geometric storyplan, then φ admits a satisfying
assignment with exactly one true literal in each clause.

Proof. Let S = ⟨τ, {Di}i∈[n]⟩ be a planar geometric storyplan of G. We can create a
3SAT formula φ based on the clause and variable gadgets appearing in the storyplan S.
As hinted at in the definition of the variable gadget above, we assign each variable a
truth value based upon which of its v-sides is flexible and which is fixed. If the v-side Ai

is flexible (fixed) in S and the v-side Bi is fixed (flexible) in S, then the variable xi is
assigned the value true (false).

Each variable gadget is connected to at least one w-side of a wire gadget, which is
connected to exactly one c-side of a clause gadget. By definition 2, we know that each
K3,3 always has one fixed and one flexible side. As the wire gadget consists of two
connected K3,3’s, the “status” of the v-side is propagated through the wire gadget to
the c-side consistently, such that the c-side is flexible (fixed) if and only if the v-side
with which it is connected via the wire-gadget is also flexible (fixed). We also know that
the w-side is connected to the v-side Ai if the literal is positive in the clause and to the
v-side Bi if the literal is negated in the clause. Combining these two facts, we get that if
the literal is positive and if we assign the variable the value true (false), as its v-side Ai

is flexible (fixed), then the connected c-side must also be flexible (fixed) and corresponds
to a true (false) literal. If, on the other hand, the literal is negative and if we assigned
the variable the value false (true), as its v-side Bi is flexible (fixed), then the connected
c-side is flexible (fixed) and corresponds to the literal having the value ¬false (¬true)
which is equal to the value true (false). So we get that the c-side of a clause gadget is
flexible if and only if the literal itself is true.

To prove that our storyplan S leads to a 3SAT formula φ having exactly one true literal
in each clause, we need to show that each clause gadget must have exactly one flexible
c-side.

Let us first assume that all c-sides of a clause gadget could be fixed so that we would
have a clause with no true literal. As discussed before, a clause gadget consists of a
K2,2,2 of so-called simple vertices, which are split into three partite sets U1, U2, and U3
and special vertices s1, s2, and s3, one for each partite set of the K2,2,2. Each of these
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4. NP-hardness of PGEO-SP

special vertices sj is connected to the vertices of its partite set Uj , and all special vertices
are connected to each other. W.l.o.g., we can assume that the partite sets are ordered
according to their appearance in the storyplan S. A fixed c-side Uj ∪ {sj} means that
the simple vertices in Uj and the special vertex sj must all appear in at least one frame
together.

The clause gadget contains a K2,2,2 and in a K2,2,2, all of the partite sets are connected,
which means that the simple vertices of U1 and U2 must still be active when the simple
vertices of U3 appear, as both simple vertices in U3 share edges to the other four simple
vertices. Therefore, the whole K2,2,2 must appear in at least one frame of the storyplan
S.

Figure 4.2: This plot shows a planar geometric embedding of a K2,2,2. The vertices of
each partite set are drawn using the same symbol (circle, square, and cross). It is visible
that any pair of two partite sets creates a cycle (see the edges of the same color) that
splits the vertices of the remaining partite set.

A K2,2,2 is a maximal planar graph, meaning that each planar embedding is the same up
to the choice of the outer face. Furthermore, the vertices of any two partite sets of the
K2,2,2 form a cycle. One of the vertices of the remaining partite set is always positioned
inside of this cycle, and the other outside of it. This entails that vertices of the same
partite set are never part of the same face. See Figure 4.2 for a visual representation of
this property.

As in our current assumption, all c-sides are fixed, and all simple vertices must remain
active until their respective special vertex appears in one frame. Each special vertex
must share an edge with both of the simple vertices of their respective c-side. However,
the simple vertices of one c-side do not share any faces. Therefore, we could not place
the special vertex of the corresponding c-side anywhere without destroying planarity. As
this holds for all three partite sets, we get that a clause gadget cannot be part of a planar
storyplan if all three c-sides are fixed. So, our assumption must be false, and as a result,
at least one c-side must be flexible.

For the argumentation from the other side, we assume that a clause gadget could have
two flexible c-sides. A flexible c-side means that the two simple vertices of that c-side
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cannot appear in the same frame. This follows as both simple vertices share an edge
with their respective special vertex. Therefore, if both simple vertices appear together in
one frame, they must stay active until their special vertex appears. At that point, all
three vertices of the c-side are active in the same frame and thereby represent a fixed
c-side, which contradicts the fact that this c-side was supposed to be flexible.

One of the simple vertices of the K2,2,2 must be the last one that appears in the storyplan
S, w.l.o.g. this simple vertex belongs to U3. As this simple vertex is connected to all
vertices of U1 and U2, these other simple vertices must all be active when the last simple
vertex of U3 appears. In return, this means that both c-sides corresponding to the partite
sets U1 and U2 must be fixed.

Now, we got the results that at least one c-side must be flexible, and at least two c-sides
must be fixed. Therefore exactly one c-side of each clause gadget must be flexible. This
results in the formula φ having an assignment with exactly one true literal in each clause,
precisely what we were looking for.

The construction steps in the proof of the following lemma are based upon the corre-
sponding construction for planar topological storyplans as given in [2], but were adapted
by us to provide straight-line drawings.

Lemma 4.2. If the formula φ admits a satisfying assignment with exactly one true literal
in each clause, then graph G admits a planar geometric storyplan.

Proof. We show this lemma by providing one possible way to construct a planar geometric
storyplan based on a satisfying assignment of a One-In-Three 3SAT formula φ. We
will draw one variable gadget for each variable in φ, as well as one clause gadget and
three wire gadgets for each clause in φ. The question remains: how can we do so while
adhering to the properties of a planar geometric storyplan? As a first step, before we can
start drawing any gadgets, we must establish which sides of the gadgets must be fixed
and which must be flexible. For each variable xi, the v-side Ai is flexible (fixed) and the
v-side Bi is fixed (flexible) if the variable xi is true (false) in the satisfying assignment of
φ. The wire and clause gadgets are then based on the truth-value assignments of the
variables. The w-side W (lij) of a wire gadget is fixed (flexible) when connected to a
flexible (fixed) v-side Ai (if the literal in clause Cj is positive) or Bi (if the literal in Cj

is negative). Similarly, a c-side of a clause gadget Cj is flexible (fixed) when connected
to a fixed (flexible) w-side W (lij). With that, we have determined which sides are fixed
and flexible for all variable, wire, and clause gadgets so that we can start drawing the
actual storyplan.

W (l11) W (l12) W (l21) W (l22) W (l24) W (l31) W (l42)

Figure 4.3: Proof of Lemma 4.2 drawing the vertices of the fixed w-sides.
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4. NP-hardness of PGEO-SP

We start by drawing the wire gadgets. We reserve space for all wire gadgets on a
horizontal line. (We will also refer to this line as the “wire-line”.) The wire gadgets
are ordered based on the variables they are connected with. So, the wire gadgets that
connect to the variable x1 are placed at the left end of the line, followed by the wire
gadgets connecting to variable x2, and so on, until the variable xN is reached at the right
end of the line. Initially, we only draw the fixed w-sides, while the space for the flexible
w-sides is simply reserved, as seen in Figure 4.3.

A1 B1 A2 B2 A3 B3 A4 B4

x1 = F x2 = F x3 = T x4 = T

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x5 ∨ x6) ∧ (¬x2 ∨ ¬x5 ∨ ¬x6)

W (l11) W (l12) W (l21) W (l22) W (l24) W (l31) W (l42)

Figure 4.4: Proof of Lemma 4.2 drawing the vertices of the fixed v-sides.

As a next step, the variable gadgets are drawn below the wire gadgets. The opposing
v-sides of each variable gadget are drawn vertically below the starting and end points of
the space reserved for their respective wire gadgets on the wire-line. By this construction,
all variable gadgets are drawn horizontally next to each other. Again, only the fixed sides
of each variable gadget are drawn initially, while the space for the flexible sides is just
reserved at that point; see Figure 4.4.

A1 B1 A2 B2 A3 B3 A4 B4

x1 = F x2 = F x3 = T x4 = T

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x5 ∨ x6) ∧ (¬x2 ∨ ¬x5 ∨ ¬x6)

W (l11) W (l12) W (l21) W (l22) W (l24) W (l31) W (l42)

Figure 4.5: Proof of Lemma 4.2 drawing the vertices of the flexible v-sides.
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As flexible v-sides are only connected to fixed v-sides and fixed w-sides, which we have
already placed, we can draw the flexible v-sides next; see Figure 4.5. After all flexible
v-sides are drawn, the fixed v-sides not connected to any wire gadget can also disappear.
(This concerns all true variables that only occur in positive literals and all false variables
that only occur in negative literals).

s1

s3

s2

s1

s3

s2

u11

u12

s3

s2

u11

u12

u22

u21

(a) (b) (c)

Figure 4.6: Proof of Lemma 4.2 drawing the first three steps of a clause gadget.

For the clause gadgets, we will first show how they can be drawn in five distinct steps
and afterward explain how they are connected to the wire gadgets in each step. These
five steps are shown in Figures 4.6 and 4.7.
The exact shape of the clause gadgets depends on the position of the variables in each
clause. Generally, there is a wide range of options for the precise positions of the clause
gadget. The construction will still work as long as planarity is maintained and only
straight-lines are used for the edges. Therefore, rough instructions are sufficient for the
construction steps.
In the first step, we draw the triangle of the three special and pairwise adjacent vertices
s1, s2, s3, and their connecting edges. The two special vertices that belong to the fixed
c-sides or, as established, the false literals of the clause, are positioned on one horizontal
level, and the special vertex belonging to the flexible c-side is positioned horizontally
between but vertically slightly above them. (Figure 4.6(a)).
In the second step, we draw the two simple vertices of the first fixed c-side. Both simple
vertices of that fixed c-side are drawn with some vertical distance above and below the
triangle of special vertices (Figure 4.6(b)).
In the third step, the special vertex of the first fixed c-side disappears, and the two simple
vertices of the second c-side appear. One is roughly positioned, where the special vertex
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of the first fixed c-side was, and the other is drawn on a similar vertical level but on the
other side of the two remaining special vertices. As these simple vertices are part of the
K2,2,2, they get connected to the other two simple vertices, forming a quadrangle with
the two remaining special vertices positioned in the inner face of that quadrangle (Figure
4.6(c)).

s3

u31

u11

u12

u22u21

s3

u32

u11

u12

u22
u21

(d) (e)

Figure 4.7: Proof of Lemma 4.2 drawing the last two steps of a clause gadget.

In the fourth step, the special vertex of the second c-side can now disappear, and the first
of the two simple vertices of the flexible c-side appears. This vertex is placed somewhere
inside of the face that is created by the simple vertices of the fixed c-sides, as it then can
be connected to its special vertex and all of the other four simple vertices (Figure 4.7(d)).

In the fifth step, the first simple vertex of the flexible c-side disappears, and the second
one appears. As it needs to be connected to the same vertices as the first one, it can
simply appear at the same position from which the first one just disappeared (Figure
4.7(e)).

With these five steps, we have drawn the whole clause gadget planarly using only straight-
line edges, thereby adhering to the limitations of the Planar Geometric StoryPlan
problem.

We must show that the clause gadget and the wire gadgets can be combined without
breaking planarity or resorting to Jordan arcs to draw the edges. We know each of the
c-sides is connected to one w-side. We will review them individually in order of their
appearance in the clause gadget. First, we will deal with the first fixed c-side, which
has a vertical position. Placing the vertices of the flexible w-side of the connected wire
gadget to the outer side of the fixed c-side, in regards to the clause gadget, allows us to
draw straight-lines between the vertices of the flexible wire gadget and the fixed c-side.
The vertically lower simple vertex of the fixed c-side must be positioned so as not to
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A1 B1 A2 B2 A3 B3

x1 = F x2 = F x3 = T

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x5 ∨ x6) ∧ (¬x2 ∨ ¬x5 ∨ ¬x6)

W (l11) W (l12) W (l21) W (l22) W (l24) W (l31)

u11

u12

s3

s2

. . .

s1

Figure 4.8: Proof of Lemma 4.2 drawing the first false literal.

interfere with the fixed v-side of its corresponding variable gadget that connects to the
same flexible w-side. As each c-side of a clause gadget must only accommodate one
variable, such a position can always be found and usually lies vertically further below
the variable gadgets. When explaining the wire gadget, we mentioned that the vertices
of all wire gadgets are drawn on one horizontal line. The triangle of the three special
vertices of the clause gadget is positioned above that wire-line. The connection between
the clause gadget and the first wire gadget is represented in Figure 4.8.

We will connect the second fixed c-side to its corresponding flexible w-side. Important to
note here is that the special vertex of the second fixed c-side is inside the face created by
the simple vertices of the fixed c-sides. Therefore, the w-side of its corresponding wire
gadget and the fixed v-side of its corresponding variable gadget must also lie inside that
face. Each vertex of the w-side appears after the other and connects to the fixed c-side
and the fixed v-side of its connected variable gadget, as seen in Figure 4.9.
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A1 B1 A2 B2 A3 B3

x1 = F x2 = F x3 = T

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x5 ∨ x6) ∧ (¬x2 ∨ ¬x5 ∨ ¬x6)

W (l11) W (l12) W (l21) W (l22) W (l24) W (l31)

u11

u12

s3

s2

u21 u22

. . .

Figure 4.9: Proof of Lemma 4.2 drawing the second false literal.

Also, for the flexible c-side, the special vertex lies inside the face created by the simple
vertices of the fixed c-sides, so the fixed w-side must be placed into the same face.
Furthermore, the special vertex of the flexible c-side and both simple vertices must be
connected to that fixed w-side, and the special vertex must be connected to each simple
vertex, one after the other. The special vertex must be placed above and the simple
vertices below the wire-line to make this possible. Then, all three vertices of the wire
gadget can simultaneously connect to both active vertices of the flexible c-side; see Figure
4.10. As the flexible v-sides were already active, no problems with other vertices to which
the wire gadgets must be connected are introduced. The same drawing can be used for
both simple vertices of the flexible c-side.

So far, we have shown that connecting a clause gadget and its corresponding three wire
gadgets is possible when the wire gadgets along the “wire-line” align properly. As the
wire gadgets are drawn on one horizontal line, we can distinguish them as the left, the
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A1 B1 A2 B2 A3 B3

x1 = F x2 = F x3 = T

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x5 ∨ x6) ∧ (¬x2 ∨ ¬x5 ∨ ¬x6)

W (l11) W (l12) W (l21) W (l22) W (l24) W (l31)

u11

u12

s3

u21 u22

. . .

u31

Figure 4.10: Proof of Lemma 4.2 drawing the true literal.

middle, and the right wire gadget. Through our construction, we realize that one of
the wire gadgets must lie outside the quadrangle while the other two must lie within
it. As different clauses can contain various variables, we can not assume or enforce any
ordering of the variables and, thereby, of the wire gadgets themselves. Even though the
realization of the quadrangle is orientated towards the right in our sketches – and by
that containing the middle and the right wire gadget – nothing in its definition prohibits
it from being orientated to the left and encompassing the left and the middle wire gadget.
Furthermore, in the construction of the drawing, it was also left open in which relation
the two wire gadgets inside the quadrangle must lie. So if the fixed wire gadget is the
right or middle wire gadget, we can use the right-orientated quadrangle, and if the fixed
wire gadget is the left (or middle) wire gadget, we can use the left-orientated quadrangle.
These variants are represented in Figures 4.11, 4.12, and4.13, where each figure shows a
drawing with a different fixed wire gadget.

59



4. NP-hardness of PGEO-SP

s1
s3

s2

u31

u11

u12

u22u21

Figure 4.11: This and the following two figures show that no matter where the fixed wire
gadget (purple) is positioned on the “wire-line”, creating the clause gadget as described
above is always possible. Here we see our construction in the situation, where the left
wire gadget is fixed.

All in all, no matter which variable corresponds to the true literal in the clause, we
can draw the clause gadget and its corresponding wire and variable gadgets as planar
geometric storyplan drawings.

So we have shown that if the formula φ admits a satisfying assignment with exactly one
true literal in each clause, then we can define a graph G based on φ and construct a
planar geometric storyplan S of G.

Theorem 2. The Planar Geometric StoryPlan problem is NP-hard, and it has
no 2o(n) time algorithm unless the Exponential Time Hypothesis (ETH) fails.

Proof. The construction of the graph G from the formula φ, as was done in Lemma 4.2,
can be done in polynomial time. The correctness of the reduction from One-In-Three
3SAT to PGEO-SP follows from the Lemmas 4.1 and 4.2. Thereby proving that the
Planar Geometric StoryPlan problem is indeed NP-hard.

To find a lower time boundary for possible algorithms solving the Planar Geometric
StoryPlan problem, we have to take a look at the ETH and the Sparsification Lemma.
Combining these two, we get that for 3SAT formulas consisting of N variables and M
clauses no algorithm can exist that can solve these formulas in 2o(N+M) time [3, 11]. We
also know that a polynomial-time reduction from 3SAT instances with N + M variables
and clauses to equivalent One-In-Three 3SAT instances with O(N + M) variables
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s1
s3

s2

u31

u11

u12

u22u21

Figure 4.12: This figure shows a possible drawing of our construction when the middle
wire gadget is fixed.

and clauses exists [5]. Furthermore, in Lemma 4.2, we have shown that each instance of
One-In-Three 3SAT can be transformed into a graph with n vertices and m edges such
that m = O(n) and n + m = O(N + M). To conclude, finding an algorithm that solves
the Planar Geometric StoryPlan problem in 2o(n) time would mean that we also
found an algorithm to solve 3SAT formulas in 2o(N+M) time, which would contradict
ETH.

Remark 4.1. The attentive observer might have realized that we have only shown the
NP-hardness of PGEO-SP, whereas for PTOP-SP NP-completeness was shown in [2].
Whether PGEO-SP is in NP or whether it is ∃R-hard or even ∃R-complete is still an
open question.

∃R, the so-called existential theory of the reals is the complexity class that contains all
problems which are representable by a true sentence of the form ∃X1 · · · ∃Xn F (X1, . . . , Xn),
where F (X1, . . . , Xn) is a quantifier-free formula over equalities and inequalities of real-
valued polynomials. This complexity class lies between NP and PSPACE [1].

We suspect that PGEO-SP might be more complicated than PTOP-SP. To guess a
candidate solution of PTOP-SP, it is sufficient to know the order of the vertices, the
outer face, and the rotation systems of all vertices, as this information is enough to
identify any planar topological storyplan (candidate) uniquely. An upper bound for these
steps can be calculated using simple combinatorics; see [2]. This is not as easily possible
for planar geometric storyplans, as each candidate solution of PGEO-SP also relies on
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s1

s3

s2

u31

u11

u12

u22u21

Figure 4.13: This figure shows how our construction can be mirrored when the right wire
gadget is fixed.

the precise position of all of its vertices. It could be that with some constructions, the
vertices of a planar geometric storyplan require even exponential precision.
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CHAPTER 5
Further Results

In this chapter, we will explore some additional minor results. First, we give a definition
for a storyplan with a limited number of frames, define new versions of the StoryPlan
problem based on this definition, and use these to establish optimization variants of the
StoryPlan problem. We will then prove complexity results for these new problems.
Finally, we will list two specific results for planar geometric storyplans, one concerning
planar graphs and one partial 3-trees.

5.1 On the Minimal Planar StoryPlan problem
So far, we have only looked at the Planar Topological StoryPlan problem and
the Planar Geometric StoryPlan problem, two decision problems. We now want
to present an optimization version of the StoryPlan problem.

With the current definition of a storyplan, a strict total order of the frames exists based
on the bijective mapping of the vertex appearances to the frames. However, it becomes
clear that in most cases, there are frames whose order could change, which would still
result in a valid storyplan. Therefore, the order of frames could be relaxed based on
a surjective mapping of the vertex appearances to the frames. So, we will adapt the
definition of a storyplan to the following:

Let G = (V, E) be a graph with n vertices. A planar k-storyplan Sk = ⟨τ, {Di}i∈[k]⟩ of
G is a pair defined as follows.
The first element is a surjection τ : V → [k] that imposes a partial order on the vertices
of G. For each vertex v ∈ V , let iv = τ(v) and let jv = maxu∈N [v]τ(u). The interval
[iv, jv] is the lifespan of v. We say that v appears at step iv, is visible at step i for each
i ∈ [iv, jv], and disappears at step jv + 1. Note that a vertex disappears only once all its
neighbors have appeared, and multiple vertices may appear in each frame.
The second element of Sk is a sequence of drawings {Di}i∈[k], called the frames of Sk.
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5. Further Results

For each i ∈ [k] the drawing Di must satisfy the following conditions:
(i) Di is a drawing of the graph Gi induced by the vertices visible at step i, (ii) Di is
planar, (iii) the point representing a vertex v is the same over all drawings that contain
v, and (iv) the curve representing an edge e is the same over all drawings that contain e.

The Planar k-StoryPlan problem then asks, given a graph G = (V, E) and an
integer k, does G admit a planar k-storyplan, a planar storyplan with exactly k frames?

The Minimal Planar StoryPlan problem then asks, given a graph G = (V, E),
what is the minimal integer k such that G still admits a planar k-storyplan?
Remark 5.1. Every n-storyplan Sn is also a storyplan S and vice versa, as a storyplan S
has exactly one frame for each of its n vertices.
Remark 5.2. Given a graph G = (V, E) that admits a k-storyplan Sk, where k < n. Then
G also admits a j-storyplan Sj , where for j holds: k < j ∧ j ≤ n. So G also admits a
storyplan S.

Definition 5. We define the Planar Topological k-StoryPlan problem (PTOP-
k-SP) and the Planar Geometric k-StoryPlan problem (PGEO-k-SP) as versions
of the Planar k-StoryPlan problem, where the embedding of all edges in all frames
must be Jordan arcs (PTOP-k-SP) or straight-lines (PGEO-k-SP), respectively.

Definition 6. The Minimal Planar Topological StoryPlan problem (MIN-
PTOP-SP) and the Minimal Planar Geometric StoryPlan problem (MIN-PGEO-
SP) are similarly defined as the versions of the Minimal Planar StoryPlan problem,
where all edges must be Jordan arcs (MIN-PTOP-SP) or straight-lines (MIN-PGEO-SP),
respectively.

Lemma 5.1. The Planar Topological k-StoryPlan problem and the Planar
Geometric k-StoryPlan problem are NP-hard for general values of k.

Proof. Let us start by showing that a polynomial-time many-one reduction from the
Planar StoryPlan problem to the Planar k-StoryPlan problem exists. Given
a graph G, we ask if a planar n-storyplan Sn exists for G. If G is a yes-instance of
the Planar n-StoryPlan problem, we know that a n-storyplan Sn exists for G.
Furthermore, as every n-storyplan Sn is also a storyplan S, we get that G is also a yes-
instance of the Planar StoryPlan problem. If, on the other hand, G is a no-instance
of the Planar n-StoryPlan problem, we know that no n-storyplan Sn exists for G
and thereby also no storyplan S can exist for G, as every storyplan S of G would also
be a n-storyplan Sn of G. As the yes- and the no-instances are correctly propagated
from instances of the Planar k-StoryPlan problem to instances of the Planar
StoryPlan problem, we get that a many-one-reduction reduction from the Planar
StoryPlan problem to the Planar k-StoryPlan problem exists. As the reduction
step was trivial, it is also a polynomial-time many-one reduction.

By the existence of a polynomial-time many-one reduction from the Planar StoryPlan
problem to the Planar k-StoryPlan problem, we get that also polynomial-time
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5.1. On the Minimal Planar StoryPlan problem

many-one reductions from PTOP-SP to PTOP-k-SP and from PGEO-SP to PGEO-k-SP
must exist, as the restrictions on the drawings of the frames were not part of the reduction
proof at all. We already established that both PTOP-SP and PGEO-SP are NP-hard
problems. Therefore, by the existence of polynomial-time many-one reductions from
these known NP-hard problems to the Planar Topological k-StoryPlan problem
and the Planar Geometric k-StoryPlan problem, these problems must also both
be NP-hard.

Remark 5.3. The Planar k-StoryPlan problem, and in extension PTOP-k-SP and
PGEO-k-SP, are not NP-hard for specific small k. For k = 1, the Planar 1-StoryPlan
problem is equivalent to testing whether a graph G is planar. Planarity Testing
is known to be solvable in O(n) time [10]. The time complexity of the Planar k-
StoryPlan problem for other small values of k such as k = 2 or k = 3 is so far
unknown, but might also be in P.

Lemma 5.2. The Planar Topological k-StoryPlan problem is NP-complete for
general values of k.

Proof. A problem is in NP if, for a given instance, a candidate solution (certificate) is of
polynomial size, and it can be checked in polynomial time by a certifier if this candidate is
a solution for that instance of the problem or not. A candidate solution for a graph G of
the Planar Topological k-StoryPlan problem is a series of graphical embeddings
of subgraphs of G and consists of the following information:

Firstly, a partial order on the vertices of G, which takes linear space. This partial order
defines which vertex appears in which frame. Based on the vertices and their neighbors
in G, we can calculate in which frames each vertex is active and, based on that, in
which frames which edges are active. We know by Euler’s formula that for all connected
planar embeddings holds |Ei| ≤ 3|Vi| − 6, so a linear factor limits the possible number of
neighbors of each vertex in a planar graph. This limit also holds for disconnected planar
graphs, as the neighbors of a vertex, per definition, are always part of the same connected
component as the vertex itself. Once we know which vertices appear in which frame, we
need a rotation system for each vertex v active in one frame, which is the clockwise order
of the incident edges of v active in the same frame. Furthermore, we need an outer face,
and for each disconnected component, we must know into which face they must be placed.
All of that information needs, again, only linear space. So the information necessary to
distinctly define a candidate solution (certificate) of PTOP-k-SP takes O(n) space.

To check the validity of a candidate solution, it is enough – as we are dealing with
topological drawings, so all edges are Jordan arcs – to verify whether two consecutive
frames are “consistent” or not. For a given partial order of the vertices of G, it is equivalent
if a planar topological storyplan or a “consistent” sequence of planar embeddings exist.
To verify that two planar embeddings are “consistent”, we can use the fact that planar
topological embeddings can be differentiated simply by their rotation systems, the choice
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5. Further Results

of the outer face, and the face in which disconnected components are placed. So, given two
consecutive planar embeddings that share a common subgraph, their restrictions for this
subgraph must match. This check must first compare the vertices in both embeddings to
get the subgraphs, which can be done in linear time. Then, checking the rotation systems,
the chosen outer face, and the position of disconnected components takes quadratic time.
These checks are repeated k − 1 times. So, the verification step takes O(n3) time.

We have shown that a candidate solution for PTOP-k-SP is of polynomial size and
that verifying its validity takes polynomial time. Therefore, the Planar Topological
k-StoryPlan problem is in NP.

As NP-hardness and membership in NP entail NP-completeness and we have already
shown the NP-hardness of PTOP-k-SP in Lemma 5.1, we get that the Planar Topo-
logical k-StoryPlan problem must be NP-complete.

Lemma 5.3. The Minimal Planar Topological StoryPlan problem and the
Minimal Planar Geometric StoryPlan problem are NP-hard.

Proof. A simple algorithm to turn any decision problem with a limiting integer k into an
optimization problem is to repeatedly execute the algorithm that solves the k-limited
version of that problem in a binary search manner. So, in our case, to get an algorithm for
a version of the Minimal Planar StoryPlan problem, we first execute an algorithm
to answer the respective Planar k-StoryPlan problem and set k to n. On a no, we
know that also no smaller storyplan can exist, and we return ∞. On a yes, we run the
algorithm again for k = ⌊n

2 ⌋. The same procedure is done for ever smaller k until we find
the k, where a k-storyplan exists, but no k − 1-storyplan exists anymore.

As this is the binary search procedure, we must run the Planar k-StoryPlan algo-
rithm log(n) times. As the respective Planar k-StoryPlan problems are already
NP-hard, the log(n) factor does not influence the complexity of their corresponding
Minimal Planar StoryPlan problems. Hence, proving that both the Minimal
Planar Topological StoryPlan problem and the Minimal Planar Geometric
StoryPlan problem are NP-hard.

5.2 Planar graphs and partial 3-trees
Lastly, we will list two small results for specific, restricted graph classes, one for planar
graphs and one for partial 3-trees. k-trees have an iterative definition. Each k-tree G
starts as a complete graph with k + 1 vertices. Any additional vertex added to the
k-tree must be a neighbor to all vertices of an existing k-clique in G. Partial k-trees are
subgraphs of k-trees. Furthermore, k-trees always have a treewidth of k, and partial
k-trees are all graphs with a treewidth of at most k. Treewidth is a parameter that
describes how much a graph resembles a tree.
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5.2. Planar graphs and partial 3-trees

The result for partial 3-trees is from the original storyplan paper [2] for planar topological
storyplans that we adapt for planar geometric storyplans. We omit the proof here because
it is the same as in [2].
Remark 5.4. Every planar graph G with n vertices admits a planar geometric 1-storyplan,
which can be computed in O(n) time.

Proof. Every planar graph G admits a storyplan [2]. Since the graphs are already planar,
they can be drawn in one frame, thereby admitting a 1-storyplan.

By Fáry’s theorem [9], every planar graph also has a planar straight-line embedding.
Therefore, every planar graph admits a planar geometric 1-storyplan.

Multiple algorithms are known to calculate a planar straight-line drawing for a planar
graph G with n vertices in O(n) time, for example, the shift algorithm [5].

Corollary 5.1. Every partial 3-tree G with n vertices admits a planar geometric storyplan,
which can be computed in O(n) time.

Proof. The paper [2] includes the following theorem: “Every partial 3-tree G with n
vertices admits a storyplan, which can be computed in O(n) time.” The construction of
the storyplan in the proof for this theorem already results in a planar geometric storyplan
and takes only O(n) time.
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CHAPTER 6
Conclusion and Open Questions

6.1 Conclusion
In this thesis, we introduced and explored several new variations of the PLANAR
STORYPLAN problem. The primary focus was on the Planar Geometric StoryPlan
problem, a variant of the storyplan problem containing only crossing-free, straight-
line drawings for each frame. We presented two key results for this problem variant.
Firstly, the Planar Geometric StoryPlan problem is more restrictive than the
Planar Topological StoryPlan problem, and secondly, the Planar Geometric
StoryPlan problem remains NP-hard.

We then expanded the concept of a storyplan by introducing the idea of a k-storyplan
Sk, where multiple vertices can appear in the same frame, and the storyplan consists of a
sequence of exactly k frames. This led to the definition of two new Planar StoryPlan
problems. Namely, the Planar k-StoryPlan problem and the Minimal Planar
StoryPlan problem. The Planar k-StoryPlan problem asks, given a graph G
and an integer k, whether a graph G admits a k-storyplan Sk with exactly k frames, while
the Minimal Planar StoryPlan problem asks, given a graph G, for the smallest
integer k such that a k-storyplan still exists for G.

As final results, we were able to prove that the complexity results of the Planar
Topological StoryPlan problem and the Planar Geometric StoryPlan prob-
lem propagate to their respective versions of the Planar k-StoryPlan problem.
In particular, we proved that the Planar Topological k-StoryPlan problem is
NP-complete and the Planar Geometric k-StoryPlan problem is NP-hard, for
general values of k. Finally, we showed that both the Minimal Planar Topological
StoryPlan problem and the Minimal Planar Geometric StoryPlan problem
are NP-hard.
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6. Conclusion and Open Questions

6.2 Open Questions
Our research opens up several exciting directions for future exploration and extension.

One significant question remains unanswered: the exact complexity class of the Planar
Geometric StoryPlan problem, as well as its k-storyplan and minimal storyplan
variants. More precisely, it is still unclear whether the Planar Geometric StoryPlan
problem belongs to NP and, therefore, is NP-complete.

Alternatively, could the Planar Geometric StoryPlan problem be ∃R-hard or even
∃R-complete? To investigate ∃R-hardness, a potential approach could involve finding a
polynomial-time many-one reduction from a known ∃R-hard problem to the Planar
Geometric StoryPlan problem. Another avenue for proving ∃R-hardness, could be
to show the existence of a gadget that, with each use, restricts the region where a vertex
can be placed by at least half.

If a new complexity result for PGEO-SP is established, a natural follow-up question is
whether the same result could be extended to its variants, PGEO-k-SP and MIN-PGEO-
SP?

We mentioned that for k = 1, PTOP-k-SP and PGEO-k-SP are in O(n). Therefore,
the complexity of the Planar k-StoryPlan problem for small values of k such as
k ∈ {2, 3, 4, 5} is still an open question. Furthermore, at what value of k does the problem
turn out to be NP-hard?

Another set of open questions pertains to the time complexity upper bounds of algorithms
for the storyplan problems explored in this thesis.

Namely, what is the upper bound on the time complexity of an algorithm solving PGEO-
SP? Are there any fixed-parameter tractable (FPT) algorithms for PGEO-SP? If so, what
upper bounds do they provide?

In addition, related questions arise regarding variants of the Planar Topological
StoryPlan problem, particularly PTOP-k-SP and MIN-PTOP-SP. How efficient can
algorithms for these problems be? What are their respective time complexities, and how
could FPT algorithms and kernelization be used to optimize them further?

Finally, other variants of the Planar StoryPlan problem could be considered by
introducing additional restrictions on the placement of vertices. For instance, could a
storyplan exist when vertices are not freely placed but must be located on a grid or a set
of fixed points instead? Alternatively, what happens if the vertices can only be placed on
a fixed number of positions, but these can be freely chosen? Exploring such restrictions
could lead to new insights and even more nuanced problem variants.
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APPENDIX A
Frame tables of a PTOP-SP

instance for G

Here, we present the complete set of frame tables that demonstrate that the graph G is
a yes-instance of PTOP-SP, as outlined in in Section 3.2 (Yes-instance of PTOP-SP).
Each frame table shows the adjacencies of the vertices of G and lists the active vertices
in a specific frame. To minimize the number of frames and thus the number of tables,
we adopt the concept of k-storyplans, allowing multiple vertices to appear in the same
frame. This approach does not affect the validity of the proof, as any graph that admits
a k-storyplan Sk also admits a corresponding storyplan S.
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A. Frame tables of a PTOP-SP instance for G

Vertex Adjacent vertices
v1 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

1 ae
4 ae

5 ae
8

v2 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v3 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

2 ae
3 ae

6 ae
7

v4 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

4 ae
5 ae

8
v′

2 v′
1 v′

3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
aq

1 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
2

ae
2 v2 v3 v′

2 v′
3 aq

2
aq

3 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
3

ae
3 v3 v4 v′

3 v′
4 aq

3
aq

4 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
4

ae
4 v1 v4 v′

1 v′
4 aq

4
aq

5 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
6

ae
6 v2 v3 v′

2 v′
3 aq

6
aq

7 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
7

ae
7 v3 v4 v′

3 v′
4 aq

7
aq

8 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
8

ae
8 v1 v4 v′

1 v′
4 aq

8

Table A.1: Table representation of the first frame of G as PTOP-SP. Black-colored are
all vertices that are active in that frame. Magenta-colored are all the vertices that have
not yet been activated.
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Vertex Adjacent vertices
v1 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

1 ae
4 ae

5 ae
8

v2 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v3 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

2 ae
3 ae

6 ae
7

v4 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 aq

4 ae
5 ae

8
v′

2 v′
1 v′

3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
aq

1 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
2

ae
2 v2 v3 v′

2 v′
3 aq

2
aq

3 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
3

ae
3 v3 v4 v′

3 v′
4 aq

3
aq

4 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
4

ae
4 v1 v4 v′

1 v′
4 aq

4
aq

5 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
6

ae
6 v2 v3 v′

2 v′
3 aq

6
aq

7 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
7

ae
7 v3 v4 v′

3 v′
4 aq

7
aq

8 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
8

ae
8 v1 v4 v′

1 v′
4 aq

8

Table A.2: Table representation of the second frame of G as PTOP-SP. Green-colored
are all the vertices that were already active in a previous frame.
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A. Frame tables of a PTOP-SP instance for G

Vertex Adjacent vertices
v1 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

1 ae
4 ae

5 ae
8

v2 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v3 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

2 ae
3 ae

6 ae
7

v4 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 aq

4 ae
5 ae

8
v′

2 v′
1 v′

3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
aq

1 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
2

ae
2 v1 v2 v′

1 v′
2 aq

2
aq

3 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
3

ae
3 v3 v4 v′

3 v′
4 aq

3
aq

4 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
4

ae
4 v1 v4 v′

1 v′
4 aq

4
aq

5 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
6

ae
6 v2 v3 v′

2 v′
3 aq

6
aq

7 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
7

ae
7 v3 v4 v′

3 v′
4 aq

7
aq

8 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
8

ae
8 v1 v4 v′

1 v′
4 aq

8

Table A.3: Table representation of the third frame of G as PTOP-SP.
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Vertex Adjacent vertices
v1 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

1 ae
4 ae

5 ae
8

v2 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v3 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

2 ae
3 ae

6 ae
7

v4 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 aq

4 ae
5 ae

8
v′

2 v′
1 v′

3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
aq

1 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
2

ae
2 v1 v2 v′

1 v′
2 aq

2
aq

3 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
3

ae
3 v3 v4 v′

3 v′
4 aq

3
aq

4 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
4

ae
4 v1 v4 v′

1 v′
4 aq

4
aq

5 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
6

ae
6 v1 v2 v′

1 v′
2 aq

6
aq

7 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
7

ae
7 v3 v4 v′

3 v′
4 aq

7
aq

8 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
8

ae
8 v1 v4 v′

1 v′
4 aq

8

Table A.4: Table representation of the fourth frame of G as PTOP-SP.
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A. Frame tables of a PTOP-SP instance for G

Vertex Adjacent vertices
v1 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

1 ae
4 ae

5 ae
8

v2 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v3 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

2 ae
3 ae

6 ae
7

v4 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 aq

4 ae
5 ae

8
v′

2 v′
1 v′

3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
aq

1 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
2

ae
2 v1 v2 v′

1 v′
2 aq

2
aq

3 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
3

ae
3 v1 v2 v′

1 v′
2 aq

3
aq

4 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
4

ae
4 v1 v4 v′

1 v′
4 aq

4
aq

5 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
6

ae
6 v1 v2 v′

1 v′
2 aq

6
aq

7 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
7

ae
7 v3 v4 v′

3 v′
4 aq

7
aq

8 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
8

ae
8 v1 v4 v′

1 v′
4 aq

8

Table A.5: Table representation of the fifth frame of G as PTOP-SP.
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Vertex Adjacent vertices
v1 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

1 ae
4 ae

5 ae
8

v2 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v3 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

2 ae
3 ae

6 ae
7

v4 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 aq

4 ae
5 ae

8
v′

2 v′
1 v′

3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
aq

1 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
2

ae
2 v1 v2 v′

1 v′
2 aq

2
aq

3 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
3

ae
3 v1 v2 v′

1 v′
2 aq

3
aq

4 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
4

ae
4 v1 v4 v′

1 v′
4 aq

4
aq

5 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
6

ae
6 v1 v2 v′

1 v′
2 aq

6
aq

7 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
7

ae
7 v1 v2 v′

1 v′
2 aq

7
aq

8 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
8

ae
8 v1 v4 v′

1 v′
4 aq

8

Table A.6: Table representation of the sixth frame of G as PTOP-SP.
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A. Frame tables of a PTOP-SP instance for G

Vertex Adjacent vertices
v1 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

1 ae
4 ae

5 ae
8

v2 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v3 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

2 ae
3 ae

6 ae
7

v4 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 aq

4 ae
5 ae

8
v′

2 v′
1 v′

3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
aq

1 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
2

ae
2 v1 v2 v′

1 v′
2 aq

2
aq

3 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
3

ae
3 v1 v2 v′

1 v′
2 aq

3
aq

4 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
4

ae
4 v1 v2 v′

1 v′
2 aq

4
aq

5 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
6

ae
6 v1 v2 v′

1 v′
2 aq

6
aq

7 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
7

ae
7 v1 v2 v′

1 v′
2 aq

7
aq

8 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
8

ae
8 v1 v4 v′

1 v′
4 aq

8

Table A.7: Table representation of the seventh frame of G as PTOP-SP.
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Vertex Adjacent vertices
v1 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

1 ae
4 ae

5 ae
8

v2 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v3 v2 v4 aq

1 aq
2 aq

3 aq
4 aq

5 aq
6 aq

7 aq
8 ae

2 ae
3 ae

6 ae
7

v4 v1 v3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
v′

1 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 aq

4 ae
5 ae

8
v′

2 v′
1 v′

3 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
1 ae

2 ae
5 ae

6
v′

3 v′
2 v′

4 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
2 ae

3 ae
6 ae

7
v′

4 v′
1 v′

2 aq
1 aq

2 aq
3 aq

4 aq
5 aq

6 aq
7 aq

8 ae
3 ae

4 ae
7 ae

8
aq

1 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
1

ae
1 v1 v2 v′

1 v′
2 aq

1
aq

2 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
2

ae
2 v1 v2 v′

1 v′
2 aq

2
aq

3 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
3

ae
3 v1 v2 v′

1 v′
2 aq

3
aq

4 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
4

ae
4 v1 v2 v′

1 v′
2 aq

4
aq

5 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
5

ae
5 v1 v2 v′

1 v′
2 aq

5
aq

6 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
6

ae
6 v1 v2 v′

1 v′
2 aq

6
aq

7 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
7

ae
7 v1 v2 v′

1 v′
2 aq

7
aq

8 v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 ae
8

ae
8 v1 v2 v′

1 v′
2 aq

8

Table A.8: Table representation of the eighth frame of G as PTOP-SP.
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Overview of Generative AI Tools
Used

Grammarly was used to check the whole thesis for grammar mistakes. It can also provide
recommendations for better, more precise sentence formulations. A feature that we
employed.

ChatGPT was used to help with formulations in Chapter 1 (Introduction), in Chapter 2
(Preliminaries), in Chapter 6 (Conclusion and Open Questions), and the Abstract. First
all of these chapters were written by hand, then ChatGPT was used to reformulate and
streamline these contribution-free chapters.
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List of Figures

1.1 An example of a planar storyplan of the graph K3,3, from left to right, top to
bottom. Each frame shows one new vertex getting activated (green). Vertices
and edges in light grey are yet to be activated, while light blue represents
those that have already disappeared. . . . . . . . . . . . . . . . . . . . . . 2

2.1 This Figure illustrates the differences between (a) a non-planar drawing, (b) a
non-planar geometric drawing, (c) a planar drawing and (c) a planar geometric
drawing. All four illustrations are drawings of the same graph. The colors
help visualize the vertices and edges in the different drawings. . . . . . . . 7

3.1 (a) A straight-line drawing of an induced subgraph of G, showing the two
quadrangles Q and Q′ and one of the structures Si. The two quadrangles Q
and Q′ are black, and the edges of the structure Si is presented in colors. The
edges EQ,aq

i
and EQ′,aq

i
between the quadrangle-apex aq

i and the vertices of
both quadrangles are magenta, and the edges incident to ae

i are blue (those
are the edges Eeφ(i),ae

i
, Ee′

φ(i),ae
i
, and ai). (b) An apex-triangle Ai consists of

the apex vertices aq
i and ae

i , one quadrangle Q, and all their induced edges.
The defining factor of the apex-triangle is that both apex vertices must lie in
the outer face of this drawing. . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Graph G, the two quadrangles Q and Q′ are black, and every structure Si

for i ∈ [4] has its unique color. The sibling structures are omitted in the
drawing, as the coordinates of the embedding of their vertices and edges can
be identical to the coordinates of the embeddings of the vertices and edges of
the four structures shown in this figure. . . . . . . . . . . . . . . . . . . . 14

3.3 The first two frames of graph G. In the second frame, the structure S5 can
be placed in the same position as S1. Resulting in an equivalent frame, the
only difference being that the apex vertices aq

5 and ae
5 are used instead of aq

1
and ae

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 The graph’s G third and fourth frame. The structure S6 replaces S2 in the

fourth frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 The fifth and sixth frames of the graph G. The structure S7 replaces S3 in

the sixth frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 The seventh and eighth frames of the graph G. The structure S8 replaces S4

in the eighth frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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3.7 The left shows two quadrangles with one Si inside the inner one. The middle
shows the structure Si placed between the two quadrangles, and the right has
a structure Si outside of both quadrangles. Of those three, only the graph in
the middle is planar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 This Figure shows that each structure Si separately can be placed inside of a
quadrangle without any problems. . . . . . . . . . . . . . . . . . . . . . . 21

3.9 On the left, we see one fixed placement for the outer and the inner quadrangle
and the edges that connect to ae

i marked in violet. In the middle, we see the
possible placements for aq

i , where only the upper one is legitimate as all others
split both violet edges so that there is no possible placement for ae

i that could
lead to a planar drawing. On the right, we see the possible placements for
ae

i . Here, the upper right drawing is invalid, as there is no way to draw edges
between aq

i and the inner quadrangle that would lead to a planar drawing. So,
the two drawings in the second and third row of the right column represent
the only feasible placements for aq

i and ae
i . . . . . . . . . . . . . . . . . . . 23

3.10 On the left, we see the face defined by aq
i and one edge of the outer quadrangle,

and ae
i placed inside that face. In the middle graphs, we see the different

possible positions of the edge of the inner quadrangle in contrast with the
positions of aq

i and ae
i . In the lower middle graph, both these vertices lie on

the same side of the edge eφ(i), which leads to line crossings. On the upper
middle graph, we see the vertices placed on different sides of the edge eφ(i),
which leads to a valid planar straight-line drawing. On the right, we see the
same graph again, but the two missing vertices of the inner quadrangle are
added, showing that those have to be placed on the same side of eφ(i) as aq

i . 25
3.11 This Figure shows how we went from the outer quadrangle Q′ to the apex-

triangle Ai. The new edges in every step are represented in blue, and Ai is
drawn in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.12 To the left in green, we see a structure where aq
i can connect to all corners

of the quadrangle, with straight-line edges. To the right in blue, we see a
structure where this is impossible. . . . . . . . . . . . . . . . . . . . . . . 27

3.13 This graph shows the three defining half-planes. First, a horizontal line that
splits the half-planes h+

eφ(i)
and h−

eφ(i)
and also separates aq

i and ae
i . Second

and third, the half-planes h+
eφ(i−1)

and h+
eφ(i+1)

defined by the side edges of
the inner quadrangle. aq

i is placed inside the intersection of the latter two
half-planes and, therefore, can see all vertices of the inner quadrangle. . . 28

3.14 To the left, we see two quadrangles, where the half-planes defined by the side
edges intersect above the grey horizontal half-plane, which allows a planar
drawing of aq

i and its edges with the inner quadrangle. To the right, we see
two quadrangles, where the half-planes defined by the side edges intersect
below the horizontal half-plane. As aq

i must be placed above that horizontal
half-plane, there does not exist a valid position for aq

i that does not create
line crossings. These line crossings are represented in red. . . . . . . . . . 29
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3.15 Two quadrangle-apexes aq
i are active in the same frame. Drawn with all their

connections to both quadrangles. . . . . . . . . . . . . . . . . . . . . . . . 33
3.16 If two quadrangle-apexes aq

i are active in the same frame, there must always
be line crossings between their edges with the inner quadrangle. . . . . . . 33

3.17 Showing six frames representing the inner quadrangle with the structures Si

for i ∈ [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.18 Here, we see both possible drawings of a structure Si if the inner quadrangle

is concave. On the left, aq
i can see all vertices of the quadrangle, but a line

crossing with one of the edges of ae
i exists. On the right, the edges of aq

i and
ae

i do not intersect, but the edge between aq
i and the middle vertex of the

“boomerang” shaped quadrangle crosses through the quadrangle. So, in both
cases, we have a non-planar drawing. . . . . . . . . . . . . . . . . . . . . . 36

3.19 This figure shows the two possible ways to place two quadrangles next to each
other and connect the apex vertices to them. . . . . . . . . . . . . . . . . 37

3.20 This figure shows the four possible cases of the ≺-relation, defined through
the convex hull over two non-intersecting polygons A and B. In green are the
non-input-polygon edges of the convex hull. . . . . . . . . . . . . . . . . . 38

3.21 This figure shows the two possible cases of the ≺-relation between two line
segments, defined through the convex hull over two non-crossing line segments
a and b. In green are the non-input edges of the convex hull. . . . . . . . 39

3.22 This figure shows how Thales theorem can be applied to determine which one
of two polygons is bigger by comparison of two parallel lines going through
the polygons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.23 An example showing that the ⪯-relation is not transitive. In dark green, we
see that A ≻ B holds; in orange, we see that B ≻ C holds, which, according
to transitivity, should give us A ≻ C. However, in purple, we see that the
reverse is true, and C ≻ A holds. . . . . . . . . . . . . . . . . . . . . . . . 41

3.24 This figure shows a triangular face f , with one edge e and an opposing vertex
v. Then, the direction of f towards v is represented by the purple vector v⃗.
The blue line represents the width of the face at point p in direction v⃗. . . 42

3.25 On the left, we see an edge eB bigger than the polygon A. On the right, we
see the two possibilities for a polygon B that contains the edge eB. . . . . 43

3.26 This figure shows a triangular face f , a polygon P ′ inside of f , and the convex
hulls between P ′ and each of the edges of f separately. It is clear to see that
the edges a, b, and c are bigger than P ′, and therefore by Lemma 3.8 that also
any polygon P that contains one of a, b, or c as an edge is bigger than P ′. 44

3.27 Showing a possible drawing of the apex-structures Si for a triangle. The
important part here is that there are no intersections between any of the edges
connecting the quadrangle-apexes aq

i to the triangle and the edges that define
the triangle itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Illustration of the various types of gadgets and how they are connected. . 50
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4.2 This plot shows a planar geometric embedding of a K2,2,2. The vertices of
each partite set are drawn using the same symbol (circle, square, and cross).
It is visible that any pair of two partite sets creates a cycle (see the edges of
the same color) that splits the vertices of the remaining partite set. . . . . 52

4.3 Proof of Lemma 4.2 drawing the vertices of the fixed w-sides. . . . . . . . 53
4.4 Proof of Lemma 4.2 drawing the vertices of the fixed v-sides. . . . . . . . 54
4.5 Proof of Lemma 4.2 drawing the vertices of the flexible v-sides. . . . . . . 54
4.6 Proof of Lemma 4.2 drawing the first three steps of a clause gadget. . . . 55
4.7 Proof of Lemma 4.2 drawing the last two steps of a clause gadget. . . . . 56
4.8 Proof of Lemma 4.2 drawing the first false literal. . . . . . . . . . . . . . . 57
4.9 Proof of Lemma 4.2 drawing the second false literal. . . . . . . . . . . . . 58
4.10 Proof of Lemma 4.2 drawing the true literal. . . . . . . . . . . . . . . . . 59
4.11 This and the following two figures show that no matter where the fixed wire

gadget (purple) is positioned on the “wire-line”, creating the clause gadget
as described above is always possible. Here we see our construction in the
situation, where the left wire gadget is fixed. . . . . . . . . . . . . . . . . 60

4.12 This figure shows a possible drawing of our construction when the middle
wire gadget is fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 This figure shows how our construction can be mirrored when the right wire
gadget is fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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List of Tables

3.1 Table representation of G. In the leftmost column, all vertices of G are listed.
To the right, all vertices adjacent to that respective vertex are listed. (Qa is
the set of all quadrangle-apex vertices, and Qv is the set of all quadrangle
vertices.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.1 Table representation of the first frame of G as PTOP-SP. Black-colored are
all vertices that are active in that frame. Magenta-colored are all the vertices
that have not yet been activated. . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 Table representation of the second frame of G as PTOP-SP. Green-colored
are all the vertices that were already active in a previous frame. . . . . . . 73
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Glossary

∃R The so-called existential theory of the reals is the complexity class that contains all
problems which are representable by a true sentence of the form ∃X1 · · · ∃Xn F (X1, . . . , Xn),
where F (X1, . . . , Xn) is a quantifier-free formula over equalities and inequalities of
real-valued polynomials and lies between NP and PSPACE [1]. 61, 70

NP The complexity class that describes all problems solvable by a Nondeterministic
turingmachine in Polynomial time. xi, xiii, xv, 3–5, 9, 49–52, 54, 56, 58, 60–62,
64–66, 69, 70, 89

P The complexity class that describes all problems solvable by a deterministic turingma-
chine in Polynomial time. 65

PSPACE The complexity class that describes all problems solvable by a deterministic
turingmachine using Polynomial SPACE. 61, 89
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Acronyms

One-In-Three 3SAT One-In-Three 3-Satisfiability problem. 3, 49, 53, 60, 61

3SAT 3-Satisfiability problem. 49, 51, 60, 61

ETH Exponential Time Hypothesis. 60, 61

FPT fixed-parameter tractable. 3, 4, 70

MIN-PGEO-SP Minimal Planar Geometric StoryPlan problem. xi, xiii, 2, 5,
64, 66, 69, 70

MIN-PTOP-SP Minimal Planar Topological StoryPlan problem. xi, xiii, 2,
5, 64, 66, 69, 70

PGEO-k-SP Planar Geometric k-StoryPlan problem. xi, xiii, 2, 5, 64, 65, 69,
70

PGEO-SP Planar Geometric StoryPlan problem. xi, xiii, xv, 2, 4, 5, 8, 9, 11,
12, 14, 16, 18–46, 49–52, 54, 56, 58, 60–63, 65, 69, 70

PTOP-k-SP Planar Topological k-StoryPlan problem. xi, xiii, 2, 5, 64–66, 69,
70

PTOP-SP Planar Topological StoryPlan problem. xi, xiii, xv, 2, 4, 5, 8, 11,
16, 17, 34, 46, 49, 61, 63, 65, 69–79, 87
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