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Kurzfassung

Program-Reduction hat sich als wirksames Mittel erwiesen, um die Compilerentwicklung
zu beschleunigen bzw. Programme zu verkleinern, um sie sicherer zu machen. Kernstück
vieler Reduktionsalgorithmen ist Delta-Debugging, ein Algorithmus zur systematischen
Entfernung von Elementen aus einem Programm, währenddessen eine gegebene Eigen-
schaft erhalten bleiben soll. Da das Problem der Suche nach einem globalen Minimum als
NP-complete eingestuft wird, definiert Program-Reduction den Begriff der "1-minimalen
Lösung", bei der das Programm beim Entfernen eines einzelnen Elements die gewünschte
Eigenschaft verlieren würde. Verbesserte Versionen von Delta-Debugging nutzen die
baumartige Struktur des Quellcodes zur Reduzierung der notwendigen Tests, die formale
Syntax von Programmiersprachen zur Begrenzung des Suchraums und probabilistische
Modelle zur Beschleunigung des Reduktionsprozesses.
Reduktionsalgorithmen werden in zwei Gruppen unterteilt: sprachunabhängige Algorith-
men verwenden allgemeine Transformationen, um Programme in jeder beliebigen Sprache
zu verkleinern, während sprachspezifische Reduktionsalgorithmen Domänenwissen nutzen,
um spezifische und effektive Transformationen zu implementieren. Die meisten dieser
Algorithmen werden auf prozedurale Sprachen angewandt.
Diese Arbeit schlägt ein neuartiges Framework namens Seru vor, das sprach-agnostische
Reduktionsalgorithmen erweitert und sprachspezifische Heuristiken auf modulare Weise
integriert. Der Ansatz kann auf mehrere Sprachen angewandt werden, während das
semantische Verständnis einer bestimmten Sprache genutzt wird, um Programme weiter
zu reduzieren.
Seru wird mit der Sprache CUE evaluiert, die starke Einflüsse von logischen Program-
miersprachen enthält. Ergebnisse zeigen Verbesserungen für beide genutzten Reduktions-
algorithmen, Perses und Vulcan, mit bis zu 20,88% bzw. 16,94% kleineren Dateien.
Der kombinierte Ansatz aus sprachunabhängigen Reduktionsalgorithmen und semanti-
schen Heuristiken erwies sich als effektiv, aber zeitaufwändig in der Ausführung. Die
Programmreduktion ist nicht nur für prozedurale Sprachen effektiv, sondern erweist sich
auch als nützliches Werkzeug zur Reduktion logischer Programmiersprachen. In zukünfti-
gen Arbeiten könnten Large Language Models verwendet werden, um die Entwicklung
von Heuristiken für weitere Sprachen zu beschleunigen.
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Abstract

Program reduction proved to be an effective way to speed up compiler development or
shrink programs to make them more robust. At the core of many reduction algorithms is
delta debugging, a technique to systematically remove elements from a program while
ensuring a required property holds. Since finding a global minimum is an NP-complete
problem, program reduction aims to find a 1-minimal result, where any removal of
one element causes a test failure. Delta debugging was further improved by utilizing
the tree-like structure of source code, by leveraging the formal syntax of programming
languages to limit the search space and by building a probabilistic model to speed-up
the reduction process.
Reducers are partitioned into two groups: language-agnostic reducers use general trans-
formations to shrink programs of any language while language-specific reducers leverage
domain knowledge to implement specific and powerful transformations. Most of these
reducers focus on procedural languages.
This work proposes a novel framework called Seru, that extends agnostic reducers and
adds the ability to integrate language-specific heuristics in a modular way. The generality
of the approach is kept, while the semantic understanding of a specific language is utilized
to further shrink inputs.
Seru is evaluated on the language CUE, which has its roots in logic programming. The
results show improvements for both base reducers, Perses and Vulcan, ranging up to
20.88% and 16.94%, respectively.
The combined approach of language-agnostic reducers and semantic heuristics proved
effective, yet time-consuming. Program reduction is not only effective for procedural
languages, but shows to be a useful tool to reduce logic programming languages as
well. In future work, large language models could be used to accelerate development of
heuristics for more languages.
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CHAPTER 1
Introduction

In addition to regular programming activities, developers frequently need to perform
debugging tasks during their work. Alaboudi et al. [1] found that a debugging session
occurs approximately once every eight minutes. These sessions last from a few minutes
to more than one hour. The software projects in their study range in size from 2k up to
4M lines of code. A significant amount of time is used to browse the source code files
and to identify the location of a bug.

Compilers and interpreters typically encourage or even require bug reporters to provide
a small reproducing program and a test that verifies the existence of a bug to start
debugging (GCC [6], Java [7], CUE [5]). Smaller reproducers enable compiler developers
to find and fix bugs in less time. However, finding a smaller reproducing program
from a real-world instance is not an easy task and requires knowledge of the particular
programming language and the specific program instance.

The need for automation of this process emerged and led to research to apply Automatic
Program Reduction (APR) to a wide range of applications [21, 23, 26, 27, 31, 33–36].
While most approaches aim to speed up compiler development by shrinking a bug-inducing
input, program reduction can generally be used to reduce programs to fit any specification.
Heo et al. [14] use APR to reduce the size of a program by removing unwanted features
and thus reducing the attack vectors against it. This use-case is also interesting for
devices with limited storage such as Internet-of-Things devices or for cloud applications,
since reduced programs require less storage space.

Program reducers are typically partitioned into two groups: language-agnostic program
reducers (AGRs) and language-specific program reducers (SPRs) [23, 27]. The first kind
supports a multitude of programming languages and applies general transformations
to shrink the size of a program, while the latter exploits the characteristics of a single
language to perform powerful, yet specific transformations. The generality of AGRs is a
desired property, yet SPRs typically perform better.
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1. Introduction

This work aims to combine the two approaches and incorporate the generality of AGRs
and the semantic knowledge and performance of SPRs into one framework, SeRu. The
approach utilizes existing state-of-the-art AGR solutions and applies additional language-
specific transformations to further improve the results. While existing program reducers
are mostly designed for procedural languages such as C and Java [26, 27], we explore
the paradigm of logic programming languages as the target for program reduction. In
particular, SeRu implements 14 language-specific heuristics for CUE [9], a modern,
open-source data validation and configuration language with roots in logic programming.

1.1 Motivating Example
When CUE language developers are faced with bug reports regarding issues in a new beta
version of the language, they typically get a program to reproduce the issue. These bug-
inducing programs can have hundreds or thousands of lines of code. In some occurrences,
a program cannot be supplied since it is proprietary.

An automatic program reducer can solve both of these issues: it reduces the size of a
particular source code file thus enabling faster debugging, and can be used by language
users to shrink proprietary code for easier obfuscation to include it in a bug report.

Figure 1.1 shows part (hidden lines given at start and end) of a CUE configuration file
which defines a custom command called foo. It defines multiple variables using the let
keyword, utilizes external modules such as strings and path and performs a complex
loop operation.

1 ... 12 lines
2 command: {
3 foo: {
4 let json_indent = " " & strings.MinRunes(4) & strings.MaxRunes(4)
5 let dir_operations = path.FromSlash("_operations/github", path.Unix)
6 let file_tf_json = "config.tf.json"
7
8 orgs: {
9 for orgName, orgTerraform in target.terraform.github.org

10 let dir_org = path.Join([dir_operations, orgName], _goos)
11 let file_org_config = path.Join([dir_org, file_tf_json], _goos) {
12 "generate config \(file_org_config)": cli.Print & {
13 text: json.Indent(json.Marshal(orgTerraform.config), "", json_indent) + "\n"
14 }
15 }
16 }
17 }
18 }
19 ... 57 lines

Figure 1.1: Part of a longer CUE configuration file (instance panic/2490/v1)

When a program reducer such as Perses [27] is applied on the input file, many of the
tokens can already be removed, as shown on the left in Figure 1.2. Hidden lines at the
bottom reduced from 57 to 21. Nested objects are removed in the body of command, yet
many statements were not changed. The AGR used performs syntax-guided reduction
and has no understanding of specific concepts like the for loop or let statements.
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1.1. Motivating Example

1 ... 11 lines
2 command: foo: {
3 let json_indent = " " & strings.MinRunes(4)
4 let dir_operations = path
5 let file_tf_json = "config.tf.json"
6 for orgName, orgTerraform in github
7 let dir_org = dir_operations
8 let file_org_config = file_tf_json {
9 cli.Print & {

10 text: json.Indent(json.Marshal(
orgTerraform), "", json_indent)

11 }
12 }
13 }
14 ... 21 lines

1 ... 8 lines
2 command: foo: {
3 file_tf_json: "config.tf.json"
4 for orgName, orgTerraform in github

{
5 cli.Print & {
6 text: json.Marshal(

orgTerraform)
7 }
8 }
9 }

10 ... 14 lines

Figure 1.2: Results of a reduction process (instance panic/2490/v1). Left shows part of
the result for Perses and right shows part of the result of Seru+Perses

When semantic understanding is added to the reduction process, additional tokens are
removed from the input, as shown on the right of Figure 1.2. Unnecessary declarations
are removed, let definitions are transformed to simple field declarations and the for
loop is simplified. Dependencies on external modules such as path are no longer used
and therefore removed. The input instance was reduced from the original 420 tokens to
152 by Perses, with a final result of 85 tokens when the semantic component is added.
This reduction to ≈20% of the input size implies less work for a developer to find the
culprit.

The next chapters discuss the background and preliminary knowledge in Chapter 2,
followed by related work in Chapter 3. A detailed description of the approach is given
in Chapter 4. We present results in Chapter 5 and discuss them in Chapter 6, before
concluding in Chapter 7.
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CHAPTER 2
Background

This chapter focuses on the preliminary knowledge required to interpret the results of this
thesis. It continues to explain program reduction in Section 2.1 and provide information
on logical programming languages and CUE in Section 2.2.

2.1 Program reduction
Program reduction is a technique to remove as much unnecessary information from
a source code file while still exhibiting a property (often a bug). Ideally, a program
contains as few tokens as possible after the reduction process and therefore simplifies the
debugging process for developers, since most of the irrelevant information is gone.

Formally, program reduction takes an input program P that exhibits a property ψ and
reduces it to a smaller program P ′ (or pmin) that also exhibits the property ψ. We use
the definition of program reduction from Sun et al. [27]:

ψ : P → B (2.1)
arg min
p∈P∧ψ(p)

|p| ≡ {p | p ∈ P ∧ ψ(p) ∧ ∀x ∈ P.|p| ≤ |x|} (2.2)

With B = {true, false} and P as the search space of all programs that can be derived
from P using a concrete program reduction algorithm such as Perses [27] or SeRu. The
property test function ψ : P → B is defined such that ψ(P ) = true and for any program
p ∈ P : ψ(p) = true, if the program p exhibits the property ψ and ψ(p) = false, if not.

Finding the smallest possible program, i.e. a global minimum, is a very hard problem.
In fact, Misherghi et al. [23] defined the program reduction problem on a tree structure
(the Abstract Syntax Tree (AST) of the source code) and showed that it is NP-complete.
To find a practical solution, the problem has to be relaxed by using another variant of
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2. Background

minimality called 1-minimality. First described by Zeller et al. [35] and later adapted
for tree structures by Misherghi et al. [23], a program p ∈ P is 1-minimal if any removal
of a single element (or node, respectively) would cause the property test to fail, i.e.
ψ(p) = false. Existing program reducers find 1-minimal solutions, or local minima,
according to their capabilities [19, 27, 34, 36].

Our approach using semantically informed heuristics to reduce programs aims to escape
these local minima and improve the overall result.

2.1.1 Delta debugging

The delta debugging algorithm ddmin was introduced by Zeller and Hildebrandt [35] and
is still used as the core of many program reduction algorithms [3, 16, 19, 21, 23, 27, 31,
33, 34].

ddmin intuitively consists of 3 steps:

1. Reduce to subset
The program is split into n subsets (starting with n = 2), followed by a property
test for each. If one of these subsets passes the property test, it is treated as the
new result, and Step 1 is repeated.

2. Reduce to complement
If none of the derived subsets passes the property test, their complements are
checked. A complement contains all elements of the current result, except the
elements in the subset. If a complement passes the property test, it is used as the
new result and the granularity is set to max(n − 1, 2). The algorithm continues at
Step 1.

3. Increase granularity
If none of the derived subsets pass the property test, the granularity is increased to
2n and the algorithm continues at Step 1.

It is easy to observe that ddmin will return a 1-minimal result. Before it terminates, the
granularity is increased such that all configurations with 1 missing element are tested.
The algorithm shows similarities to binary search, since half of the elements are removed
in each step in a best-case scenario, much like binary search trims half the search space.

Misherghi et al. [23] observed that ddmin does not consider the tree-like structure often
found in source code. Therefore, they propose the Hierarchical Delta Debugging (HDD)
algorithm. It works directly on the AST of source code and utilizes the hierarchy to
run the ddmin algorithm on each level of the tree. Note that Delta Debugging (DD)
and HDD are instances of AGRs, i.e. the algorithms are applicable to any programming
language.

6



2.1. Program reduction

2.1.2 Syntax-Guided Reduction
HDD poses a significant improvement over DD, but has to reject many generated
candidates, since they do not conform to the syntax of a programming language. In
practice, only solutions with valid syntax are of interest to developers. Sun et al. [27]
solved this issue by proposing a syntax-guided AGR based on DD and HDD with Perses.
Their approach utilizes a programming language grammar in Backus-Naur form (BNF)
to reduce the number of generated candidates with invalid syntax to zero, while DD and
HDD essentially waste a lot of time generating syntactically wrong programs. A program
reducer tries to find a minimal solution in P, containing all the programs a reducer can
derive from the original input P . This search space is partitioned in

P = Pvalid ⊎ Pinvalid (2.3)

with Pvalid containing all syntactically valid candidates and Pinvalid all programs with
invalid syntax. The approach of Perses to utilize a program grammar ensures Pinvalid = ∅.
With the insights gained by the grammar, syntax-guided reduction is able to provide
more transformation opportunities, by removing optional parts of a rule for instance,
increasing Pvalid. Therefore, syntax-guided reduction improves over DD and HDD in size
and time.

This approach is extended by Vulcan [34] to push the 1-minimality of a reduction result
by using additional transformations that produce a smaller or non-1-minimal result.
T-Rec [33] uses the lexical syntax to further reduce a result using fine-grained techniques
on the token level.

2.1.3 Language-specific Reduction
In contrast to AGRs, SPRs apply deep insights from a particular programming language
to implement transformations for it. They can utilize the semantics of language constructs
and are able to implement complex transformations, such as function inlining, where the
body of a function is copied to all calling locations with correct parameters substituted.

A popular instance of an SPR is C-Reduce [26]. It focuses on C/C++ program reduction
an implements transformations such as:

• Parameter removal from function signatures
• Inlining a function
• Removing unused code
• Changing return types of functions
• Simplifying variable declarations

While SPRs provide good performance on one programming language, they are not suited
for general use.

7



2. Background

2.2 Logical Programming Languages
Logical programming started to develop in the late 1960s and early 1970s and uses a
paradigm conceptually different from procedural languages [20]. Problems are described in
a declarative way using facts and rules. Horn clauses are at the basis of logic programming.
They are written in the form

A ← B0 ∧ B1 ∧ · · · ∧ Bn where n ≥ 0 (2.4)

A is called the head of the clause while B0 ∧ . . . is the body where each Bi is an atomic
formula. ← is read as if and ∧ as and. This yields a natural way to read a Horn clause
as a rule: "A if B0 and B1 and . . . ". The fact A holds if and only if all of Bi hold.
Combining multiple rules into a logic program yields a way to express knowledge and
compute new facts and it was shown that logic programming is Turing complete by
Tärnlund [30].

One of the most widely known logic programming languages is Prolog [4]. It is a general-
purpose language and is often used for the development of complex applications in the
field of artificial intelligence. A Prolog program consists of facts and rules. Figure 2.1
shows two facts on the first two lines: charlie is a dog and roxie is a cat. Line 3 is an
example of a rule, which in this case defines that every dog is also an animal.

1 dog(charlie).
2 cat(roxie).
3 animal(X) :- dog(X).

Figure 2.1: Example of a Prolog program.

If this program is loaded, various queries can be performed to check whether a fact holds.
The query ?-animal(charlie) would return true, while the query ?-animal(roxie) yields
false. It is also possible to query for all solutions to an open predicate: ?-animal(X)
would give the answer X=charlie.

While Prolog uses a top-down evaluation model, Datalog [22] generally uses a bottom-up
approach. Datalog is another instance of a logic programming language and its syntax
is a subset of Prolog. In contrast to Prolog being a general-purpose language, Datalog
is mainly used as a query language for databases and is not Turing complete. Some
differences compared to Prolog include: a missing cut operator, no negation and no
complex terms as arguments of predicates.

2.2.1 CUE
CUE [9] (Configure Unify Execute) is an open-source data validation language which
also includes an inference engine and is heavily inspired by logic programming. It has its
roots in GCL, a configuration language designed at Google to configure the predecessor of

8



2.2. Logical Programming Languages

Kubernetes. Similar to Datalog, CUE is not a general-purpose language, but has distinct
applications. It aims to simplify configuration tasks, supports data validation, templating
and queries, and can be used for code generation as well as executing custom commands.

The most prominent property of CUE is the unification of types and values into a single
concept, which orders them in the same hierarchy. Data and schema do not have to be
separate languages, but are all defined in CUE. For instance, a field can be assigned
to the type int, the constraint >5 or the value 10. CUE unifies all occurrences of an
identifier and checks if all constraints are fulfilled.

The syntax of CUE is a super-set of JSON. CUE programs (also called configurations)
are compatible with JSON and YAML files, both as input and as output. It is suitable to
unify and simplify large configurations typically found for cloud applications. Developers
can reduce redundancy, add constraints to existing configuration properties and generate
specific application configurations within one tool.

A typical CUE configuration consists of a collection of fields which link their label to a
value. foo, bar and out are labels for the fields in Figure 2.2.
The field on line 1 has a string value "Hello", while the field bar has a struct as its
value. A struct is the CUE equivalent of a JSON object and itself contains fields. A
typical JSON file would start and end with curly braces "{}" to define an object. These
braces can be omitted in CUE.
The value in line 3 contains a string interpolation. The syntax "\()" can be used
inside a string literal to evaluate any expression. Therefore, out results in the value
"Hello world!".

1 foo: "Hello"
2 bar: {
3 out: "\(foo) world!"
4 }

Figure 2.2: Small instance of a CUE configuration

Unification is a key concept in CUE. It allows multiple definitions of the same identifier
across multiple files which are merged into one upon evaluation. Figure 2.3 shows an
example of this behavior. It shows multiple definitions for foo, two different fields for
a struct in bar and an abstract and concrete list definition for baz. These fields are
merged into the output on the right. If any of the constraints are not compatible, e.g.
change line 2 to foo: <5, the evaluation process would throw an error.

Templating is a major use-case for CUE and is often use for cloud configurations. A
simplified example is given in Figure 2.4. It shows a template for the label app on line 1.
[X=string] is a placeholder expression and expects any string to be a filed directly
below app and stores its name in X. The field name on line 2 uses the stored name
X and the value of the sibling field kind to create a string value. apiVersion is a
constant value while kind is constrained to one of two values. Since fields name and

9



2. Background

1 foo: int
2 foo: >5
3 foo: 10
4
5 bar: {
6 a: 5
7 }
8 bar: {
9 b: 2

10 }
11
12 baz: [...int]
13 baz: [1, 2, 3]

1 foo: 10
2 bar: {
3 a: 5
4 b: 2
5 }
6 baz: [1, 2, 3]

Figure 2.3: Unification process of fields in CUE

apiVersion can be inferred, a user only has to define a concrete value for kind on line
8-9. The output on the right side is shown in YAML format.

1 app: [X=string]: {
2 name: "\(X)-\(kind)"
3 apiVersion: "v1"
4 kind: "app" | "service"
5 }
6
7 app: {
8 database: kind: "app"
9 order: kind: "service"

10 }

1 app:
2 database:
3 name: database-app
4 apiVersion: v1
5 kind: app
6 order:
7 name: order-service
8 apiVersion: v1
9 kind: service

Figure 2.4: Example of templating in CUE

10



CHAPTER 3
Related work

Delta debugging was first introduced by Zeller and Hildebrandt [35], who proposed
ddmin, an algorithm to reduce the input of a program while still passing a predefined
test, which has great use in compiler development, software maintenance, and general
program reduction. The algorithm tries to reduce the input by removing elements from
the original input. It does so by removing a fixed-size sequence of elements from the
input, starting with the size n

2 , where n is the number of tokens in the input. The reduced
input sequences and their complements are tested and excluded from further testing
when the given test passes, otherwise the size is halved.
This language-agnostic program reducer (AGR) was improved by Misherghi and Su [23]
with the Hierarchical Delta Debugging (HDD) algorithm that builds on top of ddmin
and exploits the tree structure of programming and markup languages to reduce both
the final output size and the execution time. They also showed that program reduction
to a global minimum is an NP-complete problem. Improvements to HDD were made
with modern HDD by Hodovan and Kiss [16], coarse HDD by Hodovan et al. [17] and
HDDr by Kiss et al. [19].
A state-of-the-art tool for AGR is Perses by Sun et al.[27]. It utilises the formal syntax
of programs to only produce syntactically valid and smaller solutions. The framework
Vulcan, proposed by Xu et al. [34], leverages the result of state-of-the-art reducers like
Perses and adds auxiliary reducers to the pipeline. Using various transformation and
reduction methods, the auxiliary reducers manipulate the result to create a different,
but not necessarily smaller, result which is again processed by the main reducer. Vulcan
achieves smaller results in a variety of programming languages but needs more execution
time.
T-Rec by Xu et al. [33] is another improvement for AGRs. It uses a fine-grained
reduction technique that does not treat tokens as atomic, unlike other AGRs. Their
approach uses the lexical grammar of programming languages to explore the reduction
opportunities within tokens. The results of Perses and Vulcan are improved by 65 and 53
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3. Related work

percent in bytes. However, it is inevitable that this approach takes more execution time,
since additional steps are taken. The execution times are increased by 24-56 percent
using Perses and by 1-5 percent with Vulcan, depending on the particular programming
language.
The work of Wang et al. [31] aims to improve the core ddmin algorithm, which is used as
a basis in most works on top of the original delta debugging paper. Instead of following
a predefined sequence in testing, it builds a probabilistic model during execution, which
yields a probability for inclusion of each element in the final result. This approach
improves the execution time in practical cases and reduces the asymptotic worst-case
performance from O(n2) to O(n) with n being the size of the input. They later expanded
this work to apply this probabilistic approach to ASTs [32].
In contrast to AGRs, SPRs use fine-tuned rules and knowledge about a specific program-
ming language to find a smaller result. A state-of-the-art SPR for C and C++ is C-Reduce
proposed by Regehr et al. [26]. They implement 30 unique transformations utilizing the
specific properties of the C and C++ languages. These source code transformation can
simplify types and variable declarations, inline functions and remove parameters from
function signatures, to name a few examples. ddSMT 2.0 implements automatic program
reduction for SMT-LIBv2, a language for evaluating satisfiability modulo theories [21]. It
improves on the first version by implementing a hybrid approach, using both the ddmin
strategy and an orthogonal hierarchical strategy.
A recent work by Zhang et al. [36] combines the the ideas behind AGRs and SPRs using
the advancements in the field of Large Language Models (LLMs) [18]. They propose
LLM-aided program reduction (LPR) to perform language-specific transformations with
a language-agnostic tool. A multi-level prompt is sent to an LLM to first identify
possible locations for a source code transformation and then perform them to retrieve
new candidate programs. An AGR is used in a reduction loop to efficiently remove
unnecessary tokens. LPR significantly outperforms Vulcan in terms of token size, however,
it dynamically prompts an LLM which requires much computing resources and potentially
takes a long time.
This work introduces SeRu, which aims to combine the benefits of AGRs and SPRs
similar to LPR [36], but removes the high resource requirements of calling a LLM during
the reduction process. We introduce a total of 14 heuristics to implement a semantic
reduction component in addition to utilizing state-of-the-art AGRs. While some of
these heuristics are specific to a single language, we include versatile heuristics that
are applicable to any language and paradigm-specific heuristics, which apply to one
language paradigm, specifically logic programming languages. This work implements
these algorithms manually, but we also propose the idea of creating a human-in-the-loop
approach to generate specific implementations for various languages using LLMs. This
step would reduce the manual labor required while limiting the high resource requirements
of prompting a LLM multiple times during each reduction run.
SeRu also focuses on logic programming languages, while most of the state-of-the-art
algorithms focus on procedural languages with very specific language constructs or are
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focused on general-purpose program reduction. We specifically explore CUE [9] and the
reduction possibilities using versatile heuristics as well as fine-tuned reductions based
on the logical rules of CUE. While many programming paradigms, such as procedural
languages, have an explicit control flow defined by constructs like conditionals, loops
and function calls, logic programming languages are declarative and have its execution
order determined by logical inference engines. Our approach builds on top of existing
state-of-the-art solutions to incorporate rules tailored for logic programming languages,
specifically CUE, to advance AGRs in this specific area.
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CHAPTER 4
Approach

The current state-of-the-art as described in Chapter 3 regarding automatic program
reduction can be categorized into two main approaches:

• Generalized approaches with a focus on the structure of the AST of a program. We
will refer to these reducers as syntactic reducers.

• Specialized approaches focusing on the details and semantics of the source code.
We will refer to them as semantic reducers.

Syntactic reducers achieve high generality by working directly on the source code as text
or on the AST level. An important example of this group is delta debugging [35] which
processes individual tokens from source code files to achieve efficient reduction. Modern
examples of syntactic reducers use delta debugging or a modern variant at its core, for
instance HDD [23] exploiting the tree-like structure of source code to gain efficiency,
or Perses [27] which uses the grammar of a language to only generate valid candidates.
(other examples [16, 17, 19, 31, 32, 34]) While syntactic reducers improved over time,
they still face one issue: they cannot perform semantically informed reductions.

The approach of semantic reducers utilizes domain knowledge of a specific programming
language to reduce source code. One such tool is called C-Reduce [26]. This tool utilizes
a collection of transformations specifically designed for the C programming language, to
create a smaller instance based on the input. However, since such transformations are
designed for one programming language, language-specific reducers lack the generality of
syntactic reducers.

Our approach merges the generality of syntactic reducers with the effectiveness of semantic
reducers to create a modular and extensible framework which we call SeRu.
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4. Approach

Figure 4.1: The SeRu reduction framework in a simplified view

4.1 Framework
The goal of program reducers is to create a new instance with fewer tokens from an
input while maintaining a property ψ to hold during and after the process. The SeRu
framework behaves similarly to other reducers, with one input instance being reduced to
a new, smaller output instance.

The run configuration parameters of the system consist of an input program and a
property of this program, as seen at the left side of Figure 4.1. The input program
contains all relevant source code of the original program and fulfills the property. This
program is processed by the framework to create a new, smaller output by modifying the
input using reduction transformations. The property must hold for the input program
and is used to determine interesting outputs, also candidates, of the reducers. A candidate
is only interesting iff the property holds and will be discarded otherwise. The check of
the property ψ for each candidate during the reduction process ensures that the property
also holds for the output of the framework.

The main reduction loop (center in Figure 4.1) of the framework runs syntactic and
semantic reducers on the input instance and combines their respective results. Both
reducer components require some language-specific configuration to support a language.

Syntactic reducers (red in Figure 4.1) use general transformations that can be applied
to any language. These transformations must only remove tokens from the input, they
must not add any tokens. Their output is therefore equal to or smaller than the input.
Syntactic reducers must only return syntactically valid programs and therefore require a
grammar of a programming language to support it.

Semantic reducers (blue in Figure 4.1) implement a set of heuristics specific to a language.
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4.1. Framework

These heuristics use domain knowledge to remove or transform expressions in a program
instance. Their abstract goal is to identify expressions that can be represented in a
different way, potentially adding redundancy. To achieve this goal, a semantic reducer
also requires the grammar of the concrete language and must generate syntactically valid
output. Since these heuristics can understand the semantics in the source code, they can
provide more powerful transformations, such as removing semantically linked expressions
or inlining constants. Therefore, semantic reducers are able to remove, modify, or add
tokens to the input with the goal of providing more reduction opportunities for the
syntactic reducer.

While the language configuration is defined once to support all instances of a certain
language, the run configuration parameters must be supplied for every new reduction
instance.

4.1.1 Main reduction loop
The main reduction loop in Figure 4.1 is presented in more detail in Algorithm 4.1.
According to the definition of program reduction in Section 2.1, the algorithm takes an
input program P and a property function ψ and returns a minimal program pmin. We
use the definition of 1-minimality in Section 2.1 for the minimal program.

The main algorithm calls two functions: SyntacticReducer (see Section 4.1.2) and
SemanticReducer (see Section 4.1.3). Both of these functions take a program p ∈ P and
the property ψ as input and return a candidate program. While SemanticReducer
can return a candidate with |candidate| > |p|, SyntacticReducer always returns
a candidate equal to or smaller than the input. SemanticReducer performs all
transformations provided by the implemented heuristics sequentially. Both reducer
functions return the input program when no reduction could be achieved.

The main reduction loop runs as long as the combination of SyntacticReducer and
SemanticReducer finds a smaller result.

4.1.2 Syntactic Reducer
Let P be the set of all programs that can be derived from P during the reduction process.
Then

P = Pvalid ⊎ Pinvalid (4.1)

where Pvalid is the set of all programs with valid syntax in the target language and Pinvalid

the set of all programs with invalid syntax [27]. A syntactic reducer takes a program p
and the property function ψ and returns a modified version

p′ ∈ Pvalid s.t. (|p′| < |p| ∧ ψ(p′)) ∨ p′ = p (4.2)

If the syntactic reducer cannot find a smaller result exhibiting property ψ with the given
input, it returns the input. Otherwise, tokens are removed from the input as long as
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Algorithm 4.1: Main algorithm of the SeRu framework
Input: P : P, input program
Input: ψ: P → B, property function
Output: pmin: a minimum program p ∈ P with ψ(p) holding

1 best ← SyntacticReducer(P)
2 candidate ← ∅
3 while best ̸= candidate do
4 candidate ← SemanticReducer(best)
5 candidate ← SyntacticReducer(candidate)
6 if |candidate| < |best| then
7 best ← candidate
8 end
9 end

10 return best

possible, and the so generated program p′ will be returned. To achieve p′ ∈ Pvalid, a
syntactic reducer requires the grammar of a concrete programming language to filter
invalid candidate programs.

A syntactic reducer implements one or more transformation algorithms that are applicable
regardless of the concrete programming language of a concrete reduction instance. We
define a syntactic transformation as

tsyn : P → P ∀p ∈ P.tsyn(p) ⊆ p (4.3)

Informally, a syntactic transformation identifies and removes irrelevant parts of a program.
An irrelevant or redundant part is a token or a set of tokens that is not required for the
program to exhibit property ψ.

We give a simple algorithm for a syntactic reducer in Algorithm 4.2 as an example. It
is one instance of syntactic reducers and not necessarily the only option to fulfill above
requirements.

In addition to the input program P and the property function ψ, a syntactic reducer also
takes a syntax checker function S.

S(p) =
�

true, p ∈ Pvalid

false, otherwise, i.e. p ∈ Pinvalid

(4.4)

The first step of Algorithm 4.2 initializes a list T with all available transformations of
the concrete reducer. These transformations are instances of tsyn as defined in Equation
4.3. The program of minimal size best is initialized with P. Then, all transformations
are executed sequentially. If a transformation does not find a new candidate smaller
than the best, which exhibits ψ and has valid syntax, the next transformation is used.
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4.1. Framework

Algorithm 4.2: An example algorithm for SyntacticReducer

Input: P: P input program
Input: ψ: P → B property function
Input: S: P → B syntax checker
Output: p′: P smaller program derived from P

1 T ← list of available transformations tsyn

2 best ← P
3 for t in T do
4 candidate ← ∅
5 while best ̸= candidate do
6 candidate ← t(best)
7 if ψ(candidate) and S(candidate) and |candidate| < |best| then
8 best ← candidate
9 end

10 end
11 end
12 return best

The so-generated result is returned to the main algorithm. The identity function gives a
trivial, yet ineffective, syntactic reducer that matches the definition.

A modified version of the original delta debugging algorithm [35] is an example of a
syntactic reducer. It processes input files line by line and removes tokens in a structured
way (as mentioned in Chapter 3 and Chapter 2) Since delta debugging processes lines,
it does not require any other input than the source code and works on any language.
However, to fulfill the requirement of returning syntactically valid programs, an additional
syntax check is necessary to filter invalid candidates. Recent approaches improved on delta
debugging utilizing the grammar of a language and applying the algorithm on the AST
representation of source code. HDD[23] is an example which runs the delta debugging
algorithm on each level in the tree. Perses and Vulcan[27, 34] follow a syntax-guided
approach which only generates candidates with valid syntax.

4.1.3 Semantic Reducer

Semantic reducers use heuristics tailored to a specific programming language. These range
from widely-applicable ideas optimized for a specific language to algorithms leveraging
concrete program constructs. The term semantic refers to informed decisions which
are made using an understanding of the semantics of a programming language, and
do not require a known relationship between the semantics of an input program and
the semantics of transformed programs, different to metamorphic testing [8]. It is not
required to maintain the semantics of a program, since the only required property of the
output program is ψ.
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We categorize the heuristics for semantic reducers into three groups:

1. Versatile heuristics are transformations that can be applied to a multitude of
programming languages, in various paradigms. They utilize very common constructs
like loops and conditions, which enables implementations for many languages.

2. Paradigm-specific heuristics describe algorithms focused on one programming
paradigm.

3. Language-specific heuristics use domain knowledge specific to one programming
language. Such heuristics do not generalize and directly use language constructs
defined in the grammar.

Like syntactic reducers, semantic reducers also take an input program P and a property
function ψ, as shown in Algorithm 4.3.

Algorithm 4.3: SemanticReducer

Input: P: P input program
Input: ψ: P → B property function
Output: p′′: P program derived from P

1 H ← list of semantic heuristics hsem

2 best ← P
3 i ← 0
4 while i < |H| do
5 h ← H[i]
6 candidates ← h(best)
7 candidatesvalid ← filter(candidates, ψ)
8 if candidatesvalid not empty then
9 best ← min(candidatesvalid)

10 else
11 i + +
12 end
13 end
14 return best

The output of Algorithm 4.3, p′′ is a combination of candidates generated by the heuristics.
A loop iterates over all implemented heuristics and applies them to the current best
to generate new program candidates. In each iteration of the while loop, the current
heuristic h creates candidates based on the current best. Each heuristic defines its own
criteria to determine where it is applicable and how many candidates are generated,
i.e., the loop unrolling heuristic (Section 4.2.2) is only applicable to loop constructs. In
general, heuristics are applied to all possible locations. Candidates are not required
to exhibit property ψ, therefore, they are filtered to only maintain candidates with
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ψ(candidate) = true. If the current heuristic produced one or more such candidates, the
one with minimum size is used as the new best. Otherwise, if the current heuristic does
not create any candidates exhibiting property ψ, the algorithm will use the next heuristic
for the next iteration, until all heuristics are exhausted.

A heuristic hsem is not required to return a result smaller in size compared to the input.
We define hsem as

hsem : P → P ∀p ∈ P.hsem(p) ∩ p ̸= ∅ (4.5)

Similarly to tsyn, hsem is a function that transforms a program into another program. A
heuristic is required to produce a program which has at least one expression in common
with the original program.

Since the definition of a heuristic is lenient with one required property, we provide
informal goals of heuristics for a semantic reducer.

A goal of this work is a high reduction in a single step. A syntactic reducer is not
informed about the semantics of expressions and is unable to connect semantically linked
expressions together. However, a heuristic with semantic knowledge can link expressions
and perform a transformation of such linked expressions. A concrete example is the
elimination of a single variable in a program. A variable typically has a declaration,
definition, and one or more usages. The corresponding heuristic can identify and link
these statements and perform a transformation which removes all usages together with
the declaration and definition in a program and replaces usages with the variable value
or an algorithmically chosen value.

Another variant of heuristics transforms expressions to exhibit more redundancy compared
to the input program. Such heuristics can potentially add to the size of a program, which
contradicts the overall objective of program reduction: generating a smaller program
exhibiting a property. Although these heuristics would not benefit the reduction process
on their own, the combination with syntactic reducers, which are designed to eliminate
redundancy, provides new reduction possibilities compared to syntactic reducers on their
own. A trivial and versatile heuristic with this property is constant propagation. If a
program assigns a literal value to a variable, the heuristic can inline this value for all
usages, potentially growing the program while leaving the variable definition redundant.
A syntactic reducer is now able to remove the variable definition.

A third approach to heuristics transform single expressions to simpler program constructs.
Control structures like loops and conditions often contain boolean expressions. These
expressions can be simplified or (partially) evaluated, depending on the available context.

CUE We instantiated the SeRu framework for the CUE language. Figure 4.2 shows
the framework in more detail. The concrete inputs consist of a CUE file as the target for
the reduction and a shell script which determines if a CUE file exhibits the property ψ.
The semantic reducer is implemented using the official CUE API [10] written in GO and
implements a total of 14 heuristics. Perses [27] and Vulcan [34] are the options for the
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Figure 4.2: The Seru framework instantiated for the CUE language [9]. The syntactic
reducers require an ANTLR [2] grammar to generate a parser for CUE. Heuristics for
the semantic reducer plugin are implemented using the official CUE API for GO [10].

syntactic reducer and require a program grammar in the ANTLR format [2]. After the
reduction process terminated, a reduced CUE file is created by the framework.

As some heuristics serve a similar purpose, they are grouped together:

• if and if(trivial) in Section 4.3.1

• nesting, package, declaration and ellipsis in Section 4.4.3

All detailed descriptions of all heuristics follow in Sections 4.2-4.4.

4.2 Versatile Heuristics
We consider a heuristic to be versatile, if the algorithm can be applied to various
programming languages, over different paradigms. These algorithms use common control
structures such as conditions and loops which occur in many programming languages.
However, the concrete implementation is specific to one programming language.

4.2.1 Constant Propagation
In constant propagation, variables are backtracked to their assigned constant or value.
This can either be another variable or a literal value. All usages of a variable is then
replaced with the found constant value, or in other words, the constant is propagated. The
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1 foo: 3
2 bar: foo
3
4 x: {
5 y: bar
6 }
7 z: x

1 foo: 3
2 bar: 3
3
4 x: {
5 y: 3
6 }
7 z: {
8 y: 3
9 }

Figure 4.3: An example of constant propagation in CUE. Variables are resolved recursively
to their respective value over multiple steps. Effectively removing variable dependencies.

conceptual idea of constant propagation is similar to the strategy Variable Elimination
used by Zhang et al. [36].

We give an example of constant propagation in Figure 4.3. The example defines some
variables in CUE with literal values, references to other variables, or struct definitions.
The constant propagation algorithm recursively resolves all variables to their respective
values. A variable bar resolves its reference to foo to the literal 3. Another example is
variable z. It references x, which transitively references bar and foo, respectively. x,
bar and foo can be considered dependencies of z. All these references are resolved to
their value, which removes these transitive dependencies from z. If a property ψ depends
on z, all other variables can be removed after this step.

A general algorithm for constant propagation is given in Algorithm 4.4.

Algorithm 4.4: Constant propagation
Input: P: P input program
Output: t: set of transformed programs p ∈ P

1 t ← ∅
2 I ← FindIdentifierUsages(P )
3 for ident in I do
4 value ← ResolveV alueInScope(P, ident)
5 if found value then
6 t ← t ∪ {ReplaceIdentWithV alue(P, ident, value)}
7 end
8 end
9 return t

The function FindIdentifierUsages() traverses the AST and returns references
to all identifiers used while skipping the declarations of such identifiers. Each usage
of an identifier is returned separately. The algorithm does not replace declarations,
since it is the first occurrence of an identifier and replacing it would remove it from
the set of known identifiers in a program. Each iteration of the loop resolves a value
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for a given identifier. Depending on the concrete programming language, there could
be multiple values associated with the same identifier. In such cases, the function
ResolveValueInScope() resolves values first from the most local scope and tries
every parent scope until it reaches the global scope. If a value could be resolved, Algorithm
4.4 copies the input program, replaces the current identifier and stores the transformed
program in t.

4.2.2 Loop Unrolling
The heuristic of loop unrolling was also inspired by Zhang et al. [36]. Loops are common
in many programming languages and repeat a set of expressions until a condition is
reached.

Algorithm 4.5: Loop unrolling
Input: P: P input program
Output: t: set of transformed programs p ∈ P

1 t ← ∅
2 L ← FindLoops(P )
3 foreach loop in L do
4 iterationV alues ← ResolveV aluesByIteration(P, loop)
5 if iterationValues is empty then
6 continue
7 end
8 statements ← ∅
9 foreach i in iterationValues do

10 statements ← statements ∪ {LoopBodyWithV alue(loop, i)}
11 end
12 t ← t ∪ {ReplaceLoopWithInlinedStatements(P, loop, statements)}
13 end
14 return t

If it is known that a loop will execute its loop body n times, the loop can be replaced
by n copies of the loop body with all loop variables substituted to the value in the
respective iteration. This action is known as loop unrolling (Algorithm 4.5) and can
provide opportunities for program reduction. If the property ψ depends on a specific
loop iteration and all others are irrelevant, program reduction can remove all irrelevant
iteration after loop unrolling was performed, as shown in Figure 4.4.

4.2.3 Dependency Optimization
Many programming languages have a mechanism to share code, e.g. modules in NodeJS
[24] or GoLang [13]. To use shared code, a program usually has to import it using a
special keyword, e.g. import in GoLang. Using static analysis, a heuristic can identify
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1 foo: {
2 a: 2
3 b: 0
4 }
5
6 bar: {
7 for k, v in foo {
8 (k): 10 / v
9 }

10 }

1 foo: {
2 a: 2
3 b: 0
4 }
5
6 bar: {
7 a: 10 / 2
8 b: 10 / 0
9 }

1 bar: {
2 b: 10 / 0
3 }

Figure 4.4: Motivating example for loop unrolling. The property to keep is a division
by zero error. The loop in the input on the left is unrolled by the heuristic first, and
reduced by a syntactic reducer to only retain the lines contributing to the error.

1 import (
2 "strings"
3 "encoding/json"
4 )
5
6 foo: {
7 a: strings.Repeat("a1", 5)
8 a: int
9 }

10 bar: json.Marshal(foo)

1 foo: {
2 a: ""
3 a: int
4 }
5 bar: ""

Figure 4.5: Example for dependency optimization. Variable a is defined with type string
on line 7 and int on line 8, causing a conflict. All imported packages can safely be
removed, since they do not contribute to the issue.

unused imports or remove used imports by replacing all usages with other expressions.
These expressions have one required property: they must be admissible in the current
context. To determine whether an expression is admissible and to generate syntactically
valid candidates, the grammar of a specific programming language is required. If a
programming language has a type system, the modified expression must adhere to all
the type constraints of the original expression. For the purpose of program reduction, a
reference implementation could replace expressions with a trivial instance of the allowed
type. An example is shown in Figure 4.5, where packages "strings" and "json" are
removed from a CUE program by replacing usages with an empty string literal.

4.2.4 List Literal Reduction

Languages like CUE [9] or JavaScript [12] provide literals to define a list or an array.
During the evaluation of syntactic reducers such as Perses [27] and PICIRENY [15]
(which implements modern HDD), we noticed that list literals are not reduced. This is
likely caused by the specifics of the implementation and how list literals are represented
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1 foo: 1
2 if foo < 2: {
3 a: 2
4 }

1 foo: 1
2 if true: {
3 a: 2
4 }

1 foo: 1
2 if false: {
3 a: 2
4 }

Figure 4.6: Trivial approach to simplify conditions. A condition is replaced with the
literals true and false

in a grammar, motivating this heuristic.

The list literal heuristic aims to remove as many list items in a literal as possible. To
simplify the approach, we implement a variant which removes all items in a list literal.

4.3 Logical Heuristics
Logical heuristics leverage boolean expressions to find reduction opportunities. Since
many programming languages have boolean expressions, such as C or CUE, we consider
these heuristics to be versatile.

4.3.1 Simplifying conditions
A common control structure in programming languages is a branching statement, referred
to as if-then-else. These structures include at least one condition in the form of an
expression returning a boolean value and a block of statements that is only executed
if the condition yields true. A trivial approach to simplify the conditions for program
reduction produces two alternatives: once with the condition set to true and once set to
false, as shown in Figure 4.6.

Once a condition consists of a boolean literal, it is trivial for a second heuristic to reduce
the tokens of a condition statement. For true-literals, the heuristic removes the condition
and keeps the body of the clause, whereas conditions with false-literals are completely
removed.

An alternative and more advanced heuristic tries to evaluate a boolean expression in
the current context, and thus simplifies a conditional control structure. This approach
requires evaluation of all expressions used in the condition.

4.3.2 Type reduction
Inspired by Data Type Simplification & Elimination used in Zhang et al. [36], we propose
a heuristic to reduce types. Boolean expressions occur not only as values in programming
languages, there are also some languages where such constructs can be used in the type
system. See TypeScript [29], where the | operator is used to combine several types or
values to a union type. The type string | number accepts values of both types string
and number while a type A & B produces the intersection of two types, i.e. all common
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1 import "strings"
2
3 #foo: "stage" | "prod"
4 #bar: string \
5 & strings.MinRunes(4) \
6 & strings.MaxRunes(8)
7
8 env: "stage" & #foo
9 app: "proxy" & #bar

1 #foo: "stage"
2 #bar: string
3
4 env: "stage" & #foo
5 app: "proxy" & #bar

1 env: "stage"
2 app: "proxy"

Figure 4.7: Example of type reductions in CUE. A union type #foo is reduced to only
keep used options while constraints from #bar are removed. Both definitions are then
inlined in a separate step.

properties are retained. CUE has similar capabilities to create union types, and extends
intersections to add constraints to types. Figure 4.7 shows a definition #foo that allows
the values stage and prod while the definition #bar constraints a string to have a
length between 4 and 8.

The union type can be reduced to the only option used "stage" and the constraints
are removed from the type #bar. In a second step, the values env and app are further
simplified, by removing the constraint on #foo and #bar, respectively.

4.4 CUE-specific Heuristics

All heuristics described above in Sections 4.2 and 4.3 can be applied to several pro-
gramming languages. In contrast, the heuristics in this section are specific to the CUE
programming language [9]. These approaches originate from the experiences of experts at
CUE. During the development of CUE, users report issues with various program instances.
To find an issue, CUE developers try to reduce the instance as much as possible by
leveraging their experience and removing unnecessary tokens from the original instance.
During this manual program reduction process and the analysis of their work, they found
several strategies for efficient reduction which are refined and described as heuristics in
this section.

4.4.1 String Interpolations

CUE allows strings to include so-called interpolations. String interpolations are delimited
by an escape sequence: \(...). If these characters occur inside a string literal, e.g.
"hello \(name)", the contents inside the parenthesis are evaluated like any other
expression. With a variable name: "john", the string will evaluate to "hello john".
Any valid CUE expression is allowed in a string interpolation as long as the result is of
type string, boolean, number, or bytes.
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1 name: "john"
2
3 fullname: "\(name) doe"

1 name: "john"
2
3 fullname: "john doe"

1 fullname: "john doe"

Figure 4.8: Simple example of string interpolation. The expression in fullname is
evaluated, essentially making variable name redundant.

1 import "strings"
2
3 #env: {
4 name: "stage" | "prod"
5 secret: string \
6 & strings.MinRunes(8)
7 }
8
9 stage: #env & {

10 name: "stage"
11 secret: "superdifficult"
12 }

1 import "strings"
2
3 stage: {
4 name: "stage" | "prod"
5 secret: string \
6 & strings.MinRunes(8)
7 name: "stage"
8 secret: "superdifficult"
9 }

Figure 4.9: Example to remove a type intersection by inlining all constraints.

The heuristic for string interpolations (demonstrated in Figure 4.8) evaluates an expression
and replaces the interpolation \(...) with the resulting value, if valid.

4.4.2 Type Intersection
Values and types are unified to the same concept in CUE. This property enables CUE
configurations to define constraints for fields similarly to the assignment of a concrete
value. In CUE, this is typically achieved by using the & operator. Figure 4.9 (left) shows
an example, where #env is a definition used to provide constraints on properties secret
and name. name is defined as a string with possible values stage and prod. secret
is constrained to a string with length greater than 8. The definition of stage on line
9 combines the constraints of #env with concrete values. The example shows a valid
assignment since all properties adhere to the constraints, i.e. "stage" is trivially an
instance of "stage" or "prod" and "superdifficult" has length 14 > 8.

Our proposed heuristic moves the constraints into the same struct as the concrete value
definition, thus enabling other heuristics or a syntactic reducer to remove the definition
(#env) and possibly any statement or constraint unnecessary to retain property ψ. This
heuristic retains the same semantics as the original input.

4.4.3 Redundancy Removal
During analysis of preliminary results when applying the syntactic reducer on CUE
configurations, we found some obvious redundancy patterns, which are not removed
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4.4. CUE-specific Heuristics

1 foo: {
2 {
3 a: 5
4 }
5 }

1 foo: {
2 a: 5
3 }

1 {
2 "foo": {
3 "a": 5
4 }
5 }

Figure 4.10: Extra nesting will result in the same output when the CUE configuration is
evaluated. Both examples on the left result in the JSON output on the right.

1 a: {
2 null
3 null
4 }
5
6 b: {
7 a
8 a
9 }

10
11 c: {
12 _
13 _
14 }

1 a: {
2 null
3 }
4
5 b: {
6 a
7 }
8
9 c: {

10 _
11 }

Figure 4.11: Duplicate declarations containing null, an identifier or top will be removed.

by the syntactic reducer. These redundant constructs can be removed with targeted
heuristics.

Nesting of structs is one such construct. A struct contains one or more fields in CUE.
Fields can again contain a struct and create nested structs. If the field name is omitted,
it is possible to create redundant nested structs, as in Figure 4.10. Since CUE evaluates
such nested structs the same as a struct with one layer, this nesting can be removed.

Package declarations are the first statement in a CUE file with the purpose of defining
which files belong to which package. It also defines the default import name. The
reduction process targets one file, therefore the package information is not necessary for
most configurations to retain property ψ and can be removed by a trivial heuristic.

Syntactic reducers can produce CUE configurations containing redundant declarations.
Such declarations do not contribute to the output of a CUE configuration when exported
and do not impact the evaluation. An example is a duplicate expression used as a
declaration in a struct, as seen in Figure 4.11.

A simple heuristic is used to remove such declarations when they contain: null, top or
an identifier.

An ellipsis . . . is used in lists or structs to mark them as open, i.e. it is explicitly
allowed to add further elements or properties to the respective value. This is a redundant
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1 foo: {
2 let x = 42
3 y: x * 2
4 }
5
6 for i in [0, 1]
7 let j = i * 2 {
8 "i_\(i)": j
9 }

1 foo: {
2 x: 42
3 y: x * 2
4 }
5
6 for i in [0, 1]
7 let j = i * 2 {
8 "i_\(i)": j
9 }

Figure 4.12: Example of let expression replacement. A let expression in line 2 is
transformed to a regular field, while a let expression inside a clause in line 7 is not
modified.

expression for structs, since they are extensible by default. Lists are declared open using
. . . at the end and can add a type constraint for further elements by adding a type to
the ellipsis, e.g. . . . int. To simplify a concrete CUE configuration and further reduce
tokens, these occurrences of . . . are removed by a heuristic.

4.4.4 Let Expressions
CUE offers various options to assign a value to a label (or variable). One of these options
are let expressions. They are used to bind expressions to an identifier in a local scope
and are not exported by CUE [11]. If a let expression is used in a struct definition, it can
be simplified to a regular field definition instead. This removes at least one token and
provides further reduction opportunities for heuristics working with regular fields only.
However, if an expression is used inside a comprehension such as a for- or an if -clause,
they cannot be replaced since the grammar only allows let expressions at this place (see
Figure 4.12).
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CHAPTER 5
Evaluation

Our framework SeRu was implemented for two syntactic reducers: Perses [27] and Vulcan
[34]. Therefore, it is compared to these two reducers.

We perform the evaluation on a total of 16 real-world CUE configurations. These
configurations were provided by CUE developers and originate from GitHub issues in the
official CUE repository. CUE developers manually reduced the original configurations of
7 issues to several versions per issue for a total of 16 CUE configurations. The maximum
number of versions for a single issue is 3 while the minimum is one.

Some of these configurations included more than one file. Since all reducers under test,
including SeRu, only support reduction of a single file, all configurations containing more
files were merged using a combination of manual work and the cue def command. We
refer to merged configurations as the inlined version. Evaluation was only performed on
inlined configurations for instances with more than one file.

All instances including their inlined versions are provided in the artifact for SeRu. A
detailed view of the input instances is given in Table 5.1.

The severity column in Table 5.1 groups issues into error types: semantic, panic, error,
and other. Semantic errors occur when the output of a CUE configuration differs from the
language specification. A panic is a type of error that occurs within the GO programming
language, which is the programming language used to implement CUE. It is used to
indicate unexpected behavior and can be recovered. An error occurs when a command
fails according to the language specification, e.g. when illegal input is used. Other
instances do not fit into any of the above groups.

The instances provide a command that runs successfully on one version of CUE and
fails on another. These commands are used during the reduction process to represent
the property ψ. If and only if a command runs successfully, the property ψ holds for
the instance. Three distinct features of CUE are used in the commands of all test
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Severity Issue Version Tokens Manual reduction rate Property Command

semantic 2218
v1 63

58.73% (39/63) evalv2 39
final 37

panic

2490
v1 420

11.43% (48/420) cmdv2 67
final 48

2584
v1 251

9.96% (25/251) evalv2 106
final 25

error

2209 v1 274 45.26% (124/274) exportfinal 124

2246 v1 110 30.91% (34/110) exportfinal 34

2473 v1 67 52.24% (35/67) exportfinal 35
other 2 final 249 - export*

Table 5.1: Token sizes of CUE instances used for evaluation.
* the command was used with an experimental option

instances: cue eval combines all definitions and checks constraints, cue export
requires concrete values in addition to the evaluation and cue cmd runs a custom
defined procedure.

Since some of the instances were manually reduced by CUE developers, we include the
achieved reduction rate (lower is better), i.e. tokens of the final version divided by the
first version of the respective issue.

5.1 Methodology
The evaluation was performed on a 2021 Apple MacBook Pro with an M1 Pro CPU (8
cores) and 16 GB of memory.

We evaluate 4 tools: Perses [27], Vulcan [34], SeRu+Perses and SeRu+Vulcan on all of
the 16 CUE input configurations. Each evaluation run is performed 5 times for every
instance and framework configuration with a timeout of 4 hours, which sums up to 80
runs per tool and a total of 320 runs.

Two instances - issue 2246 (v1) and issue 2209 (v1) - did not terminate within the timeout
with Vulcan configurations and are therefore excluded in the results.

We use version 1.8 for Perses and Vulcan, which can be found implemented in the same
tool on GitHub [25]. This version was slightly modified to generate statistics for every
run even if it failed unexpectedly.
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5.1. Methodology

To add support for CUE to Perses and Vulcan, we created a grammar specification in
the ANTLR [2] format based on the official language specification for CUE and used
Perses-adhoc method by Tian et al. [28] to generate the appropriate extension.

5.1.1 Metrics
We measure the following metrics in the evaluation:

• Tokens
Represents the total size of the reduced program, lower is better. Token size is the
main metric used to compare reducers, as it is used in many works (non-exhaustive
list) [19, 23, 27, 34–36]. A token is a string of characters that has some defined
semantics in a programming language. All tokens are counted using the official
parser published in the CUE repository on GitHub [9] (specifically the scanner
API). Perses and Vulcan use a generated parser based on our ANTLR [2] grammar
for CUE and could therefore output different token counts during their respective
reduction process or afterwards. To achieve a fair comparison, we count tokens on
all output files equally with the official parser.

• Queries
The number of property tests performed during the reduction process [23, 27, 34].
Given the assumption that the property test runs in constant time, this metric
gives an indication of the runtime complexity of a specific instance. Therefore, a
lower amount of queries is better. Since our proposed framework SeRu runs the
configured syntactic reducer one or multiple times, the number of queries is always
equal to or greater than the number of queries performed by the syntactic reducer
alone.

• Reduction rate
A reduction rate is defined as the ratio of token size after reduction and before
reduction (lower is better):

RR = #output tokens

#input tokens
∗ 100% (5.1)

It is used as a relative metric to compare reducer performances without using the
absolute token sizes of test instances.

• Execution time
The Execution Time (ET) in seconds measures the total time a reducer uses to
generate an output and terminate. For SeRu, an additional metric is introduced:
semantic reduction execution time (SET). It measures the time SeRu spends
applying heuristics to the input, including any property tests.

• Efficiency
The efficiency of a reducer represents the speed of the reduction process. It is
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measured in tokens per second and is defined as

E = #removed tokens

execution time
(5.2)

A high efficiency is a desired property of a reducer.

5.1.2 Ablation study
To determine whether any heuristic performs better or worse than others, we performed
an ablation study. Such studies are commonly applied in machine learning systems but
can be applied to any system with multiple components. In this study, we evaluate
SeRu+Perses on all input configurations, but enable only one heuristic at a time. With
16 input instances, 5 runs and a total of 14 heuristics, we ran a total of 1120 evaluation
runs. These runs took 2.5 hours to finish.

We noticed that one specific heuristic - constant propagation (see Section 4.2.1) - generates
more candidates than others. As mentioned in Section 4.1.3, heuristics define their own
criteria for applicable locations in a program. The constant propagation heuristic can
be applied to usages of identifiers, which occur commonly in our dataset. Since this
heuristic can also add tokens to the program and to explore its impact, we decided to do
an additional evaluation run with all heuristics except constant propagation.

The focus of this evaluation is the effectiveness of each heuristic and not the best overall
configuration for program reduction, therefore, we run the ablation study with one
syntactic reducer, Perses.

5.2 Results
Tokens Table 5.2 shows tokens per instance (#T) before and after applying reducers.
Both SeRu configurations achieve equal or fewer tokens in all instances compared to the
respective syntactic reducer alone (4 equal for Perses and 6 equal for Vulcan). Issue 2584
final is the only instance where none of the tested tools achieves any reduction while also
being the smallest instance.

SeRu+Vulcan achieves the fewest tokens in 11 instances while SeRu+Perses achieves the
fewest tokens in 9 of all instances (5 of them are equal on both tools). In Issues 2584/v1,
2490/final and 2246/final, SeRu+Vulcan performs equal when added to Vulcan. The
same occurs in issue 2246/v1 with Perses performing equal to SeRu+Perses. Issue 2246
is therefore the only instance where SeRu did not affect the results in terms of token size.
The absolute and relative improvements achieved using SeRu are shown in Figure 5.1.

Queries The number of property tests (#Q), queries, are given in Table 5.2. The
query columns for the SeRu configurations show the number of queries performed by SeRu
and an estimate of the total number of queries performed by SeRu and the respective
syntactic reducer. This estimate is based on the query count of syntactic reducers and the
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Instance Tool
Severity Issue Version Before Perses Vulcan Seru+Perses Seru+Vulcan

#T #T #Q #T #Q #T #Q #T #Q

semantic 2218
v1 63 47 221 42 2535 47 35 (477) 37 45 (7650)
v2 39 32 135 32 1570 29 60 (600) 29 40 (4750)

final 37 32 115 32 1486 29 60 (520) 29 30 (4488)

panic

2490
v1 420 152 2444 130 16218.8

(±0.447) 85 1565 (13785) 84 285 (65165)

v2 67 49 247 49 3387 44 130 (1118) 49 35 (6809)
final 48 44 156 42 2028 42 75 (543) 42 25 (4081)

2584
v1 251 53.4

(± 0.894)
578

(±1.581) 26 1805
(±1.732)

42.2
(± 1.64) 235 (2547) 26 20 (3630)

v2 106 48 365 31 2129 29 165 (1625) 31 40 (4298)
final 25 25 21 25 609 25 25 (67) 25 25 (1243)

error

2209 v1 274 145.2
(± 4.025)

1537.6
(±25.491) - - 134 925 (7181) - -

final 124 100 562 56 5610 83 390 (2638) 35 190 (22630)

2246 v1 110 45 485 - - 45 730 (1700) - -
final 34 30 70 26 1553 30 150 (290) 26 105 (3211)

2473 v1 67 41 300 33 1926 36 240 (1440) 28 180 (5958)
final 35 31 129 31 788 30 75 (462) 30 75 (2439)

other 2 final 249 127 982 107 12005 75 675 (4603) 77 600 (48620)

Table 5.2: Results of each instance and version. #T represents the number of tokens
after reduction or in the input file for column "Before". #Q is the number of queries or
property tests. Seru columns show the queries performed by Seru itself and an estimate
of the queries performed by Seru plus the syntactic reducer (Perses or Vulcan).

Severity Issue Version Input tokens Perses [%] Vulcan [%] Seru+Perses [%] Seru+Vulcan [%]

semantic 2218
v1 63 74.60 66.67 74.60 58.73
v2 39 82.05 82.05 74.36 74.36

final 37 86.49 86.49 78.38 78.38

panic

2490
v1 420 36.19 30.95 20.24 20
v2 67 73.13 73.13 65.67 73.13

final 48 91.67 87.50 87.50 87.50

2584
v1 251 21.27 10.36 16.81 10.36
v2 106 45.28 29.25 27.36 29.25

final 25 100 100 100 100

error

2209 v1 274 52.99 - 48.91 -
final 124 80.65 45.16 66.94 28.23

2246 v1 110 40.91 - 40.91 -
final 34 88.24 76.47 88.24 76.47

2473 v1 67 61.19 49.25 53.73 41.79
final 35 88.57 88.57 85.71 85.71

other 2 final 249 51 42.97 30.12 30.92

Table 5.3: Reduction rates of all tested tools (lower is better)

iterations of SeRu per instance. As the configured reducers Perses [27] and Vulcan [34]
monotonically reduce an input, the number of queries with the original input represents
an upper bound.
The number of queries performed by SeRu is less than that of a syntactic reducer -
except in issue 2584/final and 2246/final for SeRu+Perses. Due to SeRu using a syntactic
reducer one or multiple times, the total number of queries is greater than the queries
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Severity Issue Version Seru+Perses (relative) Seru+Vulcan (relative)

semantic 2218
v1 0 (0%) 5 (7.94%)
v2 3 (7.69%) 3 (7.69%)

final 3 (8.11%) 3 (8.11%)

panic

2490
v1 67 (15.95%) 46 (10.95%)
v2 5 (7.46%) 0 (0%)

final 2 (4.17%) 0 (0%)

2584
v1 11.2 (4.46%) 0 (0%)
v2 19 (17.92%) 0 (0%)

final 0 (0%) 0 (0%)

error

2209 v1 11.2 (4.09%) -
final 17 (13.71%) 21 (16.94%)

2246 v1 0 (0%) -
final 0 (0%) 0 (0%)

2473 v1 5 (7.46%) 5 (7.46%)
final 1 (2.86%) 1 (2.86%)

other 2 final 52 (20.88%) 30 (12.05%)
Mean (absolute) 12.28 (± 19.59) 7.13 (± 13.45)
Mean (relative) 7.17% (± 6.71%) 4.63% (± 5.55%)

Median (absolute) 4 0.5
Median (relative) 5.96 1.43

Figure 5.1: Improvement in tokens (relative improvement in parentheses) when using
Seru over just using a syntactic reducer (Perses and Vulcan). Vulcan data points for
instances 2209/v1 and 2246/v1 are not included since Vulcan does not terminate on
those inputs.

performed by a syntactic reducer alone (given in the parentheses of the last two columns
of Table 5.2).

Reduction rate All rates are given in Table 5.3. Since Vulcan does not terminate for
issues 2209/v1 and 2246/v1, there is no reduction rate for these instances. The absolute
and relative improvements when using SeRu over a syntactic reducer alone are given in
Figure 5.1. The reduction rates improve significantly (α = 0.05, paired t-test) for Perses
and Vulcan when SeRu is used, with p-values of 0.0007 and 0.0045, respectively.

Execution time & Efficiency The execution times per instance together with the
efficiency are given in Table 5.4. For configurations using SeRu, the time spent in language-
specific heuristics is given in column SET or semantic execution time. Execution times
for Perses grow for all instances when adding SeRu. This is also reflected in the efficiency
metric, where the removed tokens per second are lower in the Seru+Perses configuration.
With Vulcan on the other hand, there are 7 instances where the execution time is lower
when adding SeRu. The efficiency grows on 9 instances when SeRu is added to Vulcan.
The time spent on semantic reduction, i.e. the heuristics applied by SeRu, is greater in
11 instances for the Seru+Perses configuration compared to Seru+Vulcan (+2 instances
only terminating with Perses). Issues 2246/final and 2473/v1 take the longest to finish
with Vulcan and Seru+Vulcan configurations, with approx. 45 minutes and 2 hours,
respectively.
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Instance Perses Vulcan Seru+Perses Seru+Vulcan
Severity Issue Version ET [s] E [#/s] ET [s] E [#/s] ET [s] SET [s] E [#/s] ET [s] SET [s] E [#/s]

semantic 2218
v1 2.06 ± 0.02 7.77 25.64 ± 0.77 0.819 6.30 ± 2.15 2.07 ± 2.13 2.54 30.40 ± 0.07 1.34 ± 0.02 0.855
v2 1.31 ± 0.02 5.32 16.17 ± 0.43 0.433 7.10 ± 0.57 2.64 ± 0.57 1.41 18.60 ± 0.09 1.23 ± 0.00 0.538

final 1.18 ± 0.01 4.24 15.69 ± 0.43 0.319 6.93 ± 0.76 2.63 ± 0.75 1.15 17.78 ± 0.09 0.95 ± 0.08 0.450

panic

2490
v1 22.69 ± 0.12 11.81 243.65 ± 3.19 1.190 76.18 ± 4.66 51.23 ± 4.32 4.40 473.29 ± 14.34 9.78 ± 0.39 0.710
v2 2.52 ± 0.02 7.14 71.58 ± 1.57 0.251 13.12 ± 1.02 6.93 ± 0.88 1.75 58.38 ± 1.10 1.12 ± 0.07 0.308

final 1.75 ± 0.18 2.28 56.25 ± 0.74 0.107 7.67 ± 1.18 3.83 ± 1.19 0.78 47.17 ± 0.29 0.84 ± 0.08 0.127

2584
v1 5.09 ± 0.13 38.79 13.43 ± 0.24 16.754 13.80 ± 0.47 6.47 ± 0.41 15.13 9.90 ± 0.11 0.64 ± 0.09 22.717
v2 3.52 ± 0.03 16.47 20.30 ± 0.17 3.695 10.54 ± 0.31 4.61 ± 0.28 7.30 15.65 ± 0.67 1.44 ± 0.66 4.793

final 0.25 ± 0.00 0.00 8.73 ± 0.12 0.000 1.67 ± 0.02 0.69 ± 0.01 0.00 7.62 ± 0.09 0.76 ± 0.09 0.000

error

2209 v1 14.26 ± 0.40 9.04 - - 44.62 ± 0.40 26.24 ± 0.36 3.14 - - -
final 5.18 ± 0.09 4.63 55.05 ± 0.66 1.235 22.64 ± 0.25 10.82 ± 0.14 1.81 79.31 ± 4.29 6.13 ± 0.53 1.122

2246 v1 4.83 ± 0.05 13.47 - - 35.79 ± 6.30 28.97 ± 6.21 1.82 - - -
final 0.92 ± 0.02 4.35 2919.88 ± 76.49 0.003 7.90 ± 0.80 4.58 ± 0.81 0.51 2520.25 ± 101.31 3.36 ± 0.05 0.003

2473 v1 2.77 ± 0.04 9.39 7512.71 ± 132.75 0.005 12.38 ± 0.28 6.66 ± 0.26 2.50 7062.16 ± 164.57 8.83 ± 0.10 0.006
final 1.16 ± 0.01 3.45 6.91 ± 0.03 0.579 4.75 ± 0.02 2.01 ± 0.01 1.05 16.27 ± 1.11 2.14 ± 0.14 0.307

other 2 final 10.49 ± 0.17 11.63 171.18 ± 0.90 0.830 36.00 ± 2.67 21.68 ± 2.43 4.83 187.67 ± 0.75 19.09 ± 0.65 0.916
Mean 4.999 9.361 795.511 1.874 19.213 11.379 3.133 753.175 4.117 2.347

Table 5.4: Execution times of all tools per instance. ET measures the total execution time until the reduction process of the
respective tool terminated in seconds. E measures the efficiency or how many tokens are removed per second. SET measures
the semantic execution time, which is the time spent executing language-specific heuristics within the Seru framework, hence
it is only available for Seru configurations.
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5.2.1 Ablation Results

The results for the ablation study are provided in Figures 5.2 and 5.3. Both figures
show the improvement of each heuristic compared to Perses and include the default
configuration of SeRu with all heuristics enabled. To see the exact values for all heuristics
enabled, refer to Figure 5.1. An additional run is included in the graphs: all heuristics
except constant propagation (see Section 4.2.1). As mentioned in Section 5.1, this run
was included to isolate the impact of constant propagation, as this heuristic can add
more tokens to a result. The output size per instance is displayed as boxplots as well as
individual points (scattered for visibility). In each figure, the configurations are ordered
by the median difference to Perses. Figure 5.2 shows the absolute difference in tokens
compared to Perses. Figure 5.3 displays the difference in reduction rate in percent when
each configuration is compared to the Perses baseline.

Figure 5.2: The improvement of each heuristic plus an additional run with all heuristics
except constant propagation compared to the ground truth reduction performed by Perses.
This graph shows the difference of reduced programs in tokens, sorted by the mean value
of all instances.

In absolute token difference shown in Figure 5.2, the configuration with all heuristics
yields the lowest results, with a median value of -4 tokens. With a median difference
of -1.5 tokens, constant propagation achieves the second lowest result, followed by all
except constant propagation with -1 and empty declaration with -0.5 tokens, respectively.
All other heuristics have a median value of zero, with only a few instances resulting in
lower values. The let heuristic achieves token differences of -31 in issue panic/2490/v1
and -11 in issue other/2/final. The trivial if heuristic is able to outperform the more
sophisticated if heuristic in one instance. Four configurations performed worse on at
least one instance compared to Perses: import on error/2209/v1,and package, trivial if
and if on error/2246/v1. More details on these instances are discussed in Section 6.5.
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5.2. Results

Figure 5.3: Similar to Figure 5.2, but the improvement relative to the reduction rate of
the ground truth in percent.

Figure 5.3 provides the improvement of reduction rate for each heuristic. The heuristics
are also ordered by their median values, with the lowest on the left.

39





CHAPTER 6
Discussion

6.1 Effectiveness
As presented in Table 5.2, the SeRu framework performs well and can further improve
the results of already very effective reducers such as Vulcan [34]. SeRu improves upon the
results of Perses [27] and Vulcan by 7.17 and 4.63 percent, respectively (see Figure 5.1).
However, the possible improvement is highly dependent on the concrete instance, which is
reflected by the standard deviations of 6.71 and 5.55 percent. The highest improvement
for Seru+Perses is instance other/2/final with 20.88 percent, reducing 249 tokens to 75
instead of 127. Seru+Vulcan could improve error/2209/final by 16.94 percent, reducing
124 tokens to 35 instead of 56.

However, not all instances are improved as much and three instances did not improved
at all.

1. panic/2584/final
None of the syntactic reducers could improve this instance. So, SeRu has to apply
at least one heuristic to achieve further reduction. Only three heuristics were
applicable, which generated five candidate programs, but none of which passed the
property test, so no further reduction was found.

2. error/2246/v1
Vulcan does not terminate with this instance, so we focus on Seru+Perses for this
instance. SeRu started to apply the ConstantPropagation heuristic (see Section
4.2.1), which adds redundancy to a program that is supposed to be removed by
a syntactic reducer component. In this case, the intermediate program size was
increased from 45 to 104, which was reduced to 73 by Perses. Since 73 is larger than
45, this candidate was dropped and the process was terminated. However, skipping
the ConstantPropagation heuristic improves the result to 44 tokens. Applying
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heuristics in a different order or just once per iteration could potentially further
improve the results, but since finding the perfect order has a large search space, it
was left for future work.

3. error/2246/final
Similar to the previous instance SeRu only finds candidates with the ConstantProp-
agation heuristic. Instead of 68 valid candidates in version 1 of this instance, only
11 are found in this version using Perses and 6 valid candidates when using Vulcan
as the syntactic reducer. In this case, skipping this heuristic does not improve the
result.

Two of the above-mentioned instances also have the fewest tokens, which is one reason why
the reducers and SeRu do not find any improvements. The tokens left in the programs
are essential for the program to exhibit the property and can therefore not be removed.
The third instance could only be improved by skipping one heuristic and shows that
our approach can be further improved, either by using a different application order of
heuristics or by adding new heuristics to the framework.

6.2 Queries
The total number of queries is higher for all instances when using SeRu. This is caused
by SeRu applying the syntactic reducer at least once and often multiple times during one
run. While this approach can improve the reduction rate (see Section 6.1), running the
syntactic reducer several times also multiplies the number of property tests. However, in
all but three instances, the additional queries performed by SeRu are much fewer than
the original query count (often half or a magnitude less). Since the heuristics used by the
SeRu framework are targeted at specific language constructs and do not try to remove
"random" tokens based on its syntax, fewer candidates are generated.

If the property test is an expensive process, SeRu would not be the best choice.

6.3 Reduction Rate
To facilitate comparison by tool across varying instance sizes, we calculated the reduction
rate per instance, which represents the percentage of tokens kept from the original input
after the reduction process finished. The results indicate a relation between reduction
rate and token size, which is shown in Figure 6.1. The graph shows a tendency in the
form of quadratic regression lines for instances with greater token sizes to also have a
better (lower) reduction rate, with a slight upwards trend above 400 tokens. However,
there is only one instance with more than 400 tokens, therefore the regression might be
over-fitted in this area. To make a statement about this relation, studying more instances
will be necessary.

42



6.3. Reduction Rate

The improvement using SeRu is noticeable when comparing the regression lines in Figure
6.1. Seru+Perses in green is lower than Perses in red, and Seru+Vulcan in purple is
lower than Vulcan in blue. Although the difference with Perses as the syntactic reducer
is greater than Vulcan.

Figure 6.1: Reduction rate by instance size, grouped by tool and with added quadratic
regression

Since we have several version per instance and therefore the result of a manual reduction
by a domain expert, we compare Perses, Vulcan and SeRu to these results in Table
6.1. Seru+Vulcan achieves an equal reduction rate in instance semantic/2218 and beats
the manual reduction rate in instance error/2473. In instance panic/2584, Vulcan and
Seru+Vulcan have a reduction rate of 10.36%, exactly 0.4% more than the manual
reduction. The Seru+Perses configuration is closest to the manual reduction in instance
error/2473, where the reduction rate is 1.49% greater. The instance other/2 has only
one version, so there is no manual reduction rate, but it is included as comparison.

Severity Issue Manual [%] Perses [%] Vulcan [%] Seru+Perses [%] Seru+Vulcan [%]
semantic 2218 58.73 74.60 66.67 74.60 58.73

panic 2490 11.43 36.19 30.95 20.24 20.00
2584 9.96 21.27 10.36 16.81 10.36

error
2209 45.26 52.99 - 48.91 -
2246 30.91 40.91 - 40.91 -
2473 52.24 61.19 49.25 53.73 41.79

other 2 - 51.00 42.97 30.12 30.92

Table 6.1: Comparison of manual reduction rate (final version versus first) and the
achieved reduction rates of all tested tools (reduction rate of first version)
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6. Discussion

6.4 Efficiency and Execution Time
Overall, using the SeRu framework increases the total execution time of the reduction
process, as shown in Table 5.4. This behavior is expected, since the SeRu framework
utilizes a syntactic reducer at least once and up to n times during its main loop. Therefore,
the total execution time can be a multiple of the syntactic reducer’s execution time.

Table 5.4 includes the time spent by the semantic reduction (heuristics) for SeRu
configurations. This metric gives insights about the ratio time spent in syntactic reduction
versus time spent in semantic reduction. The semantic reduction takes less time in all
instances. Interestingly, there are substantial differences in semantic reduction time
between Seru+Perses and Seru+Vulcan configurations. In all but two instances, SeRu
spends less time in semantic reduction when using Vulcan, in some cases the difference
is up to a factor of 10. One reason for this behavior could be the higher reduction
capabilities of Vulcan compared to Perses. Since Vulcan achieves better reduction results
than Perses, there are fewer tokens for the semantic reduction to process. Less tokens
imply less reduction possibilities and less generated candidates. Therefore, the semantic
execution time is shorter when using Vulcan. In other words, adding SeRu to Perses
or less potent reducers brings a greater benefit in terms of effectiveness. This is also
confirmed by the results given in Figure 5.1 where the improvement with SeRu over
Perses is 7.17% on average and 4.63% over Vulcan.

6.5 Ablation study
The ablation study shows that SeRu performs best with all heuristics activated, proving
that most heuristics have a positive impact on the output. However, two heuristics do
not have an impact when used alone, loop unrolling and union. While there are some
differences for these two heuristics compared to the baseline, they are less than 1 token
and are caused by deviating results in the baseline Perses tests, since the heuristics do
not find valid candidates during the respective evaluation runs. The import heuristic
seems to have similar results, but it is successfully applied in one instance to achieve a
reduction of a single token.

We want to point out, that the run with only constant propagation and the run with
all heuristics except constant propagation perform very similarly, in terms of absolute
token difference and reduction rate. Constant propagation achieves a median difference
of -1.5 tokens (-2.56% in reduction rate) compared to Perses while just skipping constant
propagation with all other heuristics activated achieves a median difference of -1 tokens
(-1.88%). Therefore, we conclude that constant propagation has the single highest impact
of all heuristics, achieving a better result than all other heuristics combined, even though
it temporarily increases the size of a reduced program. This fact suggests that heuristics
that add more redundancy to a program (like constant propagation) work well in the
SeRu framework, were a combination of heuristics and a syntactic reducer is used. We
leave the validation with more heuristics as future work.
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6.6. Order of Heuristics

Interestingly, there is a substantial difference in one result between heuristics if and trivial
if. While if tries to evaluate a condition based on available information in the current
scope and possibly removes a clause if the condition evaluates to false, heuristic trivial
if simply sets a condition to true or false. In instance error/2209/final, the more
sophisticated if heuristic could not generate a valid candidate, but the trivial if heuristic
could and removed 10 tokens from the instance. These two heuristics confirm the benefit
of our approach of combining various heuristics and also shows the application order
has impact on the result. In the default configuration of SeRu, the trivial if heuristic
reduces a condition to false and the following if heuristic removes the clause completely,
leading to further reduction.

The data in the ablation study shows several anomalies in the form of an increase in
output size, when adding a heuristic to Perses.

• Instance error/2209/v1 with heuristic import

• Instance error/2246/v1 with heuristics package, trivial if and if

In instance error/2209/v1, one of the five evaluation runs deviates in output size, causing
the result to contain fewer tokens (138 versus typically 147). Since this deviation did not
occur during the runs with only the import heuristic enabled, this instance appears to be
worse than the baseline.

Similarly, there is a choice in instance error/2246/v1 where the reduction using Perses
results in a worse result (51 tokens versus typically 45). In our testing, this result was
only observed during runs with heuristics package, trivial if and if, which appears as a
result worse than the ground truth for these heuristics.

We consider these deviating results as anomalies and conclude that SeRu inherits proper-
ties such as indeterminism in output size from the syntactic reducer it uses.

6.6 Order of Heuristics
The semantic reduction component of SeRu uses a list of heuristics to apply transforma-
tions to a program. This list uses the same order for all evaluations. In general, SeRu
applies redundancy-removing heuristics first and more complex, potentially size-increasing
heuristics last. Heuristics such as constant propagation or loop unrolling are able to
duplicate existing parts of a program and by removing redundancy in these parts as the
first steps, we aim to limit the size increase of these heuristics.

We do not require the heuristics to be commutative functions, which opens the question if
there exists an optimal order, providing the minimum outputs. Since the ablation study
shows that applied heuristics can differ from one instance to another, we believe the
optimal application order for heuristics is also instance-specific with no general optimum.
We leave the validation of this assumption open for future work.
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6. Discussion

6.7 Implementation details
SeRu is implemented in GOLang 1.23.2. As one goal of this framework is its modularity
and extensibility, support for languages is handled by a plugin system. To support a new
language, some pre-defined functions must be exposed by the plugin, such as a reduction
function and a token counter. A plugin is only responsible for the specific heuristics of a
language. SeRu runs the main loop, calls the syntactic reducer and the heuristics and
manages intermediate states as well as logging and collection of metrics.

The CUE plugin uses the official GO API for CUE from its source code repository on
GitHub [10] (v0.11.1). The syntactic reducers, Perses and Vulcan, use version 1.8 with a
small modification allowing the collection of metadata even if the program crashes.

CUE value evaluation The GO API for CUE exposes functions to partially evaluate
a CUE program. This API is used to implement several heuristics which utilize evaluated
values, such as if, string interpolation, loop unrolling, unification and constant propagation.
However, constant propagation uses a simpler approach. It resolves identifiers recursively
as long as there is a definition available. With each definition of a struct in CUE, a new
scope is created where fields and variables can be defined. Constant propagation traverses
these scopes from the local scope to the global scope until it either finds a definition for
the identifier it tries to replace or fails to do so.

The SeRu framework has the benefit of utilizing native APIs to correctly implement such
heuristics because of the modular plugin system.

Grammar During the development of SeRu, we created a program grammar in the
ANTLR [2] format for CUE, based on its language specification [11]. This grammar was
used to add support for CUE in Perses and Vulcan using the Perses ad-hoc approach [28].
The program grammar must adhere to the specifications for the best reduction results in
the syntactic reduction step. Especially complex expressions must be handled correctly,
such as CUEs string interpolations, which allow CUE expressions to be inlined and
evaluated in a string definition. In an early experimental run, we used a grammar which
modeled string interpolations as any other string, causing issues with some instances, as
the syntactic reducers generated invalid candidates. Updating the grammar to support
interpolations improved the reduction results and fixed any invalid instances.

6.8 Future work
With the concrete implementation of SeRu and the plugin for CUE, we provide an
instance where the approach works. However, this implementation only works for one
language at the moment. A starting point for future work is to add support for more
languages using the existing plugin system. SeRu and the main loop does not have to be
re-implemented. To add support for another language, such as Prolog or Datalog, a new
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6.8. Future work

plugin containing heuristics for the specific language has to be created and a grammar in
ANTLR format has to be supplied to Perses and Vulcan.

Inspired by the work of Zhang et al. [36] and the recent popularity of LLMs for software
engineering tasks [18], we experimented with a semi-automated approach to generate
SeRu plugins to support further languages. Using versatile heuristics (see Section 4.2), a
general prompt can be designed per heuristic to generate code for a language plugin. In
our experiments, we saw potential for a very rapid development experience. However,
the generated algorithms did include several bugs and often missed edge-cases. A human-
in-the-loop approach could be utilized for a future version of SeRu which generates a
language plugin with some widely applicable heuristics. This would be a good starting
point to support reduction of a language quickly, with the option to refine the process by
adding more specific heuristics later on.

Another possible improvement for SeRu is to add more heuristics or reducers. Perses
and Vulcan was updated to version 2.0 in January 2025 which includes more fine-grained
reduction algorithms which remove parts of tokens [33].
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CHAPTER 7
Conclusion

This work proposes a novel program reduction framework called SeRu. It combines
the robust approach of a language-agnostic program reducer (AGR) with language-
specific heuristics, that utilize the semantics of a particular language to expose additional
reduction opportunities. We implement SeRu and evaluate it with the data validation
language CUE. CUE has its roots in logic programming and has declarative syntax,
different to most targeted languages within program reduction, such as C or Rust. We
propose a total of 14 heuristics, with 4 versatile, 3 logic-specific and 7 CUE-specific
heuristics.

SeRu is evaluated on 16 CUE instances with two syntactic reducers (AGRs), Perses
and Vulcan. SeRu improves the results of both reducers, with a mean improvement in
reduction rate of 7.17% over Perses and 4.64% over Vulcan. The best instance for Perses
improves over 20% and 16% for Vulcan. Since SeRu uses an AGR during the reduction
framework, it is clear that total reduction times increases.

We performed an ablation study to explore the capabilities of each heuristic separately.
The best performing heuristic is constant propagation from the set of versatile algorithms.
A configuration only applying this one heuristic performs similarly to a configuration
with all other heuristics except constant propagation. Most CUE-specific heuristics are
useful for a handful of instances while posing no benefit for others, however one of them,
empty declaration, is effective for half instances.

SeRu was manually implemented with heuristics for one programming language, CUE.
Other works [36] have already explored the potential of LLMs for program reduction.
We believe a future version of SeRu could implement a human-in-the-loop approach
to generate specific implementations of versatile heuristics for various programming
languages. Thus eliminating the need for manual labor while adding effective reduction
transformations and limiting the computing resources required to run a LLM.
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7. Conclusion

We showed that program reduction can successfully be applied to logical languages
such as CUE and the combination of syntactic reduction and semantic reduction using
heuristics proved to be effective, while adding more execution time. The framework is
easily extensible to support more programming languages or use different AGRs.
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