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Kurzfassung

Tiefe neuronale Netzwerke (Deep Neural Networks, DNNs) sind in verschiedenen An-
wendungen allgegenwärtig geworden, jedoch sind sie äußerst anfällig für adversarielle
Angriffe, die ihre Ausgaben leicht manipulieren können. Diese Arbeit untersucht das
Potenzial von variationalen Bottleneck-Techniken, insbesondere des Deep Variational
Information Bottleneck (DVBI) und des Shallow Variational Bottleneck Injection (SVBI),
um die Robustheit von DNNs gegenüber adversariellen Umgehungsangriffen zu erhö-
hen. Wir führen eine empirische Studie durch, in der Modelle, die mit SVBI, DVBI
und traditionellen Architekturen ohne Bottlenecks trainiert wurden, verglichen und ihre
Widerstandsfähigkeit gegenüber den neuesten Umgehungsangriffen, einschließlich der
FGSM-, EAD-, C&W- und JSMA-Angriffe, analysiert werden. Unsere Forschung bewer-
tet den Einfluss der Platzierung des Bottlenecks auf die Robustheit gegen adversarielle
Angriffe und untersucht die Beziehung zwischen Netzwerktiefe und Widerstandsfähigkeit.
Die Ergebnisse heben die Wirksamkeit bestimmter variationaler Bottleneck-Strategien
zur Verringerung der Anfälligkeit von Modellen gegenüber adversariellen Störungen
hervor und bieten Einblicke, wie diese Techniken genutzt werden können, um sicherere
KI-Systeme zu entwerfen.
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Abstract

Deep neural networks (DNNs) have become ubiquitous in various applications, yet they
are highly vulnerable to adversarial attacks that can easily manipulate their output.
This paper investigates the potential of variational bottleneck techniques and the role
of network depth for adversarial robustness. We conduct an empirical study comparing
models trained with Information Bottleneck-based objectives and traditional architectures
without bottlenecks. We analyze their resilience against state-of-the-art evasion attacks,
including the FGSM, EAD, C&W, and JSMA attacks. Our research evaluates the impact
of bottleneck placement on adversarial robustness and explores the relationship between
network depth and resilience. Our results highlight the effectiveness of certain varia-
tional bottleneck strategies in reducing model vulnerability to adversarial perturbations,
providing insights into how these techniques can be leveraged to design more secure AI
systems.
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CHAPTER 1
Introduction

1.1 Problem Statement and Motivation
Deep neural networks (DNNs) are becoming increasingly common in everyday applica-
tions [41], ranging from image recognition to natural language processing. A common
paradigm in modern applications is to offload computationally intensive tasks to remote
servers, which incurs significant bandwidth costs. To address this, novel variational
techniques have been developed to compress features effectively with lightweight and
shallow neural networks without compromising prediction integrity. The Variational
Information Bottleneck objective was initially designed to regularize training deep neural
networks and directly lends itself to end-to-end train goal-oriented neural compression
models [16]. Notably, the IB-based objective was shown to increase adversarial robust-
ness [1]. The basic idea of more lightweight neural feature compression methods is placing
a bottleneck at shallow layers and training them with IB-based objectives [10, 11], i.e.,
they perform Shallow Variational Bottleneck Injection (SVBI), However, since their
practical implementation differs from the traditional application of the IB principle for
compression with Deep Variational Bottleneck Injection (DVBI) [39], it is unclear whether
the same assumptions regarding adversarial robustness hold. This thesis aims to resolve
the undetermined role of novel paradigms of neural feature compression for adversarial
robustness. Specifically, we investigate the relationship between the bottleneck location,
network depth, and the effectiveness of the IB objective to mitigate adversarial attacks.
We provide a detailed comparative analysis of different DNN models applying SVBI,
DVBI, and traditional methods without artificial bottlenecks to evaluate their resilience
against a variety of state-of-the-art evasion attacks [12, 6, 5, 29]. Expected outcomes
of this research include the successful application of these attacks on selected models,
identifying at least one SVBI approach that demonstrates improved resilience, and a
comprehensive understanding of how variational bottlenecks can influence the security
dynamics of DNNs. Preliminary research suggests that deeper network layers typically

1



1. Introduction

extract higher-level semantics of the input data, as the information undergoes multiple
transformations throughout the network. Applying a bottleneck at a later stage should
allow the network to focus on the most crucial aspects of the data, filtering out potential
adversarial manipulations passed on from the shallow layers. Therefore, we assume the
overall resiliency is more robust with a deeper bottleneck, as shallow layers generally have
more redundancy for a specific task. Nonetheless, it remains to be determined whether
the SVBI approach is better than having no bottleneck, especially when compared to split
inference [25] approaches that do not apply any IB objective. Through this research, we
will provide insights into the protective impacts of bottleneck techniques. We expect the
results to contribute to the field by offering empirical evidence and a better theoretical
understanding of different defensive mechanisms within neural networks that may yield
insights into designing more secure methods.

1.2 Research Questions and Challenges
Through empirical analysis of state-of-the-art attacks on image recognition/classification
models and compression schemes, our work will contribute to developing more secure AI
systems. To this end, we aim to answer the following research questions:

RQ1: To what extent does the resilience provided by the variational information
bottleneck objective against adversarial evasion depend on the layer index?

− To determine whether the redundancy of a minimally informative representation
of shallow layers reduces the effectiveness of the IB objective, we apply several
adversarial examples against DVBI and SVBI methods.
Intuitively, the IB objective improves resilience due to regularizing a model to
prioritize the most salient features for a given task, i.e., it removes adversarial
properties by generally reducing redundancy. However, eliminating redundancy
to focus on high-level semantics is an intrinsic property of DNNs. Conversely,
shallow layers focus on low-level features and retain high mutual information (MI)
with the input [11], i.e., SVBI methods retain more redundancy in the compressed
representation.

RQ2: How does the depth of a DNN influence robustness against evasion attacks?

− To determine whether the gap in effectiveness between DVBI and SVBI widens,
we evaluate adversarial attacks on related architectures with varying depths (e.g.,
ResNet-18/50/101).
Empirical evidence suggests strict inequality in data processing inequality, par-
ticularly for discriminative models [38, 11]. In other words, the deeper the layer
index, the less redundancy in the representation. Still, it is not apparent whether
deeper networks tend to remove information more gradually, such that the MI

2



1.3. Methodology

at the penultimate layer is comparable to a corresponding shallow network (e.g.,
ResNet-50 and ResNet-18). Alternatively, the penultimate layer of a deeper network
may tend to retain less information than a shallower network.

RQ3: To what extent are DNNs with variational bottleneck encoders vulnerable to
encoding-specific adversarial attacks?

− To assess the susceptibility of DNNs with variational bottleneck encoders to ad-
versarial attacks that alter encoded representations [43, 8], we will examine how
different SVBI and DVBI bottleneck techniques respond to these attacks.
We will measure the fidelity of encoded outputs under adversarial conditions
by quantifying the divergence from intended representations using metrics like
Euclidean distance. Furthermore, we will evaluate the impact of these distortions
on overall model performance, with a primary focus on classification accuracy, to
determine if bottleneck configuration offers better protection against sophisticated
attacks targeting the encoding processes.

In the early stages of our work, we identified several challenges we expected to encounter
that would need to be addressed to ensure the validity and rigor of our findings. First,
inconsistencies in attack success rates present a significant hurdle. To mitigate this, we
must standardize attack parameters and ensure a reproducible setup across different
models. Additionally, statistical analysis will help account for any variances observed in
the results.

Another challenge is the limitation of computational resources. To overcome this, we
plan to utilize the university-provided computational equipment to execute our DNN
models. It will be crucial to prioritize experiments based on preliminary results, ensuring
efficient allocation of these resources to the most promising avenues of research.

Interpreting results can also be challenging, mainly when dealing with the complex
behaviors of adversarial attacks. To address this, we will employ visualization tools to
analyze the impact of attacks and consult with literature for practical insights, which
will help us better understand and explain these complex phenomena.

Finally, the similarity of adversarial approaches may lead to similar final results across
different methods. While this is not inherently problematic, as the results will still be
usable, it could raise questions about the rigor of our paper. Despite this potential
similarity, we must be prepared to justify our methodologies and the significance of our
findings.

1.3 Methodology
Our methodology includes:

3



1. Introduction

• Literature review to map out the current understanding of DNN vulnerabilities,
SVBI and DVBI methodologies, and the evolution of evasion attack mechanisms.
Based on extensive preliminary research, four state-of-the-art evasion attacks
and one autoencoder attack have been selected, each utilizing a different image
generation strategy and attack vector.
The chosen attack suite includes the following:

– Gradient-based attacks: FGSM [12], EAD [6], C&W [5], JSMA [29]
– Attacks on the encoding process itself: Tabacof et al. autoencoder attack [43]

• Model Training and Adversarial attack creation involves generating per-
turbed datasets for our selected evasion attacks (FGSM, EAD, C&W, JSMA).
Each attack will be carefully crafted to challenge the DNN models and explore
their vulnerabilities. Additionally, we may add random noise or other typical non-
adversarial image corruptions [18] (motion blur, noise, etc.) to the input samples
to compare a model’s general robustness. The adversarial datasets will be used to
evaluate the robustness of models under various conditions, focusing on how these
perturbations affect the models’ accuracy and resilience.

• Adversarial attack benchmarking will evaluate adversarial attacks using custom
criteria. These will include a binary success rate, which measures whether an
attack succeeded at fooling the model or not, presented as a percentage. This
straightforward metric allows for an immediate understanding of the efficacy of
each attack, and it will be the most essential resulting value. We also include a
top-5 accuracy metric to gauge the extent of the potential classification error. The
distortion between the original and perturbed images will be measured using pixel-
wise error metrics. This data will help determine a boundary of distortion beyond
which an image is no longer practically usable, providing a clear metric for assessing
the trade-off between image fidelity and vulnerability to attacks. Where applicable,
we will also use the Bits Per Pixel (BPP) metric to measure the information
retained through the compression process in a bottleneck-injected model. Following
this, statistical and theoretical analyses will be employed to interpret the results,
seeking correlations between bottleneck/compression techniques and improvements
in model resilience.

We evaluate the experiment results of selected DNN models under the selected attack
scenarios. To this end, we will devise a combination of datasets and models best suited for
their classification on the testing rig. The susceptibility of these underlying classification
models to evasion attacks of many kinds is well documented in the literature. The specific
goal of this thesis is to examine how the robustness of these models might be improved
thanks to bottleneck injection. Therefore, the choice of the underlying model itself is of
lesser importance. Finally, we will generate and apply a suite of adversarial examples
based on the specifications detailed in the corresponding papers from the literature review.
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1.4. Structure

1.4 Structure
The rest of this paper is structured as follows. Chapters 2 and 3 include a detailed summary
of the state-of-the-art field of deep neural networks, Information Bottlenecks, and evasion
attacks that are relevant to our research. It outlines basic terms and definitions that are
referenced throughout this work. Chapter 4 describes our experimental methodology,
including the design and evaluation metrics. Chapter 5 consists of the actual experimental
part of this thesis, in which we run our experiments and empirically analyze and evaluate
the information gathered. Chapters 6 and 7 include a discussion and interpretation of
our findings and the summary and contributions of this work, respectively.
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CHAPTER 2
Background

This chapter provides the necessary background for understanding the core concepts
relevant to this thesis. It covers the fundamentals of deep neural networks, their vulnera-
bilities to adversarial attacks, and key defense mechanisms. Additionally, it introduces
the Variational Information Bottleneck (VIB) technique, which, as we posit, might
help enhance DNN robustness. These topics form the foundation for the subsequent
exploration of DNN security and the strategies to improve resilience against evasion
attacks.

2.1 Deep Neural Networks
Deep neural networks are a key component of modern artificial intelligence, enabling
progress in computer vision, natural language processing, and autonomous systems
[27]. They consist of multiple layers of neurons, each transforming the input data
into increasingly abstract representations, allowing for learning complex patterns and
generating accurate predictions. Deep learning involves training DNNs on large datasets,
allowing them to model the underlying data distributions. This is done by optimizing a
loss function, quantifying the difference between predicted and actual outputs. Techniques
such as backpropagation and gradient descent are employed to adjust network weights
and minimize this loss, thereby improving performance over time.

While machine learning encompasses many models, including classical approaches like
decision trees, support vector machines, and random forests, our focus is specifically on
deep neural networks within deep learning. Unlike traditional machine learning models,
which rely on handcrafted features and typically involve fewer layers, DNNs consist
of multiple layers that progressively extract complex hierarchical representations from
data. This depth enables DNNs to capture intricate patterns, making them well-suited
for high-dimensional data and tasks such as image classification and natural language
processing.

7



2. Background

A key feature of DNNs is their ability to generalize from training data to unseen data.
However, this generalization also makes DNNs vulnerable to evasion attacks, where small,
deliberate perturbations in input data cause incorrect predictions. These attacks reveal
fundamental weaknesses in DNNs, underscoring the need for robust defense mechanisms.

One approach to enhancing DNN robustness is the bottleneck principle [45]. This
method compresses the information within the network by using a bottleneck layer
(Figure 2.1), forcing the model to retain only the most relevant features for a task.
The Variational Information Bottleneck technique [1], an extension of this principle,
further improves compression by employing variational inference. The VIB method
balances between retaining essential information for task performance and minimizing
redundant information that adversarial attacks could exploit. By compressing feature
representations, VIB can improve resilience to input perturbations, enhancing both
security and generalization.

Split

Head Model
(Mobile Device)

Tail Model
(Edge Server)

Original DNN

Split

Modify & Retrain

Head Model
(Mobile Device)

Tail Model
(Edge Server)

Encoder Decoder

Bottleneck-injected DNN

Figure 2.1: Visualization [25] of an injected bottleneck as it is used in split computing to
unburden an edge computing device on the right, compared to a typical DNN on the left.
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2.2. Exploitability of DNNs

2.2 Exploitability of DNNs

The widespread use of DNNs has exposed significant security vulnerabilities, particularly
to adversarial attacks [3]. These attacks involve subtle perturbations to input data that
result in incorrect outputs. Understanding these vulnerabilities is critical for securing AI
systems.

Adversarial attacks exploit the non-linear and high-dimensional nature of DNNs. Good-
fellow et al. [12] showed that DNNs are susceptible to adversarial examples, where
inputs are intentionally modified to induce errors. The Fast Gradient Sign Method
(FGSM) calculates the gradient of the loss function concerning the input, adjusting the
input to maximize the loss and create adversarial examples. These vulnerabilities pose
significant risks, particularly in safety-critical applications. For example, Gu et al.[15]
demonstrated how small changes could cause a DNN to misclassify a stop sign as a speed
limit sign, posing risks for autonomous vehicles. In other fields, such as medical imaging,
adversarial attacks could result in misdiagnoses, while in financial systems, they could
enable fraudulent transactions.

The susceptibility of DNNs to adversarial attacks is often attributed to the sensitivity
of their latent spaces to small perturbations. In high-dimensional input spaces, data
points from different classes are separated by complex, non-linear decision boundaries.
Adversarial perturbations can exploit these boundaries by introducing minimal changes
to the input sufficient to cross into a different class region, leading to misclassification
[36]. This phenomenon is exacerbated by the fact that DNNs may not generalize well to
inputs that deviate slightly from the training data distribution, making them vulnerable
to carefully crafted adversarial examples.

This phenomenon can be understood by examining how DNNs process inputs through
successive layers. Each layer transforms the input into a new representation in the
latent space, where ideally, data points belonging to the same class become more tightly
clustered, and those from different classes become increasingly separated. However, in
practice, these transformations can amplify the effect of small perturbations. Perturbed
inputs close to the boundary in the input space may traverse disproportionately large
distances in the latent space, leading to significant shifts in their classification.

Several defense strategies have been proposed to counter adversarial attacks. These will
be explored further in Chapter 3. Despite progress, defenses often lag behind new attack
techniques, highlighting the need for continuous research into the security of DNNs.
DNN vulnerabilities also extend to privacy concerns. Shokri et al. [37] showed that
DNNs are vulnerable to membership inference attacks, where an attacker can determine
whether a particular data point was part of the training set. This has significant privacy
implications, especially with sensitive data.

9



2. Background

2.3 Adversarial Attacks on DNNs

Adversarial attacks represent a significant challenge for deploying AI systems. They are
classified into white-box and black-box attacks. White-box attacks assume complete
model knowledge, including architecture and gradients, allowing for highly effective
adversarial examples. In contrast, black-box attacks assume no access to model details
and are generally more challenging but more realistic for real-world scenarios.

The Fast Gradient Sign Method (FGSM) [12] is a well-known adversarial attack method,
visible in Figure 2.2, which will be explored in greater detail in Chapter 3. Building on
FGSM, Kurakin et al. proposed the Basic Iterative Method (BIM) [22], which applies
FGSM iteratively with smaller step sizes. This iterative approach allows for finer control
over the perturbation and can generate more potent adversarial examples. Further
relevant evasion attack methods will be examined in the Related Work Chapter of this
paper.

+ .007 + =

x
"panda"

57.7% confidence

sign(∇xJ(θ, x, y))
"nematode"

8.2% confidence

x +
εsign(∇xJ(θ, x, y))

"gibbon"
99.3% confidence

Figure 2.2: Example of the FGSM attack applied against GoogLeNet [12]. By introducing
a barely noticeable vector, where each element matches the sign of the gradient of the
cost function concerning the input, GoogLeNet’s image classification can be altered.

In addition to these gradient-based attacks, evolutionary algorithms have been employed
to generate adversarial examples. Alzantot et al. introduced [2] a black-box attack
method that uses a genetic algorithm to evolve adversarial examples iteratively. This
approach does not require gradient information and can effectively generate adversarial
examples by querying the target model.

Defending against adversarial attacks is an active area of research. Adversarial training,
where the model is trained on a mix of clean and adversarial examples, has shown promise.
However, this approach is computationally intensive and may not generalize to unseen
attacks [23].
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2.4. Perceptible vs. Imperceptible Noise

2.4 Perceptible vs. Imperceptible Noise
In the context of digital imaging and image classification tasks, particularly when
examining the robustness of DNN classifiers under adversarial attacks, the distinction
between perceptible and imperceptible noise becomes crucial, especially when considering
the quantization of pixel values. For instance, in an 8-bit per pixel image, each pixel
can take on one of 256 discrete intensity values ranging from 0 to 255. Perceptible noise
refers to perturbations significant enough to alter the quantized pixel intensity values.
In other words, if the noise introduced by an adversarial attack, such as those used in
our experiments, is sufficient to shift the pixel value from one quantized level to another
(e.g., from 100 to 101), it is considered perceptible. This perceptible noise can lead to
visible changes in the image, which might not only degrade the visual quality but also
impact the performance of DNN classifiers [13].

On the other hand, imperceptible noise refers to perturbations that are too small to
affect the quantized pixel values. In an 8-bit image, the noise is smaller than the smallest
step between quantized levels (i.e., smaller than one unit of intensity). Even if the pixel
intensity is altered by a small amount (e.g., from 100 to 100.4), the quantization process
would round this value back to 100, meaning the perturbation is not reflected in the
displayed image. This type of noise is imperceptible in pixel intensity and does not result
in visible changes. However, it may still significantly affect the classifier’s performance
due to the sensitivity of DNNs to even small perturbations in input data.

This distinction between perceptible and imperceptible noise is crucial in evaluating
the vulnerability of classifiers to adversarial attacks. Attack methods that generate
imperceptible noise often succeed in inducing misclassifications without being visually
detectable [19], creating security challenges in classification models.

2.5 Variational Information Bottleneck
Compression methods based on the Information Bottleneck (IB) principle are designed
to minimize the bitrate while preserving task-relevant information. These methods
balance retaining predictive performance and removing redundancy, as formalized by
Tishby et al. [44, 46]. Recent works, such as those by Singh et al. [39] and Dubois et
al. [9], have demonstrated that by focusing on task-centric compression objectives, it
is possible to achieve substantial rate savings without compromising downstream task
performance. This is achieved by optimizing a trade-off between the mutual information
of the input and the latent representation (I(X;Z)) and the mutual information of the
latent representation and the output (I(Z;Y)). The IB objective can be formulated as:

min
p(z|x)

I(X; Z) − βI(Z; Y )

Where β is a Lagrange multiplier that controls the trade-off between compression and
predictive power.
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2. Background

Alemi et al. extended [1] the IB principle to deep learning by introducing the Variational
Information Bottleneck. They proposed a variational approximation to the IB objective,
leveraging variational inference techniques to make the optimization tractable for high-
dimensional data. The objective function of the VIB method is given by:

JIB = 1
N

N�
n=1

Eϵ∼p(ϵ) [− log q(yn|f(xn, ϵ))] + βKL [p(Z|xn), r(Z)] (2.1)

The Variational Information Bottleneck approach has been demonstrated to improve
the generalization and robustness of deep neural networks. By imposing a bottleneck
that limits the information passed through the network, VIB forces the model to focus
on the most relevant features, reducing overfitting and enhancing its resilience to noisy
and adversarial inputs. For example, models using VIB have shown greater robustness
to adversarial attacks than standard neural networks, as the compressed representation
complicates the task of causing misclassifications via adversarial perturbations.

Recent advancements have extended the applicability of VIB techniques. For example,
VIB has been combined with generative models to develop more powerful representations.
Kingma et al. [21] introduced the Variational Autoencoder (VAE), which employs a similar
variational approach to learn latent representations for generative tasks. Integrating VIB
and VAE frameworks facilitates the compression and generation of high-dimensional data,
supporting unsupervised learning and generative modeling applications.

However, VIB presents certain challenges. A significant issue is balancing the trade-off
between compression and predictive performance. The choice of β is critical, as excessive
compression may result in losing important information, while insufficient compression
fails to achieve the desired robustness and generalization. Furthermore, the variational
approximation introduces additional complexity in the training process, requiring careful
tuning of variational parameters and optimization techniques.

2.6 Deep Variational Information Bottleneck
Building on the VIB framework, Singh et al. [39] formulated a rate-distortion optimization
problem that refines the trade-off between compressibility and task-specific performance.
The optimization problem is defined as:

θ∗, φ∗ = arg min
θ,φ

�
x,y∈D

L(y, ŷ) + λ · − log2 p(ẑ; φ)

Here, L(y, ŷ) represents the distortion term, corresponding to the prediction error, while
the term − log2 p(ẑ; φ) accounts for the bit rate, representing the compressibility of the
latent representation ẑ. The trade-off parameter λ adjusts the balance between these two
objectives. This formulation enables the model to produce highly compressible feature
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representations while maintaining high accuracy, which is crucial for tasks such as image
classification, where storage and transmission of features are significant concerns.

2.7 Shallow Variational Bottleneck Injection
SVBI is a neural feature compression method aimed at enhancing the efficiency and
robustness of deep neural networks by targeting the shallow representation of foundational
models for rate-distortion optimization, enabling task-agnostic compression without
discarding critical information for downstream tasks [11, 10, 26].

By leveraging the high mutual information between shallow representations and the input,
SVBI retains essential task-relevant features with minimal information removal, making
it more generalizable to a broader range of tasks than deeper approaches. However, the
minimal removal of information relevant to the task suggests that this approach may be
less resistant to input perturbations, including adversarial attacks. SVBI reduces data
size while maintaining performance, making it suitable for bandwidth-constrained envi-
ronments such as satellite computing and edge devices. Experiments have demonstrated
significant bitrate reductions without sacrificing accuracy, especially in tasks like image
classification and object detection. Additionally, the method is easily generalizable across
different neural network architectures with minimal adjustments required for integration
into pre-trained models. However, a key challenge lies in balancing compression and
reconstruction quality, as improper tuning may lead to the loss of critical information
during compression.

SVBI trains neural codecs by replacing the distortion term in the rate-distortion objective
of variational image compression models with head distillation (HD). In the Knowledge
Distillation (KD) framework, the codec acts as the student, learning from the shallow
layers of a foundational model, or the teacher, as shown in Figure 2.3. Unlike traditional
KD, HD takes a different approach, focusing on reconstructing the representation of
the foundational model. The intuition behind SVBI is that if a codec can successfully
reconstruct this representation, it will be sufficient for all tasks associated with the model.

The uses of this approach have been thoroughly examined in the literature. For example,
the Entropic Student [26] leverages knowledge distillation and neural image compression
to compress intermediate feature representations efficiently. This approach involves
teacher and student models with a stochastic bottleneck and a learnable prior for entropy
coding. The student model is trained to match the teacher’s intermediate features, and
the bottlenecked features are compressed and transmitted to the edge server, where the
bulk of the computation is completed.

FrankenSplit [10] introduces a general framework for SVBI and demonstrates its efficacy
for latency-critical and performance-critical visual applications in edge-cloud computing
settings where the sender has only limited computational resources. FOOL [11] extends
this approach for Orbital Edge Computing (OEC). This method effectively partitions high-
resolution satellite imagery to maximize throughput, embedding contextual information
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Figure 2.3: Head distillation visualization. In this example, teacher penalizes the student
model for an insufficient approximation of the shallow representation of a pre-trained
feature extractor based on distortion loss.

and leveraging inter-tile dependencies to reduce transfer costs with negligible overhead.
Remarkably, FOOL maintains high prediction performance while allowing for a significant
increase in downlinkable data volume without requiring prior knowledge of downstream
tasks. By targeting shallow representations, FOOL ensures that critical information
necessary for a wide range of prediction tasks is preserved, even under varying and
unpredictable conditions.
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CHAPTER 3
Related Work

This section reviews notable studies on DNNs’ vulnerability to adversarial attacks,
focusing on methods directly related to crafting adversarial examples and examining and
improving robustness.

3.1 Adversarial Example Creation
The susceptibility of DNNs to adversarial examples was first highlighted by Szegedy et
al. [42], who demonstrated that small, imperceptible perturbations to input data could
lead to significant misclassifications. Building on this, Goodfellow et al. [12] introduced
the Fast Gradient Sign Method, a white-box attack that efficiently generates adversarial
examples by leveraging the gradient of the loss function. FGSM works by adjusting the
input along the gradient’s direction, with the perturbation defined as:

xadv = x + ϵ · sign(∇xJ(x, y))

where x is the input, ϵ controls perturbation magnitude, and ∇xJ(x, y) is the gradient
of the loss concerning the input. FGSM laid the groundwork for many subsequent
attacks, and it will be employed in this thesis as a baseline to evaluate the robustness of
bottleneck-injected DNNs.

Building on FGSM, Carlini et al. [5] proposed the Carlini & Wagner (C&W) attack,
which has become one of the most potent gradient-based attacks. The C&W attack is
formulated as an optimization problem that balances the perturbation’s magnitude and
the degree of misclassification across different Lp norms (L0, L2, Linf). The L2 attack,
for instance, minimizes:

min ∥x′ − x∥p + c · f(x′)
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3. Related Work

where x′ is the adversarial example, and c balances perturbation size and misclassification
confidence. This attack will be used to stress-test bottleneck-injected models due to its
ability to generate high-confidence adversarial examples, providing a rigorous evaluation
of model defenses.
In addition to L2 and Linf norm-based attacks, EAD (Elastic-net Attacks to DNNs) [6]
introduces L1-oriented adversarial examples, adding an L1 term to the C&W objective.
This method is beneficial for producing sparse perturbations, which can fool DNNs while
maintaining minimal changes to the input. EAD’s dual-norm optimization will be an
alternative benchmark for evaluating how variational bottleneck injection handles diverse
attack strategies.
Another distinctive approach is the Jacobian-based Saliency Map Attack (JSMA) [29],
which constructs adversarial examples by identifying and perturbing input features most
critical to the classifier’s decision-making process. Unlike gradient-based methods, JSMA
uses forward derivatives to create a saliency map, guiding perturbations to specific input
features. Given that variational bottleneck techniques may alter feature representations,
testing JSMA will allow us to explore how bottleneck injection influences feature saliency
and adversarial resilience.
The adversarial example generation techniques reviewed here, particularly FGSM, C&W,
EAD, and JSMA, are central to this thesis’s experimental evaluation of bottleneck-injected
models. These attacks will assess whether variational bottleneck techniques can enhance
robustness by limiting the network’s susceptibility to adversarial perturbations.

3.2 Improving Robustness of DNNs
Improving the robustness of DNNs is essential for enhancing their resilience to adversarial
attacks and input perturbations. In this context, robustness refers to a model’s ability to
maintain performance despite such interference. Various defense strategies have been
studied, and this section focuses on those relevant to bottleneck injection.
Adversarial training, introduced by Goodfellow et al. [12], retrains networks on a mix
of clean and adversarial examples, pushing the model to learn more robust decision
boundaries. While effective, it is computationally expensive and often reduces accuracy
on clean data, motivating the exploration of alternative methods such as bottleneck
injection, which aims to improve robustness without this trade-off.
Defensive distillation, proposed by Papernot et al. [30], trains a secondary model on soft
class probabilities to smooth decision boundaries. Although initially promising, Carlini
et al. [4] showed that distilled models remain vulnerable to advanced attacks like the
C&W attack, reconsidering distillation as a defense.
Input preprocessing techniques, such as JPEG compression and bit-depth reduction [17],
have been explored to reduce adversarial noise. However, these methods often degrade
performance on clean data, limiting their practical use. Bottleneck injection shares the
goal of filtering noise but does so within the network architecture itself.
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Architectural changes have also shown potential, such as adding noise layers or altering
activation functions. Xie et al. [47] introduced feature denoising by adding non-local
blocks to remove noise from intermediate features. This strategy improves robustness
by addressing noise at multiple levels in the network. In contrast, bottleneck injection
methods like the Variational Information Bottleneck [1] focus on compressing and regu-
larizing information flow through the network, compelling the model to retain only the
most relevant features. This compression may naturally enhance robustness by reducing
the network’s sensitivity to irrelevant perturbations.

In this thesis, we explore variational bottleneck injection as a mechanism for improv-
ing DNN robustness. By introducing a bottleneck layer that compresses intermediate
representations, VIB aims to mitigate the impact of adversarial perturbations while main-
taining high task performance. This method contrasts with the more computationally
expensive techniques like adversarial training and preprocessing, offering a potentially
more efficient and elegant solution. To our knowledge, the use of this method for defensive
purposes against adversarial image perturbations has so far been unexplored in literature.

3.3 Targeting Autoencoders
The selected adversarial example types assess the robustness of SVBI and DVBI models
against state-of-the-art DNN classifier attacks compared to unsecured models. However,
introducing bottlenecks may create additional attack vectors. Therefore, we examine the
vulnerability of the autoencoder layer inserted before the classifier.

Chen and Ma’s Fast Threshold-constrained Distortion Attack (FTDA) [7] generates
adversarial examples for neural image compression (NIC) models. FTDA introduces
minor perturbations to an image, significantly distorting its decompressed version when
processed by a NIC model. Like other adversarial techniques targeting classifiers, the
process involves adjusting noise to balance detectability and distortion maximization.
The noise is refined to maximize the difference between the original and adversarial
decompressed images. While the approach focuses on the perturbed image input for
classification, our interest lies in the internal, compressed representation passed directly
to the classifier.

Tabacof et al. [43] also use adversarial perturbations to target autoencoders, aiming not
only to disrupt reconstruction but also to induce the encoder to produce a completely
different target image. This would undermine the potential defensive role of autoencoders
in de-noising classifier inputs. The study shows that while autoencoders offer some
protection, small perturbations can still succeed. We hypothesize that if perturbations
alter the internal representation to resemble a different image, the classifier may not need
to be fooled directly. The attack generates noise to match the internal representation of
a target image and applies it to an input. Trying to generate noise to match the target
image directly fails.

It is difficult to quantitatively evaluate the approach’s effectiveness, as the result is not a
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label but a decompressed image. We should not encounter such issues because we do not
have to reconstruct the compressed image into a human-readable representation.
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CHAPTER 4
Experimental Setup

This chapter details the experimental setup and execution methodology used to investigate
the resilience of deep neural networks against adversarial attacks by implementing
variational bottleneck techniques. The structure and processes described here are designed
to ensure replicability, accuracy, and comprehensive evaluation of our hypotheses and
research questions. To properly compare and evaluate our selected classification models,
datasets, and evasion attacks, we have set up an experimental pipeline to parse inputs
to a standard format, train the models chosen on selected datasets, generate perturbed
images, and produce statistics and norms for later analysis. In the following sections, we
describe the architecture of the pipeline in greater detail, explaining our process to ensure
reproducibility. Our data collection and preparation processes will also be explored in
this chapter, as well as the metrics we have chosen to empirically and objectively evaluate
our results, including the reasoning behind our choices.

4.1 Experiment Design
Our experimental design leverages Python’s extensive libraries and tools, ensuring an
efficient and effective setup. We use Torchvision [24] for dataset handling and model
architectures and CUDA to utilize GPU acceleration, significantly speeding up the
training and evaluation processes.

The experimental setup is configured with high-performance components to ensure
optimal performance and reliability for deep learning tasks. The system is equipped with
two Micron 32GB DDR4-3200 ECC UDIMM 2Rx8 C L22 memory modules, providing a
total of 64GB of error-correcting code (ECC) memory, which is essential for maintaining
data integrity during intensive computations. At the core of the setup is an AMD Ryzen 7
5700G processor featuring eight cores and 16 threads, supported by a single GeForce RTX
4070 Ti graphics card to handle parallel processing demands. While this combination
provides adequate speed and stability for most tasks, our computational resources are
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limited. As a result, we focused primarily on lower-dimensional images and smaller
datasets to ensure feasible experimentation. This configuration allowed us to efficiently
explore different training and attack parameters within the constraints of our resources,
providing thorough evaluations.

4.1.1 Dataset Selection
When selecting datasets for our experiments, we focused on balancing complexity, size,
and relevance to the task. Our goal was to include datasets that are diverse in structure,
manageable within our computational constraints, and capable of highlighting the effects
of adversarial perturbations on classification tasks. We prioritized datasets that provide
a range of challenges, from standard benchmarks to more complex, high-resolution image
sets.

SVHN was chosen for its complexity in digit recognition tasks, while MNIST is a standard
benchmark for handwritten digit classification, consisting of ten classes. We opted for
the cropped digits format of SVHN, which contains 73,257 training images and 26,032
test images, while the MNIST dataset consists of 60,000 training images and 10,000 test
images. CIFAR-10 was selected due to its manageable size and everyday use in image
classification tasks, with a train/test split of 50,000/10,000. Initial experiments were
done using CIFAR-100. However, because of the relatively low number of training images
available for each class, we have failed to train our classification models to be accurate
enough to see the apparent adverse effects of the perturbations. As the name would
suggest, CIFAR-10 contains ten classes. ImageNet64, a downscaled version of ImageNet,
is used to reduce training time while maintaining task complexity, and Felidae, a subset of
ImageNet including high-resolution(224x224) images of cats, provides a comparison point
for high-resolution image classification like the entire ImageNet dataset. The ImageNet64
dataset comprises 1,281,167 training data and 50,000 test data with 1,000 classes. Felidae,
being a subset, is smaller, with only 9,100 training images and 350 test images, sorted
into seven classes.

4.1.2 Models and Training
Our experimental model selection consists of ResNet variants: ResNet-18, ResNet-50,
and ResNet-101. These models are chosen for their differing depths and complexity.
ResNet-18, being lightweight, is suitable for initial experiments and baseline comparisons.
ResNet-50, with increased depth, provides insights into the impact of intermediate depth
on performance and robustness. ResNet-101, the deepest model in our selection, allows us
to explore the effects of extensive depth on adversarial robustness and model performance.
Our model-training pipeline is displayed in Figure 4.1. We used torchvision.models
TorchModels [34] to load the "hollow" models that we trained from scratch.

The training process involves using a standardized approach. Cross-entropy loss is
employed as the loss function for classification tasks. We use a combination of Stochastic
Gradient Descent (SGD) with momentum and weight decay and the Adam optimizer to
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Figure 4.1: A visualization of our model training process.

enhance convergence and generalization based on what worked best during our initial
experiments with the smaller and faster ResNet-18 model. A learning rate scheduler, like
ReduceLROnPlateau, adjusts the learning rate based on epoch loss, ensuring optimal
training dynamics. Gradient clipping is applied to prevent exploding gradients and ensure
stable training. We also employ an early exit strategy, which stops the learning process
to combat diminishing returns. Because of the computational- and time cost of using
cross-validation (CV) during training, specifically in Deep Learning with large datasets,
we have decided not to utilize CV for our purposes. We do not use any existing validation
datasets, and we utilize whole training sets for training with no validation split.

4.1.3 Image Perturbations
Adversarial attacks are generated using the torchattacks [20] library, which provides many
state-of-the-art attack methods out-of-the-box. We selected FGSM, EAD, C&W, and
JSMA for their distinct characteristics and perturbation methods. FGSM is a well-known
method for adversarial example generation, which we have covered in the previous sections.
It was chosen for its simplicity and effectiveness in generating adversarial examples. EAD
was selected for its ability to craft adversarial examples using an elastic-net regularization
that combines L1 and L2 norms. The C&W attack, also extensively explored in Chapters
2 and 3, is known for its strong performance in creating high-confidence adversarial
examples, making it an essential part of our evaluation. JSMA focuses on perturbing
specific input features, which we thought would provide a different perspective on the
model’s vulnerability. This attack tends to be memory-inefficient when applied to larger
images, like the Felidae dataset. For this reason, we have implemented an adjusted version
of the JSMA attack called the JSMAOnePixel, inspired by Kenny [40]. Compared to the
standard JSMA attack, the OnePixel variant identifies only one pixel with the highest
impact on the classification and changes only it each iteration. Supposedly [40], this
small change significantly improves the processing time while keeping the effectiveness
essentially the same as JSMA. As can be observed from Figure 4.2, the final perturbed
images look indistinguishable between base JSMA and JSMAOnePixel. We use the
JSMAOnePixel variant on the Felidae and ImageNet64 datasets while using regular
JSMA for all other datasets.
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Figure 4.2: An example of a CIFAR-10 image (left) perturbed with JSMA (middle) and
JSMAOnePixel (right). Base JSMA does not scale well beyond CIFAR-sized inputs.

In addition to these standard evasion attack methods developed to fool image classifiers
specifically, we also aim to examine how specific ResNet models with specific bottlenecks
deal with images altered with common image corruptions. We then compare the classifi-
cation accuracies with the base models’ accuracy. We do this, on the one hand, to test the
overall ability of the model to deal with altered inputs that have not been adversarially
perturbed specifically with the goal of evasion and also to see if bottleneck-injected
models deal better with these more straightforward, more common corruptions. This
should put into perspective the deterioration in accuracy with evasively perturbed images.
The selected alterations we examine are Gaussian noise, defocus blur, motion blur, and
low contrast. We considered analyzing the pixelation corruption as well, but since most
of our datasets are relatively low resolution, the effects would either not be noticeable, or
the inputs would get too heavily distorted to the point where fair comparisons could not
be drawn. Our selection draws from the image corruptions presented by Hendrycks et
al. [18]. Figure 4.3 shows the complete testset collection we prepare for our experiments.

4.1.4 Deep Variational Bottleneck Injection

Once base models are trained and evaluated, we repeat the process with deep bottleneck-
injected versions of ResNet-18, ResNet-50, and ResNet-101, crafted based on the work
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Figure 4.3: A visualization of the results of our dataset preparation process.

done by Singh et al. [39]. We build upon the ResNet architectures by incorporating an
entropy bottleneck layer, which encourages the network to produce latent representations
that are more compressible while maintaining high classification accuracy. The entropy
bottleneck layer forces the intermediate representation to be compressible by minimizing
its entropy. The network has three main components: feature extraction, entropy
bottleneck, and classification. The modified architecture can be summarized as follows:

• Feature Extraction: The input image is passed through the feature extraction layers
of the ResNet. This part of the network includes all convolutional and pooling
layers up to the penultimate layer of the original ResNet.

• Entropy Bottleneck: The output of the feature extraction layers is passed through
an entropy bottleneck. This layer quantizes the feature maps and computes the
likelihoods of the quantized values. The entropy bottleneck is designed to produce
a latent representation optimized for compressibility.

• Classification: The quantized latent representation is then passed through the final
fully connected layer to produce the class scores.

By incorporating the new layer, we effectively create a bottleneck that serves two purposes:
reducing the dimensionality of the feature maps and encouraging a distribution that is
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more amenable to compression. The experimental pipeline beyond this point remains
the same as with the baseline models. The training parameters for some models had
to be adjusted after implementing the bottleneck layer for the DVBI model to reach
an accuracy comparable to the base model accuracy. A detailed summary of training
parameters and methods can be found in Chapter 5, where we also present our findings
regarding the accuracy and potential robustness gains or losses that the deep bottleneck
layer provides.

4.1.5 Shallow Variational Bottleneck Injection

Input image

Shallow layers of the DNN Bottleneck

Client side

(variational)
Encoder/Compression

Decoder

Server side

Prediction

Deeper layers of the DNN

Compressed
features
(Tensor)

Figure 4.4: SVBI scenario motivated by the need to compress high-dimensional features
early to reduce the volume of data that needs to be transmitted to a server while
maintaining task performance.

For our experiments, we implemented the shallow variational bottleneck as described in
[10]. The bottleneck injection was applied to the respective pre-trained models, generated
as described at the start of this chapter. It is worth noting that with standard SVBI,
training does not need to be performed separately for each dataset. Typically, the
model can be trained once on a large and diverse dataset, such as ImageNet, and it will
generalize effectively to other datasets like CIFAR or SVHN. The dataset does not have
to be ImageNet specifically but should be sufficiently large and diverse to capture a broad
range of features. However, in our case, we train SVBI separately for each dataset to
maintain consistency with our baseline, which was trained individually for each dataset.
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Following this, the deeper layers or the prediction head can be fine-tuned as usual. Figure
4.4 outlines the general setup of an SVBI model used in a split computing scenario.

4.1.6 Attacking the Bottleneck
Next, we explore the application of the Tabacof [43] attack to perturb the MNIST dataset
to deceive a variational information bottleneck model. The primary objective of this
attack is to manipulate the input images such that the bottleneck layer interprets them
as different, targeted images. This experiment aims to evaluate the robustness of the VIB
model against adversarial perturbations and understand the impact of these perturbations
on the latent representations. We want to examine our theory that bottleneck-injected
models would be more susceptible to such attacks than the base models, as the attack
targets the injected bottleneck layer.

The Tabacof attack, proposed by Tabacof et al., targets the latent space of variational
autoencoders.The attack generates adversarial examples by maximizing the Kullback-
Leibler (KL) divergence between the original and target latent distributions. This results
in the model interpreting the perturbed input as the target image. The core idea of the
Tabacof attack is to add a carefully calculated perturbation to the input image, such
that the resulting latent representation is pushed towards the latent representation of
a different, specified target image. This is achieved by optimizing the adversarial noise
through gradient-based methods, explicitly targeting the KL divergence in the latent
space.

As described by Tabacof et al. [43], the attack was designed and tested with the SVHN
and MNIST datasets. We have decided to limit ourselves to the MNIST dataset for our
experiments. We implemented the code published by the authors [32] into our pipeline,
adapting it for our purposes and to work with our pre-existing setup. To implement the
Tabacof attack, we followed these steps:

1. Model Preparation:

• We utilized a ResNet-based VIB model pre-trained on the MNIST dataset.
The model incorporates a variational bottleneck that regularizes the latent
space, making it a suitable candidate for evaluating the effectiveness of the
Tabacof attack.

2. Target Selection:

• For each input image, a target image was selected. The target image could be
chosen randomly from a different class or manually specified. The goal was to
generate perturbations that would make the VIB model interpret the input
image as the target image.

3. Latent Space Manipulation:
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• The attack optimizes adversarial perturbations by minimizing a combined loss
function:

Loss = KL(µ(x) ∥ µ(t)) + λ · L2_norm(x − xadv) (4.1)

Where µ(x) and µ(t) are the mean vectors of the latent representations for the
original and target images, respectively, and λ is a regularization parameter
controlling the perturbation magnitude. The adversarial noise was initialized
with small random values and iteratively updated to minimize the loss function.

4.2 Data Collection and Preparation

Our data collection and preparation process is crucial for ensuring the integrity and
effectiveness of our experiments. Most of our selected datasets are provided directly via
the torchvision.datasets library [33]. For the training set, images are augmented using
several transformations to enhance data variation and improve model generalization.
These transformations include random cropping with padding, random horizontal flipping,
and random rotation.

Each image is then converted to a tensor and normalized using the dataset’s mean and
standard deviation statistics. The test set undergoes resizing, tensor conversion, and
normalization to ensure consistency with the training set. The data is then loaded into
pytorch Dataloaders, which facilitate batch processing and shuffling. To train our selected
ResNet models, we initialize them using pre-defined architectures from torchvision.models.
The fully connected layer of each model is adjusted to match the number of classes in
the dataset, and the models are moved to the GPU using Cuda for accelerated training.
Once the models are trained, they are saved to disk for future use. This step ensures we
can reload the models without retraining, thus saving computational resources.

Dataset Gaussian Noise Defocus Blur Motion Blur Low Contrast
MNIST SD: 0.5 Radius: 1.5 5x5 Kernel Factor: 0.1
CIFAR-10 SD: 0.025 Radius: 2.0 5x5 Kernel Factor: 0.25
SVHN SD: 0.025 Radius: 2.0 5x5 Kernel Factor: 0.25
ImageNet64 SD: 0.1 Radius: 1.25 5x5 Kernel Factor: 0.75
Felidae SD: 0.1 Radius: 2.0 5x5 Kernel Factor: 0.5

Table 4.1: Distortion parameters applied to different datasets.

When generating the corrupted datasets mentioned in the section on Image Perturbations,
we took a trial-and-error approach to selecting the extent of the damage. The goal was to
generate noticeably altered images that would remain recognizable to a human observer.
This was challenging methodically, as the severity of the corruption is subjective. Our
results presented in the following chapter nonetheless reveal exciting findings. Table 4.1
outlines our selected parameters for each dataset and type of corruption.
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Figures 4.5 to 4.9 showcase the generated corruptions on a sample image from each
dataset, depicting from left to right: Base image, Gaussian noise, defocus blur, motion
blur, and low contrast.

Figure 4.5: Common image corruptions applied to the MNIST dataset.

Figure 4.6: Common image corruptions applied to the CIFAR-10 dataset.

Figure 4.7: Common image corruptions applied to the SVHN dataset.

Figure 4.8: Common image corruptions applied to the ImageNet64 dataset.

Figure 4.9: Common image corruptions applied to the Felidae dataset.
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We utilize the torchattacks [20] library to generate adversarial examples. The adversarial
data is generated by applying specific attacks (FGSM, EAD, C&W, JSMA/JSMAOnePixel)
to the trained models. The perturbed data is then saved to disk as a torch tensor array of
image tensors and labels for subsequent evaluation. Perturbed data is stored in specified
directories, allowing us to reload and evaluate the models’ performance under adversarial
conditions without regenerating the perturbed images each time. For the most part, we
have reached acceptable perturbation results using the attack parameters set as default
by the individual torchattacks. The only dataset that proved challenging to perturb
using these initial values was MNIST, which was classified correctly at the same rate as
the base dataset under the FGSM and C&W attacks. After some experimentation, we
have landed on the following adjusted parameters:

• FGSM: We have changed the maximum perturbation parameter eps to 32/255 from
the default 8/255 for every version of ResNet

• C&W: We have changed the box-constraint parameter c to 5 from the default 1, as
well as the learning rate of the Adam optimizer to 0.05 from the initial 0.01 for
every version of ResNet.

Our implementation of the JSMAOnePixel has been modified slightly to include an
iteration limit to prevent the attack from running excessively long, particularly when
modifying many pixels is unnecessary, ensuring a balance between attack effectiveness
and computational efficiency. In addition to the hard limit on iterations, we employ
an early exit strategy, which stops the perturbation process as soon as the current
iteration is misclassified. Usually, the perturbation process would run until the image
gets misclassified to be a specific target image.

We only generate adversarial data using the base ResNet models, not injected ones.
Our research aims to determine if added bottlenecks at different classification stages
improve the model’s ability to deal with perturbed data that base models would otherwise
struggle with. Therefore, we do not want to train the attacks against these altered models.
Instead, we want to simulate a scenario closer to the real world, where attacks created to
fool base models would be potentially thwarted thanks to the addition of an artificial
information bottleneck.

The trained models are loaded for evaluation, and their performance on clean and
perturbed datasets is assessed. The specific metrics used for the assessment are outlined
in the following section. This systematic approach to data collection, preparation, model
training, and evaluation ensures that our experiments are thorough, reproducible, and
capable of providing meaningful insights into the robustness of DNNs against adversarial
attacks.
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4.3 Evaluation Metrics
Our models are evaluated using a comprehensive set of metrics that provide a thorough
understanding of their performance and robustness. The key metrics used in our analysis
are top-1 accuracy, top-5 accuracy, bits per pixel and the L0, L2, and L∞ norms. Each
of these metrics serves a specific purpose and provides insights into model behavior and
resilience to adversarial attacks.

Top-1 accuracy is a fundamental metric that measures the proportion of correctly
classified instances out of the total cases tested. Specifically, top-1 accuracy represents
the percentage of test images for which the model’s highest confidence prediction matches
the true label. This metric is crucial because it directly indicates the model’s effectiveness
in making correct predictions on clean, unperturbed data, serving as a baseline for overall
performance. These statistics can then be compared with the model’s performance on
perturbed data to gauge the performance loss quickly.

Top-5 accuracy, on the other hand, extends this evaluation by considering the top five
predictions made by the model for each test instance. If the true label is among the
top five predictions, the instance is considered correctly classified for this metric. Top-5
accuracy is instrumental in applications where multiple plausible answers may exist or
where it is acceptable to consider a set of potential outcomes. In our case, four out of five
selected datasets only have ten classes or less, meaning the top-5 accuracy is expected to
be fairly high. It is an adequate way to evaluate the correctness of our training process
when we compare the two accuracies with available statistics.

In addition to accuracy metrics, we employ the L0, L2, and L∞ norms to quantify the
perturbations introduced by adversarial attacks. Each of these norms provides a different
perspective on the nature and impact of the perturbations:

• The L0 norm counts the number of pixels the adversarial perturbation has altered. It
provides insight into the sparsity of the perturbation, indicating how many individual
pixel changes are needed to deceive the model. The L0 norm is particularly
useful for understanding the minimum number of changes required to alter the
model’s prediction, highlighting the attack’s efficiency in terms of the number of
modifications rather than their magnitude.

• The L2 norm, also known as the Euclidean norm, measures the average magnitude
of perturbations applied to each pixel of an image. It is computed as the square root
of the squared differences between the original and perturbed images. The L2 norm
provides a sense of the overall distortion introduced by an attack, capturing the
extent to which the entire image has been altered. This metric is important because
it helps us understand how much change is needed to fool the model, indicating
the robustness of the model against distributed perturbations.

• The L∞ norm, or max norm, measures the maximum change applied to any single
pixel in the image. It is computed as the maximum absolute difference between

29



4. Experimental Setup

the pixels of the original and perturbed images. The L∞ norm is particularly
useful for understanding the impact of localized, high-intensity perturbations. This
metric is critical when minor but highly concentrated changes can significantly
affect the model’s predictions. We can assess the model’s vulnerability to extreme
yet localized alterations by evaluating the L∞ norm.

Using all three norms allows for a comprehensive analysis of adversarial robustness. The
L0 norm reveals how sparse or dense the perturbation is, the L2 norm provides a holistic
view of the overall perturbation, and the L∞ norm highlights the worst-case scenario
of pixel-level changes. These metrics offer a detailed picture of the model’s resilience to
adversarial attacks, from sparse, minimal alterations to widespread distortions and sharp,
focused changes.

Combining top-1 and top-5 accuracy with L0, L2, and L∞ norms ensures that we
capture the model’s general performance and its specific vulnerabilities to adversarial
perturbations. Top-1 and top-5 accuracy metrics reveal how well the model performs
under normal and relaxed conditions, providing insights into its overall classification
capabilities. Meanwhile, the L0, L2, and L∞ norms detail the model’s robustness by
quantifying the extent and nature of adversarial perturbations required to deceive it.

Moreover, we use the Bits Per Pixel (BPP) metric to evaluate models with bottleneck
layers. BPP measures the amount of information retained or discarded through the
compression process in these models. By analyzing BPP, we aim to understand the
trade-offs between the compression level and model performance, particularly under
adversarial conditions. The BPP metric quantifies how much information is preserved
in the bottleneck layers, which is crucial for maintaining accuracy while minimizing the
data footprint. By comparing BPP values across different models, we can demonstrate
how varying levels of compression impact the model’s robustness to adversarial attacks
and its ability to generalize from the data. This metric illustrates the effectiveness of our
bottleneck-injected models in balancing compression with performance.

In addition to these quantitative metrics, we generate ten random pairs of standard
and perturbed images for every attack. This qualitative evaluation allows us to visually
inspect the differences introduced by adversarial perturbations. While it is effectively
impossible to empirically evaluate images directly due to the subjective nature of visual
assessments, including these comparison images provides a tangible representation of the
perturbations. These visual comparisons can highlight the subtle yet impactful changes
that adversarial attacks impose on images. In the following chapter, we include some
of these comparison images to demonstrate the nature and extent of the perturbations
intuitively. The full statistics collection pipeline can be observed in Figure 4.10.
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Figure 4.10: A visualization of our statistics collection process.
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CHAPTER 5
Experiment Results

This chapter presents the experiment results. We analyze the effects of different image
corruptions on classification performance and present statistics collected on model per-
formance with perturbed datasets altered by specific attacks. Additionally, we examine
the L-norms (L0, L2, and L∞) to quantify the perturbations applied to the images. We
present our results here without relating them to each other. An in-depth analysis and
interpretation of the differences and effects of specific models and attacks is found in
Chapter 6.

5.1 Base Accuracies of Simple Models

Through extensive experimentation, first with the ResNet-18 model for time-saving
reasons, we have arrived at the following training parameters that have allowed us to
train our models to mostly match the reported average benchmarks for comparable
setups collected by paperswithcode.com [31]. Typical values used with all model/dataset
combinations are omitted from the following list. These values include the momentum
of the Stochastic Gradient Descent optimizer (when used), which was set to 0.9, and
the early stopping patience of 5 epochs as well as the gradient clip value of 1.0 for all
datasets except CIFAR-10 and Felidae, which was changed to 10 and 0.5 respectively. As
a loss function, cross entropy loss was used during all our experiments, and a scheduler
was used to reduce the learning rate on a plateau in the "min" mode, with a factor set to
0.1 and patience set to 5. The Felidae Dataset uses the OneCycleLR scheduler with a
maximum learning rate of 0.01.
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Dataset Model Optimizer Scheduler LR Batch Size Epochs Weight Decay

MNIST
R18 SGD ReduceLROnPlateau 0.01 128 200 0.0001
R50 SGD ReduceLROnPlateau 0.01 64 200 0.0001
R101 SGD ReduceLROnPlateau 0.01 32 200 0.0001

CIFAR-10
R18 SGD ReduceLROnPlateau 0.0001 32 400 0.0001
R50 SGD ReduceLROnPlateau 0.0001 32 600 0.0001
R101 SGD ReduceLROnPlateau 0.0001 32 800 0.0001

SVHN
R18 SGD ReduceLROnPlateau 0.01 128 200 0.0001
R50 SGD ReduceLROnPlateau 0.01 64 200 0.0001
R101 SGD ReduceLROnPlateau 0.01 32 200 0.0001

ImageNet64
R18 Adam ReduceLROnPlateau 0.001 256 200 0.00001
R50 Adam ReduceLROnPlateau 0.001 256 200 0.00001
R101 Adam ReduceLROnPlateau 0.001 256 200 0.00001

Felidae
R18 AdamW OneCycleLR 0.01 128 200 0.0001
R50 AdamW OneCycleLR 0.01 64 200 0.0001
R101 AdamW OneCycleLR 0.01 32 200 0.0001

Table 5.1: Hierarchical summary of training configurations across datasets.

The parameters used in Table 5.1 allowed us to train our baseline models to reach the
accuracies reported in Table 5.2. The results mostly align with reported accuracies
for these models and datasets, with some, such as CIFAR-10, being slightly lower by
about 5-10 percentage points and ImageNet64 differing by about ten percentage points,
especially for the deeper models. The Felidae dataset also shows relatively low accuracy,
primarily due to the limited volume of training and test data available.

These slight deviations are not problematic for this work, as our goal was to observe the
performance gains or losses from introducing an information bottleneck. The accuracies
are sufficient to observe distinct differences in model performance with specific bottleneck
injections. Most datasets were trained within two to eight hours, with the larger
ImageNet64 dataset requiring over two days. This extended training time also contributed
to our decision to proceed with slightly lower accuracies.

Dataset ResNet18 ResNet50 ResNet101
MNIST 98.93% 99.12% 98.75%
CIFAR-10 88.29% 89.21% 89.05%
SVHN 94.04% 94.88% 94.37%
ImageNet64 38.05% 42.18% 42.17%
Felidae 75.43% 76.57% 79.14%

Table 5.2: Baseline accuracies of simple models on various datasets.

5.2 Effects of Image Corruptions on Simple Model
Classification Accuracy

For MNIST, introducing Gaussian noise resulted in a significant drop in classification
accuracy across all ResNet models, with accuracies plummeting to around 10-12% . For
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Dataset Corruption ResNet18 ResNet50 ResNet101
MNIST Gaussian Noise 86.79% 87.12% 89.01%

Defocus Blur 18.81% 27.92% 22.89%
Motion Blur 10.62% 9.83% 10.71%

Low Contrast 77.43% 77.41% 76.72%
CIFAR-10 Gaussian Noise 0.91% 1.15% 0.91%

Defocus Blur 59.76% 62.59% 63.82%
Motion Blur 37.04% 40.59% 38.32%

Low Contrast 47.24% 43.27% 41.27%
SVHN Gaussian Noise 0.36% 0.19% 0.30%

Defocus Blur 10.24% 9.34% 10.44%
Motion Blur 6.75% 5.56% 5.73%

Low Contrast 11.1% 7.07% 7.07%
ImageNet64 Gaussian Noise 31.85% 33.52% 33.31%

Defocus Blur 34.94% 39.83% 40.32%
Motion Blur 33.88% 37.31% 38.21%

Low Contrast 2.99% 2.39% 2.12%
Felidae Gaussian Noise 1.00% 19.14% 28.00%

Defocus Blur 19.14% 27.14% 30.28%
Motion Blur 17.72% 19.14% 22.85%

Low Contrast 7.72% 11.71% 14.00%

Table 5.3: Decrease of simple model accuracies under different image corruptions. Bold
values in each row indicate the value with the biggest drop compared to the baseline.

instance, ResNet-18’s accuracy dropped sharply by around 86%. This underscores the
models’ high sensitivity to random noise, particularly in a simple dataset like MNIST.
Notably, deeper models like ResNet-101 experienced a slightly more noticable drop than
ResNet-18. Defocus blur also led to observable decreases in accuracy, with deeper models
like ResNet-101 showing slightly worse resilience compared to ResNet-18. However, the
impact was less severe than Gaussian noise, suggesting that spatial distortions are less
detrimental than random noise. Motion blur caused moderate accuracy reductions, with
ResNet-18’s accuracy decreasing by 10%, while ResNet-50 and ResNet-101 maintained
similar performance, indicating that temporal coherence is less disruptive, regardless of
model depth. Low contrast had a critical impact on performance, with all ResNet models’
accuracies dropping dramatically by around 76%, highlighting the models’ dependence on
sufficient contrast for feature extraction and showing little variation across model depths.

For CIFAR-10, the impact of Gaussian noise was milder compared to MNIST, with only
slight drops in accuracy. For example, ResNet-18’s accuracy fell by less than 1%, with
ResNet-50 and ResNet-101 showing even smaller reductions. This reflects CIFAR-10’s
greater robustness against random noise due to its complexity. However, defocus blur
led to more substantial decreases in accuracy, with all models handling this distortion
similarly. Motion blur also caused significant performance drops, with ResNet-18’s
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accuracy reducing by around 37%. At the same time, deeper models exhibited a slightly
worse result, emphasizing the challenges posed by temporal distortions, even for deeper
models. Low contrast had a pronounced effect, with ResNet models showing considerable
accuracy reductions by more than 50%. However, deeper models like ResNet-101 show
visibly better performance, indicating that contrast remains a critical factor even in more
complex datasets, though depth provides some mitigation.

For SVHN, Gaussian noise resulted in minimal accuracy reductions, showing that the
models retained considerable robustness to random noise, as seen in ResNet-18’s minor
drop by less than 1%, with deeper models like ResNet-50 and ResNet-101 exhibiting
even less reduction, highlighting the small but positive impact of depth in handling noise.
Defocus blur caused slightly more considerable decreases, with ResNet-18’s accuracy
dropping by about 10%. Deeper models performed similarly, highlighting the models’
sensitivity to spatial distortions and no apparent advantage of depth. Motion blur and
low contrast were also observed to be similar, with minor accuracy drops, with slight
improvements in the deeper models compared to ResNet-18.

For ImageNet64, Gaussian noise caused dramatic accuracy drops, with accuracies falling
to single digits, illustrating the models’ extreme vulnerability to random noise in a highly
complex dataset. Interestingly, ResNet-101 exhibited slightly better performance under
noise, indicating that model depth can offer some limited resistance. Defocus blur had
an even more severe impact, reducing ResNet-18’s accuracy by almost 35%, with deeper
models like ResNet-101 dropping by more than 40%, suggesting that greater depth does
not necessarily confer robustness to spatial distortions in complex datasets. Motion blur
and low contrast also severely affected performance, leading to an accuracy of around 4-5%
across all models, showing minimal benefit from increased depth. Low contrast showed a
slightly better impact, with accuracies between 35-40%, where ResNet-101 performed
marginally better, highlighting that depth may offer limited benefits in maintaining
performance under such conditions.

For the Felidae dataset, Gaussian noise led to moderate accuracy reductions especially in
deeper models, with ResNet-101’s accuracy decreasing by 28%. At the same time, the
shallower ResNet-18 showed marginally better resilience, reflecting a noticeable but less
severe vulnerability compared to other datasets, showing no real benefits from model
depth. Defocus blur and motion blur caused more notable drops in accuracy across all
model depths, however both corruptions showed a lesser impact on the shallow model.
low contrast had a limited effect on all models, with only marginal differences between
the models of varying depth, though the decrease from base accuracy is clear.

Our findings, presented in table 5.3, highlight the varying levels of performance degrada-
tion we measured across different image corruptions and dataset complexities, with more
pronounced accuracy drops in certain conditions like Gaussian noise or low contrast.
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5.3 Effects of Adversarial Attacks on Base Classification
Accuracy

Dataset Attack ResNet18 ResNet50 ResNet101
MNIST FGSM 54.75% 35.16% 44.63%

EAD 98.01% 98.27% 98.64%
C&W 94.58% 88.36% 93.92%
JSMA 94.78% 83.63% 84.57%

CIFAR-10 FGSM 74.56% 68.85% 69.31%
EAD 85.52% 85.14% 88.65%
C&W 87.01% 88.01% 87.75%
JSMA 87.62% 85.10% 83.58%

SVHN FGSM 69.95% 58.06% 68.31%
EAD 90.54% 92.09% 94.32%
C&W 92.37% 88.78% 93.23%
JSMA 93.58% 90.17% 94.08%

ImageNet64 FGSM 37.76% 41.70% 41.71%
EAD 35.43% 37.73% 41.66%
C&W 37.85% 41.73% 41.94%
JSMA 34.66% 39.32% 38.97%

Felidae FGSM 75.43% 72.86% 74.85%
EAD 72.57% 75.43% 78.28%
C&W 75.14% 66.86% 73.43%
JSMA 74.86% 75.43% 78.57%

Table 5.4: Decrease of base model accuracies under different adversarial attacks. Bold
values in each row indicate the value with the biggest drop compared to the baseline.

Presented in table 5.4 are the relative accuracy decreases of our base models on adversarial
datasets, compared to unperturbed data. The FGSM attack, which perturbs input images
by adjusting each pixel toward the loss function gradient, caused significant accuracy drops
across all models and datasets. For MNIST, accuracies fell noticeably, with substantial
reductions across all ResNet models. For example, ResNet-18’s accuracy dropped by
more than 50%, while deeper models like ResNet-50 and ResNet-101 showed relatively
better resilience. This indicates that increased model depth may provide some robustness
against FGSM, though the perturbations still significantly degrade performance. The L2
and L0 norms indicated substantial overall perturbations, with ResNet-18 showing almost
60% of pixels altered, highlighting the cumulative effect of subtle perturbations that
the models failed to manage effectively. For CIFAR-10 and SVHN, similar trends were
observed, with accuracy drops remaining substantial despite the higher complexity of
these datasets. In CIFAR-10, the L0 norms were considerably higher than other attacks,
such as ResNet-18 showing more than 99% altered pixels, indicating that many pixels
needed to be perturbed to achieve a significant drop in accuracy. In ImageNet64, FGSM
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also led to notable accuracy reductions, with ResNet-18 showing a drop by more than
35%, while deeper models such as ResNet-50 and ResNet-101 fared only marginally better.
The L0 norm showed more than 98% altered pixels in ResNet-18 reflecting the challenge
of maintaining robustness against such attacks in high-resolution images. The L∞ norms,
although lower, still demonstrated impactful pixel-wise changes. The Felidae dataset
also experienced significant accuracy reductions under FGSM, with extraordinarily high
L0 norms, such as ResNet-18 showing more than 99% of pixels altered, indicating that
nearly the entire image was altered. ResNet-50 and ResNet-101, with accuracy drops of
more than 70%, managed to handle the perturbations slightly better than ResNet-18,
again suggesting that deeper models can offer improved, though still limited, resilience.
The high L0 statistics are mirrored in the high L∞ norms indicating that in addition
to the amount of altered pixels, significant pixel-wise changes were necessary to cause
notable degradation in model performance.
A sample set of the FGSM perturbed images can be found in the appendix section A.1.
EAD resulted in even more significant accuracy reductions than FGSM across almost
all datasets. The L0 norms were higher, with, for instance, ResNet-18 showing almost
93% altered pixels in MNIST, reflecting the increased complexity of the perturbations.
CIFAR-10 also saw substantial drops, with ResNet-18’s accuracy further reduced by more
than 85%. Interestingly, ResNet-50 exhibited slightly better resilience, while ResNet-101
struggled more significantly, dropping almost to zero. This counterintuitive result may
arise from the deeper model’s greater complexity, sometimes making it more sensitive
to subtle perturbations or from optimization and gradient stability challenges in very
deep networks. SVHN followed a similar pattern, with ResNet-18’s accuracy dropping by
around 90% under EAD, while ResNet-50 and ResNet-101 exhibited even lower accuracies,
indicating that the increased model depth did not confer additional robustness in this
case. The L0 norms were also high suggesting that the attack effectively exploited the
vulnerabilities of deeper models in this dataset. In ImageNet64, the EAD attack also led
to significant accuracy reductions. ResNet-50 and ResNet-101 demonstrated a similar
trend to the previous dataset. However, the overall impact remained severe, reflecting
the severity of perturbations required to compromise the models in this high-resolution
dataset. The L∞ norms, though comparably lower, indicated that maximum pixel-
wise changes still considerably impacted accuracy, regardless of model depth. For the
Felidae dataset, EAD caused notable accuracy drops, with moderate L2 and L0 norms
underscoring the extensive alterations necessary to affect the model’s performance in this
complex subset, reducing the accuracy of ResNet-101 to less than 1%. ResNet-50 and
ResNet-18 notably both performing slightly better.
A sample set of the EAD perturbed images can be found in the appendix section A.2.
The C&W attack, known for optimizing perturbations to maximize misclassification while
minimizing detection, resulted in the most severe accuracy reductions across all datasets.
For example, in MNIST, ResNet-18’s accuracy plummeted by around 94%, with an L0
norm showing around 18% pixels altered, demonstrating the attack’s effectiveness even
with minimal pixel changes. Deeper models like ResNet-101 and especially ResNet-50
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exhibited slightly better performance, indicating that while C&W is highly effective,
model depth can offer some resistance. CIFAR-10 and ImageNet64 exhibited similar
trends, with substantial accuracy drops across the board, reflecting the sophisticated
nature of this attack and the marginal benefits of increased model depth. SVHN also saw
severe accuracy reductions, while the L0 norms for all datasets except MNIST turned
out higher than expected. They were, however, balanced out by lower L∞ values. In the
Felidae dataset, C&W attacks showed a similar trend, with ResNet-18 showing an L0
norm of above 99% of pixels altered, highlighting the extent of perturbations needed to
mislead the model in this subset, with accuracy dropping to nearly zero for ResNet-18.
ResNet-50 and ResNet-101 fared noticeably better in this case. A sample set of the C&W
perturbed images can be found in the appendix section A.3.

JSMA perturbs the input by modifying only the most influential pixels, leading to
significant accuracy reductions across all datasets while achieving higher overall L2 and
L∞ norms. In MNIST, ResNet-18 showed an L0 norm of less than 7% pixels altered,
indicating that JSMA effectively causes misclassification with minimal pixels changed.
ResNet-50 and ResNet-101 showed better resilience with accuracies dropping by around
84%, compared to 94% for ResNet-18, highlighting that deeper models are better equipped
to handle such targeted perturbations. This trend was consistent across CIFAR-10 and
Felidae, where minimal but highly effective perturbations led to notable accuracy drops,
reducing ResNet-18’s accuracy to nearly zero in both CIFAR-10 and Felidae, with
ResNet-50 showing better performance, reflecting the models’ vulnerabilities to targeted
pixel-wise changes and the benefits of increased depth. SVHN and ImageNet64 also
experienced notable reductions under JSMA, with ResNet-50’s accuracy being slightly
higher than both the shallower and deeper counterparts in both datasets.

A sample set of the JSMA perturbed images can be found in the appendix section A.4.
Overall, the analysis reveals that all tested adversarial attacks, particularly C&W and
EAD, significantly degrade the performance of ResNet models across various datasets,
with the most complex attacks (C&W) showing the highest effectiveness even with minimal
perturbations. However, deeper ResNet models (50 and 101) consistently show slightly
better resilience across different attacks and datasets, indicating that while no model is
immune, increased depth provides incremental improvements in robustness. These results
were expected, and the evident degradation of classification accuracy provides insightful
comparisons to the bottleneck-injected models analyzed in the following sections.

A summary of the norms we measured is presented in Tables 5.5 to 5.7.
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Dataset Attack L0 Norm L2 Norm Linf Norm
MNIST FGSM 461.5096 2.5821 0.1255

EAD 728.1548 1.2548 0.4337
C&W 141.6285 2.3910 0.5371
JSMA 54.0691 4.6363 0.9996

CIFAR-10 FGSM 3056.0245 1.7233 0.0314
EAD 2755.8611 0.3302 0.0954
C&W 2827.0205 2.3598 0.5379
JSMA 690.7737 5.2796 0.9996

SVHN FGSM 3064.6276 1.7323 0.0314
EAD 2898.3939 0.4535 0.1240
C&W 2928.2497 1.7324 0.0314
JSMA 597.4976 2.5563 0.7163

ImageNet64 FGSM 12124.4091 3.4254 0.0314
EAD 6702.5966 0.0907 0.0267
C&W 8376.4446 2.3018 0.5484
JSMA 2986.9732 2.3569 0.3423

Felidae FGSM 149255.3029 104.4099 0.9268
EAD 149561.6486 103.8224 0.9146
C&W 149747.7514 103.8156 0.9140
JSMA 148577.6086 104.0326 0.9445

Table 5.5: L0, L2, and Linf Norms for ResNet18 Under Different Adversarial Attacks.
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Dataset Attack L0 Norm L2 Norm Linf Norm
MNIST FGSM 433.0476 2.4852 0.1255

EAD 728.1548 1.3020 0.4630
C&W 136.6747 2.3598 0.5379
JSMA 62.6740 5.2796 0.9996

CIFAR-10 FGSM 3056.0256 1.7234 0.0314
EAD 2760.9355 0.3398 0.0953
C&W 2842.4857 2.3598 0.5379
JSMA 709.2510 3.9341 0.8541

SVHN FGSM 3064.6545 1.7324 0.0314
EAD 2905.1410 0.4982 0.1309
C&W 2843.8885 0.4529 0.0414
JSMA 612.7123 3.1362 0.7219

ImageNet64 FGSM 12124.3901 3.4254 0.0314
EAD 7337.2006 0.0936 0.0294
C&W 8600.3832 0.1741 0.0054
JSMA 2990.6234 2.4747 0.3749

Felidae FGSM 149231.4771 104.3837 0.9268
EAD 149664.5314 103.8202 0.9146
C&W 149660.88 103.8184 0.9141
JSMA 148577.8114 104.0299 0.9441

Table 5.6: L0, L2, and Linf Norms for ResNet50 Under Different Adversarial Attacks.
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Dataset Attack L0 Norm L2 Norm Linf Norm
MNIST FGSM 430.9440 2.4805 0.1255

EAD 743.899 1.1664 0.4339
C&W 141.0340 2.3018 0.5484
JSMA 60.8919 5.1902 0.9994

CIFAR-10 FGSM 3055.9931 1.7234 0.0314
EAD 2754.4508 0.3453 0.0943
C&W 2838.7128 2.3598 0.5379
JSMA 710.4651 4.0352 0.8588

SVHN FGSM 3064.5567 1.7323 0.0314
EAD 2858.4523 0.4675 0.1292
C&W 2943.2363 0.4665 0.0407
JSMA 600.5013 2.7478 0.7177

ImageNet64 FGSM 12124.2710 3.4254 0.0314
EAD 7143.7339 0.0912 0.0290
C&W 8620.3321 0.1742 0.0052
JSMA 2991.3329 2.5026 0.3772

Felidae FGSM 149239.8229 104.3879 0.9276
EAD 149581.6229 103.8192 0.9146
C&W 149730.6114 103.8181 0.9141
JSMA 148577.9286 103.9931 0.9447

Table 5.7: L0, L2, and Linf Norms for ResNet101 Under Different Adversarial Attacks.

5.4 Base Accuracies of DVBI Models
We trained new DVBI models on various datasets using the same pipeline and training
parameters used for the base models, ensuring an unbiased comparison. Interestingly, the
DVBI models almost consistently reach a lower baseline accuracy than the base models.
Except for the ImageNet64 dataset tested on ResNet-50, and SVHN with ResNet-101, the
accuracy differences are generally lower by almost five percentage points across the board.
The slight decrease in accuracy observed in DVBI ResNet models compared to the base
ResNet models could be attributed to the compression-accuracy trade-off introduced by
the deep bottleneck mechanism [39]. While the bottleneck layer aims to reduce the size
of feature representations, this compression may lead to a loss of discriminative power,
limiting the model’s ability to capture the full richness of features necessary for optimal
classification. Additionally, the bottleneck can act as an over-regularization, constraining
the flow of information and reducing the model’s capacity to capture fine-grained details.
This trade-off between compressibility and accuracy, along with a narrower feature
diversity, is likely responsible for the slight underperformance observed in the DVBI
ResNet models.

The baseline results indicate that the DVBI models achieve high accuracy on MNIST
and SVHN datasets across all ResNet variants. For CIFAR-10, the ResNet-18 model
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demonstrates the highest top-1 accuracy, while the ResNet-50 model performs slightly
better than ResNet-101. On the more challenging ImageNet64 dataset, the top-1 ac-
curacies are lower, with the ResNet-50 and ResNet-101 models performing better than
ResNet-18. The top-1 accuracy with the Felidae dataset varies, with ResNet-50 achieving
the highest accuracy, even compared to the base model. This discrepancy is probably
the result of the limited training data for this dataset.

The BPP metric played a crucial role in training the DVBI models. We systematically
tested several values for the λ parameter mentioned in Section 2 and tried to achieve
an acceptable balance of classification accuracy and Bits Per Pixel. We tested values in
the range from 0 to 1000, using starting small and potentially increasing the number
of datapoints if the accuracy kept reaching acceptable results. The following table
(5.8) depicts the BPP values we reached for our trained DVBI models. The reported

Dataset ResNet18 ResNet50 ResNet101
MNIST 0.015 0.012 0.021
CIFAR-10 0.065 0.012 0.015
SVHN 0.0075 0.008 0.01
ImageNet64 0.078 0.079 0.077
Felidae 0.0002 0.0003 0.0005

Table 5.8: BPP values for different datasets and DVBI ResNet architectures.

BPP values highlight the efficiency of different ResNet architectures in compressing
features across various datasets. ResNet-18 shows the lowest BPP values for Felidae
(0.0002), indicating strong compression efficiency. In contrast, the ImageNet64 and
CIFAR-10 datasets require significantly more bits per pixel, reflecting their apparent
higher complexity. For ImageNet64, BPP values are consistent across all models, around
0.078, indicating similar compression performance. The BPP values vary by model and
dataset, showing that compression efficiency is context-dependent.

5.5 Effects of Image Corruptions on DVBI Model
Classification Accuracy

The impact of various image corruptions on the DVBI models is summarized in Table
5.9. The results demonstrate that image corruptions, particularly Gaussian noise and
defocus blur, significantly degrade the models’ performance.
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Dataset Corruption ResNet18 ResNet50 ResNet101
MNIST Gaussian Noise 80.30% 85.28% 74.28%

Defocus Blur 78.17% 29.17% 48.97%
Motion Blur 39.30% 22.81% 43.06%

Low Contrast 85.58% 80.39% 84.62%
CIFAR-10 Gaussian Noise 1.22% 1.32% 1.42%

Defocus Blur 62.08% 63.81% 64.44%
Motion Blur 39.42% 44.29% 38.65%

Low Contrast 54.33% 56.10% 51.04%
SVHN Gaussian Noise 0.22% 0.29% 0.26%

Defocus Blur 10.51% 10.12% 10.35%
Motion Blur 6.75% 6.14% 5.75%

Low Contrast 8.86% 11.81% 11.60%
ImageNet64 Gaussian Noise 29.46% 34.82% 33.41%

Defocus Blur 35.23% 38.85% 38.92%
Motion Blur 32.80% 37.45% 36.31%

Low Contrast 2.63% 2.84% 2.55%
Felidae Gaussian Noise 10.86% 17.72% 17.71%

Defocus Blur 14.29% 18.86% 15.71%
Motion Blur 11.14% 14.29% 7.43%

Low Contrast 9.14% 9.15% 13.14%

Table 5.9: Decrease of DVBI model accuracies under different image corruptions. Bold
values in each row indicate the value with the biggest drop compared to the baseline.

Gaussian noise significantly reduces the accuracy of all DVBI models, highlighting their
vulnerability to random noise. On the MNIST dataset, ResNet-18 drops by around 80%,
ResNet-50 by around 84%, and ResNet-101 by almost 75%. ResNet-101 shows slightly
better resilience than the other models, possibly due to its increased depth, but overall
performance remains poor across all of them. Defocus blur also shows varying impacts
across model depths. ResNet-50 achieves the highest accuracy on MNIST with only a 30%
reduction, while ResNet-18 drops by almost 80%, suggesting that mid-depth models like
ResNet-50 may balance complexity and overfitting more effectively when handling spatial
distortions. Motion blur also affects the models differently, with ResNet-50 showing the
highest resilience at a 23% reduction, followed by ResNet-18 with a decrease of around
40%. ResNet-50’s architecture appears better suited to mitigating the disruptive effects
of motion blur. Low contrast caused the largest accuracy decrease across all three models,
underlining the models’ reliance on contrast when working with the MNIST dataset.

On CIFAR-10, Gaussian noise has less impact, with ResNet-18 dropping by around
1% in accuracy, slightly higher than ResNet-50 and ResNet-101. Defocus and motion
blur, however, degrade performance significantly, particularly for ResNet-101, which
drops by almost 65% and 40% respectively. ResNet-18 performs slightly better under
both corruptions, suggesting that deeper models may be more vulnerable to spatial
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and temporal distortions. Low contrast affects all models, but ResNet-18 and ResNet-
101 perform similarly, slightly outperforming ResNet-50. This suggests that contrast
sensitivity does not notably improve with deeper architectures.
On SVHN, Gaussian noise seems to have no notable effect across model depths, with
the accuracy only decreasing by around 1% with all models. Defocus blur, motion blur
and low contrast degrade performance more noticeably, with the deeper models generally
outperforming ResNet-18, suggesting that deeper architectures may deal better with
noise and blur. Low contrast displays the opposite trend, where ResNet-18 decreased in
accuracy by around 8% and ResNet-50 dropping by around 12%. A small but notable
difference.
The ImageNet64 dataset poses a significant challenge under corruption. Gaussian noise
causes severe accuracy drops, with ResNet-18 decreasing by around 30%, and defocus
blur further reduces accuracies by as much as 35% for ResNet-18. Even under low
contrast, ResNet-101 slightly outperforms others with a 2% reduction, but the overall
low accuracies indicate that DVBI models struggle considerably with corrupted high-
resolution images regardless of depth. This suggests that while deeper models might
offer slight improvements in handling certain corruptions, the complexity of ImageNet64
makes these improvements marginal.
For the Felidae dataset, Gaussian noise and other corruptions reduce performance across
all models, but the deeper models consistently demonstrate somewhat higher resilience.
This superior performance suggests that in more complex, real-world datasets like Felidae,
the depth of ResNet-50 and ResNet-101 provides a more substantial benefit in coping with
challenging corruptions, likely due to its enhanced ability to capture intricate features.
However, overall performance is still compromised compared to unperturbed conditions,
indicating that while depth helps, it is not the solution for corruption robustness.
When comparing simple models with DVBI models across various types of image corrup-
tions, distinct patterns emerge, showcasing the potential and limitations of DVBI. Under
Gaussian noise, DVBI models generally perform better or comparably on most datasets,
with notable gains on MNIST and the Felidae dataset, particularly in deeper models
like ResNet-101. However, some drops are observed, such as with ResNet-50. Defocus
blur reveals uneven impacts; while DVBI models struggle significantly on MNIST with
a steep accuracy drop in ResNet-18, they show improvements on the Felidae dataset,
especially for ResNet-50. Motion blur affects both model types similarly but often results
in DVBI underperforming slightly, except on the Felidae dataset, where ResNet-101
demonstrates clear robustness gains. Low contrast corruption proves more challenging
for DVBI models, notably on simpler datasets like MNIST and CIFAR-10, where deeper
models like ResNet-101 show marked declines, though performance remains relatively
stable on SVHN and marginally better for ResNet-50 on the Felidae dataset. Overall,
while DVBI models tend to underperform against various corruptions, particularly in
simpler datasets, they occasionally excel in specific scenarios, especially with deeper
models on complex datasets, indicating potential for refinement to enhance robustness
consistently across all conditions.

45



5. Experiment Results

5.6 Effects of Adversarial Attacks on DVBI Classification
Accuracy

The effects of various adversarial attacks on the DVBI models are detailed in Table 5.10.
The table illustrates the models’ performance under FGSM, EAD, C&W, and JSMA
attacks.

Dataset Attack ResNet18 ResNet50 ResNet101
MNIST FGSM 13.34% 17.22% 19.29%

EAD 7.13% 12.79% 8.71%
C&W 9.73% 20.20% 14.09%
JSMA 34.42% 38.54% 33.67%

CIFAR-10 FGSM 39.52% 37.84% 37.62%
EAD 2.85% 4.61% 3.62%
C&W 4.76% 6.56% 5.72%
JSMA 17.57% 19.63% 21.23%

SVHN FGSM 42.31% 42.09% 47.94%
EAD 8.34% 12.76% 9.78%
C&W 10.20% 13.67% 12.49%
JSMA 21.73% 30.22% 32.23%

ImageNet64 FGSM 28.59% 32.18% 31.74%
EAD 1.13% 1.15% 1.04%
C&W 1.96% 2.56% 2.53%
JSMA 9.00% 10.25% 11.12%

Felidae FGSM 27.14% 34.86% 32.86%
EAD 3.72% 8.57% 7.14%
C&W 3.43% 9.43% 4.28%
JSMA 4.29% 8.57% 5.43%

Table 5.10: Decrease of DVBI model accuracies under different adversarial attacks. Bold
values in each row indicate the value with the biggest drop compared to the baseline.

FGSM generally causes a significant drop in accuracy across all datasets, but the extent
of this drop varies by architecture and dataset. On MNIST, ResNet-18 shows strong
resilience with an accuracy decrease of only around 13%, while deeper models like
ResNet-50 and ResNet-101 experience more pronounced drops by around 17% and 20%,
respectively. This suggests that while ResNet-18 maintains better robustness under
FGSM, deeper models may be more vulnerable. On CIFAR-10, all models experience a
substantial drop, revealing a consistent vulnerability. The impact is also fairly severe on
SVHN, with ResNet-101 dropping sharply by amost 50%, whereas ImageNet64 shows
slightly better relative resilience, with ResNet-101 dropping by around 30%.

EAD is particularly effective across most datasets, causing notable reductions in accuracy.
On MNIST, ResNet-18 retains high accuracy, dropping only by around 7%, but deeper
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models see reduced performance, indicating that depth does not necessarily provide
better protection. A similar pattern is observed on CIFAR-10 and SVHN, with ResNet-50
dropping by around 13% on the latter, compared to ResNet-18 which drops by 8%.
Interestingly, the accuracy picks up again with ResNet-101. In ImageNet64, ResNet-50
slightly outperforms ResNet-18. On the Felidae dataset, however, ResNet-50 achieves
the highest accuracy, suggesting some resilience in more complex datasets.

The C&W attack significantly degrades model performance across datasets. On MNIST,
ResNet-18 maintains relatively high accuracy, while ResNet-50 and ResNet-101 drop by
roughly 20% and 15%, respectively. This indicates that ResNet-18 shows competitive
performance, highlighting the attack’s varied impact. A similar trend is seen on CIFAR-
10, where ResNet-50 and ResNet-101 struggle more, both dropping by around 7%. On
Felidae, however, all models retain high accuracy, with ResNet-101 experiencing the
smallest accuracy drop of only around 4%, again demonstrating that deeper models may
offer some advantage in complex datasets.

JSMA has a more drastic impact on model accuracy. On MNIST, ResNet-18 shows
some robustness with a relatively small drop of 33%, but ResNet-50 and ResNet-101
drop noticeably an average of 36%. On CIFAR-10, ResNet-18 holds a higher accuracy
compared to ResNet-50. For SVHN, ResNet-101 drops sharply by almost 34%, reflecting
greater vulnerability. In contrast, on the Felidae dataset, all models, including ResNet-
101, maintain higher accuracies, with ResNet-101 only achieving a small drop of around
5%

These results suggest that DVBI models exhibit varying levels of robustness depending on
the attack and dataset. Deeper models tend to struggle more against attacks like JSMA,
which exploits pixel dependencies. However, deeper models show greater resilience in
more complex datasets like Felidae, indicating that both model architecture and dataset
complexity play important roles in determining adversarial vulnerability.

5.7 Base Accuracies of SVBI Models
The SVBI models exhibited unperturbed baseline accuracies that were generally even
lower than those of the DVBI models across most datasets, usually only by 1-3%, though
in some cases by almost 10%. As with DVBI, the base models’ pipeline and training
parameters were kept for a fair comparison. Notably, on simpler datasets like MNIST, all
models achieve high accuracy, with ResNet-50 reaching the highest accuracy among the
models. ResNet-18 and ResNet-101 follow closely, suggesting that the shallow variational
bottleneck may effectively retain sufficient representational power for simpler classification
tasks, even with increased model depth.

On slightly more complex datasets, the accuracies demonstrate more variability, especially
for CIFAR-10 and SVHN. In the CIFAR-10 dataset, ResNet-18 attains the highest top-1
accuracy, outperforming both ResNet-50 and ResNet-101. This trend suggests that for
CIFAR-10, the increased depth and parameterization of ResNet-50 may overfit or lead
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to reduced generalization with the shallow bottleneck injected. Similarly, on SVHN,
the performance is highest with ResNet-50, slightly outperforming ResNet-18, while
ResNet-101 exhibits a small drop. The results on ImageNet64 show a marked decrease in
accuracy across all models, with marginal improvements from ResNet-50 over ResNet-18
and ResNet-101. This trend suggests that the shallow bottleneck’s capacity may be
constrained on datasets requiring richer feature hierarchies, with minimal performance
gain from increased model depth. The Felidae dataset, however, shows the opposite effect,
where the two deeper ResNet models fare the best. Table 5.11 presents the bits-per-pixel
values for different ResNet models, indicating the models’ average information density per
pixel. As a reminder, lower BPP values suggest greater compression, while higher values
indicate increased data requirements. For example, MNIST shows fairly low BPP values
across all models, with ResNet-101 having the lowest (0.063), reflecting the dataset’s
simplicity. BPP values of the Felidae dataset seem to be about no par with the rest. In
contrast, ImageNet64 demonstrates higher BPP values, particularly for ResNet-50 and
ResNet-101, highlighting the greater complexity and feature richness needed to represent
this dataset effectively.

Dataset ResNet18 ResNet50 ResNet101
MNIST 0.076 0.111 0.063
CIFAR 0.831 0.384 0.488
SVHN 0.583 0.411 0.304
ImageNet64 1.285 1.860 1.858
Felidae 0.105 0.308 0.249

Table 5.11: BPP values for different datasets and SVBI ResNet architectures.

5.8 Effects of Image Corruptions on SVBI Model
Classification Accuracy

The impact of various image corruptions on the SVBI models is summarized in Table
5.12. The results show that image corruptions, especially defocus blur and low contrast,
have a varied impact on the performance of SVBI models, depending on model depth
and the specific corruption.

48



5.8. Effects of Image Corruptions on SVBI Model Classification Accuracy

Dataset Corruption ResNet18 ResNet50 ResNet101
MNIST Gaussian Noise 0.09% 0.04% 0.15%

Defocus Blur 26.97% 62.75% 46.16%
Motion Blur 11.10% 14.89% 18.57%

Low Contrast 70.17% 58.91% 83.50%
CIFAR-10 Gaussian Noise 1.28% 2.60% 2.32%

Defocus Blur 56.84% 53.27% 55.55%
Motion Blur 34.52% 35.08% 39.51%

Low Contrast 52.33% 54.08% 55.80%
SVHN Gaussian Noise 0.26% 0.36% 0.39%

Defocus Blur 10.18% 9.97% 11.46%
Motion Blur 6.52% 6.12% 5.83%

Low Contrast 10.64% 13.05% 14.73%
ImageNet64 Gaussian Noise 33.11% 35.22% 33.09%

Defocus Blur 33.00% 34.99% 34.00%
Motion Blur 26.10% 25.56% 26.23%

Low Contrast 3.92% 3.78% 3.76%
Felidae Gaussian Noise 8.86% 6.28% 6.28%

Defocus Blur 17.43% 17.14% 14.00%
Motion Blur 12.58% 13.14% 13.14%

Low Contrast 30.29% 34.57% 36.86%

Table 5.12: Decrease of SVBI model accuracies under different image corruptions. Bold
values in each row indicate the value with the biggest drop compared to the baseline.

On MNIST, SVBI models are highly resilient to Gaussian noise, retaining accuracy
levels above 97% across all model depths. Defocus blur, however, significantly impacts
performance. ResNet-18 maintains better stability here, while deeper models see larger
accuracy decreases. Motion blur is moderately disruptive, with accuracy levels dropping
by around 18% in the deeper models, showing that SVBI models retain reasonable
accuracy against this corruption. Low contrast proves challenging, with ResNet-101
dropping by roughly 90%, underscoring a general sensitivity to contrast reduction.

On CIFAR-10, defocus and motion blur lead to notable declines, particularly for the
deeper models. ResNet-18 performs slightly better, suggesting simpler architectures may
be less vulnerable to these spatial distortions. Defocus blur impacts all models similarly,
compared to motion blur and low contrast, where ResNet-18 performed noticeably better
than the deeper models, generally by around 10%. In the SVHN dataset, Gaussian noise
has only a minor effect, with models retaining accuracy levels in the low 90% range,
indicating strong resilience. Defocus and motion blur degrade performance but remain
manageable, with accuracies dropping by an average of 13% across model depths. Low
contrast affects SVHN models less severely, suggesting that this dataset’s features may
be less sensitive to contrast variations. For ImageNet64, SVBI models face substantial
challenges under corruption, with Gaussian noise dropping accuracy by as much as 35%.
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Defocus blur similarly reduces accuracy, while low contrast has a comparatively smaller
effect, though still low for practical purposes. The Felidae dataset handles the Gaussian
noise corruption reasonably well, only suffering from a roughly 10% decrease in accuracy
across model depths. The remaining corruptions lower the accuracy of all models, with
ResNet-101 dropping by around 37% on the low-contrast images. Depth seems to make
a difference for Gaussian noise, defocus blur and motion blur, where the deepest models
performed noticeably better.

The comparison of DVBI and SVBI models under various image corruptions highlights
notable differences in robustness across datasets and corruption types, emphasizing
the strengths and weaknesses of each approach. SVBI models demonstrate substantial
resilience to Gaussian noise, maintaining accuracy above 90% across all depths on
datasets like MNIST and SVHN, while DVBI models suffer significant drops, with
MNIST accuracies falling by as much as 80%. On the Felidae dataset, SVBI models
outperform DVBI by an average of 5%, showcasing their superior handling of random
noise across most datasets. Under defocus blur, however, the advantage shifts; DVBI
models, particularly shallower architectures, perform more consistently, outpacing SVBI
on the Felidae dataset by about 5%, although SVBI models like ResNet-50 on MNIST
occasionally stand out. Motion blur further underscores this dichotomy, with DVBI
excelling on complex datasets like Felidae, where ResNet-101 achieves a 10% accuracy
boost over SVBI, while SVBI proves more robust on simpler datasets like MNIST,
maintaining higher accuracy across depths. Low contrast corruption similarly splits
the results: SVBI retains stronger performance on simpler datasets like MNIST, with
ResNet-50 achieving a 25% accuracy advantage over DVBI, whereas DVBI outperforms
on high-resolution datasets like ImageNet64, where ResNet-101 surpasses its SVBI
counterpart by 8%. In summary, SVBI models excel in robustness against Gaussian noise
and on simpler datasets, while DVBI models occasionally outperform in handling defocus
blur, motion blur, and low contrast in complex or high-resolution scenarios, suggesting
their suitability depends on dataset complexity and corruption type.

5.9 Effects of Adversarial Attacks on SVBI Classification
Accuracy

Unsurprisingly, the impact of adversarial perturbations on SVBI models again varies
across datasets and attack types, with different levels of resilience depending on model
depth and the specific adversarial method used. The specifics can be observed from table
5.13.

50



5.9. Effects of Adversarial Attacks on SVBI Classification Accuracy

Dataset Attack ResNet18 ResNet50 ResNet101
MNIST FGSM 5.52% 3.70% 5.76%

EAD 3.87% 3.64% 3.84%
C&W 5.91% 5.60% 5.31%
JSMA 13.65% 19.78% 16.86%

CIFAR-10 FGSM 48.75% 24.72% 34.08%
EAD 3.96% 4.52% 4.88%
C&W 7.77% 5.42% 6.33%
JSMA 20.78% 17.87% 17.64%

SVHN FGSM 51.84% 44.48% 47.59%
EAD 7.36% 7.23% 8.96%
C&W 12.86% 10.94% 11.85%
JSMA 16.08% 20.28% 19.39%

ImageNet64 FGSM 32.72% 32.22% 31.13%
EAD 1.96% 1.81% 1.84%
C&W 5.48% 5.52% 5.53%
JSMA 17.07% 19.18% 15.39%

Felidae FGSM 24.58% 22.86% 22.57%
EAD 7.72% 4.28% 4.57%
C&W 7.43% 4.28% 4.86%
JSMA 8.00% 4.00% 5.43%

Table 5.13: Decrease of SVBI model accuracies under different adversarial attacks. Bold
values in each row indicate the value with the biggest drop compared to the baseline.

On MNIST, SVBI models show high resilience to adversarial attacks, maintaining accu-
racy around 7% lower than baseline under FGSM, EAD, and C&W attacks. ResNet-50
performs slightly better across most attacks. However, JSMA poses a greater chal-
lenge, reducing accuracy by roughly 18%, suggesting that this method disrupts MNIST
classification more effectively than others.

On CIFAR-10, SVBI models experience significant accuracy drops under FGSM, with
ResNet-18 dropping by roughly 50% and ResNet-50 with a smaller drop of around 24%.
For EAD and C&W attacks, however, resilience is notably higher. JSMA has a moderate
impact, lowering the accuracy by almost 20% in ResNet-50. These results indicate that
CIFAR-10 classifications are more vulnerable to gradient-based attacks like FGSM but
show better resilience under optimization-based attacks like EAD and C&W.

The SVHN dataset shows similar trends, with a stark accuracy drop under FGSM,
especially for ResNet-18 and ResNet-101, which both fall by more than 45%. ResNet-50
shows slightly better resilience. Under EAD, however, all SVBI models maintain high
accuracy above 83%, reflecting strong robustness to this attack on SVHN. C&W also sees
respectable accuracy, with all models performing only around 10% worse than baseline.
JSMA remains somewhat effective, lowering accuracy by roughly 20%.
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For ImageNet64, SVBI models demonstrate significant vulnerability to all attacks, espe-
cially FGSM, which reduces accuracy by around 30% in the deepest model. EAD and
C&W attacks yield slightly better outcomes, indicating that these models retain mini-
mal classification power under these perturbations. JSMA proves noticeably disruptive,
dropping accuracy by more than 15% across all depths, underscoring the difficulty of
achieving robust classification on high-resolution images under adversarial conditions.

The Felidae dataset shows slightly higher resistence against all perturbations in the
deeper models. ResNet-18 achieves worse accuracy than the two deeper models against
all attacks, usually with a difference of around 5%. The FGSM attack also seems to
cause the most misclassifications, with the best-performing ResNet-101 decreasing by
about 22%.

5.10 Comparing Impacts of DVBI and SVBI on Model
Resilience

When comparing DVBI models with their non-DVBI ResNet counterparts under adver-
sarial attacks, DVBI consistently demonstrates enhanced robustness across datasets and
attack types. For instance, under the FGSM attack, DVBI models reliably outperform
base ResNet models. On MNIST, the ResNet-18 DVBI model nearly doubles the accu-
racy of the base model, while for CIFAR-10, it achieves a 35% accuracy increase. Even
in challenging datasets like ImageNet64, where base model performance is below 1%,
DVBI models show notable improvements, with ResNet-101 achieving around 10% higher
accuracy. Similarly, for attacks like EAD, C&W, and JSMA, DVBI models maintain
significantly higher performance compared to base models. The improvements are par-
ticularly striking under the EAD attack, where DVBI models achieve accuracies up to
85% higher on MNIST and more than 80% higher on CIFAR-10 compared to their base
counterparts. Across all tested attacks and datasets, DVBI models exhibit consistently
greater resistance to adversarial perturbations, underscoring their robustness.

In contrast, comparing SVBI models to DVBI reveals nuanced performance differences. On
MNIST, SVBI models consistently achieve higher accuracies across all attacks compared
to DVBI. Particularly under FGSM, the SVBI ResNet-50 maintains an accuracy of more
than 90%. SVBI also retains a strong advantage under EAD and C&W attacks on MNIST,
with accuracies typically above 90%, outperforming DVBI. However, on CIFAR-10, DVBI
models generally hold the edge, with ResNet-50 achieving higher accuracies under EAD
and C&W attacks. FGSM presents a unique challenge for both methods on CIFAR-10,
with SVBI slightly outperforming DVBI by about 10% on ResNet-18.

On more complex datasets like SVHN and ImageNet64, DVBI maintains a slight advantage.
Under gradient-based attacks such as FGSM, SVBI models experience a steeper drop,
particularly for ResNet-18 on SVHN, where performance declines by 10%. Similarly, on
ImageNet64, DVBI shows higher resilience across all attacks, particularly JSMA, where
SVBI trails DVBI by up to 14% on ResNet-50. On the Felidae dataset, SVBI demonstrates
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a marginal advantage under FGSM, achieving up to 7% higher accuracy with ResNet-101,
but DVBI consistently performs better against more complex attacks like EAD and
C&W. Overall, DVBI models exhibit higher robustness to adversarial attacks across most
datasets and attacks. While SVBI models occasionally outperform DVBI, particularly on
MNIST and under certain attack types, they generally underperform in more challenging
scenarios, especially on deeper architectures and more complex datasets. These findings
will be further explored in Chapter 6, with a focus on the underlying factors contributing
to the performance disparities between DVBI and SVBI. The relative accuracies of the
examined models are summarized in Table 5.14, in addition to the accumulated BPP
values.

53



5.
E

xperim
ent

R
esults

Model MNIST CIFAR-10 SVHN ImageNet64 Felidae
Method Base DVBI SVBI Base DVBI SVBI Base DVBI SVBI Base DVBI SVBI Base DVBI SVBI

R18 0.9893 0.9693 0.9749 0.8829 0.8784 0.8616 0.9404 0.938 0.936 0.3805 0.3724 0.3527 0.7543 0.7343 0.7229
R50 0.9912 0.9479 0.9849 0.8921 0.8493 0.7588 0.9488 0.9412 0.9418 0.4218 0.4226 0.3659 0.7657 0.8086 0.7457Unperturbed %
R101 0.9875 0.9424 0.9747 0.8905 0.8421 0.8195 0.9437 0.9501 0.9255 0.4217 0.4208 0.3555 0.7914 0.7857 0.7457
R18 24 0.014968 0.075537 24 0.065169 0.831367 24 0.007535 0.582609 24 0.005887 1.284756 24 0.000224 0.104587
R50 24 0.012039 0.110552 24 0.012401 0.383747 24 0.00842 0.411298 24 0.013346 1.859822 24 0.000327 0.307937Bpp
R101 24 0.021434 0.062611 24 0.015071 0.487917 24 0.009945 0.303902 24 0.015326 1.857516 24 0.000504 0.248868
R18 -0.5475 -0.1334 -0.0552 -0.7456 -0.3952 -0.4875 -0.6595 -0.4231 -0.5184 -0.3776 -0.2859 -0.3272 -0.7543 -0.2714 -0.2458
R50 -0.3516 -0.1722 -0.037 -0.6885 -0.3784 -0.2472 -0.5806 -0.4209 -0.4448 -0.417 -0.3218 -0.3222 -0.7286 -0.3486 -0.2286FGSM %
R101 -0.4463 -0.1929 -0.0576 -0.6931 -0.3762 -0.3408 -0.6831 -0.4794 -0.4759 -0.4171 -0.3174 -0.3113 -0.7485 -0.3286 -0.2257
R18 -0.9458 -0.0713 -0.0387 -0.8701 -0.0285 -0.0396 -0.9237 -0.0834 -0.0736 -0.3785 -0.0113 -0.0196 -0.7514 -0.0372 -0.0772
R50 -0.8836 -0.1279 -0.0364 -0.8801 -0.0461 -0.0452 -0.8878 -0.1276 -0.0723 -0.4173 -0.0115 -0.0181 -0.6686 -0.0857 -0.0428EAD %
R101 -0.9392 -0.0871 -0.0384 -0.8775 -0.0362 -0.0488 -0.9323 -0.0978 -0.0896 -0.4194 -0.0104 -0.0184 -0.7343 -0.0514 -0.0457
R18 -0.9801 -0.0973 -0.0591 -0.8552 -0.0476 -0.0777 -0.9054 -0.102 -0.1286 -0.3543 -0.0196 -0.0548 -0.7257 -0.0343 -0.0743
R50 -0.9827 -0.202 -0.056 -0.8514 -0.0656 -0.0542 -0.9209 -0.1367 -0.1094 -0.3737 -0.0256 -0.0552 -0.7543 -0.0943 -0.0428C&W %
R101 -0.9864 -0.1409 -0.0531 -0.8865 -0.0572 -0.0633 -0.9432 -0.1249 -0.1185 -0.4166 -0.0253 -0.0553 -0.7828 -0.0428 -0.0486
R18 -0.9478 -0.3442 -0.1365 -0.8762 -0.1757 -0.2078 -0.9358 -0.2173 -0.1608 -0.3466 -0.09 -0.1707 -0.7486 -0.0429 -0.08
R50 -0.8363 -0.3854 -0.1978 -0.851 -0.1963 -0.1787 -0.9017 -0.3022 -0.2028 -0.3932 -0.1025 -0.1918 -0.7543 -0.0857 -0.04JSMA %
R101 -0.8457 -0.3367 -0.1689 -0.8358 -0.2123 -0.1764 -0.9408 -0.3223 -0.1939 -0.3897 -0.1112 -0.1539 -0.7857 -0.0543 -0.0543

Table 5.14: A final table showing the relative robustness gains/losses of base-, DVBI and SVBI models under various
adversarial perturbations.
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5.11. Feature Generalization and Vulnerability to Adversarial Attacks

5.11 Feature Generalization and Vulnerability to
Adversarial Attacks

Our findings seem to support the conclusion that the generalization capabilities of a
neural network, while desirable for achieving high performance on clean data, appear to
correlate with an increased susceptibility to adversarial attacks. Specifically, we observed
that models trained with higher bits-per-pixel values, indicating greater redundancy
in the feature representation, were more vulnerable to adversarial perturbations. This
suggests that the more a model retains and compresses intricate feature details, the more
effectively adversarial inputs can exploit these retained redundancies. Using the Felidae
dataset as our benchmark, we adjusted the bpp by varying the compression weight λ
[39] to control the trade-off between compressibility and accuracy. Our experiments
revealed a clear pattern: as the redundancy in the feature space increased with higher bpp,
adversarial attacks became progressively more impactful, leading to larger accuracy drops.
This result, depicted in Figures 5.1 and 5.2 aligns with the theoretical expectation that
a model holding a more intricate representation of the input data is likely maintaining
unnecessary, potentially vulnerable details that adversarial perturbations can target.
When tested on perturbed datasets, the models showed a similar trend as uncorrupted
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Figure 5.1: Observed information redundancy decrease (bits-per-pixel) with an increasing
λ in training.

data. The accuracy is generally kept the same until a λ of 1000, where a stark decrease is
observed. We refer to the appendix for interested readers. In our testing, we attempted
to reasonably minimize the information redundancy of our models while ensuring a usable
classification accuracy. We have not, however, aimed at reaching the lowest possible
redundancy for any given model or dataset while keeping the prediction near-lossless, as
this was not relevant to the goals of this thesis. Our conclusions from these tests reinforce
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Figure 5.2: Unperturbed classification accuracy of ResNet models trained on the Felidae
Dataset using different λ values (and consequently different bpp).

the notion that while low-compression (high-redundancy) feature representations improve
classification accuracy, they also broaden the attack surface for adversarial exploits.

5.12 Tabacof Attack Results

The results in Table 5.15 show the Top1 accuracy of various ResNet models after applying
the Tabacof attack, as well as the number of selected target labels identified by the models.
The baseline ResNet models (ResNet-18, ResNet-50, and ResNet-101) achieved Top1
accuracies of 61.61%, 76.57%, and 33.17% respectively. The DVBI ResNet models showed
varied results with Top1 accuracies of 52.26%, 72.66%, and 34.73%, respectively. The
baseline ResNet models identified 927, 879, and 448 target labels, respectively, out of a
total of 1135 target labels in the dataset. The DVBI ResNet models identified 1802, 1126,
and 1641 target labels. Notably, the DVBI_ResNet-18 identified a significantly higher
number of target labels, suggesting that the Tabacof attack had a pronounced effect on
this model. The results indicate several key points. The DVBI_ResNet-18 model, while
achieving a lower Top1 accuracy by almost 10% compared to the baseline ResNet-18,
identified a disproportionately high number of target labels (1802), which is significantly
higher than the total target labels in the dataset (1135). This suggests that the Tabacof
attack effectively manipulated the latent space of this model, causing it to misinterpret
inputs as the target labels frequently. Compared to its baseline counterpart, the significant
drop in Top1 accuracy for DVBI_ResNet-18 indicates that the attack was particularly
effective against the DVBI model, supporting the theory that bottleneck-injected models
are more vulnerable to this type of adversarial manipulation.
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5.12. Tabacof Attack Results

Tabacof attack Top1 Accuracy # target labels
Base_Resnet18 61.61% 927
DVBI_Resnet18 52.26% 1802
Base_Resnet50 76.57% 879
DVBI_Resnet50 72.66% 1126
Base_Resnet101 33.17% 448
DVBI_Resnet101 34.73% 1641

Table 5.15: Tabacof attack results on different ResNet models. The column "# target
labels" denotes the number of times the selected target labels were identified by the
models. The total target labels in the dataset are 1135.

Similarly, the baseline ResNet-50 slightly outperformed its DVBI counterpart in terms
of Top1 accuracy, achieving around 4% more compared to the DVBI_ResNet-50. Ad-
ditionally, the DVBI_ResNet-50 identified more target labels (1126) than the baseline
ResNet-50 (879), further suggesting that the attack affected the DVBI model more. This
outcome indicates that the regularization introduced by the variational bottleneck, while
beneficial in other scenarios, may actually introduce vulnerabilities when faced with
attacks designed to exploit latent space manipulations, as with the Tabacof attack.

For the ResNet-101 models, the DVBI variant only slightly outperformed the baseline in
Top1 accuracy, achieving only around 1% more compared. However, the DVBI_ResNet-
101 identified a significantly higher number of target labels (1641) than the baseline
model (448), indicating that while the accuracy difference was marginal, the DVBI
model was significantly more susceptible to the Tabacof attack in terms of target label
misclassification. The slight difference in accuracy seems to result from the base model
being generally more susceptible to the perturbations in the input images, as indicated
by the critically small number of identified target labels (448) compared to the ground
truth (1135). Consequently, this would mean that while the DVBI model variant did get
fooled by the attack, the inputs were too corrupted for the base model, and the accuracy
ended up being comparably bad.

The analysis highlights that deeper models (ResNet-50 and ResNet-101) underperformed
compared to the shallower ResNet-18 regarding Top1 accuracy and the number of
identified target labels, particularly in the DVBI variants. This suggests that with their
increased complexity, deeper architectures may be more prone to overfitting the adversarial
perturbations introduced by the Tabacof attack, leading to poorer generalization and
higher misclassification rates under these conditions.

Furthermore, the fact that the DVBI models, which incorporate a variational bottleneck,
generally performed worse than their baseline counterparts under the Tabacof attack
was notable. The Tabacof attack specifically targets the bottleneck-injected models by
manipulating the latent space, and these results confirm that such models are indeed
more vulnerable to this type of adversarial manipulation. This outcome suggests that
while the variational bottleneck might help in some adversarial scenarios, it introduces
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significant vulnerabilities when faced with attacks designed to exploit the latent space,
such as the Tabacof attack.

Figure 5.3: Base images (bottom) perturbed using the Tabacof method (top) against
the DVBI injected ResNet-18 model with a target label of 1. Examples depicting the
numbers two and four contain the most clearly visible perturbations to match this target.
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CHAPTER 6
Discussion

This chapter examines our experimental findings on enhancing neural network robustness
against adversarial attacks using Shallow and Deep Variational Bottleneck Injection. We
compare these techniques to understand how bottleneck depth affects a model’s ability
to resist adversarial perturbations. We also discuss the impact of various attack methods,
the role of dataset complexity and model depth, the significance of L-norm metrics, and
the challenges encountered during our research, aiming to provide insights for future
improvements in model resilience.

6.1 Interpretation of Experiment Results
The results of our experiments shed light on several key aspects of model robustness
under adversarial attacks. First, the comparison between SVBI and DVBI models
provides insight into the effectiveness of bottleneck techniques in mitigating the impact of
adversarial perturbations. The experiments confirmed that SVBI models, while exhibiting
improved robustness over baseline models, are still mostly outperformed by DVBI models.
Specifically, DVBI models were better equipped to handle perturbed images, showing a
marked reduction in misclassification rates when subjected to adversarial attacks. This
finding is consistent with the hypothesis that deeper bottleneck injections help compress
the feature space more effectively, discarding noise that would otherwise contribute to
model confusion.

Interestingly, our experiments also revealed that the MNIST dataset displayed better
resilience against adversarial perturbations compared to more complex image sets. A
possible explanation for this could be that MNIST images, due to their simplicity, can
be effectively compressed within shallower layers, leading to a naturally more robust
representation. This phenomenon suggests that the inherent characteristics of the dataset,
coupled with compression mechanisms, may play a significant role in adversarial resistance.
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The core advantage of DVBI models lies in their ability to reduce the dimensionality of
intermediate representations, thereby limiting the attack surface available to adversarial
perturbations. The robustness of these models stems from the fact that deeper bottlenecks
force the network to retain only the most salient features while discarding redundant
information. By doing so, DVBI models create a more compressed and informative
representation, which adversarial attacks find harder to exploit. In contrast, SVBI
models, while still capable of filtering out some noise, do not compress the feature space
to the same extent. This limits their ability to neutralize sophisticated perturbations, as
the shallow bottleneck allows more irrelevant or adversarial features to pass through.

A potential reason for the observed lower resilience of SVBI models to adversarial attacks
compared to DVBI may lie in the higher bits-per-pixel values typically exhibited by
SVBI models. Higher bpp values indicate that SVBI encodes richer detail and finer-
grained information about the input, which, while beneficial for capturing complex
data distributions, may inadvertently make the model more sensitive to adversarial
perturbations. These perturbations exploit the high-dimensional feature space and can
more easily mislead a model that emphasizes detailed representation over robustness. In
contrast, DVBI’s relatively lower bpp values suggest a more compressed representation
that might focus on salient features, thereby reducing the vulnerability to adversarial
noise. This trade-off between representation richness and robustness highlights a key
factor in the differing performances of SVBI and DVBI under adversarial conditions.

An important aspect highlighted by the experiments is the difference in performance
between various adversarial attacks on SVBI and DVBI models. While the C&W attack,
known for its minimal and optimized perturbations, was most effective against the
base models, both DVBI and SVBI models showed greater resistance to this attack.
We posit this to be the result of the attack being the most subtle from the selected
suite, overwhelmingly reaching the lowest L-norms. These small but usually effective
perturbations seem to effectively disappear in the intermediate representation of the
input image due to the nature of the variational bottleneck. Consequently, for attacks like
FGSM and JSMA, which make more obvious, large-scale alterations to the images, both
DVBI and SVBI models were more susceptible compared to other attacks. These attacks,
however, also affected the base models less severely, resulting in smaller relative accuracy
gains from the DVBI and SVBI approaches. Despite these smaller improvements, the
flat accuracy for DVBI and SVBI remained lower under FGSM and JSMA, highlighting
a trade-off in robustness between different types of attacks.

The experiments also highlight the critical role of dataset complexity in determining
model robustness. Models trained on more complex datasets, such as CIFAR-10 and
ImageNet64, demonstrated greater sensitivity to adversarial perturbations, especially
when the attacks targeted high-resolution images with intricate features. In contrast,
simpler datasets like MNIST exhibited more consistent performance across both SVBI
and DVBI models, though DVBI still maintained an edge. This further reinforces the
notion that deeper bottleneck injections are more effective when the model needs to
generalize across a broader range of features and when the attack surface is larger due to
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6.2. Classification Accuracy Decrease of Deeper Bottleneck Injected Models With Perturbed
Datasets

the complexity of the input data.

In summary, while SVBI models represent a significant improvement over baseline models
in handling perturbed images, DVBI models provide a more robust defense against a
wider range of adversarial attacks. The superior performance of DVBI models can be
attributed to their ability to compress the feature space more effectively, thus minimizing
the impact of noise and adversarial features. However, it is important to note that even
DVBI models are not impervious to all attacks, particularly more crude ones like JSMA.

6.2 Classification Accuracy Decrease of Deeper Bottleneck
Injected Models With Perturbed Datasets

The observation that deeper models, such as ResNet-50 and ResNet-101, generally exhibit
lower robustness to perturbed inputs in bottleneck injected models can be attributed to
several factors. Deeper networks, while capable of capturing more complex patterns and
hierarchical features, also have a larger capacity to overfit to specific data distributions.
This increased capacity can make them more susceptible to adversarial perturbations,
as the subtle and carefully crafted modifications introduced by adversarial attacks can
exploit the high-dimensional feature space these models operate in. Moreover, deeper
models often rely on intricate combinations of features, and slight disruptions to these
features can cause significant degradation in performance. In contrast, shallower models
like ResNet-18, which rely on more general features, may not be as easily swayed by minor
perturbations. Additionally, the higher number of parameters in deeper models might lead
to more complex decision boundaries that are more easily exploited by adversarial attacks,
resulting in a greater drop in accuracy when these models are exposed to adversarially
perturbed inputs.

6.3 Effectiveness of Different Attacks
Building on our initial findings on base ResNet models, we conducted additional ex-
periments to assess the effectiveness of various adversarial attacks on both SVBI and
DVBI models. Our results corroborate the conclusion that C&W remains the most
effective attack in terms of reducing base model accuracy. This is particularly evident in
high-complexity datasets like ImageNet64, where the C&W attack reduced the accuracy
of the baseline ResNet models to below 1%. In contrast, the simpler FGSM attack,
while still effective, produced less severe accuracy drops. As mentioned, however, both
bottleneck injection approaches struggled to handle high-intensity perturbations, such
as those introduced by FGSM and JSMA. SVBI, in particular, showed that shallow
bottleneck techniques do not seem to provide enough compression to neutralize these
attacks effectively.

With the base models, the trend across datasets is more or less consistent. Deeper
models (ResNet-101 and especially ResNet-50) exhibit slightly better resilience than
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their shallower counterparts, but the difference is marginal. This suggests that while
increased depth provides some defense, it is not sufficient to fully mitigate the impact of
sophisticated attacks.

Another noteworthy finding is the overall effectiveness of JSMA, even in the OnePixel
implementation. Here, JSMA attacks, which focus on altering a minimal number of
pixels, were able to produce misclassifications with fewer perturbations compared to other
examined attacks. While JSMA did not reach the lowest accuracies from all used attacks,
it nonetheless managed to fool the classifier enough to see a clear decrease in accuracy,
thus highlighting the importance of choosing an attack that balances effectiveness and
covertness.

The Tabacof attack provided valuable insights into the robustness of different ResNet
models, revealing that the DVBI models, as expected, performed worse than their
baseline counterparts when faced with targeted perturbations. The results indicate that
the variational bottleneck, while beneficial in some scenarios, made the DVBI models more
susceptible to the Tabacof attack, particularly regarding misclassifying a significantly
higher number of target labels. This suggests that the Tabacof attack effectively exploits
the vulnerabilities introduced by the variational bottleneck, manipulating the latent space
to degrade model performance. Therefore, while the variational bottleneck may offer
advantages in other contexts, it appears to introduce specific weaknesses that adversarial
techniques like the Tabacof attack can exploit. These findings highlight the need for
further refinement of DVBI models to enhance their robustness against such targeted
adversarial strategies.

Despite multiple attempts, the SVBI models did not yield usable results under the
Tabacof attack. This may be attributed to the unique nature of shallow bottleneck
injection, which places the variational compression layer closer to low-level features rather
than abstract, high-level representations. As a result, shallow bottleneck-injected models
might lack the sensitivity to adversarial perturbations crafted to target complex latent
spaces, as in the Tabacof method. In contrast, the DVBI models, which incorporate the
bottleneck at deeper levels, demonstrated clear vulnerability to the Tabacof attack, as
evidenced by their high target label misclassification rates. This contrast between DVBI
and SVBI models supports the hypothesis that the Tabacof attack specifically exploits
latent space manipulation and that deeper injection points amplify susceptibility to such
attacks. Therefore, the statistics from the DVBI models alone are sufficient to illustrate
the efficacy of the Tabacof attack as a threat to some variational bottleneck-injected
architectures, underlining the need for caution in applying these compression techniques
in adversarially sensitive environments.

6.4 Importance of L-Norms
In our analysis, using L0, L2, and L∞ norms provided an understanding of how different
types of perturbations affected model performance. L0 norms, which count the number
of pixels altered by an attack, revealed the sparsity of perturbations required to mislead
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models. For example, the L0 norm for the C&W attack on MNIST was 141.6 pixels for
ResNet-18, indicating that only a small number of pixel changes were necessary to reduce
accuracy to 4.35%. In contrast, for CIFAR-10, the L0 norm was significantly higher (2827
pixels), reflecting the greater complexity of this dataset and the corresponding need for
more widespread perturbations to achieve misclassification.

The L2 norm, measuring the overall magnitude of perturbations, was particularly useful
in understanding how distributed attacks like FGSM impacted model accuracy. Higher
L2 norms generally correlated with greater performance degradation, especially in more
complex datasets. For example, in SVHN, the L2 norm for FGSM was 1.73 (ResNet-18),
and the corresponding accuracy dropped to 28.09%. This suggests that even moderate
perturbations can significantly impair model performance, particularly in datasets with
intricate features.

Finally, the L∞ norm, which tracks the maximum change to any single pixel, highlighted
the vulnerability of models to localized, high-intensity perturbations. For instance, in
the ImageNet64 dataset, JSMA attacks with a relatively low L∞ norm still caused
substantial accuracy drops, underscoring the impact of focused, pixel-level changes on
model predictions.

By evaluating all three norms in conjunction with accuracy metrics, we gained a detailed
picture of model robustness. L0 norms provided insight into the sparsity of the attacks, L2
norms captured the overall distortion, and L∞ norms revealed the worst-case pixel-level
changes. This multi-faceted approach allowed us to understand better the strengths and
weaknesses of both SVBI and DVBI models under different adversarial conditions.

6.5 Effects of Subjectively Imperceptible Noise
While in our chosen attack methods, each technically introduces perceptible noise (ob-
jective), as indicated by our calculated L∞ norms, some perturbations remain subtle
enough not to alert a human observer (subjective).

Relating this to our research on DNN image classifiers under adversarial attacks, the
effectiveness of these perturbations—whether perceptible or imperceptible—plays a
crucial role in evaluating the robustness of the classifiers. Adversarial attacks often aim
to generate imperceptible perturbations that cause misclassification without alerting
the human observer. In this context, we have previously theorized that implementing a
variational information bottleneck, either in a deep or shallow architecture, could increase
the robustness of DNNs by filtering out noise that does not contribute meaningfully to the
classification task. Our findings suggest that by compressing the input representation to
retain only the most informative features, a variational information bottleneck seems to
help mitigate the impact of both perceptible and imperceptible adversarial perturbations,
leading to improved classifier performance on perturbed datasets. Notably, while our
tested perturbations were all objectively perceptible, our statistics indicate that the
stronger, more obvious, or more crude the perturbation, the smaller the accuracy gains
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from the injected bottleneck. Therefore, it would stand to reason that these models
would indeed be more resilient towards imperceptible perturbations.

6.6 Limitations and Challenges
We have encountered several challenges and problems throughout this project, which
we would like to outline in the hopes of aiding future researchers that might come
across similar issues. The most important problem we faced was the lack of sufficient
computational power for the tasks we set out to do. Analyzing the behavior of nine
different model combinations each had to be trained on five distinct datasets meant our
setup was effectively running non-stop for almost three months. This estimate includes
iterating on training parameters to find the best balance of accuracy and speed, as well as
creating adversarial perturbations using our four selected attack methods. For large-scale,
broad analyses like ours, we recommend using multiple machines with more powerful
GPUs, as it was often the case that even small errors in our methodology caused us
to have to re-train whole models, unable to proceed with our work until this was done.
A rather large problem we encountered was our inconsistent de-/normalization of the
datasets. After generating all of the perturbed datasets targeting each base model, we
figured out that we had supplied the attacks with normalized datasets, leading to unusable
final images after the de-normalization step. While the classification accuracies did not
change much, these images were not comparable to the original ones, and they were
producing nonsense L-norm values. For these reasons, all attacks had to be re-applied
and the perturbed datasets re-generated.

On a related note, we quickly ran into the issue of the JSMA attack not scaling well
for images larger than SVHN or CIFAR (32x32). Our solution to this problem involved
creating a custom JSMAOnePixel attack, as described in section 4. While this approach
solved the error of the attack running out of memory, there was still a noticeable decrease
in performance compared to the standard torchvision attacks, as it took almost a week to
generate the perturbed images based on the ImageNet64 dataset. A faster experimental
setup would have helped us with this problem as well. However, even this adjusted
method would be too slow to be used on the entire ImageNet dataset, for example, as the
sheer volume of test images combined with the number of iterations needed to achieve
reliable results on the comparably high-resolution inputs would be too high.

In Chapter 1, we predicted that our selected attacks might produce too similar pertur-
bations, leading to similar classification accuracies and, therefore, sub-optimal analysis
results. This was not the case, and the evasion methods produced mostly distinct pertur-
bations and, consequently, distinct results for our evaluation metrics. More details can
be found in section 5.
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CHAPTER 7
Conclusion and Future Work

7.1 Summary of Findings
This thesis investigates the potential of variational bottleneck injection to enhance the
robustness of deep neural networks against adversarial evasion attacks. Through a
series of experiments comparing models trained with Shallow Variational Bottleneck
Injection, Deep Variational Bottleneck Injection, and traditional DNN architectures
without bottleneck layers, we explored the resilience of these architectures to state-of-the-
art adversarial attacks. The attacks used in our evaluations include FGSM, EAD, C&W,
and JSMA, representing a diverse spectrum of perturbation techniques. Our findings
reveal the following key insights:

• Bottleneck Placement and Robustness: Both SVBI and DVBI models demon-
strated improved robustness against adversarial attacks compared to the base
models. While DVBI exhibited the highest resilience, SVBI also outperformed
the base models across all attack scenarios. The success of bottleneck techniques,
particularly DVBI, suggests that limiting the information flow in deeper layers
allows the network to focus on essential features, thereby reducing the impact of
adversarial perturbations.

• Impact of Network Depth: Contrary to expectations, in both SVBI and
DVBI setups, deeper models (e.g., ResNet-50 and ResNet-101) often showed worse
performance on perturbed data compared to shallower models like ResNet-18. This
was specifically the case when dealing with lower-resolution datasets and contrasting
the base models, where deeper architectures outperformed ResNet-18 more often
than not. Higher-resolution datasets like ImageNet64 and Felidae showed the
opposite effect. This finding suggests that while injecting bottlenecks may reduce
the benefits of network depth with lower-resolution datasets, depth continues to
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provide an advantage with higher-resolution datasets. This may occur because
deeper networks are better equipped to capture fine-grained details and complex
patterns present in higher-resolution images, whereas bottleneck injection can overly
constrain the information flow needed to process lower-resolution, perturbed data
effectively.

• Effectiveness Against Different Attack Types: The models trained with
variational bottleneck techniques demonstrated varying degrees of robustness against
different types of adversarial attacks. One of the most striking results was the
improved resilience of both DVBI and SVBI models to the C&W attack, which
was the most effective against the base models. The subtle nature of the C&W
perturbations, designed to evade detection by manipulating image features without
introducing obvious distortions, seemed to be countered more effectively by the
bottleneck-injected models. This contrasts with more overt attacks like FGSM
and JSMA, where the base models were more susceptible. The Tabacof attack
targetting the autoencoder process directly also proved to be effective against
our DVBI models, indicating that while the examined bottleneck methods show
clear improvements in robustness against standard evasion attacks, they may also
introduce potential additional attack vectors.

• Generalization to Non-Adversarial Perturbations: In addition to adversarial
attacks, we examined the models’ performance on common image corruptions. The
bottleneck-injected models, particularly DVBI, showed improved generalization
and robustness to these non-adversarial perturbations compared to traditional
architectures. This finding suggests that bottleneck injection not only aids in
defending against adversarial attacks but also improves overall model resilience to
a wider range of input disturbances.

In summary, our results highlight the potential of variational bottleneck techniques,
particularly DVBI, as a promising defense mechanism against adversarial attacks. While
the inclusion of shallow bottlenecks (SVBI) offers clear computational, and robustness
advantages, its slightly greater susceptibility to adversarial manipulations necessitates
further refinement if it is to be considered as a potential defensive method against these
attacks. The unexpected performance degradation in deeper models with bottleneck
injection raises important considerations for network design, and the enhanced resistance
to C&W-like attacks suggests that bottleneck techniques may be especially valuable
in defending against more subtle forms of adversarial manipulation. Ultimately, our
research contributes to a deeper understanding of how bottleneck injection influences
DNN security and opens avenues for future work aimed at optimizing these techniques
for real-world applications.
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7.2 Contributions to the Field
In addition to the experimental findings, this thesis makes several notable contributions to
the field of adversarial machine learning, particularly in the realm of defensive strategies
for deep neural networks. First and foremost, we have expanded the understanding
of how variational information bottleneck techniques affect DNN resilience against
adversarial attacks. Our comprehensive evaluation of Shallow Variational Bottleneck
Injection and Deep Variational Bottleneck Injection offers important insights into their
respective strengths and limitations. These findings confirm the utility of both methods
for enhancing the robustness of machine learning models, with DVBI demonstrating
superior protection across a variety of attacks and datasets. This clarity adds an important
layer of understanding to the broader discussion of adversarial robustness, helping to
position future research in this area better.

Another contribution lies in the introduction of a novel experimental methodology that
evaluates DNN robustness using multiple attack strategies across different datasets. By
integrating a diverse set of adversarial attack methods—including gradient-based attacks
such as FGSM and optimization-based attacks like C&W—alongside image corruption
tests, we developed a replicable framework for future studies. This methodology allows
for a thorough examination of the effectiveness of defensive techniques under a variety of
conditions and provides an empirical basis for comparing the resilience of different neural
architectures and defensive mechanisms. This experimental approach is valuable not
only for adversarial machine learning but also for research seeking to strengthen model
security against other forms of data tampering or input distortion.

Moreover, this work contributes to the growing body of literature that applies bottleneck
techniques to enhance DNN security. While previous studies primarily focused on
bottleneck techniques for tasks like feature compression or generalization improvement,
our research emphasizes their defensive potential. By demonstrating that both the
SVBI and DVBI methods can protect image classification models against sophisticated
adversarial perturbations, this thesis expands the practical applications of VIB techniques,
showing that they are not only tools for improving model efficiency but also for increasing
adversarial robustness. This perspective opens up new avenues for the deployment of
these techniques in security-sensitive applications, such as autonomous driving or medical
diagnostics, where model reliability is crucial.

7.3 Recommendations for Further Work
While our results support the effectiveness of VIB techniques, several areas remain open
for further research. A promising direction for further research involves developing
hybrid bottleneck techniques that combine the benefits of both SVBI and DVBI. Such
an approach could provide a more balanced trade-off between computational efficiency
and robustness, particularly in environments where resources are constrained. Hybrid
techniques could leverage the computational and deployment simplicity of SVBI, while

67



7. Conclusion and Future Work

harnessing the deeper feature compression and adversarial resilience that DVBI offers in
more complex architectures.

In addition to hybrid approaches, expanding the application of VIB techniques beyond
the ResNet architecture could provide further evidence for our claims. While our work
focused on the performance of SVBI and DVBI in ResNet-based models, it remains an
open question whether these techniques would be equally effective in other types of deep
learning architectures, such as transformers. A cross-architectural study of VIB methods
would help determine the generalizability of these techniques and could potentially reveal
new insights into their adaptability across different model structures and tasks.

Another promising area for further research may be applying VIB techniques in transfer
learning scenarios. Many modern machine learning models are pre-trained on large
datasets and then fine-tuned for specific tasks. Understanding how VIB affects trans-
ferability, and how adversarial robustness holds up when models are adapted for new
tasks, could lead to more effective strategies for safeguarding pre-trained models from
adversarial attacks. Given that transfer learning is widely used in real-world applications,
developing methods to secure these models against adversarial manipulation could have
substantial practical implications.

Future work should also include more experiments to investigate the effects of the
Tabacof attack on SVBI models, as the present study did not fully explore this aspect.
While initial attempts with SVBI models yielded limited results, further testing could
reveal whether Tabacof’s latent space manipulation techniques affect shallow bottleneck
architectures under different conditions or parameter settings. Understanding the SVBI
models’ potential vulnerabilities or resilience to such adversarial attacks would provide a
complete picture of how variational bottleneck placements influence model robustness.

Lastly, there is room for further refinement and improvement of VIB techniques, par-
ticularly in making them more computationally efficient. While DVBI demonstrates
significant robustness improvements, it also comes with a computational cost, especially
in deeper models. Future research could focus on optimizing the trade-offs between bot-
tleneck size, information retention, and adversarial resilience. Attacks aimed specifically
at the variational bottleneck also present a not insignificant danger as we have proven
via the Tabacof method. Exploring new ways to make DVBI or similar techniques more
lightweight, efficient and secure without sacrificing their defensive benefits would make
them more practical for real-world deployment.

In conclusion, while this thesis provides strong evidence supporting the effectiveness
of VIB techniques—particularly DVBI—there is still considerable scope for further
exploration. Future research should aim to make these methods more efficient, expand
their applicability to a broader range of architectures, and develop hybrid approaches
that better balance performance with computational cost. By addressing these challenges,
the field can continue to advance toward more robust and secure neural networks capable
of withstanding the evolving landscape of adversarial threats.
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A. Images Perturbed Using the Selected Attacks

A.1 FGSM Perturbed Example Images

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.1: FGSM image perturbations targetting the ResNet-18 model.

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.2: FGSM image perturbations targetting the ResNet-50 model.

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.3: FGSM image perturbations targetting the ResNet-101 model.
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A.2. EAD Perturbed Example Images

A.2 EAD Perturbed Example Images

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.4: EAD image perturbations targetting the ResNet-18 model.

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.5: EAD image perturbations targetting the ResNet-50 model.

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.6: EAD image perturbations targetting the ResNet-101 model.
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A. Images Perturbed Using the Selected Attacks

A.3 C&W Perturbed Example Images

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.7: C&W image perturbations targetting the ResNet-18 model.

MNIST CIFAR-10 SVHN Ima-
geNet64
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Figure A.8: C&W image perturbations targetting the ResNet-50 model.

MNIST CIFAR-10 SVHN Ima-
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Figure A.9: C&W image perturbations targetting the ResNet-101 model.
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A.4. JSMA Perturbed Example Images

A.4 JSMA Perturbed Example Images

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.10: JSMA image perturbations targetting the ResNet-18 model.

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.11: JSMA image perturbations targetting the ResNet-50 model.

MNIST CIFAR-10 SVHN Ima-
geNet64

Felidae

Figure A.12: JSMA image perturbations targetting the ResNet-101 model.
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APPENDIX B
Accuracies on Perturbed Images

Related to BPP

0.
5

1.
0

2.
0

2.
5

5.
0

10
.0

15
.0

20
.0

25
.0

50
.0

10
0.

0

15
0.

0

20
0.

0

50
0.

0

10
00

.0

Lambda

30

35

40

45

50

A
c
c
u
ra

c
y
 (

%
)

ResNet18

ResNet50

ResNet101

Figure B.1: FGSM perturbed classification accuracy of ResNet models trained on the
Felidae Dataset using different λ values (and consequently different bpp).
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B. Accuracies on Perturbed Images Related to BPP
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Figure B.2: EAD perturbed classification accuracy of ResNet models trained on the
Felidae Dataset using different λ values (and consequently different bpp).
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Figure B.3: C&W classification accuracy of ResNet models trained on the Felidae Dataset
using different λ values (and consequently different bpp).
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Figure B.4: JSMA classification accuracy of ResNet models trained on the Felidae Dataset
using different λ values (and consequently different bpp).
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Overview of Generative AI Tools
Used

During the writing process, I utilized the AI model GPT-4, provided by ChatGPT [28], in
a limited capacity. Its use was restricted to idea generation, assistance with LaTeX, and
verifying the proper formulation of text according to scientific standards. I did not use
this tool for literature research due to its unreliability. To minimize potential errors or
inaccurate responses, I directly uploaded the sources to be used as files. Any unfamiliar
facts received from the tool were verified against the uploaded sources and appropriately
cited according to standard academic practices.

Another helpful tool in the writing process was Semantic Scholar [35], a platform that
employs AI-driven technologies to identify relevant scientific articles. Features such as
intelligent filters, automatic summaries, and citation analyses significantly supported
the research process. The platform enabled me to quickly find relevant studies based
on keywords, fields of study, or citation networks, thereby improving the quality and
efficiency of the literature review.

Additionally, I used the application Grammarly [14] to check spelling and grammar. Since
Grammarly also offers sentence rephrasing features, I mention it here as a generative AI
application. However, I did not use it for explicitly generating or rewriting text based on
inputs.
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Übersicht verwendeter Hilfsmittel

Während des Schreibprozesses habe ich das KI-Modell GPT-4, bereitgestellt durch
ChatGPT [28], in begrenztem Umfang eingesetzt. Die Nutzung erfolgte ausschließlich
zur Anregung von Ideen, Unterstützung bei der Arbeit mit LaTeX und Überprüfung der
korrekten Formulierung des Textes laut wissenschaftlichen Standards. Für die Recherche
von Literatur habe ich dieses Tool wegen Unzuverlässigkeit nicht verwendet. Um mögliche
Fehlerquellen oder fehlerhafte Antworten zu minimieren, habe ich die zu verwendenden
Quellen direkt als Datei hochgeladen. Mir nicht vertraute Fakten, die ich von diesem
Tool erhalten habe, habe ich mit den hochgeladenen Quellen überprüft und gemäß den
üblichen akademischen Standards korrekt gekennzeichnet.

Ein weiteres hilfreiches Tool im Schreibprozess war Semantic Scholar [35], eine Plattform,
die KI-gestützte Technologien einsetzt, um relevante wissenschaftliche Artikel zu iden-
tifizieren. Durch Funktionen wie intelligente Filter, automatische Zusammenfassungen
und Zitieranalysen unterstützte Semantic Scholar den Rechercheprozess erheblich. Dabei
ermöglichte mir die Plattform, relevante Studien basierend auf Schlüsselbegriffen, The-
menfeldern oder Zitationsnetzwerken schnell zu finden, was die Qualität und Effizienz
der Literaturrecherche deutlich verbesserte.

Zusätzlich habe ich die Anwendung Grammarly [14] zur Überprüfung von Rechtschrei-
bung und Grammatik eingesetzt. Da Grammarly auch Funktionen zur Umformulierung
von Sätzen bietet, erwähne ich sie hier als generative KI-Anwendung. Das explizite
automatische Erstellen oder Umschreiben von Text basierend auf Eingaben habe ich
nicht verwendet.
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