
Visualisierung und Analyse
der 3D-Konnektivität
auf zellulärer Ebene

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Benjamin Beinder, BSc.
Matrikelnummer 11808602

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dr. Renata Raidou
Mitwirkung: Eric Mörth, PhD

Associate Prof. Dr. Nils Gehlenborg

Wien, 23. Jänner 2025
Benjamin Beinder Renata Raidou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Visualization and Analysis
of 3D-Connectivity
at Cell Resolution

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Medical Informatics

by

Benjamin Beinder, BSc.
Registration Number 11808602

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr. Renata Raidou
Assistance: Eric Mörth, PhD

Associate Prof. Dr. Nils Gehlenborg

Vienna, January 23, 2025
Benjamin Beinder Renata Raidou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Benjamin Beinder, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 23. Jänner 2025
Benjamin Beinder

v

Danksagung

Zuallererst möchte ich mich bei meiner Familie bedanken, denn sie waren immer für mich
da und all dies wäre ohne sie gar nicht erst möglich gewesen. Mein Dank geht auch an
meine Mitbewohner, welche die Zeit in Wien eine Unvergessliche gemacht haben, wodurch
ich unbeschwert studieren konnte. Und auch wenn ich mir oft schwertue sie anzunehmen,
will ich mich besonders bei meiner Freundin für ihre stetige Unterstützung bedanken.

Mein besonderer Dank geht an meine Betreuer Eric Mörth und Renata Raidou, die
mich in dieser Arbeit mit konstruktivem Feedback, der Organisation der Datensätze und
wertvollem Input begleitet haben.

Abschließend möchte ich mich bei Clarence Yapp, Peter Sorger, Liam McLaughlin,
Sanjay Jain und Ashley Kiemen für die Bereitstellung der in dieser Arbeit verwendeten
Datensätze bedanken.

vii

Acknowledgements

Above all I want to thank my family who supported me in my studies, who were always
there for me, and without whom none of this would be possible. I also want to thank my
roommate4s who made the time spent in Vienna an unforgettable experience, allowing
me to continue studying light heatedly. And of course I want to thank my girlfriend, who
always supports me even though I am the worst at accepting it.

My special thanks go to Eric Mörth and Renata Raidou for advising me through this
thesis with constructive feedback, the organization of the required datasets and their
own valuable input.

Finally, I want to thank Clarence Yapp, Peter Sorger, Liam McLaughlin, Sanjay Jain
and Ashley Kiemen for providing the datasets that were used during this thesis.

ix

Kurzfassung

Der Fortschritt von Abbildungstechnologien ermöglicht die digitale Kartierung des mensch-
lichen Körpers in sich ständig verbessernden Auflösungen. Mehrere Forschungsprogramme
haben Abbildungen von verschiedenen funktionalen Gewebeeinheiten und auch Abbildun-
gen von einzelnen Zellen erstellt, um den menschlichen Körper und seine Krankheitszustän-
de gemeinsam digital zu kartieren. Neuartige Beiträge zu diesen Forschungsprogrammen
eröffnen eine Vielzahl an Möglichkeiten, die funktionelle Komplexität der Organe so-
wie deren Voranschreiten von Krankheiten im Detail zu erforschen. Die Analyse der
Konnektivität zwischen funktionalen Gewebeeinheiten oder einzelnen Zellen ist dabei
ein wesentlicher Teil dieser Forschung, da angenommen wird, dass diese Elemente über
verschiedenste Wege kommunizieren.

Diese Arbeit präsentiert zwei unabhängige Anwendungen, welche Forscher bei der Analyse
von Konnektivität unterstützen. Erstens, eine installierbare Python Anwendung, mit
welcher Oberflächen-Polygonnetze und eine Abstraktion der Konnektivität in Form eines
Graphen generiert werden können. Hierzu wird zusätzlich eine Methode vorgeschlagen,
welche die tatsächliche Konnektivität von unvollständigen röhrenförmigen Polygonnetzen
empfiehlt. Zweitens, eine interaktive web-basierte Visualisierungsanwendung, welche die
Konnektivitätsanaylse unterstützt, indem sie eine dreidimensionale Ansicht mit zwei
Graph-Ansichten der Konnektivitätsabstraktion synchronisiert. Die Anwendbarkeit der
Programme wird mit drei unterschiedlichen Datensätzen getestet und vorgeführt. Hierbei
wird die Konnektivität zwischen Glomeruli und Nerven in der Niere, die Konnektivität von
intraepithelialen Läsionen in Gängen der Pancreas mit dem umliegenden Nervensystem,
sowie die Konnektivität zwischen den einzelnen Zellen eines Melanoms untesucht.

xi

Abstract

With the advancement of imaging technologies, the mapping of the human body at
continually increasing resolution becomes possible. Multiple research programs have
achieved the imaging of various functional tissue units at cell resolution and even the
imaging of single-cells in a combined effort to map out the human body and its disease
states. Novel contributions to these programs open up a multitude of avenues to explore
the functional complexity and disease progression of organs in even more detail. A vital
part of this exploration is the analysis of connectivity between the functional tissue units
or single-cells, as they are believed to communicate through diverse channels.

This thesis presents two independent tools that empower researchers to improve their
connectivity analysis workflows. Firstly, an installable Python tool that generates surface
meshes and a connectivity abstraction in the form of a network from segmented volumetric
data. In the course of this, a method for suggesting the connectivity of incomplete tubular
meshes is proposed. Secondly, an interactive web-based visualization tool that improves
connectivity analysis by synchronizing a three-dimensional spatial view with two network
views that incorporate the connectivity abstraction. The applicability of both tools is
tested and showcased with data from three distinct fields by analyzing the connectivity
between glomeruli and nerves in the kidney, the connectivity of intraepitheliel lesions
in pancreatic ducts with the surrounding nervous system, and the connectivity between
single-cells of a melanoma.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and Problem Definition . 1
1.2 Aim of the Work . 2
1.3 Contribution . 2
1.4 Outline . 3

2 Clinical Background 5
2.1 Relevant Biology . 5
2.2 3D Reconstruction Techniques . 8
2.3 Used Data . 11

3 Related Work 13
3.1 Visualization at Cell Resolution . 13
3.2 Connectivity Abstraction . 16
3.3 Network Visualization . 19
3.4 Summary . 20

4 Application Design 23
4.1 Application Overview . 23
4.2 Mesh Generation . 25
4.3 Network Generation . 33
4.4 Visualization . 39
4.5 Interactive Mechanisms . 50

5 Implementation 55
5.1 Implementation Overview . 55
5.2 Connectivity Network Generator . 57
5.3 Web Application . 65

xv

6 Results 67
6.1 Innervation of the PanIN . 67
6.2 Melanoma Cells . 74
6.3 Case Study: Glomeruli Interconnectivity 77
6.4 Critical Review . 89

7 Conclusion and Future Work 91
7.1 Summary . 91
7.2 Limitations . 92
7.3 Future Work . 93

Overview of Generative AI Tools Used 95

List of Figures 97

List of Tables 103

List of Listings 105

Glossary 107

Acronyms 109

Bibliography 111

CHAPTER 1
Introduction

1.1 Motivation and Problem Definition
New technologies that allow the mapping and characterization of cell types at single-cell
resolution have given rise to the creation of the National Institutes of Health (NIH) Human
Biomolecular Atlas Program (HuBMAP) [HuB19], which aims to create a comprehensive
three-dimensional (3D) molecular and cellular atlas of the human body. Research into
human diseases has made similar strides. The Kidney Precision Medicine Program
(KPMP) [dBAA+21], which tries to understand chronic kidney disease and acute kidney
injury and the Human Tumor Atlas Network (HTAN) [RRRO+20], which intends to
construct 3D atlases of human cancers, have both created interesting datasets at cell
resolution. Novel contributions to these programs open up a multitude of avenues to
explore the functional complexity of the various organs in the human body.
Research in the domain of biology and pathology is often tightly linked to visualization,
since it allows for an in-depth analysis of the data acquired with novel imaging tech-
niques. For example, analyzing tissue data at cellular resolution with a 3D visualization
gives insight into the spatial development of precancerous lesions and pancreatic cancer
[KBG+22]. Similarly, visualizing larger biological structures at cell resolution can greatly
improve their connectivity analysis [MZS+24]. For instance, inspecting the neurovascular
connectivity of nephrons in the human kidney reveals that glomeruli can be organized
into communities based on interconnected nerve networks. Glomeruli on the border
of those communities might act as control centers that synchronize responses to the
disruption of fluid homeostasis.
Current visualization tools that can handle the huge datasets produced by cellular
imaging techniques lack analysis functionality, are very expensive, too complicated to
use or extremely specialized in a certain field. This leads to biologists and pathologists
having to spend their resources in a field, in which they are no experts and therefore to
subpar visualization results, which might also affect the quality of their analysis.

1

1. Introduction

1.2 Aim of the Work
The aim of this thesis is the design and implementation of a visualization tool for the
exploration of connectivity between cells or FTUs. The starting point for this work is 3D
imaging data that has already been segmented into different cell types or functional tissue
units (FTUs). The providers of the data are mainly interested in analyzing individual
connected components of distinct types, as they believe them to be communicating
with or through each other. For cells, this communication is assumed to happen based
on their proximity, while FTUs might communicate through other FTUs like nerves
or vasculature. Since the imaging and segmentation process has flaws attributable to
technology or hardware limitations, quality assurance emerges as another step that needs
to be developed on a case-to-case basis.

3D visualizations can improve the spatial analysis of the structures found in this data.
However, due to densely packed biological tissues, such visualizations often suffer from a
lot of occlusion, which can be especially problematic in connectivity analysis, where the
exact tracing of complex tubular structures is often required. This can be mitigated by
utilizing abstraction views that reveal the biological hierarchy or structure in the data.

Consequently, the following research questions are formulated:

RQ1. How can the connectivity between cells or FTUs at cell resolution be effectively
abstracted for analysis?

RQ2. How can this abstraction be incorporated into a visualization tool that enhances
research workflows and supports domain-specific analysis?

1.3 Contribution
The contribution of this thesis is threefold. The first contribution is a Python pipeline
that empowers researchers to create surface meshes and a connectivity graph creation
from segmented volumetric data with only basic knowledge of computer science and
limited hardware. The second contribution is a quality assurance implementation for the
provided kidney dataset. The third contribution is a generalized exploratory visualization
tool for the results of the Python pipeline that can be used as a starting point for further
analysis of the volumetric data.

As a proof of concept, the pipeline, quality assurance and visualization are tested by
conducting a case study that focuses on the neuronal interconnectivity of glomeruli in
multiple kidney datasets which have been provided by Sanjay Jain Lab [Lab].

[C1] Mesh and connectivity network creation

In the Python pipeline, all the connected components of each segmented type in the
volume data are found and labeled. Those components are then used to create meshes

2

1.4. Outline

with isosurface extraction. In order to keep as close as possible to the original data,
downsampling is avoided up to this point if it is computationally feasible. The meshes are
then simplified, while preserving their shape as much as possible, so they can be stored
without needing access to excessive storage options. Depending on the dataset, either
specific or generic quality assurance steps are employed. Afterward, the connectivity
between the components is calculated with a Euclidean distance matrix and is transformed
into a graph. To tackle the scalability problem, this graph can then be clustered based
on interconnectivity.

[C2] Quality assurance and connectivity suggestion for kidney data

The quality of the data is improved by enabling the target user to split falsely merged
entities and improve the continuity of missing mesh sections by utilizing a framework
that suggests connectivity of tubular meshes like nerves and vasculature based on their
orientation.

[C3] Exploratory visualization of the connectivity network and meshes

To achieve this, three individual views are combined in one interactive visualization: A
3D view that depicts the actual structure and spatial relationships of the components. A
general overview of the whole connectivity network abstraction that helps the user to
orient themselves, and a detail view that allows the user to inspect the connectivity of
individual components. The three views are interactively linked so that hovering over a
region of interest in one view highlights the semantically related components in all the
other views while providing basic information through labels and tooltips.

1.4 Outline
This thesis is structured in the following way: Chapter 2 offers an overview of biological
imaging techniques that enable the capturing of the data used in this thesis. It continues
with an introduction of the organs that were the main focus of the case studies and
ends with a description of the datasets that were used for the development as well as
the case studies. Chapter 3 discusses related work in the fields of biology, pathology,
visualization and connectivity abstraction. The design process of the application is
discussed in Chapter 4 by comparing different approaches in regard to their advantages
and disadvantages. Chapter 5 concerns itself with the actual implementation details
of the pipeline and visualization tool. The results and case studies are presented and
critically reviewed in Chapter 6. In Chapter 7, the thesis is summarized, limitations are
addressed, and future work is proposed.

3

CHAPTER 2
Clinical Background

This chapter introduces the biology that is relevant to this thesis based on the provided
datasets, followed by the imaging techniques used to create said datasets and finally the
datasets themselves.

2.1 Relevant Biology
This section briefly describes the localization and function of the biological systems in
the human body that host the entities of interest, as well as the biology surrounding
those entities. These systems include the kidney, the pancreas and the skin.

2.1.1 Glomeruli in the Kidneys
The bean-shaped pair of kidneys found in the human body are organs that belong to
the upper urinary tract and are positioned high on the posterior abdominal wall. The
right kidney is located slightly lower than the left kidney, most likely due to the mass
of the liver that lies above it [Mah19a]. The vasculature, nerves, lymphatics and ureter
all enter the kidney through the renal hilum and spread out from there (see Figure 2.1).
The main regions are the inner medulla and the outer cortex, which are connected by
straight tubules and collecting ducts. The network of tubules in the medulla creates
multiple pyramidal shapes that have their base opened to the cortex and point towards
the hilum where the tubules end into papillae which in turn drain via collecting ducts
into the ureter. Between those pyramids and comprised of vessels that enter and exit
the cortex are the renal columns. A kidney is usually divided into six to eight lobes that
consist of a medullar pyramid enclosed by renal columns [SPL24].

The cortex is the starting point for the functional unit of the kidney, which is called the
nephron. Studies have shown that a human kidney has approximately an average of 1
million nephrons, but their number has a very high variability [BDDD+11]. Figure 2.2

5

2. Clinical Background

Figure 2.1: The labeled anatomy of a kidney (adapted from LibreTexts [Lib])

shows the anatomy of a single nephron. From the vasculature of the cortex, an afferent
arteriole supplies blood to the glomerulus. The glomerulus is a network of capillaries
that is surrounded by the glomerular capsule, which combined forms a renal corpuscle.
The basic function of the renal corpuscle is to filter metabolic waste products from the
blood. From the glomerulus, the blood is drained along the efferent arteriole, where it
branches out to create the blood supply for the renal tubules. The tubules begin from the
renal corpuscle in the cortex, descend into the medulla, ascend back to the originating
corpuscle and finally drain urine via a collecting duct into the ureter [SPL24].

In a healthy human, about twenty percent of the cardiac output is filtered through
the kidney’s glomeruli every minute [Mah19a]. Besides the excretion of metabolic
waste products, the kidney governs electrolyte regulation and the acid-base balance.
In combination with the adrenal gland, it also has a major effect on the intravascular
volume through the renin-angiotensin-aldosterone system. This in turn leads to the
kidney having substantial control over blood pressure [SPL24].

The vasculature and tubules of the kidney are both innervated by sympathetic (efferent)
nerves and sensory (afferent) nerves. Activity in the efferent nerves decreases the
glomerular filtration rate and, together with the efferent nerves, they form a feedback loop
that allows the brain to partially regulate the filtration in the kidney. The innervation
stretches to the capillary network that makes up the glomerulus, but its functional
significance is yet unknown [OTV21].

6

2.1. Relevant Biology

Figure 2.2: The labeled anatomy of the nephron with its connecting vasculature and
tubules. (adapted from LibreTexts [Lib])

2.1.2 Intraepithelial Neoplasia in the Pancreas

The pancreas is an elongated exocrine and endocrine gland that is positioned behind the
lower portion of the stomach. From left to right, it can be divided into four sections:
The head that is nestled in the curve of the duodenum, the neck is a thin combining
section, the body is the middle part which is in front of the superior mesenteric vessels
and the tail that is the thin tip close to the spleen [Lon14]. Blood for the head and
neck is supplied and drained by the pancreaticodudodenal vessels, and for the body and
tail by branches of the splenic vessels. Interlobular ducts converge at the main duct of
Wirsung and the accessory duct of Santorini, both of which open into the duodenum.
Even smaller Intralobular ducts link the acinar tubules to the interlobular ducts. The
acini are clusters of cells that make up the exocrine function of the pancreas by excreting
digestive enzymes directly into the ductal system. The exocrine function of the pancreas
stems from the islets of langerhans, which release glucagon, insulin and hormones into

7

2. Clinical Background

the circulatory system [Mah19b].

One of the most lethal cancerous tumors a human can have, is an invasive adenocarci-
noma of the pancreas [STAHAR18]. In an effort to reduce the mortality of this tumor,
researchers are investigating the effect of detecting and treating non-invasive panrceatic
neoplasia. A neoplasia in the ductal system of the pancreas is called a pancreatic intraep-
ithelial neoplasia (PanIN) and has found to be a precursor for ductal adenocarcinoma.
PanIN are classified into four grades: PanIN-1A, -1B, -2 and -3. Further research has
shown that harmless PanIN lesions can progress into deadly invasive cancers [HBFM08].
Investigating this precursor in 3D, as opposed to 2D, can give more insight into what
happens during the progression of the lesion [KDB+23].

2.1.3 Melanoma of the Skin
The skin is the largest organ of the human body and covers most of its surface. It
is made up of three layers from outside to inside: the epidermis containing primarily
keratinocytes and dendritic cells, the dermis composed of collagen and the subcutaneous
tissue which contains conglomerations of lipocytes. The thickness of those layers varies
depending on the area of the body. The tissue in the dermis connects the epidermis to
the subcutaneous tissue and also contains sweat glands, hair follicles with oil glands,
vasculature, lymphatic vessels and apocrine glands for sweat and scent release [KKG11].

Melanocytes are melanin producing cells that can be found in the epidermis. When
such a melanocyte undergoes a malignant transformation, the result is a skin cancer
called a cutaneous melanoma. About 0.7% of all cancer deaths worldwide are caused by
cutaneous melanoma, with sunburns caused by ultraviolet radiation from sun exposure
being a high risk factor for the transformation [SVAB+18]. Research has shown that cell
to cell interactions have an effect on the emergence of cancers like cutaneous melanoma
[YNZ+24]. Analyzing these interactions in the spatial context of connectivity could give
more insights into the transformation process.

2.2 3D Reconstruction Techniques
This section introduces the 3D reconstruction techniques that were applied to acquire
the used volume data described in Section 2.3. The approach for the kidney data was
volumetric imaging with light sheet fluorescence microscopy (LSFM) of samples that have
undergone a tissue-clearing process. This allows whole-body imaging without the need
for cutting the tissue in sections but is limited by the penetration depth of the required
antibody staining and densely fibrotic tissues. The technique for the pancreas data was
the method of serially sectioning an embedded sample, hematoxylin and eosin (H&E)
staining it and combining the digitized slices back together with image registration. This
enables the labeling of more organs and can be used on fibrous tissue, but the z-continuity
is a lot worse, which can lead to distorted 3D reconstructions of tubular tissues like
vasculature or nerves. The images for the cell data were obtained by using thick section

8

2.2. 3D Reconstruction Techniques

tissue based cyclic immunofluorescence (t-CyCIF) with laser-scanning confocal microscopy
(LSCM). To get the volume data, those images were then stitched back together utilizing
a registration method. This technique makes highly multiplexed imaging at cell resolution
possible, but is limited in the thickness of the sample.

2.2.1 Volumetric Imaging with Tissue Clearing
When it comes to visualizing thick biological tissues with volumetric light microscopy, an
essential part is the transparency of the specimen that is investigated. Most biological
samples from humans or animals are inherently opaque and must therefore be turned
transparent by creating a uniform refractive index before any kind of microscopy that
utilizes light can be employed effectively. The method behind this is often called ’tissue
clearing’ and several approaches have been developed. These approaches can generally
be categorized in the following families [VPR21]: Organic solvent-based methods like
3DISCO [EBJ+12], hydrogel-based methods like CLARITY [CWK+13] and aqueous
methods like CUBIC [STP+14]. Figure 2.3 shows an adult mouse that was perfused
with a CUBIC cocktail for 14 days compared to a mouse that was perfused with a
phosphate-buffered saline solution to maintain a constant pH.

After tissue clearing comes volumetric imaging in the form of microscopy. The method
used for the kidney dataset was LSFM. LSFM was developed in an effort to create an
adequate four-dimensional (x, y, z and time) microscope and uses plane-wise illumination
with wide-field fluorescence detection to optically section a volumetric sample. There is
a great variety of light-sheet microscopes and the best results are achieved with custom
solutions [PH17]. Figure 2.4 shows the 3D reconstruction from an LSFM image of a
kidney sample that includes glomeruli, nerves and collecting ducts. This image of the
week from the HuBMAP website also inspired this thesis.

2.2.2 Registration of H&E Stained Serial Sections
This technique uses serially sectioned slides that are cut from a sample with a microtome.
It is closely linked to digital pathology, where preserved and processed sections are
digitized with a slide scanner and stored in a biobank. Those samples are already often
H&E stained, which in combination with modern segmentation algorithms allows the
identification of multiple tissues. Deep learning algorithms to label the tissue types
can be especially effective [KBG+22]. Due to the mechanical nature of the cutting
process, the tissue of sequential sections can get rotated, translated, folded, split and
stretched. To correct this during 3D reconstruction, a registration step that maximizes
the cross-correlation between sections is employed [KDB+23].

2.2.3 Stitching of Thick Section t-CyCIF
This approach is based on cyclic immunofluorescence [LFSCS16] and uses an imaging
technique called t-CyCIF that was adapted for thick tissue sections and is able to
create highly multiplexed immunofluorescence images at cell resolution with an optical

9

2. Clinical Background

Figure 2.3: The whole body of an adult mouse which has undergone 14 days of perfusion
with phosphate-buffered saline solution (PBS, left) compared to CUBIC-1 (CB-perfusion,
right) [TKS+14].

microscope. This is achieved by cyclic bleaching, staining and imaging of pre-stained
tissue slides. For the imaging, laser-scanning confocal microscopy (LSCM) is used.

LSCM passes the transmitted as well as emitted light through a pinhole, which increases
the optical resolution that can be achieved. Since most of the fluorescent light is blocked
by the pinhole, the signal intensity is decreased, which has to be compensated with a
more sensitive detector and longer exposure times. The sample is scanned point by point
while also adjusting the focal point [BOS+18].

To create a 3D reconstruction, the images acquired in the cycles are stitched together in
a 3D registration process that can also include illumination correction. The result is a
whole-slide image containing all the captured channels.

10

2.3. Used Data

Figure 2.4: A 3D reconstruction from light sheet fluorescence microscopy images of
glomeruli (green), nerves (red) and collecting ducts (pink) published as an image of the
week on the HuBMAP consortium website [Pra23].

2.3 Used Data
For the development and design of this work, multiple volume datasets of various FTUs
and cells were used. They were created by different 3D reconstruction techniques. The
main focus was on the kidney datasets since they used volumetric imaging with LSFM
which allowed the clean reconstruction and tracking of the tubular nerve connections
between glomeruli.

2.3.1 Kidney Datasets
A total of 10 kidney datasets containing binary masks of FTUs representing nerves,
vasculature, collecting ducts and glomeruli were used in the course of this thesis. The
datasets were provided by Sanjay Jain Lab [Lab] and were created in the course of a
paper on 3D nephron connectivity by McLaughlin et al. [MZS+24]. The samples for the
datasets were obtained from deceased donors or donors that had nephrectomy surgery.
The size of the dissected tissue was about 2cm × 3 − 5mm × 1 − 3mm and usually
contained both the cortex and medulla. Tissue clearing was done with the CLARITY
SHIELD Active clearing protocol [PSC+19]. Antibody staining was used on the glomeruli,

11

2. Clinical Background

nerves, collecting ducts, tubules and nuclei for immunofluorescence. The images were
then captured with the light-sheet microscope ZEISS Llightsheet 7 [Mica]. The whole
sample was imaged with a 5× objective and after further inspection, regions of interest
were imaged at 20× zoom. Z-stacks gained from the ZEISS Lightsheet 7 were stitched
together with either the microscopy software ZEN Blue 3.3 [Micc] by ZEISS or the
stitching software Stitchy [Bio] by Translucence Biosystems, depending on the file size
of the entire volume. To make segmentation efficient, the X and Y dimensions of the
volumes were downsampled 4 times as 1/16th of the resolution. Finally, the binary masks
were created by applying Cellpose 2 [PS22], Cellpose 3 [SP24] or the ImageJ [Col07]
extension Labkit [ADS+22].

2.3.2 Pancreas Dataset
During development, one pancreas dataset containing volume data of various labeled
FTUs, including nerves, smooth muscle, normal ductal epithelium and PanIN, was
investigated. The dataset was provided by Johns Hopkins University Institute for
Nanobiotechnology [JHU] and was created in the course of a paper on 3D reconstruction
of pancreatic tissue at cellular resolution by Ashley Kiemen et al. [KBG+22]. The
used sample contained pancreatic parenchyma with precancerous lesions, was fixed with
formalin and embedded with paraffin. After sectioning, the sample was stained with H&E
and digitized at 20× magnification with a resolution of 0.5 µm × 0.5 µm × 4 µm (XxY xZ)
per section. The images were then aligned in a two-step registration process, with
whole-field rigid-body registration followed by an elastic registration method [KLV+18].
To differentiate the FTUs a cell detection algorithm was applied that utilizes color
deconvolution, normalization and an algorithm for particle tracking [WHC+12]. In the
end, the FTUs were labeled with DeepLab semantic segmentation and a pre-trained
ResNet50 network [CZP+18].

2.3.3 Cell Dataset
To test the Python pipeline capabilities regarding datasets with a large number of
individual components, two melanoma datasets containing up to 43, 000 individually
segmented cells were used to reconstruct the 3D meshes and create a connectivity graph.
The dataset was created in the course of a paper on 3D analysis of immune states in
human tissue by Yapp et al. [YNZ+24], after which they made the data freely available
on the NCI Human Tumor Atlas Network Portal [Nat]. The used samples were 35µm
thick sections of melanoma which were prepared for image acquisition with thick section
tissue based cyclic immunofluorescence (t-CyCIF). The imaging was done with the LSCM
ZEISS LSM 980 with Airyscan 2 [Micb]. Regions of interest were captured at 40x zoom
with 0.14 microns per pixel in the X and Y dimensions and 0.28 microns per pixel in
the Z dimension with about 170 optical planes. The images were stitched together in
a registration step that utilizes ZEN 3.7 [Micc] and MATLAB [Mat]. Segmentation of
the individual cells was performed with Cellpose [SWMP21] and a custom preprocessing
step.

12

CHAPTER 3
Related Work

3.1 Visualization at Cell Resolution
To understand the trillions of cells that comprise the human body, a consortium of
currently 42 contributing sites are creating HuBMAP [HuB19], a global atlas of the
human body at the cellular level. Furthermore, the HuBMAP intends to develop tools
that help visualize and analyze cells with a focus on deoxyribonucleic acid (DNA),
ribonucleic acid (RNA), proteins, phenotypes and functional tissue units in order to
understand the processes involved in homeostasis aging and disease [JPS+23]. Keller et al.
[KGM+24] created Vitessce, which is an open-source framework that uses Viv [MGP+22]
to create interactive web-based visualizations for the exploration of multimodal and
spatially-resolved single-cell experiments. It is serverless, can be embedded into Jupyter
Notebooks or RStudio, supports a wide variety of formats, and offers a plugin system for
external data loaders and views.

The authors of the datasets used in this thesis have all employed their own strategy for
visualizing the data themselves. McLaughlin et al. [MZS+24] created a neurovascular
nephron connectivity network from LSFM images of the kidney (see Section 2.3.1) and
analyzed it over the human lifespan. By investigating their 3D reconstruction, they were
able to categorize parts of their network into various motifs [MSOI+02] and identify
control centers they call “Mother Gloms“ (Figure 3.1).

Kiemen et al. [KBG+22] have developed a quantitative 3D reconstruction of large tissues
at cellular resolution (CODA), a method to reconstruct large tissues at subcellular
resolution from serially sectioned H&E tissue sections (see Section 2.3.2). Figure 3.2
shows part of their visualization, which indicates that multiple anatomically distinct
PanIN can grow in small or large ducts.

Yapp et al. [YNZ+24] have analyzed high-resolution images from thick section t-CyCIF
LSCM (see Section 2.3.3) in 3D and created visualizations of intra- and extracellular

13

3. Related Work

Figure 3.1: 3D reconstructions of neuro-glomerular network motif type examples (A-G)
together with a cartoon-like abstraction of the motif types in relation to other nephron
structures (H) [MZS+24].

morphology. The focus of their work was on analyzing cell interaction in early tumor
formation. For this work, they categorized cell-cell interaction into three types and
created an abstract visualization of cell interactions. The three types—Direct, Aposition,
and Lymphonet—are displayed as line variations in Figure 3.3.

Besides these visualizations, there has been a multitude of other attempts to visualize
cells and FTUs of different organs and from a wide range of data. Ghose et al. [GJM+23]
reconstruct skin in 3D from micro-computed tomography images at cell resolution, analyze
spatial relationships and compare it to 2D analysis. They investigate cell density within
a specific distance, the distance of immune cells to endothelial cells (vasculature), and
the distance of UV-damaged keratinocytes to the skin surface.

ClusterMap developed by He et al. [HTH+21], is a framework for clustering RNAs into
subcellular structures, cell bodies, and tissue regions in 2D and 3D. To support this,
they employ density peak clustering on mRNA transcriptomic imaging spot data. The
clusters are then typed by gene expressions of their spots and used to construct a 2D or
3D visualization. Cell graphs created with triangulation are used to identify neighboring

14

3.1. Visualization at Cell Resolution

Figure 3.2: Colored and labeled PanIN in H&E stained serial sections (top) and a 3D
reconstruction together with the ductal epithelium of the pancreas (bottom) [KBG+22].

cells.

Kuett et al. [KCÖ+22] used sections from ultramicrotomy and performed imaging mass
cytometry to create 3D volume renderings of human breast cancer samples. They analyzed
them and found that measurements of spatial neighborhoods can differ between 3D and
2D, highlighting the importance of 3D analysis in tumor localization.

There have also been visualization tools that solely focus on 2D exploration. With
Scope2Screen, Jessup et al. [JKW+21] present a Focus+Context method for the patho-
logical exploration of multivariate tissue imaging data. Focus+Context is an interaction
technique where multiple levels of details are shown by displaying the focus in the context
[Car99]. They employ various techniques for channel exploration like a multi-channel
or split screen lens while also augmenting features through single-cell histograms, radial
single-cell plots, or a classification result legend. Furthermore, they implement a visual
annotation method that allows to save views of regions of interest for reference and later
exploration. Warchol et al. [WKN+22] build upon this framework and create Vicinity,
which is an analysis tool with coordinated views for cell interaction in multiplexed tissue
imaging data. Neighborhood composition and spatial arrangements of cells can be queried
and analyzed with respect to their statistical significance. Neighborhoods are quantified

15

3. Related Work

CD8 T cells
CD8 T cell
CD103

CD4 T cell
FOXP3

6:Dendritic
Cell

7:Dendritic
Cell

1:
M

el
an

oc
yt

ic
ce

ll

CD4 T cell
LAG3
PD1
GZMB

CD8 T cell
LAG3
CD103

Type III - Lymphonet

9
10

11

CD4 T cell
LAG3

5
4

2

8

3

Interaction Class: Type I - Direct
Type II - Aposition10 μm

11
10

9
3 2

4

1

586

7

Figure 3.3: A 3D surface rendering (left) of 11 cells from a melanoma close to the
dermal-epidermal junction, with a schematic abstraction of cell interconnectivity and
their types (right) [YNZ+24].

based on the occurrence of specific cell types in a defined radius that forms a vector that
can be compared between all the cells in the data.

While many visualizations focus on spatial relationships, some employ abstractions of
functional components. Anchang et al. [AHB+16] describe the use of SPADE [QSB+11],
a density-based algorithm used for the visualization of single-cell cytometry data and
extraction of hierarchy between similar cells. They compare SPADE to other recent
approaches and provide a guide that combines the benefits of SPADE with t-distribution
stochastic neighborhood embedding.

Research of neurons in the brain at cellular resolution has already led to 3D reconstruction
methods and explorative visualizations. Early works include V3D by Peng et al. [PRL+10],
an efficient system that, through the help of the plugin V3D-Neuron enables the 3D
reconstruction of neuronal structures from high-resolution brain images. With VIMO,
Troidl et al. [TWC+23] have developed an analysis tool for the connectome that uses
motif drawing to create queries and reduce the complexity of the massive network.
It visualizes neuronal connections in 3D at a cell level and employs simplification to
reduce clutter and connectivity highlighting with exploded views to further improve
comprehension of 3D structures.

3.2 Connectivity Abstraction
When inspecting biological connectivity at a cellular level, the sheer number of connections
often calls for an abstraction to make the analysis feasible. Special care has to be taken
when creating a visual abstraction since in the process of abstracting, data is emitted for
the sake of comprehension [VCI20]. Careful analysis of the use case can help understand

16

3.2. Connectivity Abstraction

which data to emit and which to keep. The brain with its estimated 100 trillion neuronal
connections is a prime example of this [Zim11]. Figure 3.4 shows a visualization tool by
Jianu et al. [JDL11] that abstracts and filters a tractogram created with diffusion MRI.
They try to simplify the inherently dense and complex structures that are tractograms
while keeping the anatomical context. The abstraction and the original tractogram are
displayed in connected views.

Figure 3.4: An interactive stand-alone visualization tool of a tractogram with planar 2D
neural maps (left) and an explorative web interface (right) [JDL11].

Yeh et al. [YSD+19] show how assigning streamlines of tractograms created from diffusion
MRI to network nodes in the connectome with the purpose of brain parcellation can
be highly consequential. Depending on the mechanism employed, the result varies
significantly.

Graph theory is a powerful tool with which connectivity between any kind of subject
can be represented and analyzed in the form of a network. Bullmore et al. [BS09]
describe how graph theory can be used for the analysis of structural and functional
systems in complex brain networks. They elaborate on different network measures that
can be employed like node degree, centrality and robustness, path length, efficiency,
and modularity. They conclude that anatomical networks (not just brains) are sparsely
connected, while the physical connections between nodes are close to minimal. Nelson
et al. [NB21] explain graph theory in general and go into detail about graph theory
metrics like node degree, paths, path characteristics, centrality, graph motifs, clustering
coefficient, and communities which can be useful for any network analysis process.

Since FTUs are communicating with each other through biochemical processes, measures
like centrality that are employed for social networks might as well be relevant for biological
networks. While investigating the concept of centrality Freeman et al. [F+02] found that
there are three conceptual foundations for centrality measures. The Degree is used as
an index for communication activity, Betweenness as an index for potential control, and

17

3. Related Work

Closeness as an index of independence or efficiency. They assign three measures to each
foundation, where two are for the individual nodes and one is for the overall graph. The
overall graph measures of the three foundations agree for the extreme cases where the
centrality is either 0 or 1. Care has to be taken when deciding which concept of centrality
should be employed.

Entourage, developed by Lex et al. [LPK+13], is a visualization tool that employs graph
theory and abstraction to visualize interconnectivity between biological pathways. It tries
to further the analysis of crosstalk between multiple pathways by showing contextual
subsets of a selected node in multiple linked views. Those contextual subsets do not show
their whole biological pathway but only the relevant nodes based on mapped experimental
data. By utilizing stubs for both nodes and multiple windows they show connectivity
between nodes without cluttering the view.

Keller et al. [KEC06] tried to uncover whether matrices or node-link diagrams are better
for visualizing graphs that represent connectivity. They investigated the effect that size,
density, and directionality of connectivity models have on the comprehension of a matrix
visualization and concluded that both size and density affect the response time and error
rates of users. For node-link diagrams, the prior knowledge of the subject has a big
impact on how well a user can read information. The choice of the best representation
seems to rely heavily on the detailed properties of the connectivity model and the tasks
that have to be carried out.

With Graffinity, Kerzner et al. [KLS+17] have developed a novel visualization framework
that combines both matrices and a node-link diagram to represent connectivity in large
graphs (see Figure 3.5). They use queries, a connectivity matrix with juxtaposed node
properties, a node table with aggregation of paths crossing the node, a path list, and a
node-link diagram in multiple linked views. The large data is handled by only visualizing
the queried information.

In the biological context of vasculature, nerves, and other tubular FTUs an extraction
process of the general connectivity from the volume or mesh data is necessary. One
approach to achieve this for tubular meshes is centerline extraction. Yahya-Zoubir et
al. [YZHSO16] developed an automatic algorithm that extracts the centerline from
a general 3D tubular mesh. The algorithm defines a moving section and a reference
section at the ends of the tubular geometry respectively. It then advances the moving
section by traveling along the mesh to the adjacent vertices and creates a center point
for every section. Another method for vasculature meshes by Wei et al. [WWL+18] tries
to abstract the vasculature into segments of cylindrical shape. The mesh is segmented
into branches with K-means fuzzy clustering [Dun73]. They then extract the centerline
for each segment by iteratively finding an optimal cut plane and the center point of the
points in this plane. To connect the centerline at the branching points they first smooth
the centerline, followed by thinning and re-centering.

Another more general approach is creating a curve skeleton of a 3D geometry. Au et
al. [ATC+08] developed a curve skeleton extraction method by iterative contraction of

18

3.3. Network Visualization

the mesh. This is accomplished through Laplacian smoothing with global positional
constraints and subsequent connectivity surgery. Abdollahzadeh et al. [AST21] use a
cylindrical shape decomposition algorithm for the segmentation of tubular voxel objects
like axons and vasculature networks. The algorithm finds a curve skeleton by employing a
cost function that takes the distance field to the object’s surface into account. The curve
skeleton is partitioned into skeleton branches and a skeleton graph is created. The object
is then decomposed into its branches by cutting away the intersections. In the last step,
the missing connections are reconstructed with generalized cylinders. Tagliasacchi et al.
[TZCO09] have created a method that extracts the curve skeleton from an incomplete
point cloud and also allows surface reconstruction of missing data. For this, they utilize
the rotational symmetry axis of the oriented point set to create the curve skeleton.

3.3 Network Visualization
There is a wide variety of visualization techniques for networks. While there is not
one definitive solution for all use cases, some attempts to create guidelines and studies
into applicability have been made. In the context of biological networks, Marai et al.
[MPB+19] have created ten simple rules that should be considered when creating network
visualizations for communication. They suggest that one should determine the purpose of
the visualization, consider alternative layouts, and be aware of spatial implications. Colors,
labels, markings, and channels should be used appropriately and with consideration of the

Figure 3.5: The connectivity visualization tool Graffinity shows the result from a specific
query on a flight dataset. It combines a connectivity matrix with a node table and
interactively highlights information from the user’s selection through a path list and
node-link representation [KLS+17].

19

3. Related Work

viewer’s possible individual traits and impairments. The right level of detail combined
with separated layers and views can help the overall comprehension.

Node-link diagrams are a broadly used technique when it comes to network visualization.
Saket et al. [SSKB14] tried to evaluate different flavors of diagrams that incorporate
nodes and links. Their study investigates the accuracy and speed of node-based tasks,
network-based tasks, and group-based tasks on node, node-link, and node-link-group
diagrams. It concludes that node-link-group diagrams are 8% more accurate than node
and node-link diagrams on all tasks and that tasks were performed 15% faster when
using node-link and node-link-group diagrams in comparison to node diagrams. These
results contradict other studies in similar but subtly different settings.

Nobre et al. [NMSL19] discuss state-of-the-art visualization approaches for multivari-
ate networks including node-link layouts, tabular layouts, tree layouts, and also view
operations. Table 3.1 shows a table they compiled from analyzing 210 papers that were
published by the visualization research community. It summarizes the applicability of
various layouts and view operations for visualizing different network types, sizes, topolog-
ical structures as well as node and edge attributes. Their research clearly shows that
visualizing large networks (> 1000 nodes) is a challenge for any technique if it stands on
its own and is not complemented with additional views and interactive methods.

A sequence of edges that connects a sequence of vertices in a graph is called a path.
Such paths are an important part of analyzing connectivity in a communication network,
for example when calculating the betweenness centrality [F+02]. In a crowdsourced
study, Nobre et al. [NWHL20] investigated the advantages and disadvantages of node-
link diagrams with on-node encoding and adjacency matrices with juxtaposed tables.
They formulated 9 hypotheses, which they tested by comparing the differences of both
approaches on 16 different tasks. In the course of this, they confirmed their hypotheses
that node-link diagrams perform more accurately and faster for all tasks related to paths.

Partl et al. [PGS+16] developed Pathfinder, a visualization solution for paths in large
graphs. It employs queries to handle large data and only shows the parts the user is
interested in. The queried data is displayed in a ranked path list that is augmented with
the node’s attributes and allows sorting by multiple constraints and aggregations that
the user can devise based on their need. The topology of the queried nodes and their
paths is displayed in a node-link diagram and statistics are displayed in an additional
view.

3.4 Summary
For the brain, there already exist general tools like tractogram visualization applications
[JDL11] and also more fine-grained tools that allow the connectivity analysis at the
cell level like Vimo [TWC+23]. For other organs of the human body, new imaging and
3D reconstruction techniques allowed the creation of visualizations of FTUs like the
glomeruli in the kidney [MZS+24] and the PanIN in the pancreas [KDB+23] as well as a

20

3.4. Summary

Table 3.1: Nobre et al. [NMSL19] developed a scoring system for the performance of
visualization techniques on different network tasks and types (0: no support; 1: poor
support; 2: limited support that might require interaction; 3: very good support)

visualization of individual melanoma cells [YNZ+24]. Like in the brain, there is a need
for understanding the inherent connectivity between the individual components of those
visualizations, but currently, there is no generalized tool that would enable researchers to
analyze this.

21

CHAPTER 4
Application Design

The previous chapters presented the motivation, background and state-of-the-art that
are relevant to this thesis. This chapter discusses the design process for the resulting
application in detail. It explains various approaches in a comparative fashion, while
laying out successful as well as unsuccessful discoveries. In the course of this, it links
different aspects of the application to the contributions in Chapter 1.

4.1 Application Overview
This section provides a brief overview of the components that comprise the network
generation pipeline and visualization application. The following sections go into more
detail about the individual aspects that are shown here and explain the design process
and why they were chosen.

Figure 4.1 shows the simplified functional overview of the final network generation
pipeline. The starting point and input for the pipeline is biological volumetric data. This
data can be either a binary mask depicting a singular functional tissue unit (FTU)/cell
type or a labeled dataset. The labeling can either represent a segmentation of different
FTUs/cell types or a segmentation of components (e.g. single cells). If the input data
contains different FTUs or cell types, the mesh creation steps of the pipeline need to be
run for every FTU or cell type that is of interest.

The first step of the pipeline is to label the components that are connected three-
dimensionally in the volumetric data. This step can be skipped if the input already
is a segmentation of components. Multiple statistics like the bounding box, centroid
and voxel count are calculated for every component and they are then sorted by size.
According to user input, the 3D meshes of the k largest components are generated from
the highest feasible volumetric data resolution. In order to keep the file size manageable,
the meshes are simplified while keeping their 3D shape intact. Depending on the dataset,

23

4. Application Design

quality assurance steps have to be taken before continuing. The user can then specify
connection metrics to calculate between various FTUs or cell types. The simplest metric
to use here is the Euclidean distance [Sza15]. From the specified metrics, the pipeline
generates a connectivity network with optional clustering and exports it separately from
the 3D mesh files of the individual components. To make handling these large datasets
feasible, the network generation utilizes parallel computing and also lays the foundation
for distributed computing.

Volume Data
binary or labeled

Label
connected

components

Generate
3D meshes

Simplify
3D meshes

Calculate
statistics

of components

Assure
quality

based on the data

Calculate
connection metrics
between meshes

Generate
connectivity network

Export
network & meshes

Connectivity Network
nodes, edges & clustering

3D Meshes
as individual files

Network Generation Pipeline

Input

Output

Figure 4.1: A simplified functional overview of the implemented network generation that
can be used to create 3D meshes with their associated connectivity network.

24

4.2. Mesh Generation

The web application is an interactive prototype that visualizes the connectivity between
cells and FTUs using the output generated from the network generation pipeline. Fig-
ure 4.2 shows the proposed layout of the explorative user interface. The interface consists
of three adjacent views. On the left side, there is a 3D view that takes up half of the
screen space and shows the 3D meshes. This view offers orbit controls to navigate the
3D environment. On the right side, the screen space is once more split in half, with
a network view at the top and an ego graph view at the bottom. The network view
visualizes the connectivity network as a hypergraph with expandable clusters. The ego
graph is shown when a node has been selected, either in the 3D view or the network view,
and creates a radial ego graph showing hop distances between connected cells or FTUs.

3D View

Network View

Ego Graph View

Figure 4.2: The schematic layout of the web application interface. Interaction with any
of the three views, 3D View, Network View and Ego Graph View is synchronized between
all views.

4.2 Mesh Generation
The aspects of the mesh creation process are detailed in this section while discussing
different approaches, performance improvements gained from parallelization and quality
assurance depending on the input dataset.

4.2.1 Connected Components
In order to create individual meshes of biologically separate FTUs or cells, the volumetric
data has to be split into spatially connected components. This is achieved by labeling

25

4. Application Design

the individual pixels of the volumetric data according to their connectivity based on a set
strategy. The step of finding the connected components creates a symbolic representation
in the form of labels, which has the same 3D shape as the input data. If the input data
is already a symbolic representation in the form of labels from a segmentation process
(as opposed to binary data), the step of finding the connected components has to be
undergone for each label in the input data.

Rosenfeld et al. [Ros76] describe a basic strategy for finding connected components
in a binary image with the size N × M , that is used widely by modern algorithms.
When denoting a single pixel in the binary image as a(x, y) with 0 ≤ x ≤ N − 1 and
0 ≤ y ≤ M −1, the connectivity of a pixel a(x, y) can be inspected based on its neighbors.
The so-called 4-neighbors of a pixel a(x, y) are the pixels a(x−1, y), a(x+1, y), a(x, y −1)
and a(x, y + 1). When adding the pixels a(x + 1, y + 1), a(x + 1, y − 1), a(x − 1, y − 1)
and a(x − 1, y + 1) to the 4-neighbors they are called the 8-neighbors. There can exist
a 4-connection or 8-connection between two pixels v and k if there is a path of pixels
p1, p2, ..., pn with v = p1 and k = pn in which sequential pixels pi and p(i + 1) with
0 ≤ i ≤ n − 1 are respectively 4-neighbors or 8-neighbors. A maximal set consisting of
pixels where each pixel has a 4-connection or 8-connection to every other pixel is called
a 4-connected or 8-connected component.

This principle for 2D binary images can be expanded into 3D volumetric data. For
three dimensions there are three distinct connection criteria: 6-neighbors, 18-neighbors
and 26-neighbors that correspond to face-, edge- and vertex-connectivity respectively
[HQN05]. When considering a voxel v with position (x, y, z), each neighbor v

′ with
position (x′

, y
′
, z

′) that satisfies Equation (4.1) is connected by the voxel face and a
6-neighbor of v.

|x − x
′ | + |y − y

′ | + |z − z
′ | = 1 (4.1)

Each neighbor v
′ that satisfies Equation (4.2) is connected by the voxel face or edge and

a 18-neighbor of v.

1 ≤ |x − x
′ | + |y − y

′ | + |z − z
′ | ≤ 2

max(|x − x
′ |, |y − y

′ |, |z − z
′ |) = 1

(4.2)

Each neighbor v
′ that satisfies Equation (4.3) is connected by the voxel face, edge or

corner vertex and a 26-neighbor of v.

1 ≤ |x − x
′ | + |y − y

′ | + |z − z
′ | ≤ 3

max(|x − x
′ |, |y − y

′ |, |z − z
′ |) = 1

(4.3)

Furthermore, He et al. [HRG+17] claim that any connected component labeling algorithm
(CCL) can easily be extended not just to three dimensions but also n-dimensions. They
broadly divide CCLs into two categories: algorithms based on label-propagation and
algorithms based on label-equivalent-resolving. The former algorithms search for unlabeled
pixels in the image and propagate the label to pixels that are connected to the original

26

4.2. Mesh Generation

pixel. These include algorithms that propagate along the contour of a component and
algorithms that utilize recursion combined with raster scans. Label-equivalent-resolving
algorithms all use multiple raster scans. In the first scan, every pixel is assigned a
provisional label, which is then integrated into a unique label through further scans by
the detection of equivalent labels. Among the label-equivalent-resolving algorithms, the
two-scan algorithms are the most efficient.

Table 4.1: Five state-of-the-art algorithms with the additional memory space they require
for an image of size N (adapted from [HRG+17]).

Year Algorithm Authors Memory Space
2004 Contour Tracing Labeling (CTL) Chang et al. [CCL04] 0
2007 Hybrid Object Labeling (HOL) Herrero [MH07] 0

2010
Improved Run-based

Connected-component Labeling
(IRCL)

He et al. [HCS10] 3 × N2/2

2015
Improved Block based

Connected-component Labeling
(IBCL)

Chang et al. [CCY15] 3 × N2/4

2015

Improved
Configuration-Transition-based
Connected-component Labeling

(ICTCL)

Zhao et al. [ZHYC15] N2

Table 4.1 shows five state-of-the-art algorithms. CTL and HOL are label-propagation-
based algorithms and therefore need no additional memory when computing. IRCL,
IBCL and ICTCL are all two-scan equivalent-label-based algorithms that need additional
memory space at about the image size N2. All five algorithms have the same time
complexity of O(N2) but when it comes to execution times ICTCL and IRCL outperform
the other algorithms on different image sizes, component density and realistic images.
IRCL performs better on low-density images and on medical, natural and textural images,
while ICTCL performs better on most other densities as well as artificial patterns and
shapes. However, performance differences between the two are very minor [HRG+17].

3D adaptions for both IRCL and ICTCL as well as similar algorithms and already available
libraries were considered for the development of the network generation pipeline in this
thesis. In addition to finding the connected components, the calculation of various basic
statistics proves helpful for further analysis, selective mesh creation and quality assurance
steps. Specifically, the voxel counts, bounding boxes and centroids of the components are
calculated. However, any number of additional component-specific information, like the
morphological or phenotypical features of cells, might be of interest. This leaves room
for improving the incorporation of user-specific data and could be considered in future
work, as discussed in Chapter 7.

27

4. Application Design

4.2.2 Isosurface Extraction

The pancreas dataset provided by Kiemen et al. [KBG+22] is a labeled pancreas volume
that has a resolution of 408 × 12177 × 15921 voxels. This comes to a total of about
80 GB of raw data. Processing or visualizing volumes of this magnitude is either not
possible or very slow for most personal computers (PC). In order to cut this down to a
manageable size without having to sacrifice connectivity information due to downsampling,
the isosurface of the highest resolution volumetric data, which is still computationally
feasible, is extracted and then simplified in a subsequent step.

Isosurface extraction is the process of converting volumetric data into a triangle mesh.
Marching cubes by Lorensen et al. [LC98] is a very prominent algorithm for isosurface
extraction. It is a grid-based method that creates patches of surfaces for every cell in
the grid separately. Which surfaces it generates are determined by the signs of the cell’s
corners, Since a cell has 8 corners there is a total of 28 = 256 possible surface configurations.
By utilizing rotation, inversion or reflection, a lookup table of 15 configurations suffices
to create all possible surface configurations. If the input data is not binary, the algorithm
determines the position of the generated surface patch vertices by linear interpolation
of the scalar values that make up the corners of the cell. The marching tetrahedra
algorithm proposed by Doi et al. [DK91] solves ambiguity issues that are introduced by
some configurations of marching cubes. It does this by slicing the cell into six irregular
tetrahedra, creating shared edges with all surrounding cubes and preventing cracks due
to slightly varying intersection points. Another approach by Scopigno et al. [Sco94] deals
with the ambiguity problem by a small adjustment of the lookup table.

An alternative isosurface extraction method is dual contouring. Ju et al. [JLSW02]
created this method by utilizing adaptive octrees. The algorithm creates the surfaces
inside the voxels of the volumetric data, as opposed to the marching cubes algorithm
which uses the voxels as corners. However, this technique can lead to non-manifold
meshes, which necessitates an extra step to fix those geometries. Boissonat et al. [BO05]
have shown that Delaunay triangulation can also be used to extract 3D isosurfaces
that are made up solely of well-shaped triangles and are topologically and geometrically
faithful to the input surface.

Because of the high-resolution imaging data and lack of downsampling, the connectivity
of tubular structures like nerves or vasculature was kept mostly intact, which led to
huge components that wound through the entire volume. This in turn sparked the
development of a parallelized process. Due to the widespread availability of Marching
cubes implementations and the excellent potential for parallelization as well as its good
performance on grid-like data, an adapted version of it was designed for the network
generation pipeline. By running the isosurface extraction in parallel, the central processing
unit (CPU) of a PC can be utilized in full, while also keeping the random-access memory
(RAM) requirements low. Figure 4.3 shows a simplified visual representation of the
developed process. First, the component volume is divided into multiple chunks. The
chunk size can be specified by the user to adapt to different datasets and their own RAM

28

4.2. Mesh Generation

Voxel Data

Split into
Chunks

Marching
Cubes

Realign
Surfaces

Stitch Chunks
together

Figure 4.3: The parallelization strategy for the isosurface extraction of large components.
The chunk size and consequently the number of chunks is user-specific.

capacities. The isosurface extraction is then performed on several chunks in parallel
until all surfaces are generated. Surface meshes of two neighboring chunks are aligned so
that the vertices on their bounding boxes overlap. Finally, the meshes are stitched back
together by deleting duplicate vertices and updating their normals.

29

4. Application Design

4.2.3 Simplification
By using isosurface extraction on the highest possible resolution of the volumetric data
that is computationally feasible, a 3D mesh with a massive amount of vertices is created.
Extracting the biggest component of smooth muscle from the downsampled (by a factor of
4) pancreas dataset by Kiemen et al. [KBG+22] already results in a mesh that has more
than 1 million vertices. This kind of mesh not only takes up a lot of memory space but
slows down any consequential computation and is very hard to visualize in a non-static
and interactive tool. Therefore, the triangles in the mesh need to be simplified. Since
connectivity is important, this needs to be done in a way that is minimally destructive of
the component’s shape.

The most general form of mesh simplification tries to reduce the number of vertices and
edges. In order to keep the shape, a simplification method needs to adapt its reduction
strategy to the local geometrical properties so that it does not remove vertices from
regions with high detail or curvature. On the other hand, vertices in regions that are flat
should be decimated more strongly. This is achieved by assigning every vertex and/or
edge a value that measures the error that their removal would introduce to the shape of
the original mesh. After removing a vertex or edge, a remeshing step repairs the triangles
in the local region. Mesh simplification is usually done until either a certain number of
faces or vertices, a certain percentage of reduction of faces or vertices or an error metric
is reached [PB13].

State-of-the-art algorithms for mesh simplification include a method by Garland et al.
[GH97] that utilizes quadric error metrics. As an error metric, they use the squared
distance to the planes that meet at every vertex. To calculate this error for every vertex,
they create a fundamental error quadric Kp for every plane p that meets the vertex. Kp

is then summed to a single 4 × 4 matrix Q that is used to calculate the error at vertex
v = [vx vy vz 1]T in its quadratic form, as shown in Equation (4.4).

Δ(v) = vT Qv (4.4)

After calculating Q matrices for all vertices, they select pairs of (v1, v2) that either form
an edge or have a Euclidean distance that is less than a threshold parameter t. For
each pair, the contraction target v̄ with the lowest error Δ(v̄) is computed with the
approximation of Q̄ = Q1 + Q2 as the sum of the Q matrices of both vertices. Figure 4.4
visually shows the process of edge contraction and the determination of the contraction
target v̄. The pairs are then put in a heap by using the lowest error of the contraction
target as the key. Finally, the mesh is simplified by iteratively removing and contracting
the pairs with the lowest error from the heap. When contracting a pair, the error of
the contraction targets of the remaining pairs involving vertices from the current pair,
have to be updated. Another approach to mesh simplification is progressive meshes,
introduced by Hoppe et al. [HOP96]. Viewing progressive meshes can work in real-time
by adjusting the level of detail (LOD) according to the viewer’s perspective. This is
achieved by creating a decimation algorithm that employs an edge contraction method
(similar to the one in Figure 4.4), but which can also be reversed. The reverse operation

30

4.2. Mesh Generation

Figure 4.4: The process of edge contraction by merging two vertices and removing
duplicate edges [GH97].

is called vertex splitting and allows a smooth transition between a high and low vertex
and edge count. The process of creating a progressive mesh leads to a simple base mesh
and a series of refinement operations. Even though this is smaller than saving the original
mesh, it still takes up a considerable amount of memory.

Lindstrom et al. [LT98] created a memory-efficient polygonal simplification algorithm
that is quite similar to the algorithm in [GH97]. They also employ edge contraction
and try to place the contraction target in such a way that they minimize the change in
volume as well as the boundary of the original mesh.

When comparing different approaches, the method by Garland et al. [GH97] is the
fastest but the one by Lindstrom et al. [LT98] has the lowest mean geometric error
while progressive meshes leaves the most flexibility. Taking this into consideration, an
algorithm that utilizes quadric error metrics was employed for initial computation and
visualization attempts, because performance was the biggest concern. It is important
to note though that an approach like progressive meshes that can smoothly transition
between LODs is worth considering when creating visualizations of even larger datasets.

4.2.4 Quality Assurance
This section focuses solely on the quality assurance of the meshes that were generated by
the network generation pipeline. For quality assurance steps that were taken to improve
the connectivity between components, see Section 4.3.2. Since the imaging techniques
are limited in resolution or contain mechanical processes (described in Section 2.2) and
subsequent segmentation processes still include downsampling of the original data (as
described in Section 2.3.1), there is a high chance that generated meshes are merged,
warped, rotated or skewed. Therefore, it is of vital importance that the resulting meshes
are inspected for every individual dataset and the specific analysis task. As this is a
process that is handled on a case-to-case basis and can not be easily generalized, the
network generation pipeline is designed to make the generated meshes available for quality
assurance.

For the case study of the kidney dataset by McLaughlin et al. [MZS+24] an exemplary

31

4. Application Design

process was designed. On detailed inspection, it became evident that multiple glomeruli
that looked like distinct entities to the eye were merged into conglomerate meshes. This
might have been a result of the downsampling that was applied before segmentation,
or simply due to a lack of resolution in the imaging process. To counteract this, an
algorithm was designed that splits the merged meshes into single meshes. For every
mesh, the number of glomeruli is estimated by dividing the diagonal of the 3D bounding
box by the mean size of the bounding box of all non-merged meshes. This step requires
human-in-the-loop interaction to find the specified mean size. Figure 4.5 shows an
overview of the splitting process of a conglomerate mesh with three glomeruli. After the
number of glomeruli is estimated, it is used to cluster a point cloud consisting of the mesh
vertices into distinct clusters. For clustering, the k-Means algorithm by Lloyd [Llo82] is
employed. In order to find the cutting planes, the cluster centers are all connected by

[a] [b]

[c]

Figure 4.5: The splitting of merged glomeruli meshes that were created from a dataset
provided by McLaughlin et al. [MZS+24] in the course of quality assurance. [a] A merged
conglomerate mesh consisting of three glomeruli, with two on the sample border. [b]
The clustered vertices (red, yellow, green) with the connected cluster centers. [c] The
cutting planes (blue) with the resulting glomeruli meshes.

32

4.3. Network Generation

a theoretical line (as seen in Figure 4.5b). This line makes up the normal vector that
defines the orientation of the cutting plane in 3D. The position of the plane is selected by
finding the vertex between the cluster centers that has the minimal orthogonal distance
to the line. The vertex is then projected onto the line to get the actual position of the
cutting plane. By using the cutting planes, the mesh is separated into single meshes and
the cut is repaired with the help of Attene’s [Att10] MeshFix algorithm (see Figure 4.5c).
Lastly, the glomeruli that were on the border of the sample and consequently incomplete
were removed, since neuronal connectivity that happened outside of the sample could
not be faithfully represented.

4.3 Network Generation
This chapter focuses on the connectivity network generation from the meshes resulting
from the network generation pipeline described in Section 4.2. Additionally, a quality
assurance technique for the connectivity of tubular meshes like vasculature or nerves is
proposed.

4.3.1 Metric System
The goal for the connectivity network generation was to devise a system that is as
generalized as possible and allows for different connectivity metrics to play a role when
considering if two components are connected. Initially, the user is able to specify
{1, 2, 3, ..., n} input configurations where each points to a set of previously generated
meshes corresponding to FTUs or cells. Additionally, the user determines {1, 2, 3, ..., m}
metric configurations that specify which metric is calculated between the meshes from
the input configurations. For all m metric configurations, the system calculates a metric
matrix between all possible combinations of input configurations n. This leads to a
maximum of k metric matrices that are calculated, as shown in Equation (4.5). Since
some metrics might not be relevant for the meshes of all input configurations, the metrics
that should be calculated can be specified as well.

k = m ∗ n

2 ∗ (n − 1) + n (4.5)

Since the input for the mesh generation are segmentation masks of biological imaging
data, there is no inherent information about which pixels and consequently which
FTUs or cells form a biological connection of any kind. To determine connectivity,
one therefore either needs additional connectivity data or biological knowledge from
which to derive it. In the case of McLaughlin et al. [MZS+24] they used their biological
knowledge of the glomeruli to specify a distance of 10µm in space at which they believed
a glomerulus to be connected to a nerve. Using this as a starting point, an algorithm that
calculates the Euclidean distance between meshes was designed. The algorithm utilizes
a multidimensional binary search tree, called a k-d tree, that was proposed by Bentley
et al. [Ben75]. It builds a k-d tree of the vertices of one mesh and finds the distance
to the nearest neighbor for all vertices of the other mesh by querying the tree. It then

33

4. Application Design

proceeds by finding the shortest distance between two vertices of the meshes, with a total
time complexity of O(n log n). To increase performance even further, the algorithm is
designed to run in parallel. However, one cell dataset provided by Yapp et al. [YNZ+24]
has 43, 000 individual components, which would result in a Euclidean distance matrix of
43.000 × 43.000 distances. Calculating this on the average PC is not feasible. Therefore,
an adapted algorithm that only calculates distances based on the surroundings of a
component was devised. The adaption finds a local neighborhood for every component
by extending the bounding box by a distance, d and only calculates the distances for
the components that are fully or partially in this neighborhood. Figure 4.6 shows the
local neighborhood of a single cell from the 43, 000 cell dataset. The distance d can be
specified through the metric configuration. Depending on the specified neighborhood
size, the algorithm can cut down the number of calculations by over 99.9%, but using
this method is only reasonable when biological connectivity beyond the neighborhood is
impossible or not of interest.

Figure 4.6: The local neighborhood (red) of a single cell (green) from a dataset containing
43, 000 cells provided by Yapp et al. [YNZ+24] (d = 20 voxels).

To give users the flexibility to choose their own connectivity constraints, the metric
system can also be extended with custom metrics by designing and implementing a
compatible algorithm.

34

4.3. Network Generation

4.3.2 Tubular Mesh Connectivity Suggestion

While looking into the quality assurance of the meshes generated from the used datasets,
a potential disconnect of tubular meshes was discovered. Small patches of the mesh
appeared to be missing from nerves that looked continuous to the human eye. This was
mainly visible in 3D reconstructions of imaging data that has suboptimal z-continuity due
to mechanical capturing processes, like the data provided by Kiemen et al. [KBG+22].
Figure 4.7a shows one such possible disconnect.

Even though some of the missing parts can be explained by the image acquisition and
segmentation technique, some can also be explained by biological entities that were either
not captured or not visualized. Discerning which case it is requires deeper biological
knowledge in the specific field. With this in mind, a system was designed that is able
to suggest the connectivity of tubular meshes based on their orientation. This system
can be parametrized by the user to fit the use case. It lays the groundwork for a more
sophisticated tool that should allow for connectivity quality assurance with a human
in the loop. The system uses three metrics to suggest connectivity. First, it uses the
Euclidean distance metric d to find components that are in proximity p of each other.
For every pair of close components like the one in Figure 4.7a, it calculates two additional
metrics in the following way.

The indices of the closest vertices are used to find their position. This is possible since
the algorithm described in Section 4.3.1 is able to store the indices of the closest vertices
when it calculates the Euclidean distance. For both meshes, a local point cloud is created
that consists of the closest vertex vc to the other mesh and all vertices vi that satisfy
|vc − vi| ≤ r with r being the local point cloud radius. Figure 4.7b shows the local
point clouds of two close components. In order to find the direction of the local point
clouds, principal component analysis (PCA) [Pea01] is applied for both of them. The
first principal component of the point cloud is the direction in which the vertices have
the most variance. This means that it should represent the general direction in which the
mesh is pointing at the closest points. Figure 4.7c shows the three principal components
for each mesh, that correspond to the eigenvectors of the point cloud’s covariance matrix.
The eigenvectors are scaled based on their eigenvalues, leading to the first principal
component being depicted with a larger arrow. From this, the second metric is derived
by calculating the angle φ between the eigenvectors with the largest eigenvalue (the first
principal components). Additionally, the mean position vx and vy of both point clouds is
calculated, with x denoting the first and y denoting the second component. From them,
the bridging vector vb = vy − vx is defined. The third metric is the angle θ between vb

and the eigenvector with the largest eigenvalue from the first component. Figure 4.8
shows the principle of this calculation in 2D with ex and ey as the eigenvectors with the
largest eigenvalue for the first and second components x and y.

The user can then specify four variables depending on their data: the proximity p, the
local point cloud radius r, the angle between directions a1 and the angle between the
direction and bridging vector a2. The system then proceeds to suggest connectivity

35

4. Application Design

[a]

[b]

[c]

Figure 4.7: [a] Two nerve mesh components reconstructed from a 5x kidney dataset
provided by McLaughlin et al. [MZS+24]. The red line connects the closest vertices of
both meshes and indicates a possible connection that might have been missed during
reconstruction. [b] The red and green squares indicate the vertices that are in range r of
the closest vertices of the respective mesh (r = 20 voxels). [c] The blue arrows show the
eigenvectors of the PCA of the closest vertices for both meshes.

between a pair of components if all three metrics meet the condition in Equation (4.6).
The distance d ensures that the components are next to each other. The angle between
directions φ ensures that the closest sections of the meshes point in the same direction,
and the angle between direction and bridging vector θ ensures that the closest sections
of the mesh are on the same plane.

d ≤ p, φ ≤ a1, θ ≤ a2 (4.6)

36

4.3. Network Generation

[a] [b]
Figure 4.8: The angle θ between ex and vb [a] and the angle φ between ex and ey [b]
make up two of the three metrics used for the incomplete tubular mesh suggestion. The
vectors ex and ey are the eigenvectors with the largest eigenvalue of localized point clouds
at the nearest vertices of two meshes x and y. vb is the vector between the mean positions
vx and vy of both localized point clouds.

4.3.3 Graph Creation
By utilizing the metric system described in Section 4.3.1 the connectivity between
individual components can be identified based on the Euclidean distance or any other
custom implemented metric. The connectivity information of all the combined input
configurations has to be represented by a suitable data structure that allows easy transfer
of the information while offering additional support for further analysis.

An undirected graph is a triple G(V, E, γ), where V (G) is a vertex set, E(G) is an edge
set and γ is a relation associating two vertices, called endpoints, with one edge. A loop
in this sense is an edge where both endpoints are the same vertex [W+01]. This can be
further simplified by defining a simple undirected graph that does not allow any loops,
reducing it to an ordered pair G(V, E) with E ⊆ {{x, y} | x, y ∈ V and x ≠ y}. The
simple undirected graph was chosen as the representation for the connectivity since it is
one of the most basic structures, with graph theory [W+01] offering a plethora of analysis
options. The idea is to give researchers the possibility to calculate metrics like node
degree, centrality, robustness and clustering coefficient as well as find structures through
abstractions like motifs [NB21, F+02, BS09].

To keep it as general as possible, the network generation algorithm was designed to use
the components from the metric system’s input configurations as vertices V and any
potential connection derived from the connectivity metrics as edges E. If the tubular
connectivity suggestion algorithm from Section 4.3.2 is utilized, the network generation
merges the tubular meshes that should be connected into combined components, so that
they only make up one vertex in the graph. From this, two different connectivity patterns
for the resulting graph can emerge, depending on the analysis use case. Figure 4.9a shows
intermediary-connectivity, which is used for entities that are connected through another
entity. For example, the connection of two glomeruli through a nerve. Figure 4.9b shows
metric-connectivity, which is the connectivity of multiple entities with each other due to
specific metrics. For example, the connection between individual cells based on membrane
to membrane interaction with proximity as the metric.

37

4. Application Design

[a]

[b]

Figure 4.9: [a] Intermediary-connectivity of two red entities through a yellow entity. [b]
Metric-connectivity between three entities.

However, the connectivity pattern is a theoretical concept that has no effect on the actual
graph, but is very relevant for the analysis goals of the researchers that provided the
data for this thesis. The concept is explained here to highlight that the analysis is still
possible even though the graph is kept very basic and generalized.

4.3.4 Scalability

One of the kidney datasets provided by McLaughlin et al. [MZS+24] is at a lower
resolution with a zoom of 5× and was used to identify the smaller region of interest that
were captured at a zoom of 20×. The quality assurance of this dataset quickly showed
that many glomeruli were merged into clusters of more than 20 glomeruli, which made
it impossible for the algorithm described in Section 4.2.4 to split them into individual
glomeruli. Even though the analysis of such a flawed reconstruction would not be
very meaningful, the connectivity network was created to improve the scalability of the
visualization, since this dataset holds more than thirty times the number of glomeruli
compared to a 20× dataset. In the course of this, a graph clustering algorithm based on
interconnectivity between glomeruli was designed.

The algorithm creates an interconnectivity matrix (Figure 4.10) by aggregating the
connectivity of every glomeruli pair in the graph. A pair of glomeruli counts as connected
if both glomeruli have an edge to the same nerve vertex. In addition to the connection
count, the identifier (ID) of the nerves by which the glomeruli are connected are stored
in the interconnectivity matrix. After the creation of the interconnectivity matrix, the
algorithm iteratively merges the two glomeruli with the highest number of connections
into a combined cluster until there are only glomeruli with one connection left. During
this process, the combined count of connections is calculated by summing the connections
of both components while utilizing the previously stored nerve ID to prevent duplicate
connections.

38

4.4. Visualization

Figure 4.10: The interconnectivity matrix of the first 50 glomeruli in the graph created
from the 5× dataset by McLaughlin et al. [MZS+24]. The x- and y-axis depict the
glomeruli ID and the color represents the number of nerves that connect them.

In the end, glomeruli that have no connection as well as glomeruli that have only one
connection are combined into a separate cluster, respectively. The result of the algorithm
is a clustering of the glomeruli nodes and an interconnectivity matrix that complement
the original connectivity graph.

4.4 Visualization
In this section, the design of 2D and 3D visualizations that show the connectivity graphs
and meshes resulting from the processes described in Section 4.3 and Section 4.2, is
discussed. It focuses mainly on the graphs and meshes generated from the kidney
datasets provided by McLaughlin et al. [MZS+24], since their research goals had the
most alignment with connectivity analysis. During experimental prototyping, three
visualizations were designed. The first is a force-directed hypergraph that incorporates
the clusters described in Section 4.3.4. The second is a radial ego graph that highlights
hop distances. The third is a 3D surface rendering of the meshes. The interactivity of
these visualizations will be discussed separately in Section 4.5.

4.4.1 Connectivity Overview

The goal of the first visualization was to create an overview that is either able to show
the entire connectivity graph at once or, if this is not feasible, make it traversable
through interaction or implement some kind of query interface to get a local overview.

39

4. Application Design

Due to the novel datasets and connectivity graph generation, multiple visualization and
representation angles were considered during experimentation.

Under the assumption that glomeruli communicate with each other via nerves, it would
make sense to adapt the connectivity graph in such a way that the glomeruli are nodes
and the nerves are edges. However, the initial analysis showed that there are single nerves
that connect many glomeruli, which leads to a graph that has a large number of edges.
Additionally, this would remove any nerve that only connects to one glomerulus from
the visualization. Based on the findings by Nobre et al. [NWHL20] that highlight the
strength of node-link diagrams on path related tasks which translates to connectivity,
the experimentation started there. For the positioning of the nodes, a force-directed
placement [FR91] was employed to reduce edge crossings and highlight interconnected
clusters. For the initial approach, an attracting force for nodes that have an edge and a
repulsive force between all nodes was chosen. Figure 4.11 shows a force-directed node-link
representation of a 20× kidney dataset with 28 glomeruli that contains a nerve which is
connected to most of the glomeruli.

Figure 4.11: A force-directed graph of a 20× kidney dataset with the glomeruli as nodes
and nerves as edges.

The visual clutter that is produced by the edges, shows that there is need for some kind of
edge bundling [ZXYQ13]. Since most edges would represent the same nerve, simply going
back to having the glomeruli and nerves as nodes yields a much more comprehensible
visualization, as can be seen in Figure 4.12. This kind of visualization also preserves the
nerves that only connect to one glomerulus. The nerve that is connected to the majority
of glomeruli also becomes very evident when looking at this visualization. McLaughlin
et al. [MZS+24] were mainly interested in the interconnectivity between glomeruli and
therefore performed a step they coined trunk removal, in which they removed big parts of
this main nerve, which will be referred to here as trunk. The aim of this thesis, however,
is to keep the connectivity abstraction and visualization as close as possible to the original
data.

In order to make the distinction between nodes easier, they were colored in a way that
is common in anatomical illustrations. Therefore, the nodes depicting glomeruli, which

40

4.4. Visualization

are a network of capillaries, were colored red while the nerves were colored yellow (see
Figure 4.13). Since color is a very complicated topic that hinges on a wide variety of

Figure 4.12: A force-directed graph of a 20× kidney dataset with glomeruli (blue) and
nerves (orange) as nodes. The edges represent a proximity of less than 50 voxels.

Figure 4.13: A force-directed graph of a 20× kidney dataset with glomeruli (red) and
nerves (yellow) as nodes. The connecting nodes (nerve nodes) are smaller, the edges are
Bézier curves, and the whole layout is expanded to fit the viewport.

41

4. Application Design

different factors, including the dataset that is represented, the decision was made to
make it configurable. For the kidney dataset, an exemplary scheme was chosen to show
the impact that color has on comprehension and aesthetics. Figure 4.13 also shows an
attempt at improving the path finding between glomeruli by changing the edges from
straight lines to Bézier curves [Bez74], making them easier to follow in case of edge
crossings. Furthermore, the utilized area of the viewport is maximized by introducing a
boundary force and forces in the X and Y direction that stretch the graph depending
on the width and height of the viewport. This makes it easier to see connections that
were previously bunched up and cluttered. Section 4.3.3 introduced the concept of
intermediary-connectivity, which is applicable for the kidney dataset, since it is assumed
that glomeruli are communicating with each other via nerves. To highlight this concept,
while also keeping the nerve nodes, their size is decreased in respect to the glomeruli
nodes.

Pathari et al. [PNAM24] found that light-on-dark color schemes, commonly known as
Dark Mode, have a positive effect on eye fatigue in bright ambient conditions. Figure 4.14
shows a graph with a dark background, which in addition to the eye fatigue aspect
improves the contrast of the visualization due to the chosen color scheme for the nodes
and edges. To make it clear which entity is the intermediary connecting entity, the
edges are colored in the same color as the connecting entity. This way, the graph looks
like glomeruli that are connected by nerves. Finally, a legend is added in the lower left
corner to improve node comprehension and also offer a tool to switch which entity is
the intermediary connecting entity. For more information on interactive behavior, see
Section 4.5.

Figure 4.14: The graph shown in Figure 4.13, but with a dark background, a node legend,
and edges that are colored the same as the intermediary connecting nodes to highlight
glomeruli connectivity.

42

4.4. Visualization

While the visualization seen in Figure 4.14 works well for smaller datasets, it is not very
scalable and quickly becomes very cluttered with an increase in glomeruli and nerve
entities. Figure 4.15 shows an extreme example of a 5× dataset with over 750 glomeruli.

Figure 4.15: A visualization of the graph generated from the 5x kidney dataset, with
1, 518 nodes and 1, 854 edges that highlights the scalability problems.

Evidently, some sort of agglomeration is necessary to make out any kind of connectivity
between the shown entities. As described in Section 4.3.4, the data of the 5× dataset,
still needs either higher resolution or better quality assurance for any meaningful analysis.
Even so, the current visualization was already pushed to its limits by some of the
smaller 5× datasets and therefore a more scalable visualization was designed. For this,
the clustering described in Section 4.3.4 is utilized to create the graph in Figure 4.16.
Clusters of glomeruli and all the connections between the glomeruli in a cluster are
represented by a red rectangle node. Glomeruli and nerves that are not in a cluster are
visualized with the same nodes and edges just as before. If a nerve forms a connection
between a glomerulus and any glomeruli of a cluster, it is also visualized. The same goes
for nerves that connect different clusters, with the prime example for this being the big
nerve that connects most of the glomeruli (see Figure 4.14). Since the clustering is based
on glomeruli, the legend loses interactivity, as changing the intermediary connecting
entity would call for a recalculation of the clusters, which is too slow to be done in
real time by the designed algorithm. In order to make this clustering graph useable for
analysis, it needs some kind of user input to make navigating the graph possible. The
interactive mechanisms that allow this are described later in Section 4.5.

43

4. Application Design

Figure 4.16: The graph shown in Figure 4.14 with visual clustering based on the glomeruli
interconnectivity. Glomeruli clusters are depicted as red rectangles.

4.4.2 Detail View

The aim of the second visualization was to give a more detailed view on the connectivity
of a single component in the connectivity graph. The user should be able to select the
component of interest from either the overview visualization, described in Section 4.4.1,
or the 3D visualization, described in Section 4.4.3. The view should make it easier to
analyze local connections by further abstracting the overview through the removal of less
relevant components.

One visualization technique that fits these parameters well, is the node-relative ego(centric)
graph, which is often used for social networks but has also been used for visualizing
neuronal connectivity [AABS+14]. An ego graph is a subgraph of a larger network that
depicts nodes that are relative to a focal node, called the ego node. The neighbors of the
ego node are named alters. Depending on the hop distance to the ego node, the neighbors
are called 1-alters, 2-alters, up to k-alters [EPF+24]. Figure 4.17 shows the construction
of a 2-alter ego graph by creating a layered node-link diagram (Figure 4.17b) from a
regular node-link diagram (Figure 4.17a), in which the layers correspond to the hop
distances. Nodes with a hop distance larger than 2 are emitted, due to it being a 2-alter
ego graph. Furthermore, the graph does not show the edges between nodes that are on
the same layer. Utilizing this approach, the visual complexity of a graph can be reduced
interactively while also improving the connectivity analysis of individual components.

For the detail view, a custom radial ego graph was designed. The radial design was chosen
to increase the maximum number of nodes that one layer can contain, as the kidney
datasets contained glomeruli with many direct neighbors. This was mainly due to the
trunk nerve described in Section 4.4.1. Figure 4.18 shows the initial attempt at creating

44

4.4. Visualization

a

dc

e

f

i

b

k
j

g

h

l

a
d

c
e

f
i

b

k

j

g

[a] [b]
Figure 4.17: A regular node link diagram [a] and the corresponding layered 2-alter ego
graph [b] for the orange node a.

Figure 4.18: The first attempt at creating a radial ego graph as an additional detail view.
Depicted are glomeruli (red) from a 20x kidney dataset, with the edges representing
nerve bundles. The blue highlight shows a multi-selection of connected components and
the cyan color gradient represents the layers of the graph.

45

4. Application Design

this visualization with a 20x kidney dataset. The ego node is at the center, depicting a
selected glomeruli node of the connectivity graph, and the alters are positioned in circular
layers that are highlighted by a color gradient with increasing luminosity the farther the
hop distance from the ego node gets. Glomeruli can be connected with each other via
multiple nerves. Therefore, the edges represent either a single nerve or a bundling of all
the nerves that connect the specific glomeruli. The nodes are positioned at a fixed angle
depending on the number of nodes in the layer, but this could be further improved with
an algorithm that minimizes edge length. However, creating such an algorithm is not
trivial, due to the multi-layered interconnectivity of the nodes. The whole visualization
is based on utilizing interactivity to select the ego node. This process as well as the
multi-selection seen in Figure 4.18 is further described in Section 4.5. Since the ego graph
is different for every node, it needs to be recreated in real time or precomputed.

Figure 4.19 shows an improved version of the radial ego graph. The light on dark color

Figure 4.19: The same graph as in Figure 4.18, with a light on dark color scheme,
including a color gradient for the ego node and alters. Each layer of nodes and its
connecting edges have the same color, which represent the hop distance to the ego.

46

4.4. Visualization

scheme used in Section 4.4.1 is applied here as well. Additionally, a custom color gradient
is created depending on the number of visualized layers. Every layer of the ego graph
is associated with one color from this gradient. The nodes of each layer and the edges
connecting them to the layer below are colored according to this gradient. The gradient
association is displayed to the user through a legend that contains the color and number
of hop distances to the ego node. By coloring not only the background but also the nodes
and edges, the distinction between components with different hop distances becomes a
lot clearer, especially when this color gradient is synchronously propagated to the other
visualizations, which will be shown Section 4.5.

4.4.3 3D View
The purpose of the third visualization was to show the actual volumetric data in 3D to
allow for better spatial analysis of connectivity. Especially, when it comes to tortuous
structures like nerves or vasculature, the added dimension helps in understanding their
topology without the need for additional views.

Since the network generation pipeline creates simplified meshes, the 3D visualization
was created by using surface rendering. Figure 4.20 shows a surface rendering of the

Figure 4.20: A surface rendering of glomerulus (red) and nerve (yellow) meshes generated
from a 20x kidney dataset provided by McLaughlin et al. [MZS+24]

47

4. Application Design

glomerulus and nerve meshes that were generated from a 20x kidney dataset. The color
scheme was chosen to match the light on dark scheme discussed in Section 4.4.1 with the
meshes being the same color as the nodes in the graph. Looking at this visualization,
it becomes apparent that the meshes are rather densely packed, making it hard to
distinguish meshes or even trace a nerve. In order to improve this, multiple interactive
mechanisms, that integrate the other views into the analysis process, are designed and
will be discussed in Section 4.5.

Another issue in 3D visualization is scalability. The 3D reconstruction of one dataset
provided by Yapp et al. [YNZ+24] results in 43, 000 meshes. Loading and rendering this
many meshes at an useable vertex resolution is not feasible for most PCs. Therefore, a
pipeline that generates meshes at various LODs by Ackerman [Ack] was investigated.
This pipeline generates multi-resolution meshes in the precomputed [MSb] format, which
is specific to the web viewer neuroglancer [MSa] that is based on the Web Graphics
Library (WebGL) [Gro]. This web viewer is able to load specific meshes in the appropriate
LOD, depending on the zoom and the area the user is looking at. Figure 4.21 shows
the dataset with 43, 000 cells loaded in neuroglancer at four different zoom levels. The
meshes were generated as described in Section 4.2 after downsampling the volumetric
data by a factor of one and without any mesh simplification. They were then transformed
into the precomputed format with the aforementioned pipeline. The LOD increases
with the zoom, making it possible to show the whole dataset in an interactive 3D view.
However, even though the total disk size of the meshes can vastly be reduced by utilizing
the precomputed binary format, neuroglancer still requires a lot of RAM when higher
detailed meshes in multiple regions are investigated. While the rendering was fast enough
to be considered interactive, it always delivered less than 5 frames per second on a
machine with an AMD Ryzen 7 2700X with 16GB of RAM and a GTX 1070Ti as its
dedicated graphics processing unit (GPU). This is still far removed from delivering a
smooth analysis experience on datasets of this scale, but the concept is very promising.

Improving and integrating this kind of LOD visualization would go beyond the scope of
this thesis, which is mainly focused on connectivity. It was therefore decided to keep the
3D view simple and fast by sacrificing scalability in order to highlight the concept of the
connectivity analysis. Nevertheless, utilizing neuroglancer with its precomputed format is
definitely worth considering for practical applications and future work, as demonstrated
with the dataset provided by Yapp et al. [YNZ+24].

4.4.4 Positioning
The designed views are positioned according to the layout seen in Figure 4.2 by dividing
the screen space in half and placing the 3D view on the left side, with the views that
incorporate the abstraction on the right side. The right half is divided into top and
bottom, with the connectivity overview designed in Section 4.4.1 at the top and the
detail view designed in Section 4.4.2 at the bottom. The views are juxtaposed in a way
that optimizes the used screen space to deliver as much information as possible in one
window.

48

4.4. Visualization

Figure 4.21: A 3D reconstruction of a dataset containing 43, 000 cells provided by Yapp
et al. [YNZ+24], visualized in neuroglancer [MSa] by utilizing the precomputed [MSb]
format. The panels show how the LOD dynamically increases with the zoom, allowing
an interactive visualization of this magnitude.

49

4. Application Design

4.5 Interactive Mechanisms
This section describes the development of interactive mechanisms that were created to
improve and connect the three views discussed in Section 4.4 in a way that provides a
conceptual analysis workflow for the connectivity network created from the processes
designed in Section 4.3. Since all three views are different representations of the same
data, the interaction with one view is synchronized in parallel to the other views when it
can be projected in a meaningful way. As in Section 4.4 this section mainly focuses on
the graphs and meshes generated from the kidney datasets [MZS+24].

The 3D view described in Section 4.4.3 is augmented with orbital controls that utilize
the mouse of the user. This facilitates the 3D navigation of the meshes by allowing the
user to change the camera target position, the rotation around the target and the zoom.
In order to reduce the learning curve, the orbit controls should use a common scheme
that can be found in other 3D viewers of widespread applications.

Since the connectivity overview (see Section 4.4.1) shows clusters based on interconnec-
tivity, the interconnectivity metric as well as the components belonging to said cluster
should be displayed to the user on demand. This is done by introducing a tooltip as
well as highlighting the contents in the 3D view. Figure 4.22 shows that on hovering the
mouse over a cluster node in the connectivity overview, a tooltip appears that displays
the cluster ID as well as the number of glomeruli nodes and the highest interconnectivity
between two glomeruli in the cluster. The interaction is synchronized with the 3D view
by giving all the meshes that do not belong to the hovered cluster a gray texture and
making them transparent.

The main purpose of the connectivity overview is to give the user the ability to explore
the whole network. To make this possible with the applied clustering, the user can
expand the clusters by clicking on them. Figure 4.23 shows the expansion of a cluster by
creating the nodes and edges that are contained in it, linking the new nodes to existing
ones and restarting the simulation of the force directed layout. For larger datasets, it
would be important to make the clusters collapsible again as to not overload the user
with information or create a cluttered view like the one shown in Figure 4.15. This
could be achieved by creating a dynamically growing outline around an expanded cluster,
with the contents as a separate force-directed layout. This could further be improved
by limiting the node count in the visualization and automatically collapsing some to
clusters depending on the number of expanded nodes. Since the implementation of this
concept requires a custom tailored solution that needs to be developed around an existing
framework, it is not in the scope of this thesis.

The ego graph that makes up the detail view described in Section 4.4.2 focuses on a single
node and its connection by constructing a subgraph from the whole network. The user
needs to be able to specify which node they want to focus. Therefore, simply clicking the
node of interest in either the connectivity overview or the 3D view results in the creation
of an ego graph with the clicked node as the ego. Figure 4.24 shows how the views adapt
after a node has been selected. The constructed ego graph is shown in the bottom right

50

4.5. Interactive Mechanisms

Fi
gu

re
4.

22
:

W
he

n
ho

ve
rin

g
ov

er
a

re
ct

an
gu

la
r

gl
om

er
ul

ic
lu

st
er

no
de

,a
to

ol
tip

co
nt

ai
ni

ng
th

e
cl

us
te

r
ID

as
we

ll
as

th
e

nu
m

be
ro

fg
lo

m
er

ul
in

od
es

an
d

th
e

hi
gh

es
ti

nt
er

co
nn

ec
tiv

ity
be

tw
ee

n
tw

o
gl

om
er

ul
ii

n
th

e
clu

st
er

ap
pe

ar
s.

Th
e

co
rr

es
po

nd
in

g
m

es
he

s
ar

e
hi

gh
lig

ht
ed

in
th

e
3D

vi
ew

by
gr

ay
in

g
ou

t
un

re
la

te
d

m
es

he
s

an
d

m
ak

in
g

th
em

tr
an

sp
ar

en
t.

51

4. Application Design

Figure 4.23: Clicking a cluster node dynamically expands the graph with its contents.

corner, and the color scheme of the different layers is propagated to the other views. In
the connectivity overview, possible cluster nodes are colored depending on the containing
node that has the lowest hop distance to the selected node. If the selected node is in
a cluster that has not been expanded, the whole cluster is colored appropriate to the
color of layer zero. Nodes, edges as well as meshes that are not part of the ego graph
are grayed out, and in the case of meshes made transparent, to indicate that they are
not connected. The legend of the connectivity overview is reduced to shapes, while the
legend for the layer colors of the ego graph is shown. Even though Figure 4.24 shows the
selection of a glomeruli node, it is not limited to glomeruli and the whole visualization is
capable to show the selection of any node irrespective of type.

With three different representations of the same data, it becomes important to be able to
associate regions of interest in one visualization with the corresponding parts of the other
visualizations. This is done by showing the ID of a hovered entity in either a tooltip or at
the top of the view for the graph views and 3D view respectively, while also highlighting
the corresponding parts in all views by adding a glowing white border. The white border
is easily recognizable on the dark background due to its maximal contrast, as can be
seen in Figure 4.25. When a node is hovered that belongs to a cluster that has not been
expanded, the entire cluster is highlighted.

52

4.5. Interactive Mechanisms

Fi
gu

re
4.

24
:

T
he

se
le

ct
io

n
of

a
no

de
or

m
es

h
in

ei
th

er
th

e
co

nn
ec

tiv
ity

ov
er

vi
ew

or
th

e
3D

vi
ew

le
ad

s
to

th
e

ge
ne

ra
tio

n
an

d
vi

su
al

iz
at

io
n

of
an

eg
o

gr
ap

h
(b

ot
to

m
rig

ht
),

w
hi

le
ad

ap
tin

g
th

e
co

lo
r

sc
he

m
e

to
be

co
ns

ist
en

t
th

ro
ug

ho
ut

th
e

th
re

e
vi

ew
s.

53

4. Application Design

Figure
4.25:

H
overing

a
node

in
any

view
highlights

the
corresponding

parts
in

allview
s

by
show

ing
a

glow
ing

w
hite

border
and

a
tooltip

w
ith

the
com

ponents
ID

.

54

CHAPTER 5
Implementation

This chapter discusses the implementation of the design choices described in Chapter 4.
It presents the used technologies and languages while explaining possible advantages and
disadvantages. The goal is to select frameworks and languages that are supported on a
wide variety of operating systems and are easy to use for scientists with less experience
in the field of computer science.

5.1 Implementation Overview
The application is split into two independent parts. Firstly, the data processing part,
which is mainly concerned with the network generation pipeline that handles the mesh
generation (see Section 4.2) and network generation (see Section 4.3). Secondly, the
visualization part (see Section 4.4) allows the analysis of the data produced by the
network generation pipeline.

Due to their independence, different frameworks are used for the implementation of both
parts in order to utilize the individual strengths of the frameworks for the respective
areas. Figure 5.1 shows a general overview of the implementation and interplay of its
parts. The data processing part is implemented as a python package called Connectivity
Network Generator (CNG) that incorporates a simple and installable command-line
interface (CLI) as well as python notebooks that allow more fine-grained control over
the pipeline. Python was chosen since it is widely used in the scientific community, as
it is easy to use, offers a lot of science related tooling support and can be employed
on Linux, MacOs and Windows. The CNG outputs a directory that includes both the
network as a JavaScript Object Notation (JSON) file and the mesh files that correspond
to the nodes of this network. This directory is then served through a basic Hypertext
Transfer Protocol (HTTP) server implementation. The visualization is implemented as a
web application with the open-source JavaScript library React [Mc] and the open source
JavaScript library d3.js [BDH+] as its main components. A web application was chosen

55

5. Implementation

Data Processing

Visualization

Jupyter Notebooks
for experimentation and

fine grained control

Connectivity Network Generator

Command-Line
Interface

HTTP Server

Web Application

Network & Mesh
Files

with

with

with

Figure 5.1: A general overview of the implementation and the relationships between the
different parts.

to support multiple operating systems without much overhead. Since the research group
behind this thesis, developed the React based Vitessce [KGM+24], the decision was made
to use it here as well so it can possibly be incorporated into their system with less effort.
d3.js is a library for interactive data visualization with Scalable Vector Graphics (SVG)
that can handle large and dynamic datasets and includes force simulation basics, making

56

5.2. Connectivity Network Generator

it appropriate for the intended design. The web application allows the selection of the
data source by fetching the data from a user defined HTTP server.

5.2 Connectivity Network Generator
The CNG is a python package that contains the implementation of the pipeline shown in
Figure 4.1. The functionality is offered in the form of a CLI that can be installed with a
python package manager like pip [Bc]. For an even easier installation that isolates the
application in its own virtual environment, one can use an application management tool
like pipx [Scb] or uv [MBc]. As it is, the CLI comes with three commands that separate
the pipeline into three parts:

1. cng generate_meshes CONFIGURATION_FILE

2. cng split_glomeruli CONFIGURATION_FILE

3. cng generate_network CONFIGURATION_FILE

All commands make use of a configuration file that contains the parameters of the
respective step. Due to its minimal syntax and good readability, YAML [EBKdN] was
chosen as the data format for the configuration. The implementation of the network
generation pipeline will be discussed by explaining the three commands above in more
detail.

5.2.1 cng generate_meshes

This command covers the first four steps of the network generation pipeline seen in
Figure 4.1 and results in individual mesh files for the connected component of the FTU
that is specified in the configuration. Since all collaborators supplied their volume data as
OME-TIFF [GAB+05] files, the mesh generation was implemented in a way that requires
the volume data to be a multipage TIFF file. As the input can not only be a binary
segmentation mask, but also contain multiple components, and since the parameters for
mesh generation can vary depending on the FTU, the configuration was split into two
files. One file specifies the FTUs that are contained in the volume data, while the one
passed to the command specifies the applied parameters and FTU that should be used
for the mesh generation.

Listing 1 shows an example of a volume data configuration. The configuration can
contain multiple FTU definitions. If the dataset file specified with filename also
contains multiple FTUs, is_labeled has to be set to True and id has to match
the label in the volume data. In case binary data is already representing connected
components, has_components needs to be set to True to skip the first step of the
pipeline. original_z_size specifies the size of the sample on the Z-axis, while
current_z_size is the size of the segmented volume data in the Z-axis. The z_depth,

57

5. Implementation

name: kidney
directory: E:/Studium/MedInfo/Masterarbeit/Data/kidney
ftus:
ducts:

id: 1
is_labeled: False
filename: ducts_binary.ome.tiff
has_components: False

glomeruli:
id: 2
is_labeled: False
filename: gloms_binary.ome.tiff
has_components: False

nerves:
id: 3
is_labeled: False
filename: nerves_binary.ome.tiff
has_components: False

original_z_size: 1148
current_z_size: 2131

Listing 1: An example for a volume data configuration with three FTUs from three
OME-TIFF files containing binary segmentation masks.

calculated as a ratio between the two sizes (see Equation (5.1)), is an aspect ratio that is
used to correct for the stretching of the anatomy caused by downsampling.

z_depth = original_z_size

current_z_size
(5.1)

Listing 2 shows a complete example of a configuration file that can be passed to the
command. The volume data is linked by supplying the corresponding configuration
file. This file also points to the Dask configuration, which will be further discussed in
Section 5.2.4. For the mesh generation itself, the FTU is specified with the key ftu and
the downsampling factor in the X and Y-axis can be set through downsampling. To
reduce RAM usage and also, parallelize processes, the pipeline cuts the data into chunks
at multiple points. The 3D size of those chunks can be defined with chunk_size with
the axes corresponding to [z, y, x].

In the first step of the mesh generation, the connected components of a FTU are calculated.

58

5.2. Connectivity Network Generator

data:
configuration: volume_data_config/kidney_data.yaml
output_directory: output

dask:
configuration: pipeline_config/dask_config.yaml
num_of_workers: 8

mesh_generation:
ftu: glomeruli
downsampling: 1
chunk_size: [200, 1024, 1024]
max_meshes: null
min_voxel_count: 50000
skip_volumes_on_boundary: False
simplification_ratio: 0.1
file_format: ply
create_fbx_scene: False

Listing 2: An exhaustive configuration for the generate_meshes command, containing
parameters for a glomeruli dataset.

For this, the Python library connected-components-3d (cc3d) [Sil] is employed, because it
implements a state-of-the-art algorithm in C++. The algorithm is pixel-based like ICTCL
but adapted for 3D and uses a decision tree based on the optimized connected component
labeling algorithm [WOS09]. The resulting connected component labeling data is stored
in a memory-mapped file with NumPy [Oc] to save RAM and subsequently saved to disk
as a compressed TIFF file.

For every component, the bounding box, voxel count, and centroid is calculated with
cc3d and stored in a separate statistics file. To improve parallelization, the largest k
meshes are extracted and saved to individual compressed TIFF files with the offset of
their bounding box stored as metadata. k is specified by setting max_meshes in the
configuration file. If max_meshes is null all the connected components are saved as
files. Similarly, the minimum voxel count a component needs to have can be specified
with min_voxel_count, but can also be 0.

After the connected components are found, their statistics calculated and the individ-
ual files are generated, the meshes are created through a custom implementation of
the process designed in Section 4.2.2 that utilizes the marching cubes implementation
from the scikit-image [vdWc] library for isosurface extraction. All previously created
component files are created in parallel. In case a component is bigger than the defined
chunk_size, it is split into chunks and the process is further parallelized by creating

59

5. Implementation

parts of the mesh and stitching it back together as shown in Figure 4.3. By setting
skip_volumes_on_boundary to True the components that touch the volume data
boundary are skipped when generating the meshes.

After isosurface extraction, every mesh is simplified with the fast-simplification [Kca]
Python package, which implements the quadric error metric-based edge collapse algorithm
by Garland et al. [GH97] described in Section 4.2.3. The user can specify the reduction
ratio of triangles in the mesh by setting simplification_ratio. For example, if the
ratio is set to 0.1, as can be seen in Listing 2, the algorithm tries to reduce every mesh’s
triangle count to 10%.

Finally, the position of the vertices are corrected by shifting them by the offset stored in the
metadata and scaling them with the z_depth ratio (Equation (5.1)). The individual mesh
files are then generated in the format specified by the configuration key file_format.
The library used to save the meshes is meshio [Sca], so the mesh export supports all
file formats of this package. Optionally, the meshes can be combined in a single scene
and exported as a FBX file when create_fbx_scene is configured with True. All
output files are stored in the directory specified with output_directory. The tool
automatically creates a readable folder hierarchy that mirrors the configuration, so that
the output of multiple runs and also multiple input datasets can be stored in the same
directory.

5.2.2 cng split_glomeruli

This command implements the specific quality assurance steps for kidney datasets
designed in Section 4.2.4. It is intended to be run between the mesh generation and
network generation and serves as an example of possible quality assurance steps that can
be developed for other datasets at this point in the pipeline.

Listing 3 shows a configuration file that can be provided for this command. By specifying
the keys mesh_generation_output, dataset_name, mesh_configuration and
mesh_file_format the tool is able to load the corresponding files that were generated
with the generate_meshes command. The clustering is implemented with the help of
a k-means implementation from the scikit-learn [Ccb] library, since the library is needed

mesh_generation_output: output
dataset_name: kidney
mesh_configuration: 1_38comps_10pfaces
mesh_file_format: ply
glom_mean_size: 162.44107176765564
distance_to_border: 5
create_fbx_scene: False

Listing 3: An exhaustive configuration for the split_glomeruli command.

60

5.2. Connectivity Network Generator

for another algorithm and its speed is not pivotal for this computation. The mean size
of the bounding box of all non-merged meshes that is used for the calculation of the
number of clusters necessary for the k-means clustering, is specified with the configuration
key glom_mean_size. For the mesh manipulation with cutting planes, the Python
helper module PyVista [Scc] for the C++ Visualization Toolkit (VTK) [Inc] is utilized
and to fix the meshes after splitting, an extension module for PyVista that implements
the MeshFix algorithm by Attene [Att10] is used. Meshes with a distance less than
distance_to_border from the volume border are removed entirely. The meshes are
exported to a folder named postprocessed located in the directory of the input meshes.
As with the mesh generation, a scene containing all post-processed glomeruli is created
when create_fbx_scene is set to True.

5.2.3 cng generate_network

The last three steps of the network generation pipeline seen in Figure 4.1 are implemented
by this command. It generates a connectivity network between the meshes of multiple
FTUs based on a flexible input configuration that includes FTUs, connectivity metrics as
well as merge, network and clustering specifications. As with the other commands, the
command is configured with a configuration file that is passed as an argument. Listing 4
shows the first part of such a configuration file. The output directory and volume dataset
name are configured with mesh_generation_output and name respectively. Like
the generate_meshes command, the configuration includes Dask [Roc] which will be
covered in Section 5.2.4.

In a first step, the connectivity metrics defined by metric_configurations are cal-
culated between the FTUs specified in input_configurations. Possible parameters
for the metric calculation can also be set, as can be seen with the DIRECTION_ANGLE
in Listing 4. Currently, the following four metrics are implemented:

• EUCLIDEAN_DISTANCE: The distance between the closest vertices of two meshes
is found with the help of a k-d tree implementation from the scikit-learn package,
which is used for its speed due to the use of NumPy.

• LOCALIZED_EUCLIDEAN_DISTANCE: The localized variant of the Euclidean dis-
tance is implemented as described in Section 4.3.1. The process is additionally split
into chunks to prevent heavy RAM usage.

• DIRECTION_ANGLE: The calculation of aP CA is implemented as designed in Sec-
tion 4.3.2 by utilizing NumPy for the PCA and closest neighbors computation.

• CONNECTION_ANGLE: As with aP CA, aBridge is implemented as designed in Sec-
tion 4.3.2 with the help of NumPy.

All metric calculation implementations support parallelization, which will be further
discussed in Section 5.2.4.

61

5. Implementation

data:
mesh_generation_output: output
name: cells

dask:
configuration: pipeline_config/dask_config.yaml
num_of_workers: 8

input_configurations:
- ftu: nerves
configuration: 1_500comps_10pfaces
file_format: ply
color: 0xffdc30

- ftu: glomeruli
configuration: 1_38comps_10pfaces\postprocessed
file_format: ply
color: 0xde2716

metric_configurations:
- a: nerves
b: glomeruli
metrics:

- EUCLIDEAN_DISTANCE
- a: nerves

b: nerves
metrics:

- EUCLIDEAN_DISTANCE
- DIRECTION_ANGLE:

vertex_range: 20
- CONNECTION_ANGLE

...

Listing 4: The first part of the configuration file for the generate_network command,
including the data, dask, FTU input and connectivity metric configuration.

Listing 5 shows the second part of a configuration file that can be supplied to the
generate_network command, and contains the configuration for the graph creation
and clustering described in Section 4.3.3 and Section 4.3.4 respectively. With the key
merge_configuration, the user can specify components that should be merged
together based on metric thresholds. This is a generalized way to implement the connec-
tivity suggestion from Section 4.3.2 that allows even more freedom. The configuration
in Listing 5 shows an example of how to merge nerve components based on the metrics

62

5.2. Connectivity Network Generator

...
merge_configuration:
- a: nerves

b: nerves
merged_by:
- type: EUCLIDEAN_DISTANCE

value: 25
- type: DIRECTION_ANGLE
value: 20

- type: CONNECTION_ANGLE
value: 20

network_configuration:
name: glomeruli_nerves_network_pipeline
connectivity_configuration:
- a:

id: glomeruli
nodes_without_links: True

b:
id: nerves
nodes_without_links: False

connected_by:
- type: EUCLIDEAN_DISTANCE
value: 25

clustering:
ftu: glomeruli

Listing 5: The second part of the configuration file for the generate_network com-
mand, including the merge, network and clustering configuration.

designed in Section 4.3.2. The implementation merges the components by giving them a
new identifier and considering them as a single component for the subsequent network
generation. The merging of components is optional. In the network_configuration
a name for the network is given and multiple connectivity_configurations define
the generated graph. Every connectivity configuration specifies two FTUs and a series of
metric thresholds placed under connected_by, below which a link is created between
the components of the FTUs. A node is created for every component of both FTUs that
has a link to another component. The user can also include all components of a FTU
by setting nodes_without_links to True. The network creation is implemented
solely with multidimensional NumPy arrays and Python dictionaries. Optionally, an
interconnectivity clustering as designed in Section 4.3.4 can be created. This will be

63

5. Implementation

stored in addition to the nodes and links of the generated network. To achieve this,
the FTU whose interconnectivity is of interest, needs to be specified. Currently, the
implementation is rather basic and considers all other FTUs as the connectors and always
clusters in pairs. The implementation utilizes NumPy and recursive methods.

Lastly, a directory named network_configuration.name is created and the nodes
and links of the graph together with the potential clustering are saved into it as
network.json. Then, the folders containing the relevant meshes are symlinked into
this directory so that it can be served with a HTTP server. The created directory can be
found at:

[OUTPUT_FOLDER]/[DATASET_NAME]/networks/[NETWORK_NAME]

5.2.4 Parallel and Distributed Computing

Most processes of the network generation pipeline that need heavy computation or
consist of many tasks are implemented in a way that they can be run in parallel. For
this, the parallel and distributed computing library Dask [Roc] is used, since it is a
pure Python solution and has a good NumPy integration. The configuration of both
the generate_meshes and generate_network command allows for specifying a
Dask configuration file with dask.configuration and the number of workers with
dask.num_of_workers in case of distributed computing. Listing 6 shows a basic
Dask configuration file with the configuration for a single machine at the top and the
configuration for a local cluster at the bottom. This configuration file is also supplied to
Dask so any kind of additional configuration that the library allows can be placed inside
it. However, the implementation of the CNG currently only supports Dask to be run on
a single machine or a local cluster.

Single Machine Configuration:
scheduler: processes

OR

Local Cluster Configuration:
jobqueue:
local:

name: Simple Local Scheduler

Listing 6: A basic Dask configuration file showing both single machine or local cluster
configuration.

64

5.3. Web Application

5.2.5 Jupyter Notebooks
For more fine-grained control of the CNG package as well as experimentation or extension
purposes, four Jupyter [Pc] notebooks that cover the same functionality as the CLI are
included in the solution. If used, the installation of a virtual Python environment is
suggested. All the necessary dependencies can be installed through the requirements file
with:

pip install -r requirements.txt

5.3 Web Application
The visualization is implemented as a web-based application, to support compatibility
with most operating systems in a web browser. Since the project was created with the
idea in mind to integrate it into Vitessce [KGM+24], the React [Mc] library was used as
a backbone. The project does not use a special framework with React, since it was never
intended to be its own big application, but rather a tech demo or plugin that can be
integrated with a larger system. By combining the base React library with the JavaScript
module bundler webpack [Kcb], a very slim distribution of the web application is achieved,
while allowing an easy integration of TypeScript [HM] and Syntactically Awesome Style
Sheets (SASS) [NW], which improve the development experience. When opening the app
in a browser, the user is prompted to enter the address of the HTTP server that exposes
the network data which was generated with the CNG. After that, the user is redirected
to the main user interface, which is implemented with three distinct but synchronized
views as designed in Section 4.4.

5.3.1 Graph Views
The graph views use the library graphology [Pli22], which is a multipurpose graph imple-
mentation for TypeScript, to store node and edge attributes as well as gain information
about neighbor relationships. For the visualization, both views utilize interactive SVG
elements that are controlled by d3.js [BDH+], which stands for Data-Driven Documents
and is a library that specializes in SVG visualizations. This includes the effects that
result from the interactive mechanisms described in Section 4.5.

Connectivity Overview

To visualize the connectivity overview as designed in Section 4.4.1, a custom graph imple-
mentation, called a ClusterGraph, was developed. It extends the UndirectedGraph
of the graphology library and uses the clustering created by the CNG to construct a
hypergraph with three kinds of nodes: simple nodes, connecting nodes and cluster nodes.
A connecting node might be a connecting FTU like a nerve or a vessel, while a cluster
node can contain all three kinds of nodes as well as their connecting edges. This creates
a tree-like data structure that is flattened when a cluster is expanded.

65

5. Implementation

The visualization uses the nodes and edges of the Clustergraph and assigns them SVG
objects with d3.js. By utilizing the d3-force module, a force directed layout that adjusts
the position of the SVG objects based on a force simulation, is created. For this, a link
force, a many-body force and a position force on the y-axis is combined with a boundary
force from an additional d3 plugin called d3-force-boundary [Gó]. When a cluster node
is clicked, it expands as described in Section 4.5, the SVG objects for the contents are
generated and the force simulation is restarted to position the new objects. In case
that there is no clustering defined in the loaded network.json the ClusterGraph is
replaced by a simple UndirectedGraph and a similar less sophisticated view that is
equipped to handle that.

Detail View

When a node or component is selected in either the connectivity overview or the 3D
mesh view, an ego graph is constructed from the initial graph, with the help of an
UndirectedGraph from the graphology library. This is implemented to work as de-
scribed in Section 4.4.2, by constructing the graph starting from the selected node, while
eliminating edges between nodes of the same layer and removing nodes that are not part
of the ego graph. The nodes and edges of the generated ego graph are then used by a
custom ego graph view implementation that creates SVG elements with d3.js and places
them like designed in Figure 4.19. The ego graph node is placed in the center and the
nodes of consecutive layers are placed on a circle around it at a fixed angle. After placing
the nodes the edges are created by dividing the space between the layers dependent on
the edge count and circling them around until they reach both of the nodes they connect.

5.3.2 3D View
For the 3D rendering of the component mesh files, the JavaScript library three.js [Cca]
is employed. The implementation of the 3D view uses a renderer provided by three.js
that employs WebGL [Gro] to utilize the GPU of a PC. As it is, the implementation
only supports loading the mesh files in the polygon file format (PLY) [Tur94]. This
format was chosen since it has a small uncompressed binary file size and three.js comes
with a PLYLoader implementation that allows fetching the file asynchronously from
a web server. The meshes are fetched with this loader and put into a three.js scene
with a material that matches the color that was specified in the network generation
configuration (see Listing 4). Basic lighting is added through a DirectionalLight
combined with an AmbientLight. For the camera, the PerspectiveCamera together
with the OrbitControls implementation from trhee.js is used to navigate through
the scene as described in Section 4.5. The hover effect that has also been mentioned in
Section 4.5, is implemented by utilizing the postprocessing [vRC] library for three.js. In
post-processing, a rendering pass is added that puts an OutlineEffect on the hovered
or selected mesh to achieve a similar visual appearance as in the graph views. To improve
the spatial orientation in the 3D scene, an AxesHelper in the form of three colored
lines for all three axes is added.

66

CHAPTER 6
Results

In the course of this chapter, the contributions designed in Chapter 4 and implemented
in Chapter 5 are applied to real data, while discussing how they answer the posed
research questions. The datasets described in Section 2.3 are used as input for the
CNG, introduced in Chapter 5, to generate various meshes and connectivity networks of
different FTUs and cells. This chapter discusses the results and presents a case study
of 9 kidney samples at 20x resolution, which compares the results to the analysis by
McLaughlin et al. [MZS+24].

For most of the computations and visualizations that are discussed and shown in this
chapter, a machine with an AMD Ryzen 7 2700X was utilized. It was equipped with
16GB of RAM, a GTX 1070Ti as its dedicated GPU and a 500GB Solid-State Drive
(SSD) for storage. At the time of writing this, the machine can be considered as a slightly
above average consumer PC and will be referred to here as Benchmark PC .

6.1 Innervation of the PanIN
The labeled volume data of the pancreas dataset provided by Kiemen et al. [KBG+22]
has a size of 408×12177×15921 voxels and is the first dataset that was made available for
experimentation. Due to the size, the pipeline was incrementally optimized in regard to
RAM consumption and parallel processing. However, creating meshes from this dataset
without downsampling still requires a high-end PC, since the dataset contains large
components which span the entire volume.

Among other things, the researchers that created this dataset are interested in the
innervation of the PanIN that form in the ductal epithelium. Therefore, the meshes for
the nerves and PanIN are generated with the CNG. Since this dataset has the largest
voxel count, the computation without downsampling is not feasible on the Benchmark PC .
This is mostly due to the connected component calculation, which is not optimized enough

67

6. Results

[a] [b] [c]

Figure 6.1: The impact downsampling has on the tubular structure of the ductal
epithelium in the pancreas. The meshes are downsampled in X and Y by a factor
of 4 [a], 3 [b] and 1 [c].

in terms of RAM consumption. Reconstructing the meshes without downsampling has a
huge impact on the continuity of tubular structures, as demonstrated with the meshes
of the ductal epithelium shown in Figure 6.3. As can be seen, a lot of the fine-grained
structure of the ducts is lost with a downsampling factor of 3 compared to 1. Therefore, a
comparatively stronger machine, equipped with a Ryzen 9 3950X CPU, 64GB of RAM, a
2TB SSD and a RTX 3080TI as its GPU, is utilized for the mesh generation of the nerves
without downsampling. For the lesions, the researchers supplied a dataset containing
a component labeling of 54 individual PanIN. Due to this and the fact that the PanIN
have a lot more volume than the nerves, there is not much to be gained from generating
their meshes without downsampling, and so a downsampling factor of 1 was applied
during generation. With the aforementioned system, the mesh generation takes roughly 2
hours, with the bottleneck being the RAM consumption during the connected component
labeling and the following statistics calculation. This could definitely be sped up by
skipping some steps of the pipeline and tailoring the process to the specific dataset, but
the goal was to test the generalized pipeline on various datasets.

The biggest hurdle this dataset poses for the mesh reconstruction is the inaccurate
Z-continiuity that stems from the mechanical processes that are employed to cut the
sections of the biological sample. Although a registration step is performed in an attempt
to stitch the sections back together, Figure 6.2 shows very clearly that this is more than
subpar for tubular structures, as the duct was reconstructed as a series of disjoint rings.
Therefore, it is fair to say that when the continuity of tubular structures at this resolution
is of interest, mechanical cutting of the sample should be avoided. This will further be
highlighted through the reconstruction of the kidney datasets (Section 6.3), which were

68

6.1. Innervation of the PanIN

Figure 6.2: A reconstruction of ductal epithelium in the pancreas. Due to mechanical
processes in the image acquisition, the Z-continuity of small tubular structures is disrupted.

acquired through volumetric imaging.

However, the nerves of this dataset have slightly more volume, as their labelling does
not leave them hollow like the ducts. This marginally improves their Z-continuity, so
an attempt at creating the connectivity network between nerves and PanIN is made.
For this, nerves with a distance of less than 100 voxels and φ < 20◦, θ < 20◦ are
merged as one component, following the tubular mesh connectivity suggestion principle
from Section 4.3.2. A pancreatic intraepithelial neoplasia (PanIN) is considered to be
connected by a nerve when their distance is less than 200 voxels. Distances and angles
are chosen based on three-dimensional (3D) inspection of the meshes. All pancreatic
intraepithelial neoplasia (PanIN) are included in the graph, while only the nerves that
form a connection with a pancreatic intraepithelial neoplasia (PanIN) are added. The
computation of the connectivity metrics and generation of the network was performed on
the stronger machine and took 26 minutes. The duration can be mainly attributed to
the distance calculation between meshes that have more vertices because of the lack of
downsampling. The result is a graph with 125 nodes and 84 edges.

Figure 6.3 shows the resulting meshes and network visualized in the web application.
panin_segemented_3 is selected, and the connectivity between 6 different PanIN com-
ponents is highlighted in all three views. As can be seen, many pancreatic intraepithelial
neoplasia (PanIN) components are not connected by any nerve, which might be due to a
lack of imaging resolution that prevents finer structures from being captured, but could
also be the correct biological representation. Re-generating the network based on different
threshold parameters, with the metrics already computed, takes less than a minute, which
lends itself for experimentation and further analysis. Additionally, an attempt is made to

69

6. Results

Figure
6.3:

A
connectivity

network
between

nerves
and

PanIN
ofthe

pancreas
dataset

provided
by

K
iem

en
et

al.
[K

D
B

+23],
visualized

in
the

web
application.The

view
highlightsthe

connectivity
ofthe

selected
PanIN

p
a
n
i
n
_
s
e
g
e
m
e
n
t
e
d
_
3

(green)
by

coloring
the

m
eshes

and
nodes

on
a

gradient
according

to
the

layers
ofthe

ego
graph

and
the

legend
in

the
m

iddle.

70

6.1. Innervation of the PanIN

incorporate the ductal epithelium into the network generation and visualization, but due
to the bad Z-continuity the meshes of obviously connected components are scattered into
small parts even with low downsampling. Consequently, the connectivity between ducts,
nerves and PanIN is ambiguous. Therefore, the small and discontinuous components
of the ductal epithelium are removed and the limits of the web applications are tested
by generating a network between nerves, ducts and PanIN. Like with the PanIN before,
ducts are considered to be connected to nerves when their Euclidean distance is below
200 voxels. As PanIN are lesions that grow in the ductal epithelium, they form an edge
with a duct if they are in the very close proximity of 20 voxels. In reality, there should
not be a gap between a PanIN and the ductal epithelium, but because of the Z-continuity
problem one exists in some cases.

Figure 6.4 shows the resulting graph and meshes in the web application. Since there
are three FTUs that can be interconnected with every other type, there is not one
FTU that could be considered as the intermediary connector, and so the edges have no
specific coloring. Compared to the previous graph in Figure 6.3, this graph shows far
more connectivity, which might be relevant when investigating the innervation of the
PanIN. Figure 6.5 shows the selection of the same PanIN as in Figure 6.3 with the ductal
epithelium included. The ego graph is limited to show only a 3-alter ego graph, since the
high connectivity would lead to a lot of clutter as there are 11 layers. Because there is
no intermediary connector, the edges in the ego graph simply represent a closeness of the
respective nodes and not a node bundling.

With the size of the connectivity graph almost being at the limit, it would be worth
considering designing a clustering process for graphs that have multiple FTUs. This
could be done in a similar way to the already implemented clustering by taking the inter-
connectivity count of nodes as the clustering metric, but could also be counterproductive
for the analysis as its focus would not be on the innervation of the PanIN.

71

6. Results

Figure 6.4: The meshes (bottom) of the nerves (yellow), PanIN (red) and ductal epithelium
(blue) of the pancreas dataset provided by Kiemen et al. [KDB+23] together with a
connectivity network of the three FTUs (top).

72

6.1. Innervation of the PanIN

Fi
gu

re
6.

5:
59

1.
53

02
pt

A
co

nn
ec

tiv
ity

ne
tw

or
k

be
tw

ee
n

ne
rv

es
,P

an
IN

an
d

du
ct

al
ep

ith
el

iu
m

of
th

e
pa

nc
re

as
da

ta
se

t
pr

ov
id

ed
by

K
ie

m
en

et
al

.
[K

D
B+

23
],

vi
su

al
iz

ed
in

th
e

we
b

ap
pl

ic
at

io
n.

T
he

vi
ew

hi
gh

lig
ht

s
th

e
co

nn
ec

tiv
ity

of
th

e
se

le
ct

ed
Pa

nI
N

p
a
n
i
n
_
3

(g
re

en
)

wi
th

an
eg

o
gr

ap
h

th
at

is
lim

ite
d

to
4

la
ye

rs
.

Th
e

m
es

he
s

an
d

no
de

s
ar

e
co

lo
re

d
on

a
gr

ad
ien

t
ac

co
rd

in
g

to
th

e
la

ye
rs

of
th

e
eg

o
gr

ap
h

an
d

th
e

le
ge

nd
in

th
e

m
id

dl
e.

73

6. Results

6.2 Melanoma Cells
Yapp et al. [YNZ+24] supplied two volumetric datasets of melanoma cells, one with 11, 000
cells and one with 43, 000 cells. The volumes of the individual cells are comparatively
small, but the sheer amount of cells sparked the development of the heavily parallelized
pipeline, and specifically that of the localized Euclidean distance computation discussed
in Section 4.3.1.

The researchers providing this dataset are especially interested in the interconnectivity
between touching cells. Because of this, the meshes of all cells are generated with the
CNG without any simplification to get the most accurate representation of cell proximity.
Generating the meshes takes between 10 to 20 minutes on the Benchmark PC , with
parallelization and without downsampling. The meshes are then used to create a network
based on the Euclidean distance to their immediate neighbors. Generating said network
on the Benchmark PC from meshes without downsampling takes another 10 to 15 minutes.

Since visualizing this many cells is challenging in respect to both 3D and graph visual-
ization, alternatives like neuroglancer were explored. Because the meshes can not be
visualized in the developed tool and the nature of the connections is different when
compared to the other datasets, more scalable solutions for the graph visualizations were
investigated. For the final visualizations, the tool Cosmograph [RO] is used. This tool
utilizes GPU-accelerated WebGL to render a force directed graph.

Figure 6.6 and Figure 6.7 show the generated meshes visualized in neuroglancer after
converting them into the precomputed format described in Section 4.4.3. The meshes
are put next to the Cosmograph visualization of the generated network. Since there
is no synchronization between the views, as they are used as standalone applications,
the nodes of the graph are projected onto the X and Y coordinates of the representing
cell’s centroid. Furthermore, individual cells are colored with the same random seed in
both representations. Because the sample is rather thin, this works quite well without
cluttering the view too much and allows connecting the views through spatial alignment
and color matching. Zooming, panning and rotating the 3D view in neuroglancer works
well with 11, 000 cells, but with 43, 000 cells the Benchmark PC struggles to keep up and
the scene takes a long time until the correct LOD is loaded initially. When inspecting
multiple regions of interest RAM still becomes a problem on the larger dataset.

Integrating both neuroglancer and Cosmograph into a linked and synchronized view
similar to the web application could improve the analysis of this dataset further. However,
generating the precomputed format is currently not that simple, since it requires multiple
build steps until the pipeline can be utilized. To make this more accessible, it should be
integrated into a tool like the CNG that can be installed with a single command.

In the frame of connectivity, Yapp et al. were also interested in the surface area of
adjacent and touching cells. Designing and implementing a custom connectivity metric
that is calculated from the touching surface area between two cells would allow the
network generation based on this metric, but was not in the scope of this thesis.

74

6.2. Melanoma Cells

[a]

[c] [d]

[b]

Figure 6.6: The meshes [a] and connectivity network [b] from the melanoma dataset with
11, 000 cells visualized with neuroglancer and Cosmograph respectively. [c] and [d] show
the same zoomed in section in both views. The nodes of the network are projected onto
the X and Y coordinates of the mesh centroids.

75

6. Results

[a]
[c]

[b]
[d]

Figure
6.7:

T
he

m
eshes

[a]and
connectivity

netw
ork

[b]
from

the
m

elanom
a

dataset
w

ith
43

,000
cells

visualized
w

ith
neuroglancer

and
C

osm
ograph

respectively.
[c]and

[d]show
the

sam
e

zoom
ed

in
section

in
both

view
s.

T
he

nodes
ofthe

network
are

projected
onto

the
X

and
Y

coordinates
ofthe

m
esh

centroids.

76

6.3. Case Study: Glomeruli Interconnectivity

6.3 Case Study: Glomeruli Interconnectivity
McLaughlin et al. [MZS+24] provided 10 kidney datasets. One dataset at 5× magni-
fication and 9 datasets containing regions of interest in the former dataset that were
magnified by 20×. Since their work is closely related to interconnectivity and multiple
datasets are available, a case study is conducted that tries to reproduce their findings
with the developed method. The 5× dataset is disregarded, as the resolution is too low
for the automatic generation of glomeruli meshes. Figure 6.8 depicts the largest three
glomeruli meshes that were reconstructed from the 5× dataset. The merged meshes
contain dozens of individual glomeruli, and splitting them would need human input from
someone that has expertise in the field. Therefore, the focus of the case study lies on the
5× datasets.

The researchers used manual tracing and automated processes to create a graph for each
of their datasets, with the glomeruli as nodes and the nerves that have left the vascular
pole as edges. The glomeruli were dilated by 10µm in every direction to find the overlap
with the neighboring nerves. In case of overlap, an edge between glomeruli and nerve
was created. From the resulting networks, they derived seven motifs [MSOI+02], which
they split into three groups:

• Intra-community motifs: Describe the basic interaction between glomeruli and
nerves.

• Community motifs: Show patterns of aggregation in a community of glomeruli.

• Inter-community motifs: Depict relationships between different communities.

Figure 6.8: The three largest glomeruli meshes that were reconstructed from the 5×
datasets provided by McLaughlin et al. [MZS+24]. Multiple individual glomeruli appear
to be merged into large connected meshes.

77

6. Results

Of the following seven motifs, the first three are considered intra-community motifs,
followed by two community motifs and the last two are inter-community motifs [MZS+24]:

• Lone Motif: Consists of a single glomerulus that is innervated directly from the
main nerve next to the interlobular vessel (Figure 3.1A).

• Paired Motif: Two glomeruli that are in close proximity to each other, are
supplied by a forking afferent arteriole, and have a tightly linked neural network
(Figure 3.1B).

• Pyramid Motif: A glomerulus that appears to be upstream of a glomeruli network
by being connected to every glomerulus in the network, while resembling a pyramid
in 3D. (Figure 3.1C).

• Keychain Motif: A circular connectivity pattern between multiple glomeruli with
similar node degree in an area where their density is low. (Figure 3.1D).

• Grape Motif: Highly interconnected glomeruli in a densely packed area where
they surround a centralized nervous hub and interlobular vessel. (Figure 3.1E).

• Hourglass Motif: Two communities that receive distinct vascular inputs are
connected through one or a few glomeruli (Figure 3.1F).

• Lattice Motif: Three or more communities are connected by a central glomerulus
called the mother glomeruli (Figure 3.1G).

For the case study, the 9 datasets at 20× magnification are used to generate the meshes
of the glomeruli and nerves and a network is created by choosing the parameters in a way
that replicates the process of McLaughlin et al. The generated networks and meshes are
then inspected in the developed web application described in Section 5.3 and analyzed in
regard to the previously defined graph motifs.

The meshes of the glomeruli are generated with a downsampling factor of 1 in the X and
Y axes and components with a voxel count below 50000 are ignored. The faces of the
meshes are simplified by a simplification ratio of 0.1. The glomeruli mesh generation
takes about a minute for a single dataset on the Benchmark PC . Merged glomeruli are
split by the implementation of the algorithm designed in Section 4.2.4 and the meshes
on the border of the volume sample are removed entirely. The Benchmark PChandles
this in 30 seconds. The meshes of the nerves are generated without downsampling to
preserve the connectivity of tubular structures. Components with a voxel count below
500 are removed to prevent tiny speckles that have no impact on connectivity and might
be caused by extremely thin nerve fibers or inaccuracies during the imaging process. As
with the glomeruli, the faces are simplified by a simplification ratio of 0.1 to prevent
unnecessarily large mesh files. The Benchmark PC takes about 3 minutes to create 400
to 900 nerve meshes. The connectivity network is generated by merging nerves that
are 25 voxels apart and satisfy φ < 20◦ as well as θ < 20◦. An edge between glomeruli

78

6.3. Case Study: Glomeruli Interconnectivity

and nerves is formed when they are closer than 15 voxels, which equates to the 10µm
McLaughlin et al. used for their analysis. All the glomeruli components are added to
the graph as nodes, but the nerves are only included if they connect to at least one
glomerulus. Finally, the graph is clustered based on interconnectivity of glomeruli, with
the nerve nodes as intermediary connector. Depending on the number of nerves, the
connectivity metric calculation and consequent network generation takes between 4 to 15
minutes on the Benchmark PC .

After using the CNG to generate the meshes and connectivity networks for the 9 datasets,
they are served to the web application as a data source. The created networks are searched
for the defined motifs by interactively utilizing the three developed visualizations. The
findings are discussed in the following sections. The Lattice Motif is not investigated, as
McLaughlin et al. did not provide the larger 20× datasets they used for the analysis of
cross community connectivity.

Lone Motif

Since the segmentation mask of the vasculature was not provided by McLaughlin et al.,
there is no way to tell if the innervation of the glomerulus starts next to the interlobular
vessel. However, since all glomeruli were included in the network, independent of whether
they have a connection to other glomeruli, the glomeruli which only have nerve connections
can be identified. The clustering algorithm creates a cluster for all the glomeruli that
have no connections to other glomeruli and terms it no_connections. By hovering
the node of this cluster in the connectivity overview graph, the location of glomeruli that
are part of a Lone Motif can be identified in the 3D view as shown in Figure 6.9. The
no_connections cluster is then expanded by clicking on it. Through the selection of

Figure 6.9: The hovering effect of the cluster node named no_connections in the 3D
view. The meshes show glomeruli (red) and nerves (yellow).

79

6. Results

one of the expanded glomeruli, it can be highlighted with all of the nerves that connect
to it. Figure 6.10 shows the identification of a network part that corresponds to the
Lone Motif. The parts of interest are highlighted in all three views, while the unrelated
parts are held in the background. In the 9 datasets, a total of 47 Lone Motifs could be
identified and 3 glomeruli had no nerve connection at all.

Paired Motif

Due to the missing vasculature, glomeruli pairs that are in close proximity and have any
nerve connections between them are considered a Paired Motif. In order to identify this
motif, the connectivity overview is utilized. Because the glomeruli are clustered based
on their nerve interconnectivity, the Paired Motif always appears as a separate cluster
without connections. Figure 6.11 shows how the location of this motif can be highlighted
in the 3D view by hovering such a cluster node in the connectivity overview graph. After
the pair is highlighted, the close proximity criteria can be visually determined as shown
in Figure 6.12. The connectivity can be further investigated by expanding the cluster
and selecting any of the contained nodes. The 9 datasets contained 12 Paired Motifs
where the glomeruli were visually less than the width of a glomerulus apart from each
other. Most of the Paired Motifs consisted of two glomeruli that had to be split during
the quality assurance step of the network generation pipeline.

Figure 6.11: The hovering effect, of a cluster node that has no connections to any other
node in the connectivity overview graph, on the 3D view. The meshes show glomeruli
(red) and nerves (yellow).

80

6.3. Case Study: Glomeruli Interconnectivity

Fi
gu

re
6.

10
:

T
he

se
le

ct
io

n
of

a
gl

om
er

ul
us

(g
re

en
)

w
ith

no
co

nn
ec

tio
ns

to
ot

he
r

gl
om

er
ul

ih
ig

hl
ig

ht
s

th
e

ne
tw

or
k

pa
rt

th
at

co
rr

es
po

nd
s

to
a

Lo
ne

M
ot

if
in

al
lt

hr
ee

vi
ew

s.
T

he
ne

rv
es

th
at

ar
e

co
nn

ec
te

d
to

th
e

gl
om

er
ul

us
ar

e
di

sp
la

y
in

vi
ol

et
.

81

6. Results

Figure
6.12:

T
he

selection
ofglom

erulus
g
l
o
m
e
r
u
l
i
_
3
3

(green)
w

hich
is

connected
to

a
single

other
glom

erulus
(violet)

in
the

web
application.

This
is

considered
to

be
a

Paired
M

otif
as

the
distance

between
the

glom
eruli(red

line)is
less

than
that

ofeither
ofthe

connecting
glom

eruli(blue
lines).

82

6.3. Case Study: Glomeruli Interconnectivity

Pyramid Motif

To identify this motif, the connectivity overview graph is first scanned for sub-graphs
with a higher node count than three nodes. Then, an arbitrary glomerulus is selected to
highlight its connectivity in the 3D view. The 3D view can then be inspected in regard
to the pyramidal shape while taking into consideration the connectivity of the included
glomeruli that is shown in the ego graph and switching the selected node in the connected
sub-graph. The glomeruli forming the base of the pyramid can be identified by looking
at the glomeruli in the 3D view that are colored the same as the first layer of the ego
graph. The definition McLaughlin et al. give for the Pyramid Motif is rather vague, so
the search for this motif is oriented mainly on the figure they published (Figure 3.1).
Among the 9 datasets, only 2 sub-graphs that roughly conform with the Pyramid Motif
are found in the generated networks of two different datasets. Figure 6.13a-b show these
two Pyramid Motifs with the top node of the pyramid selected. Even though they fulfill
the criteria of pyramidal shape in 3D, their base is not fully interconnected, as can be
seen in Figure 6.13c-d.

Figure 6.13: Two sub-graphs of the networks generated from two different kidney datasets
that most closely conform to the Pyramid Motif. The meshes form a pyramid in 3D (a-b)
with the tip being the selected glomerulus (green), but the base of the pyramid is not a
fully connected network (c-d). The meshes and nodes are colored on a gradient (green to
violet) according to their hop distance from the selected node.

83

6. Results

Keychain Motif

The Keychain Motif is identified by utilizing the connectivity overview graph and the 3D
view, since circular connectivity is inherently not visible in the ego graph. First, a single
node of a sub-graph that contain more than three nodes is selected in the connectivity
overview graph. This highlights the corresponding glomeruli in the 3D view, where the
density is inspected. In case of a low density area, both views are used to detect if the
connectivity of the sub-graph is circular and if it conforms with the Keychain Motif.
Only one dataset contains a single sub-graph that can be interpreted as a Keychain
Motif. Figure 6.14 shows this sub-graph in the 3D view and connectivity overview graph
consisting of the green and turquoise meshes and nodes. The node degree is somewhat
similar, but the density of the glomeruli is not that low. Through all the datasets, the low
density glomeruli seldom had any connection, explaining the low count of Keychain Motifs.
The manual tracing of nerves by McLaughlin et al. that included expert knowledge might
be what led to these diverging results.

Figure 6.14: The single sub-graph that conforms to a Keychain Motif consists of the
green and turquoise meshes and nodes showed in the connectivity overview graph (top)
and 3D view (bottom).

84

6.3. Case Study: Glomeruli Interconnectivity

Grape Motif

Because there is no vasculature, the focus lies on glomeruli that surround a centralized
nervous hub. If more than four glomeruli are connected by one nerve while being densely
packed together, the sub-graph is considered a Grape Motif. Finding this motif is done by
looking at the connectivity overview graph and finding clusters or sub-graphs with either
a high interconnectivity or nerve nodes that are connected to many glomeruli. After
selecting a node of the sub-graph, the density of the highlighted glomeruli is inspected
in the 3D view. Using the ego graph during selection of nerves also helps in identifying
the grape like structure. In all 9 datasets 10 Grape Motifs can be identified. Figure 6.15
shows the largest grape motif that could be found. In this sub-graph, 22 glomeruli are
connected by a single central nerve.

Hourglass Motif

Since the distinct vascular input can not be detected, only nerve connections are considered.
A sub-graph is believed to be an Hourglass Motif if two interconnected communities
of three or more glomeruli are connected by one or two glomeruli. This is achieved by
selecting nodes of appropriately sized interconnected communities in the connectivity
overview graph, while inspecting the connectivity in the ego graph. There, the connection
through one or two glomeruli becomes very clear. In case there are more than one
glomerulus connecting the communities, the 3D view is inspected to see if they are close
to each other. The 9 datasets contained a total of 6 Hourglass Motifs. Figure 6.16 and
Figure 6.17 show an example of an Hourglass Motif sub-graph with scattered and dense
communities, respectively, where the connecting nodes are selected.

Total motif counts for every motif resulting from the analysis of the provided 20×
datasets are shown in Table 6.1. The number of glomeruli as well as the number of
glomeruli that have no nerve connection are included as well. The low count for Pyramid
and Keychain Motifs might be a result of the nerve tracing being done automatically and
the missing data for the contextual FTUs also mentioned in the definition of the motifs.

Table 6.1: The glomeruli count, glomeruli without nerve count and motif count for each
of the nine 20× datasets provided by McLaughlin et al. [MZS+24].

Motif 01 02 03 05 09 10 11 12 13 Total
Glomeruli 31 22 27 28 25 24 33 23 32 245
No Nerves 0 1 0 0 1 0 1 0 0 3
Lone 8 7 2 3 9 4 4 1 9 47
Paired 1 2 3 0 2 1 0 0 3 12
Pyramid 0 0 0 0 0 1 0 0 1 2
Keychain 0 0 0 0 0 0 0 1 0 1
Grape 1 1 2 1 0 1 2 2 0 10
Hourglass 0 0 1 0 0 1 1 2 1 6

85

6. Results

Figure
6.15:

T
he

largest
sub-graph

that
is

also
a

G
rape

M
otif

show
n

in
the

web
application.

T
he

centralnerve
connecting

22
glom

eruliis
highlighted

in
the

3D
view

(w
hite

outline),w
hile

allclusters
are

expanded
in

the
connectivity

overview
.

A
glom

erulus
ofthe

grape
is

selected
(green)

to
highlight

the
interconnectivity.

The
m

eshes
and

nodes
are

colored
on

a
gradient

according
to

the
layers

ofthe
ego

graph
and

the
legend

in
the

m
iddle.

86

6.3. Case Study: Glomeruli Interconnectivity

Fi
gu

re
6.

16
:A

n
ho

ur
gl

as
sm

ot
if

wi
th

sp
ar

se
ly

co
nn

ec
te

d
co

m
m

un
iti

es
fro

m
th

e
da

ta
se

tk
id

ne
y

da
ta

se
t2

0
_
1
0

.T
he

co
nn

ec
tin

g
no

de
is

se
le

ct
ed

(g
re

en
),

so
th

e
ho

ur
gl

as
s

sh
ap

e
be

co
m

es
m

os
t

ev
id

en
t

in
th

e
co

nn
ec

tiv
ity

ov
er

vi
ew

gr
ap

h.
T

he
m

es
he

s
an

d
no

de
s

ar
e

co
lo

re
d

on
a

gr
ad

ie
nt

ac
co

rd
in

g
to

th
e

la
ye

rs
of

th
e

eg
o

gr
ap

h
an

d
th

e
le

ge
nd

in
th

e
m

id
dl

e.

87

6. Results

Figure
6.17:

A
n

hourglass
m

otif
w

ith
densely

connected
com

m
unities

from
the

dataset
kidney

dataset
2
0
_
0
3,

that
is

connected
by

two
glom

eruli.
O

ne
ofthe

connecting
nodes

is
selected

(green),so
the

hourglass
shape

becom
es

m
ost

evident
in

the
connectivity

overview
graph.

T
he

m
eshes

and
nodes

are
colored

on
a

gradient
according

to
the

layers
ofthe

ego
graph

and
the

legend
in

the
m

iddle.

88

6.4. Critical Review

6.4 Critical Review
One major bottleneck of the CNG is the RAM consumption of the connected component
labeling with the following calculation of bounding boxes, centroids and voxel counts.
Depending on the available RAM, this works fine for moderately sized datasets but can
quickly get out of hand, as shown with the pancreas dataset. The problem is that the
process is not parallelizable in its current state due to limitations of the cc3d package.
A possible solution to this would be the suggestion by the creator of the cc3d package,
that tries to label the volume in slices while stitching consecutive slices together and
remapping the labels of the combined section. To save RAM, the slices are stored in a
compressed binary format that supports the necessary remapping operation. An attempt
was made to incorporate this method, but the binary format package by the same author
is in Beta state and currently has issues that could not be solved without going beyond
the scope of this thesis. The statistics calculation could likewise be done in slices or
chunks that are tailored to fit into RAM. This would also allow the parallelization of the
whole process.

Even though the connectivity metric calculation was designed so that it can be augmented
with custom metric computations, this still needs knowledge in Python and the library
has to be extended by cloning the repository and updating it. A plugin system that
allows the incorporation of third party connectivity metrics would greatly improve the
usability for both the developer of said plugins and the users of the tool.

The visualization of the connectivity suggestion for tubular meshes, discussed in Sec-
tion 4.3.2, is currently only possible when utilizing the Jupyter notebook file named
Network_Generation.ipynb included in the repository (Figure 6.18). This could be
improved by showing the user an interactive visualization that changes depending on the
chosen thresholds, so that there is no deeper coding knowledge required.

While the CNG supports parallel computing, the distributed computing support is very
bare bones and only really supports a local cluster. This could be further improved
to support common job queuing systems used in supercomputers of academic research
institutions to enable faster computation of huge datasets.

The web application can not handle huge mesh quantities like the ones showcased with
the melanoma datasets, as there is no LOD scaling implemented for the 3D visualization
of the meshes. In order to support this, a visualization tool like neuroglancer would need
to be incorporated as well as improving the clustering algorithm and visualization or
utilizing a more scalable graph viewer like Cosmograph.

The user interface of the web application is purposefully held minimal to keep interactions
simple and intuitive. This comes at the cost of functionality that could be useful for
further connectivity analysis. The following are possible usability improvements that
were discovered during the development and use of the tool through application of real
data. In order to increase visibility, the interface can offer a setting that allows the
user to toggle the visibility of intermediary connectors that only have one connection.

89

6. Results

Similarly, the option to show meshes that are not included in the network, but that are
relevant for context, can be added. Allowing the user to add multiple data sources can
add context as well as offer an easier way to compare different parameters. Furthermore,
making the colors customizable while offering example gradients can greatly improve
the accessibility. The scalability of the clustering graph can be improved by making
the clusters can manually collapsible or automatically collapsible based on the number
of nodes that are visible. The clearness of the ego graph can be further improved by
placing the nodes in a way that optimizes the length of edges. Finally, graph metrics like
centrality can be presented to the user through visual encodings.

Figure 6.18: A tubular mesh connectivity suggestion visualization of the nerve meshes
from a 20× kidney dataset that can be created with the Jupyter notebook file
Network_Generation.ipynb, based on custom threshold parameters.

90

CHAPTER 7
Conclusion and Future Work

This chapter concludes the thesis by summarizing the presented contributions and
discussing their limitations in the current state. Finally, the gained insights are used as
a basis to propose possible improvements and future work that could be done in this
research direction.

7.1 Summary
Firstly, this thesis presents the Connectivity Network Generator (CNG), an installable
Python tool that enables the 3D reconstruction of large segmented volumetric data at
cell resolution. From the reconstructed meshes, it allows the generation of a connectivity
network, based on metric thresholds that are defined by the user (C1). This incorporates
a newly developed method that suggests the connectivity of incomplete tubular meshes
based on the Euclidean distance and the angle metrics θ and φ (C2). Together, these
contributions answer the first research question:

(RQ1) How can the connectivity between cells or FTUs at cell resolution be effectively
abstracted for analysis? To abstract connectivity correctly and effectively, the captured
shape of cells or FTUs has to be preserved, while also reducing the size of the input
data to make the computation feasible on the average PC. This is solved by preventing
downsampling of the data by using the original volumetric data segmentation to find
connected components of cells or FTUs and creating individual meshes for the resulting
components. The meshes are then simplified to reduce their size while preserving their
original shape and continuity. This results in moderately sized individual components
of the original data that can be used in metric calculations that are necessary for the
determination of connectivity. Since metrics for the connectivity of two components
are an active field of research [YNZ+24, MZS+24], only the basic Euclidean distance
metric calculation is implemented, but the system utilizing it is built with the extension
of custom metric computation implementations in mind. The connectivity can then be

91

7. Conclusion and Future Work

abstracted by defining the input components together with a list of metric thresholds
through which their connectivity is determined. Additionally, tubular meshes can be
combined to a single component by specifying the component and metric thresholds for
C2. Based on the configuration by the user, a connectivity graph is generated. Finally,
the graph can be clustered based on the number of connections between components,
resulting in a hypergraph that improves the analysis workflow in large networks. The
graph is made available as a JSON file that is accompanied by the individual mesh files
in a format chosen by the user.

Secondly, this thesis presents a visualization tool for the outputs of the CNG in the
form of a web application that fetches the data from an HTTP server and presents it
in a manner that allows connectivity analysis workflows (C3). This answers the second
research question:

(RQ2) How can this abstraction be incorporated into a visualization tool that enhances
research workflows and supports domain-specific analysis? The actual volumetric data of
the components is rendered as colored surface meshes in a 3D view, that can be navigated
with a mouse through orbital controls. This view is juxtaposed with two graph views that
incorporate the connectivity abstraction generated by the CNG. The first graph view is a
connectivity overview that is either a force directed graph or a force directed hypergraph
depending on the availability of a clustering. The second graph is a custom-designed
radial ego graph that also allows the bundling of components in case of intermediary
connecting nodes like nerves or vessels. To enhance the research workflow of connectivity
analysis, the three views are synchronized to highlight relevant information in unison, so
that each offers a different perspective on the data.

This work yielded the following insights: The continuity of tubular structures is a focus
of connectivity analysis. The Z-continuity of these structures depends heavily on the
imaging and 3D reconstruction modality that is employed, with volumetric imaging
methods producing better results in terms of overall mesh continuity. The proposed
method for mesh generation preserves shape well, but is computationally expensive
and requires good parallelization and RAM management. Visualizing connectivity with
juxtaposed views speeds up connectivity analysis workflows, but requires some sort of
level-of-detail zooming to be scalable.

7.2 Limitations
While the presented work offers tools that showcase the possibilities for connectivity
analysis at cell resolution, the specific requirements for such tools are still hard to define,
due to the novelty of the data and lack of other tools in this area. However, from
the experiences gained while employing the tool on real data, some limitations were
uncovered.

The scalability of the CNG is still limited, especially for datasets that have large compo-
nents, as it still requires a high-end machine for their computations. The main problem

92

7.3. Future Work

here is the chosen connected-component labeling approach, which is not parallelized or
optimized for RAM consumption. In order to make the mesh generation and metric
computations of large datasets feasible for the average PC, the handling of RAM has to
be improved across the whole application.

The suggestion of incomplete tubular meshes works well for gaps in a single tube, but by
inspecting the generated meshes of nerves, vasculature and tubule it has become evident
that there is often a missing part that corresponds to a bifurcation in the structure. The
proposed method is not able to suggest the connectivity that happens in a bifurcating
tubular structure, since it is only able to take two meshes into account. Furthermore, this
contribution is missing an accessible visualization that helps the user define the required
input metrics by showing their effect.

Scalability is also an issue for the visualizations in the web application. When it comes
to a large number of meshes or nodes, as demonstrated with a cell dataset that has
43 thousand individual meshes, it fails due to RAM limits or only outputs a very low
frame rate. More scalable tools like neuroglancer [MSa] for 3D rendering or Cosmograph
[RO] for graph visualizations might offer a solution, but are more restrictive in their
integration and capabilities.

Since the web application is a minimal prototype that highlights the possibilities of
connectivity visualization and analysis, it is not a comprehensive standalone application.
Therefore, it has some limitations when it comes to configurability. Currently, only one
data source is supported and the visibility of components can not be changed aside from
the interactive mechanisms that move components to the background and highlight them.
The color scheme of the connectivity highlighting and the component types is also not
customizable through the user interface.

7.3 Future Work

Through the design, development and usage of this work, multiple avenues for future
work have opened up. While the CNG is already useable for moderately sized datasets
as demonstrated, the RAM consumption can be optimized to increase its applicability.
Furthermore, a plugin system for implementations of custom metric calculations as well
as clustering algorithms can be integrated. Another extension could be the augmentation
of additional data into the network generation process, like the phenotyping data of single
cells. Lastly, the groundwork for distributed computing is already implemented and can
be extended to allow the computation across specific cluster networks.

The tubular mesh connectivity suggestion strategy can be improved by incorporating
bifurcations in the suggestion process and making it into its own standalone tool that
helps researchers to assure the quality of their tubular meshes. By offering a dynamic
visualization of the suggestion process that changes based on configurable metric param-
eters, a human-in-the-loop workflow can be established that speeds up manual tracing.

93

7. Conclusion and Future Work

After configuration, the tool sequentially offers suggestions which the user can accept or
discard while inspecting it in the visualization.

The connectivity visualization application can be integrated into a larger system like
Vitessce [KGM+24] that already uses synchronized views. This tool is based on modularity
and focuses on single cell experiments. There, it might make more sense to integrate a
more complex viewer like neuroglancer and views that offer customization options like
color schemes are already implemented.

In order to make the hypergraph that shows the clustering of the connectivity graph
more scalable, it can be improved by adding collapsible subgroups when expanding a
cluster. These subgroups can also offer the ability to collapse based on the number of
nodes that are shown, to enable the visualization of even larger datasets. Since this
requires a nested force simulation, the current framework needs to be extended with a
custom implementation.

The visualization application can be extended to support multiple data sources. This
allows the comparisons of different datasets or the comparison of different connectivity
network generation parameters on the same dataset. In case of the network data being
augmented with additional data, it could also be compared in this fashion.

Finally, the clarity of the custom radial ego graph can be improved by positioning the
nodes so that the edge distances are held minimal. This requires the development of an
optimized algorithm that can be executed in real time, since the ego graph needs to be
created dynamically depending on the user’s input.

The tools and visualizations developed in the course of this thesis were intended as a
stepping stone for researchers in the field of cell and FTU connectivity and aim to provide
a basis for the initial analysis of novel datasets while contributing to the requirement
analysis of future tools.

94

Overview of Generative AI Tools
Used

LanguageTool [NM] was used for grammar and spell checking.

95

List of Figures

2.1 The labeled anatomy of a kidney (adapted from LibreTexts [Lib]) 6
2.2 The labeled anatomy of the nephron with its connecting vasculature and

tubules. (adapted from LibreTexts [Lib]) 7
2.3 The whole body of an adult mouse which has undergone 14 days of perfusion

with phosphate-buffered saline solution (PBS, left) compared to CUBIC-1
(CB-perfusion, right) [TKS+14]. 10

2.4 A 3D reconstruction from light sheet fluorescence microscopy images of
glomeruli (green), nerves (red) and collecting ducts (pink) published as an
image of the week on the HuBMAP consortium website [Pra23]. 11

3.1 3D reconstructions of neuro-glomerular network motif type examples (A-G)
together with a cartoon-like abstraction of the motif types in relation to other
nephron structures (H) [MZS+24]. 14

3.2 Colored and labeled PanIN in H&E stained serial sections (top) and a 3D
reconstruction together with the ductal epithelium of the pancreas (bottom)
[KBG+22]. 15

3.3 A 3D surface rendering (left) of 11 cells from a melanoma close to the dermal-
epidermal junction, with a schematic abstraction of cell interconnectivity and
their types (right) [YNZ+24]. 16

3.4 An interactive stand-alone visualization tool of a tractogram with planar 2D
neural maps (left) and an explorative web interface (right) [JDL11]. . . . 17

3.5 The connectivity visualization tool Graffinity shows the result from a specific
query on a flight dataset. It combines a connectivity matrix with a node table
and interactively highlights information from the user’s selection through a
path list and node-link representation [KLS+17]. 19

4.1 A simplified functional overview of the implemented network generation that
can be used to create 3D meshes with their associated connectivity network. 24

4.2 The schematic layout of the web application interface. Interaction with any of
the three views, 3D View, Network View and Ego Graph View is synchronized
between all views. 25

4.3 The parallelization strategy for the isosurface extraction of large components.
The chunk size and consequently the number of chunks is user-specific. . . 29

97

4.4 The process of edge contraction by merging two vertices and removing duplicate
edges [GH97]. 31

4.5 The splitting of merged glomeruli meshes that were created from a dataset
provided by McLaughlin et al. [MZS+24] in the course of quality assurance.
[a] A merged conglomerate mesh consisting of three glomeruli, with two on
the sample border. [b] The clustered vertices (red, yellow, green) with the
connected cluster centers. [c] The cutting planes (blue) with the resulting
glomeruli meshes. 32

4.6 The local neighborhood (red) of a single cell (green) from a dataset containing
43, 000 cells provided by Yapp et al. [YNZ+24] (d = 20 voxels). 34

4.7 [a] Two nerve mesh components reconstructed from a 5x kidney dataset
provided by McLaughlin et al. [MZS+24]. The red line connects the closest
vertices of both meshes and indicates a possible connection that might have
been missed during reconstruction. [b] The red and green squares indicate
the vertices that are in range r of the closest vertices of the respective mesh
(r = 20 voxels). [c] The blue arrows show the eigenvectors of the PCA of the
closest vertices for both meshes. 36

4.8 The angle θ between ex and vb [a] and the angle φ between ex and ey [b] make
up two of the three metrics used for the incomplete tubular mesh suggestion.
The vectors ex and ey are the eigenvectors with the largest eigenvalue of
localized point clouds at the nearest vertices of two meshes x and y. vb is the
vector between the mean positions vx and vy of both localized point clouds. 37

4.9 [a] Intermediary-connectivity of two red entities through a yellow entity. [b]
Metric-connectivity between three entities. 38

4.10 The interconnectivity matrix of the first 50 glomeruli in the graph created
from the 5× dataset by McLaughlin et al. [MZS+24]. The x- and y-axis
depict the glomeruli ID and the color represents the number of nerves that
connect them. 39

4.11 A force-directed graph of a 20× kidney dataset with the glomeruli as nodes
and nerves as edges. 40

4.12 A force-directed graph of a 20× kidney dataset with glomeruli (blue) and
nerves (orange) as nodes. The edges represent a proximity of less than 50
voxels. 41

4.13 A force-directed graph of a 20× kidney dataset with glomeruli (red) and
nerves (yellow) as nodes. The connecting nodes (nerve nodes) are smaller, the
edges are Bézier curves, and the whole layout is expanded to fit the viewport. 41

4.14 The graph shown in Figure 4.13, but with a dark background, a node legend,
and edges that are colored the same as the intermediary connecting nodes to
highlight glomeruli connectivity. 42

4.15 A visualization of the graph generated from the 5x kidney dataset, with 1, 518
nodes and 1, 854 edges that highlights the scalability problems. 43

4.16 The graph shown in Figure 4.14 with visual clustering based on the glomeruli
interconnectivity. Glomeruli clusters are depicted as red rectangles. 44

98

4.17 A regular node link diagram [a] and the corresponding layered 2-alter ego
graph [b] for the orange node a. 45

4.18 The first attempt at creating a radial ego graph as an additional detail view.
Depicted are glomeruli (red) from a 20x kidney dataset, with the edges
representing nerve bundles. The blue highlight shows a multi-selection of
connected components and the cyan color gradient represents the layers of
the graph. 45

4.19 The same graph as in Figure 4.18, with a light on dark color scheme, including
a color gradient for the ego node and alters. Each layer of nodes and its
connecting edges have the same color, which represent the hop distance to
the ego. 46

4.20 A surface rendering of glomerulus (red) and nerve (yellow) meshes generated
from a 20x kidney dataset provided by McLaughlin et al. [MZS+24] . . . 47

4.21 A 3D reconstruction of a dataset containing 43, 000 cells provided by Yapp et
al. [YNZ+24], visualized in neuroglancer [MSa] by utilizing the precomputed
[MSb] format. The panels show how the LOD dynamically increases with the
zoom, allowing an interactive visualization of this magnitude. 49

4.22 When hovering over a rectangular glomeruli cluster node, a tooltip containing
the cluster ID as well as the number of glomeruli nodes and the highest inter-
connectivity between two glomeruli in the cluster appears. The corresponding
meshes are highlighted in the 3D view by graying out unrelated meshes and
making them transparent. 51

4.23 Clicking a cluster node dynamically expands the graph with its contents. 52
4.24 The selection of a node or mesh in either the connectivity overview or the 3D

view leads to the generation and visualization of an ego graph (bottom right),
while adapting the color scheme to be consistent throughout the three views. 53

4.25 Hovering a node in any view highlights the corresponding parts in all views
by showing a glowing white border and a tooltip with the components ID. 54

5.1 A general overview of the implementation and the relationships between the
different parts. 56

6.1 The impact downsampling has on the tubular structure of the ductal epithelium
in the pancreas. The meshes are downsampled in X and Y by a factor of 4
[a], 3 [b] and 1 [c]. 68

6.2 A reconstruction of ductal epithelium in the pancreas. Due to mechanical
processes in the image acquisition, the Z-continuity of small tubular structures
is disrupted. 69

6.3 A connectivity network between nerves and PanIN of the pancreas dataset pro-
vided by Kiemen et al. [KDB+23], visualized in the web application. The view
highlights the connectivity of the selected PanIN panin_segemented_3
(green) by coloring the meshes and nodes on a gradient according to the layers
of the ego graph and the legend in the middle. 70

99

6.4 The meshes (bottom) of the nerves (yellow), PanIN (red) and ductal epithelium
(blue) of the pancreas dataset provided by Kiemen et al. [KDB+23] together
with a connectivity network of the three FTUs (top). 72

6.5 591.5302ptA connectivity network between nerves, PanIN and ductal epithe-
lium of the pancreas dataset provided by Kiemen et al. [KDB+23], visualized
in the web application. The view highlights the connectivity of the selected
PanIN panin_3 (green) with an ego graph that is limited to 4 layers. The
meshes and nodes are colored on a gradient according to the layers of the ego
graph and the legend in the middle. 73

6.6 The meshes [a] and connectivity network [b] from the melanoma dataset with
11, 000 cells visualized with neuroglancer and Cosmograph respectively. [c]
and [d] show the same zoomed in section in both views. The nodes of the
network are projected onto the X and Y coordinates of the mesh centroids. 75

6.7 The meshes [a] and connectivity network [b] from the melanoma dataset with
43, 000 cells visualized with neuroglancer and Cosmograph respectively. [c]
and [d] show the same zoomed in section in both views. The nodes of the
network are projected onto the X and Y coordinates of the mesh centroids. 76

6.8 The three largest glomeruli meshes that were reconstructed from the 5×
datasets provided by McLaughlin et al. [MZS+24]. Multiple individual
glomeruli appear to be merged into large connected meshes. 77

6.9 The hovering effect of the cluster node named no_connections in the 3D
view. The meshes show glomeruli (red) and nerves (yellow). 79

6.11 The hovering effect, of a cluster node that has no connections to any other
node in the connectivity overview graph, on the 3D view. The meshes show
glomeruli (red) and nerves (yellow). 80

6.10 The selection of a glomerulus (green) with no connections to other glomeruli
highlights the network part that corresponds to a Lone Motif in all three
views. The nerves that are connected to the glomerulus are display in violet. 81

6.12 The selection of glomerulus glomeruli_33 (green) which is connected to
a single other glomerulus (violet) in the web application. This is considered
to be a Paired Motif as the distance between the glomeruli (red line) is less
than that of either of the connecting glomeruli (blue lines). 82

6.13 Two sub-graphs of the networks generated from two different kidney datasets
that most closely conform to the Pyramid Motif. The meshes form a pyramid
in 3D (a-b) with the tip being the selected glomerulus (green), but the base
of the pyramid is not a fully connected network (c-d). The meshes and nodes
are colored on a gradient (green to violet) according to their hop distance
from the selected node. 83

6.14 The single sub-graph that conforms to a Keychain Motif consists of the green
and turquoise meshes and nodes showed in the connectivity overview graph
(top) and 3D view (bottom). 84

100

6.15 The largest sub-graph that is also a Grape Motif shown in the web application.
The central nerve connecting 22 glomeruli is highlighted in the 3D view (white
outline), while all clusters are expanded in the connectivity overview. A
glomerulus of the grape is selected (green) to highlight the interconnectivity.
The meshes and nodes are colored on a gradient according to the layers of
the ego graph and the legend in the middle. 86

6.16 An hourglass motif with sparsely connected communities from the dataset
kidney dataset 20_10. The connecting node is selected (green), so the
hourglass shape becomes most evident in the connectivity overview graph.
The meshes and nodes are colored on a gradient according to the layers of
the ego graph and the legend in the middle. 87

6.17 An hourglass motif with densely connected communities from the dataset
kidney dataset 20_03, that is connected by two glomeruli. One of the
connecting nodes is selected (green), so the hourglass shape becomes most
evident in the connectivity overview graph. The meshes and nodes are colored
on a gradient according to the layers of the ego graph and the legend in the
middle. 88

6.18 A tubular mesh connectivity suggestion visualization of the nerve meshes
from a 20× kidney dataset that can be created with the Jupyter notebook
file Network_Generation.ipynb, based on custom threshold parameters. 90

101

List of Tables

3.1 Nobre et al. [NMSL19] developed a scoring system for the performance of
visualization techniques on different network tasks and types (0: no support;
1: poor support; 2: limited support that might require interaction; 3: very
good support) . 21

4.1 Five state-of-the-art algorithms with the additional memory space they require
for an image of size N (adapted from [HRG+17]). 27

6.1 The glomeruli count, glomeruli without nerve count and motif count for each
of the nine 20× datasets provided by McLaughlin et al. [MZS+24]. 85

103

List of Listings

1 An example for a volume data configuration with three FTUs from three
OME-TIFF files containing binary segmentation masks. 58

2 An exhaustive configuration for the generate_meshes command, con-
taining parameters for a glomeruli dataset. 59

3 An exhaustive configuration for the split_glomeruli command. . 60
4 The first part of the configuration file for the generate_network com-

mand, including the data, dask, FTU input and connectivity metric
configuration. 62

5 The second part of the configuration file for the generate_network
command, including the merge, network and clustering configuration. 63

6 A basic Dask configuration file showing both single machine or local cluster
configuration. 64

105

Glossary

biobank an organized collection of human biological material and associated information
stored for one or more research purposes [KCT08]. 9

connectome A comprehensive list of neuronal connections in a defined region often
referred to in regard to the brain.. 16

fluorescence is light that is emitted by certain substances that have absorbed electro-
magnetic radiation after they were exposed to ultraviolet radiation [LL99]. 8, 9, 11,
97, 107, 110

immunofluorescence is a technique that utilizes light microscopes and fluorescence to
detect biomolecules in a tissue [OC13]. 9, 12, 110

intraepithelial neoplasia are abnormal or excessively growing cells in the epithelial
tissue often found on the inner surfaces of body cavities blood vessels or ducts. 8,
69, 110

nephrectomy is the medical term for the operative removal of a human kidney. It is
employed to treat multiple kidney diseases or to gain a kidney transplant [Rob63].
11

pancreatic parenchyma is the functional tissue specifically found in the pancreas. 12

tractogram a 3D model of nerve connections that is created from diffusion magnetic
resonance imaging (MRI) data. 17

107

Acronyms

2D two-dimensional. 8, 14, 15, 17, 26, 35, 39, 97

3D three-dimensional. 1–3, 8–16, 18, 20, 23–28, 30, 32, 33, 35, 39, 44, 47–53, 58, 59, 66,
69, 74, 78–80, 83–86, 89, 91–93, 97, 99–101, 107

cc3d connected-components-3d. 59, 89

CCL connected component labeling algorithm. 26

CLI command-line interface. 55, 57, 65

CNG Connectivity Network Generator. 55, 57, 64, 65, 67, 74, 79, 89, 91–93

CODA quantitative 3D reconstruction of large tissues at cellular resolution. 13

CPU central processing unit. 28, 68

CTL Contour Tracing Labeling. 27

DNA deoxyribonucleic acid. 13

FTU functional tissue unit. 23, 57, 58, 62–65, 71, 94, 105

FTUs functional tissue units. 2, 11, 12, 14, 17, 18, 20, 23–25, 33, 57, 58, 61, 63, 64, 67,
71, 72, 85, 91, 100, 105

GPU graphics processing unit. 48, 66–68, 74

H&E hematoxylin and eosin. 8, 9, 12, 13, 15, 97

HOL Hybrid Object Labeling. 27

HTAN Human Tumor Atlas Network. 1

HTTP Hypertext Transfer Protocol. 55, 57, 64, 65, 92

HuBMAP Human Biomolecular Atlas Program. 1, 9, 11, 13, 97

109

IBCL Improved Block based Connected-component Labeling. 27

ICTCL Improved Configuration-Transition-based Connected-component Labeling. 27,
59

ID identifier. 38, 39, 50–52, 54, 98, 99

IRCL Improved Run-based Connected-component Labeling. 27

JSON JavaScript Object Notation. 55, 92

KPMP Kidney Precision Medicine Program. 1

LOD level of detail. 30, 31, 48, 49, 74, 89, 99

LSCM laser-scanning confocal microscopy. 9, 10, 12, 13

LSFM light sheet fluorescence microscopy. 8, 9, 11, 13

MRI magnetic resonance imaging. 107

NIH National Institutes of Health. 1

PanIN pancreatic intraepithelial neoplasia. 8, 12, 13, 15, 20, 67–73, 97, 99, 100

PC personal computer. 28, 34, 48, 66, 67, 91, 93

PCA principal component analysis. 35, 36, 61, 98

PLY polygon file format. 66

RAM random-access memory. 28, 48, 58, 59, 61, 67, 68, 74, 89, 92, 93

RNA ribonucleic acid. 13

SASS Syntactically Awesome Style Sheets. 65

SSD Solid-State Drive. 67, 68

SVG Scalable Vector Graphics. 56, 65, 66

t-CyCIF tissue based cyclic immunofluorescence. 9, 12, 13

WebGL Web Graphics Library. 48, 66, 74

110

Bibliography

[AABS+14] Ali K Al-Awami, Johanna Beyer, Hendrik Strobelt, Narayanan Kasthuri,
Jeff W Lichtman, Hanspeter Pfister, and Markus Hadwiger. Neurolines:
a subway map metaphor for visualizing nanoscale neuronal connectivity.
IEEE Transactions on Visualization and Computer Graphics, 20(12):2369–
2378, 2014.

[Ack] David Ackerman. Multiresolution mesh creator. https://github.com/
janelia-cellmap/multiresolution-mesh-creator. [accessed
on 20/12/2024].

[ADS+22] Matthias Arzt, Joran Deschamps, Christopher Schmied, Tobias Pietzsch,
Deborah Schmidt, Pavel Tomancak, Robert Haase, and Florian Jug. Labkit:
labeling and segmentation toolkit for big image data. Frontiers in computer
science, 4:777728, 2022.

[AHB+16] Benedict Anchang, Tom DP Hart, Sean C Bendall, Peng Qiu, Zach Bjorn-
son, Michael Linderman, Garry P Nolan, and Sylvia K Plevritis. Visu-
alization and cellular hierarchy inference of single-cell data using spade.
Nature protocols, 11(7):1264–1279, 2016.

[AST21] Ali Abdollahzadeh, Alejandra Sierra, and Jussi Tohka. Cylindrical shape
decomposition for 3d segmentation of tubular objects. IEEE Access,
9:23979–23995, 2021.

[ATC+08] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-
Or, and Tong-Yee Lee. Skeleton extraction by mesh contraction. ACM
transactions on graphics (TOG), 27(3):1–10, 2008.

[Att10] Marco Attene. A lightweight approach to repairing digitized polygon
meshes. The visual computer, 26:1393–1406, 2010.

[Bc] Ian Bicking and community. pip. https://pip.pypa.io/en/
stable/. [accessed on 10/01/2025].

[BDDD+11] John F Bertram, Rebecca N Douglas-Denton, Boucar Diouf, Michael D
Hughson, and Wendy E Hoy. Human nephron number: implications for
health and disease. Pediatric nephrology, 26:1529–1533, 2011.

111

https://github.com/janelia-cellmap/multiresolution-mesh-creator
https://github.com/janelia-cellmap/multiresolution-mesh-creator
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/

[BDH+] Mike Bostock, Jason Davies, Jeffrey Heer, Vadim Ogievetsky, and commu-
nity. d3js. https://d3js.org/. [accessed on 09/01/2025].

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[Bez74] Pierre Bezier. Mathematical and practical possibilities of unisurf. In
Computer aided geometric design, pages 127–152. Elsevier, 1974.

[Bio] Translucence Biosystems. Stitchy™. https://www.translucencebio.
com/stitchy. [accessed on 14/11/2024].

[BO05] Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and
meshing of surfaces. Graphical Models, 67(5):405–451, 2005.

[BOS+18] Peter O Bayguinov, Dennis M Oakley, Chien-Cheng Shih, Daniel J Geanon,
Matthew S Joens, and James AJ Fitzpatrick. Modern laser scanning
confocal microscopy. Current protocols in cytometry, 85(1):e39, 2018.

[BS09] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature reviews neuroscience,
10(3):186–198, 2009.

[Car99] Stuart K Card. Readings in information visualization: using vision to
think. Morgan Kaufmann, 1999.

[Cca] Ricardo Cabello and community. three.js. https://threejs.org/.
[accessed on 10/01/2025].

[Ccb] David Cournapeau and community. scikit-learn. https://
scikit-learn.org/stable/. [accessed on 10/01/2025].

[CCL04] Fu Chang, Chun-Jen Chen, and Chi-Jen Lu. A linear-time component-
labeling algorithm using contour tracing technique. computer vision and
image understanding, 93(2):206–220, 2004.

[CCY15] Wan-Yu Chang, Chung-Cheng Chiu, and Jia-Horng Yang. Block-based
connected-component labeling algorithm using binary decision trees. Sen-
sors, 15(9):23763–23787, 2015.

[Col07] Tony J Collins. Imagej for microscopy. Biotechniques, 43(S1):S25–S30,
2007.

[CWK+13] Kwanghun Chung, Jenelle Wallace, Sung-Yon Kim, Sandhiya Kalyana-
sundaram, Aaron S Andalman, Thomas J Davidson, Julie J Mirzabekov,
Kelly A Zalocusky, Joanna Mattis, Aleksandra K Denisin, et al. Struc-
tural and molecular interrogation of intact biological systems. Nature,
497(7449):332–337, 2013.

112

https://d3js.org/
https://www.translucencebio.com/stitchy
https://www.translucencebio.com/stitchy
https://threejs.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

[CZP+18] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. Encoder-decoder with atrous separable convolution for
semantic image segmentation. In Proceedings of the European conference
on computer vision (ECCV), pages 801–818, 2018.

[dBAA+21] Ian H de Boer, Charles E Alpers, Evren U Azeloglu, Ulysses GJ Balis,
Jonathan M Barasch, Laura Barisoni, Kristina N Blank, Andrew S Bom-
back, Keith Brown, Pierre C Dagher, et al. Rationale and design of the
kidney precision medicine project. Kidney international, 99(3):498–510,
2021.

[DK91] Akio Doi and Akio Koide. An efficient method of triangulating equi-
valued surfaces by using tetrahedral cells. IEICE TRANSACTIONS on
Information and Systems, 74(1):214–224, 1991.

[Dun73] Joseph C Dunn. A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters. 1973.

[EBJ+12] Ali Ertürk, Klaus Becker, Nina Jährling, Christoph P Mauch, Caroline D
Hojer, Jackson G Egen, Farida Hellal, Frank Bradke, Morgan Sheng, and
Hans-Ulrich Dodt. Three-dimensional imaging of solvent-cleared organs
using 3disco. Nature protocols, 7(11):1983–1995, 2012.

[EBKdN] Clark Evans, Oren Ben-Kiki, and Ingy döt Net. Yaml. https://yaml.
org/. [accessed on 10/01/2025].

[EPF+24] Henry Ehlers, Daniel Pahr, Velitchko Filipov, Hsiang-Yun Wu, and Re-
nata G Raidou. Me! me! me! me! a study and comparison of ego network
representations. Computers & Graphics, 125:104123, 2024.

[F+02] Linton C Freeman et al. Centrality in social networks: Conceptual clarifi-
cation. Social network: critical concepts in sociology. Londres: Routledge,
1:238–263, 2002.

[FR91] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-
directed placement. Software: Practice and experience, 21(11):1129–1164,
1991.

[GAB+05] Ilya G Goldberg, Chris Allan, Jean-Marie Burel, Doug Creager, Andrea
Falconi, Harry Hochheiser, Josiah Johnston, Jeff Mellen, Peter K Sorger,
and Jason R Swedlow. The open microscopy environment (ome) data
model and xml file: open tools for informatics and quantitative analysis in
biological imaging. Genome biology, 6:1–13, 2005.

[GH97] Michael Garland and Paul S Heckbert. Surface simplification using quadric
error metrics. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 209–216, 1997.

113

https://yaml.org/
https://yaml.org/

[GJM+23] Soumya Ghose, Yingnan Ju, Elizabeth McDonough, Jonhan Ho, Arivarasan
Karunamurthy, Chrystal Chadwick, Sanghee Cho, Rachel Rose, Alex
Corwin, Christine Surrette, et al. 3d reconstruction of skin and spatial
mapping of immune cell density, vascular distance and effects of sun
exposure and aging. Communications Biology, 6(1):718, 2023.

[Gro] Khronos WebGL Working Group. Web graphics library (webgl). https:
//www.khronos.org/webgl/. [accessed on 02/01/2025].

[Gó] John Alexis Guerra Gómez. d3-force-boundary. https://github.com/
john-guerra/d3-force-boundary. [accessed on 10/01/2025].

[HBFM08] Ralph H Hruban, Kieran Brune, Noriyoshi Fukushima, and Anirban Maitra.
Pancreatic intraepithelial neoplasia. In Pancreatic Cancer, pages 41–51.
Springer, 2008.

[HCS10] Lifeng He, Yuyan Chao, and Kenji Suzuki. A run-based one-and-a-half-scan
connected-component labeling algorithm. International Journal of Pattern
Recognition and Artificial Intelligence, 24(04):557–579, 2010.

[HM] Anders Hejlsberg and Microsoft. Typescript. https://www.
typescriptlang.org/. [accessed on 10/01/2025].

[HOP96] H HOPPE. Progressive meshes, computer graphics. In Proc. SIGGRAPH
96, pages 99–108, 1996.

[HQN05] Qingmao Hu, Guoyu Qian, and Wieslaw L Nowinski. Fast connected-
component labelling in three-dimensional binary images based on iterative
recursion. Computer Vision and Image Understanding, 99(3):414–434,
2005.

[HRG+17] Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin Yao, and Yuyan Chao.
The connected-component labeling problem: A review of state-of-the-art
algorithms. Pattern Recognition, 70:25–43, 2017.

[HTH+21] Y He, X Tang, J Huang, J Ren, H Zhou, K Chen, A Liu, H Shi, Z Lin,
Q Li, et al. Clustermap for multi-scale clustering analysis of spatial gene
expression. nat. commun. 12, 5909, 2021.

[HuB19] HuBMAP Consortium. The human body at cellular resolution: the nih
human biomolecular atlas program. Nature, 574(7777):187–192, 2019.

[Inc] Kitware Inc. Vtk. https://vtk.org/. [accessed on 10/01/2025].

[JDL11] Radu Jianu, Cagatay Demiralp, and David H Laidlaw. Exploring brain
connectivity with two-dimensional neural maps. IEEE transactions on
visualization and computer graphics, 18(6):978–987, 2011.

114

https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
https://github.com/john-guerra/d3-force-boundary
https://github.com/john-guerra/d3-force-boundary
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://vtk.org/

[JHU] Institute for Nanobiotechnology John Hopkins University. Institute for
nanobiotechnology website. https://inbt.jhu.edu/. [accessed on
16/11/2024].

[JKW+21] Jared Jessup, Robert Krueger, Simon Warchol, John Hoffer, Jeremy Muh-
lich, Cecily C Ritch, Giorgio Gaglia, Shannon Coy, Yu-An Chen, Jia-Ren
Lin, et al. Scope2screen: Focus+ context techniques for pathology tumor
assessment in multivariate image data. IEEE transactions on visualization
and computer graphics, 28(1):259–269, 2021.

[JLSW02] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring
of hermite data. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 339–346, 2002.

[JPS+23] Sanjay Jain, Liming Pei, Jeffrey M Spraggins, Michael Angelo, James P
Carson, Nils Gehlenborg, Fiona Ginty, Joana P Gonçalves, James S Hagood,
John W Hickey, et al. Advances and prospects for the human biomolecular
atlas program (hubmap). Nature cell biology, 25(8):1089–1100, 2023.

[KBG+22] Ashley L Kiemen, Alicia M Braxton, Mia P Grahn, Kyu Sang Han,
Jaanvi Mahesh Babu, Rebecca Reichel, Ann C Jiang, Bridgette Kim,
Jocelyn Hsu, Falone Amoa, et al. Coda: quantitative 3d reconstruction
of large tissues at cellular resolution. Nature Methods, 19(11):1490–1499,
2022.

[Kca] Alex Kaszynski and community. fast-simplification. https://pyvista.
github.io/fast-simplification/. [accessed on 10/01/2025].

[Kcb] Tobias Knoppers and community. webpack. https://webpack.js.
org/. [accessed on 10/01/2025].

[KCÖ+22] Laura Kuett, Raúl Catena, Alaz Özcan, Alex Plüss, Peter Schraml, Holger
Moch, Natalie de Souza, and Bernd Bodenmiller. Three-dimensional
imaging mass cytometry for highly multiplexed molecular and cellular
mapping of tissues and the tumor microenvironment. Nature Cancer,
3(1):122–133, 2022.

[KCT08] Francine Kauffmann and Anne Cambon-Thomsen. Tracing biological
collections: between books and clinical trials. Jama, 299(19):2316–2318,
2008.

[KDB+23] Ashley L Kiemen, Alexander Ioannis Damanakis, Alicia M Braxton, Jin He,
Daniel Laheru, Elliot K Fishman, Patrick Chames, Cristina Almagro Pérez,
Pei-Hsun Wu, Denis Wirtz, et al. Tissue clearing and 3d reconstruction
of digitized, serially sectioned slides provide novel insights into pancreatic
cancer. Med, 4(2):75–91, 2023.

115

https://inbt.jhu.edu/
https://pyvista.github.io/fast-simplification/
https://pyvista.github.io/fast-simplification/
https://webpack.js.org/
https://webpack.js.org/

[KEC06] René Keller, Claudia M Eckert, and P John Clarkson. Matrices or node-link
diagrams: which visual representation is better for visualising connectivity
models? Information Visualization, 5(1):62–76, 2006.

[KGM+24] Mark S Keller, Ilan Gold, Chuck McCallum, Trevor Manz, Peter V
Kharchenko, and Nils Gehlenborg. Vitessce: integrative visualization
of multimodal and spatially resolved single-cell data. Nature Methods,
pages 1–5, 2024.

[KKG11] Paul AJ Kolarsick, Maria Ann Kolarsick, and Carolyn Goodwin. Anatomy
and physiology of the skin. Journal of the Dermatology Nurses’ Association,
3(4):203–213, 2011.

[KLS+17] Ethan Kerzner, Alexander Lex, Crystal Lynn Sigulinsky, Timothy Urness,
Bryan W Jones, Robert E Marc, and Miriah Meyer. Graffinity: Visualizing
connectivity in large graphs. In Computer Graphics Forum, volume 36,
pages 251–260. Wiley Online Library, 2017.

[KLV+18] Kimmo Kartasalo, Leena Latonen, Jorma Vihinen, Tapio Visakorpi, Matti
Nykter, and Pekka Ruusuvuori. Comparative analysis of tissue recon-
struction algorithms for 3d histology. Bioinformatics, 34(17):3013–3021,
2018.

[Lab] Sanjay Jain Lab. Sanjay jain lab website. https://www.
sanjayjainlab.org/. [accessed on 16/11/2024].

[LC98] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution
3d surface construction algorithm. In Seminal graphics: pioneering efforts
that shaped the field, pages 347–353. Association for Computing Machinery,
1998.

[LFSCS16] Jia-Ren Lin, Mohammad Fallahi-Sichani, Jia-Yun Chen, and Peter K
Sorger. Cyclic immunofluorescence (cycif), a highly multiplexed method
for single-cell imaging. Current protocols in chemical biology, 8(4):251–264,
2016.

[Lib] LibreTexts libraries. Gross anatomy of the kidney. https:
//bio.libretexts.org/Courses/Lumen_Learning/Anatomy_
and_Physiology_II_%28Lumen%29/11%3A_Module_9-_The_
Urinary_System/11.04%3A_Gross_Anatomy_of_the_Kidney.
[accessed on 14/11/2024].

[LL99] Joseph R Lakowicz and Joseph R Lakowicz. Introduction to fluorescence.
Principles of fluorescence spectroscopy, pages 1–23, 1999.

[Llo82] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

116

https://www.sanjayjainlab.org/
https://www.sanjayjainlab.org/
https://bio.libretexts.org/Courses/Lumen_Learning/Anatomy_and_Physiology_II_%28Lumen%29/11%3A_Module_9-_The_Urinary_System/11.04%3A_Gross_Anatomy_of_the_Kidney
https://bio.libretexts.org/Courses/Lumen_Learning/Anatomy_and_Physiology_II_%28Lumen%29/11%3A_Module_9-_The_Urinary_System/11.04%3A_Gross_Anatomy_of_the_Kidney
https://bio.libretexts.org/Courses/Lumen_Learning/Anatomy_and_Physiology_II_%28Lumen%29/11%3A_Module_9-_The_Urinary_System/11.04%3A_Gross_Anatomy_of_the_Kidney
https://bio.libretexts.org/Courses/Lumen_Learning/Anatomy_and_Physiology_II_%28Lumen%29/11%3A_Module_9-_The_Urinary_System/11.04%3A_Gross_Anatomy_of_the_Kidney

[Lon14] Daniel S Longnecker. Anatomy and histology of the pancreas (version 1.0).
Pancreapedia: The Exocrine Pancreas Knowledge Base, 2014.

[LPK+13] Alexander Lex, Christian Partl, Denis Kalkofen, Marc Streit, Samuel
Gratzl, Anne Mai Wassermann, Dieter Schmalstieg, and Hanspeter Pfister.
Entourage: Visualizing relationships between biological pathways using
contextual subsets. IEEE transactions on visualization and computer
graphics, 19(12):2536–2545, 2013.

[LT98] Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal
simplification. In Proceedings Visualization’98 (Cat. No. 98CB36276),
pages 279–286. IEEE, 1998.

[Mah19a] Vishy Mahadevan. Anatomy of the kidney and ureter. Surgery (Oxford),
37(7):359–364, 2019.

[Mah19b] Vishy Mahadevan. Anatomy of the pancreas and spleen. Surgery (Oxford),
37(6):297–301, 2019.

[Mat] Mathworks Inc. Matlab. https://mathworks.com/products/
matlab.html. [accessed on 14/11/2024].

[MBc] Charlie Marsh, Zanie Blue, and community. uv. https://github.com/
astral-sh/uv. [accessed on 10/01/2025].

[Mc] Meta and community. React. https://react.dev/. [accessed on
09/01/2025].

[MGP+22] Trevor Manz, Ilan Gold, Nathan Heath Patterson, Chuck McCallum,
Mark S Keller, Bruce W Herr, Katy Börner, Jeffrey M Spraggins, and Nils
Gehlenborg. Viv: multiscale visualization of high-resolution multiplexed
bioimaging data on the web. Nature methods, 19(5):515–516, 2022.

[MH07] Julio Martín-Herrero. Hybrid object labelling in digital images. Machine
Vision and Applications, 18(1):1–15, 2007.

[Mica] Carl Zeiss Microscopy. Zeiss light sheet 7. https://www.
zeiss.com/microscopy/de/produkte/lichtmikroskope/
lichtblattmikroskope/lightsheet-7.html. [accessed on
14/11/2024].

[Micb] Carl Zeiss Microscopy. Zeiss lsm 980 with airyscan 2. https://
www.zeiss.com/microscopy/de/produkte/lichtmikroskope/
konfokale-mikroskope/lsm-980-mit-airyscan-2.html. [ac-
cessed on 14/11/2024].

117

https://mathworks.com/products/matlab.html
https://mathworks.com/products/matlab.html
https://github.com/astral-sh/uv
https://github.com/astral-sh/uv
https://react.dev/
https://www.zeiss.com/microscopy/de/produkte/lichtmikroskope/lichtblattmikroskope/lightsheet-7.html
https://www.zeiss.com/microscopy/de/produkte/lichtmikroskope/lichtblattmikroskope/lightsheet-7.html
https://www.zeiss.com/microscopy/de/produkte/lichtmikroskope/lichtblattmikroskope/lightsheet-7.html
https://www.zeiss.com/microscopy/de/produkte/lichtmikroskope/konfokale-mikroskope/lsm-980-mit-airyscan-2.html
https://www.zeiss.com/microscopy/de/produkte/lichtmikroskope/konfokale-mikroskope/lsm-980-mit-airyscan-2.html
https://www.zeiss.com/microscopy/de/produkte/lichtmikroskope/konfokale-mikroskope/lsm-980-mit-airyscan-2.html

[Micc] Carl Zeiss Microscopy. Zen blue 3.3. https://www.zeiss.
com/microscopy/de/produkte/software/zeiss-zen.html. [ac-
cessed on 14/11/2024].

[MPB+19] G Elisabeta Marai, Bruno Pinaud, Katja Bühler, Alexander Lex, and
John H Morris. Ten simple rules to create biological network figures for
communication, 2019.

[MSa] Jeremy Maitin-Shepard. Neuroglancer. https://github.com/
google/neuroglancer. [accessed on 20/12/2024].

[MSb] Jeremy Maitin-Shepard. Neuroglancer precomputed format.
https://github.com/google/neuroglancer/tree/master/
src/datasource/precomputed. [accessed on 20/12/2024].

[MSOI+02] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. Network motifs: simple building blocks of
complex networks. Science, 298(5594):824–827, 2002.

[MZS+24] Liam McLaughlin, Bo Zhang, Siddharth Sharma, Amanda L Knoten, Mad-
hurima Kaushal, Jeffrey M Purkerson, Heidy Huyck, Gloria S Pryhuber,
Joseph P Gaut, and Sanjay Jain. Three dimensional multiscalar neurovas-
cular nephron connectivity map of the human kidney across the lifespan.
bioRxiv, pages 2024–07, 2024.

[Nat] National Cancer Institute. Human tumor atlas network. https://data.
humantumoratlas.org/. [accessed on 14/11/2024].

[NB21] Carl J Nelson and Stephen Bonner. Neuronal graphs: A graph theory
primer for microscopic, functional networks of neurons recorded by calcium
imaging. Frontiers in Neural Circuits, 15:662882, 2021.

[NM] Daniel Naber and Marcin Miłkowski. Languagetool. https://
languagetool.org/de. [accessed on 10/01/2025].

[NMSL19] Carolina Nobre, Miriah Meyer, Marc Streit, and Alexander Lex. The state
of the art in visualizing multivariate networks. In Computer Graphics
Forum, volume 38, pages 807–832. Wiley Online Library, 2019.

[NW] Chris Eppstein Natalie Weizenbaum. Syntactically awesome style sheets.
https://sass-lang.com/. [accessed on 10/01/2025].

[NWHL20] Carolina Nobre, Dylan Wootton, Lane Harrison, and Alexander Lex. Evalu-
ating multivariate network visualization techniques using a validated design
and crowdsourcing approach. In Proceedings of the 2020 CHI conference
on human factors in computing systems, pages 1–12, 2020.

118

https://www.zeiss.com/microscopy/de/produkte/software/zeiss-zen.html
https://www.zeiss.com/microscopy/de/produkte/software/zeiss-zen.html
https://github.com/google/neuroglancer
https://github.com/google/neuroglancer
https://github.com/google/neuroglancer/tree/master/src/datasource/precomputed
https://github.com/google/neuroglancer/tree/master/src/datasource/precomputed
https://data.humantumoratlas.org/
https://data.humantumoratlas.org/
https://languagetool.org/de
https://languagetool.org/de
https://sass-lang.com/

[Oc] Travis Oliphant and community. numpy. https://numpy.org/. [ac-
cessed on 10/01/2025].

[OC13] Ian D Odell and Deborah Cook. Immunofluorescence techniques. The
Journal of investigative dermatology, 133(1):e4, 2013.

[OTV21] John W Osborn, Roman Tyshynsky, and Lucy Vulchanova. Function of
renal nerves in kidney physiology and pathophysiology. Annual review of
physiology, 83(1):429–450, 2021.

[PB13] Bernhard Preim and Charl P Botha. Visual computing for medicine:
theory, algorithms, and applications. Newnes, 2013.

[Pc] Fernando Pérez and community. Jupyter. https://jupyter.org/.
[accessed on 10/01/2025].

[Pea01] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin philosophical magazine and
journal of science, 2(11):559–572, 1901.

[PGS+16] Christian Partl, Samuel Gratzl, Marc Streit, Anne Mai Wassermann,
Hanspeter Pfister, Dieter Schmalstieg, and Alexander Lex. Pathfinder:
Visual analysis of paths in graphs. In Computer Graphics Forum, volume 35,
pages 71–80. Wiley Online Library, 2016.

[PH17] Rory M Power and Jan Huisken. A guide to light-sheet fluorescence
microscopy for multiscale imaging. Nature methods, 14(4):360–373, 2017.

[Pli22] Guillaume Plique. Graphology, a robust and multipurpose graph object
for javascript. Zenodo. https://doi. org/10.5281/zenodo, 5681257, 2022.

[PNAM24] Fathima Jubina Pathari, Yvonne Nielsen, Liv Ingrid Andersen, and Geor-
gios Marentakis. Dark vs. light mode on smartphones: Effects on eye
fatigue. In ACHI 2024, The Seventeenth International Conference on
Advances in Computer-Human Interactions, pages 150–154, 2024.

[Pra23] Praveen Krishnamoorthy, Bo Zhang and Sanjay Jain. Three-dimensional
reconstruction of glomeruli from light sheet microscopy. https://
hubmapconsortium.org/image-of-the-week/, 2023. [accessed on
13/11/2024].

[PRL+10] Hanchuan Peng, Zongcai Ruan, Fuhui Long, Julie H Simpson, and Eu-
gene W Myers. V3d enables real-time 3d visualization and quantitative
analysis of large-scale biological image data sets. Nature biotechnology,
28(4):348–353, 2010.

[PS22] Marius Pachitariu and Carsen Stringer. Cellpose 2.0: how to train your
own model. Nature methods, 19(12):1634–1641, 2022.

119

https://numpy.org/
https://jupyter.org/
https://hubmapconsortium.org/image-of-the-week/
https://hubmapconsortium.org/image-of-the-week/

[PSC+19] Young-Gyun Park, Chang Ho Sohn, Ritchie Chen, Margaret McCue,
Dae Hee Yun, Gabrielle T Drummond, Taeyun Ku, Nicholas B Evans,
Hayeon Caitlyn Oak, Wendy Trieu, et al. Protection of tissue physico-
chemical properties using polyfunctional crosslinkers. Nature biotechnology,
37(1):73–83, 2019.

[QSB+11] Peng Qiu, Erin F Simonds, Sean C Bendall, Kenneth D Gibbs Jr, Robert V
Bruggner, Michael D Linderman, Karen Sachs, Garry P Nolan, and Sylvia K
Plevritis. Extracting a cellular hierarchy from high-dimensional cytometry
data with spade. Nature biotechnology, 29(10):886–891, 2011.

[RO] Nikita Rokotyan and Stukova Olya. Cosmograph. https://
cosmograph.app/. [accessed on 10/01/2025].

[Rob63] Charles J Robson. Radical nephrectomy for renal cell carcinoma. The
Journal of urology, 89(1):37–42, 1963.

[Roc] Matthew Rocklin. Dask. https://www.dask.org/. [accessed on
29/11/2024].

[Ros76] Azriel Rosenfeld. Digital picture processing. Academic press, 1976.

[RRRO+20] Orit Rozenblatt-Rosen, Aviv Regev, Philipp Oberdoerffer, Tal Nawy, Anna
Hupalowska, Jennifer E Rood, Orr Ashenberg, Ethan Cerami, Robert J
Coffey, Emek Demir, et al. The human tumor atlas network: charting
tumor transitions across space and time at single-cell resolution. Cell,
181(2):236–249, 2020.

[Sca] Nico Schlömer and community. meshio. https://github.com/
nschloe/meshio. [accessed on 10/01/2025].

[Scb] Chad Smith and community. pip. https://github.com/pypa/pipx.
[accessed on 10/01/2025].

[Scc] Bane Sullivan and community. pyvista. https://docs.pyvista.org/.
[accessed on 10/01/2025].

[Sco94] Roberto Scopigno. A modified look-up table for implicit disambiguation
of marching cubes. The visual computer, 10:353–355, 1994.

[Sil] William Silversmith. connected-components-3d. https://github.com/
seung-lab/connected-components-3d/tree/master. [accessed
on 10/01/2025].

[SP24] Carsen Stringer and Marius Pachitariu. Cellpose3: one-click image restora-
tion for improved cellular segmentation. bioRxiv, pages 2024–02, 2024.

120

https://cosmograph.app/
https://cosmograph.app/
https://www.dask.org/
https://github.com/nschloe/meshio
https://github.com/nschloe/meshio
https://github.com/pypa/pipx
https://docs.pyvista.org/
https://github.com/seung-lab/connected-components-3d/tree/master
https://github.com/seung-lab/connected-components-3d/tree/master

[SPL24] Roberto M. Soriano, Dana Penfold, and Stephen W. Leslie. Anatomy,
Abdomen and Pelvis: Kidneys. In StatPearls. StatPearls Publishing,
Treasure Island (FL), 2024.

[SSKB14] Bahador Saket, Paolo Simonetto, Stephen Kobourov, and Katy Börner.
Node, node-link, and node-link-group diagrams: An evaluation. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2231–2240,
2014.

[STAHAR18] Anas M Saad, Tarek Turk, Muneer J Al-Husseini, and Omar Abdel-
Rahman. Trends in pancreatic adenocarcinoma incidence and mortality in
the united states in the last four decades; a seer-based study. BMC cancer,
18:1–11, 2018.

[STP+14] Etsuo A Susaki, Kazuki Tainaka, Dimitri Perrin, Fumiaki Kishino, Takehiro
Tawara, Tomonobu M Watanabe, Chihiro Yokoyama, Hirotaka Onoe,
Megumi Eguchi, Shun Yamaguchi, et al. Whole-brain imaging with single-
cell resolution using chemical cocktails and computational analysis. Cell,
157(3):726–739, 2014.

[SVAB+18] Dirk Schadendorf, Alexander CJ Van Akkooi, Carola Berking, Klaus G
Griewank, Ralf Gutzmer, Axel Hauschild, Andreas Stang, Alexander
Roesch, and Selma Ugurel. Melanoma. The Lancet, 392(10151):971–984,
2018.

[SWMP21] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu.
Cellpose: a generalist algorithm for cellular segmentation. Nature methods,
18(1):100–106, 2021.

[Sza15] Fred Szabo. The linear algebra survival guide: illustrated with Mathematica.
Academic Press, 2015.

[TKS+14] Kazuki Tainaka, Shimpei I Kubota, Takeru Q Suyama, Etsuo A Susaki,
Dimitri Perrin, Maki Ukai-Tadenuma, Hideki Ukai, and Hiroki R Ueda.
Whole-body imaging with single-cell resolution by tissue decolorization.
Cell, 159(4):911–924, 2014.

[Tur94] Greg Turk. The ply polygon file format. Recuperado de, 1994.

[TWC+23] Jakob Troidl, Simon Warchol, Jinhan Choi, Jordan Matelsky, Nagaraju
Dhanyasi, Xueying Wang, Brock Wester, Donglai Wei, Jeff W Lichtman,
Hanspeter Pfister, et al. Vimo-visual analysis of neuronal connectivity
motifs. IEEE transactions on visualization and computer graphics, 2023.

[TZCO09] Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or. Curve skeleton
extraction from incomplete point cloud. In ACM SIGGRAPH 2009 papers,
pages 1–9. Association for Computing Machinery, 2009.

121

[VCI20] Ivan Viola, Min Chen, and Tobias Isenberg. Visual abstraction. Foundations
of data visualization, pages 15–37, 2020.

[vdWc] Stéfan van der Walt and community. scikit-image. https://
scikit-image.org/. [accessed on 10/01/2025].

[VPR21] Alba Vieites-Prado and Nicolas Renier. Tissue clearing and 3d imaging in
developmental biology. Development, 148(18):dev199369, 2021.

[vRC] Raoul van Rueschen and Ricardo Cabello. Post processing three.js. https:
//github.com/pmndrs/postprocessing. [accessed on 10/01/2025].

[W+01] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice
hall Upper Saddle River, 2001.

[WHC+12] Pei-Hsun Wu, Christopher M Hale, Wei-Chiang Chen, Jerry SH Lee, Yiider
Tseng, and Denis Wirtz. High-throughput ballistic injection nanorheology
to measure cell mechanics. Nature protocols, 7(1):155–170, 2012.

[WKN+22] Simon Warchol, Robert Krueger, Ajit Johnson Nirmal, Giorgio Gaglia,
Jared Jessup, Cecily C Ritch, John Hoffer, Jeremy Muhlich, Megan L
Burger, Tyler Jacks, et al. Visinity: Visual spatial neighborhood analysis
for multiplexed tissue imaging data. IEEE transactions on visualization
and computer graphics, 29(1):106–116, 2022.

[WOS09] Kesheng Wu, Ekow Otoo, and Kenji Suzuki. Optimizing two-pass
connected-component labeling algorithms. Pattern Analysis and Applica-
tions, 12:117–135, 2009.

[WWL+18] Mingqiang Wei, Qiong Wang, Yichen Li, Wai-Man Pang, Luming Liang,
Jun Wang, Kelvin Kian Loong Wong, Derek Abbott, Jing Qin, and Jian-
huang Wu. Centerline extraction of vasculature mesh. IEEE access,
6:10257–10268, 2018.

[YNZ+24] Clarence Yapp, Ajit J Nirmal, Felix Zhou, Zoltan Maliga, Juliann B Tefft,
Paula Montero Llopis, George F Murphy, Christine G Lian, Gaudenz
Danuser, Sandro Santagata, et al. Multiplexed 3d analysis of immune
states and niches in human tissue. bioRxiv, 2024.

[YSD+19] Chun-Hung Yeh, Robert E Smith, Thijs Dhollander, Fernando Calamante,
and Alan Connelly. Connectomes from streamlines tractography: Assigning
streamlines to brain parcellations is not trivial but highly consequential.
Neuroimage, 199:160–171, 2019.

[YZHSO16] Bahia Yahya-Zoubir, Latifa Hamami, Llies Saadaoui, and Rafik Ouared.
Automatic 3d mesh-based centerline extraction from a tubular geometry
form. Information Technology and Control, 45(2):156–163, 2016.

122

https://scikit-image.org/
https://scikit-image.org/
https://github.com/pmndrs/postprocessing
https://github.com/pmndrs/postprocessing

[ZHYC15] Xiao Zhao, Lifeng He, Bin Yao, and Yuyan Chao. A new connected-
component labeling algorithm. IEICE TRANSACTIONS on Information
and Systems, 98(11):2013–2016, 2015.

[Zim11] Carl Zimmer. 100 trillion connections. Scientific American, 304(1):58–61,
2011.

[ZXYQ13] Hong Zhou, Panpan Xu, Xiaoru Yuan, and Huamin Qu. Edge bundling in
information visualization. Tsinghua Science and Technology, 18(2):145–156,
2013.

123

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Definition
	Aim of the Work
	Contribution
	Outline

	Clinical Background
	Relevant Biology
	3D Reconstruction Techniques
	Used Data

	Related Work
	Visualization at Cell Resolution
	Connectivity Abstraction
	Network Visualization
	Summary

	Application Design
	Application Overview
	Mesh Generation
	Network Generation
	Visualization
	Interactive Mechanisms

	Implementation
	Implementation Overview
	Connectivity Network Generator
	Web Application

	Results
	Innervation of the PanIN
	Melanoma Cells
	Case Study: Glomeruli Interconnectivity
	Critical Review

	Conclusion and Future Work
	Summary
	Limitations
	Future Work

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Listings
	Glossary
	Acronyms
	Bibliography

