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Abstract

This thesis investigates the thermal behavior of revolving steel belts, with a special emphasis
on induction heating. These systems play a critical role in industrial applications such as food
processing, chemical manufacturing, or paper production.

To analyze the thermal effects, numerical simulations based on the finite element method (FEM)
are employed. The primary challenge lies in efficiently modeling the coupled interaction of elec-
tromagnetic, mechanical, and thermal fields to predict temperature distributions and deforma-
tion patterns. The focus of this work lies in the investigation of the influence of a belt’s motion
and deformation on the temperature field.

By solving Laplace’s equation for the velocity potential, a correction approach is used to refine
velocity fields in deformed sheets. Additionally, a practical error estimation method is proposed
to predict average temperature errors without the need for explicit solutions of the corrected
and uncorrected problem.

A parameter study on a two-dimensional (2D) model quantifies the influence of deformation and
speed on temperature errors, with findings validated through a fully coupled three-dimensional
(3D) simulation incorporating electromagnetic heating, mechanical deformation, and thermal
conduction. The results demonstrate the impact of velocity corrections on thermal accuracy.

Kurzfassung

In dieser Arbeit wird das thermische Verhalten von umlaufenden Stahlbändern untersucht, wo-
bei ein besonderer Schwerpunkt auf der Induktionserwärmung liegt. Diese Systeme spielen eine
entscheidende Rolle in industriellen Anwendungen wie der Lebensmittelverarbeitung, der che-
mischen Produktion oder der Papierherstellung.

Zur Analyse des thermischen Verhaltens werden numerische Simulationen auf der Grundlage
der Finite-Elemente-Methode (FEM) durchgeführt. Die größte Herausforderung besteht darin,
die gekoppelte Interaktion von elektromagnetischen, mechanischen und thermischen Feldern
effizient zu modellieren, um Temperaturverteilungen und Verformungsmuster vorherzusagen.
Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung der Wechselwirkung zwischen der
Bewegung und Verformung des Bandes und dem Temperaturfeld.

Durch die Lösung der Laplace-Gleichung für das Geschwindigkeitspotenzial wird ein Korrektur-
ansatz zur Verfeinerung der Geschwindigkeitsfelder in deformierten Blechen verwendet. Darüber
hinaus wird eine praktische Methode zur Fehlerabschätzung vorgeschlagen, um durchschnittliche
Temperaturfehler vorherzusagen, ohne dass explizite Lösungen des korrigierten und unkorrigier-
ten Problems erforderlich sind.

Eine Parameterstudie an einem zweidimensionalen (2D) Modell quantifiziert den Einfluss von
Verformung und Geschwindigkeit auf Temperaturfehler, wobei die Ergebnisse durch eine voll-
ständig gekoppelte dreidimensionale (3D) Simulation unter Einbeziehung von elektromagneti-
scher Erwärmung, mechanischer Verformung und Wärmeleitung validiert werden. Die Ergebnis-
se zeigen den Einfluss von Geschwindigkeitskorrekturen auf das Temperaturfeld.
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Notation

Symbols

a m Inductor coil leg/beam width
α Wm−2K−1 Heat transfer coefficient
b m Belt/sheet width
C Tuning/weighting parameter
CJ Joule loss width factor
Ctb Top and bottom curve of slice
c m−1 Exponential factor
cp Jm−3K−1 Isobaric heat capacity
ΔT K Velocity-related temperature error
ΔT̄ K Velocity-related temperature (averaged over cross-section)
ΔTc,tb K Top-bottom temperature difference (corrected case)
ΔTu,tb K Top-bottom temperature difference (uncorrected case)
ΔT̃tb K Approximation of ΔTtb
ΔTtop/bot K Temperature error on top or bottom surface/curve
ΔT̄out K Temperature error averaged over outflow boundary
Δx m Distance, error section length
Δxm m Length of m-th error section
E J Energy
fu Error forcing
Fu,m Km−1 Section error contribution
h m Belt/sheet thickness
k Wm−1K−1 Thermal conductivity
κ m2 s−1 Diffusion coefficient
L m Domain or sheet length
LB m Belt length
LD m Characteristic diffusion length
Ψ Velocity potential
ρ kg/m3 Density
Pe Peclet number
Q̇ W Heat flux
q̇ W/m3 Power density
q̇J W/m3 Joule losses
St Stanton number
t s Time
T K Temperature
T∞ K Ambient temperature
Tc K Corrected temperature
Tu K Uncorrected temperature
Tin K Inflow temperature
Tout K Outflow temperature
Θm Step function for error section
x̃ Normalized coordinate
U J Internal energy
v0 m/s Belt speed
w m Displacement in z-direction
w′ := dw

dx Displacement derivative
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x m Cartesian coordinate
ys m Position of cross-section/slice
Ω Domain
∂Ω Domain boundary
ΩB Belt domain
Ωs Sheet domain
Ω+

s Adjacent sheet domain (downstream)
Ω−

s Adjacent sheet domain (upstream)
∂Ω Domain boundary
Γbot Bottom boundary
Γin Inflow boundary
Γout Outflow boundary
Γtop Top boundary
C Pa Stiffness tensor
f Nm−3 Force density
q Wm−2 Heat flux density
t Nm−2 Traction forces
v m/s Velocity
vu m/s Uncorrected velocity
vc m/s Corrected velocity
x m Coordinate vector
e Unit vector
n Normal vector

Operators

∂xi(·) Partial derivative
d
dx(·) = (·)′ Spatial derivative
|·| Absolute value
maxx (·) Maximum operator w.r.t x variable
(̂·) (Estimated) peak value
∇ Gradient
(̄·) Spatial (surface/curve) average

Acronyms

CFD Computational Fluid Mechanics
FE/FEM Finite Element (Method)
FSI Fluid Structure Interaction
FVM Finite Volume Method
PDE Partial Differential Equation
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1 Introduction

Due to their versatility, industrial steel belt systems find applications in a variety of industries.
In many processes, for example in paper- or food production, it is crucial to not only trans-
port material, but to also tightly control heat and temperature along the belt. A particularly
interesting solution, is to directly heat a steel belt via induction heating, see Figure 1.1.

Top Sheet

Drum (Pulley)

Figure 1.1: Overview of a steel belt with induction heating. The belt with velocity v(x) is driven
by a drum rotating with angular velocity ω. The most important dimensions are
width b, thickness h, drum (or pulley) distance ΔxD and diameter D.

In inductive belt heating, an inductor is driven by an alternating current to create a magnetic
field. This induces eddy currents in the sheet which are dissipated as Joule losses that heat
up the belt sheet. Inductive heating has some advantages over conventional methods such as
hot-air fans. For one, higher efficiencies may be reached, and no direct contact is needed. Also,
high energy densities make it possible to quickly heat up material. However, this poses some
challenges too: due to these drastic temperature gradients, significant deformations and even
buckling phenomena may occur. Such downsides can be mitigated by providing the design
engineers with precise, efficient and practical simulation methods.

To simulate a belt, the problem is modelled mathematically using coupled partial differential
equations (PDEs). This mathematical model of the system must be solved numerically. In the
context of inductive belt heating, three primary physical fields are involved: the electromagnetic
(EM) field, the mechanical field, and the thermal (temperature) field. The finite-element method
(FEM) is a widely used technique for simulating such coupled multi-physics problems [5].

This work builds on previous contributions [7, 3], and investigates an improved method to
simulate the thermal field for deforming belts.

For this, the following approach to model a belt with induction heating is used, see Figure 1.2
and Figure 1.3:

• Mechanical Problem: The belt’s top sheet, is modelled using shell elements [12] and is
assumed to be quasi-static.
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• Electromagnetic (EM) Problem: To avoid an expensive transient simulation of the
EM field, a method that leverages the faster dynamics of the EM problem compared to
the thermal or mechanical problems is used [7, 8]. Detailed information can be found in
the cited resources.

• Thermal Problem: The thermal problem is modelled using the steady-state heat con-
duction equation for a moving sheet. To capture temperature variations through the
thickness, 3D elements are employed.

• Coupling: The temperature field is forward-coupled to the shell model. External loads
and thermal expansion cause deformations in the shell model, which are then applied to the
3D grids of the EM and thermal problems by solving a grid smoothing problem. This work
introduces and investigates an additional step to adapt the velocity field to the deformed
geometry.

Shell FEM

Heat FEM

Grid Update
Mechanical 

BCs

Shell Mesh

3D Mesh

3D Mesh

Thermal
BCs

Belt Speed

Velocity 
Correction

EM FEMElectromagnetic BCs

EM Sub-Problem

Mechanical Sub-Problem

Thermal Sub-Problem

Figure 1.2: Overview of the coupling approach used in this work. The focus of this work lies in
the thermal sub-problem. An additional step is introduced to correct the velocity
field for deformation.

Thermal Domain (3D)

EM Domain (3D)

Mechanical Domain (Shell)

Figure 1.3: Sketch of a belt’s top sheet model. The mechanical domain consists of shell elements.
The thermal and EM domains are modelled using 3D elements, and share the same
grid for the sheet.
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Using this framework, this work aims to improve the accuracy of the thermal sub-problem by
investigating an enhanced coupling between the mechanical and thermal sub-problems.

For a straight, undeformed sheet, the velocity is a simple unidirectional vector field. However,
as the sheet deforms, the velocity field must be corrected accordingly. This correction involves
solving a Laplace equation for the velocity potential. Neglecting this correction results in a
spurious energy flux through the bounding surfaces of the belt’s sheet, leading to a temperature
error. However, this additional computational step increases the simulation cost, especially in a
coupled, potentially non-linear problem, as it accumulates at every iteration. Depending on the
magnitude of the temperature error, this cost may not always be justified. The goal of this work
is to investigate the necessity and implications of the velocity correction on the temperature
field.

After introducing the governing equations, the temperature fields for both constant velocity
(uncorrected) and conforming velocity (corrected) cases are compared using energy balances.
The discrepancy between these temperature fields is termed the velocity-related temperature
error. An expression for the thickness-averaged velocity-related temperature error is derived,
revealing that this error is significant only in regions with substantial through-the-thickness
temperature variations. Based on this insight, a practical method is proposed to estimate the
thickness-averaged velocity-related temperature error for specific sections of a belt sheet. This
method utilizes peak temperature and deformation differences. These theoretical findings are
then compared in a numerical experiment using a simple single-field 2D model. Finally, the
methods are applied in a more realistic coupled magnetic-thermo-mechanical simulation of a
sheet with induction heating.
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2 Governing Equations

In this chapter, the governing equations for the thermal problem are presented.

First, the heat conduction PDE for a moving sheet is derived, resulting in a convection-diffusion
equation with an additional velocity term. Since all involved PDEs in this work are solved using
the finite element method, the process of discretizing the weak form using the Galerkin method
is demonstrated.

In the second part of the chapter, the method for correcting the velocity field for a deformed
sheet is presented. The assumptions lead to Laplace’s equation, which is also briefly examined.

2.1 Heat Conduction

This section derives the heat conduction equation for a moving sheet. The classical heat con-
duction equation is derived from the first law of thermodynamics, which states the conservation
of energy as

dU

dt
= Q̇(t) + P (t), (2.1)

where U is the internal energy, Q̇ is the heat supply, and P is the mechanical power. In this
work, the mechanical power term is assumed to be negligible compared to the heat supply and
can be omitted.

In a continuum formulation, these quantities relate to an infinitesimal material element ρdΩ.
The internal energy is given by

U =

�
Ω
ρu dΩ, (2.2)

where u is the specific internal energy.

The heat supply is expressed as

Q̇ =

�
Ω
q̇ dΩ−

�
∂Ω

q · n dΓ, (2.3)

where q̇ represents a power density and q denotes heat fluxes on the domain interface.

Applying Reynolds’ transport theorem to account for the belt’s motion, the following equation
is obtained

dU

dt
=

d

dt

�
Ω(t)

ρcpT dΩ =

�
Ω
∂tρcpT dΩ+

�
∂Ω

ρcpTv · n dΓ, (2.4)
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where v is the velocity of the domain.

This leads to the global heat balance for a moving body

�
Ω
∂tρcpT dΩ+

�
∂Ω

ρcpTv · n dΓ =

�
Ω
q̇ dΩ−

�
∂Ω

q · n dΓ. (2.5)

Using the global heat balance, the convection-diffusion equation can now be derived.

2.1.1 The Convection-Diffusion Equation

With the help of the divergence theorem, the global heat balance (2.5) can be stated as�
Ω
(∂tρcpT +∇ · (ρcpTv)− q̇ +∇ · q)dΩ = 0, (2.6)

which yields the local heat balance

∂tρcpT +∇ · (ρcpTv) = q̇ −∇ · q. (2.7)

The velocity term can be split into two contributions

∇ · (ρcpTv) = ρcp(v · ∇T ) + ρcpT (∇ · v), (2.8)
where for an incompressible body, the condition

∇ · v = 0, (2.9)

is fulfilled and only the following term remains

∇ · (ρcpTv) = ρcp(v · ∇T ). (2.10)

Inside the body the heat flux q is due to heat conduction, which is described by Fourier’s law

q = −k∇T, (2.11)

where k is the thermal conductivity. For materials that show non-isotropic behavior, for example
wood or graphite, k is a second-order tensor. In this work, only homogenous, isotropic materials,
are considered, reducing k to a scalar. Moreover, as a simplification, k is set constant, and
temperature dependence is neglected.

Now, by plugging (2.11) into (2.7), the convection-diffusion equation1 can be found. This PDE
describes the heat conduction problem inside an incompressible, moving material domain. For
space and time-independent density and conductivity, it reads

∂T

∂t
+ v · ∇T − κ∇2T =

1

ρc
q̇, (2.12)

where the thermal diffusivity is defined as

κ = k/(ρc). (2.13)

The heat conduction inside the body is coupled to its surroundings via boundary conditions
(BCs). There are three types considered2 here:

1Also known as advection-diffusion equation.
2Radiative heat transfer will be neglected, as this is more relevant to very high temperature applications.
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• Prescribed temperature Te on Γe (Dirichlet BC)

• Prescribed heat flux qn on Γn (Neumann BC)

• Heat transfer with a surrounding fluid on Γα. This is typically modelled as,

q · n = α(T − T∞), (2.14)

where α is the heat transfer coefficient and T∞ a reference temperature3.

For this work, it was assumed that α is in the range of 1W/(m2K) to 100W/(m2K), which are
realistic average values for a moving plate at the investigated speeds, without additional draft.

It is important to note that the processes on the fluid-solid interface can be very complex. A
significant portion of the heat and mass transfer literature focuses on accurately calculating the
heat transfer coefficient. For gaseous fluids, [10] provides a range of 2W/(m2K) to 25W/(m2K)
for natural convection and up to 250W/(m2K) for forced convection. To accurately calculate
the heat transfer coefficient for an industrial steel belt, the precise setup would need to be
known. Even then, according to [1], an error of 25% is typical in engineering calculations of α.
For example, a side draft from a fan or adjacent devices may significantly influence the local
heat transfer coefficient. Additionally, the moving and possibly deforming belt may itself cause
perturbations in the surrounding airflow, further complicating the heat transfer.

Apart from the boundary conditions, the induction heating itself can be captured using a volume
coupling with the Joule losses, expressed as

q̇J = J ·E, (2.15)

where J is the electric current density and E the electric field intensity.

2.1.2 Classification and Fundamental Properties

To inspect some fundamental aspects of the convection-diffusion equation, it is useful to bring
the equation into a dimensionless form, which can be obtained as

∂T̃

∂t̃
+ ṽ · ∇̃T̃ − Pe−1∇̃2T̃ = ˜̇q, (2.16)

where the definition of the Peclet number

Pe :=
vl

κ
, (2.17)

with characteristic length l and velocity v was introduced.

The Peclet number shows the relation between the convective and the diffusive term. The
problem is said to be convection dominant if

Pe ≫ 1. (2.18)

Likewise, diffusion dominance is observed if

Pe ≪ 1. (2.19)

In a two- or three-dimensional problem, the Peclet number is typically direction-dependent. In
the case of the axially moving sheet, it can be said that, in the direction of motion, the problem

3In a belt application this is typically the room or ambient temperature of the surrounding air.
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becomes quickly convection-dominant, even at low speeds, and the first-order terms dominate.
However, in the direction normal to the bulk motion, i.e., in the thickness direction, the diffusive
term cannot be neglected.

In general, the stationary convection-diffusion equation presents a location-dependent mixture
of elliptic and hyperbolic behavior, as shown in Table 2.1. More detailed treatments can be
found in the extensive literature on this topic, for example [13, 14].

Time-dependence Pe ≪ 1 Pe ≫ 1

Instationary Parabolic Hyperbolic
Stationary Elliptic Hyperbolic

Table 2.1: Dominant classification of the convection-diffusion equation.

2.1.3 Weak Form of the Steady-State Problem

To obtain the weak formulation from the strong formulation of a problem, a PDE is multiplied by
a test function4 T ′ and integrated over the domain. Using the steady-state convection-diffusion
equation (2.12), again with general flux, this reads�

Ω
T ′(v · ρcp∇T +∇ · q − q̇)dΩ = 0. (2.20)

The next step towards a weak formulation is to incorporate the boundary conditions with the
help of appropriate integral theorems.

For the second term in (2.20), this yields�
Ω
T ′(v · ρcp∇T )dΩ = ρcp

�
∂Ω

T ′(vT · n)dΓ− ρcp

�
Ω
∇T ′ · (vT )dΩ, (2.21)

where the divergence theorem (see e.g. Appendix in [5]) was used. The boundary integrals on
∂Ω can be further split over a finite set of non-overlapping subdomains. In practice, there may
be many subdomains, reflecting a complicated set of boundary conditions. However, from a
general point of view, there exist only two types:

• Essential Boundary Conditions on region Γe:

Here, the primary unknown T is explicitly enforced. These are identically fulfilled via the
use of an appropriate function space.

• Natural Boundary Conditions on region Γn:

On these, a relation to a derivative of T is given – for example, a flux. This type of
condition is enforced via the integrals in the weak form.

Thus, by splitting the boundary into an essential and natural part ∂Ω = Γn ∪ Γe, the following
contribution of the second term in (2.20) remains:�

Ω
T ′(v · ρcp∇T )dΩ = ρcp

�
Γn

T ′(vT · n)dΓ− ρcp

�
Ω
∇T ′ · (vT )dΩ. (2.22)

4The test function needs to satisfy the boundary conditions but is otherwise arbitrarily chosen.
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Analogously, the flux term in (2.20) results in�
Ω
T ′(∇ · q)dΩ =

�
∂Ω

T ′(q · n)dΓ−
�
Ω
∇T ′ · qdΩ. (2.23)

Again, using Fourier’s law (2.11) within the domain, yields�
Ω
∇T ′ · qdΩ = −

�
Ω
∇T ′ · k∇TdΩ, (2.24)

and for the boundary term, a heat transfer BC, can be incorporated as well�
∂Ω

T ′(q · n)dΓ =

�
Γα

T ′α(T − T∞)dΓ +

�
Γn

T ′qndΓ, (2.25)

resulting in �
Ω
T ′(∇ · q)dΩ =

�
Γα

T ′α(T − T∞)dΓ

+

�
Γn

T ′qndΓ +

�
Ω
∇T ′ · k∇TdΩ.

(2.26)

Collecting (??) and (2.26) the weak form can be stated as:

Definition 1 (Weak Steady-State Convection-Diffusion Problem). Given the incompressible
velocity field

v(x) : Ω̄ → Ω̄. (2.27)

Find the temperature field T (x), such that for all test functions T ′ the equation

ρcp

�
Ω
∇T ′ · [k/(ρcp)∇T − vT ]dΩ+ ρcp

�
Γn

T ′(vT · n)dΓ

+

�
Γα

T ′α(T − T∞)dΓ =

�
Ω
T ′q̇dΩ−

�
Γq

T ′qndΓ
(2.28)

is satisfied.

2.1.4 Galerkin Discretization

Both, the weak and strong formulation, are infinite-dimensional problems. To arrive at a finite-
dimensional approximation, the following ansatz is made

T h = Te +

neq�
a=1

Na(x)Ta(t) ≈ T, (2.29)

where Te is a function satisfying the essential boundary condition on Γe, h is a discretization
parameter, Na are shape functions5, which are scaled by neq unknown coefficients Ta. Moreover,
the function Te too, is approximated as

Te =

ne�
b=1

Nb(x)Teb(t), (2.30)

5Also known as basis or interpolation functions.
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with ne known coefficients Teb and shape functions Nb.

Also, a finite approximation of the test function T ′h ≈ T ′ has to be defined. In the classical
Galerkin method the same ansatz as for the primary unknown T is used. However, doing so is not
strictly necessary and other variants exist. These are referred to as Petrov-Galerkin methods [4].
Because the classical Galerkin method can lead to instabilities in convection-diffusion problems,
alternatives within the Petrov-Galerkin framework have been established [2, 14]. Because in this
work no stability issues were encountered, these methods are not further discussed here.

Now, to obtain a system of equations, both T h and T ′h are plugged into the weak formulation.
Because this equation has to hold for any test function, neq linear-independent equations can
be found. Switching to matrix notation for the unknowns Ti,

T = [T1, T2, · · · , Ti, · · · , Teq]
T , (2.31)

the following linear system can be found

KT = f , (2.32)

with thermal stiffness matrix K and forcing vector f .

These global system matrices/vectors are constructed from the following entries

K = [K]ij =

�
Ω
∇Ni · vNjρcp +∇Ni · k · ∇NjdΩ+

�
Γα

NiNjαdΓ (2.33)

f = [f ]i =

�
Ω
Niq̇dΩ−

�
Γq

NiqndΓ +

�
Γα

αT∞dΓ

−
ne�
b=1

{
�
Ω
∇Ni · k · ∇Nb −∇Ni · vNb(ρcp)dΩTeb},

(2.34)

which can be constructed in a procedural manner from the local contributions of finite elements.
For a detailed treatment, refer to rich literature on the FEM, e.g., [5, 4, 15].

2.2 Velocity Correction and Laplace’s Equation

In the preceding sections it was shown how the heat conduction problem for a moving body
can be formulated in a space-fixed, or Eulerian, reference system. Then, the belt’s motion is
captured via an additional velocity term. The question remains how the velocity term for a
deformed sheet can be calculated. In the case that a sheet is perfectly straight, i.e., with zero
curvature, it can be assumed that the velocity is uniform and unidirectional, refer to Figure 2.1.

In this idealized case, the undeformed top-sheet’s velocity would be simply given by

v = v0ex, (2.35)

where v0 is the (reference) belt speed, related to the drum’s angular velocity. However, when the
sheet is deformed, this uniform velocity field no longer applies, and adjustments are necessary
to account for the deformed geometry.

A possible way to achieve this is presented in the following. First, the following assumptions are
made about the velocity field:

9



top sheet

bottom sheet

Figure 2.1: Illustration of an idealized belt drive. In practice, the top and bottom sheet may be
significantly deformed depending on the specific configuration, the applied external
forces and the amount of pre-tension.

1. The incompressibility condition, which was already used for the derivation of the convection-
diffusion equation, has to be fulfilled.

2. The velocity field has to be irrotational, i.e.,

∇× v = 0. (2.36)

Using both conditions yields Laplace’s equation

∇ · v = ∇ · ∇Ψ = ∇2Ψ = 0, (2.37)

where Ψ is the velocity potential. In the context of fluid mechanics, this describes a well-studied
class of flows, known as potential flows [6].

To set the boundary conditions, the additional assumption is made that the velocity is always
tangential to the reference plane of the shell, see Figure 2.2.

Thermal Domain (3D)

Simulation Domain

Shell Domain

Figure 2.2: Coupling of the mechanical problem (shell domain) and the thermal problem.

Then, the boundary conditions can be set as follows, see Figure 2.3.

• On the inflow boundary Γin of the sheet it is assumed that ∇Ψ · n = −v0.

• On the tangential boundaries (top, bottom, left, right) the velocity may be tangential
∇ψ · n = 0, which is the natural BC.

• On the outflow boundary Γout the potential is fixed (Dirichlet BC).

10



Figure 2.3: Boundary conditions for Laplace’s equation

The boundary conditions on Γin and Γout can also be swapped. In that case, ∇Ψ ·n = v0 should
be set on Γout.

Similar to the convection-diffusion problem, a weak formulation can be obtained from the strong
form. Again, the problem’s PDE (2.37) is multiplied with a test function Ψ′ and integrated over
the whole domain �

Ω
Ψ′∇2ΨdΩ = 0, (2.38)

Next, the boundary conditions are incorporated in (2.38), by using Green’s first identity6�
Ω
∇Ψ′∇ΨdΩ = −

�
Γin

Ψ′v0dΓ. (2.39)

From the weak form, again a linear static system can be found using Galerkin’s method. As
this was already presented in detail for the convection-diffusion equation this will be omitted
here.

6Refer to the Appendix in [5].
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3 Velocity-Related Temperature Error in
Deformed Sheets

The goal of this chapter is to compare the temperature field of a deformed sheet under two
different velocity assumptions. In the first case, the uncorrected scenario, a constant velocity is
incorrectly assumed as input for the heat conduction problem. In the second case, the corrected
scenario, a conforming velocity is assumed. This is the case when applying the additional
correction step, presented in section 2.2.

To understand the effects of different velocity fields on the temperature distribution, a straight-
forward approach is to compute both cases for a specific simulation problem and then compare
the resulting temperature fields. However, to gain a more general understanding of the differ-
ences between the two cases, another approach is followed here: both cases are investigated on a
relatively general setup using energy balances. Next, this result is simplified for a cross-section
in the longitudinal direction. This yields a simple expression that relates the thickness-averaged
temperature error with deformation and the difference between the top and bottom surfaces.
Then, a scenario is considered where this temperature difference acts only on limited sections
of a sheet. Outside these critical sections, the thickness-averaged temperature error remains
constant. Using this assumption, a simple expression is derived to relate peak temperature
difference and deformation on such sections to the accumulated thickness-averaged temperature
error.

3.1 Comparison of Energy-Balances for 3D Problem

To investigate the corrected and uncorrected case for a relatively general thermal belt simulation,
the following model is proposed here, refer to Figure 3.1.

The following assumptions are made for both cases:

• The inflow temperatures are equal and fixed to Tin(y, z) (Dirichlet BC).

• A general Neumann BC is applied �
Γn

qndΓ. (3.1)

• A general volumetric power density is applied�
Ω
q̇dΩ. (3.2)

• Heat transfer on top- and bottom surfaces, with heat transfer coefficient α and ambient
temperature T∞; side surfaces are neglected (thin sheet).

• Additionally, it is assumed that the in- and outflow boundaries are parallel to the y-z
plane.

Now, the two cases differ as follows:

12



Detail A

Detail A
Uncorrected

Corrected

Figure 3.1: Sketch of the thermal setup.

1. The uncorrected velocity field is not adapted to the deformed geometry, and reads,

vu = v0ex. (3.3)

The uncorrected temperature field is denoted as Tu.

2. The corrected velocity field, which conforms to the deformed geometry, is given by

vc = v0et, (3.4)

where it is assumed the velocity is normal to in- and outflow boundary and tangential on
all other boundaries. The corrected temperature field is denoted as Tc.

The difference between the resulting temperature fields is denoted as

ΔT := Tu − Tc, (3.5)

as will be shown, this temperature error accumulates along the direction of motion and depends
on deformation and belt speed. To arrive at an expression for the average temperature error at
the outflow boundary, the energy balances need to be derived for both cases.

First, by applying the energy balance (2.5), to the corrected case, the following can be found

ρcp

�
∂Ω

Tc(vc · n)dΓ =

�
Ω
q̇dΩ+

�
Γn

qndΓ−
�
Γtop∪Γbot

α(Tc − T∞)dΓ. (3.6)

Analogously, the energy balance for the uncorrected case leads to

ρcp

�
∂Ω

Tu(vu · n)dΓ =

�
Ω
q̇dΩ+

�
Γn

qndΓ−
�
Γtop∪Γbot

α(Tu − T∞)dΓ. (3.7)

Next, the convective term in (3.6), is simplified to�
∂Ω

Tc(vc · n)dΓ = v0bh(T̄c,out − T̄in), (3.8)
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where T̄c,out and T̄in are averaged temperatures over the out- and inflow boundary, respectively.

Again, this step is repeated for the uncorrected convective term in (3.7), leading to�
∂Ω

Tu(vu · n)dΓ = v0bh(T̄u,out − T̄in) + v0

�
Γtop∪Γbot

Tu(ex · n� �� �
:=nx

)dΓ (3.9)

where now erroneous terms, for the top- and bottom surfaces, occur.

Using (3.9), the energy balance for the uncorrected case reads

v0ρcpbh(T̄u,out − T̄in) + v0ρcp

�
Γtop∪Γbot

Tunx =

�
Ω
q̇dΩ+

�
Γn

qndΓ

−
�
Γtop∪Γbot

α(Tu − T∞)dΓ, (3.10)

and for the corrected case

v0ρcpbh(T̄c,out − T̄in) =

�
Ω
q̇dΩ+

�
Γn

qndΓ−
�
Γtop∪Γbot

α(Tc − T∞)dΓ. (3.11)

Now, by subtracting the energy balances (3.10) from (3.11), the following expression can be
found

T̄u,out − T̄c,out = − 1

bhρcpv0

�
Γtop∪Γbot

α(Tu − Tc)dΓ− 1

bh

�
Γtop∪Γbot

TunxdΓ, (3.12)

which leads to the definition of the averaged temperature error at the outflow boundary

ΔT̄out = T̄u,out − T̄c,out. (3.13)

In the following section the result (3.12) is further simplified by investigating the problem only
on cross-sections parallel to the x-z plane. Hereafter, such a cross-section is called a slice, see
Figure 3.3.

3.2 A Simplified One-Dimensional Model

Let,
Ctb = C(Γtop ∪ Γbot), (3.14)

denote the top and bottom boundary curve of a slice. Then, the surface integrals in (3.12) reduce
to line integrals. Moreover, it is assumed that the difference between deformed and undeformed
curve length L is small, such that a line integral can be approximated with an integral over axial
coordinate x and that the heat transfer coefficient is constant and equal on both sides. By using
these assumptions, the heat transfer term in (3.12), can be simplified to�

Ctb

α(Tu − Tc)ds ≈ α

� L

0
(ΔTtop(x) + ΔTbot(x)) dx, (3.15)

where ΔTtop and ΔTbot are the temperature errors evaluated on the top and bottom respec-
tively.

The error source term in (3.12) yields�
Ctb

Tunxds ≈
� L

0
Tu,topnx,topdx+

� L

0
Tu,botnx,botxdx. (3.16)
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Next, it is assumed that the deformation in z-direction, on the mid-surface plane, is given by

w(x), (3.17)

and that the typical assumptions of geometrically linearized mechanics apply.

Moreover, the deformation is such that, the top and bottom normal vectors are equal and
opposite

ntop = −nbot. (3.18)

Then, the x-component of the normal vectors can be found to be

nx,top = −nx,top = −w′(x), (3.19)

which finally yields,� L

0
Tu,topnx,topdx+

� L

0
Tu,botnx,botdx = −

� L

0
ΔTu,tbw

′dx, (3.20)

where the difference between top and bottom temperature for the uncorrected case, was now
defined as

ΔTu,tb := Tu,top − Tu,bot. (3.21)

Collecting the now simplified terms, in (3.15) and (3.20), results in

ΔT̄ (x = L, y = ys) =
1

h

� L

0
ΔTu,tbw

′dx− α

hρcpv0

� L

0
(ΔTtop +ΔTbot)dx, (3.22)

which is the curve1 averaged error over the outflow contour, for a slice at position ys.

In the second term, the Stanton number2 can be identified as

St := α

ρcpv0
, (3.23)

leading to

ΔT̄ (x = L, y = ys) =
1

h

� L

0
ΔTu,tbw

′� �� �
:=fu

dx− St
h

� L

0
(ΔTtop +ΔTbot)dx. (3.24)

Before proceeding further, two observations can be made about (3.24):

1. The integral containing fu = ΔTu,tbw
′ can be considered the error forcing term. Only

sections where significant deformation and temperature gradients in the thickness direction
occur, are contributing to the downstream thickness-averaged temperature error ΔT̄ .

2. The heat transfer related term, which contains the temperature error at the top ΔTtop
and bottom interface ΔTbot, may lead to a reduction of a given error. However, this term
is scaled by the Stanton number, which in the considered applications is relatively small,
see Figure 3.2. This term will be neglected for the subsequent derivations.
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Figure 3.2: Heat transfer and speed dependence of the Stanton number for a typical steel belt
application. Material values are given in Table 4.2.

To arrive at an expression for the thickness-averaged error at an arbitrary position x, it is
assumed that the outflow boundary is variable, and that heat transfer is negligible. Similar to
Equation 3.24, this leads to

ΔT̄ (x) =
1

h

� x

0
ΔTu,tbw

′dξ, (3.25)

now at position x. Furthermore, the derivative of (3.25) yields a local error rate

dΔT̄

dx
=

ΔTu,tbw
′

h
=

fu
h
. (3.26)

3.3 Error Section Model

To find the thickness-averaged temperature error, the expression (3.25) has to be evaluated.
Without solving the heat equation for the uncorrected problem, the term ΔTu,tb is still un-
known.

However, because the sheet is very thin, the temperature difference ΔTu,tb may be limited
to sections of a sheet where, for example, significant Joule losses occur. Outside, of these
sections, the difference may quickly average out due to diffusion in thickness direction. This
observation motivates the introduction of the error section model, see Figure 3.3. Additional to
the assumptions of the last section, the assumption is made that, ΔTu,tb = 0 outside such error
sections. This leads to the following equation

ΔT̄ (L) =
1

h

M�
m=1

�
Δxm

fu,mdx =

M�
m=1

Fu,m, (3.27)

were the problem is now reduced to finding relations for the error contributions Fu,m of each
section, i.e., evaluating

1For simplicity, ΔT̄ will represent either the surface or curve average, with the meaning typically clear from the
context.

2The Stanton number represents the ratio of heat transferred into a body to the thermal capacity of the body
[10].
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Section 1
Section (m) 

Figure 3.3: A 2D slice of the 3D sheet: sections are intervals where temperature differences
between top and bottom are significant, outside these sections they are assumed to
be negligible.

Fu,m =

�
Δxm

Tu,tbw
′dx, (3.28)

with section length Δxm := xm − xm−1.

Analagously, the accumulated error at x can be given as a piecewise-constant function. This
is done by assigning the accumulated error of each section to the section center3. Using the
Heaviside function Θ(x), this reads

ΔT̄ (x) =
1

h

M�
m=1

Fu,mΘm. (3.29)

where Θm := Θ(x−xm/2) is defined as a step function at the center xm/2 of the error-section.

The shape of fu,m, is typically also unknown. However, by approximating the integral as�
Δxm

fu,mdx ≈ ±CmΔxmT̂u,tb(m)ŵ′
(m), , (3.30)

a relation to the (possibly estimated) peak values of T̂tb(m) and ŵ′
(m) can be given. The addi-

tional weighting parameter Cm ∈ [0, 1], depends on the shape of fu,m. For a cosine-like shape
C ≈ 0.5, and if constant values are assumed C = 1.

3The error of a section could also be assigned to the beginning or end of the section.
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4 Parameter Study in 2D Model

As demonstrated in the previous chapter, an unadapted velocity field for a deformed sheet can
lead to erroneous energy influx due to temperature gradients in the thickness direction. These
temperature gradients typically arise from uneven heating, such as Joule losses concentrated
near the top surface. Outside these critical sections, gradients dissipate due to diffusion, and
the thickness-averaged temperature error may not increase significantly.

The goal of this chapter is to investigate the error behavior and gradient dissipation after a
critical section, such as an inductor zone.

By setting a known temperature gradient at the inflow boundary and controlling the deformation
of a short section, the development of the gradient along the direction of motion and its influence
on the thickness-averaged error can be analyzed in a numerical experiment. Because these effects
depend on deflection, speed, and heat transfer, this is investigated in a parameter study.

Additionally, a simple parametric model is introduced that may be used to describe the decay
of the temperature difference in thickness-direction. This leads to a simple expression as a
function the belt’s speed and the diffusion coefficient of the material. Assuming the validity of
this model, an analytical expression for the thickness-averaged temperature error was found and
is also compared with the numerical results.

4.1 Description

The simulation domain is a rectangular shape with length L and height h. This represents a
slice of a sheet. The mesh is continuously deformed, by applying a known displacement on the
center line, see Figure 4.1.

Simulation DomainCritical Section
(Not Simulated) 

Figure 4.1: Sketch of the simulation model (not to scale). A critical section introduces uneven
heating and leads to a temperature gradient. This gradient, which is assumed to be
linear here, is the inflow BC of the simulation model.

For the displacement the following expression was chosen

w(x, z = 0) = δz sin
2 xπ

L
, (4.1)

where δz is the maximum deflection.
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The deformation of the mesh is achieved by solving a grid smoothing problem with w(x, z = 0)
applied as BC on the center line and fixing the nodes on Γin and Γout.

For the corrected velocity field, the Laplace equation for the velocity potential is solved on the
deformed geometry using the following boundary conditions:

• On the outlet boundary (Γout):
∇ψ · n = v0. (4.2)

• The inlet boundary (Γin) is set to a Dirichlet BC with

ψ = 0. (4.3)

The thermal boundary conditions are set as follows:

• The inlet boundary (Γin) has the prescribed linear temperature profile

T (x = 0, z) = T̄in +ΔTtb,in
z

h
. (4.4)

• The outlet boundary (Γout) is set to a Neumann BC with qn = 100Wm−2.

• The top and bottom boundaries (Γtop and Γbot) may be subject to heat transfer with the
ambient environment, or are thermally insulated if α = 0.

All three sub-problems (deformation, velocity correction, heat conduction) are solved using FEM
schemes implemented in openCFS [11].

4.2 A Parametric Model for the Thickness-Averaged Temperature
Error

To determine the thickness-averaged temperature error, it was shown in section 3.3 that the
following integral needs to be evaluated:

ΔT̄ (x) =
1

h

� x

0
Tu,tbw

′ dξ. (4.5)

Given that the deformation is already expressed analytically, the remaining task is to find an
expression for the temperature difference Tu,tb(x). For the given problem, Tu,tb(x) is not constant
but varies along x. The question arises whether a simple parametric model for ΔT̄ (x) can be
found. For this, it is assumed that the temperature difference can be modelled in the following
form:

ΔT̃u,tb(x) = f(x, h, v0, κ)ΔTtb,in, (4.6)

where ΔT̃u,tb denotes the approximation of ΔTtb. Furthermore, heat transfer is not considered
in this model.

Using dimensional analysis (refer to [9] for background), the number of arguments in f can be
reduced by introducing a dimensionless coordinate:

x̃ =
x

h
, (4.7)

and the Peclet number:
Pe =

v0h

κ
, (4.8)
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resulting in:
f(x, h, v0, κ) = f̃(x̃,Pe). (4.9)

To satisfy the inflow boundary condition, the following should be fulfilled

f̃(0,Pe) = 1. (4.10)

Additionally, for increasing Peclet numbers (e.g., due to higher velocities), it is assumed that the
temperature difference is transported farther into the domain. This assumption can be captured
by:

PeA > PeB =⇒ f̃(x̃,PeA) > f̃(x̃,PeB). (4.11)

These conditions are satisfied by the function:

f̃ = exp (−CPe−1x̃), (4.12)

with a yet-to-be-determined factor C. Using this function, the approximation for the tempera-
ture difference between the top and bottom surfaces is:

ΔT̃u,tb(x) = ΔTtb,in exp (−CPe−1x̃) = ΔTtb,in exp (−Cx/LD), (4.13)

where the characteristic diffusion length is:

LD =
vh2

κ
. (4.14)

Finally, with expressions for both ΔTtb and w available, (4.5) can be evaluated, resulting in:

ΔT̄ (x) =
ΔTtb,inδz

h

2π2

(Lc)2 + (2π)2

�
1− e−cx



cos

2πx

L
+

Lc

2π
sin

2πx

L

�
, (4.15)

with:
c = C

κ

vh2
. (4.16)

If (4.15) is evaluated at the outflow, the formula simplifies to:

ΔT̄ (L) =
ΔTtb,inδz

h

2π2

(Lc)2 + (2π)2
	
1− e−cL

�
. (4.17)

For the range of parameters investigated, the tuning parameter C was found to be in the range
of 10-20, with 14 chosen as a compromise.

4.3 Experiment Methodology

The methodology for the parameter study involves setting up a series of simulations with varying
parameters, see Figure 4.2.

The steps involved are as follows:

1. Define the geometry and material properties of the 2D model.

2. Vary the parameters systematically to cover the range of interest.

3. Run the simulations and collect the data.
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Figure 4.2: Overview of experiment procedure

Table 4.1: Parameters for 2D experiment
Symbol Value Unit

Length L 300 mm
Thickness h 1 mm
Max. Deflection δz 1-10 mm
Speed v0 0.1-1 ms−1

Heat Transfer Coefficient α {0, 20} Wm−2K−1

Ambient Temp. T∞ 20 ◦C
Inflow Temp. Avg. T̄in 55 ◦C
Inflow Temp. Difference ΔTtb,in 10 K
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4. Analyze the results to determine the influence of each parameter on the velocity-related
temperature error.

The parameters include the length of the model, the thickness, the maximum deflection, the
speed, and the heat transfer coefficient and are shown in Table 4.1.

The material data was taken from the specifications of a steel used in an industrial steel belt,
see Table 4.2.

Table 4.2: Material data for 2D experiment
Symbol Value Unit

Density ρ 7800 kgm−3

Young’s Modulus E 210 GPa
Poisson’s Ratio ν 0.3 -
Heat Capacity cp 510 Jm−3K−1

Heat Conductivity k 15 Wm−1K−1

4.4 Results

In the following section, the results of the parameter study are presented. First, to illustrate the
parameter dependence of the “true” outflow error ΔT (L), the results from the FEM simulations
are presented. Next, for a subset of the parameter combinations, true and estimated errors are
compared. Finally, to show how the involved quantities develop along x, detailed results are
compared for two selected sets of parameters.

The nomenclature is defined as follows:

• FEM : Refers to the results from the FE simulation.

• 1D-M(ΔTu,tb): Refers to (3.25), with ΔTu,tb taken from the uncorrected FE simulation
and w′ computed from (4.1). The integral in (3.25) was evaluated numerically using a
midpoint scheme.

• Analytic: Refers to the analytical error approximation (4.15).

Parameter-Dependence of FEM Outflow Error

The parameter dependence of the outflow error ΔT̄ (L) was computed using the presented
methodology. The results are shown in Figure 4.3.

It can be observed that the error increases with increasing speed and deflection. The errors are
generally higher when heat transfer is not acting on the top and bottom. Moreover, with rising
parameters (v0, δz) the error increase is more pronounced in the case without heat transfer.
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Figure 4.3: Comparison of the outflow error ΔT̄ (L) computed from FEM results.

Comparison of Analytical Error Estimate

A subset of parameter combinations was investigated further, by only considering a deflection δz
of 10mm, which corresponds to 9 samples. For these, the outflow ΔT̄ (L) and maximum error

max
x

ΔT̄ (x), (4.18)

was compared with the analytical approximation. The results are depicted in Figure 4.4. As
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Figure 4.4: Comparison of the outflow error ΔT̄ (L) and maximum error of ΔT̄ (x) at a deflection
of δz = 10mm.

can be observed in Figure 4.4a, if no heat transfer is involved, the maxima and outflow errors
are identical. The analytical error approximation (4.15) is in good agreement with the FEM
error up to 0.5m/s, but is deviating above. By increasing the tuning parameter C, which was
set to 14 here, this can be improved, with the sacrifice of worse performance for lower speeds.

Now, it is notable that, if heat transfer is included, see Figure 4.4b, the error maxima are
unchanged, only the outflow errors are reduced (and even become slightly negative for the
lowest error case).
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Detailed Results along Axial Coordinate

To investigate how the errors and involved quantities develop along the axial coordinate, detailed
results for a parameter set without heat transfer are shown in Figure 4.5. For the uncorrected

Figure 4.5: Detailed results for α = 0W/(m2K), δz = 10mm and v0 = 0.5m/s.

case, the temperature T̄u rises, because w′ is positive, and the top temperature is higher than the
bottom temperature: ΔTu,tb > 0. For the corrected case, the thickness-averaged temperature
stays constant, as no energy is added to the system.

A key finding is that, the resulting temperature error only increases until ca. 3 cm, after which
it stays constant. This effect was already observed in Figure 4.4a. This can be explained by the
diffusion in thickness direction. The prescribed temperature difference at the inflow boundary,
vanishes along x: even tough a deformation is present, no additional error in average temperature
is made.

Moreover, it can be observed that the parametric model for ΔT̃tb(x) is in acceptable agreement.
Lastly, it can be pointed out that, by knowing the forcing term precisely, 1D-M(ΔTtb) yields
the same results as the error directly computed from the FEM simulation.

In comparison with Figure 4.5, the heat transfer case in Figure 4.6, shows a falling error after
the maximum at ca. 3 cm.
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Figure 4.6: Detailed results for α = 20W/(m2K), δz = 10mm and v0 = 0.5m/s.
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5 Validation in Coupled 3D Model

In the last chapter it was shown how the thickness-averaged temperature error behaves in a
simple 2D model. This chapter deals with the question, how the errors behave in a more practical
setting and how they compare with the error estimated with the error section method.

For this experiment, a model of a steel belt with induction heating was investigated, see Fig-
ure 5.1. A similar model was used in [3], where the post-buckling behavior was modelled. Before
presenting the results of the FEM simulation and the comparison of errors for a cross-section,
it is shown how the error section method can be applied to this setup.

Figure 5.1: Overview of simulation domain and geometry. Inductor and sheet are connected via
an air domain (not shown).

5.1 Application of Error Section Method

In the following, it is shown how the error section method, presented in section 3.3, can be
applied to the induction heating setup.

First, the problem is reduced to a cross-section slice, see Figure 5.2. For this, the middle x-z
plane with ys = 0.15m was chosen.

Figure 5.2: Sketch of sheet slice with error sections
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Because the Joule losses are concentrated at the top surface, the section under each arm of
the inductor can be identified as potential error sections. The Joule losses lead to temperature
difference in thickness direction, which makes the zones with significant Joule losses sensitive
to errors. It was assumed that the length of significant Joule losses are equal for both sections
m = {1, 2}

Δx1 = Δx2 = Δx, (5.1)

and that they are related to the inductor coil width a via

Δx = CJa, (5.2)

where the factor CJ determines the width of the Joule loss zone. In the present experiment it
was set to 5.67, which coincidentally leads to overlapping section boundaries.

Moreover, the weighting parameters in (3.30) are assumed to be equal for both sections,

C1 = C2 = C, (5.3)

were a value of 0.4 was chosen and the section error contributions (3.30) take the form

Fu,m = CΔxT̂tb(m)ŵ′
(m), (5.4)

where T̂tb(m) and ŵ′
(m) are the maxima in each section. To finalize, the error section approxi-

mation for this setup is now given by

ΔT̄ (x) =
CΔx

h

�
T̂tb(1)ŵ′

(1)Θ1 + T̂tb(2)ŵ′
(2)Θ2

�
, (5.5)

where Θ1 and Θ2 are step functions assigned to the section center, i.e. the center of each inductor
arm.

5.2 Experiment Description

The full simulation, consists of the following steps (refer to Figure 5.3):

1. Deformation (see Figure 5.3a) This step was based on the method presented in [3].

a) Compute the electromagnetic (EM) field, by solving the eddy-current problem in
the frequency domain. For details on the computation of the eddy-current problem,
refer to [3]. The system is excited by prescribing a total current of I = 6.5 kA at
f = 5kHz through the inductor coil. The induced eddy-currents lead to Joule losses.
By averaging the Joule losses over a single oscillation period, the volumetric power
density q̇J for the belt sheet domain Ωs can be found.

b) Calculate the temperature field by computing the convection-diffusion equation for
given speed v0 and q̇J. Here the velocity field was not additionally corrected.

c) Solve the thermo-mechanical problem, for the given temperature distribution, with
a shell FEM. An extended sheet domain ΩB = Ω−

s ∪ Ωs ∪ Ω+
s , with a total length of

2m, was used. The ends were fixed on one side and vertically clamped on the other.

d) Apply the shell displacement to the 3D continuum in Ωs by solving a grid smoothing
problem. The resulting deformed geometry can be reused as input for the EM step.
Two iteration steps where done here, before proceeding to the post-deformation step.

2. Post-Deformation (see Figure 5.3b)
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(b) Post-deformation step

Figure 5.3: Overview of the experiment steps.
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a) Compute the corrected velocity field on the deformed geometry.

b) Use the Joule losses from the pre-deformation step to compute the corrected and
uncorrected temperature field.

The material data is summarized in Table 5.1.

Table 5.1: Material data for 3D simulation

Material Parameter Sheet Inductor Air
Steel Copper -

Magnetic Permeability µ in Hm−1 1.26× 10−5 1.26× 10−6 1.26× 10−6

Electric Conductivity in Sm−1 5.96× 107 5.96× 107

Young’s Modulus E in GPa 210
Poisson’s Ratio ν 0.3
Thermal Expansion Coefficient αT in K−1 12× 10−6

Density ρ in kg/m3 7800
Heat Capacity cp in Jm−3K−1 510
Heat Conductivity k in Wm−1K−1 15

The experiment parameters for the post deformation step can be found in Table 5.2.

Table 5.2: Experiment parameters for post deformation step
Experiment Parameter Symbol Value Unit
Length of Ωs L 300 mm
Inductor Coil Width a 15 mm
Thickness h 1 mm
Width b 150 mm
Speed v0 0.1 m/s

Heat Transfer Coefficient α 20 W/(m2K)
Ambient Temp. T∞ 20 ◦C
Inflow Temp. at Γin Tin 60 ◦C

5.3 FE Simulation Results

In this section, selected results from the FE simulation are presented. The temperature distribu-
tion and temperature difference between the top and bottom surfaces are shown in Figure 5.4a
and Figure 5.4b, respectively. The thickness-averaged temperature error and vertical displace-
ment are depicted in Figure 5.4c and Figure 5.4d.

Additionally, the error source terms along a slice are illustrated in Figure 5.6, and a comparison
of the mean temperature along the slice is provided in Figure 5.5.

Discussion

As can be seen in Figure 5.4a, the temperature increases from the constant inflow temperature
by ca. 200 ◦C to 250 ◦C. Near the coil turn, the energy density decreases rapidly in y-direction,
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Figure 5.4: Selected results from FEM simulation. Dash-dotted line represents position of the
slice. Dashed line shows the inductor coil’s outline.
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Figure 5.5: Comparison of the thickness-averaged temperatures in the slice. Dashed lines show
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Local maxima, T̂tb(1,2) and ŵ′
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leading to a lower temperature increase along the outer edge. The locally concentrated Joule
losses lead to the temperature difference between top and bottom sheet, which occur only near
the inductor, see Figure 5.4b. Because in addition to this temperature difference, deformations
are present (see Figure 5.4d), this leads to a temperature error, see Figure 5.4c. The temperature
error rises sharply under the first inductor arm, is transported downstream, rises under the
second arm and is transported to the outflow boundary.

When inspecting the thickness-averaged temperature over the length of the cross-sectional slice,
see Figure 5.5, it can also nicely be seen how the error increase is relatively local to the inductor
arms. Moreover, because in this case the sign of the error forcing term f is always positive,
there is a net-positive erroneous energy influx. Also, it may be pointed out that, the discrep-
ancy between the corrected and uncorrected top and bottom temperature difference, ΔTc,tb and
ΔTu,tb are small in this setup, indicating almost fixed top and bottom temperatures–similar to
a Dirichlet BC.

5.4 Comparison of Error Estimates

After having presented the results from the coupled FEM simulation, in the following, the error
estimates obtained from the FEM simulation, the section model, and the numerically integrated
error forcing are compared for the cross-section slice.

Discussion

The error comparison shows that integrating the forcing term yields a good approximation of
the FEM error. Slight discrepancies might be due to the assumptions made in deriving the 1D
model. For the error section method, it can be observed how the continuous increase is replaced
by a discrete step, which however fits the (nearly) constant errors after each inductor. The
slight undershoot for the first section was not alleviated by optimizing the factor C1, because
usually the section lengths Δx and maxima estimates of temperature and deflection are relatively
uncertain anyway. It illustrates however that, if a practical formula for a section exists, here
each inductor arm, then it may be used for all identical sections.
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For a rough estimate of the error, if C is unknown and set to 1, would have given errors that
are higher by a factor of 1.5. Of course, these are all statements about the thickness-averaged
error. If the local error is important for a specific section, only the solution and comparison of
both problems can give a definitive answer. Depending on how accurate the forcing term and
length of a section are known, an appropriate uncertainty margin, say by using a factor of 5 to
10, may finally guide the decision for, or against, the addition of a velocity correction step.
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6 Conclusion

This thesis has presented an investigation on the thermal behavior of revolving steel belts,
with an emphasis on induction heating applications. By correcting the velocity field in the
convection-diffusion equation with the Laplace equation, it was illustrated how deformations
can be captured in a thermodynamically sound way. It was shown how the temperature fields
differ in the corrected case compared with the uncorrected, and how an artificial energy in- or
outflux results in a thickness-averaged temperature error. From this, a practical error estimation
method was presented, where it was shown how the error is mainly arising in critical sections,
where significant temperature differences between top and bottom surface occur.

In a parameter study for a 2D domain, errors where calculated for a range of speeds and
deformation states. The assumptions for the simplified one-dimensional model were tested and
an analytical estimate of the error was derived for this example. It was found that the inclusion
of heat transfer effects can lead to an attenuation of the error, but that the maximum error is
still well approximated by assuming no heat transfer for the error estimate.

To study the effects of deformation on the velocity related error in a more realistic scenario, a
coupled electro-thermo-mechanical simulation was conducted. The results confirmed that, for
an induction heating setup, zones of high Joule losses are critical. For the particular inductor
setup, an ad-hoc method was presented to relate the section error with the inductor geome-
try and expected peak values for temperature difference and deformation. The resulting error
approximations where found to be in good agreement with the simulation results. It was con-
cluded, that in a less ideal setting, an appropriate error margin may be needed to accommodate
for parameter uncertainties, but that the model captures the overall behavior.

Future work could explore alternative approaches for the thermo-mechanical problem, extending
beyond the methods considered in this study. This work was limited to the steady-state case and
focused on quasi-stationary belt deformations, leaving the investigation of transient behavior as
an open avenue for further research. Given the relatively simple geometry of the belt, other
computational methods, such as the finite-volume method (FVM), could also be explored as
an alternative for solving the thermal problem, potentially offering different accuracy-efficiency
trade-offs.

Furthermore, this study illustrated that temperature variations in the thickness direction are
typically significant only in localized sections of the belt. Future research could focus on devel-
oping practical methods for adaptively discretizing the belt, allowing for more efficient numerical
modeling. Building on the approach presented here – where sections with significant errors were
approximated – semi-empirical equations could be leveraged to establish partial lumping crite-
ria. This could facilitate a structured reduction from 3D to 2D/1D representations or even fully
lumped sections, improving computational efficiency while maintaining accuracy.

Additionally, it would be valuable to investigate how established adaptive h-, p-, and hp-
refinement methods, based on local error criteria, compare with such a partial lumping ap-
proach.
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As mentioned in this work, accurately calculating heat transfer between the belt and surrounding
air is challenging in general, and the interaction between the fluid and structure may be par-
ticularly interesting. Belt deformations may perturb the airflow, leading to localized variations
in convective heat transfer, making a more detailed investigation of this interaction valuable.
Future studies could incorporate computational fluid dynamics (CFD) simulations or coupled
fluid-structure interaction (FSI) approaches to better capture these effects.
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