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Kurzfassung

In dieser Arbeit betrachten wir ein Versicherungsunternehmen mit einem Anfangskapital x
und einer Prämie, die nach dem Erwartungswertprinzip berechnet wird. Für den Überschuss
wird das Cramér-Lundberg-Modell verwendet. Dieses Unternehmen hat die Möglichkeit,
einen Rückversicherungsvertrag abzuschließen, der eine Kombination aus proportionaler
und XL-Rückversicherung darstellt. Der proportionale Faktor ist fix gewählt, während der
Selbstbehalt der XL-Rückversicherung dynamisch über die Zeit gewählt werden kann.

Die Überlebenswahrscheinlichkeit über einen unendlichen Zeitraum, definiert als die Wahr-
scheinlichkeit, dass der Überschussprozess über einen unendlichen Zeithorizont nicht nega-
tiv bleibt, ist ein grundlegendes Maß für die Solvenz eines Versicherers. Daraus ergibt sich
die Frage: Gibt es eine optimale Rückversicherungsstrategie, die die Überlebenswahrschein-
lichkeit maximiert, d.h. die Ruinwahrscheinlichkeit minimiert? Diese Arbeit beschäftigt sich
mit dieser Fragestellung.

Das Problem, die optimale Rückversicherung zu finden, wird mithilfe der Hamilton-Jacobi-
Bellman-Gleichung beschrieben. Anschließend beweisen wir die Existenz und Eindeutig-
keit der Lösung dieses Problems. Darüber hinaus stellen wir Beispiele für Lösungen vor,
die durch Computersimulationen für den Fall exponentiell verteilter Schadenhöhen er-
halten wurden. Zusätzlich zeigen wir, wie Variationen anderer Parameter die optimale
Rückversicherungsstrategie beeinflussen.



Abstract

In this thesis, we consider an insurance company with initial capital x and premium calcu-
lated by expected value principle. For the risk model, the Cramér-Lundberg model is used.
This company has the possibility to buy a reinsurance contract, which is a combination
of proportional and excess-loss reinsurance. The proportional factor is fixed and retention
level of the XL reinsurance can be chosen dynamically in time.

The infinite-time survival probability, defined as the likelihood that the surplus process re-
mains non-negative over an infinite time horizon, is a fundamental measure of an insurer’s
solvency. This leads to the question: is there an optimal reinsurance strategy that maxi-
mizes the survival probability, i.e., minimizes the ruin probability? This thesis deals with
this question.

The problem of finding the optimal reinsurance is defined using the Hamilton-Jacobi-
Bellman equation. Then we prove the existence and uniqueness of the solution to this
problem. Furthermore, we provide examples of solutions obtained through computer simu-
lations for the case of exponentially distributed claim sizes. Additionally, we illustrate how
variations in other parameters affect the optimal reinsurance strategy.
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bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am Datum
Name des Autors



Contents

1 Introduction 1

2 Mathematical background 3
2.1 Cramér-Lundberg model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Premium calculation principles . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Ruin, ruin probability, and net profit condition . . . . . . . . . . . . . . . . 7

3 Managing risk via reinsurance 10
3.1 Reinsurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Quota-share (QS) reinsurance . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Excess-of-loss (XL) reinsurance . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Combined reinsurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Optimizing combined reinsurance strategy 16
4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Motivating the Hamilton–Jacobi–Bellman equation . . . . . . . . . . . . . . 17

4.2.1 Survival probability for exponentially distributed claim sizes . . . . 19
4.3 Existence of an optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Uniqueness of the optimal strategy . . . . . . . . . . . . . . . . . . . . . . . 31

5 Optimal strategy for exponentially distributed claim sizes 34
5.1 Premium under exponentially distributed claim sizes . . . . . . . . . . . . . 34

5.1.1 Calculation of the insurer’s premium . . . . . . . . . . . . . . . . . . 34
5.1.2 Calculation of the reinsurer’s premium . . . . . . . . . . . . . . . . . 34

5.2 Optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.1 Optimal strategy for different values of proportional factor (a) . . . 40
5.2.2 Optimal strategy for different values of insurer’s safety loading (η) . 41
5.2.3 Optimal strategy for different values of reinsurer’s safety loading (θ) 43
5.2.4 Optimal strategy for different values of expected claim sizes . . . . . 44

6 Conclusion 46

7 Appendix 47
7.1 Tables - Lower bounds for proportional factor (a) . . . . . . . . . . . . . . . 47
7.2 Tables - Lower bounds for priority level (b) . . . . . . . . . . . . . . . . . . 47

7.2.1 Lower bounds for priority level (b) for fix m = 1 . . . . . . . . . . . 47
7.2.2 Lower bounds for priority level (b) for fix a = 0.8 . . . . . . . . . . . 51

i



Contents

7.3 General solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Python code for combined reinsurance model . . . . . . . . . . . . . . . . . 53

Bibliography 55

ii



1 Introduction

In the insurance industry, managing risk effectively is essential to ensuring the long-term
solvency and stability of companies. One critical measure of an insurer’s financial stability
is their survival probability, which measures the likelihood of avoiding insolvency over a
given time period. Insurers face the challenge of balancing their exposure to risk while
maintaining profitability, particularly when confronted with large or catastrophic claims.
Reinsurance plays a crucial role in this context, allowing insurers to share part of their risks
with reinsurers. However, while reinsurance provides essential risk protection, its benefits
come at a cost.

Determining the optimal reinsurance strategy is crucial to maximizing the insurer’s survival
probability. An overly aggressive strategy results in high reinsurance premiums, which
reduce the insurer’s profitability. On the other hand, a strategy that is too cautious could
expose the insurer to an unacceptably high risk of failure. Optimal reinsurance strategies
help insurers find this balance, ensuring their solvency.

Dynamic reinsurance strategies have long been studied in the context of minimizing the
ruin probability in classical risk models. The foundation in this area was established by
Schmidli (2001) [9], who examined proportional reinsurance treaties. Expanding upon this,
Hipp and Vogt (2003) [6] introduced dynamic excess-of-loss reinsurance. Schmidli et al.
(2002) [10] further analyzed optimal investment and reinsurance strategies aimed at reduc-
ing ruin probability, particularly in scenarios involving Pareto-distributed claim sizes, and
demonstrated the effectiveness of such strategies in improving the insurer’s financial stabil-
ity with higher initial surpluses. Schmidli’s (2007) [11] extensive overview provides valuable
insights into ruin probability minimization using reinsurance in both classical and diffusion
risk models. Additionally, Hipp and Taksar (2010) [5] made significant contributions by
focusing on non-proportional reinsurance contracts.

In this thesis, we seek to maximise the survival probability over a combination of propor-
tional and excess-of-loss treaties. The deductible of the XL reinsurance can be changed
dynamically in time. By “dynamically”, we refer to a strategy that is determined and
adjusted continuously over time, based on the evolving risk position of the company. Pre-
miums for both, insurer and reinsurer, are calculated based on the expected value premium
principle.
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1 Introduction

This thesis is structured as follows:

Chapter 2 gives a brief introduction to the mathematical model used in this thesis. It starts
with the classical Cramér-Lundberg model, explaining its main ideas and reviewing some
common premium principles. Subsequently, ruin, the ruin probability, and the net profit
condition are defined.

Chapter 3 introduces the concept of reinsurance and its possible forms. Three types of
reinsurance contracts are discussed: proportional reinsurance, excess-of-loss reinsurance,
and a combination of these two types, referred to here as combined reinsurance.

In Chapter 4, the main part of this thesis is presented. The risk process with a dynamic
reinsurance strategy is defined, and the problem statement is formulated. Using an ex-
ample of survival probability with a fixed proportional factor a and a priority level b, we
demonstrate the motivation for an optimal strategy. Lastly, we prove the existence of an
optimal strategy and establish the uniqueness of the solution.

Chapter 5 provides a numerical computation of the optimal strategy and the corresponding
survival probability for exponentially distributed claim sizes. We provide examples with dif-
ferent parameters to illustrate their impact on the optimal strategy and the corresponding
survival probability. All examples are simulated using Python.

Chapter 6 concludes the thesis by summarizing its findings and exploring potential direc-
tions for future research.
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2 Mathematical background

Risk management and premium calculation are critical aspects of the insurance indus-
try, where mathematical models like the Cramér-Lundberg model play a significant role.
Therefore, we start the chapter by defining the Cramér-Lundberg model, then explain some
principles for premium calculation. This chapter is ended by introducing the concept of
ruin, its probability, and the definition of the net profit condition. All definitions provided
in this chapter are based on the lecture notes for the Risk and Ruin Theory [7] course
by Prof. Friedrich Hubalek and Prof. Julia Eisenberg [3] from the Vienna University of
Technology.

2.1 Cramér-Lundberg model

The Cramér-Lundberg model, known as the classical risk model and considered a funda-
mental framework in risk theory, was first proposed by Filip Lundberg and later expanded
upon by Harald Cramér. The model is used to describe the risk process. The risk pro-
cess represents the value of the company over time, where the company’s capital increases
through premium payments from policyholders and decreases through claim payments cov-
ered by insurance.

To define the Cramér-Lundberg model, we need to introduce some important concepts.

Since the claim sizes in a certain time are the most significant variable for proper man-
agement of an insurance company and as they are uncertain, we can determine only the
probability of claims occurrence.

Definition 2.1.1. Claim sizes are modeled as a sequence of a.s. positive, independent,
and identically distributed random variables, denoted by (Yn)n∈N. Each Yn corresponds to
the amount of an individual claim within an insurance portfolio. The expected value of
a claim size is defined as E[Y1] = µ < ∞ and the variance of a claim size is defined as
Var[Y1] = σ ≤ +∞.

Definition 2.1.2. Inter-occurrence times constitute a sequence of independent and iden-
tically exponentially distributed random variables (Xn)n∈N, where each Xn represents the
time between the (n − 1)-th and n-th occurrences within an insurance portfolio. The ex-
pected value (mean) of an inter-occurrence time is defined as E[Xn] =

1
λ , where λ is the rate

at which events (claims) occur. It is assumed that the expected value is finite, facilitating
mathematical analysis.
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2 Mathematical background

As the number of claims occurring in the portfolio in the time interval [0, t] for all t > 0
happens, we describe it with the family of random variables {Nt}, which we call the claim
arrival process.

Definition 2.1.3. The random process {Nt}t≥0 is a homogeneous Poisson process with
intensity λ > 0 if it satisfies the following conditions:

1. The process starts at zero, meaning N0 = 0 with probability 1.

2. For any 0 ≤ s < t, the difference Nt −Ns has the same distribution as Nt−s, which
is termed as the process being increment stationary.

3. For any 0 ≤ s < t, the difference Nt −Ns is independent of the past, represented by
the family of random variables {Nu}u≤s, which signifies the process being increment
independent.

4. For every t > 0, the random variable Nt follows a Poisson distribution with parameter
λt, given by

P [Nt = n] = e−λt (λt)
n

n!
, for n ∈ N

Let Tn =
$n

k=1Xk be the occurrence time of the n-th claim. The process (Tn)n∈N0 repre-
sents the renewal process. The claim arrival process up to a certain time t is a homogeneous
Poisson Process {Nt}t>0 where

Nt = sup{n ∈ N0 : Tn < t}.

We describe the claim sizes by a sequence of identically, independent distributed random
variables {Yi}, independent of {Nt}, where Yi is a random variable describing the size of
the i-th claim. The total claim in the time interval is described by the family of random
variables {St}, which is equal to

St =

Nt#
i=1

Yi.

The insurer of this portfolio receives a premium, and we assume that they receive it at a
constant rate, denoted by c, so that the total premium received in the time interval [0, t]
is equal to ct. Due to the assumptions, the function that models the premium income is
deterministic.

Also, we assume that at time 0, the insurer set aside an amount of money for the portfolio,
which is called the initial surplus or initial capital and denoted by x. The value of Rt is
known only at time t = 0. In other moments t > 0, it is a non-negative random variable,
as it depends on the claims, and we can write it as follows:

Rt = x+ ct − St.

4



2 Mathematical background

Therefore, {Rt} is a random process called the surplus process or the risk process. It should
be noted that this is a simplified model in which we have neglected inflation and other
dynamic changes in the portfolio. In addition, we assume that the claims are resolved
immediately after they occur, and the costs of resolving the claims are included in the
premium. With these assumptions, the insurer’s profit is known at the end of the year. In
practice, claims are usually resolved with a small delay.

Let (Ω,F , P ) be the probability space on which the sequences (Yn)n∈N, (Xn)n∈N, (Tn)n∈N,
and {Nt}t>0 are defined as in Definitions 2.1.1, 2.1.2 and 2.1.3.

Definition 2.1.4. In the Cramér-Lundberg model, also called the classical risk model, the
risk process {Rt}t>0 is defined as

Rt = x+ ct− St, t ≥ 0

where:

• x ≥ 0 represents the initial capital.

• c > 0 is the constant premium rate per unit time. We adopt the net premium cal-
culation, assuming that the expected premium over a period equals the expected total
claims over the same period, i.e., ct = E[St].

• The process {St}t>0 denotes the aggregate claim amount at time t, defined as St =$Nt
k=1 Yk, where Nt signifies the number of claims up to time t, and Yk represents the

size of the k-th claim.

The Cramér-Lundberg model is characterized by the following assumptions:

1. The claim arrival process {Nt}t>0 is a homogeneous Poisson process with intensity
λ > 0.

2. The claim sizes are independent and identically distributed random variables, inde-
pendent of {Nt}.

3. Premiums are received linearly over time.

5



2 Mathematical background

2.2 Premium calculation principles

In the world of insurance, premiums represent the payments made by policyholders to
insurers in exchange for coverage against the risks they wish to insure. These payments form
the cornerstone of the insurance industry, ensuring that insurers can fulfill their obligations
while maintaining financial stability. There are various methods for calculating premiums,
and some of these methods will be explained in this section. For more, see [1]

Denoted by PY , the premium charged by an insurance provider to address a risk Y is
significant. By risk Y , we mean that the claims associated with it are distributed as the
random variable Y . The premium PY is intricately linked to Y , with its determination
guided by what we term a premium calculation principle.

The pure premium principle

According to the pure premium principle, premiums are set equal to the expected value of
risk Y .

PY = E[Y ]

From the insurer’s perspective, this principle is not particularly appealing, as it only covers
the expected claims of the insurer without considering long-term viability.

The expected value principle

According to the expected value principle, premiums are set equal to the expected value of
the risk Y , with an additional amount called the premium loading factor θ > 0.

PY = (1 + θ)E[Y ]

The safety loading typically refers to the additional charge applied to the pure premium to
cover administrative costs, profit margins, and other expenses.

The variance principle

According to the variance principle, the variance is used as a measure of the variability of
the risk.

PY = E[Y ] + θVar[Y ]

In this method, E[Y ] represents the expected value of the claims, while θVar[Y ] denotes
the variance of the risk distribution associated with the risk Y with θ > 0 safety loading.

The standard deviation principle

According to the standard deviation principle, the standard deviation is used as a measure
of the reliability of the risk.

PY = E[Y ] + θ
"

Var[Y ]

In this method, E[Y ] represents the expected value of claims, while
"

Var[Y ] denotes the
standard deviation of risk distribution associated with the risk Y with θ > 0 safety loading.

6



2 Mathematical background

2.3 Ruin, ruin probability, and net profit condition

In the previous section, we introduced basic concepts and defined the Cramér-Lundberg
model. We are interested in determining the ruin probability.

Recall that the aggregate claim amount up to time t is denoted by St =
$Nt

k=1 Yk. This
implies that the sequence of claim sizes (Xn) is a sequence of positive independent iden-
tically distributed random variables with a common distribution Q, and it is independent
of the sequence of inter-arrival times between consecutive claim arrivals (Tn) given by
T0 = 0, Tn = X1+X2+. . .+Xn for n ≥ 1, where the waiting times between two consecutive
claims Yn are positive independent identically distributed random variables. Additionally,
the claim counter process {Nt}t>0 is independent of the sequence of claim sizes (Yn).

In addition to the above, we assume that the premium collected up to time t is equal to
ct, where c is the constant premium rate.

The risk process is defined as Rt = x + ct − St, for t ≥ 0, which represents the insurer’s
capital at time t, and the process {Rt}t>0 describes the cash flow over time in the insurer’s
portfolio. If Rt ≥ 0, the company has capital. Otherwise, the company’s surplus becomes
negative.

Definition 2.3.1. The event that the value of Rt at some point becomes less than zero is
called ruin, denoted as

Ruin = {Rt < 0, for some t > 0}.

Definition 2.3.2. The time τ at which the risk process falls below zero for the first time
is referred to as the time of ruin, and it is defined as

τ = inf{t > 0 : Rt < 0}.

Note that the random variable τ may not necessarily be a real random variable, as it is
possible for ruin to never occur, i.e., τ = ∞.

Definition 2.3.3. The ruin probability given an initial capital x ≥ 0 and a constant
premium rate c is expressed as:

ψ(x) = P{Rt < 0, for some t > 0 |R0 = x}

= P

�
x+ ct−

Nt#
k=1

Yk < 0, for some t > 0 |R0 = x

�
= P (τ < ∞, |R0 = x).

We denote δ(x) by the probability that ruin never occurs given initial capital x. This
probability is also referred to as the survival probability and can be expressed as

δ(x) = 1− ψ(x).

7



2 Mathematical background

In this definition, we used the fact that

Ruin =
%
t≥0

{Rt < 0} = {inf
t≥0

Rt < 0} = {τ < ∞}.

Based on the construction of the risk process {Rt}t>0, ruin can occur only at times t = Tn,
for some n ≥ 1, because the value of the process {Rt}t≥0 increases linearly in intervals
[Tn, Tn+1). We call the series R(Tn) the skeleton of the risk process {Rt}t≥0. Using the
skeleton of the process, we can express the probability of destruction in terms of the waiting
time between two consecutive claims Xn, the size of the claims Yn, and the premium rate
c.

Based on the construction, it is clear that this probability is not determined simply, since
it boils down to a very complex study of stochastic processes.

The ruin probability ψ(x) is a significant indicator of the capital changes of an insurance
company over time. For determining the parameters that affect the risk process the most, it
is crucial to avoid ruin with probability 1, and it is likely that the random walk Sn crossing
the threshold S needs to be small enough that the occurrence of ruin can be excluded from
the consideration of whether the initial capital is sufficiently large.

We assume that the mathematical expectation E[Yn] is finite. This assumption about the
ultimate expected length of the interval of time between two consecutive claims is natural
and often met in practice. Furthermore, we also know that the mathematical expectation
E[Zn] = E[Yn]− cE[Nn] is well defined and finite. Hence the random walk Sn satisfies any
law of large numbers, that is

Sn

n

a.s.−−→ E[Z1] as n → ∞,

which implies that
Sn

n

a.s.−−→ 0 if E[Z1] is negative.

Thus, in terms of claims with a small ruin probability, the case E[Z1] > 0 is unacceptable.
Also, it can be shown that in the case E[Z1] = 0, the ruin probability is equal to 1.

We conclude the following:

If the value E[Yn] is finite and the condition E[Zn] = E[Yn]− c · 1
λ ≥ 0 holds, then for every

fixed x > 0, the ruin probability is equal to 1.

From this, we can deduce that every insurance company should set the premium rate c
such that E[Zn] ≤ 0. That is the only way to avoid ruin with probability 1.

Definition 2.3.4. We say that the Cramér-Lundberg process satisfies the net profit con-
dition if:

E[Z1] = E[Y1]− c · 1
λ
< 0.

8



2 Mathematical background

Also, the interpretation of the net profit condition is intuitive because it represents the
condition that, in the interval between the two claims, the expected value of the claim
size E[Y1] should be less than the premiums earned during that period, represented as the
expected premium cE[X1].

If we assume the Cramér-Lundberg model and the net premium calculation, we get that
ct = E[St] = E[Nt]E[Y1] = λtE[Y1]. However, in the case of net premium calculation, where
c = λE[Y1], we have that E[Z1] = 0. Thus, the ruin probability is equal to 1. Therefore,
to avoid ruin with probability 1, it is necessary to apply a different principle of premium
calculation that satisfies the net profit condition c > λE[Y1]. To achieve a satisfactory
premium rate that is not net premium calculated by method, we need to apply a coefficient
ρ > 1, where ρ = (1 + θ), which further increase it.

9



3 Managing risk via reinsurance

Reinsurance plays a crucial role in risk management for insurance companies, allowing them
to reduce exposure to large claims and ensure financial stability. In this chapter, we first
introduce the concept of reinsurance and its forms. After defining the fundamental prin-
ciples, we illustrate how proportional and non-proportional reinsurance function through
practical examples. Finally, we introduce the combined reinsurance treaty, which is the
main topic of this thesis. All definitions provided in this chapter are based on the lecture
notes provided for Reinsurance [2] course by Prof. Julia Eisenberg from Vienna University
of Technology.

3.1 Reinsurance

Insurance is the transfer of risk in exchange for payment. Reinsurance is the insurance
of the risk assumed by the insurer. In other words, reinsurance is insurance for insurance
companies. In reinsurance, the primary insurer (cedent) and the reinsurer (cessionary)
share the risk. Reinsurance allows primary insurers to manage their exposure to large or
unpredictable risks by transferring part of the potential claim to a reinsurer. This process
not only helps in spreading risk but also provides financial stability, enabling insurers to
take on more policies and protect themselves from catastrophic losses.

Reasons to buy reinsurance can be:

• protecting against model risk,

• stabilizing business results,

• reducing required capital,

• increasing underwriting capacity,

• diversification

• support in risk assessment, pricing and management,

• reducing tax payment.

Reinsurance can be classified based on various criteria, including the share of risk.

10



3 Managing risk via reinsurance

Proportional reinsurance contracts are characterized by the equal sharing of both
premiums and claims between the cedent and the reinsurer. In a qauota-share (QS) rein-
surance contract, the cedent and the reinsurer share a predetermined percentage of both the
premiums and the claims of each policy. This type of reinsurance contract distributes the
risk and reward proportionally between the insurer and reinsurer based on the agreed-upon
share.

Non-proportional reinsurance contracts do not depend on fixed shares of premiums
and claims between the cedent and the reinsurer. Instead, these contracts provide coverage
based on the occurrence of claims that exceed a certain threshold, known as the priority
level or retention limit. There are several types of non-proportional reinsurance contracts.
We concentrate on excess-of-loss (XL) reinsurance contract, which provides coverage for
individual claims that exceed a predetermined threshold (priority level), protecting the
insurer from large, catastrophic losses.

The transfer of risk from a primary insurer to a reinsurer is characterized by the concept
of an insurance form. Each insurance form is associated with a function s(·, Y ), known
as the self-insurance function, which represents the portion of a claim amount Y that
remains the responsibility of the primary insurer. Consequently, the reinsurer cover the
remaining amount, given by r(·, Y ) = Y − s(·, Y ).

We assume that the function s is non-negative, increases with Y , and satisfies the conditions
s(·, 0) = 0 and 0 ≤ s(·, Y ) ≤ Y . Since the self-insurance function depends on the claim size
but also on a parameter specific to the chosen reinsurance form, we will further explore
this dependency in the next section through concrete examples.

The relationship between the policyholder and the primary insurer is, in formal terms,
similar to the relationship between the primary insurer and the reinsurer. Therefore, both
areas can be described to a certain point using similar models. Reinsurance arrangements
can be designed to cover either individual claims or aggregate claims.

In a reinsurance contract, the total claim amount is divided into two components:

S = SE + SR

Here, S represents the total claim of the primary insurer. The part retained by the primary
insurer is given by SE =

$N
i=1 s(·, Yi), while the reinsurer’s share of the total claim is

denoted by SR =
$N

i=1 r(·, Yi).

In the next section, we will provide a more detailed explanation of common reinsurance
forms and their combination.
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3 Managing risk via reinsurance

3.2 Quota-share (QS) reinsurance

As mentioned earlier, the duties of the contractual parties in proportional reinsurance
agreements are determined in relation to the risks that the insurer undertake from the
policyholder. The proportional factor that defines this contract specifies that the cedent’s
stake in the risk is valued within the range [0, 1] and is denoted as a. Here a = 0 means
full reinsurance, and a = 1 means no reinsurance.

Within the framework of proportional reinsurance contracts, the cedent and the reinsurer
share each claim Y according to the predefined proportional factor a:

• The cedent’s share : s(a, Y ) = aY ,

• The reinsurer’s share : r(a, Y ) = Y − s(a, Y ) = (1− a)Y .

To illustrate the principles discussed, consider an insurance company that enters into a
quota-share reinsurance agreement to manage its risk exposure. If the proportional factor
a is set at 0.25, the cedent will cover 25% of the claims, while the reinsurer will cover the
remaining 75% .

Suppose a claim Y of $10000 occurs. The cedent’s share of the claim would be 0.25 ×
$10000 = $2500, and the reinsurer would cover the remaining $7500 of the claim. By
transferring a quarter of the risk, the insurance company can stabilize its finances and
protect itself against large, aggregated losses that could arise from a disaster. In Figure
3.1, created by author using Python, we have graphically illustrated the impact of different
proportional factors on paid claims.

Figure 3.1: Impact of proportion factor on paid claims in proportional reinsurance.
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3 Managing risk via reinsurance

3.3 Excess-of-loss (XL) reinsurance

In non-proportional reinsurance contracts for excess-of-loss protection, the basis for deter-
mining the obligations of the contracting parties is the size of the claim. When concluding
such contracts, the priority level of the claim by the cedent is determined, and we denote
it as b for 0 ≤ b ≤ ∞. Here b = 0 means full reinsurance, and b = ∞ means no reinsurance.
Each claim Y is distributed between the cedent and the reinsurer based on the priority
level b as follows:

• The cedent’s share: s(b, Y ) = min{Y, b},

• The reinsurer’s share: r(b, Y ) = Y − s(b, Y ) = max{Y − b, 0} = (Y − b)+.

To illustrate the principles discussed, consider an insurance company that has an excess-
of-loss reinsurance contract with a priority level of $10000. The listed claim sizes in the
portfolio reinsured by this contract are $20000, $12000, and $7500. The cedent partici-
pates in these claims, respectively, with $10000, $10000, and $7500, while the reinsurer are
obligated to pay, the amounts of $10000 , $2000, and $0. The provided example has been
graphically illustrated in Figure 3.2, using Python.

Figure 3.2: Distribution of claim payment for XL reinsurance for various claim sizes.
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3 Managing risk via reinsurance

3.4 Combined reinsurance

In this thesis, we combine the principles of both quota-share (QS) and excess-of-loss (XL)
reinsurance under the following conditions: if the claim size Y is below or equal to a level
b, the cedent pays a portion of the claim according to the proportional rate a, and the
reinsurer covers the remaining portion. If the claim is above the level b, the cedent pays
their portion ab, and the reinsurer covers the remaining claims above ab.

Let Y be the claim size. We define the payments of the cedent and the reinsurer as follows:

• The cedent’s share: s(a, b, Y ) = min{aY, ab} = aY · 1{Y≤b} + ab · 1{Y >b},

• The reinsurer’s share: r(a, b, Y ) = Y − s(a, b, Y ) = (1− a)Y · 1{Y≤b} + (Y − ab) ·
1{Y >b}.

To illustrate the principles discussed, consider an insurance company with a combined
reinsurance contract where the priority level b is $10000, and the proportion level is a =
0.75. Suppose the following three scenarios occur in the portfolio:

• Scenario 1: A claim of $7500 occurs. Since 8000 ≤ b, the cedent covers: 0.75×7500 =
$5625 and the reinsurer cover remaining (1− 0.75)× 7, 500 = $1875.

• Scenario 2: A claim of $12000 occurs. Since 12000 > b, the cedent covers 0.75 ×
10000 = $7500 and the reinsurer cover remaining 12000− 7500 = $4500.

• Scenario 3: A claim of $20000 occurs. Since 20000 > b, the cedent covers 0.75 ×
10000 = $7500 and the reinsurer cover remaining 20000− 7500 = $12500.

The provided example has been graphically illustrated in Figure 3.3, using Python.

Figure 3.3: Distribution of claim payment for combined reinsurance for various claim sizes.

14



3 Managing risk via reinsurance

Figures 3.4 and 3.5 illustrate the difference in the claims portion paid by the cedent and
reinsurer for the three above-mentioned types of reinsurance. In this example, the propor-
tional factor for quota-share and combined reinsurance is set at a = 0.75, while the priority
level in excess-of-loss and combined reinsurance is set at b = 100.

Figure 3.4: Cedent payments for all three reinsurance types.

Figure 3.5: Reinsurer payments for all three reinsurance types.
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4 Optimizing combined reinsurance strategy

Assume the insurance company has the possibility and chooses to buy combined reinsurance
coverage, combining excess-of-loss (XL), with a priority level b, which can be changed
continuously, and quota-share (QS) reinsurance with the fixed proportional level a. We
want to find the optimal strategy that minimizes the ruin probability.

4.1 Problem statement

Insurer premium rate per unit time ct is calculated on the principle of expected value, with
safety loading η > 0.

c = (1 + η)λE[Y ] = (1 + η)λ

� ∞

0
y dG(y).

In order for the cedent to afford this level of coverage, the cedent pays to the reinsurer the
premium at the rate h(a, b). The reinsurer also calculates their premium using the expected
value principle with reinsurance safety loading θ, where θ > η > 0 and ρ = (1 + θ).

h(a, b) = ρλ
�
(1− a)E[Y | Y ≤ b] · P (Y ≤ b) + E[(Y − ab)+ | Y > b] · P (Y > b)

�
.

We can write this in slightly different form

h(a, b) = ρλ

�
(1− a)

� b

0
y dG(y) + (y − ab)(1−G(b))

�
.

If c ≥ ρλE[Y ], which means reinsurance is cheaper than insurance, and the cedent wants
to minimize their risk, then for all risks, they should choose the proportional factor a = 0
and b = 0, meaning to transfer all risks to reinsurance. However, this should not be the
case in practice, so we further assume that it is c < ρλE[Y ]. In general, reinsurance is more
expensive than insurance if c < h(0), meaning that the insurance premium rate is less than
the reinsurance premium rate.

We will denote premium rate left for the cedent after paying for reinsurance by c(a, b) =
c− h(a, b).

c(a, b) = λ

�
(1 + η)

� ∞

0
y dG(y)− ρ

�
(1− a)

� b

0
y dG(y) + (y − ab)(1−G(b))

��
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4 Optimizing combined reinsurance strategy

In this reinsurance contract, the priority level b is assumed to be chosen dynamically,
i.e., expressed as a time-dependent function bt. The cedent adjusts the priority level bt
continuously throughout the contract’s term t ≥ 0, relying on the information accessible just
before time t, and proportional factor a is fixed. This variable priority level bt, representing
the ratio at any given time t, defines the strategy.

In above-described, predictability is essential. In particular, at the time of a claim occur-
rence Ti, the reinsurance strategy is determined using information known up to Ti−. The
predictability of the reinsurance strategy is a reasonable assumption in this scenario; with-
out it, the insurer might switch the reinsurance strategy to full coverage at the moment
a claim occurs. This would result in the reinsurer covering all claims while the insurer
collects all the premiums.

Under these assumptions, we define Rb
t the cedent’s risk process, for the sum of all claim

payments up to time t, corresponding to the strategy bt, with fixed proportional factor a
and values of the priority level bt at time t in [0,∞], modeled by the Cramér-Lundberg
model as

Rb
t = x+

� t

0
c(a, bv) dv −

Nt#
i=1

s(a, bTi− , Yi), t ≥ 0.

The time of ruin is τb = inf{t ≥ 0 : Rb
t < 0}. Let δbt(x) be a the probability of survival

with strategy bt.
δbt(x) = P [τb = ∞ | Rb

0 = x].

Our goal is to maximize the survival probability, by finding δ(x) = supbt {δb(x)} and
determining the optimal strategy, if it exists. It is necessary at every moment t to find the
optimal retention level (strategy) b∗t , such that δ(x) = δb∗t (x).

4.2 Motivating the Hamilton–Jacobi–Bellman equation

As demonstrated in [9], we begin by motivating the corresponding Hamilton-Jacobi-Bellman
equation utilizing the following strategy:

bt =

�
b, if 0 ≤ t ≤ h ∧ T1,

b̃t−h∧T1 , if t > h ∧ T1 and T1 ∧ h < τ.

Where ϵ > 0 be fixed and arbitrary, b̃t(x) is a strategy such that δb̃(x) > δ(x) − ϵ and
h > 0 is a small number. If ruin does not occur in the interval (0, T1 ∧ h), the new
Cramér-Lundberg process begins at time T1 ∧ h with the new initial capital. Taking into
account that inter-arrival times of the homogeneous Poisson process have an exponential
distribution with parameter λ, it can be concluded that the density of the distribution of
the random variable T1 is of the form λe−λt, for t > 0 and P[T1 > h] = e−λh and we obtain
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4 Optimizing combined reinsurance strategy

from the law of total probability

δ(x) ≥ δb(x) = e−λhδb̃(x+ c(a, b)h) +

� h

0

� ∞

0
δb̃(x+ c(a, b)t− s(a, b, y)) dG(y)λe−λt dt

≥ e−λhδ(x+ c(a, b)h) +

� h

0

� ∞

0
δ(x+ c(a, b)t− s(a, b, y)) dG(y)λe−λt dt− ϵ.

Rewriting the equation using the formula for s(a, b, y) along with boundary conditions for
both t and y. Since we know that δ(x) = 0 for all x < 0, this introduces additional
constraints on the arguments of the δ-function in the integrals. The argument of the δ-
function must be non-negative, meaning that we need to ensure the conditions inside the
integrals satisfy x+ c(a, b)t− ay ≥ 0 and x+ c(a, b)t− ab ≥ 0.

δ(x) ≥ e−λhδ(x+ c(a, b)h)

+

� h

0

�� min
�
b,

x+c(a,b)t
a

�
0

δ(x+ c(a, b)t− ay) dG(y)

+ 1{b≤x
a}

� ∞

b
δ(x+ c(a, b)t− ab) dG(y)

�
λe−λt dt− ϵ.

We can let ϵ = 0 since ϵ was arbitrary. By considering the limiting value of the last
expression when h tends to 0, it is concluded that the function δ(x) is right-continuous.
For determining the differential equation that the function δ(x) satisfies, it is necessary to
observe that

δ(x+ c(a, b)h)− δ(x) ≥

δ(x+ c(a, b)h)−
�
e−λhδ(x+ c(a, b)h) +

� h

0

� min
�
b,

x+c(a,b)t
a

�
0

δ(x+ c(a, b)t− ay) dG(y)

+ 1{b≤x
a}

� ∞

b
δ(x+ c(a, b)t− ab) dG(y)

�
λe−λt dt.

from which, by dividing by h, we obtain

c(a, b)
δ(x+ c(a, b)h)− δ(x)

c(a, b)h
≥ 1− e−λh

h
δ(x+ c(a, b)h)

+
1

h

� h

0

�� min
�
b,

x+c(a,b)t
a

�
0

δ(x+ c(a, b)t− ay) dG(y)

+ 1{b≤x
a}

� ∞

b
δ(x+ c(a, b)t− ab) dG(y)

�
λe−λt dt.

By considering the limiting value when h → 0, it is observed that the function δ(x) is
right-differentiable and yields

c(a, b)δ′(x) = λ

�
δ(x)−

�� min(b,xa)

0
δ(x− ay) dG(y) + 1{b≤x

a}δ(x− b)(1−G(b))

��
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4 Optimizing combined reinsurance strategy

This must hold for every b. For h small and b optimal the corresponding survival probability
is almost optimal, thus equality in the above calculations should be obtained. This yields
the Hamilton–Jacobi–Bellman equation

sup
b>0

�
c(a, b)δ′(x) + λ

�� min(b,xa )

0
δ(x− ay) dG(y)

+ 1{b≤x
a}δ(x− b)(1−G(b))− δ(x)

��
= 0. (1)

The condition that the cedent retains some premium in the case of combined reinsurance
is that the inequality c ≥ h(a, b) holds. We denote by b the value for which the equality
c = h(a, b) holds, so we require that b > b.

As our goal is to increase the probability of survival, that is, to find an increasing solution
to equation (1), it should hold that δ′(x) ≥ 0. In that case, equation (1) can be written in
the form

δ′(x) = inf
b>b

λ

δ(x)−
�� min(b,xa )

0 δ(x− ay) dG(y) + 1{b≤x
a}δ(x− b)(1− G(b)

!
c(a, b)

. (2)

4.2.1 Survival probability for exponentially distributed claim sizes

We consider a case with exponentially distributed claims size Exp(m). The complexity of
the equation

c(a, b)δ′(x) = λ

�
δ(x)−

�� min(b,xa)

0
δ(x− ay) dG(y) + 1{b≤x

a}δ(x− b)(1−G(b))

��

lies in the fact that it contains both the derivative and the integral of the function δ(x).

We will calculate the survival probability function in three different cases:

1. case with no reinsurance,

2. x < ab and only proportional reinsurance is applied, and

3. x > ab with excess-of-loss reinsurance.

No reinsurance

In case of no reinsurance (a = 1 and b = ∞), the equation (2) can be written as follows :

cδ′(x) = λ

�
δ(x)−

�� x

0
δ(x− y) dG(y)

!!
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Assuming exponentially distributed claim sizes with parameter m, the equation simplifies
to:

cδ′(x) = λ

�
δ(x)−

� x

0
δ(y)me−m(x−y)dy

!
.

We solve this equation in a similar way as in [8], on pages 163-164. We can rewrite the
integral in an equivalent form:

cδ′(x) = λ

�
δ(x)− e−mx

� x

0
δ(y)memydy

!
.

Differentiating the δ′(x) gives the following:

cδ′′(x) = λ

�
δ′(x) +me−mx

� x

0
δ(y)memydy −mδ(x)

!

cδ′′(x) = λ

�
δ′(x)−m

�
δ(x)− e−mx

� x

0
δ(y)memydy

!!
cδ′′(x) = λ

�
δ′(x)−m

c

λ
δ′(x)

�
cδ′′(x) = λδ′(x)−mcδ′(x)

δ′′(x) = δ′(x)
�
λ

c
−m

!
.

The general solution to this differential equation is (see Appendix 7.3)

δ(x) = C1 + C2e
−(m−λ

c
)x.

Since limx→∞ δ(x) = 1 it follows that C1 = 1 and we can write δ(x) = 1 + C2e
−(m−λ

c
)x.

Constant C2 is the initial condition δ(0), i.e., the survival probability without initial capital.
Firs derivative is then

δ′(x) = −C2

�
m− λ

c

!
e−(m−λ

c )x

and plugging it into

cδ′(x) = λ

�
δ(x)−

� x

0
δ(y)me−m(x−y)dy

!
yields

−C2(m · c− λ)e−(m−λ
c
)x =

= λ
�
1 + C2e

−(m−λ
c
)x − (1− e−mx) + C2e

−mxm · c
λ

�
eλ

x
c − 1

��
.

For x = 0 yields C2 = − λ
m·c . Thus,

δ(x) = 1− λ

m · ce
−(m−λ

c
)x.
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4 Optimizing combined reinsurance strategy

In Figure 4.1, we illustrate the survival probability function in the case with no reinsur-
ance, where the model parameters are: claim arrival intensity λ = 1, expected claim size
parameter m = 1, insurer safety loading η = 0.5, and reinsurer safety loading θ = 0.7.

Figure 4.1: Survival probability in case of no reinsurance.

The initial capital less than ab

For x < ab, in equation (2), the term δ(x−ab)(1−G(b)) becomes zero because the function
δ(x− ab) is non-zero only in the case x > ab. The equation can be written as follows :

c(a, b)

λ
δ′(x) = δ(x)−

� x
a

0
δ(x− ay) dG(y).

Let x− ay = z , dz
dy = −a, then we obtain :

c(a, b)

λ
δ′(x) = δ(x)− 1

a

� x

0
δ(z) dG

�
x− z

a

!
dz.

Using the exponential distribution claim size with parameter m, the equation simplifies to:

c(a, b)

λ
δ′(x) = δ(x)− 1

a

� x

0
δ(z)me−mx−z

a dz.

We can write the integral in a slightly different form.

c(a, b)

λ
δ′(x) = δ(x)− e−mx

a
m

a

� x

0
δ(z) em

z
adz.
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Differentiating the δ′(x) gives the following:

c(a, b)

λ
δ′′(x) = δ′(x) +

m2

a2
e−mx

a

� x

0
δ(z) em

z
adz − m

a
δ(x)

c(a, b)

λ
δ′′(x) = δ′(x)− m

a

�
δ(x)− e−mx

a
m

a

� x

0
δ(z) em

z
adz

!
c(a, b)

λ
δ′′(x) = δ′(x)− m

a
· c(a, b)

λ
δ′(x)

δ′′(x) =
λ

c(a, b)
δ′(x)− m

a
δ′(x)

δ′′(x) = δ′(x)
�

λ

c(a, b)
− m

a

!
.

The general solution to this differential equation is :

δ(x) = C1 + C2e
−(m

a
− λ

c(a,b)
)x
.

The initial capital bigger than ab

For x ≥ ab, in equation (2), the term δ(x− ab)(1−G(b)) is non-zero. The equation can be
written as following :

c(a, b)

λ
δ′(x) = δ(x)−

�� b

0
δ(x− ay) dG(y) + δ(x− ab)(1−G(b))

!
.

Integral
� b
0 δ(x− ay) dG(y), applying integration by parts and using the chain rule, we can

write in slightly different form� b

0
δ(x− ay) dG(y) = − [(1−G(y))δ(x− ay)]b0 + a

� b

0
δ′(x− ay)(1−G(y)) dy

= −(1−G(b))δ(x− ab) + (1−G(0))δ(x) + a

� b

0
δ′(x− ay)(1−G(y)) dy

= −(1−G(b))δ(x− ab) + δ(x) + a

� b

0
δ′(x− ay)(1−G(y)) dy.

Thus,

c(a, b)

λ
δ′(x) = δ(x)−

�
− (1−G(b))δ(x− ab) + δ(x)

+ a

� b

0
δ′(x− ay)(1−G(y)) dy + δ(x− ab)(1−G(b))

�
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c(a, b)

λ
δ′(x) = δ(x)−

�
δ(x) + a

� b

0
δ′(x− ay)(1−G(y)) dy

!
c(a, b)

λ
δ′(x) = −a

� b

0
δ′(x− ay)(1−G(y)) dy.

Let x− ay = z , dz
dy = −a, then we obtain :

c(a, b)

λ
δ′(x) =

� x

x−ab
δ′(z)

�
1−G

�
x− z

a

!!
dy.

Using exponentially distributed claim size with parameter m, the equation simplifies to:

c(a, b)

λ
δ′(x) =

� x

x−ab
δ′(z)e−m(x−z

a ) dz.

We can write the integral in a slightly different form

c(a, b)

λ
δ′(x) = e−mx

a

� x

x−ab
δ′(z)em

z
a dz.

Differentiating the δ′(x) gives the following:

c(a, b)

λ
δ′′(x) = −m

a
e−mx

a

� x

x−ab
δ′(z)em

z
a dz + δ′(x)− e−mbδ′(x− ab)

c(a, b)

λ
δ′′(x) = −m

a

c(a, b)

λ
δ′(x) + δ′(x)− e−mbδ′(x− ab)

δ′′(x) = −m

a
δ′(x) +

λ

c(a, b)
δ′(x)− λ

c(a, b)
e−mbδ′(x− ab)

δ′′(x) = δ′(x)
�

λ

c(a, b)
− m

a

!
− λ

c(a, b)
e−mbδ′(x− ab).

Unlike the case of no reinsurance, in case of combined reinsurance, it is not easy to find a
general solution due to the additional term δ′(x − ab), which requires a specific solution.
Therefore, we use computer simulations to illustrate the survival probability.

We consider the survival probability function under various scenarios.

1. Scenario 1 : No reinsurance: a = 1, b = ∞,

2. Scenario 2 : No XL reinsurance: a = 0.6, b = ∞,

3. Scenario 3 : Pure excess-of-loss reinsurance: a = 1, b = 2,

4. Scenario 4 : Combined reinsurance: a = 0.6, b = 2.
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Other model parameters are defined as following: claim arrival intensity λ = 1, expected
claim size parameter m = 1, insurer safety loading η = 0.5, and reinsurer safety loading
θ = 0.7

Figure 4.2 illustrates all above scenarios. We can observe that for a small initial capital,
the survival probability is highest in the case of no reinsurance. On the other hand, for a
large initial capital, it is obvious that the combined reinsurance significantly increases the
survival probability.

Figure 4.2: Survival probability for four different cases.

Figure 4.3 illustrates how the survival probability function depends on the proportional
parameter a. We examine combined reinsurance, where in all three scenarios, the priority
level is fixed at b = 2.5. We can observe that for small initial capital, the survival probability
is higher when the proportional factor is higher. On the other hand, for large initial capital,
the survival probability is higher in scenarios with a lower proportional factor.

Figures 4.4 and 4.5 illustrate how the survival probability function depends on the XL level
b. In Figure 4.4, we consider the scenarios where the proportional factor is fixed at a = 1,
meaning there is no proportional reinsurance, only pure XL reinsurance. In Figure 4.5, we
examine combined reinsurance, where in all three scenarios, the proportional factor is fixed
at a = 0.75.
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4 Optimizing combined reinsurance strategy

Figure 4.3: Survival probability for different proportional factor and priority level b = 2.5.

Figure 4.4: Survival probability for different priority level and no proportional reinsurance.

25



4 Optimizing combined reinsurance strategy

Figure 4.5: Survival probability for different priority level and proportional factor a = 0.75.

From these two graphs, we can observe that for small initial capital, the survival probability
is higher when the priority level is large. On the other hand, for large initial capital, the
survival probability is higher in scenarios with a smaller priority level. Additionally, we
can observe that with a smaller proportional factor, the functions are closer to each other.

A common observation across each of these graphs is that in each of the scenarios mentioned
above the functions intersect at certain points. Moreover, no single function achieves the
maximum survival probability for all values of the initial capital. For this reason, we aim
to find an optimal strategy that maximizes the survival probability all the time.
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4.3 Existence of an optimal strategy

In this section, we will prove the existence of a solution to equation (1), following the ideas
and theorem presented in references [4] and [6].

Theorem 4.3.1. Suppose the claim size distribution Q is absolutely continuous. Then,
there exists a solution V (x) that solves the Hamilton-Jacobi-Bellman (HJB) equation (1).
This solution V (x) is increasing function, continuous on [0,∞) and differentiable on (0,∞),
and it satisfies V (x) = 0 for all x < 0 and converges to 1 as x → ∞.

Proof. Let us define a sequence of functions Vn(x) as follows:

- Set V0(x) = δ0(x), which represents the survival probability with no reinsurance
(b = ∞, or b = β if P (X ≥ β) = 0, and a = 1).

- Construct subsequent terms recursively:

V ′
n+1(x) = inf

b>0

����λ

Vn(x)−
�� min(b,xa)

0 Vn(x− ay) dG(y) + 1{b≤x
a
}
�∞
b Vn(x− ab) dG(y)

!
c(a, b)

���� .

(3)
We prove by induction that the sequence V ′

n(x) is decreasing:

- Base case (n = 0): When no reinsurance is involved, the HJB equation becomes:

0 = λ

�� x

0
V0(x− y) dG(y)− V0(x)

!
+ cV ′

0(x).

This implies:

V ′
0(x) = λ

V0(x)−
� x
0 V0(x− y) dG(y)

c
.

Substituting n = 0 into (3) yields:

V ′
1(x) = inf

b>0

λ
V0(x)−

�� min(b,x
a
)

0 V0(x− ay) dG(y) + 1{b≤x
a
}
�∞
b V0(x− ab) dG(y)

�
c(a, b)

 .

Then for all x ≥ 0, we have V ′
0(x) ≥ V ′

1(x).

-Inductive Step (n ≥ 1): Assume V ′
n−1(x) ≥ V ′

n(x) for all x ≥ 0 and fixed x.
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From (3), for all b, it follows that the inequality

V ′
n+1(x)

�
c(a, b)

 ≤λVn(x)

− λ

�� min(b,xa)

0
Vn(x− ay) dG(y)

+ 1{b≤x
a}

� ∞

b
Vn(x− ab) dG(y)

�

= λE

�� x

x−s(a,b,y)
V ′
n(u) dz

�
≤ λE

�� x

x−s(a,b,y)
V ′
n−1(u) dz

�

= λVn−1(x)− λ

�� min(b,xa )

0
Vn−1(x− ay) dG(y)

+ 1{b≤x
a}

� ∞

b
Vn−1(x− ab) dG(y)

�
≤ V ′

n(x)
�
c(a, b)

 
.

Given that b was arbitrary, we can switch to the infimum, which leads to

V ′
n(x) ≥ V ′

n+1(x).

Since V ′
n(x) is decreasing and above 0, it converges to some function f(x) with

V (x) = 1−
� ∞

x
f(z) dz.

Then V (x) is an increasing and continuous function satisfying:

f(x) = inf
b>0

λ
V (x)−

�� min(b,x
a
)

0 V (x− ay) dG(y) + 1{b≤x
a
}
�∞
b V (x− ab) dG(y)

�
c(a, b)

 .

Next, we want to prove continuity of f(x), from which it follows that V ′(x) is also contin-
uous, because V ′(x) = f(x), and when δ replace V , V (x) satisfies equation (1).

We start by proving that f(x) > 0 for all x ≥ 0. The function f(x) represents the limit of
the sequence V ′

n(x). If the infimum in (3) is not reached within the interval [b, xa ], it must
be attained at b = ∞, because for all other values of priority level b, either the premium
retained by the insurer is negative, or the expected losses exceed the premium in the same
period.

For 0 ≤ x
a ≤ b, infimum in (3) is attained at a point b = ∞, thus

f(x) = V ′(x) = λ
V (x)

c
= λ

V0(x)

c
> 0.
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4 Optimizing combined reinsurance strategy

Let’s suppose x0 = inf{x : f(x) = 0} < ∞. Therefore, x0 > ab, and there exists a value
x0 < x < x0 + ab such that f(x) = 0, that is

0 = inf
b≥b

�
V (x)−

�� min(b,xa)

0
V (x− ay) dG(y) + 1{b≤x

a}
� ∞

b
V (x− ab) dG(y)

�


= V (x)−
�� min(b,xa)

0
V (x− ay) dG(y) + 1{b≤x

a}
� ∞

b
V (x− ab) dG(y)

�
,

i.e. V (x) = V (x− ab). Then

0 =

� x

x−ab
f(z)dz ≥

� x0

x−ab
f(z)dz.

This contradicts the choice of x0, since x−ab < x0, and the function f(z) is strictly positive
on the interval [x− ab, x0].

Now we prove that in the definition of the functions Vn(x), where
x
a ≤ α, the infimum can

be restricted in the interval [b1,∞], with b1 ≥ b. To prove the contrary, assume there exists
a sequence 0 ≤ xn ≤ α and bn → b such that

V ′
n+1(xn) ≥

λ

Vn(xn)−
�� min(bn,xa )

0 Vn(x− ay) dG(y) + 1{bn≤x
a}

�∞
bn

Vn(x− abn) dG(y)

!
c(a, bn)

− 1

n

≥ V ′
n+1(xn)−

1

n
.

Since
0 ≤ V ′

n(x) ≤ V ′
0(x) and c(a, bn) → 0,

we obtain

Vn(xn)−
�� min(bn,xa )

0
Vn(x− ay) dG(y) + 1{bn≤x

a}
� ∞

bn

Vn(x− abn) dG(y)

�
→ 0,

and thus for each accumulation point x0 of the sequence xn, we have

V (x0)−
�� min(b,xa )

0
V (x0 − ay) dG(y) + 1{b≤x

a}
� ∞

b
V (x0 − ab) dG(y)

�
= 0 = f(x0),

which is in contradiction with the previously proven fact that the function f(z) is strictly
positive. This proves that the function V (x) satisfies equation (1), and from its definition,
it directly follows that it converges to 1 as x → ∞.

|f(x1)− f(x2)| ≤
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4 Optimizing combined reinsurance strategy

sup
b≥b1

&&&&&λ
V (x1)−

�� min(b,x1a )
0 V (x1 − ay) dG(y) + 1{b≤x1

a }
�∞
b V (x1 − ab) dG(y)

!
c(a, b)

−λ

V (x2)−
�� min(b,x2a )

0 V (x2 − ay) dG(y) + 1{b≤x2
a }

�∞
b V (x2 − ab) dG(y)

!
c(a, b)

&&&&&,
the continuity of the function f(z) follows from the continuity of the function V (x), thus
proving that the function V (x) is continuous on the interval [0, ∞) and differentiable on
the interval (0, ∞).

Thus, we have shown that V (x) satisfies the Hamilton-Jacobi-Bellman equation and meets
all the required properties, proving the theorem.
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4 Optimizing combined reinsurance strategy

4.4 Uniqueness of the optimal strategy

In this section, we will show that the strategy b∗t , which maximizes equation (1), also
maximizes the survival probability. We will follow the ideas and theorems presented in
references[4] and [6].

Theorem 4.4.1. The strategy b∗t obtained as the solution of equation (1), when δ is replaced
with V , maximizing the survival probability when applying combined reinsurance contracts.
For survival probability δ(x) with any arbitrary strategy bt and any x ≥ 0, we have

V (x) ≥ δ(x), if and only if bt = b∗t .

Proof. Let V (x) be the smooth function that is the solution of equation (2) when δ is
replaced with V , constructed in the proof of the previous theorem which holds

0 ≤ V (x) ≤ 1

with
lim
x→∞V (x) = 1.

Let define Rt and R∗
t as the risk processes of the insurance company with initial capital x

and reinsurance strategies bt and b∗t . We define the stopped processes (Zt) and (Z∗
t ) with

corresponding ruin times τ and τ∗ and the stopped processes transformed (Wt) and (W ∗
t )

by V (x) as:
Wt = V (Zt) = V

�
R
�
min{t, τ}  ,

W ∗
t = V (Z∗

t ) = V
�
R∗�min{t, τ∗}  .

By applying the principles as in [12], p. 80, (2.16), it follows

E[Wt] = V (x) + E
�� t

0
V ′(Zx) (c(a, bx)) dx+ λ

� t

0
E [V (Zx − s(a, bx, y))− V (Zx)] dx

�
and

E[W ∗
t ] = V (x) + E

�� t

0
V ′(Z∗

x) (c(a, b
∗
x)) dx+ λ

� t

0
E [V (Z∗

x − s(a, b∗x, y))− V (Z∗
x)] dx

�
.

From the HJB equation (1), when we substitute δ with V , for all t > 0, it holds that
E[W ∗

t ] = V (x), since for b∗, as the optimal solution, it holds

V ′(Z∗
x) (c(a, b

∗
x)) + λE[V (Z∗

x − s(a, b∗x, y))− V (Z∗
x)] = 0, x ≥ 0.

Since b∗ achieves the supremum of the previous expression, it follows that

V ′(Zx) (c(a, bx)) + λE[V (Zx − s(a, bx, y))− V (Zx)] ≤ 0, x ≥ 0, (a, bx) ≥ 0.

From the previous, it follows that

E[W ∗
t ] = V (x) ≥ E[Wt]. (4)
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4 Optimizing combined reinsurance strategy

Suppose the predictable strategy bt satisfies the condition

bt ≥ γ > 0

for all t ≥ 0, where γ is chosen such that P (Y > γ) > 0. Under this assumption, we prove
that the process Rt is unbounded on the event {τ = ∞}. Specifically, we prove for all β > 0

P{Rt ≤ β for all t ≥ 0 and τ = ∞} = 0. (5)

For n > β+c
γ , there exists a positive probability that more than n claims with sizes greater

than γ occur within an interval of length 1. Given that the claims process possesses
stationary and independent increments, the likelihood of observing more than n such claims
in any interval [t, t+ 1] remains strictly positive. For Rt ≤ β, we have:

R(t+ 1) ≤ Rt + c− nγ ≤ β + c− nγ < 0,

which implies τ < ∞. Hence, if Rt ≤ β, it follows that τ < ∞, which proves statement (5).

For any given ϵ, we define a strategy b+t with an associated risk process R+
t and ruin time

τ+ such that P (τ = ∞ and τ+ < ∞) < ϵ, and R+
t → ∞ on the set {τ = ∞ and τ+ = ∞}.

Choose β > x to be enough large so that 1− δ0(β) < ϵ, and define T = inf{t ≥ 0 : Rt = β},
which is almost surely finite on {τ = ∞}. The strategy b+t is then given by

b+t =

�
bt if t ≤ T,

∞ if t > T.

The strategy b+t is predictable, and

P{τ = ∞ and τ+ < ∞} ≤ P{τ = ∞}P{τ+ < ∞} ≤ 1− δ0(β) < ϵ.

Additionally, T < ∞ implies R+
t → ∞ because ϵ is arbitrarily small, 1− δ0(β) < ϵ.

Now repeat the above reasoning leading to (4) for R+
t instead of Rt. We obtain:

E
�
V
�
R∗�min {t, τ∗}  �� = V (x) ≥ E

�
V
�
R+

�
min

�
t, τ+

�  ��
.

Since τ∗ and τ+ are stopping times, it holds that R∗(τ∗) < 0 and R+(τ+) < 0, from which
it follows that V (R∗(τ∗)) = 0 and V (R+(τ+)) = 0. When t → ∞, it holds that:

P
�
τ∗ = ∞

	
≥ E

�
V
�
R∗�min{t, τ∗} �� = V (x) ≥ E

�
V
�
R+

�
min{t, τ∗} �� ≥

P
�
τ = ∞ and t+ < ∞

	
= P

�
τ = ∞

	
− P

�
τ = ∞ and t+ < ∞

	
≥ P

�
τ = ∞

	
− ϵ.

Since ϵ was chosen arbitrarily, this proves our statement for the specific case of a strategy bt
satisfying bt ≥ γ > 0 for all t ≥ 0. Specifically, given that every solution V (x) of equation
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4 Optimizing combined reinsurance strategy

(2) in the context of Theorem 4.3.1 corresponds to a strategy satisfying bt ≥ γ > 0 for all
t ≥ 0, we conclude that the solution is unique, and therefore V (x) = P (τ∗ = ∞).

For determining the inequality E [V (R+ (min{t, τ∗}))] ≥ P{τ = ∞ and τ+ < ∞}, we used
the fact that R+

t → ∞ on {τ = ∞ and τ+ < ∞} and that limx→∞ V (x) = 1.

This completes the proof.
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5 Optimal strategy for exponentially
distributed claim sizes

Let us assume that the individual claim size characteristics follow the Cramér-Lundberg
model for modelling the risk of an insurance company and that the cedent can buy reinsur-
ance policies in such a way that the claim size distribution remains the same. During this
chapter, we calculate the optimal strategies and optimal survival probability for the expo-
nentially distributed claim size with mean µ = 1

m , density function g(y) = me−my, y ≥ 0
and distribution function G(y) = 1 − e−my, y ≥ 0. This distribution is a typical case of
light-tails distributions. Furthermore, numerical examples are included to illustrate how
different model parameters affect the optimal strategy and the optimal survival probability.

5.1 Premium under exponentially distributed claim sizes

Here, G(y) is the distribution function of the claim sizes and hence:

G(y) = 1− e−my

5.1.1 Calculation of the insurer’s premium

The insurer’s premium rate c is given by:

c = (1 + η)λ

� ∞

0
y dG(y) = (1 + η)λ

� ∞

0
y ·me−my dy.

To solve this integral, we recognize that it is the expected value of an exponential distri-
bution with rate m: � ∞

0
y ·me−my dy =

1

m
.

Therefore,

c =
(1 + η)λ

m
.

5.1.2 Calculation of the reinsurer’s premium

The reinsurer’s premium rate h(a, b) is given by:

h(a, b) = ρλ

�
(1− a)

� b

0
y dG(y) +

� ∞

b
(y − ab) dG(y)

�
.
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5 Optimal strategy for exponentially distributed claim sizes

We break this down into two parts.

First integral:
� b
0 y dG(y)� b

0
y dG(y) =

� b

0
y ·me−my dy = m

� b

0
ye−my dy

We use integration by parts. Let u = y and dv = e−my dy then du = dy and v = − 1
me−my.

Applying the integration by parts formula�
u dv = uv −

�
v du

we get

m

�
− y

m
e−my

&&&b
0
+

� b

0

1

m
e−my dy

�
.

Evaluating this, we have

− b

m
e−mb +

1

m2
(1− e−mb) =

1

m
−
�
b+

1

m

!
e−mb.

Thus, the final result is: � b

0
y dG(y) =

1

m
−
�
b+

1

m

!
e−mb.

Second integral:
�∞
b (y − ab) dG(y)� ∞

b
(y − ab) dG(y) =

� ∞

b
(y − ab) ·me−my dy.

We can break it down into two parts.� ∞

b
(y − ab) ·me−my dy = m

� ∞

b
ye−my dy − ab ·m

� ∞

b
e−my dy.

First part is :

m

� ∞

b
ye−my dy = m

�
− y

m
e−my

&&&∞
b

+

� ∞

b

1

m
e−my dy

�
= m

�
b

m
e−mb +

1

m
e−mb

!
=

�
b+

1

m

!
e−mb.

Second part :

ab ·m
� ∞

b
e−my dy = ab ·m

�−e−my

m

�∞
b

= ab · e−mb.

Putting these two parts together, we obtain :� ∞

b
(y − ab) ·me−my dy = e−mb

�
b+

1

m
− ab

!
.
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5 Optimal strategy for exponentially distributed claim sizes

Substituting these results back into the formula for h(a, b) we have:

h(a, b) = ρλ

�
(1− a)

�
1

m
−
�
b+

1

m

!
e−mb

!
+ e−mb

�
b+

1

m
− ab

!�
.

The simplified form of h(a, b) is:

h(a, b) =
ρλ

m

�
1− a+ ae−mb

�
.

Then the premium rate left for the cedent for the exponentially distributed claim size is :

c(a, b) = c− h(a, b) =
(1 + η)λ

m
− ρλ

m

�
1− a+ ae−mb

�
=

λ

m

�
(1 + η)− ρ

�
1− a+ ae−mb

��
.

5.2 Optimal strategy

We require that the condition is met for the cedent’s net retained premium to be positive,
namely that the condition holds c > h(a, b), that is

λ(1 + η)

m
>

λρ

m

�
1− a+ ae−mb

�
which gives

(1 + η) > (1 + θ)
�
1− a+ ae−mb

�
From c(a, b) = h(a, b) we determined lower boundaries.

For large b, the lower bound for a is obtained from :

a =
θ − η

(1 + θ)(1− e−mb)
=

θ − η

1 + θ
.

For b smaller than x, the lower bound for b is obtained from :

b = − 1

m
ln

�
1 + η − ρ(1− a)

ρa

!
.

In Appendix 7.1 and 7.2 we can find a list of tables showing the lower bounds for different
parameters η, θ, and m.

In the proof of Theorem 4.3.1, we saw that the infimum in equation (2) is attained on the
segment [b, xa ] or at the point b = ∞, so this will be an additional constraint for finding the
optimal priority level. Therefore, we seek the b that satisfies the equation

δ′(x) = inf
{x

a
>b>b}

∪(b=∞)

����λ

δ(x)−
�� min(b,xa )

0 δ(x− ay) dG(y) + 1{b≤x
a}δ(x− b)(1−G(b))

!
c(a, b)

���� .
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5 Optimal strategy for exponentially distributed claim sizes

To further illustrate our calculations, we can rewrite this equation in a slightly different
form. By definition, we have� b

0
δ(x− ay) dG(y) + δ(x− ab)(1−G(b)).

Let us denote by

f(x) =

� x
a

0
δ(x− ay) dG(y) = e−mx

a
m

a

� x

0
δ(z) em

z
adz.

Therefore,

f ′(x) =
m

a
(δ(x)− f(x)) .

It is also � b

0
δ(x− ay) dG(y) = f(x)−

� x
a

b
δ(x− ay) dG(y)

= f(x)− e−mb

� x−ab

0
δ(y) dG(x− ab− y) = f(x)− e−mbf(x− ab).

Thus, we find that� min(b,xa)

0
δ(x−ay) dG(y)+1{b≤x

a}δ(x−b)(1−G(b) = f(x)−e−mbf(x−ab)+δ(x−ab)e−mb.

With the previous assumptions and notation, the challenge is to find a solution to the
equation

δ′(x) = inf
{x
a
>b>b}∪(b=∞)

�
m
δ(x)− f(x) + e−mb(f(x− ab)− δ(x− ab))

η − θ + a(1 + θ) (1− e−mb)

�
. (6)

Determining a formula for the survival probability function for the reinsurance strategy
analyzed in this thesis poses significant challenges and may even be practically unattainable.
As a result, adopting a numerical approach was considered more feasible and effective. We
will seek the solution using simulations, but with additional assumptions: As the initial
condition, we will take the survival probability when there is no reinsurance, a = 1 and
bt = ∞ for all t, δ(0) = η

(1+η) .

The algorithm guiding this simulation proceeds as follows: for all initial capital values x
from 0 to 15, with a step of 1

1000 , we determine the optimal priority level b∗t by identifying,
for all b ∈ (b, xa )∪∞, the value at which the minimum of the function (6) is achieved. This
minimum value is added to the variable δ′(x). To determine δ(x), f(x), and f ′(x), we use
the following formulas:

δ(x) = δ(x− 1

1000
) + δ′(x− 1

1000
) · 1

1000
,

f(x) = f(x− 1

1000
) + f ′(x− 1

1000
) · 1

1000
.
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5 Optimal strategy for exponentially distributed claim sizes

The remaining parameters are fixed, like in [9] as follows:

Proportional factor a = 0.8, claim arrival intensity λ = 1, expected claim size parameter
m = 1, insurer safety loading η = 0.5, reinsurer safety loading θ = 0.7.

Figure 5.1: Optimal combined reinsurance strategy

The dependency of the optimal strategy on the initial capital is shown in Figure 5.1. We
observe that the optimal strategy, in the case of exponentially distributed claim sizes,
behaves as expected. For small capital values within the interval x ∈ [0, 0.409), the optimal
strategy satisfies b∗(x) = ∞, meaning “no reinsurance”. This is because the insurer, due
to limited initial capital, cannot afford reinsurance. As the initial capital increases, the
optimal strategy transitions to b∗(x) = x

a , which holds in the interval x ∈ [0.41, 0.863).
In this range, the following claim will not result in ruin, as the reserve remains positive
even after the claim. From the point b∗(x) < x

a , starting at x ≈ 0.834, the insurer become
capable of affording more expensive reinsurance, and b∗(x) ≈ 0.869 continues to converge.
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5 Optimal strategy for exponentially distributed claim sizes

Figure 5.2: Optimal combined reinsurance strategy

In Figure 5.2, the optimal survival probability function for combined reinsurance with
a = 0.8 and b∗(x), the survival probability function for combined reinsurance with fixed
parameters a = 0.8 and b = 1, and the survival probability without reinsurance with
a = 1 are illustrated. In the case of the optimal strategy, the survival probability at initial
capital zero is δ(0) ≈ 0.4457. As expected, the optimal survival probability is above the
other two functions for every value of the initial capital. In the case without reinsurance,
the survival probability at initial capital zero is δ(0) ≈ 0.3333, which is higher than the
case with combined reinsurance with fixed parameters, where δ(0) ≈ 0.2329. However,
at some point, this strategy will begin to provide a higher survival probability than the
strategy without reinsurance, but it will still remain lower than the function with the
optimal strategy.

In the following four subsections, we will demonstrate how the remaining model parameters
influence both the optimal strategy and the optimal survival probability.

39



5 Optimal strategy for exponentially distributed claim sizes

5.2.1 Optimal strategy for different values of proportional factor (a)

We consider scenarios with different values of the proportional factor: a = 0.6, a = 0.8,
and a = 1, and analyze how the proportional factor impacts the optimal strategy and the
optimal survival probability. Here, a = 0.6 indicates that the insurer covers a smaller per-
centage of the claims below the retention level, meaning that reinsurance is more expensive,
and the premiums retained by the insurer after paying reinsurance are lower. On the other
hand, a = 1 means that the insurer cover the entire claim below the retention level, indi-
cating that reinsurance is cheaper, and the premiums retained by the insurer after paying
reinsurance are higher.

Figure 5.3: The effect of parameter a on the optimal strategy

In Figure 5.3, we can see that for a = 0.6, “no reinsurance” ie. b∗(x) = ∞, is optimal for
x ∈ [0, 0.487), and first reinsurance is bought at x = 0.488 with strategy b∗(0.488) ≈ 0.813.
For large initial capital, the optimal strategy is b∗(x) ≈ 1.317. For a = 1, “no reinsurance”
ie. b∗(x) = ∞, is optimal for x ∈ [0, 0.375), and first reinsurance is bought at x = 0.376 with
strategy b∗(0.376) = 0.376. For large initial capital, the optimal strategy is b∗(x) ≈ 0.65.

Since reinsurance with a = 1 is cheaper than reinsurance with a = 0.6, this function will
drop down earlier and deeper, meaning that the insurer will start with reinsurance at a
lower initial capital and with reinsurance with smaller retention level.

The survival probabilities for the given scenarios are illustrated in Figure 5.4. It is evident
that when the proportional factor is lower, reinsurance becomes more expensive, resulting
in smaller premiums retained by the insurer after paying for reinsurance, which leads to
reduced financial flexibility. Consequently, the survival probability for an initial capital at
x = 0 is lower compared to scenarios where the proportional factor is higher. For a = 0.6,
we have δ(0) ≈ 0.3387 and for a = 1, we have δ(0) ≈ 0.5219, thus the premiums retained
by the insurer after paying for the cheaper reinsurance are greater.
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Figure 5.4: The effect of parameter a on the optimal survival probability

Additionally, it has been clearly demonstrated that the survival probability is highest when
the proportional factor a = 1. This indicates that, in the case of combined reinsurance, the
optimal strategy is a pure excess-of-loss reinsurance strategy.

5.2.2 Optimal strategy for different values of insurer’s safety loading (η)

We consider scenarios with different values of the insurer safety loading: η = 0.45, η = 0.5,
and η = 0.55, and analyze how the insurer’s safety loading impacts the optimal strategy
and the optimal survival probability. Here, η = 0.45 means that the insurance is cheaper,
which means that the premiums retained by the insurer after paying reinsurance are lower,
and η = 0.55 means that the insurance is more expensive, which means that the premiums
retained by the insurer after paying reinsurance are higher.

In Figure 5.5, we can see that for η = 0.45, “no reinsurance” ie. b∗(x) = ∞, is optimal
for x ∈ [0, 0.581), and first reinsurance is bought at x = 0.582 with strategy b∗(0.582) ≈
0.727. For large initial capital, the optimal strategy is b∗(x) ≈ 1.194. For η = 0.55, “no
reinsurance” ie. b∗(x) = ∞, is optimal for x ∈ [0, 0.275), and first reinsurance is bought at
x = 0.276 with strategy b∗(0.276) ≈ 0.344. For large initial capital, the optimal strategy is
b∗(x) ≈ 0.584.

Since insurance with η = 0.55 saves more money after paying a reinsurance than insurance
with η = 0.45, this function will drop down earlier and deeper, meaning that the insurer will
start with reinsurance at a lower initial capital and with reinsurance with smaller retention
level.
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Figure 5.5: The effect of parameter η on the optimal strategy

The survival probabilities for the given scenarios are illustrated in Figure 5.6. It is clear that
when insurance is cheaper, the insurer retain fewer premiums after paying for reinsurance,
leaving them with less financial flexibility. As a result, the probability of survival for an
initial capital at x = 0 is lower compared to cases where insurance is more expensive. For
η = 0.45, we have δ(0) ≈ 0.3634, and for η = 0.55, we have δ(0) ≈ 0.5443, and the insurer
retain a larger portion of the premiums after paying for reinsurance.

Figure 5.6: The effect of parameter η on the optimal survival probability
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5.2.3 Optimal strategy for different values of reinsurer’s safety loading (θ)

We consider scenarios with different values of the reinsurer safety loading: θ = 0.65, θ = 0.7,
and θ = 0.75, and analyze how the reinsurer’s safety loading impacts the optimal strategy
and the optimal survival probability. Here, θ = 0.65 means that the reinsurance is cheaper,
which means that the premiums retained by the insurer after paying reinsurance are higher,
and θ = 0.75 means that the reinsurance is more expensive, which means that the premiums
retained by the insurer after paying reinsurance are lower.

In Figure 5.7, we can see that for θ = 0.65, “no reinsurance” ie. b∗(x) = ∞, is optimal
for x ∈ [0, 0.305), and first reinsurance is bought at x = 0.306 with strategy b∗(0.306) ≈
0.382. For large initial capital, the optimal strategy is b∗(x) ≈ 1.069. For θ = 0.75, “no
reinsurance” ie. b∗(x) = ∞, is optimal for x ∈ [0, 0.516), and first reinsurance is bought at
x = 0.517 with strategy b∗(0.517) ≈ 0.646. For large initial capital, the optimal strategy is
b∗(x) ≈ 0.654.

Since reinsurance with θ = 0.65 is cheaper than reinsurance with θ = 0.75, this function
will drop down earlier and deeper, meaning that the insurer will start with reinsurance at
a lower initial capital and with reinsurance with smaller retention level.

Figure 5.7: The effect of parameter θ on the optimal strategy

The survival probabilities for the given scenarios are illustrated in Figure 5.8. It is clear
that when reinsurance is cheaper, the insurer retain a larger portion of the premiums after
paying for reinsurance, allowing for greater financial flexibility. As a result, the probability
of survival for an initial capital at x = 0 is higher compared to cases where reinsurance
is more expensive. For θ = 0.65, we have δ(0) ≈ 0.4998, and for θ = 0.75, we have
δ(0) ≈ 0.4069, and the insurer retain fewer premiums after paying for reinsurance.

43



5 Optimal strategy for exponentially distributed claim sizes

Figure 5.8: The effect of parameter θ on the optimal survival probability

5.2.4 Optimal strategy for different values of expected claim sizes

We consider scenarios with different values for expected value of exponentially distributed
claim sizes with parameter: m = 0.5, m = 1, and m = 2, and analyze how the parameter
m impacts the optimal strategy and the optimal survival probability. Here, m = 0.5 means
that the average claim size is 2, and m = 2 means that the average claim size is 0.5.

In Figure 5.9, we can see that for m = 0.5, “no reinsurance” ie. b∗(x) = ∞, is optimal for
x ∈ [0, 0.819), and first reinsurance is bought at x = 0.82 with strategy b∗(0.82) ≈ 1.025.
For large initial capital, the optimal strategy is b∗(x) ≈ 1.734. For m = 2, “no reinsurance”
ie. b∗(x) = ∞, is optimal for x ∈ [0, 0.204), and first reinsurance is bought at x = 0.205 with
strategy b∗(0.205) ≈ 0.256. For large initial capital, the optimal strategy is b∗(x) ≈ 0.429.

Since reinsurance with m = 2 is cheaper than reinsurance with m = 0.5, this function will
drop down earlier and deeper, meaning that the insurer will start with reinsurance at a
lower initial capital and with reinsurance with smaller retention level.

The survival probabilities for the given scenarios are illustrated in Figure 5.10. It is evident
that, across all three scenarios, the survival probability at x = 0 remains identical, δ(0) ≈
0.4457, indicating that the parameterm does not impact δ(0) when premiums are calculated
by expected value principle. However, for x > 0, a larger m leads to the survival probability
function reaching a value close to 1 more quickly, whereas a smaller m causes it to approach
1 at a slower rate.
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5 Optimal strategy for exponentially distributed claim sizes

Figure 5.9: The effect of exponentially distributed claim size parameter m on the optimal
strategy

Figure 5.10: The effect of exponentially distributed claim size parameter m on the optimal
survival probability
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6 Conclusion

The intended outcome of this thesis was to determine the optimal reinsurance strategy, in
a continuous time, for a combination of quota-share and excess-of-loss reinsurance. The
analysis was conducted under the conditions that the parameter of the XL reinsurance can
be changed continuously in time, while the proportional factor remain fixed. The aim was
to maximize the survival probability from the insurer’s perspective. We have shown that
for small initial capital, it is optimal for the insurer to retain the risk. Conversely, for larger
initial capital, transferring the risk to the reinsurer becomes the optimal strategy.

Using Python software, we conducted numerical analyses to illustrate the optimal strategy
and the survival probability function for exponentially distributed claims. Furthermore,
we examined the impact of proportional factor, safety loading, and expected claims size
on these two functions. Additionally, through examples, we have shown that the optimal
strategy for maximizing the survival probability in the context of combined reinsurance is
the pure excess-of-loss reinsurance strategy.

It should be noted that the techniques and methods presented in this thesis provide a
theoretical perspective on the problem of determining optimal reinsurance strategies. Im-
plementing these methods in practice requires the additional step of defining parameters
λ, m, η, and θ. Even then, it is not guaranteed that the application of an optimal strategy
would be practical, as the insurance and reinsurance markets operate under specific legal
constraints. Also, reinsurance contracts have usually a duration of 1 year, not for t = ∞.
Moreover, reinsurance contracts are not structured to allow for continuous adjustments in
strategy. Instead, the chosen strategy remains fixed for the duration of the contract, with
a predetermined premium. This premium is not based only on the methods described here
but also is influenced by various indicators specific to local insurance and reinsurance mar-
kets. The approaches to determining the necessary reinsurance coverage for an insurance
company rely on assessing its risk exposure. While insurers aim to develop an optimal
reinsurance strategy to minimize the ruin probability, reinsurers also must manage their
own risk exposure and ensure that their available capital is sufficient. This dual perspective
makes it challenging to find suitable reinsurance coverage in practice.

Nevertheless, these studies can serve as a useful guideline for insurance companies in de-
termining which reinsurance strategy to pursue, while adjusting it to the specifics of the
local market. These findings also make room for future research, such as investigating the
behavior of the optimal strategy function and the survival probability function when the
proportional factor is dynamically determined while the retention level remains fixed, or
even when both parameters are dynamic.
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7 Appendix

7.1 Tables - Lower bounds for proportional factor (a)

Table 7.1: Table of the lower bounds of the proportional factor in the case of a large priority
level depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.083 0.154 0.214 0.267 0.313 0.353 0.389 0.421 0.450
0.2 - 0.077 0.143 0.200 0.250 0.294 0.333 0.368 0.400
0.3 - - 0.071 0.133 0.188 0.235 0.278 0.316 0.350
0.4 - - - 0.067 0.125 0.176 0.222 0.263 0.300
0.5 - - - - 0.063 0.118 0.167 0.211 0.250
0.6 - - - - - 0.059 0.111 0.158 0.200
0.7 - - - - - - 0.056 0.105 0.150
0.8 - - - - - - - 0.053 0.100
0.9 - - - - - - - - 0.050

7.2 Tables - Lower bounds for priority level (b)

7.2.1 Lower bounds for priority level (b) for fix m = 1

Table 7.2: Table of the lower bounds of the priority level in the case of a proportional factor
a = 1 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.087 0.167 0.241 0.310 0.375 0.435 0.492 0.547 0.598
0.2 - 0.080 0.154 0.223 0.288 0.348 0.405 0.460 0.511
0.3 - - 0.074 0.143 0.208 0.268 0.325 0.379 0.431
0.4 - - - 0.069 0.134 0.194 0.251 0.305 0.357
0.5 - - - - 0.065 0.125 0.182 0.236 0.288
0.6 - - - - - 0.061 0.118 0.172 0.223
0.7 - - - - - - 0.057 0.111 0.163
0.8 - - - - - - - 0.054 0.105
0.9 - - - - - - - - 0.051
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Table 7.3: Table of the lower bounds of the priority level in the case of a proportional factor
a = 0.9 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.097 0.187 0.272 0.351 0.427 0.498 0.566 0.631 0.693
0.2 - 0.089 0.173 0.251 0.325 0.396 0.463 0.527 0.588
0.3 - - 0.083 0.160 0.234 0.303 0.369 0.432 0.492
0.4 - - - 0.077 0.150 0.218 0.284 0.346 0.405
0.5 - - - - 0.072 0.140 0.205 0.266 0.325
0.6 - - - - - 0.068 0.132 0.193 0.251
0.7 - - - - - - 0.064 0.124 0.182
0.8 - - - - - - - 0.060 0.118
0.9 - - - - - - - - 0.057

Table 7.4: Table of the lower bounds of the priority level in the case of a proportional factor
a = 0.8 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.110 0.214 0.312 0.405 0.495 0.582 0.666 0.747 0.827
0.2 - 0.101 0.197 0.288 0.375 0.458 0.539 0.617 0.693
0.3 - - 0.094 0.182 0.267 0.348 0.427 0.502 0.575
0.4 - - - 0.087 0.170 0.249 0.325 0.399 0.470
0.5 - - - - 0.081 0.159 0.234 0.305 0.375
0.6 - - - - - 0.076 0.150 0.220 0.288
0.7 - - - - - - 0.072 0.141 0.208
0.8 - - - - - - - 0.068 0.134
0.9 - - - - - - - - 0.065

Table 7.5: Table of the lower bounds of the priority level in the case of a proportional factor
a = 0.7 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.127 0.248 0.365 0.480 0.591 0.702 0.811 0.920 1.030
0.2 - 0.116 0.228 0.336 0.442 0.545 0.647 0.747 0.847
0.3 - - 0.108 0.211 0.312 0.410 0.506 0.600 0.693
0.4 - - - 0.100 0.197 0.290 0.382 0.472 0.560
0.5 - - - - 0.094 0.184 0.272 0.358 0.442
0.6 - - - - - 0.088 0.173 0.256 0.336
0.7 - - - - - - 0.083 0.163 0.241
0.8 - - - - - - - 0.078 0.154
0.9 - - - - - - - - 0.074
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Table 7.6: Table of the lower bounds of the priority level in the case of a proportional factor
a = 0.6 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.150 0.296 0.442 0.588 0.736 0.887 1.045 1.210 1.386
0.2 - 0.137 0.272 0.405 0.539 0.674 0.811 0.952 1.099
0.3 - - 0.127 0.251 0.375 0.498 0.622 0.747 0.875
0.4 - - - 0.118 0.234 0.348 0.463 0.577 0.693
0.5 - - - - 0.110 0.218 0.325 0.432 0.539
0.6 - - - - - 0.103 0.205 0.305 0.405
0.7 - - - - - - 0.097 0.193 0.288
0.8 - - - - - - - 0.092 0.182
0.9 - - - - - - - - 0.087

Table 7.7: Table of the lower bounds of the priority level in the case of a proportional factor
a = 0.5 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.182 0.368 0.560 0.762 0.981 1.224 1.504 1.846 2.303
0.2 - 0.167 0.336 0.511 0.693 0.887 1.099 1.335 1.609
0.3 - - 0.154 0.310 0.470 0.636 0.811 0.999 1.204
0.4 - - - 0.143 0.288 0.435 0.588 0.747 0.916
0.5 - - - - 0.134 0.268 0.405 0.547 0.693
0.6 - - - - - 0.125 0.251 0.379 0.511
0.7 - - - - - - 0.118 0.236 0.357
0.8 - - - - - - - 0.111 0.223
0.9 - - - - - - - - 0.105

Table 7.8: Table of the lower bounds of the priority level in the case of a proportional factor
a = 0.4 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.234 0.486 0.767 1.099 1.520 2.140 3.584 - -
0.2 - 0.214 0.442 0.693 0.981 1.329 1.792 2.539 -
0.3 - - 0.197 0.405 0.633 0.887 1.186 1.558 2.079
0.4 - - - 0.182 0.375 0.582 0.811 1.073 1.386
0.5 - - - - 0.170 0.348 0.539 0.747 0.981
0.6 - - - - - 0.159 0.325 0.502 0.693
0.7 - - - - - - 0.150 0.305 0.470
0.8 - - - - - - - 0.141 0.288
0.9 - - - - - - - - 0.134
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Table 7.9: Table of the lower bounds of the priority level in the case of a proportional factor
a = 0.3 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.325 0.719 1.253 2.197 - - - - -
0.2 - 0.296 0.647 1.099 1.792 3.932 - - -
0.3 - - 0.272 0.588 0.981 1.534 2.603 - -
0.4 - - - 0.251 0.539 0.887 1.350 2.097 -
0.5 - - - - 0.234 0.498 0.811 1.210 1.792
0.6 - - - - - 0.218 0.463 0.747 1.099
0.7 - - - - - - 0.205 0.432 0.693
0.8 - - - - - - - 0.193 0.405
0.9 - - - - - - - - 0.182

Table 7.10: Table of the lower bounds of the priority level in the case of a proportional
factor a = 0.2 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.325 0.719 1.253 2.197 - - - - -
0.2 - 0.296 0.647 1.099 1.792 3.932 - - -
0.3 - - 0.272 0.588 0.981 1.534 2.603 - -
0.4 - - - 0.251 0.539 0.887 1.350 2.097 -
0.5 - - - - 0.234 0.498 0.811 1.210 1.792
0.6 - - - - - 0.218 0.463 0.747 1.099
0.7 - - - - - - 0.205 0.432 0.693
0.8 - - - - - - - 0.193 0.405
0.9 - - - - - - - - 0.182

Table 7.11: Table of the lower bounds of the priority level in the case of a proportional
factor a = 0.1 depending on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 1.792 - - - - - - - -
0.2 - 1.466 - - - - - - -
0.3 - - 1.253 - - - - - -
0.4 - - - 1.099 - - - - -
0.5 - - - - 0.981 - - - -
0.6 - - - - - 0.887 - - -
0.7 - - - - - - 0.811 - -
0.8 - - - - - - - 0.747 -
0.9 - - - - - - - - 0.693
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7.2.2 Lower bounds for priority level (b) for fix a = 0.8

Table 7.12: Table of the lower bounds of the priority level in the case of m = 0.5 depending
on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.220 0.427 0.624 0.811 0.991 1.164 1.331 1.494 1.653
0.2 - 0.202 0.393 0.575 0.749 0.917 1.078 1.234 1.386
0.3 - - 0.187 0.365 0.534 0.697 0.853 1.004 1.151
0.4 - - - 0.174 0.340 0.498 0.651 0.798 0.940
0.5 - - - - 0.163 0.318 0.467 0.611 0.749
0.6 - - - - - 0.153 0.299 0.440 0.575
0.7 - - - - - - 0.144 0.282 0.415
0.8 - - - - - - - 0.136 0.267
0.9 - - - - - - - - 0.129

Table 7.13: Table of the lower bounds of the priority level in the case of m = 2 depending
on the safety loading for insurer (η) and reinsurer (θ).

η \θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.055 0.107 0.156 0.203 0.248 0.291 0.333 0.374 0.413
0.2 - 0.051 0.098 0.144 0.187 0.229 0.269 0.309 0.347
0.3 - - 0.047 0.091 0.134 0.174 0.213 0.251 0.288
0.4 - - - 0.044 0.085 0.125 0.163 0.199 0.235
0.5 - - - - 0.041 0.080 0.117 0.153 0.187
0.6 - - - - - 0.038 0.075 0.110 0.144
0.7 - - - - - - 0.036 0.071 0.104
0.8 - - - - - - - 0.034 0.067
0.9 - - - - - - - - 0.032
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7.3 General solution

To solve the differential equation

δ′′(x) =
�

λ

c(a, b)
− m

a

!
δ′(x).

we proceed with the following steps. Let k = λ
c(a,b) − m

a . The equation now simplifies to:

δ′′(x) = kδ′(x).

This is a second-order linear homogeneous differential equation. To solve it, let’s rewrite it
as:

d2δ

dx2
− k

dδ

dx
= 0.

This equation can be solved by finding the characteristic equation, which is:

r2 − kr = 0.

Factorizing this gives:
r(r − k) = 0.

The solutions to this characteristic equation are:

r1 = 0 and r2 = k.

The general solution to the differential equation is a linear combination of the solutions
corresponding to these roots:

δ(x) = C1e
r1x + C2e

r2x.

Substituting the values of r1 and r2:

δ(x) = C1e
0·x + C2e

kx.

Simplifying this:
δ(x) = C1 + C2e

kx,

where C1 and C2 are arbitrary constants.

The general solution to the differential equation is:

δ(x) = C1 + C2e

�
λ

c(a,b)
−m

a

�
x
,

where C1 and C2 are arbitrary constants determined by the initial conditions or boundary
conditions.
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7.4 Python code for combined reinsurance model

The following Python script was used for plotting the optimal strategy and optimal survival
probability functions for combined reinsurance model:

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def Comb(eta=0.5, theta=0.7, lambda_=1, m=1, a=0.8):

5

6 # Calculate the minimum proportion factor b_ based on net retained premium

conditions.�→
7 b_ = -np.log((1 + eta - (1 + theta) * (1 - a)) / ((1 + theta) * a)) / m

8

9 # Initialize arrays to store survival probabilities and optimal strategy.

10 Delta = np.zeros(15001)

11 Delta[0] = 0.44575

12 f = np.zeros(15001)

13 Optimal_strategy = np.zeros(15000)

14 r = np.zeros(15000)

15

16 # Loop over scaled initial capital values

17 for x in range(1, 15001):

18 b_optimal = 10 # Default value for b_optimal, used if no minimum is found

19 if x == 1:

20 f_d = m * (Delta[x-1]) / a

21 else:

22 f[x-1] = f[x-2] + f_d / 1000

23 f_d = m * (Delta[x-1] - f[x-1]) / a

24

25 Delta_d = 1

26 b_min = int(b_)

27 b_max = int(np.floor((x - 1) / a))

28

29 # Iterate through possible 'b' values to find the optimal strategy that minimizes

function Delta_d.�→
30 for b in range(b_min, b_max + 1):

31 # Ensure the index is within the valid range and is an integer

32 index = int(x - (a * b) - 1)

33 if 0 <= index < len(f) and 0 <= index < len(Delta):

34 if lambda_ / m * ((1 + eta) - (1 + theta) + (1 + theta) * a - (1 + theta)

* a * np.exp(-m * b / 1000)) < 0:�→
35 Delta_d = lambda_ * (Delta[x-1] - f[x-1]) / (lambda_ / m * ((1 + eta)

- (1 + theta) * (1 - a)))�→
36 b_optimal = 10

37 else:

38 helper = lambda_ * (Delta[x-1] - f[x-1] + (f[index] - Delta[index]) *

np.exp(-m * b / 1000)) / (lambda_ / m * ((1 + eta) - (1 + theta)

+ (1 + theta) * a - (1 + theta) * a * np.exp(-m * b / 1000)))

�→
�→

39 if helper <= Delta_d:

40 Delta_d = helper

41 b_optimal = b / 1000

42 if lambda_ * (Delta[x-1] - f[x-1]) / (lambda_ / m *((1 + eta) - (1 +

theta) * (1 - a))) <= Delta_d:�→
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43 Delta_d = lambda_ * (Delta[x-1] - f[x-1]) / (lambda_ / m *((1 + eta)

- (1 + theta) * (1 - a)))�→
44 b_optimal = 10

45 else:

46 # Handle the case where the index is out of bounds,

47 continue # Skip this iteration

48

49 # Update survival probability and store optimal b and capital value.

50 Delta[x] = Delta[x-1] + Delta_d / 1000

51 Optimal_strategy[x-1] = b_optimal

52 r[x-1] = (x - 1) / 1000

53

54 # Plot the relationship between scaled initial capital (x) and optimal priority level

(b*).�→
55 plt.plot(r, Optimal_strategy, label='Optimal strategy')

56 plt.xlabel('Initial Capital (x)')

57 plt.ylabel('Optimal strategy for combined reinsurance (b*)')

58 plt.ylim(0, 3)

59 plt.legend()

60 plt.grid(True)

61 plt.show()

62

63 # Plot the relationship between scaled initial capital (x) and survival probability

(Delta(x)).�→
64 plt.plot(r, Delta[1:], label='Survival Probability (Delta)')

65 plt.xlabel('Initial Capital (x)')

66 plt.ylabel('Survival Probability (Delta)')

67 plt.ylim(0, 1.1)

68 plt.legend()

69 plt.grid(True)

70 plt.show()

71

72 # Example usage:

73 Comb()
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