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Abstract

Estimating claim reserves is a relevant but challenging topic in insurance. Several laws
and guidelines define the need for technical provisions where an accurate calculation of
the claims reserves is needed. However, making accurate estimations is challenging, es-
pecially for claims that include personal damage and potential long-term effects. In this
thesis, we address the optimisation of the Chain Ladder method, analysing the impact
of various factors, including outlier exclusion, using simple max /min exclusion, Reverse
Nearest Neighbour and Interquartile Distance as outlier detection methods. Other adjusted
parameters are the periods considered, tail adjustment, inflation adjustment, and using a
weighted average of both the paid and incurred triangle. The algorithm was implemented
using Python. In this analysis, one key finding occurred, which is that optimal model
parameters differ significantly between incurred and paid losses and between short-tail,
long-tail, and volatile insurance branches. More straightforward methods, such as exclud-
ing the maximum value or limiting the number of periods, often perform better than more
complex approaches. Although according to our analysis, the tail and inflation analysis
have no positive impact on the accuracy of the estimations, they should be further ex-
amined in future studies. This thesis shows the potential for automated optimisation to
improve claims reserving accuracy while reducing actuaries’ manual workload. However,
it highlights that expert judgment remains essential, primarily when sudden changes or
external trends that historical data alone cannot capture, occur.
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1 Introduction

Estimating the total amount an insurance company must pay for a specific accident is a
central yet challenging task in actuarial science. Claims reserving ensures that insurers can
meet their future obligations by accurately predicting payments for incurred claims. On the
one hand, there are Incurred But Not Reported Claims (IBNR), which refer to situations
such as a vacation house experiencing water damage that the owner is unaware of. On
the other hand, Incurred But Not Enough Reserved (IBNER) accidents where the extent
of the final payment is unknown, such as personal damage and potential long-term effects
[5]. Various laws and guidelines define that, insurers must have sufficient liquid funds to
guarantee the fulfilment of obligations:

• Insurance Supervisionlaw (VAG 2016): § 150. (1) Technical provisions must be
established to the extent necessary, based on reasonable entrepreneurial judgment, to
ensure the ongoing fulfilment of obligations arising from insurance contracts. During
the valuation, due consideration must be given to the principle of prudence[19].

• Solvency II - Solvency II demands technical provisions consisting of the best esti-
mate and risk margin [4].

• International Financial Reporting Standards (IFRS) IFRS 17 demands tech-
nical provisions consisting of the best estimate and risk adjustment [10]

Even if all these different regulations have their specifications on how to determine the
technical provisions, they all have in common that a good estimation of the loss reserve is
required.
There are many different models for reserving claims, such as Chain-Ladder, Munich-
Chain-Ladder, Bornhuetter-Ferguson, Machine Learning models for individual reserving,
and many more. One of the most straightforward, and also one of the most used, methods
is the Chain-Ladder method. It has the disadvantages of being very sensitive to outliers
and assuming that the claims development pattern does not change over time, these are
possible huge drawbacks in practice. The idea to counteract these disadvantages is to ex-
clude the outliers and only consider a shorter period than the whole history. The challenge
lies in identifying the correct outliers and determining the optimal period to consider. In
practice, actuaries decide, based on their expert knowledge, which outliers to exclude, how
many periods to consider, and whether other adaptations have to be made, like tail esti-
mation, et cetera. However, since this produces a significant workload for actuaries, it is a
logical progression to attempt to automate this process.
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1 Introduction

In this thesis, an optimization algorithm to improve the Chain-Ladder method for claims
reserving is developed. The underlying idea is to evaluate model accuracy across different
lines of business for various models and identify the best-performing model based on his-
torical data. With this approach, we can automate key decisions such as outlier detection,
period selection, and tail estimation.

The algorithm was implemented using Python, using the ChainLadder ([3]) package as its
foundation. The various models are all Chain-Ladder-based but differ in their approaches
to outlier detection, volume selection, tail factors, inflation adjustments, and incorporating
weighted combinations of incurred and paid triangles. The Claims Development Result
(CDR) is the error measure used, although the Mack Standard Error is also examined for
selected models. Additionally, an Actual vs. Expected analysis is performed.

This work is structured as follows: In chapter 2 the following reserving models: Loss
Development, Chain-Ladder, Bornhuetter-Ferguson, Cape Cod, and Munich-Chain-Ladder,
their respective advantages and disadvantages are discussed. Chapter 3 highlights the
importance of outlier exclusion, followed by an introduction to Reverse Nearest Neighbor
(RNN) and Interquartile Range (IQR) as outlier detection methods. Two error measures
used for model optimization are introduced in Chapter 4, the Mack Standard Error and
the Claims Development Result. In Chapter 5, the optimisation algorithm is introduced.
Chapter 6, Methodology and Data Foundation, begins with a description of the data,
including its structure and characteristics. Subsequently, the implementation is described
using specific code snippets. Results and discussion are presented in chapter 7, here is a
description of the link ratios of the triangles. A comparison of different models is conducted:
The impact of varying volumes on the CDR and eliminating maximum and minimum
values. Similar analyses using IQR and RNN for outlier detection, as well as the removal
of potentially problematic diagonals is done. The effect of exponential and inverse power
tails, a weighted combination of paid and incurred losses, and inflation-adjusted data. After
examining the various models, the minimum and maximum exclusion and different volumes
concerning the MSE for all branches are analyzed. Finally, the optimal model is compared
to two baseline models using an Actual vs. Expected analysis.

2



2 Claim reserving

This chapter focuses on claims reserving, which entails estimating future payments for
claims already incurred and those yet to occur. It begins by explaining the theoretical
framework common to all methods, detailing the available data and its structure. Subse-
quently, it discusses how this information is generalized and incorporated into a mathe-
matical framework. Finally, it presents several methods for claims reserving, including the
Chain Ladder Method, Loss Development, Bornhuetter-Ferguson, Cape Cod, and Munich
Chain Ladder methods.

2.1 Mathematical Framework

The following part is based on [[5], 12.1]. When a claim occurs, it is often uncertain how
much the insurance will ultimately have to pay. This uncertainty arises because sometimes
the insured party may not immediately recognize the occurrence of a claim (e.g., water
damage in a holiday house - IBNR, incurred but not reported), or it may be unclear how
extensive the final damages will be (e.g., accidents resulting in personal injuries - IBNER,
incurred but not enough reserved). Since insurers are obligated to fulfill their promise of
coverage, they must build reserves to ensure they can meet future claim payments. The
procedure from claim occurrence to final settlement is stated below since understanding
this process is essential to determining the reserves.

• The claim occurs in an accident year.

• The claim is discovered.

• The claim is reported to the insurer.

• The insurer establishes a case reserve.

• The insurer makes initial payments and adjusts the case reserve for any additional
required payments.

• The claim is finally settled and closed.

Additionally, a previously closed claim can be reopened. The gradual settlement of a claim
is referred to as claims handling and can span over multiple settlement years.

The challenge lies in accurately estimating reserves; if reserves are too low, costs may not
be covered, whereas excessive reserves may lead to tax implications due to reduced profits.
Insurance portfolio data alone may not suffice for these estimations, particularly in cases
where no claims have been reported and, thus, no case reserves exist. Therefore, statistical
methods are necessary to estimate reserves.

3



2 Claim reserving

2.1.1 Claims Development Triangles

Understanding the need for reserves and the importance of statistical estimation methods
raises the question of which data should be utilized and how it should be represented. The
relevant risk data includes:

• Number of reported claims

• Number of claims finally settled

• Claim payments

• Incurred claims (sum of all payments plus case reserves)

The most common method for visualizing this data is through the use of claims development
triangles. These triangles typically contain either cumulative claims or incremental claims
data, helping to illustrate the progression of claims over different periods. Table 2.1 presents

Accident year Development year k
2019 2020 2021 2022 2023 2024

2019 1001 854 568 565 347 148
2020 1113 990 671 648 422
2021 1265 1168 800 744
2022 1490 1383 1007
2023 1725 1536
2024 1889

Table 2.1: Incremental claims development for different accident years across development
periods [5].

an incremental claims development triangle example, assuming the values represent claim
payments. The table summarizes payment information available by the end of 2024, starting
from claims originating in 2019. For instance, if we examine the accident year 2023, we
observe that the insurance company paid 1,725 units in the same year, followed by an
additional 1,536 units in 2024.

Accident year Development year k
0 1 2 3 4 5

0 1001 854 568 565 347 148
1 1113 990 671 648 422
2 1265 1168 800 744
3 1490 1383 1007
4 1725 1536
5 1889

Table 2.2: Incremental claims development for different accident years across development
periods [5].

4



2 Claim reserving

A more common illustration of claims development triangles is that the development years
and accident years are not portrayed as calendar years but as delays concerning the accident
year, like in Table 2.2. In this format, the data from the accident year “2023” is now
positioned in row “4” allowing the claims development to be analyzed across columns
“0” and “1”. This representation facilitates the identification of development patterns,
providing insights into the required reserves. Such a structure is commonly referred to as
a run-off triangle.

2.1.2 Stochastic Modelling

The following chapter is adapted from [22]. To define the different reserving models, we
need a general framework that generalizes the examples provided in the previous section.
In Figure 2.1, i represents the accident year, which is the year in which the incident oc-

Figure 2.1: Claims development triangle [22]

curred (displayed on the vertical axis). j represents the development year, indicating the
number of years or periods that have passed since the occurrence. Here, i ∈ {0, . . . , I} and
j ∈ {0, . . . , J}, where I denotes the latest accident year and J denotes the latest develop-
ment year.

The variable Xi,j in the figure denotes the payment in development year j corresponding
to the claims that originated in year i. Thus, the payment arises in the accounting year
j + i. The cumulative payments, Ci,j , are defined as:

Ci,j =

j"
k=0

Xi,k (2.1)

5



2 Claim reserving

Therefore, knowing the cumulative payments, the incremental payments can be determined
using:

Xi,j =

�
Ci,0 if j = 0

Ci,j − Ci,j−1 otherwise
(2.2)

As illustrated in Figure 2.1, the accident years are typically displayed on the vertical axis,
while the development years are positioned on the horizontal axis. A crucial point in time is
I, up to which all payments are known. This means that the data from the upper triangle,
i.e., i+j ≤ I, consists of known observations, whereas the lower triangle, i.e., i+j > I, con-
tains values that must be predicted. These unknown values are the focus of our estimations.

Accordingly, we can divide the payments into two sets: the known observations

DI = {Xi,j ; i+ j ≤ I, 0 ≤ j ≤ J} (2.3)

and their complement, the unknown values that require estimation:

Dc
I = {Xi,j ; i+ j > I, i ≤ I, j ≤ J} (2.4)

The payments occurring in accounting year k are represented by the diagonals i + j =
k, k ≥ 0 and can be expressed as the sum of individual elements along these diagonals:

Xk =
"

i+j=k

Xi,j (2.5)

Incremental claims, denoted as Xi,j , can represent additional payments in cell (i, j). Alter-
natively, they can correspond to reported claims with a reporting delay j and an accident
year i, or they might signify the change in reported claim amounts in this specific cell (i, j).
Cumulative claims, denoted as Ci,j , may represent total payments, the overall number of
reported claims, or the incurred claims (in the case of cumulative reported claims). Ci,J

is commonly referred to as the ultimate claim amount or the total number of claims for
accident year i.
The outstanding loss liabilities are simply the payments that are expected but have not
yet been made. Given that Xi,j represents the incremental payments, the outstanding loss
liabilities for accident year i at time j can be defined as:

Ri,j =
J"

k=j+1

Xi,k = Ci,J − Ci,j (2.6)

Two closely related concepts are the outstanding loss liabilities and the claims reserves.
To predict the former, the latter must be estimated. Claims reserves represent the missing
amount that, when added to the past claims Ci,j , provides a predictor for the total claims
load, also known as the ultimate claim Ci,J for accident year i.

6



2 Claim reserving

General Assumption

We assume
I = J

and
Xi,j = 0 for all j > J

The first assumption can easily be dropped, it is only a simplification. This suggests that
we have to predict the outstanding loss liabilities for every but the 0th year, i.e. i = 1, . . . , I

2.2 Loss Reserving Methods

The first big decision an actuary has to make is the model selection. This chapter gives an
overview of the most common claims reserving methods. The first models, the chain-ladder
(CL) and the Bornhuetter-Ferguson (BF) are the simplest but also the most common tech-
niques. The Chain Ladder (CL) method and the Bornhuetter-Ferguson (BF) method can
be perceived as algorithmic approaches for establishing claims reserves. These algorithms
serve as systematic tools for forecasting future liabilities. Nevertheless, this conceptualiza-
tion cannot generally quantify the uncertainties inherent in these predictions.

2.3 Loss Development method

This section is adapted from [5]. The simplest claims reserving method is arguably the
Loss-Development method. This method is based on the premise that every claim follows
the same loss development pattern. This implies that we assume the claims in the second
development year to be a fixed percentage of the ultimate value, irrespective of whether
the claim occurred in 2004 or 2023. The loss development pattern is denoted as

γ0, γ1, . . . , γI

where the index represents the development year. An γi for i ∈ {1, . . . , I} represents the
claim development from the accident year to the is development year.

This pattern is either given or must be estimated using either internal, external or a com-
bination of internal and external information. Loss development factors calculated from
internal information could be the age-to-age factors from the later described chain ladder
method. Another use case is when an insurance company introduces a new class of insur-
ance without having a similar existing one; external information could be information from
a reinsurer or other expert opinion.

7



2 Claim reserving

Given the estimators:
γ̂0, γ̂1, . . . , γ̂I

the loss-development-estimator for the future claim status Ci,k is calculated by:

CLD
i,k := γ̂k

Ci,I−1

γ̂I−1
,

where γ̂I = 1, indicating that no further payments are expected.

We can express the loss-development estimator as:

E[Ci,k] =
E[Ci,k]

E[Ci,I ]
· E[Ci,I ]

E[Ci,I−1]
· E[Ci,I−1] = γk · 1

γI−1
· E[Ci,I−1] = γk · E[Ci,I−1]

γI−1
.

The reserves are then calculated according to equation (2.6).

2.4 Chain-Ladder Method (Distribution-Free)

As described by Wüthrich and Merz [22], one of the simplest yet most widely used loss
reserving techniques is the Chain Ladder (CL) method. Although the CL method is
distribution-free, various other stochastic models provide a theoretical foundation for it.
The distribution-free derivation of the Chain Ladder method connects consecutive cumu-
lative claims through appropriate link ratios, relying on the following characterization of
the model.

2.4.1 Model Assumptions and Mathematical Foundations

Model Assumptions (distribution-free CL model)[22, page 16]

• Cumulative claims Ci,j of different accident years i are independent

• There exist development factors f0, . . . , fJ−1 such that for all 0 ≤ i ≤ I and all
1 ≤ j ≤ J we have

E[Ci,j |Ci,0, . . . , Ci,j−1] = E[Ci,j |Ci,j−1] = fj−1Ci,j−1 (2.7)

The independence of cumulative claims across different accident years implies that the oc-
currence of numerous accidents in 2015 has no bearing on the number of accidents in 2022.
It is important to note that this assumption does not always hold in real-world scenarios,
nevertheless, we need it to eliminate the effects of accounting years.

Given the simplicity of the Chain Ladder method, it is sufficient to impose a restriction
on the first moment (see Equation (2.7)). This is because we only need to calculate the
conditionally expected future claims, i.e., the first moment.

8



2 Claim reserving

We can further assume that the sequence Ci,0, Ci,1, . . . forms a Markov chain. This results
in

(Ci,j Πj−1
k=0f

−1
k )j≥1.

being a martingale. The development factors fj are also referred to by several other names,
such as link ratios, development factors, CL factors, or age-to-age factors. These variables
are the core of the Chain Ladder method. They describe the development of consecutive
cumulative claims, and the primary task is to find appropriate estimators [22, Remark
2.2]. The claims that occurred until the year I are represented through the upper triangle:
DI = {Xi,j ; i+ j ≤ I, 0 ≤ j ≤ J}
Lemma 1. Under the Model Assumptions (2.7) we have

E


Ci,J

%%%DI


= E[Ci,J |Ci,I−i] = Ci,I−ifI−i . . . fJ−1 (2.8)

for all 1 ≤ i ≤ I

Proof. We can derive this lemma from

E[Ci,J |DI ] = E[Ci,J |Ci,0, . . . , Ci,I−i]

= E[E[Ci,J |Ci,J−i]|Ci,0, . . . , Ci,I−i]

= E[fJ−1 Ci,J−1|Ci,0, . . . , Ci,I−i]

= fJ−1E[Ci,J−1|DI ]

• First equation: we use only the definition of the set DI , since DI represents the
information available up to development year I − i.

• Second equation: By the law of total expectation, we can re-express the expectation
as an iterated expectation. This involves taking the conditional expectation of Ci,J

given Ci,J−i and then taking the expectation of that result given the prior information.

• Last equations: this step relies on the key assumption of the Chain Ladder method
(2.7), where the expected cumulative claims in the final development year J are pro-
portional to the cumulative claims in the previous year J−1, with the proportionality
factor being fJ−1.

• By substituting the Chain Ladder assumption into the iterated expectation, we ob-
tain the final result. This shows that the expected cumulative claims in the final
development year, given the available information, are equal to the development fac-
tor fJ−1 times the expected cumulative claims in the previous development year, also
given the available information.

The proof demonstrates how the Chain Ladder method projects future cumulative claims
by relying on the proportional relationship between consecutive development years. The

9



2 Claim reserving

expectation for the final development year is derived from the expectation for the previous
year, adjusted by the development factor. This iterative process utilizes the key assumption
that cumulative claims follow a predictable pattern over time.

Hence based on the observations DI , the Lemma (1) can be used to create an algorithm for
estimating the ultimate claim Ci,J . The calculation of the outstanding payment obligations
for the loss year, based on DI , is carried out as follows, taking into account the known CL
factors fj

E[Ci,J |DI ]− Ci,I−i = Ci,I−i(fI−i . . . fJ−1 − 1) (2.9)

This is in line with determining the ’best estimate’ reserves for accident year i at time
I − i, relying on the information up to time I − i and the known Chain Ladder factors
fj . It’s noteworthy that, in this context, we employ the conditionally expected value
mentioned in Lemma 1 to forecast the outcome of the random variable Ci,J −Ci,I−i, given
information up to time I. Unfortunately, in many practical scenarios, the Chain Ladder
factors are unknown and require estimation. The estimation of Chain Ladder factors fj ,
where j = 0, 1, . . . , J − 1, is carried out using the following formula:

f̂j =

#I−j−1
i=0 Ci,j+1#I−j−1
i=0 Ci,j

=

I−j−1"
i=0

Ci,j#I−j−1
i=0 Ck,j

Ci,j+1

Ci,j
(2.10)

In other words, the Chain Ladder factors fj are approximated through a volume-weighted
average of individual development factors Fi,j+1 = Ci,j+1/Ci,j

Lemma 2. The CL estimator for E[Ci,j |DI ] is given by

ĈCL
i,j = E[Ĉi,j |DI ] = Ci,I−if̂I−i . . . f̂j−1 (2.11)

for i+ j > I

When viewed purely from an algorithmic perspective, equation (2) represents the procedure
used to produce the Chain Ladder reserves. It is important to note that this method is
often applied without reference to an appropriate underlying stochastic model. To further
explore the characteristics of the Chain Ladder method, we introduce an additional variable
that describes the available information.

Bk = {Ci,j ; i+ j ≤ I, 0 ≤ j ≤ k} ⊆ DI (2.12)

This means: BJ = DI , which describes the set of all observations at time I

10
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Lemma 3. For the estimators hold

(a) Given Bj, f̂j is an unbiased estimator for fj, i.e. E[f̂j |Bj ] = fj;

(b) f̂j is (unconditionally) unbiased for fj, i.e. E[f̂j ] = fj;

(c) E[f̂0 . . . f̂j ] = E[f̂0] . . . E[f̂j ], i.e. f̂0 . . . f̂J−1 are uncorrelated;

(d) given Ci,I−i,Ĉ
CL
i,J is an unbiased estimator for E[Ci,J |DI ] = E[Ci,J |Ci,I−i] i.e. E[Ĉi,J |Ci,I−i] =

E[Ci,J |DI ]

(e) ĈCL
i,J is unconditionally unbiased for E[Ci,j ], i.e. E[Ĉi,J ] = E[Ci,J ]

At first glance, the lack of correlation between the chain ladder estimators f̂j may seem
surprising, given that adjacent estimates of age-to-age factors partially depend on the same
data (appearing in both the numerator and the denominator).
Lemma 2 shows that the estimates f̂j of the age-to-age factors are uncorrelated. It is
important to note that this lack of correlation does not imply independence. It can be
shown, that the squares of two successive estimators f̂j and f̂j+1 are negatively correlated.
Lemma 3(a.) illustrates that the chain ladder factors fj are estimated by unbiased es-

timators f̂j(independent of any underlying distributional assumption). This aligns with
the selection in equation (2.10). Although other unbiased estimators exist, we chose the
estimator defined in Lemma 2 because it satisfies an optimality criterion under specific
variance assumptions.
Note that Lemma (d) demonstrates the derivation of unbiased estimators ĈCL

i,J for the best

estimates E[ĈCL
i,J ]. This justifies the use of the Chain Ladder algorithm in the context of

the distribution-free Chain Ladder model.

Proof. We can easily get the proof by using some basic tools.

(a) First, we use the measurability of Ci,j with respect to Bj . The independence of
different accident years allows us to move the expectation inside the sum. Using
assumption 2.4.1, we can rewrite the expectation as follows:

E


f̂j | Bj


= E

�#I−j−1
i=0 Ci,j+1#I−j−1
i=0 Ci,j

| Bj

�

=
E

#I−j−1

i=0 Ci,j+1 | Bj


#I−j−1

i=0 Ci,j

=

#I−j−1
i=0 E [Ci,j+1 | Bj ]#I−j−1

i=0 Ci,j

=

#I−j−1
i=0 Ci,jfj#I−j−1
i=0 Ci,j

= fj .

11
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(b) To show that f̂j is an unconditionally unbiased estimator for fj , we need to demon-

strate that the expectation of f̂j is equal to fj without conditioning on Bj . This

follows from the law of total expectation. Since f̂j is an unbiased estimator given Bj ,
we have:

E[f̂j |Bj ] = fj

By taking the expectation over Bj , we get:

E[f̂j ] = E[E[f̂j |Bj ]] = E[fj ] = fj

Therefore, f̂j is unconditionally unbiased for fj .

(c) Now we want to check for a lack of correlation. First, we use the law of total expec-
tation.

E


f̂0 . . . f̂j


= E



E


f̂0 . . . f̂j | Bj


= E



f̂0 . . . f̂j−1E



f̂j | Bj


= E



f̂0 . . . f̂j−1


fj

= E


f̂0 . . . f̂j−1


E


f̂j


.

This can now be done for all CL factors, so by iteration, we arrive at the desired
result.

(d) Now, the unbiasedness of the CL estimator:

E


Ĉi,J | Ci,I−i


= E



Ci,I−if̂I−i . . . f̂j f̂J−1 | Ci,I−i


= E



Ci,I−if̂I−i . . . f̂jE



f̂J−1 | Ci,I−i


= fJ−1E



ĈCL
i,J−1 | Ci,I−i


.

Again, doing this iteratively for every chain Ladder factor we get: don’t

E


ĈCL
i,J | Ci,I−i


= Ci,I−ifI−i . . . fJ−1 = E [Ci,J | DI ] .

(e) To show that ĈCL
i,J is unconditionally unbiased for E[Ci,J ], we need to demonstrate

that the expectation of ĈCL
i,J equals E[Ci,J ] without conditioning on Ci,I−i. This again

uses the law of total expectation. From (d), we have shown that:

E[ĈCL
i,J |Ci,I−i] = E[Ci,J |DI ]

Taking the expectation over Ci,I−i, we get:

E[ĈCL
i,J ] = E[E[ĈCL

i,J |Ci,I−i]] = E[E[Ci,J |DI ]] = E[Ci,J ]

12
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Thus, ĈCL
i,J is unconditionally unbiased for E[Ci,J ].

Like in equation (2.6) already described, the reserves can be calculated by

Ri,j =
J"

k=j+1

Xi,k = ĈCL
i,J − Ci,j

2.4.2 Explanation of the Procedure

The following explains how the chain ladder method is used for given claim data of J years.

Create a Development Triangle

First, we construct a Triangular Claims Development Table; after that, we arrange the
cumulative claims data Ci,j into a triangle where i represents the accident year and j
represents the development year. The rows represent accident years, and the columns
represent development periods. The table usually looks like this:

Development Year
Accident Year 0 1 2 · · · J

0 C0,0 C0,1 C0,2 · · · C0,J

1 C1,0 C1,1 C1,2 · · ·
2 C2,0 C2,1 · · ·
...

...
I CI,0 · · ·

Calculate Development Factors

Development factors represent the ratio of claims from one development year to the next.
We calculate these factors for each development year j by averaging the ratios of cumulative
claims:

fj =

#I−j−1
i=0 Ci,j+1#I−j−1
i=0 Ci,j

Apply Development Factors to Project Future Claims

We use the development factors to project future cumulative claims for each accident year.
Starting with the known cumulative claims, multiply by the development factors:

Ĉi,j+1 = Ĉi,j · fj
We continue this process until the triangle is completed.

13
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Estimate Ultimate Claims for Each Accident Year

The ultimate claims for an accident year are the total cumulative claims once all develop-
ment periods have been accounted for. We sum the projected claims:

Ĉi,J = Ci,J−i · fJ−i · fJ−i+1 · · · fJ−1

Calculate the Outstanding Claims Reserves

The reserve for each accident year is the difference between the estimated ultimate claims
and the observed cumulative claims to date. For accident year i:

R̂i = Ĉi,J − Ci,J−i

We sum these reserves to obtain the total reserve estimate:

R̂ =

I"
i=0

R̂i

2.4.3 Advantages and Disadvantages

This subsection is based on [11] and [22]. In the following we compare the strengths and
weaknesses of the different models.
Advantages:

• Simplicity and Popularity : The Chain Ladder (CL) method is one of the simplest and
most widely used loss reserving techniques. It is straightforward to implement and
does not require many assumptions, making it accessible and easy to understand.

• Effective with Stable Patterns : It is effective when there are stable patterns in his-
torical data, which makes it reliable for predicting future developments if historical
trends are consistent.

• No Need for Distributional Assumptions : The method is distribution-free, allowing it
to be applied in various scenarios without needing an underlying probabilistic model.

Disadvantages:

• Assumes Constant Development Patterns: The CL method relies on the assumption
that past development patterns will continue in the future. This can be problematic
if sudden changes or unusual events occur.

• Sensitive to Outliers: The method can be distorted by outliers or irregular claim
patterns, leading to inaccurate reserve estimates if anomalies are not addressed .

• No Built-In Mechanism for Trend Changes: It does not easily accommodate trend
changes, such as sudden shifts in claim frequencies or severities, which might lead to
over or under-reserving .
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2.4.4 Conclusion

The Chain Ladder Method is a widely used systematic approach for estimating reserves
based on historical claims data. By following these steps, actuaries can derive projections
for future claims and determine the necessary reserves to cover outstanding liabilities. This
method is valuable for its simplicity and effectiveness in providing reserve estimates. In
practice, it is used with a few refinements, like the exclusion of outliers, using not the whole
claims history but only a few years, if there is a change in claims development.

2.5 Bornhuetter-Ferguson Method

Another ubiquitous model is the Bornhuetter-Ferguson method; in comparison to the usual
chain ladder method, it is very robust since it does not consider outliers in the observation
but is more complicated, too. The origin of this method is from Bornhuetter and Ferguson
[2] who published it in the article ”The Actuary and IBNR”. Like the chain ladder method,
it is a purely mechanical algorithm for estimating reserves, but there are several ways to
define a suitable underlying stochastic model for the BF method.

Model Assumptions 1

• Accumulation of claims Ci,j from different accident years i are independent.

• There exist parameters µ0, . . . , µI > 0 and a pattern β0, . . . , βJ > 0 with βJ = 1 such
that for all 0 ≤ i ≤ I, 0 ≤ j ≤ J − 1 and 1 ≤ k ≤ J − j we have

E
�
Ci,0

�
= β0µi

E
�
Ci,j+k

%%Ci,0, . . . , Ci,j

�
= Ci,j + (βj+k − βj) µi

(2.13)

From the model assumptions follow

E


Ci,j


= βjµi and E



Ci,J


= µi

As the equation (2.13) states, µi describes the ultimate claim for accident year i. Where βj
expresses the claims development pattern. This means that if we consider Ci,j like in the last
sections as cumulative payments, then βj denotes the cumulative cashflow pattern (payout
pattern). One use case for such patterns is the application of market-consistent/discounted
reserves, which are time-dependent, e.g. inflation. As we can see in the Bornhuetter-
Ferguson method we do not only consider the development pattern and start with the claims
in the first year, but we estimate the future claims with the ultimate value we expect and the
particular development pattern. Sometimes the Bornhuetter-Ferguson model is described
by weaker assumptions:
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Model Assumptions 2

• Accumulation of claims Ci,j from different accident years i are independent.

• There exist parameters µ0, . . . , µI > 0 and a pattern β0, . . . , βJ > 0 with βJ = 1 such
that for all 0 ≤ i ≤ I, 0 ≤ j ≤ J we have

E
�
Ci,j

�
= βjµi

Note that these assumptions follow from the assumptions mentioned first. A disadvantage
of defining the model with assumption 2 is that it makes the algorithm harder to justify.
This is clear by taking a look at the following equation:

= Ci,I−i + E


Ci,J − Ci,I−i

%%%Ci,0, . . . , Ci,I−i


(2.14)

With assumption 2 we know, that Ci,J − Ci,I−i is independent of Ci,0, . . . , Ci,I−i which
leads to

E


Ci,J

%%%DI


= E



Ci,J

%%%Ci,0, . . . , Ci,I−i


= Ci,I−i + E



Ci,J − Ci,I−i


= Ci,I−i +

�
βJ − βI−i

�
µi −

�
βI−i − βI−i

�� �� �
=0

µi

= Ci,I−i +
�
1− βI−i

�
µi

(2.15)

The problem with assumption 2 is, we can’t make the first transformation because of the
unknown dependence structure between incremental claims.
In both cases, we still need an estimate for the future claims, which are represented by the
last part of the right-hand side in equations (2.14) and (2.15).

Lemma 4 (BF estimator). The BF estimator for E


Ci,J

%%%DI


is given by

ĈBF
i,J = Ê



Ci,J

%%%DI


= Ci,I−i +

�
1− β̂I−i

�
µ̂i (2.16)

for 1 ≤ i ≤ I, where β̂I−i is an appropriate estimate for βI−i an µi is a prior estimate for
the expected ultimate claim E

�
Ci,J

�
This estimator gives us the tool to estimate BF reserves. This algorithm is often consid-
ered to be purely mechanical and used without consideration of an appropriate underlying
stochastic model. However, there is a need for an estimate of the value of the β̂j and µ̂i
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Parameter Estimation

E


Ci,j


= E



E


Ci,j

%%%Ci,j−1


= fj−1 E



Ci,j−1


= E



Ci,0

 j−1�
k=0

fk

E


Ci,J


= E



Ci,0

 J−1�
k=0

fk

If we combine that we get

E


Ci,J


=

J−1�
k=j

f−1
k E



Ci,J


By examining the assumption 2, we observe parallels to the representation of E[Ci,J ] as
previously stated. Specifically, the parameter is dependent on i, the accident year. Here,
E[Ci,J ] corresponds to the expected cumulative claims, and

�J−1
k=0 f−1k represents βjsince

it describes the factor already paid from the ultimate claim µi = E[Ci,J ].
Using the chain-ladder factors, we can estimate βj . The principle behind the calculation
of µ and β is to differentiate external from internal information. µi represents the external
information, which depicts the ultimate claim. This information can be obtained, for
example, from expert opinions. Conversely, (1−βj) describes the proportion of claims that
will materialize in the future, making it logical to incorporate available internal information,
such as the chain ladder factors. Using the chain ladder factors we get an estimator for βj

β̂
(CL)
j = β̂j =

� 1

ΠJ−1
k=j fk

�
= ΠJ−1

k=j

1

fk
(2.17)

2.5.1 Advantages and Disadvantages

This list is adapted from [11] and [22]
Advantages:

• Robustness Against Outliers : The Bornhuetter-Ferguson (BF) method is robust since
it does not only rely on historical development patterns. Combining past data with
external estimates (such as expected loss ratios) smooths out anomalies or outliers.

• Suitable for High Variability : The BF method is particularly effective for lines of
insurance where claims variability is high, especially in early development periods
where other methods might struggle.

• Combination of Approaches: It merges the expected loss ratio method with the de-
velopment method, providing a balanced estimate that stabilizes the results.
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Disadvantages:

• Dependency on External Estimates : The method’s accuracy heavily depends on reli-
able external estimates (such as the expected loss ratio). If these inputs are incorrect,
the reserve estimates can be misleading.

2.5.2 Conclusion

The Bornhuetter-Ferguson method is a systematic approach for estimating reserves by
combining earlier estimates of ultimate losses with actual loss experience. By following these
steps, actuaries get projections for future claims with which they calculate the necessary
reserves to cover outstanding liabilities. This model provides more stable estimates by
incorporating external information.

2.6 Cape-Cod

The Cape-Cod method is a specialized variant of the Bornhuetter-Ferguson method. It
aims to enhance the robustness of the most recent diagonal of the claims development
triangle. This adjustment counteracts the common challenge of the Chain Ladder method,
which is very sensitive against outliers on the diagonal.

Model Assumptions

• Cumulative claims Ci,j of different accident years i are independent.

• There exist parameters Π0, . . . ,ΠI ≥ 0, κ ≥ 0 and a claims development pattern
β0, . . . , βJ > 0 with βJ = 1 such that for all 0 ≤ i ≤ I, 0 ≤ j ≤ J we have

E
�
Ci,j

�
= κ Πi βj

Considering assumption 2 from the Bornhuetter-Ferguson method, we observe that using
µi = κ Πi aligns with the same underlying assumptions. In this context, κ can be inter-
preted as the average loss ratio, while Πi represents the premium received for accident year
i.

κ̂i =
ĈCL
i,J

Πi
=

Ci,I−i�J−1
j=I−i f

−1
j Πi

=
Ci,I−i

βI−iΠi

The overall loss ratio κ̂ is estimated by the weighted average

κ̂CC =

i"
i=0

βI−i Πi#I
k=0 βI−k Πk

κ̂i =

#I
i=0 Ci,I−i#I

i=0 βI−i Πi
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Lemma 5 (Cape-Cod estimator). The Cape-Cod estimator for E


Ci,J

%%%DI


is given by

ĈCC
i,J = Ci,I−i − ĈCC

i,I−i +
J−1�

j=I−i

fjĈ
CC
i,I−i, for 1 ≤ i ≤ I (2.18)

for 1 ≤ i ≤ I, where β̂I−i is an appropriate estimate for βI−i an µi is a prior estimate for
the expected ultimate claim E

�
Ci,J

�
2.6.1 Advantages and Disadvantages

Advantages:

• Smoothing Effect : The Cape Cod method can smooth out outliers by robustly han-
dling diagonal observations, reducing the impact of anomalies that might otherwise
distort projections.

• Adjustment of Estimates: It uses premium and loss ratio data to create more robust
estimates, which can help stabilize results across accident years.

• Unbiased Estimation: The method ensures unbiased estimates under its model as-
sumptions, making it reliable when those assumptions are met.

Disadvantages:

• Dependence on Premium Data: The method relies heavily on accurate premium infor-
mation. If the data is inaccurate, the resulting reserve estimates may be misleading.

• Assumption of Constant Loss Ratios : The method assumes a constant loss ratio
across accident years, which may not be realistic in cases with fluctuating risk profiles.

• Potential Over-Smoothing : While smoothing can be advantageous, it may also lead
to underestimation of variability, masking real patterns that should be addressed.

2.6.2 Conclusion

The Cape Cod method is a refined version of the Bornhuetter-Ferguson method, which is
particularly robust. By gaining robustness, this method loses flexibility and dependency
on external data.
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2.7 Munich-Chain Ladder

The following section is adapted from [22]. The Munich Chain Ladder method integrates
the information available from both paid and incurred data. While in theory, the ultimate
paid loss values should align with the ultimate incurred values, significant discrepancies
often arise in practice. In the Chain Ladder method, separate analyses are conducted for
incurred data and paid data. To reconcile these two estimations, ratios of paid to incurred
and incurred to paid are calculated.

Qi,j =
CPa
i,j

CIn
i,j

, Q−1
i,j =

CIn
i,j

CPa
i,j

The Munich Chain Ladder (MCL) method uses the ratios of paid to incurred claims (and
vice versa) to adjust and smooth development factors. This smoothing means that when
the ratio deviates from the average, the development factors for both paid and incurred
claims are adjusted in opposite directions to account for this deviation. The introduction
of these ratios adds additional model assumptions and structures beyond those present in
the traditional Chain Ladder method as described in Mack’s model.

Model Assumptions for the Munich Chain Ladder (MCL) Method

Before explaining the model assumptions, we will define the sigma-algebra of the paid,
incurred and joint paid and incurred claim data, up to development year j :

GPa
j = {CPa

ik ; k ≤ j, ≤ i ≤ I}
GIn
j = {CIn

ik ; k ≤ j, ≤ i ≤ I}$Gj = {CPa
ik , CIn

ik ; k ≤ j, ≤ i ≤ I}

2.7.1 Model Assumptions

• Cumulative payments CPa
i,j of different accident years are independent. Claims in-

curred CIn
i,j of different accident years are independent.

• There exist factors fPa
0 , . . . , fPa

J−1 > 0, f In
0 , . . . , f In

J−1 > 0 and variance parameters
σPa
0 , . . . , σPa

J−1 > 0, σIn
0 , . . . , σIn

J−1 > 0 such that for all 0 ≤ i ≤ I and 1 ≤ j ≤ J we
have

E
�
CPa
i,j

%%GPa
j−1

�
= fPa

j−1 CPa
i,j−1 and Var

�
CPa
i,j

%%GPa
j−1

�
= (σPa

j−1)
2 CPa

i,j−1 (2.19)

E
�
CIn
i,j

%%GIn
j−1

�
= f In

j−1 CIn
i,j−1 and Var

�
CIn
i,j

%%GIn
j−1

�
= (σIn

j−1)
2 CIn

i,j−1 (2.20)
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• There are constants λPa, λIn such that for all 0 ≤ i ≤ I and 1 ≤ j ≤ J we have

E

�
CPa
i,j

CPa
i,j−1

%%%%%Gj−1

�
= fPa

j−1 + λPaVar

�
CPa
i,j

CPa
i,j−1

%%%%%Gj−1

�1/2
Qi,j−1 − E

�
Qi,j−1

%%Gj−1

�
Var

�
Qi,j−1

%%Gj−1

�1/2
(9.4) and

E

�
CIn
i,j

CIn
i,j−1

%%%%%Gj−1

�
= f In

j−1 + λInVar

�
CIn
i,j

CIn
i,j−1

%%%%%Gj−1

�1/2
Qi,j−1 − E

�
Qi,j−1

%%Gj−1

�
Var

�
Qi,j−1

%%Gj−1

�1/2
(9.5)

• Different accident years across both cumulative payments CPa
i,j and claims incurred

CIn
i,j are independent, i.e. the sets�

CPa
0,j , C

In
0,j , j = 0, . . . , J

�
, . . . ,

�
CPa
I,j , C

In
I,j , j = 0, . . . , J

�
are independent.

We need to estimate the two correlation coefficients and the four conditional moments. The
next estimator uses D̃j , which describes, similar to equation (2.3), the information about
the known observations up to j, including the paid and the incurred data.

MCL Estimators: The MCL estimators are given iteratively by

Ê


CPa
i,j

%%%D̃j−1


= Ê



CPa
i,j−1

%%%D̃j−1

�fPa
j−1 + λPa

σPa
j−1

Ê


CPa
i,j−1

%%%D̃j−1

1/2 Q̃−1
i,j−1

�
and

Ê


CIn
i,j

%%%D̃j−1


= Ê



CIn
i,j−1

%%%D̃j−1

�f In
j−1 + λIn

σIn
j−1

Ê


CIn
i,j−1

%%%D̃j−1

1/2 Q̃−1
i,j−1

�
for i + j > I, where we set Ê



CPa
i,I−i

%%%D̃I−i


= CPa

i,I−i and Ê


CIn
i,I−i

%%%D̃I−i


= CIn

i,I−i. Hence

the MCL estimators for the conditionally expected ultimate claims are defined as

ĈMCL,Pa
i,j = Ê



CPa
i,j

%%%D̃J


and ĈMCL,In

i,j = Ê


CIn
i,j

%%%D̃J
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2.7.2 Advantages and Disadvantages

This list is based on [21].
Advantages:

• Simultaneous Use of Paid and Incurred Data: The Munich Chain Ladder (MCL)
method uses both paid and incurred data, offering a more comprehensive approach
compared to the standard CL method.

• Better Prediction of Future Claims: By including both datasets, MCL can provide
a more balanced estimate, reducing discrepancies between reserves calculated using
paid or incurred data separately.

• Advanced Modelling : MCL accounts for correlations between paid and incurred claims,
leading to more refined estimations where standard assumptions may not hold.

Disadvantages:

• Complexity : The method is more complex than standard CL, requiring sophisticated
parameter estimation and understanding of correlations, which can complicate im-
plementation.

2.7.3 Conclusion

The Munich-Chain Ladder method is a systematic approach that uses both paid and in-
curred data. By including both datasets, we gain more advanced modelling and balanced
estimation, but we also gain complexity. It should always be weighed whether the complex-
ity outweighs the benefits. This may be the case for complex lines of business that take a
long time to process, whereas such advanced modelling is often not required in fast-settling
lines of business.

2.8 Tail Adjustment

This section is adapted from [9]. Tail adjustment methods are necessary to estimate claims
development beyond the scope of the observed triangle, particularly for long-tail branches
where some claims require reserves for 50 years or more. This section introduces several
methods for tail estimation, though it is important to note that this is not an exhaustive
list. For clarity, the following notations are used:

• f(n): Link ratio for development year n

• F (n): Tail factor for development year n
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Bondy Methods

The Bondy method, introduced by Martin Bondy before the 1980s, is one of the earliest tail
adjustment techniques. During its development, claims settlement processes were faster,
and many branches were short-tailed, allowing simpler methods with less information.
Several variations of the Bondy method exist:

• Original Bondy Method: This method uses the last link ratio as the tail factor,
applying it repeatedly for subsequent periods:

F (n) = f(n− 1)

• Modified Bondy Method: This method adjusts the tail factor to account for
longer development tails, producing larger values:

Fmultiplicative(n) = 1 + 2 · �f(n− 1)− 1
�

Fadditive(n) = f(n− 1)2

Algebraic Methods

Algebraic methods leverage the relationship between paid and incurred data to estimate
tail factors. The following are two common approaches:

• Equalizing Paid and Incurred Development Ultimate Losses: This method
calculates a paid loss tail factor by referencing the incurred loss ultimate as a bench-
mark. It assumes:

– Paid and incurred loss development estimate the same ultimate value.

– Incurred losses for the oldest period are accurate predictors of ultimate values.

– Other periods will follow the same tail development pattern as the oldest period.

The tail factor is determined by:

Fpaid =
Incurred Loss Ultimate for Oldest Year

Paid Loss to Date for Oldest Year

• Sherman-Boor Method: This method uses the ratio of case reserves to paid losses
to estimate unpaid losses.
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Benchmark Methods

Benchmark methods incorporate external data to complement triangle observations. These
methods are useful when internal data is insufficient or lacks credibility. Common ap-
proaches include:

• Directly Using Tail Factors from Benchmark Data: Copy tail factors from
industry benchmarks or interpolate/extrapolate from benchmark triangles.

• Adjusting Benchmark Data to Match Pre-Tail Link Ratios: Modify bench-
mark tail factors to reflect differences in pre-tail development patterns of the target
dataset.

• Benchmark Average Ultimate Severity: Use the ratio of benchmark average
severity to reported severity to estimate tail factors.

• Benchmark Tail Factors Adjusted for Company-Specific Case Reserving:
Align benchmark tail factors with company-specific practices through claims audits.

Curve-Fitting Methods

Curve-fitting methods use mathematical curves to model development patterns and ex-
trapolate tail factors. These approaches assume a relationship between link ratios and
development age:

• Exponential Decay Method: Fits an exponential curve to development factors,
assuming a constant decay rate.

• Sherman’s Method: Fits inverse power curves to link ratios, sometimes with lag
adjustments for improved accuracy.

• McClenahan’s Method: Models incremental losses decaying at a constant rate
after an initial lag, resulting in a closed-form tail factor formula.

• Pipia’s Weibull Curve Method: Fits a Weibull curve to age-to-age development
factors, minimizing squared differences to estimate tail factors.

2.8.1 Conclusion

How to choose the tail adjustment depends on the characteristics of the line of business,
data availability. Simpler methods, like the Bondy approach, may suffice for short-tail
branches, while curve-fitting or benchmark methods are more suitable for long-tail or
volatile branches. Especially for long-tail branches Tail adjustment is crucial for accurate
reserving.
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2 Claim reserving

2.9 Conclusion

In conclusion, after considering the various advantages and disadvantages of the different
claims reserving methods discussed in this chapter, the Chain Ladder model will be the
primary focus for the this thesis. The simplicity of the model outweighs the disadvantages,
this is why it is widely utilized in actuarial practice. To counteract the limitations of the
chain ladder method, actuaries can adjust several key factors, such as:

• Exclusion of outliers

• Tail factor estimation

• Adjustment of the volume (i.e., the number of periods considered)

• Weighting of link ratios

This thesis deals with the influence of changing the volume outlier elimination and tail ad-
justment on the quality of the model. To address its limitations, particularly its sensitivity
to outliers and changes in patterns, we will implement separate outlier detection mecha-
nisms and adapt the volume accordingly. This approach aims to enhance the robustness
and reliability of the Chain Ladder method in our analysis.
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3 Outlier Detection

As introduced in the previous chapter, the Chain Ladder method is one of the most com-
mon approaches for reserve estimation due to its simplicity. However, one disadvantage is
sensitivity to extreme values, as it lacks inherent robustness. A natural choice for coun-
teraction is the exclusion of outliers. This chapter presents two outlier detection methods:
Reverse Nearest Neighbor and the Interquartile Range.

3.1 Introduction to Outlier Detection

3.1.1 Definition of Outliers

Outliers are typically defined as observations that differ significantly from other observa-
tions. According to Hawkins [7],

An observation which deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism.

Similarly, Henze [8] defines outliers as observations that diverge to such an extent that
they no longer belong to a given data group. In these cases, removing the values may be
advisable. To be able to identify outliers we have to define where most of the values lie.
This can be done by using statistical measures of dispersion such as:

• Mean Absolute Deviation: 1
n

#n
j=1 |xj − x̄|

• Sample Range: x(n) − x(1) = max1≤j≤n xj −min1≤j≤n xj

• Interquartile Range (IQR): The difference between the upper and lower quartiles.

• Median Absolute Deviation

3.1.2 Outlier Detection in Actuarial Models

To illustrate the significant effect that outliers can have on reserve estimations, this section
provides an example using the claims development triangle presented earlier in Chapter 2.
As discussed, the Chain Ladder method is sensitive to extreme values due to its cumulative
structure. We introduce a clear and substantial outlier into the dataset by changing a
single data entry in the triangle—changing a value of 800 to 1500 in the development
period, which is marked as bold in table 3.1. With this modification, we can examine
how one outlier can impact the calculated reserves, which shows the importance of outlier
detection for chain ladder models.
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3 Outlier Detection

Accident year Development year k
0 1 2 3 4 5

2019 1001 854 568 565 347 148
2020 1113 990 671 648 422
2021 1265 1168 1500 744
2022 1490 1383 1007
2023 1725 1536
2024 1889

Table 3.1: Claims development with an outlier

Accident year Development year k Ultimate
0 1 2 3 4 5

2019 1001 1855 2423 2988 3335 3483 3483
2020 1113 2103 2774 3422 3844 4015
2021 1265 2433 3933 4677 5471
2022 1490 2873 3880 5511
2023 1725 3261 6505
2024 1889 7157

fk - 1.899 1.404 1.214 1.120 1.044 sum = 32,141

Table 3.2: Cumulative claims development with an outlier

Since Chain Ladder reserves are derived from cumulative values, we transform this triangle
into a cumulative form:
Table 3.2 shows the cumulative data and the ultimate values for each accident year. The
last row shows the chain ladder factors already explained in 2.4. In table 3.3, we provide
the same triangle as in table 3.2, but without the outlier to highlight its impact on ultimate
reserves.
Comparing the ultimate reserve sums in table 3.2 and table 3.3, we see that a single
outlier can significantly increase reserve estimates. This single outlier does not only have
an impact on year 2021’s reserves but on 2022, too, since the chain ladder factors change.
This results in the drastic ultimate change which impacts the reserves. This emphasizes
the importance of reliable outlier detection within Chain Ladder-based reserving methods
since outlier elimination can enhance the robustness of the model drastically.
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3 Outlier Detection

Accident year Development year k Ultimate
0 1 2 3 4 5

2019 1001 1855 2423 2988 3335 3483 3483
2020 1113 2103 2774 3422 3844 4015
2021 1265 2433 3233 3977 4652
2022 1490 2873 3880 5591
2023 1725 3261 6245
2024 1889 6871

fk - 1.899 1.329 1.232 1.120 1.044 sum = 27,375

Table 3.3: Cumulative claims development without outlier

3.2 Reverse Nearest Neighbour

This section is based on [17]. As proposed by Korn and Muthukrishnan [12], this principle
doesn’t use classic statistical measures of dispersion to detect outliers. Whether a data
point is classified as an outlier depends on the number of other points for which it is the
nearest neighbor. The procedure is illustrated in Figure 3.1.

Figure 3.1: Reverse nearest neighbour; adapted from [17]

Visualisation of the 2NNs of the points {p1, p2, p3, p4} in a set of five points in a two-dimensional
space: {q, p1, p2, p3, p4}.
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3 Outlier Detection

For a given multidimensional data set P and a point q, the RNN algorithm provides all
points p in P that have q as NN. We can call the set RNN(q) the influence set of q

RNN(q) = {p ∈ P | ∄ p′ ∈ P : dist(p, p′) < dist(p, q)}
Note, that dist is in the following assumed as Euclidian distance, but it can be any distance
metric.
A natural extension of this definition is the reverse k nearest neighbor (RkNN). In this
query the distinction between how far away are the different neighbours and ranks them
according to their distance.

RkNN(q) = {p ∈ P | dist(p, q) < dist(p, pk) : pk is the k-th NN of p}

Example

To illustrate how the query works we demonstrate the R2NN outlier detection with a set of
five points in a two-dimensional space: {q, p1, p2, p3, p4}. To determine the R2NNs of q, we
must first identify the 2NNs of the other points, illustrated with circles around the points
in Figure 3.1. The reverse nearest neighbours of q are the points where q is included in the
set of nearest neighbours of the other points. In this case, R2NN(q) = {p3, p4} since q is
nearer than the second nearest neighbour of p3 and p4.
It is important to note that p in NN does not necessarily result in q in RNN. This can
be easily shown by examining the 2NN of q, which are p3 and p1; however, as mentioned
earlier, p1 is not an RNN of q. For further, more complex versions, the interested reader is
referred to [17].

3.2.1 Applications of the Reverse Nearest Neighbour method

Some possible application scenarios are:

• Profile-Based Marketing: A real estate company profiles customers based on their
preferences in a feature space (e.g., house area, neighborhood). When a new property
enters the market, a Reverse Nearest Neighbor (RNN) query finds the clients for whom
the new property is the closest match to their interests.

• Decision Support Systems:A franchise wants to open a new branch at location
q to attract customers from competitors based on proximity. This scenario can be
modeled as a bichromatic Reverse Nearest Neighbor (RNN) query, where one set
P1 represents competitors and the other set P2 represents customers. The result
identifies customers closer to q than to any competitor.

• Peer-to-Peer Systems: When a new user q enters a P2P system, a Reverse Nearest
Neighbor (RNN) query identifies existing users for whom q will be their new nearest
neighbor based on network latency. In a collaborative environment, q informs these
users about its arrival to minimize future network costs. The RNN set also indicates
q’s potential workload, enabling resource management and control.
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3 Outlier Detection

• Outlier Detection: RNN can be also used as an outlier detection, if we define an
outlier as a point which has no RNN [18].

3.3 Interquartile Range (IQR)

Figure 3.2: Boxplot with random data and outliers

Visual representation of the IQR an outliers regarding the IQR measure, represented by dots.

This section is based on [6]. The Interquartile Range (IQR) is a measure of statistical
dispersion commonly used to identify outliers in continuous data. The IQR is calculated
as the difference between the third quartile (Q3) and the first quartile (Q1), representing
the middle 50% of the data:

IQR = Q3−Q1.

The dataset is divided into quartiles: Q1 (first quartile), Q2 (second quartile or median),
and Q3 (third quartile). Quartiles describe the distribution of data as follows:

• Q1: x0.25, the value below which 25% of the data lie,

• Q2: x0.50, the median, where 50% of the data lie below,

• Q3: x0.75, the value below which 75% of the data lie.

Outliers are identified as data points that fall outside the lower and upper boundaries:

Lower boundary = Q1− (1.5× IQR),

Upper boundary = Q3 + (1.5× IQR).

Figure 3.2 shows a boxplot, which visually represents the IQR and highlights outliers
beyond these boundaries. The visual separation of the data median to the rest makes it
easy to detect and interpret outliers. This method provides a straightforward way to detect
and interpret outliers in datasets.
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4 Error measure

This chapter presents two error measures that are suitable for application in this thesis.
The first one is a very common measure, the Mack Standard Error introduced by Mack in
[13], giving a long-term approach, while the Claims Development Result (CDR) introduced
by Mertz and Wuethrich [14] gives a short-term approach by considering the fluctuations
of the ultimate values that arise with new information.

4.1 Mack Standard Error

The following section is adapted from [13]. Mack introduced the Mack Standard Error, a
long-term approach, in [13]. A long-term approach means we are interested in the overall
error and not only in the deviation from one year to another. This measure is specifically for
the Chain Ladder method. The MSE is the standard error of the chain ladder estimates. It
is a measure of the uncertainty contained in the data to see whether the difference between
the results of the chain ladder method and any other method is significant or not. The
mean squared error mse(ĈiI) of the estimator ĈiI of CiI is:

mse(ĈiI) = E((ĈiI − CiI)
2|D)

note that DI = {Cik|i+ k ≤ I + 1} is the information available.

mse(R̂i) = E((R̂i −Ri)
2|D) = E((ĈiI − CiI)

2|D) = mse(ĈiI)

We want to calculate the expected quadratic error of the reserve. First, we are able to split
the mse in a sum of the stochastic error and the estimation error, because a property of
the expectation: E[(X − a)2] = Var(X) + (E[X]− a)2

mse(Ĉil) = Var(Cil | D) + (E[Ĉil | D]− Ĉil)
2 (4.1)

When the chain ladder method was introduced, we only had model assumptions regarding
the first moments, but since we need to calculate the variance, we need an additional
assumption about the variance.

Var(Ci,k+1 | C1k, . . . , Cik) = Cikσ
2
k, 1 ≤ i ≤ l, 1 ≤ k ≤ l − 1 (4.2)

where σ2
k, 1 ≤ k ≤ l − 1 are unknown parameters. This parameter can be estimated by:

σ̂2
k =

1

I − k − 1

I−k"
i=1

Cik

�
Ci,k+1

Cik
− f̂k

�2

, 1 ≤ k ≤ I − 2 (4.3)
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4 Error measure

Note that σ̂2
k are unbiased estimators of σ2

k, 1 ≤ k ≤ I − 1 . Nevertheless, there is still one
estimator σ̂I−1 missing. We can differentiate between two different cases. In the first case,
no further claims are expected since f̂I−1 = 0. If this is the case, the estimate can no longer
fluctuate, whereby σ̂I−1 = 0. If this is not the case, then we extrapolate σ1, . . . , σI−2 by
one additional member. The extrapolation can be made either with a log-linear regression
or a much simpler approach by demanding:

σ̂l−3

σ̂l−2
=

σ̂l−2

σ̂l−1

if σ̂l−3 > σ̂l−2. Then we can assume:

σ̂2
I−1 = min(σ̂4

I−2/σ̂
2
I−3,min(σ̂2

I−3, σ̂
2
I−2))

Lemma 6. Under the chain ladder assumptions 2.7 and the additional assumption 4.2
stated above an estimation of the mean squared error for the accident year i mse(R̂i) can
be made by:

�mse (R̂i) = Ĉ2
il

I−1"
k=I+1−i

σ̂2
k

f̂2
k

�
1

Ĉik

+
1#I−k

j=1 Cjk

�
(4.4)

with Ĉik = Ci,I+1−i · f̂i+1−i · · · · · f̂k−1, k > I + 1 − i, are the estimates of the future Cik

and Ĉi,I+1−i = Ĉi,I+1−i.

Proof. For a better readability we use the abbreviations:

Ei(X) = E(X | Ci1, . . . , Ci,I+1−i),

Vari(X) = Var(X | Ci1, . . . , Ci,I+1−i).

We will use the property of the mse mentioned above, that we can write it as a sum.

mse(R̂i) = Var(CiI | D) + (E(CiJ | D)− ĈiJ)
2.
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First, we rewrite the variance into a term that we can use in our estimators, which easily
follows from the chain ladder assumptions and the variance assumption, then we rewrite
the second part:

Var(CiI | D) =Vari(CiI)

=Ei(Var(CiI | Ci1, . . . , Ci,I−1))+

+ Vari(E(CiI | Ci1, . . . , Ci,I−1))

=Ei(Ci,I−1)σ
2
I−1 +Vari(Ci,I−1)f

2
I−1

=Ei(Ci,I−2)fI−2σ
2
I−1 + Ei(Ci,I−2)σ

2
I−2f

2
I−1+

+Vari(Ci,I−2)f
2
I−2f

2
I−1

= etc.

=Ci,I+1−i

l−1"
k=I+1−i

fI+1−i · · · fk−1σ
2
kf

2
k+1 · · · f2

I−1

Because of Vari(Ci,I+1−i) = 0, the estimation error can be written like:

(E(CiI | D)− ĈiI)
2 = C2

i,I+1−i

�
(fI+1−i · · · · · fl−1 − f̂I+1−i · · · · · f̂I−1)

�2
.

Now, we have a representation of the mse where we could put in our estimators. This
works with the variance, but the estimation error presents a problem since this would yield
0.

Var(CiI | D) =Ci,I+1−i

�
I−1"

k=I+1−i

f̂I+1−i · · · · · f̂k−1 · σ2
kf̂

2
k+1 · · · · · f̂2

I−1

�

=Ĉ2
i,I

I−1"
k=I+1−i

σ̂2
k/f̂

2
k

Ĉik

The second term can be estimated with a little trick. We rewrite the part which would
yield 0 into something postiv.

F = fI+1−i · · · · · fI−1 − f̂I+1−i · · · · · f̂I−1

= SI+1−i + · · · · ·+SI−1

where

Sk = f̂t+1−i · · · f̂k−1(fk − f̂k)fk+1 · · · fI−1.
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If we look at the square of F we can rewrite it due to the algebraic expansion of a squared
sum.

F 2 = (SI+1−i + · · ·+ SI−1)
2

=
I−1"

k=I+1−i

S2
k + 2

"
j<k

SjSk.

To further rewrite the equation we take a look at E(S2
k | Bk) instead of S2

k and SjSk,
j < k, with E(SjSk | Bk). Note that Bk represents the claim available until year k :
Bk = {Cij | j ≤ k, i + j ≤ I + 1}, for 1 ≤ k ≤ I. Since the age-to-age factors are uncorre-

lated and hence E((fk − f̂k) | Bk) = 0, we know that E(SjSk | Bk) = 0 holds for j < k.

To counteract the issue To address the issue with the estimation error yielding zero and
rewrite the sum of the squares, we examine the following:

E((fk − f̂k)
2 | Bk) = Var(fk | Bk)

=
I−k"
j=1

Var(Cj,k+1 | Bk)

!� I−k"
j=1

Cjk

�2

= σ2
k

! I−k"
j=1

Cjk

Now we can simply replace the term (fk − f̂k)
2.

E(S2
k | Bk) = f̂2

I+1−i · · · · · f2
k−1E((fk − f̂k)

2 | Bk)f
2
k+1 · · · · · f2

I−1

= f̂2
I+1−i · · · · · f̂2

k−1σ
2
kf

2
k+1 · · · · · f2

I−1

! I−k"
i=1

Cik.

The sum consists now of only positive values, which means If we now look at F 2 =
#

S2
k

with
#

k E(S2
k | Bk) we can put in the unbiased estimators f̂k, σ̂

2
k, instead of the unknown

parameters fk, σ
2
k. This gives us:

F 2 = (fI+1−i · · · fI−1 − f̂I+1−i · · · f̂I−1)
2

≈
l−1"

k=I+1−i

f̂2
I+1−i · · · f̂2

k−1σ̂
2
kf̂

2
k+1 · · · f̂2

I−1

! I−k"
j=1

1

Cjk


= f̂2

I+1−i · · · f̂2
I−1

I−1"
k=t+1−i

σ̂2
k/f̂

2
k#I−k

j=1 Cik

.
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Since the product of the squares of the age to age factors is the square of the estimator of
CiI simply adding up the results we get the estimator.

Most of the time, the focus is on the overall year, but because of the correlation of the
yearly reserves via the mutual estimators f̂k and σ̂k, we cannot simply use the use but
need a different formula. In the following Lemma, we will use the term ”s.e. (R̂i)”, it is
called the standard error of R̂i and represents the square root of an estimator of the mean
squared error.

Lemma 7. Given the chain ladder assumptions and the additional assumption regarding
the variance, The overall reserve estimate R̂ = R̂2 + · · ·+ R̂I can be estimated by

�mse (R̂) =
I"

i=2

�
((s.e.)(R̂i))

2 + ĈiI

� I"
j=i+1

ĈjI

� I−1"
k=I+1−i

2σ̂2
k/f̂

2
k#I−k

n=1Cnk

	
(4.5)

Proof. For the MSE over all years:

mse

� I"
i=2

R̂i

�
= E

�� I"
i=2

R̂i −
I"

i=2

Ri

�2%%%%D�

= E

�� I"
i=2

ĈiI −
I"

i=2

CiI

�2%%%%D�

= Var

� I"
i=2

CiI

%%%%D�
+

�
E

� I"
i=2

CiI

%%%%D�
−

I"
i=2

ĈiI

�2

.

Because of the assumption, that the accident years are independent we get

Var

� I"
i=2

CiI

%%%%D�
=

I"
i=2

Var
�
CiI

%%D�

=
I"

i=2

Ci,I+1−i

l−1"
k=I+1−i

fI+1−i · · · fk−1σ
2
kf

2
k+1 · · · f2

I−1

The second equation was proven above in the last proof.�
E

� I"
i=2

CiI

%%%%D�
−

I"
i=2

ĈiI

�2

=

� I"
i=2

�
E (CiI |D)− ĈiI

��2

=
"
i,j

�
E (CiI |D)− ĈiI

� · �E (CiI |D)− ĈiI

�
=

"
i,j

Ci,I+1−iCj,I+1−jFiFj
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Where F is defined like above

Fi = fI+1−i · · · · · fI−1 − f̂I+1−i · · · · · f̂I−1

We get:
mse(R̂i) = Var(CiI | D) + (Ci,I+1−iFi)

2

We can conclude from this

mse

� I"
i=2

R̂i

�
=

I"
i=2

mse(R̂I) +
"

1≤i<jleqI

2 · Ci,I−1−iCj,I+1−jFiFj .

A similar procedure like in the last proof gives us the estimator

I−1"
k=I+1−i

f̂I+1−j · · · f̂I−if̂
2
I+1−i · · · f̂2

k−1σ̂
2
kf̂

2
k+1 · · · f̂2

I−1

! I−k"
n=1

Cnk.

The assertion follows by combining the expressions.

4.2 Claims Development Result

The following section is from [1]. The Claims Development Result (CDR) focuses on the
fluctuation of the ultimate estimation of consecutive years. This measure is calculated
retrospectively and does not rely on any assumptions about the distribution of claims.

As described in chapter 2, the IBNR (Incurrred But Not Reported) reserves are calculated
based on ultimate claims estimations. We gain more information about the claim’s de-
velopment each new year, and consequently, the ultimate estimation and reserves change.
This raises the question of the relevance of examining the reserves depending on at which
time k they were made. In an ideal scenario with perfect forecasts, this would be redun-
dant since there would be already enough information, and it would stay the same with
further information. As perfect forecasts are impossible, there will always be fluctuations
over the years. Smaller fluctuations are preferable to bigger ones, as they indicate a more
accurate and stable prediction. A number which describes this fluctuation is the Claims
Development Result (CDR). The CDR represents the ”difference between forecasts of the
ultimate claims in consecutive periods”, as introduced by Merz and Wuethrich [14]. The
ultimate claims estimate changes with new information, resulting in potential profit or loss
variations. The CDR serves as a measure of these changes.
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In the following equations, we define the terms as follows:

• J : Last development period.

• j∗: Last development period for which information is available at time k.

• Ck
i,J : Ultimate value for accident year i, calculated using information available at

time k.

• Rk
i,j∗ : IBNR reserves for accident year i, calculated using information available at

time k.

• X̂i,l: Expected incremental claims for accident year i in development period l.

• Xi,l: Actual incremental claims for accident year i in last available development
period j∗.

• AvEi,j∗ : Actual versus Expected (AvE) result of the incremental claims on the new
diagonal of the triangle.

The CDR for accident year i in calendar year k is defined as:

CDRk
i = Ck

i,J − Ck−1
i,J

= Rk
i,j∗ + Ci,j∗ − (Rk−1

i,j∗ + Ci,j∗)

=

J"
l=j∗

X̂k
i,l + Ci,j∗ − (

J"
l=j∗−1

X̂k−1
i,l + Ci,j∗−1)

= Rk
i,j∗ −Rk−1

i,j∗ + (Ri,j∗ − X̂k−1
i,j∗ )

= Rk
i,j∗ −Rk−1

i,j∗ +AvEk
i,j∗

The CDR describes the difference in the ultimate estimation between two consecutive years.
As we can see in the equation, the CDR can be rewritten as a sum of:

• Difference of the IBNR Reserves of two consecutive years

• Difference between estimated and incremental claims for the new period.

The difference in IBNR reserves may result from claims payments made in the new year
(which no longer require reserving) or changes in claim information, such as a court decision
that releases the insurer from liability. The difference between estimated and incremental
claims results in the new period is the object of the Actual-Versus-Expected (Ave) analysis
actuaries use to make adjustments in the new IBNR reserves. The two parts of the CDR
are crucial figures for actuaries. Although the CDR can only be calculated for past years,
calculating it for many triangles can determine if a reserving model fits the given data.
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Model Optimization Using the CDR

In this thesis, we determine the optimal model by examining the CDR. The goal is to
identify a model that produces CDR values close to zero. To achieve this, the squared
difference between the CDR and zero is minimized, i.e., (CDR − 0)2. To avoid distortion
of the CDR due to incremental claims, we look at the CDR score instead of the simple
squared CDR. The score is calculated by weighing the absolute value of the incurred claims:

CDRscore =

 #I
i=1 |Xi,j∗ |(CDRk

i )
2#I

i=1 |Xi,j∗ |
(4.6)

4.3 Conclusion

In this thesis we primarily study the optimal model using the CDR score. It also compares
how the Mack Standard Error evolves in contrast to the CDR. Furthermore, we analyze
the Actual-Versus-Expected (AvE) outcomes for the optimal model based on the CDR and
the standard Chain Ladder model. The Mack Standard Error measures the uncertainty
within the development triangle. If we want to know the uncertainty in the following years,
we must look at the MSE. For short-tail branches, it likely will not make a significant
difference whether we look at the MSE of the Continuous Daily Rate (CDR) or the overall
MSE, since most of the uncertainty is concentrated in the next year. In contrast, a more
significant difference is expected for Long-Tail branches, although it should be noted that
approximately 75% of the uncertainty still lies in the following year.
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5 The Algorithm

The previous chapters introduced various reserving models, outlier detection methods and
error metrics. This chapter presents the algorithm identifying the best-performing reserv-
ing model for the given models. In chapter 2, we have already established the basic models
and decided to proceed with the Chain Ladder model. The criteria for model performance
are mainly the Claims Development Result; the Mack Standard Error will only be used
as a comparative measure. The critical question is how the optimization process works in
practice.

The core idea is as follows: the process begins with a small initial triangle representing a
limited dataset for each model. This triangle is gradually expanded step by step by adding
new diagonals of claims data, thus increasing the amount of available information. The
CDR score is calculated at every step to evaluate the model’s performance. Once the CDR
for the whole triangle, including all available data, has been computed, the average CDR
score across all steps is determined and recorded for that specific model. This process is
repeated for all candidate models under consideration. By systematically comparing the
average CDR scores of all models, the optimal model is identified as the one with the lowest
average CDR score, since the overall average score provides a strong indicator of overall
model performance.

Figure 5.1: Full Triangle, adapted from [1]

Breakdown of the triangle data in the groups: ‘initial triangle’, ‘training data’ and ‘out of sample
data’.
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5 The Algorithm

5.1 The Algorithm

The following section describes the algorithm selecting the optimal reserving model based
on the Claims Development Result (CDR) scores or Mack Standard Error. While the
general process remains consistent with [1], one adjustment has been made: the reserves
are calculated for the initial triangle before adding the first calendar period.M is a set of
all models that will be compared. In the following workflow the algorithm is presented:

• First, we will decide on an ”initial triangle” to supply data to fit all the models. The
”initial triangle” is visualized in figure 5.1. In the following steps, it will be expanded
to include new diagonals of experience.

• Select all but the last two years of the remaining data as the training set (shown as
”Training Data” in green in figure 5.1)

• Select an arbitrary reserving model M ∈ M which has not been used yet. For each
M, perform the following steps:

1. Calculating the reserves for the initial triangle. This is done by creating a model
with the chosen parameters for M.

2. For each subsequent calendar year k in the training set:

a) Calculate the score for each accident year as CDRk
i based on the next diag-

onal of experience, or the MSE. Note that at this stage, this next diagonal
has not been used to fit the reserving mode, i.e. it is out of sample data.-
Calculate the reserves with the newly won data. The data available in the
first step is illustrated in Figure 5.2)

b) Calulate the weighted score across accident years, using the incremental
claims as weights (as in equation 4.6)

c) The new reserves Rk
i,j = M(X = Δk) are estimated by extending the model

with the latest data. Figure 5.2 and 5.3 illustrate the first two iterations.

3. Calculate and store the average score across all of the calendar years in the
training set, SM .

• The optimal model is chosen as the model with the lowest average score across all off
the calendar years.

Mopt = argminM∈M(SM )

Setting in this thesis

In our case, the set M only consists of Chain Ladder models, differing in volume, outlier
detection and tail estimation.
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5 The Algorithm

Figure 5.2: Data available in the first step, adapted from [1]

Figure 5.3: Data available in the second step, adapted from [1]
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This thesis takes a practical approach by focusing on an optimisation algorithm based on
the Chain Ladder method for claims reserving. The goal is to find the optimal model
according to the CDR by adapting the number of periods to consider, handling outliers,
experimenting with different tail factors and adjusting for inflation. By performing a case
study, we can expose the challenges associated with the models and show possible solutions.
For instance, looking closely at the reserving process of a specific insurance company allows
for a deeper understanding than broader surveys or purely numerical analyses could provide.
By working with actual data from a particular company, we can develop practical solutions
that are both theoretically sound and implementable. This chapter gives insight into the
data used and the concrete implementation of the code.

6.1 Data Foundation

The following section provides an overview of the dataset used for this study. It describes
the data’s origins, structure, and key characteristics, offering insight into how the informa-
tion has been organized and prepared for analysis. Understanding the dataset is essential
for appreciating the challenges and limitations associated with claims reserving.

6.1.1 Description of the Used Data

The data comes from the insurance company Allianz, consisting of claims data including
payment information, reserves, and the number of incidents. Due to privacy reasons, some
values have been adjusted. There are three different major types of insurance branches,
when looking at the development pattern:

• Short-Tail: Short-tail branches refer to insurance lines characterized by quick and
straightforward settlement processes. A typical example is motor vehicle collision in-
surance, where the extent of the damage is immediately visible, and the claim amount
can be estimated promptly and accurately. Due to the clarity of the damage, it is
uncommon for there to be many incurred but not reported (IBNR) claims extending
beyond one year.

• Long-Tail: Long-tail businesses require a longer development period Classic ex-
amples of long-tail insurance policies include legal protection insurance and motor
vehicle liability insurance. One explanation for this is that Austrian law mandates
liability insurance to cover damages without any limitation periods. For instance, if
an accident causes injury to a child, reserves must be maintained for this accident for
the duration of the child’s life, as there may be circumstances where compensation
or even pension payments are required long after the incident.
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• Volatile: Segments with a volatile settlement pattern are typically characterized by
large claims. Large claims do not occur with the same intensity every year; their
frequency and severity can vary greatly. Moreover, estimating the final claim amount
is not as straightforward as in other segments, such as motor hull insurance, because
these claims tend to be more complex and extensive. For instance, the flood dam-
ages associated with the construction of the subway during the 2024 autumn floods
illustrate that such damages are challenging to predict and assess accurately.

The data used in this thesis consists of information about one short-tail, one long-tail, and
one volatile branch. Additionally, the data includes several outlier years between 2000 and
2022, influenced by major events such as the 2007 financial crisis and the economic impacts
of the COVID-19 pandemic.

6.1.2 Data Structure and Characteristics

The data is stored in a table in an xls file. The dataset consists of a table with five
columns, organized to represent various attributes related to claims reserves. The columns
are defined as follows:

• Segment: A categorical variable indicating the insurance branches: LongTail, Short-
Tail and Volatile.

• Payment inc: A numerical value representing the incurred payments related to
claims, expressed in euros.

• Reserve inc: A numerical value indicating the incurred reserves for future claims
payments, also expressed in euros.

• Amountl inc: A numerical count of incidents or claims associated with the respec-
tive segment.

• Accident Year: The year when the claim was incurred.

• Development Year: The development year.

The data spans from 2000-2022 with entries in 1999 and 2099. The outlier detection has
been done with Python, the implementation is shown in the next section in Implementation
of Models 6.2.

6.2 Implementation of Models

In this section, the implementation of the algorithm is given, including a general explana-
tion of the Python Environment, an overview of the most important classes, objects, and
methods, and some concrete code snippets.
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6.2.1 Explanation of the Python Environment

Generally, the code for this thesis is written in Python, primarily using the PyCharm
interpreter. For certain visualizations, Jupyter Notebook was utilized. The most relevant
packages employed include the Chainladder package, NumPy, and Pandas. NumPy is
a Python library that provides tools for numerical computing. It is used, for instance,
to replace NaN values with zeros or to create arrays [15]. Pandas is an open-source
library that offers data structures and analysis tools for Python. It is used, for example,
to read CSV data, which is then stored in a DataFrame object, [16]. The most critical
library used in this code is theChainladder-Python package, which provides the essential
actuarial tools required for the analysis and methodologies presented in this thesis, [3].
The information about the following definitions is from the corresponding documentation
homepages: [15], [16], [3]

6.2.2 Definitions of important classes

In this subsection, the most important classes, objects and methods are described in order
not to disturb the flow of reading.

Dataframe One of the most frequently used objects in Pandas is the dataframe. A
dataframe is a two-dimensional object that is comparable to a spreadsheet or an SQL
table. It is made up of rows and columns. A dataframe takes various objects as input, such
as arrays or dataframes. In this thesis, however, the elements of the dataframe will only
be strings, floats and integers.

Triangle The Triangle class is the core data structure used within the Chainladder pack-
age. Compared with the development triangle explained in subsection 2.1.2, the Triangle
object is the core structure of the development like the development triangle is the core of
the theory of the chain ladder method. Chainladder is designed to work with Triangle

objects. The Triangle is a four-dimensional (4D) data structure with labelled axes: index,
columns, origin, and development.

• Index (Axis 0): The index represents the lowest level at which the triangle is man-
aged. Examples include states, business branches, companies, or any other relevant
classification.

• Columns (Axis 1): Columns are used to store the various numeric values in the
dataset, such as paid claims, incurred claims, or claim counts. These different metrics
can all be represented as columns within the triangle.

• Origin (Axis 2): The origin denotes the period from which the data in the columns
originates. Examples of origin periods include accident months, report years, policy
quarters, or other time-based intervals.

• Development (Axis 3): Development represents the age or progression of the
data over time. Typical choices for development periods include valuation months,
valuation years, or valuation quarters.
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The interaction with Triangle class works similar to patterns in pandas with DataFrames,
for example the index and columns can be managed as they would be in a pandasDataFrame.
Conceptually, the 4D structure can be seen as a collection of pandas DataFrames, where
each cell (row, column) corresponds to an individual triangle slice. Additionally, while
the values property of a Triangle can be used to obtain its NumPy representation, the
Triangle class provides various helper methods to ensure that the shape of the NumPy
representation remains consistent with other properties of the triangle.

Development Creating link ratios works with the Development class. The Development
class, part of the Chainladder package, is a transformer that facilitates the selection of
basic loss development patterns. It offers various parameters to customize the handling
and transformation of data, making it a flexible tool for actuarial analysis in this thesis.
Some key parameters include:

• n periods: Specifies the number of periods to consider for the development analysis.
Setting this parameter allows for control over how many periods are included when
calculating development factors.

• average: Determines the method used to average development factors across periods.
Common choices include ’volume,’ which averages based on the size or volume of
claims.

• drop, drop high, drop low: These parameters allow for the exclusion of specific
periods or values that might skew the development pattern. For example, drop high

can be used to exclude unusually high values that are considered outliers.

• preserve: Controls how many periods are preserved in the development pattern,
ensuring that key information is not lost during transformation.

• fillna: Provides a method to handle missing values (e.g., replacing NaN values),
which is crucial when working with incomplete datasets.

This class implemented the various model variables since one can easily adapt the outliers
and volume, which are key factors.

TailCurve The TailCurve class from the Chainladder package is used to extrapolate
loss development factors (LDFs) beyond the observed data, forming a tail factor. This
process helps in estimating the expected development of claims that may extend beyond
the available data, which is crucial for accurately reserving long-tail insurance lines. The
key parameters of the TailCurve class include:

• curve: Specifies the type of curve used for extrapolation, with the default being
’exponential.’ Other curve types may be selected depending on the characteristics of
the data and the desired extrapolation behaviour.

• fit period: Defines the period over which the curve is fitted. Setting this parameter
allows for control over which development periods are considered when determining
the tail factor.
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• extrap periods: Indicates the number of periods to which the extrapolation is ex-
tended. By default, it is set to 100, enabling a long projection of the tail, but this
can be adjusted as necessary.

• attachment age: Specifies the development age at which the tail extrapolation should
begin, providing flexibility in defining where the tail is considered to start.

• reg threshold: Sets a threshold for regularization, controlling the conditions under
which the extrapolated curve adjusts to avoid unrealistic projections.

• projection period: Defines the period over which the tail factor is applied, useful
for projecting claims beyond the last observed data point.

The TailCurve class aids in the estimation of tail factors by providing methods to extend
development factors smoothly beyond the observed range. This class was used for the Tail
analysis in the next chapter.

Chainladder The Chainladder class, a key component of the Chainladder package, im-
plements the basic deterministic chain ladder method, which is widely used in actuarial
practice for estimating future claims development based on historical data, like already
described in 2.4. With this class a Chainladder model gets fitted, for example with the un-
changed Triangle data or a developed Triangle, which was transformed with Development.
The Chainladder class offers several important attributes to assist with this process:

• X : Returns the original input data (X) used to fit the triangle. This represents the
base data on which the development factors are calculated.

• ultimate : Provides the ultimate losses estimated by the method. Ultimate losses
are the total projected losses, combining both reported and future claims.

• ibnr : Represents the incurred but not reported (IBNR) claims, calculated as the
difference between the ultimate losses and the reported losses. This gives an estimate
of claims that are expected but have not yet been recorded.

• full expectation : Back-fills the estimated ultimate losses to each development
period within the original data, replacing known values. This allows for a complete
view of the expected claims across all periods.

• full triangle : Similar to full expectation , but retains the known data, fill-
ing in only the periods where estimates are needed. This provides a comprehensive
projection while preserving the original claims data.

The Chainladder class simplifies the process of applying the chain ladder method by
managing these calculations and providing access to key outputs such as ultimate loss
estimates and IBNR values.
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Pipeline The Pipeline method from the Chainladder package is almost a copy from
scikit-learn library. It is used to sequentially implement several transformers, like
Development and TailCurve. Pipeline combines several transformers and can be put
into the Chainladder method.

6.2.3 Modelling approach

The goal of the model is to find the best reserving model. An optimal model is selected
based on the given paid and incurred data. A model is considered optimal if it has the
lowest Claims Development Result (CDR) on average over the last years, as described in
the algorithm presented in chapter 5. Since the original dataset only contained information
on payments and reserves, an additional column for incurred loss was calculated using:
Payment + Reserve. From this point onward, all analyses were performed using Python.
The data were imported from a CSV file into a Pandas DataFrame, and the only data
cleaning required was the removal of values outside the observation period.
Various analyses were then conducted for each sector and data column. Specifically, the
occurrence of outliers was examined using the Interquartile Range (IQR) and the Reverse
Nearest Neighbour (RNN) methods.
The function to determine the optimal model was implemented based on the algorithm
described in 5. The key model parameters to be adjusted include the number of periods,
outlier handling techniques, and the choice of tail factors. Additionally, the impact of
adjusting the data for inflation was analyzed using consumption index data and a simple
Python script. The study also shows how the CDR changes when the ultimate value is
calculated using the pure payment or paid loss triangle and a combination of both.

6.2.4 Data Preparation

First, the data is imported from a CSV file and saved as a DataFrame. The CSV file
has the separator ‘;’ and decimal places are marked with ‘,’. As the data already has
the required format to create a triangle object, only simple data cleansing is required for
data preparation. This is done with the function ‘drop faulty years(df,YEARS)’, which
eliminates data outside the observation period 2000-2022.

#read the data

df = pd.read_csv(’data/data.csv’, sep=";", decimal=’,’)

# Clean data

df = drop_faulty_years(df, YEARS)

# Create the triangle

triangle_df = create_triangle(df)

Listing 6.1: Preprocessing

After the preprocessing, a Triangle is created with the function ‘create triangle(df)’,
which creates a triangle object for the given data. Since the data given is incremental data,
we set cumulative=False.
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Figure 6.1: Boxplot Link Ratios

Visualisation of the dispersion of the link ratios in the first development period, for short-tail,
long-tail and the volatile branch.

def create_triangle(df):

"""Create a ChainLadder triangle from the dataframe."""

triangle_df = cl.Triangle(

df,

origin=’Anfallsjahr’,

development=’Abwicklungsjahr’,

columns=[’zahlung_inc’, ’reserve_inc’, ’aufwand_inc’,’anzahl_inc’],

index=[’Segment’],

cumulative=False,

)

return triangle_df

Listing 6.2: create triangle()

6.2.5 Outlier Detection Using the Interquartile Range (IQR)

The outliers here refer to the outliers for the individual columns. The boxplots in Figure
6.1 visualise the distribution of the link ratios in the first year in the various divisions in
the payment triangle, i.e. how the cumulative payments in the first year have developed in
the second year.
Following the explanation in chapter 3.3, we perform an outlier detection, focusing on

the link ratios of the different development periods. An example is given seen in figure
6.1, there are only upward outliers, characterised by dots, in this range in all sectors. The
following algorithm identifies outliers in the claims data by applying the Interquartile Range
(IQR) method to the link ratios of a development triangle. This approach is robust and
does not assume a normal distribution of the data, making it suitable for claims reserving
where the data might have skewed or heavy-tailed distributions.
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Algorithm Implementation The outlier detection consists of two main functions:
calculate bounds and find iqr outliers. The process can be summarized as follows:

1. calculate bounds: This function calculates the IQR-based lower and upper bounds
for identifying outliers in the link ratios. The IQR is determined by subtracting the
first quartile (25th percentile) from the third quartile (75th percentile). Using these
quartiles, the lower and upper bounds are defined as:

Lower Bound = Q1− 1.5× IQR, Upper Bound = Q3 + 1.5× IQR

where Q1 and Q3 are the 25th and 75th percentiles, respectively.

def calculate_bounds(triangle):

"""Calculate the IQR and bounds for identifying outliers."""

description_link_ratio = triangle.incr_to_cum().link_ratio.describe()

IQR = description_link_ratio.loc[’75%’] - description_link_ratio.loc[’25%’]

lower_bound = description_link_ratio.loc[’25%’] - 1.5 * IQR

upper_bound = description_link_ratio.loc[’75%’] + 1.5 * IQR

return lower_bound, upper_bound

Listing 6.3: Function to calculate IQR bounds

2. find iqr outliers: This function identifies outliers based on the bounds calculated
in calculate bounds. It iterates over each column (each development period) of the
link ratios and checks if the values fall outside the specified bounds. Values below
the lower bound or above the upper bound are classified as outliers.

The process begins by converting the triangle to cumulative values using incr to cum(),
followed by extracting the link ratios. The function counts the non-null entries to
ensure that only valid data points are checked for outliers. If a value is identified as
an outlier, its index is recorded in a matrix (bad index) for later use.

def find_iqr_outliers(triangle):

"""Identify IQR outliers for a given triangle."""

lower_bound, upper_bound = calculate_bounds(triangle)

bad_index = [[] for _ in range(22)] # Create the matrix with the outlier entries

for j in range(22): # Number of columns

values = triangle.incr_to_cum().link_ratio.values[0, 0, :, j]

count_not_null = np.count_nonzero(~np.isnan(values)) # Count non-null

entries

for i in range(count_not_null):

if values[i] < lower_bound[j] or values[i] > upper_bound[j]:

bad_index[j].append(i)

return transform_bad_index_to_iqr_outliers(bad_index)

Listing 6.4: Function to identify IQR outliers
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Explanation:

• calculate bounds: This function uses the describe() method to get statistical
information about the link ratios. The IQR (Interquartile Range) is calculated as the
difference between the 75th percentile (Q3) and the 25th percentile (Q1). The lower
and upper bounds are then used to classify values that fall below or above as outliers.

• find iqr outliers: This function creates a matrix to store indices of outliers. It
iterates over each development period (column), identifies the non-null values, and
checks each value against the calculated IQR bounds. If a value is found to be outside
the specified range, it is marked as an outlier.

• transform bad index to iqr outliers: The indices of the detected outliers are con-
verted into a format that can be used in the subsequent analysis or to exclude these
values from further calculations.

6.2.6 Outlier Detection Using Reverse Nearest Neighbors (RNN)

In addition to the Interquartile Range (IQR) method, the practical analysis also incor-
porates the Reverse Nearest Neighbors (RNN) technique for detecting outliers, already
introduced in section3.2 The following subsections describe the key functions used in the
RNN-based outlier detection process.

Algorithm Implementation

1. extract link ratios: This function extracts the link ratios from the claims triangle
data for a given line of business and column. It iterates over the available years,
collects the link ratios, and stores them in an array while filtering out any NaN
values.

def extract_link_ratios(triangle_df, line_of_business, column):

"""Extract link ratios from the triangle data."""

link_ratios = []

for i in range(YEARS_MAX_INT-2000):

dummy = np.squeeze(triangle_df.loc[line_of_business,

column].incr_to_cum().link_ratio.iloc[0, 0, :, i].values)

link_ratios.append(dummy[~np.isnan(dummy)])

return link_ratios

Listing 6.5: Function to Extract Link Ratios

2. find outliers with rnn: This is the core function that applies the Reverse Nearest
Neighbors (RNN) method. It identifies outliers by calculating the distance between
points and checking how many other points are within a specified neighbourhood.
The parameters include:

• threshold: The maximum number of Reverse Nearest Neighbors a point can
have to be considered an outlier.
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• n neighbors: The number of neighbours to be considered when calculating
distances.

The function starts by extracting link ratios, reshapes the data, and uses the
NearestNeighborsmodel to find the nearest points. For each point, the RNNmethod
counts how many times it appears as a neighbour of other points. If a point has fewer
neighbors than the threshold, it is classified as an outlier.

def find_outliers_with_rnn(Triangle, line_of_business = LOB, column = COL,

threshold=1, n_neighbors=10):

"""

Identify outliers using Reverse Nearest Neighbors (RNN).

"""

link_ratios = extract_link_ratios(Triangle, line_of_business, column)

all_outliers = []

year_index = YEARS_MAX_INT -2000 # Describes how big the triangle is

for i in range(len(link_ratios) - 3):

# Reshape the data to a 2D array

test = link_ratios[i][:year_index - i].reshape(-1, 1)

# Fit Nearest Neighbors model

nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm=’auto’).fit(test)

distances, indices = nbrs.kneighbors(test)

# Create a dictionary to store RNNs for each point

rnn_dict = {i: [] for i in range(len(test))}

# Loop over each point to identify RNNs

for k in range(len(test)):

for j in indices[k]:

if k != j:

rnn_dict[j].append(k)

# Identify outliers

outliers = [key for key, value in rnn_dict.items() if len(value) <=

threshold]

all_outliers.append(outliers)

return all_outliers

Listing 6.6: Function to Identify Outliers with RNN
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Explanation:

• The RNN method is particularly useful when dealing with datasets where traditional
outlier detection methods (like IQR) may not suffice, especially in cases of complex
patterns. By using the RNN approach, this algorithm can identify points that are
isolated, indicating potential outliers.

• The integration of functions like create index matrix and
translate indices to years ensures that the detected outliers can be systemati-
cally excluded from the Chain Ladder model, improving the accuracy of the reserving
calculations.

This implementation of RNN-based outlier detection helps refine the analysis by identifying
data points that might distort the accuracy of claims reserves. It allows the algorithm to
exclude these outliers and focus on more consistent and reliable data points.

Alternative Outlier Detection and Diagonal Exclusion

In addition to the core function described earlier, slightly different approaches were used
for handling other outlier detection methods and the exclusion of diagonals. These ap-
proaches are detailed below. For alternative outlier detection methods, such as the Reverse
Nearest Neighbour (RNN) and Interquartile Range (IQR) models, a modified function was
employed:

filtered_data = filter_data(index_matrix, current_year_index)

if filtered_data == []:

filtered_data = None

current_triangle_dev = cl.Pipeline([("dev", cl.Development(drop=filtered_data,

n_periods=periods_index, preserve=MINIMUM_PERIODS)),

("tail", cl.TailConstant(tail =

1))]).fit_transform(current_triangle)

current_triangle_model = cl.Chainladder().fit(current_triangle_dev)

Listing 6.7: CDR with RNN/IQR

In this approach, the parameters drop high and drop low were not used. Instead, the
drop parameter relies on a matrix that indicates the positions of outliers. Importantly,
this method considers outliers across the entire column of the triangle, not just within the
defined n periods.

For the exclusion of diagonals, an additional argument was included:

current_year_triangle_dev = cl.Pipeline(

[("development", cl.Development(drop_high=j[periods_bool_index][0],

drop_low=j[periods_bool_index][1],

n_periods=j[periods_bool_index][2],

preserve=MINIMUM_PERIODS, average="volume")),

("tail", cl.TailConstant(tail = 1.0)]).fit_transform(current_year_triangle)

Listing 6.8: CDR with diagonals
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Note: The functions Pipeline, Development, TailCurve, and Chainladder are pre-
existing functionalities within the Chain Ladder package. These were utilized to streamline
the process of developing and testing different models, enabling flexible adjustments for out-
lier handling and tail estimation. Development filters which data to include, i.e. drops the
irrelevant link ratios. TailCurve develops the tail factor. Pipeline connects the different
functions like Development and TailCurve. The output of a Pipeline function can be the
input of Chainladder, which develops the chain ladder model. Instead of Chainladder,
MackChainladder, BornhuetterFerguson or other models can be used to develop a model.

6.2.7 Implementation of the Optimization Algorithm

The following section describes the implementation of the algorithm outlined in chapter
5. This algorithm is at the core of the model comparison process, identifying the optimal
model based on Claims Development Results (CDR). The function automates the calcu-
lation of ultimate values using a Chain Ladder model and compares different parameter
setups by computing the CDR scores. The algorithm takes the data as input, along with
information specifying the line of business (LOB) and whether the data pertains to pay-
ment or incurred loss triangles. It also receives a list defining which periods to include and
whether to exclude maximum and/or minimum values. Additional optional parameters
determine the size of the initial triangle and the extent of the observation period.

A key challenge is selecting an appropriate initial triangle. It must not be too small, as this
could distort results due to poor model performance in the early years. At the same time,
it should not be too large, as this would limit the number of comparative years. This bal-
ance is important because reserving behaviors can vary significantly across different years.
To make an informed decision, several initial triangles were tested, and the CDRs were
analyzed to observe how they changed. Based on these observations, an optimal initial
triangle was selected.

The model comparison is performed by iterating over various observation periods. Starting
with a smaller triangle, the algorithm calculates ultimate values based on the available
data. It then progresses year by year, recalculating new ultimate values and comparing
them to the previous year’s results to derive the CDR. This process continues until the
most recent year, after which an average CDR is computed for each model. The function
outputs a list containing the average CDRs and the corresponding model parameters.
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Step-by-Step Overview

• Defining the Initial Triangle:
The process begins by defining the initial triangle, which specifies the starting years
of data, the line of business, and whether paid loss or incurred loss data is being used.
This setup remains the same across all models.

• Processing Each Model:
For each model setup (defined by the parameters vector), the following steps are
executed:

– A model is created for the initial triangle. This involves specifying which data
to include, determining which outliers to exclude, and setting the volume (i.e.,
how many periods to consider). Based on these inputs, a Chain Ladder model
is generated for the smallest triangle.

• Calculating the Average CDR:
To compute the average CDR, the algorithm proceeds step-by-step, starting from one
year after the initial triangle and continuing to the end year. For each step, a new
triangle object is created, a model is fitted, and the CDR score is calculated.

Calculation of CDR Scores

The CDR is calculated as the difference between the ultimate values from the previous
year and the current year. To avoid errors, ”NaN” values are replaced with zeros. Since
these differences are handled as triangle objects, they are converted into regular ndarrays
to allow for further computations.
The CDR score is then determined by applying a straightforward implementation of the
formula previously described in 4.2.
It is important to note that the Chain Ladder package was used for model development, and
the treatment of outliers is based on the observation period. For instance, if n periods=10,
the algorithm considers the highest and lowest values from the last 10 years, meaning only
the middle 8 values are used in the calculation.
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6 Methodology and Data Foundation

def calculate_cdr_with_j(triangle_df, line_of_business, column, j, start_year =

START_YEAR_STR, end_year = INITIAL_TRIANGLE_YEAR_STR):

cdr_score_mean = []

initial_triangle = triangle_df.loc[line_of_business, column][

(triangle_df.valuation >= start_year) & (triangle_df.valuation < end_year)

]

for periods_bool_index in range(len(j)):

initial_triangle_dev = (cl.Pipeline([

("dev", cl.Development(

drop_high = j[periods_bool_index][0],

drop_low = j[periods_bool_index][1],

n_periods = j[periods_bool_index][2],

preserve = MINIMUM_PERIODS,

average = "volume")),

("tail", cl.TailConstant(tail = 1.0))

]).fit_transform(initial_triangle))

initial_triangle_model = cl.Chainladder().fit(initial_triangle_dev) #fit the model

# Create a cdr_score for each triangle with more and more information

cdr_score = []

for current_year in range(int(end_year) + 1, YEARS_MAX_INT + 1):

if current_year == int(end_year) + 1:

last_year_triangle_model = initial_triangle_model

else:

last_year_triangle_model = current_year_triangle_model

current_year_triangle = triangle_df.loc[line_of_business, column]

[(triangle_df.valuation >= start_year) &

(triangle_df.valuation < str(current_year))]

current_year_triangle_dev = cl.Pipeline([

("dev", cl.Development(

drop_high = j[periods_bool_index][0],

drop_low = j[periods_bool_index][1],

n_periods = j[periods_bool_index][2],

preserve = MINIMUM_PERIODS,)),

("tail", cl.TailConstant(tail = 1.0))

]).fit_transform(current_year_triangle)

current_year_triangle_model = cl.Chainladder()

.fit(current_year_triangle_dev)

if cdr_score:

cdr_score_mean.append([statistics.mean(cdr_score), j[periods_bool_index]])

return cdr_score_mean

Listing 6.9: CDR-Score calculation
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6 Methodology and Data Foundation

Verification of the Algorithm

To ensure the correctness of the implementation, the results were validated through spot
checks using Excel, essentially calculated by hand. This approach helped to confirm the
reliability and accuracy of the code.

6.2.8 Weighted Average paid loss loss and incurred loss

For the weighted ultimate, we use the same algorithm as for calculating the usual paid or
incurred CDR scores. However, instead of calculating the CDR score with the simple paid
or incurred ultimate, we take the weighted ultimate of the paid and incurred ultimate and
compare this with the paid ultimate. We compared weight values w from 0 to 1, while 1
results in an incurred loss ultimate and 0 results in a paid loss ultimate.

ultimate mixed = w · ultimate incurred + (1− w) · ultimate paid (6.1)

def weighted_zahlung_aufwand_triangle(triangle, line_of_business: str, weight_zahlung =

0.5):

"""This function returns a weighted Triangle"""

triangle.loc[line_of_business, "anzahl_inc"] = (weight_zahlung *

* triangle.loc[line_of_business, "zahlung_inc"]

+ (1 - weight_zahlung)

* triangle.loc[line_of_business, "aufwand_inc"])

return triangle.loc[line_of_business, "anzahl_inc"]

Listing 6.10: Weighted Triangle

6.2.9 Inflation Adjustment

The inflation is calculated according the calendar year with the function ‘inflation adjustment´.
The inflation factor is the quotient of the Consumer Price Index (CPI) of the reference year
and the current calendar year. The CPI data originates from [20]. The inflation adjustment
is done by multiplying the inflation factor with the data.
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6 Methodology and Data Foundation

def inflation_adjustment(df, reference_year=2022):

df_adjusted = df.copy()

if reference_year in CPI_DICT_2000:

cpi_reference = CPI_DICT_2000[reference_year]

development_year = df_adjusted[’Abwicklungsjahr’]

if development_year in CPI_DICT_2000:

cpi_development = CPI_DICT_2000[development_year]

inflation_factor = cpi_reference / cpi_development

# Bereinige die Betraege

df_adjusted[’zahlung_inc’] *= inflation_factor

df_adjusted[’reserve_inc’] *= inflation_factor

df_adjusted[’aufwand_inc’] *= inflation_factor

return df_adjusted

Listing 6.11: Inflation Adjustment

6.2.10 MSE Implementation

The difference between the code for the MSE implementation and the CDR implemen-
tation is, that we did not calculate a score, but the total mack standard error and used
MackChainladder instead of Chainladder since the function total mack std err is al-
ready implemented in the ChainLadder-package.

6.2.11 Tail-Ajustment

The tail adjustment was done by the TailCurve method. The CDR calculation works the
same, but instead of ("tail", cl.TailConstant(tail = 1)) we use
("tail", cl.TailCurve(tail = "exponential")) or
("tail", cl.TailCurve(tail = "inverse power’")) The TailCurve uses a curve fit-
ting.

current_year_triangle_dev = cl.Pipeline([

("dev", cl.Development(

drop_high = j[periods_bool_index][0],

drop_low = j[periods_bool_index][1],

n_periods = j[periods_bool_index][2],

preserve = MINIMUM_PERIODS,)),

("tail", cl.TailCurve(tail = "exponential"))

]).fit_transform(current_year_triangle)
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7 Results and Discussion

In this chapter, the results of the implemented optimization algorithm are analyzed. The
aim is to evaluate the effects of different model configurations on the Claims Development
Result (CDR) and to determine the optimal model settings for accurate claims reserving.
The analysis focuses on various factors, such as the number of periods, outlier handling,
tail factors, and adjustments for inflation.

Figure 7.1: Link Ratios and Heatmap for Short-Tail Paid Loss

This figure shows the triangle data for paid losses in the form of a heatmap.
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7.1 Link Ratio Analysis

This section visualises the link ratios using line plots and heat maps in figures 7.1 to
7.11. The link ratio represents the change in cumulative paid or incurred losses from one
development year to the next for each accident year, calculated based on the development
triangle.

(a) Link Ratios paid loss - first 5 Link Ratios (b) Link Ratios paid loss - other Link Ratios

Figure 7.2: Link Ratios for Short-Tail Paid Loss

(a) shows the link ratios of the paid loss triangle for the first five development periods, plotted as
a function of the accident year. (b) shows the link ratios of the paid loss triangle for the remaining

development periods, plotted as a function of the accident year.

The line plots display link ratios for each development period. In these plots, the x-
axis shows the accident year (denoted as ”accident year minus 2000”), and the y-axis
represents the link ratios. A link ratio of 1 indicates no change in cumulative losses from
one period to the next, while ratios above 1 indicate an increase in cumulative values. Ratios
below 1 may signify a decrease, which can result from adjustments such as overestimated
reserves or correction of payments. In addition to these plots, we include heatmaps to
further illustrate the variability in link ratios across accident and development years. The
heatmaps visually represent the development triangle, with link ratios as values, and use a
color gradient ranging from dark red to dark blue. Darker shades represent values farther
from the mean: red indicates higher values, while blue denotes lower values. This coloring
highlights deviations and patterns across the triangle, providing insight into the volatility
of link ratios within each development period.
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ShortTail

The link ratios exhibit a high level of consistency, with minimal fluctuation observed
throughout the entire period. They range from approximately 1.2-1.5. Volatility is predom-
inantly confined to the beginning and end of the observation period. The elevated values
at the start of the period could be attributed to differences in claims settlement practices
at that time, while the spike towards the end might be explained by the impact of high
inflation. The relatively stable lines further suggest that losses in this branch occur consis-
tently over the years, without being heavily influenced by extreme events. Notably, values
significantly above 1 are only observed in the development period from 12 to 24 months,
indicating that the majority of payments were completed within the first two years. A
reason could be the slower settlement back then. The first development factor is the factor
from the amount of the first year to the second year. If more money gets paid in the first
year because settlement is so quick, the link ratios of the first development year will be
smaller.

Figure 7.3: Heatmap for ShortTail incurred loss

This figure is structured the same way as in figure 7.1.

Examining the incurred loss, it becomes evident that they are even smoother than the paid
loss. The values are between 1.02-1.07. Since incurred loss comprise both paid loss and
reserves, their smoothness and proximity to 1 imply that claims were settled efficiently,
with minimal need for large reserves.

Overall, the findings from the link ratios support the classification of this branch as fast-
carrying and show expected patterns seen in short-tail insurance such as motor own damage
and property damage coverage. This analysis clarifies the claims behaviour for the examined
branch and provides a framework for understanding similar branches in the industry.
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7 Results and Discussion

(a) Link Ratios incurred loss - first 4 Link Ratios (b) Link Ratios incurred loss - other Link Ratios

Figure 7.4: Link Ratios for ShortTail incurred loss

(a), (b) are structured the same way as in figure 7.2.

Long Tail

The link ratios for long-tail policies exhibit a degree of consistency, they only vary from
1.41-1.65; however, unlike the fast-settling branches, the ratios do not converge to 1 after
the initial development periods. Instead, they remain slightly above 1 even towards the
end of the development period, indicating that the settlement of claims continues over a
prolonged timeframe. Similar to the fast-settling branch, it can be observed that the link
ratios are higher during the initial and final years of development. One possible explanation
for the elevated values in the early years post-2000 is the difference in settlement processes,
which were less digitalized compared to today’s standards. The high values towards the
end of the period may be attributed to significant inflation rates. In the years between, the
ratios demonstrate relative stability, although closer inspection reveals variations within a
narrow range of approximately 0.02.
When examining the link ratios for incurred loss, at first glance a calmer pattern emerges.
Although the values are relatively stable in the first development periods, they exhibit
more volatility than in fast-settling segments. Notably, there are no significant outliers on
initial inspection. However, it is evident that the incurred loss link ratios predominantly
fall below 1 in the later development periods, indicating a decline. This trend can likely
be attributed to the conservative nature of reserve estimates in long-tail segments, where
overestimation leads to gradual adjustments as claims mature.
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Figure 7.5: Heatmap for LongTail paid loss

(c) is structured the same way as in figure 7.1.

(a) Link Ratios paid loss - first 4 Link Ratios (b) Link Ratios paid loss - other Link Ratios

Figure 7.6: Link Ratios for LongTail paid loss

(a) and (b) are structured the same way as in figure 7.2.
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Figure 7.7: Heatmap for LongTail incurred loss
(c) is structured the same way as in figure 7.1.

(a) Link Ratios incurred loss - first 4 Link Ratios (b) Link Ratios incurred loss - other Link Ratios

Figure 7.8: Link Ratios and Heatmap for LongTail incurred loss
(a) and (b) are structured the same way as in figure 7.2.
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Volatile

As observed in other segments, the highest volatility is found at the beginning of the settle-
ment process, in terms of paid loss and incurred loss, The link ratios are between 1.4-2.8,
which means they are almost double in some periods. paid loss exhibit significant instabil-
ity, with pronounced outliers, such as in 2006 in the development period 12-24. This reflects
the initial uncertainty when large claims are first reported, as their full impact might not
yet be known, leading to significant fluctuations. Unlike other segments, relatively high
spikes are still visible in the later development periods. This indicates that the settlement
process remains relatively uncertain even in the later months, potentially due to claims
that evolve over time, such as long legal disputes or new information that emerges about
existing claims, prompting adjustments in reserves. The volatile segment does not settle
quickly as the fast-carrying branch.

Figure 7.9: Heatmap for Volatile paid loss

(c) is structured the same way as in figure 7.1.

However, when looking at the developments over time, it tends to approach a value of 1
more closely than the long-tail segment. By development period 108-120, almost all link
ratios are approximately 1, while the triangle of the long-tailed branch consistently shows
link ratios bigger than 1 for all development periods, including the last one available. The
stabilisation in the first development periods suggests that, despite initial instability, claims
in the volatile segment eventually reach a more predictable settlement pattern, though this
process takes longer and is less linear compared to shorter-tail segments.
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(a) Link Ratios paid loss - first 4 Link Ratios (b) Link Ratios paid loss - other Link Ratios

Figure 7.10: Link Ratios for Volatile paid loss

(a) and (b) are structured the same way as in figure 7.2.

Another important aspect to consider is the unpredictability of event-driven claims in this
segment. Natural disasters, major accidents, or other significant events can lead to sud-
den spikes, which may not be immediately apparent in other, more stable segments. For
instance, the development spikes seen in 2008 could have been driven by such an event,
emphasizing the need for flexibility and preparedness in reserving for volatile lines of busi-
ness.

Figure 7.11: Heatmap for Volatile incurred loss

(c) is structured the same way as in figure 7.1.
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(a) Link Ratios incurred loss - first 4 Link Ratios (b) Link Ratios incurred loss - other Link Ratios

Figure 7.12: Link Ratios for Volatile incurred loss

(a) and (b) are structured the same way as in figure 7.2.

Another noteworthy observation is the behavior of incurred loss in the volatile segment.
Unlike other segments, incurred loss here show a distinctly jagged pattern, which is not as
evident in the short-tail or long-tail segments. In short-tail lines, incurred loss tend to be
smoother and lower, reflecting more predictable and consistent handling costs for smaller,
frequent claims. On the other hand, long-tail segments show a smoother but generally
higher level of incurred loss, as these claims often involve prolonged settlement processes
that accumulate handling costs over time.

In conclusion, managing reserves for volatile segments requires more than just standard
models; it involves constantly adapting to new information and considering potential
changes long after the initial claim event. This makes predictive modeling more complex
and highlights the importance of using robust models that can handle such uncertainties
effectively.
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7.2 Comparison of Approaches

In this section, we evaluate the impact of various parameters and adjustments on improving
the CDR-score. The following factors are analyzed in detail:

• Number of periods considered

• Outlier detection methods:

– Exclusion of maximum and minimum values

– Reverse Nearest Neighbor (RNN) outlier detection

– Interquartile Range (IQR) outlier detection

– Removal of suspicious diagonals

• Tail adjustment

• Weighted average of paid loss and incurred loss

• Inflation-adjusted data

This comparison aims to determine which combinations of parameters and methods yield
the most accurate reserving results.

7.2.1 Impact of Removing Outliers

This section examines three branches, each analyzed separately for incurred and paid losses.
The models in this section differ in their outlier detection method, each represented by a
different colour:

• RNN (violet line): The RNN-outlier are excluded.

• IQR (cyan line): The IQR-outlier are excluded.

• [True, True] (blue line): Both the highest and lowest values are excluded.

• [True, False] (orange line): Only the highest value is excluded.

• [False, True] (green line): Only the lowest value is excluded.

• [False, False] (red line): No values are excluded.

Note that the highest and lowest values, RNN-outliers and IQR-outliers, are determined
within the context of the specified volume. For instance, if the volume is set to 10 with
parameters [True, True], only the middle 8 values are included in the calculation.
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Figure 7.13: CDR - Short Tail Payments

The plot displays the mean CDR score for six distinct models, each represented by a different
colour, indicating which potential outliers were excluded. The y-axis shows the average CDR
score, while the x-axis indicates the volume, representing the number of periods considered in
calculating the chain ladder factors. The values on the y-axis range from approximately 4,5

Million to almost 9 Million.

ShortTail

Figure 7.13 shows that the maximum CDR-Score-Mean is in the [False, True] model with
16 periods for the ShortTail - paid loss, with values reaching almost 9 million, while the
minimum is in the [True, False] model, considering 7 periods, at around 4.5 million.
It is important to note that the [True, False] model consistently yields lower CDR-Score-
Mean values than the other models. The highest values are attributed to the [False, True]
model, followed by the [False, False] model, with the [True, True] model ranking as the
second-best performer. This performance disparity significantly correlates with the choice
of outlier detection method. The lowest point for the least performing model, in terms of
the CDR-Score, is approximately 5.9 million, while the best model exhibits a worst-case
value of 6.2 million. Given that the range of values lies between 4.5 and 9 million, this
indicates that the overall best model outperforms others considerably.
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Figure 7.14: CDR - Short Tail Incurred

This plot has the same structure as figure 7.13. The values on the y-axis, range from
approximately 3.25 Million to 4.1 Million.

Generally, there is a clear pattern in all models. As the volume increases, the CDR-Score-
Mean generally rises across all models, which may suggest that including more periods
results in a higher mean CDR score for paid losses. It is worth noting, that the RNN- and
IQR-models are relatively flat between 12 periods and more. One possible explanation for
the general trend is, that we need fewer periods for an adequate comparison due to the
branch’s fast-settling nature and the stability of link ratios across accident years. Including
too many periods may introduce distortions in the chain ladder factor due to system changes
over time. For example, claim settlement practices from 20 years ago differ significantly
from today’s. Historically, link ratios tended to stabilize later, unlike now, where most
claims resolve after the first development period. This shift leads to smaller chain ladder
factors in the early development periods but more greater factors in the later periods.
Given that settlement patterns have evolved, incorporating link ratios from 20 years ago
could considerably distort the chain ladder factors of today. The values slightly diverge as
the volume increases beyond 19 periods. While they only differ by about 1.6 Million for
volume 7, the difference increases to approximately 2.5 Million. Until approximately 12
periods, the increase of the CDR-Score-Mean is relatively steep in contrast to the remaining
periods.

Shifting to the plot of incurred losses, one can see that the maximum CDR-Score-Mean is
observed in the [True, False] model with 7 periods for the ShortTail - incurred loss, with
values reaching around 4.1 million, while the minimum is in the [True, False] model, con-
sidering 15 periods, at around 3.25 million. Nevertheless, it is essential to note that the
values only vary around 0.35 Million after 10 periods. The rapid decline at the start could
be explained by the fact that the incurred claims contain information not only about the
payment data but also about the reserves.
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Figure 7.15: CDR - Long Tail Payments

This plot has the same structure as figure 7.13. The values on the y-axis range from
approximately 6.3 Million to almost 13 Million.

Comparing figure 7.13 and figure 7.14 we can see a notable difference in the range of the
CDR-Score-Means, scores for the paid losses are more significant than for the incurred data.
Where for incurred data, the values only vary about 1 million; for the paid data, the values
almost double. A further difference that is worthy of note is the pattern different from
that of the paid data. By comparing figure 7.13 and figure 7.14, we can see a difference
in their volatility. Even if they are smooth compared to the volatile branch, they still
have some fluctuations. If we take them into perspective, they are not as small as they
seem. For example, in the Short Tail branch in 2006, the Link Ratio was only 1.0005,
while in 2001, it was 1.0716. Although the differences in link ratios appear minor at first
glance—for example, 0.07 between years—their multiplicative effect results in progressively
more significant discrepancies as they are applied across successive periods. If we have 1
million € and multiply them by 1,0716, we have 1.071.600€, whereas, with 1,0005, we only
have 1.000.500 €. We can see that we have even greater values by looking at reserves.
Interestingly, the RNN and IQR outlier detection perform well compared to the other mod-
els, but they are not the best-performing outlier detection for either of the two triangles;
however, they seem to be a reasonable choice for the paid and incurred data.

Comparing figure 7.13 and figure 7.14, fitting the incurred data leads to more accurate
results, as even the models for the incurred data yield lower CDR-Score-mean values across
all models.
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Long Tail

By looking at figure 7.15 It is essential to mention that the [True, False] model consistently
yields lower CDR-Score-Mean values than the other models. The highest CDR-Score-Mean
is observed in the [False, True] model with 19 periods, with values reaching around 13 mil-
lion, while the minimum score is in the [True, False] model, considering 7 periods, at around
6.3 million. The highest values are attributed to the [False, True] model, followed by the
[False, False] model, with the [True, True] model ranking as the second-best performer.
This performance discrepancy significantly correlates with excluding the highest or the
lowest link ratio or none. The lowest point for the least-performing model, in terms of the
CDR-Score, is approximately 8.4 million, while the best model shows a worst-case value of
8.9 million. Given that the range of values lies between 6.3 and 12.9 million, the overall
best model outperforms others considerably.

Generally, there is a clear pattern in all models. As the volume increases, the CDR-Score-
Mean generally rises across all models, which may suggest that including more periods
results in a higher mean CDR score for paid losses. The possible explanation is the same
as for the short-tail paid claims data.

The values slightly diverge as the volume increases, while they only differ by about 2.2
million for volume 7, the difference increases to approximately 4 Million until volume 19.
The steepness of the graph also declines with the inclusion of more and more periods. In
comparison to the Short-tail paid plot, the pattern indeed seems similar, but the scope is
different. The CDR score mean of the Long Tail models is approximately 7 million bigger
than the Short Tail models. It is worth noting that the RNN and IQR outlier detection
are two of the three best models, but for volumes smaller than 15, the [True, False] model
has smaller CDR-Score-mean values, similar to the Short Tail data.

We proceed by analyzing figure 7.16. The maximum CDR-Score-Mean is observed in the
[False, True] model with 11 periods for the long-tail incurred loss, reaching around 10.41
million, while the minimum is found in the [False, False] model, with 7 periods, at approxi-
mately 8.9 million. The values oscillate almost like a wave, starting at a low point, peaking,
then declining, followed by a small rise before dipping again. The volatility decreases as
the volume increases.

Note that the [False, True] model consistently produces the highest scores, while the other
models perform similarly. Except for volume 7, the [True, False] model outperforms the
other models across all volumes. The RNN model performs for some volumes worse than
others, the results are comparable to the [False, True] model. While the IQR model has a
higher CDR-Score-Mean as the [False, True] model, it is comparable to the other models
in the midfield for volumes greater than 9.
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Figure 7.16: CDR - Long Tail Incurred

This plot has the same structure as figure 7.13. The values on the y-axis range from
approximately 8.9 million to 10.41 million.

Like in Short Tail, the plot of the incurred loss looks utterly different from the plot of
the paid loss. Also, the range of the CDR-Score-Mean values is notably narrower than
that of the paid data. When using the right outlier detection, the paid data is a better
choice for accurate reserving than incurred data since the CDR values are lower for the
best performing paid models than the values for all incurred models.

Volatile

Our analysis now shifts to the plot of paid losses for the volatile-tail branch. The maximum
CDR-Score-Mean is observed in the [False, True] model with 7 periods for the Volatile- paid
loss, with values reaching around 15.5 million, while the minimum is in the RNN model,
considering 12 periods, at around 12.5 million.

Interestingly, the peak is already appearing at volume 7 and rapidly declines to a low point.
After the global low, an inflexion point appears, and the values stabilize. This pattern could
result from the unstable nature of the link ratios from volatile branches. Since high-severity
claims primarily drive losses on the volatile branches, more periods are probably needed
for comparison.
It should be noted that the [False, True] model consistently has the highest scores, while the
other three models perform similarly, and the RNN model has the lowest scores for volumes
larger than 12, reaching the lowest CDR Score Mean at volume 12. It is worth noting that
the volatile paid data is the first triangle, where the more complex outlier detection methods
have better results than the other; the RNN outlier detection outperforms the IQR method.
The reason for that could be the volatile nature of the branch, which makes it harder to
identify the outliers.
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Figure 7.17: CDR - Volatile Payments

This plot has the same structure as figure 7.13. The values on the y-axis range from roughly 12.5
Million to 15.5 Million.

As one can see in figure 7.17 the pattern of the volatile branch has a completely different
shape compared to the other branches, since it almost seems inverted in the progression
over the volume, in the beginning, there is a rapid decrease, and after that, it stabilizes.
Comparing the link ratios shows the pattern looks so different from the other two branches.
The other branches have very steady Link ratios, whereas the volatile branch has volatile
values. This branch is driven by major loss events, which only happen in some years, and
the claims settlement can be complicated—naturally, the more history, the better for an
excellent ultimate estimation.
Turning to the plot of incurred losses for the volatile-tail branch shows, that the maximum
CDR-Score-Mean is observed in the RNN model with 7 periods for the volatile incurred
loss, reaching around 7.3 million, while the minimum is seen in the [True, True] model,
with 13 periods, at roughly 6 million.

For the incurred claims, the behaviour of the individual models is analogous, though they
differ significantly in magnitude. Notably, the [True, False], RNN and IQR models exhibit
the poorest performances, while the remaining models perform comparably. Interestingly,
the maximum value appears for volume 7, and within volumes 7 and 10, it sharply declines
toward a dip. Following this decrease, a peak materializes between 10 and 13 periods,
succeeded by the global minimum. The values from 13 to 19 periods remain relatively
stable. Notably, unlike other branches, the shape of the graph for incurred data in this
branch does not deviate remarkably from that of the paid data. Disregarding the prominent
spike from volume 10 to 13, the patterns are largely congruent.
Comparing the two plots of the volatile data, the incurred triangle model has significantly
lower CDR-Score-Means, suggesting the use of the incurred data for reserving.
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Figure 7.18: CDR - Volatile Incurred

This plot has the same structure as figure 7.13. The values on the y-axis range from 6 million to
7.3 million.

Conclusion

The volume has a significant impact on the model’s performance. The impact of the volume
on the CDR score mean depends on the branch and whether to look at the paid or incurred
losses to decide which model parameters to use. Long and Short Tail are similar because
of the stable link ratios over the different accident years; they both provide better results
for a smaller volume, whereas the model for the Volatile branch performs better with a
greater volume. Notably, all models for the paid and incurred long data perform best when
excluding the highest value and including the lowest value. This indicates that the model
is more sensitive to high outliers than to low ones. For every triangle, except the volatile
payment triangle, the more straightforward outlier detection methods performed better
than the IQR and RNN outlier detection. This shows that simpler methods sometimes
outperform more sophisticated approaches.
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(a) incurred loss - 2010 (b) incurred loss

(c) paid loss - 2011 (d) paid loss

Figure 7.19: CDR-Score-Mean ShortTail

(a) and (c) show the CDR-Score-Mean values for the models by additionally excluding one
diagonal. (b) and (d) show the CDR-Score-Mean values for the models without the exclusion of

specific diagonals, compare to figure 7.13 and 7.14.

7.2.2 Analysis of removing whole diagonals from the triangle data

In the following section we will examine the impact of removing a conspicuous diagonal to
the CDR-Score-Mean values. This diagonal is selected according to the number of RNN
outliers on the full triangle, occuring on the diagonal. The diagonal with the most outliers
will be selected, if two diagonals have the same absolute amount of outliers the diagonal
with the most relative amount of outliers of them will be selected.

ShortTail

As we can see in figure 7.19 the graphs slightly change for the incurred loss data. The
diagonal 2010 for the incurred data has 8 outliers, which results in 72,7% outlier in this
diagonal. There are no severe changes, but the CDR-Mean-Score overall is slightly lower
for the models excluding the diagonal of 2010.
Diagonal 2011 for paid loss only has 3 outliers, resulting that 25% of this diagonal are
outlier. Excluding this diagonal does not improve the results, for example the [False, True]
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(a) incurred loss - 2019 (b) incurred loss

(c) paid loss - 2016 (d) paid loss

Figure 7.20: CDR-Score-Mean LongTail

(a) and (c) show the CDR-Score-Mean values for the models by additionally excluding one
diagonal. (b) and (d) show the CDR-Score-Mean values for the models without the exclusion of

specific diagonals, compare to figure 7.15 and 7.16.

model for volume 12 an CDR-Score-mean of 8 million, with the additional exclusion of the
diagonal 2010 is is slightly more than 8 million.

LongTail

The diagonal with the most outliers for the incurred data is 2019 with 3 outliers, resulting
in 15 % outlier in this diagonal. Exluding this diagonal even deteriorates the results as
seen in figure 7.20 for [False, True] model for volume 14.
For the paid data the diagonal with the most outliers is 2016, with 3 outliers, resulting in
17,6% outliers in this diagonal. The plot does not significantly change.

Volatile

In diagonal 2012, for the incurred data, the most outliers occur. There are 5 outliers in
this diagonal, resulting in a 38.5% outlier quota. Excluding this diagonal clearly improves
the results, as we can see in figure 7.21.
For the paid data, with 5 outliers, the diagonal with the most outliers is 2012, subsequently
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38.5% of the values in this diagonal are outliers, nonetheless the exclusion of this diagonal
does not significantly improve the results.

Conclusion

Concluding the findings in this section, the greatest improvement brings excluding the
diagonal of 2012 in the incurred loss triangle from the volatile branch. An improvement
for the approach used in this thesis for finding a diagonal to exclude could be, to look at
the relative frequency as the main measure.

(a) incurred loss - 2012 (b) incurred loss

(c) paid loss - 2012 (d) paid loss

Figure 7.21: CDR-Score-Mean Volatile

(a) and (c) show the CDR-Score-Mean values for the models by additionally excluding one
diagonal. (b) and (d) show the CDR-Score-Mean values for the models without the exclusion of

specific diagonals, compare to figure 7.17 and 7.18.
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7.2.3 Tail Adjustment

This Section shows the different CDR-Score Means for models, including the tail factor.
As we can see in figure 7.22, the CDR-Scores look almost identical to the scores of the
models without the tails. The similarity in the course of the CDR scores is an expected
result since CDR is a very short-term approach, and the tail factor shows its impact in the
long term.

(a) ShortTail (b) LongTail

(c) Volatile

Figure 7.22: CDR-Score with Tails

The plots show the CDR-Score-Mean values for the model including all periods and excluding
neither the maximum value nor the minimum value. The blue line shows the values for

considering no tail, the orange line considering an exponential tail and the green line considering
an inverse power tail.

ShortTail

Since the short-tailed branch does not have a tail, the plots are identical. Whether we
apply an exponential curve fit or an inverse power fit, the estimated tail will be 1.0.

LongTail

Referring to figure 7.22b, they all seem the same at first glance, but on closer inspection,
one can see a shift to the detriment of the inverse power tail. The values of the exponential
tail model are slightly higher than those for no tail.
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Volatile

In the volatile sector, the CDR results for both models, the exponential and no-tail models,
are almost identical, while the inverse power-tail model shows some minor variations, but
generally, the differences are negligible.

Conclusion

In the case of this study, the CDR is unsuitable for determining the optimal tail. The tail
represents the extrapolation of claim payments into the future. A tail adjustment must
consider the development of the entire claim if the claims are not fully settled by the end
of the claims triangle. Every new year, we only get one cell more information about the
tail since the top right corner of the triangle describes it. The little information won has
the consequence of only having a minor influence on the CDR. When calculating the CDR
score, the values are normalized based on incremental claims already known. Since the tail
is an additional estimation and, therefore, primarily increases the ultimate estimates, it is
reasonable to observe an increase in the CDR values. Even if the relative difference between
the ultimate values decreases slightly with the tail adjustment, the absolute difference may
become significantly larger because of the ultimate increase with the tail adjustment. That
could result in the ultimate increase outweighing the relative convergence. To address
the tail fit assessment more effectively, it may be beneficial to analyze the tail factors
separately. For instance, focusing only on the first row of the triangle and comparing the
initial estimates made for the years in question with the actual realized values could be a
better approach to checking the quality of the tail measure.
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7.2.4 Weighted Average of paid loss and incurred loss

This section shows the impact of taking a weighted average of the paid and incurred ultimate
on the CDR-Score, illustrated in figure 7.23. In this section three different models are
considered:

• [False, False, -1] (red line): model without interference, no exclusion and inclusion
of all periods.

• [True, False, 7] (green line): The highest value is dropped and considering only 7
periods.

• [False, True, -1] (blue line): The lowest value is dropped and considering all periods.

These three models were chosen because they had very different performances for the
various models. We measure the CDR between the weighted triangle and the paid ultimate.
We use the paid ultimate because the incurred ultimate and the paid should technically be
the same since the reserves converge to zero and the incurred ultimate only illustrates the
payments.

ShortTail

As seen in figure 7.23a, the CDR-Score values range from 3 million to almost 11 million.
The low point reaches the model with no interference and a weight of 0.5, while the peak
is for the model excluding the lowest value and using the paid triangle. The weight that is
preferable depends on the volume chosen. For models that consider the whole history, the
incurred triangle performs better, while the best accuracy is achieved by the model that
considers only 7 periods and takes 50% paid ultimate and 50% incurred ultimate.

LongTail

The CDR-Score values range from approximately 9.5 million to almost 70 million, as we
can see in figure 7.23b. The low point, with a weight of 0.5, reaches the model with no
interference. The peak is for the model excluding the lowest value and using the paid
triangle. An explanation for the remarkably high CDR-Score values could be that the paid
ultimate does not have a tail considered. However, the ultimate values will differ since
the incurred claims consist of reserves plus payment, and tails are included in the reserves.
Nevertheless, the analysis suggests using only the paid data or only a small weight, which
is consistent with the finding from subsection 7.2.1, which showed that the paid triangle
leads to better results. It is important to note, that reserving the long tail data without a
tail and only payment data will very likely result in underestimating the ultimate values,
since as we can see in the link ratio triangle in figure 7.2.1, the claims have not been settled.
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(a) Weights ShortTail (b) Weights LongTail

(c) Weights Volatile

Figure 7.23: CDR-Score-Mean Weighted Ultimate

This figures have a structure similar to figure 7.13. The y-axis shows the CDR-score mean, while
the x-axis represents the weight. As one can see in equation 6.1, weight = 1.0 means the ultimate
only results from the incurred triangle, and weight = 0.0 indicates that only the paid ultimate was

considered.

Volatile

The values from figure 7.23c range from 7 million to almost 15 million. We can see a drastic
decrease by increasing the weight of the incurred ultimate. In contrast to the LongTail
branch, using the most incurred ultimate is preferable; the CDR values are significantly
lower.

Conclusion

Generally, the choice of weight strongly depends on the branch. According to this analysis,
the estimation for the short and volatile branches benefits from including the incurred
ultimate. However, the long-tailed branch model has the most accurate results using only
the paid ultimate. This insights are consistent with the findings in 7.2.1. However, we need
to mention that the outcome from the long-tailed branch could result from the lack of tail
inclusion.
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7.2.5 Inflation adjusted Data

In recent years, inflation has started to become a significant topic again. The question
is, how do inflation-adjusted claim values impact the performance of the models regarding
the CDR? It can be answered by examining figures 7.24 to 7.26. One can see that the
patterns do not change, but the level does. Interestingly, the values increase instead of
decrease. The reason may be that inflation is already accounted for to some extent in the
data. Specifically, it is integrated into the reserves but needs to be adjusted annually. For
example, consider a claim that occurs in the year 2000. A reserve is set up at that time,
which already factors in the estimated inflation. In the initial years, adjustments may be
made as payments are issued. However, payments must be made before 2005 to ensure
further adjustments to the reserve occur. If, by 2015, it becomes evident that the allocated
reserve is insufficient, an adjustment is made. Importantly, this adjustment is not only
for the upcoming year but for the remaining period of the claim, as would logically be
necessary. Therefore, the applied inflation adjustments might not align with the actual
practice. The approach assumes annual adjustments, which do not reflect differences from
how reserves are typically managed in the real world.

(a) incurred loss - inflation adjusted (b) incurred loss

(c) paid loss - inflation adjusted (d) paid loss

Figure 7.24: CDR-Score-Mean ShortTail

This figure shows the CDR-Scores for the various branches using inflation-adjusted and raw data.
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(a) incurred loss - inflation adjusted (b) incurred loss

(c) paid loss - inflation adjusted (d) paid loss

Figure 7.25: CDR-Score-Mean LongTail

This figure shows the CDR-Scores for the various branches using inflation-adjusted and raw data.

7.2.6 Conclusion

The analysis highlights that the number of periods considered and the selection of excluded
values significantly impact model performance. However, the Reverse Nearest Neighbors
(RNN) and Interquartile Range (IQR) methods do not outperform more straightforward
approaches, such as excluding the maximum and minimum values. Removing the diagonals
by excluding the diagonals with the most RNN outliers did not improve the models. A dif-
ferent approach would likely be needed to produce meaningful improvements. Additionally,
as previously mentioned, the CDR score is unsuitable for evaluating tail factors. For cer-
tain branches, incorporating both the paid and incurred ultimate estimation significantly
improves the model accuracy, particularly for volatile lines of business, where this approach
leads to significant improvements. However, the inflation adjustment method applied in
this thesis does not seem appropriate and fails to improve the CDR results.
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(a) incurred loss - inflation adjusted (b) incurred loss

(c) paid loss - inflation adjusted (d) paid loss

Figure 7.26: CDR-Score-Mean Volatile

This figure shows the CDR-Scores for the various branches using inflation-adjusted and raw data.
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7.3 Comparison with MSE

This section shows the behaviour of the MSE regarding the simple outlier detection already
mentioned in subsection 7.2.1. The comparison with the MSE helps us to understand the
results of the CDR score. The plots for visualising the data are structured in the same way
as those in subsection 7.2.1. Note that we only consider paid data here, that is because the
Mack Standard Error needs the chain ladder factors to be greater than one, as we can see
in the 7.7, the incurred columns are smaller than one for most of the development years,
hence we cannot use the MSE.

(a) Long Tail - paid loss (b) Volatile - paid loss

(c) Short Tail - paid loss

Figure 7.27: Mack Standard Error

Visualisation of the MSE for the given models, structured like the figures before, like figure 7.19d.

Short-Tail

Figure 7.27c shows that the MSE values for the Short Tail range from approximately 1,75
million to 3,6 million. Where the peak is reached by the [False, True] model using all
periods and the low point by the [True, False] model using only 7 periods. All lines show
the same pattern: the MSE increases as the volume increases. The graphs can be divided
into two groups: The two models exclude the highest value, and the two models include
the highest value. The models excluding the outliers show significantly better results than
those including the outliers. The shape of the graphs looks similar to the shape of the CDR
graphs but smoother.
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Long-Tail

As seen in figure 7.27a for the Long-Tail, the values range from approximately 3.2 million to
5.8 million. The [False, True] model reaches the peak considering the most periods, while
the [True, True] model reaches the lowest point using 7 periods. The plot looks similar
to the Short Tail plot. The same groups form, and the graphs have a very similar shape,
increasing CDR for increasing volume. Generally, the uncertainty is driven by the maximal
values in the Long Tail branch.

Volatile

The MSE values range from 5.75 million to 9.75 million, while the maximum is reached
with the [False, True] model for 7 periods and the minimum is from the [True, True] model
considering the most periods. The models can be again divided into the same two groups
as in the other two branches. The shape is almost inverse to the shape of the long tail
graph; the values decrease with increasing volume, similar to the CDR plot. In contrast to
the CDR plot, the curve is way smoother; there is no sudden severe decrease in the first
volumes.

Conclusion

The Mean Squared Error (MSE) values show significantly smoother plots than the CDR
values. The fact that both measures portray similar trends implies a correlation between
the overall uncertainty in the data. The pattern should be similar, especially in the Short
Tail branch, since the horizon where the uncertainty lies is almost only the next year.
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7.4 Actual vs. Expected

The figures 7.28 to 7.30 show an actual versus expected analysis. For each branch, three
plots are presented, corresponding to the last three years. The analysis compares the actual
payments (Actual) with the expected payments (Expected) as projected by the models.
Among the expected values, a distinction is made between the benchmark model (depicted
in pink) and the model identified as optimal by our algorithm (depicted in orange). Since
most payments occur in the most recent years, model accuracy is particularly critical during
this period. As such, the analysis focuses exclusively on the data from the final three
years. This ensures that the evaluation emphasizes the models’ performance in accurately
predicting payments during the most relevant time frame.

(a) 2020 (b) 2021

(c) 2022

Figure 7.28: Actual Vs. Expected Short
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ShortTail

As seen in figure 7.28, the optimal model has more minor deviations from the actual result
for two of the three years than the classic chain ladder model. The one year in which the
gap is more significant is 2022. 2022 was an exceptional year because inflation rose very
sharply. Only the most recent year is relevant because the short-tailed branch payments
are negligible after the second year, as one can see. In recent years, the optimal model has
produced smaller estimations than the other model. This could result from eliminating the
highest value and including only the most recent 7 years. As we can see in the heatmap
in figure 7.1, the highest link ratios are in the earlier 2000s; when including only the most
recent seven years, the link ratios are lower, which results in lower ultimate estimates.

(a) 2020 (b) 2021

(c) 2022

Figure 7.29: Actual Vs. Expected Long
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LongTail

As seen in figure 7.29, similar assertions have been held for the long-tailed branch in the
most recent years. Only in 2022 did the simple chain ladder model have better results.
Contrary to the short-tailed branch, the older years are not negligible. The optimal model
performs better in the older years, except for 2020. The development of the link ratios
looks similar to the development of the link ratios of the short-tailed branch; therefore, the
same argument holds for the classic model aims for higher ultimate values.

(a) 2020 (b) 2021

(c) 2022

Figure 7.30: Actual Vs. Expected Volatile compared with [False,True] periods=7.

Volatile

Looking at the most recent year, the optimal model performs better than the classic or
almost the same. Interestingly, this model can better deal with inflation; 2022 payments
are not as massively underestimated as in the other sectors.
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Conclusion

In all three branches, we can see that the optimal model performs in two of the three
years with more accurate estimations than the other model. The optimal model has lower
estimations than the other model, while the simple model overestimates the claims more.
The goal to get a more accurate model is achieved, but since, by Austrian law, the principle
of prudence holds, often more conservative measures are preferable. An idea would be to
adapt the error measure and include a penalty for underestimating the claims.
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8 Conclusion

This thesis explores the optimisation of claims reserving methods, focusing on the Chain
Ladder model. The analysis examines the impact of various parameters, including outlier
exclusion, period selection, inflation adjustment, weighing of the paid and incurred ulti-
mate, and tail adjustments across different insurance branches. The goal is to identify
optimal configurations that improve accuracy and provide robust reserving estimates.

One central insight is the importance of applying different approaches for incurred and paid
losses and specific insurance branches. The results demonstrate that the optimal param-
eters differ significantly between incurred and paid losses. For example in the Short-Tail
branch, the volume selection is the opposite for the two datasets. Considering the dif-
ferent branches, two groups are identifiable: volatile and non-volatile branches. Methods
for Short-Tail and Long-Tail branches yield the best results when fewer periods are con-
sidered, due to their lower volatility and sensitivity to settlement patterns. Models for
volatile branches require more periods for stabilisation. This finding indicates that simpler
Chain Ladder models without adjustments perform better for volatile branches. Regard-
ing outlier detection, methods such as Reverse Nearest Neighbor (RNN) and Interquartile
Range (IQR) produce comparable results to models that exclude only the maximum value.
However, simpler exclusion methods are preferable for their efficiency. Removing diagonals
has limited impact overall, except for volatile branches, where excluding specific diagonals
improves results.

The analysis also shows that the CDR Score is not a suitable measure for optimising the
tail factor, and the inflation adjustment has negligible effects. The Mack Standard Error
(MSE) aligns closely with the Claims Development Result (CDR). In the final Actual vs.
Expected Analysis, the optimised models mainly provide more accurate results but often
lead to lower ultimate values. This outcome is not always favourable, as Austrian prudence
principles favour conservative reserving, prioritising overestimations over underestimations
to ensure financial stability.

This thesis introduces an anatomised approach for optimising Chain Ladder models, which
provides tools for actuaries to improve reserving accuracy while minimising manual ef-
fort. The findings highlight that simplicity often outperforms complexity. While volatile
branches benefit from stabilisation through extended periods, simpler exclusion methods
prove effective across most scenarios.
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The algorithm relies solely on historical data, which makes it less suitable for sudden events
such as catastrophes or prolonged high inflation. Actuarial judgment remains essential, as
experts are required to classify external factors, for example if a high link ratio in the last
year represents an outlier or the start of a prolonged high inflation period.

This work opens several ideas for future research. First, advanced outlier detection meth-
ods accounting for link ratio patterns could be developed; increasing link ratios might
indicate a real change, such as a prolonged high inflation period, while the implemented
outlier detection methods could classify them as outliers. Another crucial topic for future
research is the incorporation of an advanced method for tail adjustment. The implemented
CDR Score is found to be unsuitable, but its refinement is particularly urgent for long-tail
branches. Improvements could be made by incorporating a more refined inflation adjust-
ment. A penalty for underestimating reserves could also be included in the error measure
to counteract the tendency to underestimate claims payments.

This thesis demonstrates the potential of automated optimisation in actuarial reserving.
It offers a structured approach to enhancing claims reserving accuracy. While the tools
developed support automated decision-making, they are not intended to replace actuarial
judgment.
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