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English Abstract

In this work, we develop and explore novel methods for using quantum annealing
(QA) to solve coupled structural analysis problems, specifically focusing on fluid
structure interaction (FSI) problems. These problems involve the interaction be-
tween a fluid and a structural domain, making them computationally demanding.
When combined with design optimization tasks, they form complex optimization
problems that are difficult to solve using classical methods, creating the need to
explore alternative strategies such as QA.
QA is an emerging computational technique that utilizes quantum mechanical ef-
fects to solve complex optimization problems much faster and more efficiently than
classical approaches. To optimize FSI problems using QA, it is first necessary to
develop methods that allow using QA to solve FSI problems themselves, which is
the focus of this work.
Our novel method is based on the partitioned approach, where the fluid and struc-
tural subproblems are treated separately. Using energy principles, we formulate
the structural subproblem as an optimization problem and express the system’s en-
ergy in a quadratic unconstrained binary optimization (QUBO) model, allowing the
problem to be solved by QA. We validate our proposed method on a state-of-the-art
D-Wave quantum annealer, with the results demonstrating the feasibility of QA for
solving simple FSI problems.
Additionally, we analyze the capabilities and limitations of current QA hardware
for these applications and explore strategies to overcome existing constraints. This
study should lay the groundwork for future advancements in applying QA to engi-
neering problems involving coupled structural analysis and optimization.

Contents ix



x Contents



Deutsche Kurzfassung

Diese Arbeit befasst sich mit der Entwicklung und Untersuchung neuartiger Metho-
den zur Anwendung von Quantum Annealing (QA) auf gekoppelte Probleme der
Strukturmechanik. Dabei liegt der Fokus auf Fluid-Struktur-Interaktion (FSI)-
Problemen. Diese beschreiben die Interaktion zwischen einer Fluid- und einer Struk-
turdomäne und sind rechnerisch anspruchsvoll zu lösen. Insbesondere in Kombi-
nation mit Designoptimierung entstehen komplexe Optimierungsprobleme, deren
Lösung mit klassischen Methoden herausfordernd ist. Dies verdeutlicht den Bedarf
der Erforschung alternativer Rechenverfahren wie QA.
QA ist eine auf quantenmechanischen Effekten basierende Methode, die komplexe
Optimierungsprobleme schnell und effizient lösen kann. Um FSI-Probleme in Kom-
bination mit Designoptimierung mittels QA lösen zu können, muss zunächst eine
Methode entwickelt werden, die eine Anwendung von QA auf FSI-Probleme erlaubt.
Die vorliegende Arbeit widmet sich der Entwicklung einer solchen Methodik.
Der entwickelte Ansatz basiert auf der partitionierten Lösungsmethode, bei der
Fluid- und Strukturprobleme separat behandelt werden. Unter Anwendung von
Energieprinzipien wird das Strukturproblem als Optimierungsproblem formuliert
und die Energie des Systems als Quadratic Unconstrained Binary Optimization
(QUBO)-Modell dargestellt, wodurch eine Lösung mittels QA ermöglicht wird. Zur
Validierung der entwickelten Methode erfolgt eine Implementierung auf einem D-
Wave-Quantenannealer. Die Ergebnisse zeigen die Eignung von QA zur Lösung
einfacher FSI-Probleme.
Darüber hinaus werden die Leistungsfähigkeit und die derzeitigen Einschränkungen
aktueller QA-Hardware für derartige Anwendungen analysiert sowie Strategien zur
Überwindung bestehender Limitationen untersucht. Die Erkenntnisse dieser Arbeit
sollen die Grundlage für weiterführende Forschungsarbeiten zur Anwendung von
QA auf gekoppelte Probleme der Strukturmechanik sowie deren Designoptimierung
bilden.
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CHAPTER1
Introduction

1.1 Motivation

Coupled structural analysis problems are a fundamental engineering discipline, as
they provide important understanding into the interactions between multiple phys-
ical fields that affect the behavior of a solid structure. One major example is
fluid structure interaction (FSI), where fluid forces introduce structural deforma-
tion, which in turn affects the fluid behavior. Typical FSI applications include
airplane components under aerodynamic loads, the behavior of bridges under wind
forces, or blood flow in arteries. These problems are typically modeled through
partial differential equations (PDEs) and solved using numerical methods. Multiple
systems of equations, which depend on each other, are required to be solved, which
makes them computationally challenging.
Even more complex are FSI problems combined with optimization tasks, such as size,
shape, or topology optimization. These optimization tasks typically have complex
design spaces with many variables, constraints, and objectives. Additionally, such
problems often have many local optima, which makes it challenging for traditional
methods to explore the design space and find the best overall solution.

To address these challenges, quantum annealing (QA) could have great potential.
QA is a special form of quantum computing, a technology that uses the principles
of quantum mechanics to perform certain computations far more efficiently than
classical computers. Specifically, QA can solve optimization problems by finding
the global minimum of an optimization problem quickly and effectively, even in
complex solution spaces. When problems are reformulated into a form that quan-
tum annealers can process, QA may offer enhanced computational efficiency and
potentially superior solutions. These capabilities make QA an attractive approach
for addressing the challenges of traditional solution methods. However, QA also
has certain limitations. Existing quantum annealers are still restricted to relatively
small problems that can be formulated and solved. In addition, external distur-
bances can introduce noise, which affects the quality of the solution.
Currently, some of the most advanced quantum annealers are from D-Wave Systems.
To solve a problem on D-Wave QA hardware, it must be provided in a specific math-
ematical representation called Ising model. This model describes the problem as a
quadratic objective function, where each decision variable, called a spin, can take
values of +1 or −1. A mathematically equivalent and easily convertible formulation
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is quadratic unconstrained binary optimization (QUBO), where the problem is rep-
resented as a quadratic objective function with binary variables taking values of 0 or
1. This representation is often more convenient for formulation and implementation.
Therefore, problems are typically first modeled in QUBO and then converted into
the equivalent Ising model to be solved on QA hardware. A detailed explanation of
QA is given in Section 2.2.

In contrast to QA, FSI is a well-known engineering field with numerous established
methods and applications [6, 4, 5, 3]. The complexity of optimizing FSI systems has
led to various approaches for different applications. For the compliance minimiza-
tion of structures subjected to design-dependent fluid pressure loads, one study [10]
proposed an extended bi-directional evolutionary structural optimization (BESO)
method. In the BESO method, the design variables are restricted to discrete val-
ues, resulting in solid or void regions without intermediate densities. Regarding FSI
problems, this is a great benefit as it ensures a well-defined interface between the
structural and fluid domain. By replacing void regions with fluid, the pressure loads
can be modeled within the optimization process.
In [13], the author extended this approach by considering viscous fluid flows. The
fundamental difference lies in the governing equations of the moving fluid, which are
the steady-state incompressible Navier-Stokes equations.
Another study [11] introduced a topology optimization method for the frequency
response of FSI systems. The objective was to minimize the amplitude of the fre-
quency response by changing the topology of the structure. Once again, the BESO
method was utilized to ensure well-defined boundaries. The proposed method can
be applied to various problems such as noise reduction of aircraft or vibration control
of submerged structures.

While FSI and design optimization have been extensively studied and developed,
QA is a relatively new and emerging field of research. Recent studies have explored
various aspects of QA.
A comprehensive review of QA, focusing on its theoretical foundations, practical
implementation, and applications in traffic, logistics, machine learning, finance, and
other fields, can be found in [21]. In structural mechanics, one study [17] introduced
a ”box algorithm” that utilized QA to solve the differential equations of an elastic
bar by iteratively minimizing a discrete approximation of its potential energy in
each step.
Regarding structural optimization, one work [24] investigated the optimization of
two-dimensional truss member sizes to minimize a stress-based objective function.
The study focused on adapting the problem for quantum annealers by employing
a symbolic FEM approach. Although the approach found the global optimum for
small-scale problems, the study identified challenges in scaling to larger systems.
Another study [27] took a different approach to truss structure optimization using
QA, focusing on both two-dimensional and three-dimensional systems. This method
represented nodal displacements as random number sums, which allows the elastic
strain energy to be formulated in the QUBO format. The optimization process was
performed iteratively, alternating between deformation analysis and design updates.
Computations were performed on a hybrid annealer. The hybrid solver combines
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classical and quantum computing, allowing for the handling of much larger problem
sizes compared to a pure quantum annealer.
The work in [25] explored the use of QA for topology optimization on continuum.
The authors proposed a hybrid approach that split the problem into two parts, one
solved classically and the other, with reduced variables, solved on a quantum an-
nealer. This method was designed for minimum compliance problems.
Lastly, in [28], we developed a novel formulation to address structural analysis
and design optimization problems using QA. By expressing the structural problem
through energy minimization principles, we transformed it into a QUBO form. The
specific formulation allowed us to combine the structural analysis and design opti-
mization problems, which are typically solved separately in an iterative process, into
a single-step solution. To evaluate our approach, we analyzed a one-dimensional bar
under self-weight loading, tailoring the problem’s complexity to match the capabili-
ties of currently available QA hardware. Finally, using a D-Wave quantum annealer,
we demonstrated the applicability of this approach and validated its accuracy by
comparing it to the analytical solution of the problem.

1.2 Problem Statement

Despite these advances in structural mechanics and design optimization, the appli-
cation of QA to optimize FSI problems, or even to solve FSI problems alone, remains
unexplored in current research. To enable the optimization of FSI problems using
QA, it is essential to first establish how QA can be integrated into solving FSI prob-
lems themselves. This foundational step forms the motivation of this work. Thus,
our aim is to develop a formulation of the FSI problem that allows the integration of
QA. Specifically, a QUBO formulation has to be developed to allow the problem to
be processed and solved on a D-Wave quantum annealer. Furthermore, this research
seeks to deepen the understanding of the capabilities and limitations of current QA
hardware, while exploring potential strategies to overcome these limitations and en-
hance the quality of the solution. The resulting research questions of the present
study are the following:

• How can QA be incorporated into solving FSI problems, and what are the
relevant considerations in developing a suitable QUBO formulation for this
purpose?

• What are the capabilities and limitations of current QA hardware in the con-
text of FSI problems and which strategies can we develop to improve the
results?

1.3 Contributions

In this study, a novel method is derived and explored to incorporate QA into solving
FSI problems. A QUBO formulation is created, making such problems solvable with
QA hardware like D-Wave’s systems. By testing this method on state-of-the-art QA
hardware, the study shows how QA can be used to solve simple FSI problems.
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The work also investigates the strengths and weaknesses of current QA hardware
when solving these problems, providing insights transferable to other fields. As a
result, an adaptive number representation method is introduced, which improves
the accuracy of solutions in iterative processes.

1.4 Outline

The thesis is structured as follows: Chapter 2 provides an introduction to the fun-
damental concepts of FSI and QA, which form the theoretical basis of this work.
In Chapter 3, a novel approach is developed to solve static FSI problems using QA.
The chapter introduces the problem formulation, describes the methods used, and
presents the results of various test cases. Additionally, a modification of the method
is proposed to enhance solution accuracy. In Chapter 4, a formulation to address a
dynamic structural problem as a basis to solve dynamic FSI problems is developed
and analyzed. The limitations of the approach are also discussed. Finally, Chapter 5
summarizes the findings, discusses the constraints of the study, and outlines possible
future research.
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CHAPTER2
Theoretical Background

This chapter focuses on basic concepts on which this work is built, specifically FSI
and QA. In the first part, the key aspects of FSI problems are discussed, with a closer
look at the relevant theory for the fluid model and the structural model. The struc-
tural model is divided into static and dynamic problem descriptions. Two energy
principles, the principle of minimum potential energy and Hamilton’s principle, are
explained for these problem descriptions. The second part of the chapter introduces
the concept of QA and key steps required to solve problems using this approach.

2.1 Fluid Structure Interaction

Ωs Ωf

Γs Γf

Γfs

Figure 2.1: A FSI problem with the structural domain Ωs and the fluid domain Ωf .
Each domain has its own boundary Γs and Γf , respectively, and a common interface Γfs.

As mentioned in Chapter 1, FSI problems involve the interaction between fluid and
structures. Figure 2.1 shows schematically the corresponding domains: the struc-
tural domain Ωs with its boundary Γs and the fluid domain Ωf with its boundary Γf .
The interface between these two domains is denoted by Γfs. The governing equa-
tions for the fluid are typically the Navier-Stokes equations, while the structural
model is formulated on the principles of solid mechanics based on balance equa-
tions and constitutive laws. The solution process is generally numerical, utilizing
discretization of these equations.

There are certain coupling conditions at the interface between the fluid and struc-
tural domains that must be satisfied [23]. The kinematic condition states the con-
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tinuity of displacement across the interface:

us
i = uf

i on Γfs. (2.1)

Here, us
i and uf

i denote the displacement field of the structure and the fluid, re-
spectively. The dynamic condition ensures that the tractions are equal across the
interface:

tsi = −tfi on Γfs, (2.2)

where tsi and tfi are the solid and fluid tractions.

The numerical methods to solve FSI problems can be categorized into two ap-
proaches: the monolithic approach and partitioned approach.
In the monolithic approach, the fluid and structural equations are combined into a
single system of equations and solved simultaneously. The coupling conditions are
incorporated implicitly. Figure 2.2a provides a schematic representation of this ap-
proach. This method offers advantages in terms of accuracy and stability since the
coupling between the domains is handled inherently. However, it is computationally
expensive, challenging to implement, and less flexible for use with existing solvers
[16].
In contrast, the partitioned approach solves the fluid and structural equations sep-
arately, with information exchanged iteratively as boundary conditions at the in-
terface to enforce the coupling conditions [23]. The type of boundary conditions
exchanged between the fluid and structural solvers determines the specific parti-
tioning scheme. The most common is the Dirichlet-Neumann scheme. Here, the
structural displacement us

i at the interface is passed as a Dirichlet boundary con-
dition to the fluid, and the fluid tractions tfi are passed as a Neumann condition
to the structure. This procedure is illustrated in Figure 2.2b. Fixed-point methods
are typically employed for the solution process [12]. While this method may lack
accuracy and stability as errors can accumulate during the iterative process [16], it
provides more modularity. This modularity allows the use of specialized solvers for
each domain, making it easier to implement and adapt to different problems [12].

Structure Fluid

(a) Monolithic approach.

Structure Fluid

usi

tfi

(b) Partitioned approach (Dirichlet-Neumann).

Figure 2.2: A schematic representation of the monolithic and the partitioned approach
for solving FSI problems.

In this study, we employ the partitioned approach for solving FSI problems, as we
can use its modularity to treat the fluid and structural model separately. To adapt
the problem complexity to current QA hardware, we integrate QA only into the
structural subproblem. For this purpose, we reformulate the structural subproblem
differently from conventional solvers, using the system’s energy as the basis. By
utilizing energy principles, we represent the structural analysis as an optimization
problem, which can then be reformulated into the QUBO format required for QA.
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In the following, we provide the relevant theoretical background for both the fluid
and structural model of the FSI problem. Since the fluid and structural models are
addressed separately, the subscripts s and f are dropped to simplify the notation.

2.1.1 Fluid Model

As already mentioned, the behavior of fluid is governed by the Navier-Stokes equa-
tions, which describe the conservation of mass, momentum, and energy in a fluid. A
comprehensive treatment of these equations can be found in standard fluid mechan-
ics textbooks like [19]. In this thesis, we focus on a highly simplified fluid model
solely based on the ideal gas law, which establishes the relationship between pres-
sure, volume, and temperature for an ideal gas. The ideal gas law is expressed as
[18]:

pν = RT, (2.3)

where p is the pressure, ν = 1
ρ
is the specific volume (the reciprocal of density ρ), R

is the specific gas constant for a particular gas, and T is the temperature.
With additional assumptions introduced in Section 3.1.1, this law allows us to com-
pute the pressure, which defines the Neumann boundary condition for the structure.

This simplified fluid model is sufficient for our study, as its primary purpose is to
enable the coupling with the structural subproblem. Since our focus lies on the
structural formulation and its adaptation for QA, a detailed fluid model is not
required. However, because of the modularity of the partitioned approach, the fluid
model could be replaced with a more complex one if needed, without affecting the
structural formulation or the integration of QA.

2.1.2 Structural Model

For the structural model, we use energy principles to provide a form suitable for
QA. To achieve this, we must distinguish between two cases: for static systems, we
can apply the principle of minimum potential energy, while for dynamic systems, we
can use Hamilton’s principle.

Principle of Minimum Potential Energy

The principle of minimum potential energy is a fundamental concept, which can be
derived from the principle of virtual work for the special case of elastic bodies [14].
It can be used to determine the static equilibrium configuration of a structure under
external loads. A detailed description of the principle can be found in textbooks
[15, 9, 14], which also serve as the basis for the following description.

To formulate the principle, we consider an elastic body Ω, illustrated in Figure 2.3.
The principle is stated with respect to the displacement field of the body ui. A
volume force density fi may act on the entire domain. The boundary of the body
is denoted by Γ, where surface tractions t̄i and displacements ūi are prescribed on
the portions Γσ and Γu, respectively.
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Ω

ūi

Γu

ti

Γσ

t̄i

fi

Figure 2.3: An elastic body Ω with the boundary portions Γu, where displacements ūi
are prescribed and a boundary portion Γσ, where surface traction t̄i are prescribed. The
force fi is a volume force density.

We assume that the body is elastic, which implies the existence of a strain energy
density function U0. Furthermore, we only consider the case of small displacements,
which implies geometric linearity. The strain energy density is related to the stress
tensor σij and the strain tensor εij by the following expression:

σij =
∂U0

∂εij
, (2.4)

where U0 is a function of the strain components εij.

For external forces, we assume that they are conservative, which means that they
can be derived from corresponding potentials. These include the potential of the
volume forces, denoted as W V

0 , and the potential of the surface forces, denoted as
W S

0 . The forces can then be expressed as:

f = −∂W V
0

∂ui

, ti = −∂W S
0

∂ui

. (2.5)

For a linear elastic body, the strain energy density U0 can be written as:

U0 =
1

2
Cijklεijεkl, (2.6)

where Cijkl is the elasticity tensor, which describes the material’s response to defor-
mation.

For external volume and surface forces, which do not depend on the displacement
of the body they act on, the potential can be described as

W V
0 = −fiui, W S

0 = −t̄iui. (2.7)

The total strain energy, the potential of the volume forces, and the potential of the
surface forces can now be defined as follows:

U =

�
Ω

U0 dΩ, W V =

�
Ω

W V
0 dΩ, W S =

�
Γσ

W S
0 dΓσ. (2.8)
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The total potential of external forces W is the sum of the potential contributions
from the volume forces and the surface forces:

W = W V +W S. (2.9)

With the total strain energy and the total potential of external forces,we are now
able to define the total potential energy of the system as the sum of these two
contributions:

Π = U +W. (2.10)

Before stating the principle of minimum potential energy, it is necessary to restrict
our consideration to only kinematically admissible displacement fields ui. A dis-
placement field ui is kinematically admissible, if it is continuously differentiable and
it satisfies the displacement boundary conditions:

ui = ūi on Γu. (2.11)

Based on the principle of virtual work, it can be shown that the total potential
energy Π attains a stationary value for the true displacement field. Mathematically,
this condition is expressed as:

δΠ = 0, (2.12)

where δΠ represents the first variation of the total potential energy.

Due to our assumption of geometric linearity, the condition

δ2Π > 0 (2.13)

holds. Together with Equation (2.12), this represents the necessary and sufficient
condition for Π to become a minimum, which directly leads to the principle of
minimum potential energy.

In summary, the principle of minimum potential energy states that among all kine-
matically admissible displacement fields, the equilibrium configuration of an elastic
body minimizes the total potential energy of the system.

Therefore, we can formulate the structural analysis problem as a minimization prob-
lem:

min
ui∈U

{Π[ui]} , (2.14)

with U representing the set of all kinematically admissible displacement fields. The
solution ui,opt is the equilibrium state of the elastic body.

Hamilton’s Principle

The principle of minimum potential energy is limited to the static equilibrium of
solids. Hamilton’s principle is more general and applicable to dynamic systems. In
this context, the displacement ui of a body becomes time-dependent, ui = ui(t), and
is often referred to as a path. A detailed description of the principle can be found
in textbook [14, 20], which also serve as the basis for the following description.
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For an elastic body subjected to conservative external forces, we recall from previous
discussions the strain energy U and the potential energy of external forces W . The
sum of these two components gives the total potential energy Π of the system. In
dynamic systems, an additional energy contribution arises, the kinetic energy. For
small displacements, the density ρ can be considered constant, and the kinetic energy
per unit volume is given by

K0 =
1

2
ρvivi, (2.15)

where vi =
∂ui

∂t
represents the velocity. Consequently, the total kinetic energy of the

body is

K =

�
Ω

K0 dΩ. (2.16)

To formulate Hamilton’s principle, it is necessary to restrict consideration to only
admissible paths ui. This means that the ui must satisfy the displacement boundary
conditions, as in the static case. Additionally, the configuration of the system at the
initial time t0 and the final time t1 of the considered time interval must be known.
Consequently, the variation δui vanishes at these time points:

δui(t0) = δui(t1) = 0. (2.17)

Now, Hamilton’s principle states that the difference between the kinetic energy K
and the potential energy Π, integrated over time from t0 to t1, attains a stationary
value for the true path of motion. This is expressed mathematically as:

δ

� t1

t0

(K − Π) dt = 0. (2.18)

It is worth noting that for a static system, the kinetic energy becomes zero and
Hamilton’s principle reduces to the principle of minimum potential energy.

The integrand in Equation (2.18) is known as the Lagrangian function L, defined
as:

L = K − Π. (2.19)

Using this definition, the action S is defined as the time integral of the Lagrangian:

S =

� t1

t0

L dt. (2.20)

This leads to a compact formulation of Hamilton’s principle, stating that the action
S, defined as the time integral of the Lagrangian, is stationary for the actual path
of the system:

δS = 0. (2.21)

Note that the action S does not necessarily attain a minimum for the true path of
the system, but rather an minimum or a saddle point (and never a maximum) [8].
However, for sufficiently short paths, the action S is always a minimum for the true
path. Further insights regarding the conditions under which a path is considered
sufficiently short are provided in [8].
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Hamilton’s principle and the principle of minimum potential energy provide a way
to formulate structural problems as optimization problems, which is a requirement
for solving them using QA. In the following chapter, the fundamentals of QA are
introduced to provide a theoretical foundation.

2.2 Quantum Annealing

Quantum computing is an emerging field in computer science. It uses quantum
mechanical phenomena, such as superposition, to address problems that can be
very demanding for classical computers [22]. There are different approaches for
quantum computing, the most famous one is gate-based quantum computing. In
this approach, specially developed quantum algorithms, like Shor’s algorithm [2] or
Grover’s algorithm [1], can be applied to solve specific problems much faster than
classical algorithms.
Another approach to quantum computing is QA, which is especially useful for solv-
ing combinatorial optimization problems, where the goal is to find the best solution
among many possibilities. These problems are often NP-hard, meaning they are
very hard, or even impossible to solve efficiently with classical methods [22].
One of the most popular QA systems is built by D-Wave Systems. Since this thesis
utilizes a quantum annealer from D-Wave, we will focus on the theoretical founda-
tions specific to this system. A detailed description on the theoretical background of
QA can be found on the official D-Wave website [31]. The following section will pro-
vide an overview of the fundamental principles and outlines the key steps required
to solve mathematical problems using QA.

Energy 10
Anneal

Energy 10

Figure 2.4: The evolution of an energy potential for a single qubit during the annealing
process, starting in a superposition state (↓↑) and ending in a classical state, either spin-
down (↓), corresponding to the binary variable 0, or spin-up (↑), corresponding to the
binary variable 1. In this illustration, the qubit would end up in the spin-up (↑) state.

A fundamental component of QA is a quantum bit, or qubit. A quantum annealer
consists of many qubits, each of which can be seen as the analogue of a classical
bit. Unlike classical bits, which can only exist in one of two discrete states (0 or 1),
a qubit can also exist in a superposition of both states simultaneously. There are
several ways to create qubits, one of which is superconducting qubits, as used by D-
Wave. In this approach, qubits are formed by superconducting loops of wire, where
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the state of the qubit is determined by the direction of the circulating current with a
corresponding magnetic field. The two classical states correspond to spin-down (↓)
and spin-up (↑). During the annealing process, the qubit starts in a superposition
state. By the end of the process, the qubit collapses into a classical state, either
the spin-up (↑) or spin-down (↓) state. The probability of the qubit collapsing into
one of these states can be controlled by applying an external magnetic field to the
qubit. The external magnetic field is called a bias. The physics of this process can be
represented in an energy diagram, as shown in Figure 2.4. By applying the external
magnetic field, the energy valley of the preferred state is lowered, increasing the
probability that the qubit will collapse into this state. Referring to Figure 2.4, this
would be the spin-up (↑) state.

Energy

0

1

0 1

1

0

01

Figure 2.5: Energy landscape of two coupled qubits showing four possible states, with
the lowest-energy state (↑, ↓) representing the optimal solution.

A quantum processing unit (QPU), in which we encode the problem to be solved, is
composed of many qubits. For instance, D-Wave’s Advantage system contains over
5000 qubits. A key aspect of QA lies in the ability to link these qubits, allowing
them to influence each other using physical devices called couplers. Couplers create
correlations between qubits, enabling them to end up in either the same classical
state (both (↓) or both (↑)) or opposite states ((↓) and (↑)). These correlations,
as well as individual qubit biases, are user-controlled and define the problem to
be solved on a quantum annealer. Figure 2.5 illustrates the energy diagram for
two coupled qubits, which form an energy landscape. For two qubits, there are
four possible states: (↓, ↓), (↓, ↑), (↑, ↓), and (↑, ↑). The energy of each state is
determined by the biases of the individual qubits and the couplers between them.
During the annealing process, the qubits collapse into the lowest energy state, which
in this example is the (↑, ↓) state.
As previously mentioned, a QPU can consist of thousands of qubits, which allows us
to define the highly complex energy landscape representing the problem of interest.
The goal of the QA process is to find the lowest-energy state, which represents the
optimal solution of the problem being solved. This process is the foundation of
energy optimization in QA.
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Another fundamental term in QA is the Hamiltonian. The Hamiltonian can be
seen as the mathematical description of the energy state. It is the sum of the
initial Hamiltonian Hi and the final Hamiltonian, or problem Hamiltonian Hp. The
annealing process begins in the lowest-energy state, also called ground state, of the
initial Hamiltonian Hi, which can be easily prepared and represents a superposition
of all possible states, as previously described. During the annealing process, Hi is
gradually replaced by Hp, which represents the specific optimization problem using
the qubit biases and couplers. The evolution of the Hamiltonian is expressed as:

H(t) = A(t)Hi +B(t)Hp (2.22)

where A(t) decreases from 1 to 0 and B(t) increases from 0 to 1 over time. At
the start, the system is in the ground state of Hi. By the end, the system ideally
transitions into the ground state of Hp, which corresponds to the solution to the
optimization problem. It is important to note that, in practice, thermal fluctuations
and other phenomena can cause the system to jump from the ground state to a
higher energy state. This may result in a solution that is not optimal. To improve
the chances of finding the true ground state and obtaining the optimal solution, the
annealing process must be repeated multiple times.

The problem Hamiltonian Hp can be mathematically formulated using either the
Ising model or the QUBO model. These two models are equivalent and can be
easily converted into one another. They describe how qubit biases and couplers,
as previously introduced, define the energy landscape. In the Ising model, the spin
variables si ∈ {−1,+1} represent the spin-down and spin-up states of the qubits.
The problem is expressed as:

HIsing =
�
i

hisi +
�
i<j

Jijsisj (2.23)

where the linear coefficients hi represent the qubit biases and the quadratic coeffi-
cients Jij represents the coupling strength between the variables si and sj.

In the QUBO model, the two classical states of the qubits are represented by binary
variables qi ∈ {0, 1} and the problem is expressed as:

HQUBO =
�
i

Qiiqi +
�
i<j

Qijqiqj (2.24)

where Q is a matrix containing the linear terms Qii (biases) and the quadratic terms
Qij (couplings).

The mathematical model of a problem can be represented as a logical graph, where
the variables si or qi are illustrated as nodes. The linear coefficients associated with
these variables are included as weights on the nodes, while their interactions, which
are weighted by the quadratic coefficients, are the edges of the graph.

In addition to the logical graph, there is the hardware graph, which represents the
physical arrangement of qubits and couplers in a QPU. An example of a hardware
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graph is illustrated in Figure 2.6, showing a section of the Pegasus architecture used
in D-Wave’s Advantage QPUs. In this graph, qubits are represented as green dots,
and couplers are shown as gray lines. The blue squares highlight unit cells, which
are the basic building blocks of the hardware graph. An Advantage QPU consists
of a 16x16 grid of such unit cells.

Figure 2.6: A section of the Pegasus hardware graph architecture used in D-Wave’s
Advantage QPUs. Image source: [33].

To solve a problem on a QPU, the logical graph, which represents the mathematical
model of the problem, must be mapped onto the hardware graph. This process is
called minor embedding and is necessary because the logical graph often has higher
connectivity than the hardware graph can support. As can be seen in Figure 2.6, each
qubit is connected to a limited number of neighboring qubits. In minor embedding,
multiple physical qubits are grouped to represent a single logical qubit. One such
group of qubits is called chain. In a chain, all qubits are required to be in the same
state, that is the state of the logical qubit. Couplers with high negative weights need
to be used to achieve this. The strength of these couplers is called chain strength.

In summary, the process of solving problems using QA can be outlined as follows:

1) Definition of the Problem

The optimization problem is represented mathematically using the Ising model or
QUBO model. The problem can be visualized as a logical graph with variables as
nodes and their relationships as edges, weighted by linear and quadratic coefficients.

2) Minor-embedding

The logical graph is mapped onto the QPU’s hardware graph through minor em-
bedding, using chains of physical qubits to preserve the correct interactions between
the logical variables.
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3) Programming

The bias for each qubit and the coupling strength between qubits are configured on
the QPU.

4) Initialization

The system starts in the ground state of the initial Hamiltonian Hi, representing a
superposition of all possible solutions.

5) Annealing Process

The Hamiltonian evolves from Hi to the problem Hamiltonian Hp by gradually
adjusting the coefficients A(t) and B(t) over time.

6) Readout of the Solution

At the end of the annealing process, the system collapses into a final state, which
represents a possible solution to the optimization problem. The state of each qubit
is mapped back to the corresponding node in the logical graph.

7) Resampling

The annealing process is repeated multiple times to increase the possibility of finding
the true ground state and achieving the optimal solution.
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CHAPTER3
Static Problem

In this chapter, we focus on the static FSI problem. First, we introduce both
the structural and fluid model based on a specific one-dimensional (1D) problem.
A key focus is the formulation of the structural subproblem as a QUBO problem,
making it suitable for QA. To validate our method, we test it on a D-Wave quantum
annealer, analyzing the iterative solution process and comparing the binary and
random real number representations. We also investigate the sources of inaccuracies
that appear in some solutions. To address these errors, we introduce an adaptive
number representation and validate its effectiveness in improving accuracy.

3.1 Methods for the Static Problem

x

u(x)

Ωf

Ls
Lf

ΩsAsAf

Figure 3.1: Schematic representation of the 1D piston problem consisting of the elastic
structural domain Ωs and the gas-filled chamber Ωf .

For the static FSI problem, the so-called piston problem serves as a basis. This
problem involves the interaction between a linearly elastic 1D piston, which repre-
sents the structural component, and a 1D chamber filled with gas, which represents
the fluid domain. An illustration of the piston problem is provided in Figure 3.1.

The piston rod, with a length Ls and a cross-sectional area As, has an unknown
displacement field u(x). The chamber, which has a cross-sectional area Af and
a length Lf , contains an ideal gas at unknown pressure p. Based on the theory
presented in Chapter 2, the piston forms the structural domain Ωs with the boundary
Γs, where a displacement boundary condition is applied on the right end Γu. The
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gas-filled chamber forms the fluid domain Ωf with its boundary Γf . The piston head
is assumed to be a thin rigid body, forming the interface Γfs between Ωs and Ωf .

Solving the problem, i.e., finding the equilibrium displacement field of the piston,
requires the coupling of two models:

• A fluid model, which takes the position of the piston head u(0) as input and
computes the fluid pressure p in the chamber.

• A structural model, which uses the force acting on the piston head, derived
directly from the fluid pressure p, as input. The output of this model is the
displacement field u(x).

To find the equilibrium configuration, a partitioned approach is employed. As de-
scribed in Chapter 2, in this approach, the fluid and structural models are solved
independently and iteratively exchange information at the interface. Specifically,
the fluid model provides the pressure based on the piston head displacement, while
the structural model yields the displacement field based on the acting force derived
from the fluid pressure. The problem is considered as solved once the difference
between u(x) of the current iteration and the previous iteration is small enough.

3.1.1 Fluid Model

In this study, the fluid model is kept simple. As a mathematical description of
the model, the ideal state gas law (Equation (2.3)) is used. It is assumed that the
pressure within the chamber is homogeneous and directly depends on the position
of the piston head. Additionally, adiabatic conditions are assumed, meaning there is
no heat exchange between the chamber and the external environment. The process
is also assumed to be reversible, implying no permanent changes occur within or
outside of the system. A reversible, adiabatic process is also known as isentropic.
For an isentropic process, where the system moves from state 0 to state 1, the
following relationship holds [18]:

p1(V1)
k = p0(V0)

k. (3.1)

Here, p0 and p1 represent the gas pressure in state 0 and 1, respectively, while V0

and V1 denote the corresponding gas volume. Additionally, k is the specific heat
ratio of the gas. For diatomic gases, k is typically assumed to be 1.4, which will also
be used in this study.

Equation (3.1) can be rearranged to calculate the pressure at state 1:

p1 = p0

�
V0

V1

�k

(3.2)

In the problem illustrated in Figure 3.1, the gas volume V is given by V = AfLf .
Assuming that state 0 corresponds to the initial state (u(x) = 0) and state 1 corre-
sponds to the desired state after the piston head has moved (u(x) ↗= 0), the length
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of the chamber Lf can be written as

Lf = Lf
0 + u(0), (3.3)

where Lf
0 is the length of the chamber at state 0. Therefore, Equation (3.2) becomes

p1 = p0

�
Lf
0

Lf
0 + u(0)

�k

. (3.4)

As can be seen from Equation (3.4), in order to calculate the unknown gas pressure
p1, the displacement u(0) must be provided. This is the coupling to the structural
model where the displacement u(x) is computed.

3.1.2 Structural Model

To determine the unknown displacement of the piston caused by the gas pressure
force, the static structural model is formulated using the principle of minimum
potential energy. To solve this problem using QA, the model must be reformulated
into a QUBO form. The explanation below outlines the derivation of this QUBO
form.

eNeeie1

x

Ls

ûNeûNe−1ûiûi−1û1û0

xNexNe−1xixi−1x1x0

Figure 3.2: The piston rod composed into multiple elements ei.

First, the piston rod is discretized into multiple elements, as shown in Figure 3.2.
When using only identical elements, this discretization is not strictly necessary for
a simple linear-elastic 1D problem. However, the discretization is performed to
ensure the method could be applied to more complex problems where discretization
is essential. Additionally, this approach allows varying the problem size by changing
the number of elements.

The piston is divided into Ne elements ei = e1, . . . , eNe , each spanning from xi−1

to xi. The displacements at the element boundaries are treated as unknown nodal
displacements ûi, resulting in Ne + 1 nodes. The zero-displacement boundary con-
dition on the fixed end of the piston is directly considered as ûNe = 0. We define
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the displacement u(x) as follows:

u(x) =
Ne�
i=0

ûiΦi(x), (3.5)

where Φi(x) are nodal interpolation functions. In this work, linear interpolation
functions are chosen for simplicity:

Φi(x) =

��������
0, x < xi−1,
x−xi−1

xi−xi−1
, xi−1 ≤ x < xi,

x−xi+1

xi−xi+1
, xi ≤ x < xi+1,

0, x ≥ xi+1.

(3.6)

For the discrete model, the strain energy of an individual element ei is given by:

Ui =
1

2

� xi

xi−1

EiA
s
i (u

↔(x))2 dx, (3.7)

where As
i and Ei are the cross-sectional area and Young’s modulus of the element,

respectively, and u↔(x) is the spatial derivative of the displacement, which is obtained
as:

u↔(x) =
Ne�
i=0

ûiΦ
↔
i(x), (3.8)

where Φ↔
i(x) = dΦi(x)

dx
represents the derivative of the interpolation functions with

respect to x. The total strain energy of the rod is determined by summing the
contributions of all elements:

U =
Ne�
i=1

Ui. (3.9)

To compute the total potential energy, the potential energy of external forces W
must also be considered. This consists of contributions from volume forces W V

and surface forces W S. For the piston problem, volume forces are not considered
(W V = 0).

The surface forces result from the pressure p in the chamber acting on the piston
head. For the 1D piston, this fluid pressure leads to an external force F̄ = pAf ,
which acts on the first node of the piston u0, representing the piston head. W S is
given by:

W S = −F̄ u0. (3.10)

The total potential energy of the piston system is the difference between the strain
energy and the potential energy of the surface forces:

Π =
Ne�
i=1

Ui − F̄ u0. (3.11)

Since the QUBO problem requires binary variables, each real-valued nodal displace-
ment ûi must be represented using a set of binary variables qi,l ∈ {0, 1}. There are
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multiple ways to represent a real-valued number using binary variables. In general,
the mapping of a real-valued variable to binary variables can be expressed as follows
[26]:

ûi = τi + λi

Nq−1�
l=0

ci,lqi,l, (3.12)

where Nq is the number of binary variables used to represent one real-valued variable
ûi. The coefficients τi and λi are real-valued scaling parameters that define the range
of representable real-valued variables. The coefficient ci,l specifies the representation
method for mapping the real-valued variable.
In this study, two representation methods are used and compared in Section 3.2:
the classical binary representation (referred to as the binary representation) and a
method involving random numbers (referred to as the random representation).

For the binary representation, ci,l is defined as:

ci,l = 2l, (3.13)

while for the random representation, ci,l is defined as:

ci,l ∼ U(0, 1), (3.14)

where U(0, 1) denotes a uniform distribution in the range [0, 1].

Using Equation (3.12), the real-valued variables ûi are expressed in terms of binary
variables, which is required for constructing the QUBO form. By collecting all
binary variables qi,l into a vector q, the structural problem can be written in QUBO
form as:

min
q

{Π[q]} . (3.15)

To provide a better understanding into the derivation of the QUBO form, a simple
example is given below.

Let us consider a single element without boundary conditions or external
forces. An illustration of this element is shown in Figure 3.3. The element
spans from x = 0 to x = 1 and has two nodes with displacement variables û0

and û1.

û0 û1

x = 0 x = 1

Figure 3.3: One element with two nodes.

The displacement field of the element is defined using Equation (3.5) with
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linear interpolation functions as defined in Equation (3.6):

u(x) =
Ne�
i=0

ûiΦi(x) (3.16)

= û0Φ0(x) + û1Φ1(x) (3.17)

= û0(1− x) + û1x. (3.18)

The derivative with respect to x is:

u↔(x) = û1 − û0. (3.19)

With the derivative of the displacement field defined, we can use Equa-
tion (3.7) to derive the strain energy as a function of the nodal displacements.
For simplicity, let us assume E = A = 1:

U =
1

2

� 1

0

(û1 − û0)
2 dx (3.20)

=
1

2
û2
0 − û0û1 +

1

2
û2
1. (3.21)

Since no external forces are applied, the potential energy of external forces W
is zero. Therefore, the total potential energy is:

Π = U =
1

2
û2
0 − û0û1 +

1

2
û2
1. (3.22)

To derive the QUBO form, the real-valued nodal displacement variables ûi

must be represented using binary variables qi,l ∈ {0, 1} based on one of the
representation methods discussed earlier. In this example, the binary rep-
resentation method with ci,l defined in Equation (3.13) is used. Each nodal
value is represented using two binary variables (Nq = 2). To represent real
numbers in the range [0, 1], the scaling parameters τi and λi are set as:

τi = 0, λi =
1

2Nq − 1
=

1

3
. (3.23)

Using Equation (3.12), the real-valued variables are mapped to binary vari-
ables as follows:

ûi = 0 +
1

3

1�
l=0

2lqi,l (3.24)

=
1

3
qi,0 +

2

3
qi,1 (3.25)

With this number representation, the total potential energy in terms of the
binary variables becomes

Π[qi,l] =
1

18
q20,0 +

2

9
q0,0q0,1 +

2

9
q20,1 −

1

9
q0,0q1,0 − 2

9
q0,0q1,1

− 2

9
q0,1q1,0 − 4

9
q0,1q1,1 +

1

18
q21,0 +

2

9
q1,0q1,1 +

2

9
q21,1. (3.26)
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To better understand the structure of Π[qi,l], we rewrite Equation (3.26) in
matrix form. We define a vector q containing the binary variables:

q =


q0,0
q0,1
q1,0
q1,1

 (3.27)

Now, Equation (3.26) can be expressed as:

Π[q] = qT


1
18

2
9

−1
9

−2
9

0 2
9

−2
9

−4
9

0 0 1
18

2
9

0 0 0 2
9


  

Q

q. (3.28)

The upper diagonal matrixQ is called QUBO matrix and defines the problem.
Equation (3.28) represents the QUBO model introduced in Equation (2.24),
where the diagonal elements Qii are the linear coefficients (biases) and the
nonzero off-diagonal elements Qij are the quadratic coefficients (couplings).
The logical graph of this example is illustrated in Figure 3.4, with the blue
nodes being the biases and the orange edges being the couplings. The left side
of the graph corresponds to the first node, while the right side corresponds to
the second node in Figure 3.3.

q0,0

q0,1

q1,0

q1,1

Q23

Q13

Q11

Q22

Q33

Q44

Q13

Q24

Q12 Q34

Figure 3.4: The logical graph of the example element.

As the potential energy in Equation (3.28) is now in QUBO form, the mini-
mization problem (Equation (3.15)) can be solved using QA. In this specific
example, only the trivial solution u(x) = 0 exists, as there are no forces or
boundary conditions applied.
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3.2 Results for the Static Problem

eNeeNe−1e2e1

x

u(x)

p

Ls
Lf

Figure 3.5: The piston problem with a composed rod.

In this section, the results for the static piston problem are presented and ana-
lyzed. Various test cases are examined to evaluate the capabilities and limitations
of the proposed QA-based method for solving FSI problems. If not stated other-
wise, the following physical parameters for the piston problem, which is illustrated
in Figure 3.5, are considered. The piston rod has a length Ls = 1.0 with identical
cross-sectional areas As

i = As = 1.0 and Young’s moduli Ei = E = 1.0. The gas-
filled chamber with a cross-sectional area Af = 2.0 has an initial length Lf

0 = 1.0.
The gas has a specific heat ratio k = 1.4 and an initial pressure p0 = 0.5. The values
of these quantities are summarized in Table 3.1. Other settings, like the number of
elements or the number of qubits per node vary for each test case and will therefore
be stated individually.

Table 3.1: Physical parameters for the piston problem.

Ls As E Lf
0 Af k p0

1.0 1.0 1.0 1.0 2.0 1.4 0.5

The results were obtained using a custom code based on the open-source software
EngiOptiQA [35], which we have developed for solving structural and design op-
timization problems of a 1D rod. The formulation of the QUBO model was im-
plemented with the Fixstars Amplify software development kit (SDK) [34] (am-
plify 0.11.2), while the solution process was carried out using D-Wave’s Ocean
SDK) [29] (dwave-cloud-client 0.11.1, dwave-sampler 1.2.0, dwave-system
1.21.0). All computations were executed on the Advantage system6.4 machine,
which features the Advantage performance update QPU. As described in Section 2.2,
this QPU is based on the Pegasus architecture illustrated in Figure 2.6. The QPU
consists of 5, 760 qubits interconnected by 40, 088 couplers [30].

SP1: Iterative Solution Process and Error Criteria

First, we investigate the iterative solution process and validate the QA solutions with
the analytical ones. Additionally, we analyze different error measures to evaluate
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the accuracy of the results in the following experiments.

In test case static problem 1 (SP1), the piston rod is divided into Ne = 2 elements.
Each nodal value is represented using Nq = 8 qubits in the binary representation.
To represent the real-valued nodal displacements in the range [0, 1], the scaling
parameters τi and λi are set to τi = 0 and λi =

1
2Nq−1

= 1
255

. The chosen values for
this test case are summarized in Table 3.2.

Table 3.2: Settings for SP1.

Ne Nq Rep. Range Rep. Method

2 8 [0, 1] binary

To solve the coupled piston problem, we employ a fixed-point approach, where the
fluid and the structural problem are solved iteratively until convergence is reached.
This process is illustrated in Figure 3.6.
At each iteration:

• The fluid solver computes the pressure p inside the chamber based on the
displacement u0 of the first node (i.e., the displacement of the piston head).

• Using the computed pressure p, the resulting force F̄ acting on the piston is
determined and passed to the structural solver as a boundary condition.

• The structural solver computes the updated displacement field u(x) using QA,
which is then passed to the fluid solver to close the coupling loop.
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Figure 3.6: Illustration of the iterative fixed-point solution process.
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The iterative coupling process continues until the solution is considered converged.
To determine whether convergence is reached, we evaluate the relative change in
the nodal displacement vector û, which contains the displacements ûi of all nodes.
Convergence is achieved when the difference between two successive iterations falls
below a predefined threshold:

⇒û(j+1) − û(j)⇒
⇒û(j+1)⇒ < εcon. (3.29)

Here, j denotes the iteration index, and εcon represents the predefined threshold,
which is set to εcon = 10−2.
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Figure 3.7: Results of test case SP1.

The results of SP1 are shown in Figure 3.7. The iterative solution process is visu-
alized in Figure 3.7a by showing the nodal displacement û0 of the piston head over
the iterations. Additionally, in each iteration the analytical solution of the displace-
ment of the piston head û∗

0 is indicated as orange cross. This solution is based on the
fluid pressure of the current iteration and can be calculated with basic mechanical
equations. As can be seen, the QA solution û0 closely matches û∗

0 in every iteration.
After seven iterations, the convergence criteria (Equation (3.29)) is fulfilled, and
the solution process comes to an end. This means the equilibrium position of the
piston is considered found. For comparison, the red dashed line indicates the ana-
lytical solution for the equilibrium position of the piston head û∗

0,eq. This value is
obtained by equating the force caused by the fluid pressure p with the correspond-
ing counteracting force of the elastic piston. The converged QA solution is close
to the actual equilibrium position û∗

0,eq, confirming the validity of the method for
accurately solving this problem.

Figure 3.7b shows the displacement function ucon(x) of the converged QA solution,
i.e., from the final iteration. The blue dots indicate the nodal displacements of the
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piston. As can be observed, the QA solution is visually very close to the analytical
solution u∗

con(x). The error between the converged QA solution ucon(x) and the
corresponding analytical solution u∗

con(x) will be a key metric in the following test
cases, evaluating the solution accuracy. Therefore, an appropriate error measure for
comparing these two solutions must be selected.

We consider two error norms: the L2 norm and the H1 norm. The relative error in
the L2 norm is given by:

εL2 =
⇒ucon(x)− u∗

con(x)⇒L2

⇒u∗
con(x)⇒L2

=


Ω
(ucon(x)− u∗

con(x))
2 dx

1/2
Ω
(u∗

con(x))
2 dx

1/2 . (3.30)

The second is the relative error in the H1 norm, defined as:

εH1 =
⇒ucon(x)− u∗

con(x)⇒H1

⇒u∗
con(x)⇒H1

=


Ω
(ucon(x)− u∗

con(x))
2 + (ucon

↔(x)− u∗
con

↔(x))2 dx
1/2


Ω
(u∗

con(x))
2 + (u∗

con
↔(x))2 dx

1/2 .

(3.31)
This norm considers not only the difference in the displacement values ucon(x) but
also the difference in their derivatives ucon

↔(x).

The error measure we choose should correspond with the objective function, i.e.,
the potential energy, of the minimization problem. To evaluate this using our test
case, we can take advantage of the fact that we do not have just one result for the
converged solution but several, because the annealing process is executed multiple
times to increase the chances of finding the true optimum. In this test case, the
annealing process was repeated 500 times, resulting in 500 samples. Each sample
can have a different solution, with high-quality outcomes characterized by solutions
that cluster near the true minimum.
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Figure 3.8: Comparison of L2 norm error ωL2 and H1 norm error ωH1 plotted against
the objective function values for 500 annealing samples.
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In Figure 3.8, the error of each sample relative to the analytical solution against the
objective function values can be seen. Both the L2 norm error εL2 and the H1 norm
error εH1 are compared. From the plot, it is clear that εH1 correlates more closely
with the objective function. This behavior can also be explained mathematically.
The H1 norm includes both ucon(x) and ucon

↔(x), just as the potential energy of
the problem depends on the displacement ucon(x) (through external forces) and its
gradient ucon

↔(x) (through the strain energy). As a result, minimizing the objective
function naturally minimizes the error in the H1 norm. For this reason, the H1

norm error εH1 is chosen as the accuracy metric in the following investigations.

SP2: Real Number Representation

Next, we will compare the two real number representations introduced in Sec-
tion 3.1.2, i.e., the binary representation and the random representation, to de-
termine which one performs better. To test performance across a wide range of
scenarios, we conduct multiple tests with different parameters.

Specifically, we vary the number of elements, i.e., the degrees of freedom, Ne ∈
{1, 2, 3, 4}, which influences the problem size, and the number of qubits per real
number Nq ∈ {2, 4, 8, 16}, which affects both the representation precision of the real
number, i.e., the nodal displacement, and the problem size. Due to the randomness
in the random representation and the probabilistic nature of QA, eight independent
trials are conducted for each combination of parameters, leading to 2×4×4×8 = 256
experiments. Table 3.3 summarizes the parameters.

Table 3.3: Settings for SP2.

Ne Nq Rep. Range Rep. Method Trials

{1, 2, 3, 4} {2, 4, 8, 16} [0, 1] {binary, random} 8

Before analyzing performance, we first illustrate the representable real-valued num-
bers for two specific cases, Nq = 4 and Nq = 16, to highlight key differences between
the two representations. For Nq = 4 (Figure 3.9a), the binary representation pro-
vides evenly distributed and non-redundant representable numbers. In contrast, the
random representation results in randomly distributed representable numbers.
For Nq = 16 (Figure 3.9b), the binary representation remains evenly distributed,
while the random representation shows over-representation in the central region.
This bias arises because the sum of uniformly distributed random numbers is taken
in Equation (3.12). If the real-valued variable is not necessarily near the middle of
the range, this bias becomes a disadvantage, as numbers in the outer regions cannot
be represented accurately. However, the random representation has its benefits be-
cause it has properties that can lead to more accurate results in certain optimization
problems [26, 7].
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Figure 3.9: The representable real numbers using the binary and random representations
in the range [0, 1] for two different values of Nq.

Since the random representation is biased toward the middle of the representation
range and the binary representation has a structured distribution pattern, we ran-
domize the initial fluid pressure p0 ∼ U(0.1, 0.5) in each trial to prevent unintended
biases. This ensures that the converged solution does not always fall in the same
part of the representation range. As a result, it prevents the bias of the random
representation from affecting the findings and avoids cases where numbers in the
binary representation end up in particularly favorable or unfavorable positions.

To compare the solution accuracy of both representations, we analyze the error εH1 ,
as defined in Equation (3.31), by averaging it over the 8 trials for each parameter
combination. Figure 3.10 displays these results, where the vertical axis represents
the average error. The horizontal axis corresponds to the number of qubits per node
Nq. The error bars represent the standard error of each result. The four subplots
vary in the number of degrees of freedom Nq.
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Figure 3.10: Comparison of the binary and random representations for different numbers
of degrees of freedom Ne and qubits per real number Nq. The plots show the average error
of the QA solutions across 8 trials for each parameter combination. Blue and orange dots
represent the ωH1 error between the least energy approximation (LEA) and the analytical
solution for the binary and random representations, respectively.

Various trends can be observed from these four subplots. First, the solution accu-
racy between the binary and random representations can be compared. Although
individual experimental results are quite similar, the binary representation gener-
ally yields smaller errors. This suggests that for this type of problem, the binary
representation is the better choice.

A second observation can be made from Figure 3.10a. As the number of qubits per
node Nq increases, the error decreases. This is understandable, as a greater number
of binary variables representing a real number allows for more precision.
However, this trend is only partly visible in Figure 3.10b. Up to Nq = 8, the error
decreases, but at Nq = 16, the error is greater than at Nq = 8. This suggests that
despite the theoretical increase in precision, other inaccuracies degrade the results.
Another observation is that the result worsens for fixed Nq, e.g., Nq = 2, as the
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number of degrees of freedom Ne increases, as seen in the 4 subplots.

To examine this situation more closely, the theoretically best possible solution was
calculated for each experiment based on the given precision, which depends on Nq

and the representation method. This solution is the approximation with the lowest
possible objective value, i.e., the lowest potential energy, and is referred to as the
least energy approximation (LEA). In Figure 3.10, the εH1 error between the LEA
and the analytical solution for the binary and random representations is shown for
each experiment as blue and orange dots, respectively.
In Figure 3.10a, for Nq ∈ {2, 4, 8}, the error of the QA solutions match the one of
the LEA, indicating the best possible solution has been found. For Nq = 16, the
error decreases, but a gap appears compared to the error of the LEA. This means
the increased precision still provides some advantage but cannot be fully exploited.
When increasing the problem size to Ne = 2 (Figure 3.10b), the error of the LEA
cannot be reached even at Nq = 8. For even more complex problems (Figures 3.10c
and 3.10d), the gap between the errors of the QA solution and LEA becomes larger.

These inaccuracies are apparently due to the annealing process, as increasing com-
plexity with the use of more qubits causes solutions to deviate from the theoretically
optimal solution due to various error sources, which will be examined next.

SP3: Error Sources

During a QA process, various sources of errors can occur. One significant category
of these errors is known as integrated control errors (ICE) [32]. These errors arise
from the issue to accurately represent the problem on the QPU in practice. While
the QPU solves problems expressed in the Ising model (Equation (2.23)), the actual
implementation on the QPU can involve small deviations in the h and J values,
resulting in a slightly altered Hamiltonian:

Hδ
Ising =

�
i

(hi + δhi)si +
�
i<j

(Jij + δJij)sisj, (3.32)

where δhi and δJij represent deviations from the intended hi and Jij values, respec-
tively.

Because δhi and δJij are summed over the number of qubits Equation (3.32), these
errors can have a larger impact on results for problems involving many qubits.
Several factors contribute to ICE, with dominant components including background
susceptibility, flux noise in qubits, I/O system effects, and digital-to-analog converter
(DAC) quantization errors [32]. DAC quantization errors arise when user-defined
h and J values are converted into an analog signal for the QPU. Since the Ising
spins on the QPU are controlled by magnetic fields, as described in Section 2.2, this
conversion is necessary but introduces small inaccuracies.

While ICE consists of multiple sources of error, DAC quantization errors can be
quantitatively analyzed using available data from D-Wave for specific QPUs, such as
the Advantage system6.4. Figure 3.11 illustrates typical DAC quantization errors
for h and J values on the Advantage system6.4 QPU. For example, at h = −4.0,
the error can be as large as ±0.004.
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(a) Quantization error in h. (b) Quantization error in J .

Figure 3.11: Typical DAC quantization errors of the Advantage system6.4 QPU. Image
source: [30].

To investigate the impact of the DAC errors, we conduct a test case SP3. Similar
to SP2, we perform multiple experiments with a different number of qubits per
node Nq. This time, we exclusively use the binary representation method and fix
the number of degrees of freedom to Ne = 2. The parameters are summarized in
Table 3.4.

Table 3.4: Settings for SP3.

Ne Nq Rep.
Range

Rep.
Method

Trials p0

2 {2, 4, 5, 6, 8, 12} [0, 1] binary 8 U(0.1, 0.5)

Before analyzing the results, we must discuss an important procedure called auto-
scaling, which is done for every problem submitted to the QPU. Each QPU has
a supported range of values for the biases and coupling strengths, i.e, the h and J
coefficients. Before a specific problem is solved on a QPU, all user-defined coefficients
are scaled up or down by a certain factor to fit the entire available range. For the
Advantage system6.4 QPU, the supported ranges are h ∈ [−4.0, 4.0] and J ∈
[−2.0, 1.0].
This effect is illustrated in 3.12, which shows the scaled h and J values of two specific
trials of SP3 with Nq = 2 qubits per node (Figure 3.12a) and Nq = 8 qubits per
node (Figure 3.12b). The auto-scaling ensures that all coefficients are within the
supported range. In these two cases, the largest J values are mapped to the J range
limit of 1. Since the same scaling factor is applied to all coefficients, the negative J
range limit and the h range cannot be fully utilized.
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Figure 3.12: Scaled h and J values for two specific trials of SP3 with Nq = 2 and Nq = 8.
In both trials, the initial gas pressure were p0 = 0.5.

Comparing these two cases, it can be observed that when using Nq = 8 qubits
per node, the resulting absolute values of the coefficients tend to be significantly
smaller than when using Nq = 2 qubits per node. This is an important observation
regarding the DAC errors, as this error is relatively larger for smaller coefficients.
While increasing Nq improves precision in the real number representation, it also
leads to smaller h and J values, which in turn increases the impact of DAC-induced
deviations. This provides a possible explanation for why increasing the number of
qubits per node does not always improve accuracy, as previously seen in SP2.

To further investigate this observation, we now discuss the results of SP3, where we
analyze the impact of the DAC errors on the solution quality of our tests in greater
detail. To achieve this, we compute εH1 , as defined in Equation (3.31), for different
solutions that vary in the number of qubits per node Nq. Additionally, we compute
the εH1 error between the LEA and the analytical solution to determine when the
QA solution no longer matches the LEA, as we did in SP2. To draw conclusions
about these deviations in relation to the DAC errors, we also determine the smallest
absolute values of our coefficients, hmin and Jmin obtained in our experiments and
compare them with the magnitude of the DAC errors.
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Figure 3.13: Results of SP3.

In Figure 3.13a, the error εH1 of the QA solution, as defined in Equation (3.31),
averaged over the 8 trials, is shown. Additionally, the εH1 error of the LEA is
presented for comparison. Both quantities are shown for different numbers of qubits
per node Nq. Similar to the previous test case, for Nq ∈ 2, 4, 5, the QA solution
matches the LEA. However, for Nq ≥ 6, the LEA can no longer be reached, and a
gap emerges between the errors of the two solutions. This gap grows larger as Nq

increases.

Figure 3.13b displays the minimum coefficients hmin and Jmin across the experi-
ments. These values decrease with increasingNq, confirming the observations before.
The dashed lines in the second subplot represent the maximum DAC quantization
errors εh,max and εJ,max for the Advantage system6.4 QPU.

It can be observed that for Nq ≤ 5, hmin and Jmin remain above εh,max and εJ,max,
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respectively. For Nq ≥ 6, Jmin falls below the DAC quantization error εJ,max. At
exactly Nq = 6, the QA solution can no longer match the LEA. This suggests that
the inability to reach the LEA is at least partly due to the DAC quantization error.

To further test this hypothesis, we aim to decrease hmin and Jmin in the problem
setup and investigate how this affects the solution accuracy. To achieve this, a
modified test is conducted where all parameters remained the same as before, except
that the Young’s moduli of the elements were set to E1 = 1.0 and E2 = 5.0, instead
of being uniform. This results in reduced hmin and Jmin. The results of this test are
shown in Figure 3.14.
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(a) Errors ωH1 of the QA solution (binary) and the LEA for different number of qubits
per node Nq.
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Figure 3.14: Results of SP3 with different Young’s moduli of the elements. They were
set to E1 = 1.0 and E2 = 5.0, instead of being uniform.

As seen in Figure 3.14b, the coefficients hmin and Jmin decreased further, crossing
the horizontal dashed lines at earlier Nq values. Figure 3.14a shows that the LEA
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is no longer reached for Nq ≥ 5, which means that the inaccuracy in the solution
occurs at an earlier stage compared to the previous test. This example reinforces
the finding that smaller h and J coefficients lead to a bigger impact of the DAC
quantization errors.

Additionally, as shown in Figure 3.13a and Figure 3.14a, the error increases with
Nq once the LEA can no longer be achieved. This might be explained by Equa-
tion (3.32), where the errors δhi and δJij accumulate. As Nq increases, the number
of qubits also increases, amplifying the cumulative error and reducing the accuracy
of the solution.

3.3 Adaptive Number Representation

As discussed in SP2, the quality of the solution generally decreases as the problem
size increases. Moreover, in SP3 we observed that the solution cannot be arbitrarily
improved by simply increasing the precision of the number representation, because
this also leads to smaller h and J values, which in turn increases the impact of
DAC-induced deviations.

To address this issue, we developed an adaptive number representation that pro-
gressively improves the accuracy of the solution, in line with the iterative nature of
the partitioned approach. The key aspect of this method is that we use a variable
representation range for the real numbers, unlike the previously fixed range of [0, 1].
In each iteration, the range limits for the next iteration are adjusted based on the
solutions obtained from the current and previous iterations. This method relies on
the assumption that the coupling progressively contracts toward convergence in each
iteration.
For each real-valued nodal variable ûi, the limits of the representable range are ad-
justed according to one of three cases, which are illustrated in Figure 3.15. In these
sketches, the blue dots represent the current solution û

(j)
i and the previous solution

û
(j−1)
i . The black crosses indicate the upper and lower limits for the current itera-

tion (û
(j)
i,max and û

(j)
i,min), while the green crosses show the updated limits for the next

iteration (û
(j+1)
i,max and û

(j+1)
i,min ).
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Figure 3.15: Principle of the adaptive number representation for updating the limits of
the representation range.

Mathematically, the adjustment of the upper and lower limit can be written as:

û
(j+1)
i,max =

��
û
(j−1)
i , û

(j)
i < û

(j−1)
i ,

û
(j)
i,max − c(û

(j)
i,max − û

(j)
i ), û

(j)
i = û

(j−1)
i ,

û
(j)
i,max, û

(j)
i > û

(j−1)
i .

(3.33)

û
(j+1)
i,min =

��
û
(j)
i,min, û

(j)
i < û

(j−1)
i ,

û
(j)
i,min − c(û

(j)
i,min − û

(j)
i ), û

(j)
i = û

(j−1)
i ,

û
(j−1)
i , û

(j)
i > û

(j−1)
i .

(3.34)

Using the adaptive number representation, three different solution scenarios can be
addressed, which are illustrated in Figure 3.16. The solution is expected to converge
to the desired value, indicated by the red dashed line in the diagrams. The three
scenarios include an oscillatory solution (Figure 3.16a), a monotonically increasing
solution (Figure 3.16b), and a monotonically decreasing solution (Figure 3.16c).
For solutions that do not fulfill the underlying assumption of convergence and con-
traction, the adaptive number representation can be extended with an additional
safety mechanism. If the current solution reaches either the upper or lower limit
of the representation range, the corresponding limit can be adjusted to expand the
representation range in that direction. The iteration is then repeated, ensuring that
the solutions always remain within the representation range.
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Figure 3.16: Adaptive number representation for three different scenarios.

SP4: Adaptive Number Representation vs. Fixed Representation

To analyze the effectiveness of the adaptive number representation in improving
solution accuracy, we compare it against a fixed representation in this test case.

For this test, the number of elements was set to Ne = 2, and the number of qubits
per node was set to Nq = 8. We conducted experiments for two scenarios: one with
a fixed representation range of [0, 1] and another using the adaptive representation.
The relevant test parameters are provided in Table 3.5.

Table 3.5: Settings for SP4.

Ne Nq Rep.
Range

Rep.
Method

Trials p0

2 8 {fixed, adaptive} binary 8 U(0.1, 0.5)

For each representation method, we perform eight independent trials and evaluate
the error εH1 , as defined in Equation (3.31), at each iteration. The average error
across the trials is analyzed to compare the performance of both representation
methods over the iterations.
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Figure 3.17: Comparing fixed and adaptive range methods with Nq = 8.

As seen in Figure 3.17, the solution accuracy for the fixed range case remains sim-
ilar across all iterations. In contrast, for the adaptive number representation, the
solution accuracy improves significantly over the iterations, demonstrating the ef-
fectiveness of the adaptive number representation. Employing the adaptive number
representation in our test cases improves the accuracy of the solution with each it-
eration, as the representation range of individual nodal displacements ûi contracts.
Additionally, the adaptive number representation trials converged on average after
8 iterations, whereas the fixed range trials required an average of 10 iterations to
converge. This means that, in this test case, the improved solutions obtained in
each iteration using the adaptive number representation led to faster convergence.
In a modified test, the number of qubits per node was reduced to Nq = 3. The re-
sults are presented in Figure 3.18. For the fixed range trials, the average number of
iterations required for convergence was 4. However, it is important to note that the
error of the converged solutions exceeded a value of 10−1, indicating that these re-
sults were highly inaccurate. In contrast, the adaptive number representation trials
required an average of 10 iterations to converge, but the accuracy of the converged
solution was significantly improved, with the error reduced to just above 10−3.
This result highlights that the adaptive number representation can be used effec-
tively with far fewer qubits per node, which reduces the size of the problem on the
QPU. As shown above, smaller problem sizes are easier for the QPU to process,
resulting in fewer chains and better solution quality. Additionally, using a smaller
Nq ensures that the h and J step sizes on the QPU do not approach the limits of its
resolution, allowing the LEA to be consistently achieved. This will be demonstrated
in the next example.
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Figure 3.18: Comparing fixed and adaptive range methods with Nq = 3.

SP5: Convergence Behavior of the Adaptive Number Representation

In this test case, the solution process using the adaptive number representation will
be discussed in detail. The test case settings are provided in Table 3.6. The dis-
placement function u(x) will be shown for each iteration to analyze the convergence
behavior and other relevant aspects of the adaptive number representation.

Table 3.6: Settings for SP5.

Ne Nq Rep.
Range

Rep.
Method

Trials p0

3 3 adaptive binary 1 0.5

The solution of this test converged after 9 iterations. The displacement over the
length of the rod for the first 6 iterations is shown in Figure 3.19. In addition to the
computed solution u(x), the analytical solution u∗(x) and the LEA are plotted for
comparison. The black crosses indicate the possible values that the solution for each
node can take. Because we have chosen Nq = 3, there are 23 = 8 possible values
for each node (except for the last one where the displacement boundary condition
is applied).
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Figure 3.19: Displacement function u(x) over the first six iterations of the adaptive
number representation method. The analytical solution u∗ and the LEA are shown for
comparison.

Focusing on the first iteration (c.f. Figure 3.19a), we observe that the QA solution
lies below the analytical solution. In terms of the nodewise distance between the
two solutions, there are alternatives closer to the analytical solution. However,
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as discussed in Chapter 2, the potential energy (which is our objective function)
depends not only on u(x) but also on its derivative u↔(x). This means that the
best solution is not simply the one closest to the analytical solution, which would
minimize the error in the L2 norm. This is confirmed by the fact that the LEA
matches the QA solution.

Next, we will discuss the solution in iteration 3 (c.f. Figure 3.19c). Here, the first
contraction of the representation range is performed. As discussed, this contraction
is based on the two previous iterations (iteration 1 and 2). Due to the fact that

in iteration 2 every nodal solution û
(2)
i was less than the corresponding solution of

iteration 1, the upper limits are set to the solutions û
(1)
i . The lower limits remain

unchanged.

In iteration 6 (c.f. Figure 3.19f), we can see that the representation ranges have been
contracted tightly around the converging solution. This allows for a high precision
in the representation of the real-valued nodal solutions û

(6)
i , resulting in a low error

compared to the analytical solution.
It is important to note that, in contrast to the fixed number representation, improv-
ing the precision by adjusting the representation range does not lead to smaller h
and J coefficients on the problem embedded in the QPU.
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(a) Number representation with range [0, 1].
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(b) Number representation with range [0, 1
2 ].

Figure 3.20: Comparison of the user-specified problem and the embedded problem for
two different representation ranges of a real number.

This can be demonstrated using a simple example where a real number representa-
tion is performed with Nq = 2 qubits in two different representation ranges. In Fig-
ure 3.20a, we choose a representation range of [0, 1]. According to Equation (3.12),
this results in QUBO coefficients of Q11 = 1

3
and Q22 = 2

3
, corresponding to a res-

olution of 1
3
. The right side of the figure shows the resulting h coefficients of the

embedded Ising model after conversion and scaling. As seen, the scaling ensures
that the supported range of the QPU is fully utilized, leading to h1 = 2 and h2 = 4.
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In Figure 3.20b, we reduce the representation range to [0, 1
2
], improving the res-

olution to 1
6
, thus allowing real numbers to be represented with higher precision.

However, as shown on the right side of Figure 3.20b, the h coefficients of the em-
bedded problem remain unchanged compared to Figure 3.20a. This demonstrates
that improving the precision by reducing the representation range does not affect
the coefficients of the embedded Ising problem.
This is a key advantage over the fixed representation range, where precision can only
be improved by increasing the number of qubits per node Nq. A higher Nq leads
to smaller coefficients in the embedded problem, making it more sensitive to minor
deviations, such as DAC quantization errors, as previously discussed.

Returning to the analysis of Figure 3.19, we can see that in all plots, the QA solution
matches the LEA, which means that the best possible solution can be found in each
iteration. This indicates that, with the adaptive number representation, the problem
can be effectively processed by the QPU.
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CHAPTER4
Dynamic Problem

In contrast to the static problems discussed so far, many real-world FSI problems
involve dynamic processes. This makes it crucial to develop and analyze methods
that incorporate QA for such problems as well. As discussed in Chapter 2, the
partitioned approach combined with Hamilton’s principle should serve as the basis
for addressing these kinds of problems. However, before applying this methodology
to FSI problems, it is essential to first evaluate whether Hamilton’s principle is
fundamentally suitable for formulating the structural subproblem as an optimization
problem, which allows the solution via QA. Therefore, this chapter focuses solely on
the structural problem. In Section 4.1, a simple example is introduced to illustrate
the use of Hamilton’s principle as a minimization technique, and the results of
this approach are discussed in Section 4.2. The subsequent section addresses the
limitations identified and introduces an adapted method with the aim of overcoming
these issues.

4.1 Methods for the Dynamic Problem

tstart tend

x(t)

t

x

Figure 4.1: Path x(t) of a particle with known initial and final positions.

For addressing the dynamic structural problem, we use a highly simplified example
where performing the analysis still provides all the necessary findings to answer the
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question from above. One of the main simplifications is the transition from a con-
tinuum to a discrete model, reducing the problem to a single-particle system. This
means that the unknown is not the time-dependent displacement u(t) as introduced
in Chapter 2, but rather the position x(t) of the particle. Specifically, we consider
a single particle of mass m moving vertically in the earth’s gravitational potential,
defining this upward direction as the positive x-direction. As required by Hamilton’s
principle, we consider that the initial position x(tstart) and the final position x(tend)
of the particle are known quantities. We can imagine the particle as a ball thrown
vertically upward at tstart, where x is the height above the ground, before descending
back to a specific height at tend. The goal is to determine the path or trajectory x(t)
of the ball. An example of such a path is illustrated in Figure 4.1.

To determine the motion of the particle (i.e., the correct path x(t)) using Hamilton’s
principle, we must first specify the kinetic and potential energy of the particle. The
potential energy Π is defined as

Π = mgx(t), (4.1)

where g is the gravitational acceleration. The kinetic energy is given by

K =
1

2
mv(t)2, (4.2)

where v = dx
dt

is the velocity of the particle. With the Lagrangian being L = K−Π,
the action S is given by

S =

� tend

tstart

L dt =

� tend

tstart

1

2
mv(t)2 −mgx(t) dt. (4.3)

tN = tend t

x

t0 = tstart t1 ti−1 ti tN−1... ...

x̂0

x̂1

x̂i−1

x̂i

x̂N−1

x̂N

Δt1 Δti ΔtN

Figure 4.2: The path x(t) composed into Ne time intervals.

To ensure that the method is also applicable to problems with more complex mo-
tions involved, we adopt a discretization approach. Unlike the static case, where
discretization is performed in space, here we discretize in time. Note that for con-
tinuum systems a discretization in both space and time must be employed. We

46 Chapter 4. Dynamic Problem



compose the path x(t) of the particle into Ne time intervals Δti, where i = 1, ..., Ne,
as shown in Figure 4.2. Each time interval Δti spans from ti−1 to ti. At the interval
boundaries, we consider the path as unknown nodal position x̂i, resulting in Ne + 1
nodes. The first and the last nodal position x0 and xNe are known quantities. We
define the path x(t) as follows:

x(t) =
Ne�
i=0

x̂iΦi(t), (4.4)

where Φi(t) are nodal interpolation functions. As for the spatial discretization in the
static problem formulation, linear interpolation functions are chosen for simplicity:

Φi(t) =

��������
0, t < ti−1,
t−ti−1

ti−ti−1
, ti−1 ≤ t < ti,

t−ti+1

ti−ti+1
, ti ≤ t < ti+1,

0, t ≥ ti+1.

(4.5)

The velocity of the particle is obtained as:

v(t) =
Ne�
i=0

x̂iΦ̇i(t), (4.6)

where Φ̇i(t) = dΦi(t)
dt

represents the derivative of the interpolation functions with
respect to t. By substituting Equations (4.4) and (4.6) into Equation (4.3), the
action in one individual time interval Δti is given by:

Si =

� ti

ti−1

1

2
m(

Ne�
i=0

x̂iΦ̇
2
i )−mg(

Ne�
i=0

x̂iΦdt) (4.7)

=

� ti

ti−1

1

2
m(x̂i−1Φ̇i−1 + xiΦ̇i)

2 −mg(x̂i−1Φi−1 + xiΦi) dt (4.8)

The total action is determined by summing the contributions of all intervals:

S =
Ne�
i=1

Si. (4.9)

As discussed in Section 3.1, a QUBO problem requires binary variables. Therefore,
the real-valued nodal positions x̂i must be expressed using the number represen-
tation previously introduced to convert them into binary variables. However, for
the dynamic problem, our focus is to verify whether Hamilton’s principle is funda-
mentally suitable for formulating dynamic problems as optimization problems. To
study this, we begin with solving the problem using classical methods that are ca-
pable of dealing with real-valued variables. In a subsequent step, the real number
representation can then be applied to solve the optimization problem using QA.

As stated in Chapter 2, the action S attains generally a minimum or saddle point
for the true path, and only for sufficiently short paths it is always a minimum.
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Additionally, for 1D potentials Π(x) where the condition ∂2Π
∂x2 ≤ 0 holds, the action

S is always minimized for the true path, regardless of the path length [8]. Since this
condition also applies to the potential energy in our case (c.f. Equation (4.1)), we
can formulate the path problem as a minimization problem:

min
x̂i

{S[x̂i]} , (4.10)

Therefore, minimizing the action S determines the true nodal positions x̂i,opt.

4.2 Results for the Dynamic Problem

In test case dynamic problem 1 (DP1), we demonstrate the suitability of the pre-
sented formulation for solving the problem introduced in Section 4.1 in a single
minimization step. The initial position x(tstart) = xstart and the final position
x(tend) = xend are specified as boundary conditions.
To validate the presented minimization method, the following equations are used to
compute the analytical reference solution. The path of the particle can be computed
as

x∗(t) = xstart + vstart(t− tstart)− 1

2
g(t− tstart)

2, (4.11)

where vstart is the initial velocity, which can be computed using the boundary con-
dition x∗(tend) = xend:

vstart =
xend − xstart +

1
2
g(tend − tstart)

2

tend − tstart
. (4.12)

For the numerical result, the time span is discretized into Ne = 8 time intervals,
and the problem is solved using the proposed minimization method. The settings
for this test case are summarized in Table 4.1.

Table 4.1: Settings for DP1.

m g tstart tend xstart xend Ne

1 9.81 0 3 0 5 8
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Figure 4.3: Comparison of the numerical solution x(t) and the analytical solution x∗(t)
for the boundary value problem.

The resulting numerical solution x(t) of the particle for the presented test case is
shown in Figure 4.3 as the blue solid line. For comparison, the analytical solution
x∗(t) is displayed as the orange dashed line. It can be observed that the numerical
solution x(t) matches the analytical solution exactly at the nodal points (blue dots).
In addition, linear interpolation between the nodes can be seen.

This test case demonstrates that the proposed method is capable of solving a dy-
namic problem formulated as a boundary value problem. However, there is a sig-
nificant limitation to this approach. In typical dynamic problems, the position (or
deformation, in the case of a continuous problem) at the end of a specific time-span
is unknown. Instead, such problems are formulated as initial value problems, where
the initial position and velocity are given, and the motion is computed based on
these initial conditions.

To show that the current method is not capable of solving initial value problems, the
previous test case is modified to prescribe initial values instead of boundary values.
Specifically, instead of specifying the final position xend, the initial velocity vstart =
dx
dt


t=tstart

was additionally provided. The initial velocity was set to vstart = 16.382
to achieve the same analytical path as in the previous example.
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Figure 4.4: Comparison of the numerical solution x(t) and the analytical solution x∗(t)
for the initial value problem.

Figure 4.4 visualizes the result of this test. It can be seen that the numerical solution
x(t) does not match the correct analytical solution.

To address this limitation and adapt Hamilton’s principle as a minimization principle
for solving initial value problems, the next chapter introduces a modification to the
current method.

4.3 Modified Method for the Dynamic Problem

The modified method is based on the idea of transforming the initial value problem
into a boundary value problem. Therefore, we first approximate the trajectory x(t)
in each time interval using a linear approximation. In the second step, this linear
approximation is corrected by quadratic terms. The coefficients of the quadratic
terms are determined using Hamilton’s principle.

We introduce the method by considering one time interval Δti of a discretized path
x(t) (c.f. Figure 4.5). As can be seen in the sketch, the interval spans from ti−1 to
ti, where x̂i−1 and x̂i are the nodal positions of the unknown path x(t). We assume
that x̂i−1 is known and x̂i is unknown. The goal is to calculate the unknown path
x(t) in this time interval using Hamilton’s principle as a minimization principle.
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Figure 4.5: Time interval Δti with the nodal position values x̂i−1 and x̂i and the path
x(t) in between. The linear approximation function x̄(t) and the unknown quadratic
function x̃(t) transform the initial value problem into a boundary value problem.

To accomplish this, we begin by computing a linear approximation x̄(t) of the un-
known path in the interval Δti. This approximation can be written as

x̄(t) = x̂i−1 + ẋ(ti−1)(t− ti−1), (4.13)

where ẋ(ti−1) =
dx
dt


t=ti−1

can be computed from x(t) of previous time interval Δti−1.

We define x̄(ti) as a new position x̄i = x̄(ti). Next, we introduce a quadratic function
x̃(t), which also spans from ti−1 to ti:

x̃(t) = αi + βi(t− ti−1) + γi(t− ti−1)
2. (4.14)

Here, αi, βi and γi are unknown coefficients for the constant, linear and quadratic
term of the function. As can be seen in the sketch Figure 4.5, this quadratic func-
tion has predefined endpoints that match the endpoints of the linear approximation
function x̄(t). Thus, we can formulate two boundary conditions from which two of
the three unknown coefficients of x̃(t) can be calculated. Substituting t = ti−1 into
x̃(t) and requiring it to be equal the position x̂i−1, we can directly determine the
coefficient αi:

I) x̃(ti−1) = x̂i−1 ⇒ αi = x̂i−1. (4.15)

The second boundary condition ensures that the quadratic function x̃(t) matches
the linear approximation x̄(t) at the endpoint x̄i. This leads to an expression for βi

depending on the coefficient γi:

II) x̃(ti) = x̄i ⇒ βi = ẋ(ti−1)− γi(ti − ti−1). (4.16)
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Now we can substitute the expressions for αi and βi into Equation (4.14), which
leads to

x̃(t) = x̂i−1 + ẋ(ti−1)(t− ti−1) + γi(t− ti−1)(t− ti). (4.17)

The only remaining unknown coefficient in this quadratic function is γi. With
Equation (4.14) to Equation (4.17), we have formulated a boundary value problem,
where the correct value for γi must be found to determine the unknown function x̃(t).
To determine γi, we can use Hamilton’s principle by defining the action dependent
on x̃(t):

Si[x̃(t)] =

� ti

ti−1

Ki[x̃(t)]− Πi[x̃(t)] dt. (4.18)

There are two possible ways to determine the unknown path x(t) using the presented
method.

The first approach involves minimizing the action for each time interval in an itera-
tive manner. Specifically, for interval Δti, the action, as defined in Equation (4.18),
is minimized with respect to the unknown coefficient γi:

min
γi

{Si[x̃(t)]} (4.19)

Once the optimal solution γi,opt is determined, the quadratic function x̃i(t) is fully
defined. The path x(t) in the interval Δti can then be obtained by correcting the
linear approximation x̄(t) with the quadratic term:

x(t) = x̄(t) + γi,opt(t− ti−1)
2 (4.20)

= x̂i−1 + ẋ(ti−1)(t− ti−1) + γi,opt(t− ti−1)
2. (4.21)

The solution for x(t) also determines the values x̂i and ẋ(ti), which are then used as
inputs for the linear approximation x̄(t) of the next time interval Δti+1. Repeating
this process for all intervals results in the complete path x(t).

DP2: Results of the iterative Approach

Test case DP2 demonstrates the iterative results. The settings for this test case are
provided in Table 4.2.

Table 4.2: Settings for DP2.

m g tstart tend xstart vstart Ne

1 9.81 0 3 0 16 6

Figure 4.6 shows the computed path x(t) obtained by applying the presented method
iteratively for each time interval. The dashed green and red lines represent the
functions x̄(t) and x̃(t), respectively, for each interval. The analytical solution x∗(t)
is included for comparison. As seen, the two curves are identical. The perfect
representation of x∗(t) can be explained by the fact that x∗(t) is a quadratic function,
just like the quadratic approximation x(t).
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Figure 4.6: Path x(t) computed iteratively compared with the analytical solution x∗(t).

However, while the iterative method demonstrates correctness, it has limited practi-
cal significance for problems we consider. This is because the minimization in each
time interval is not computationally demanding, and thus, the advantages of QA
cannot be effectively utilized.

Thus, in a second approach, we aim to address all time intervals simultaneously,
avoiding any iteration. Therefore, the action Si of each interval is formulated and
added to the total action S, with all coefficients γi treated as unknowns:

S =
Ne�
i=1

Si[x̃(t)]. (4.22)

The complete action S is minimized in a single step to determine all γi,opt at once.

DP3: Results of the Direct Approach

To test this direct approach, the test case settings of DP2 are used. The results are
shown in Figure 4.7.
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Figure 4.7: Path x(t) computed using the direct approach compared with the analytical
solution x∗(t).

As seen in Figure 4.7, the direct method produces incorrect results. The failure of the
direct method lies in the coupling of the coefficients γi across time intervals, which
results from the boundary conditions Equations (4.15) and (4.16). Specifically, the
path x(t) in each interval Δti is influenced not only by its own coefficient γi, but
also by the coefficients of all previous intervals. For example, the coefficient γ1 of
the first interval affects not only x(t) in Δt1, but also influences the paths of all
subsequent intervals Δt2,Δt3, ...,ΔtNe . This effect arises because the start point
x̂i−1 and the slope ẋ(ti−1) at the beginning of each interval are determined by the
boundary conditions, which are influenced by earlier intervals.
As a result, when minimizing the total action S, the direct approach allows earlier
coefficients (e.g., γ1) to adjust the paths in all subsequent intervals in order to find
the minimum value of the action S. This leads to a smaller action that is not
physically correct.
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(a) Path x(t) computed using the direct approach.
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(b) Coefficients γi in each time interval.

Figure 4.8: Path x(t) and the coefficients γi in each time interval.

This issue is illustrated in (Figure 4.8), where the coefficients γi in the time intervals
are displayed in addition to the result of the test case of the previous test. The
coefficient γNe of the last interval, which only influences its own path, matches
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the analytical solution γ∗ = −g
2
= −4.905. In contrast, the coefficients in earlier

intervals increasingly deviate from γ∗. These deviations occur because the earlier
coefficients influence not only their assigned paths but also all subsequent ones.
Consequently, the calculated path x(t) has a total action of Sopt = −413.5, which is
a significantly lower value than the physically correct value of S∗

opt = −162.5. This
confirms that the direct method fails to find the physically correct solution.

In summary, the modified method so far is unsuitable for solving dynamic initial
value problems as a one-step optimization problem utilizing Hamilton’s principle.
The only way to obtain a physically correct solution using this method is by solving
the problem iteratively. This approach ensures that the boundary conditions in
each interval are satisfied independently before moving on to the next, allowing
each coefficient γi to be calculated based solely on its own path. However, the
iterative process has limited practical significance for this thesis, as the individual
minimizations in each interval are not computationally expensive and, therefore, the
advantages of QA cannot be effectively utilized.
Consequently, this chapter emphasizes the need to develop alternative approaches
to effectively handle dynamic problems using QA.
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CHAPTER5
Conclusion

In this study, we explored QA for coupled structural analysis problems. Specifically,
we focused on developing methods that allow using QA to solve FSI problems. This
should serve as a basis for novel optimization strategies for FSI problems through
the efficient use of QA. We based our methods on the partitioned approach, where
fluid and structural problems are treated separately. In this context, we investigated
static and dynamic problems.

For the static problem, we reformulated the structural subproblem by applying the
principle of minimum potential energy and expressing the system’s energy in QUBO
form. This method was validated on a state-of-the-art D-Wave quantum annealer,
with the results demonstrating the feasibility of QA for solving simplified problems,
such as the static piston problem.
The findings highlighted several key aspects regarding the practical application of
QA for such problems. First, the real number representation method played a crit-
ical role, with the binary representation generally outperforming the random rep-
resentation in terms of accuracy. However, increasing the precision of the number
representations beyond a certain threshold resulted in a decrease in solution quality.
This issue became more pronounced with increasing problem size, characterized by
the number of elements. The decreasing solution quality is due to hardware-induced
inaccuracies, such as DAC quantization errors.
To address these limitations, we introduced a method with an adaptive number
representation. This method makes use of the iterative solution process of the par-
titioned approach by adjusting the range of representable real numbers in each step,
resulting in significantly improved solution quality. Additionally, fewer qubits per
node were required, which is particularly advantageous given the current hardware
limitations of QA.

In the second part of the thesis, we addressed a dynamic structural problem as a
basis for solving dynamic FSI problems. We proposed a method based on Hamilton’s
principle, formulating the problem as an optimization task suitable for QA. For
boundary value problems, this approach produced correct results. However, real-
world dynamic problems are typically initial value problems. To handle initial value
problems, we developed a method that reformulates an initial value problem into
element-wise boundary value problems through linear approximation. Iteratively
applying this method to every element yielded correct results. However, the iterative
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application is of limited practical significance to optimization problems we aim to
solve efficiently using QA in one go. When using the method in a single step,
coupling between the unknown coefficients led to incorrect results.
This circumstance creates a need for further research to adapt the method or develop
new approaches to formulating dynamic problems suitable for QA. This could involve
refining the approach based on Hamilton’s principle or exploring entirely different
principles.

Additionally, it is worth investigating to what extent a monolithic approach to solv-
ing FSI problems is suitable for QA. Although less modular than the partitioned
approach, a monolithic approach could allow QA to solve the problem in a sin-
gle step, potentially offering certain advantages. However, the monolithic approach
comes with considerable challenges. Combining the structural and fluid subprob-
lems into a single system increases problem complexity, requiring a larger number
of qubits. Given the current hardware limitations of QA, this could impose signif-
icant constraints or even make practical implementation impossible. Therefore, it
is important to evaluate the limitations against the potential benefits to determine
whether a monolithic approach is an appropriate alternative.
The next step is to build on these methods and findings to develop approaches that
use QA to solve FSI optimization problems. This would allow QA to fully exploit its
strength in finding optimal solutions in complex solution spaces, fast and effectively.

Although current QA hardware is limited by the number of qubits and hardware-
induced inaccuracies, it is essential to explore innovative strategies that enable its
effective use for engineering problems such as FSI. This study serves as a foundation
for developing methods, identifying limitations, and finding strategies to overcome
these limitations, laying the groundwork for future advancements in using QA for
this engineering field.
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