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Landauer’s limit on heat dissipation during information erasure is critical as devices shrink, requiring
optimal pure-state preparation to minimize errors. However, Nernst’s third law states this demands infinite
resources in energy, time, or control complexity. We address the challenge of cooling quantum systems
with finite resources. Using Markovian collision models, we explore resource trade-offs and present
efficient cooling protocols (that are optimal for qubits) for coherent and incoherent control. Leveraging
thermodynamic length, we derive bounds on heat dissipation for swap-based strategies and discuss the
limitations of preparing pure states efficiently.
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Introduction—One of the most essential tasks in quan-
tum science is preparing pure quantum states, equivalent to
cooling physical systems or erasing information. This is a
critical prerequisite for quantum computation, where the
output state from a calculation must be erased before it can
be reused as an input for the next [1]. Failure to create
sufficiently pure states leads to computational errors and
reduces the accuracy of timekeeping [2,3] and measure-
ment [4]. Without adequate purity, possibly due to limited
resources or control, the frequency of gate and measure-
ment errors increases, potentially relegating any “quantum
advantage” to mere conjecture.
In this sense, thermodynamics links the degree of

control over a system with one’s capacity to perform
useful tasks. Landauer established that a minimum

amount of heat must be dissipated when erasing infor-
mation encoded in any physical system, formalizing a
connection between physics and information [5]. This
limit applies to classical and quantum theory, gaining
prominence as computing elements are miniaturized and
become more susceptible to heat-induced errors. Efforts to
saturate the Landauer bound involve engineering quasi-
static interactions between information-bearing systems
and controllable machines. However, determining the
necessary conditions for Landauer-cost erasure has been
impeded by inequivalent assumptions across experimental
platforms.
A breakthrough by Reeb and Wolf reformulated the

Landauer limit in the context of quantum information,
providing platform-agnostic insights [6]. They demon-
strated the need for an infinitely large energy gap in an
infinite-dimensional machine to achieve perfect Landauer-
cost erasure. Yet, infinite resources are not practically
accessible, leading to the challenge of optimizing cooling
with finite resources [7,8]. When resources are limited,
factors such as the energy-level structure of the cooling
machines and the complexity of their interactions with the
target system influence the achievable final purity and
associated energy cost, leading to a three-way trade-off
among energy, time, and control complexity [9].
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Here, we explore the relationship between energy cost
and time in the finite-resource regime. This general setting
is difficult to analyze, as cooling performance depends on a
complex interplay of microscopic details. To make
progress, we focus on cooling procedures implemented
via a Markovian collision model [10–15], where the target
system is cooled through a sequence of unitary interactions
with uncorrelated thermal machines. We connect these
models to continuous trajectories in the state space and use
the geometric technique of thermodynamic length [16–21]
to bound the cooling performance. For a simple but
insightful collision model based on swap operations, we
derive the associated thermodynamic metric and optimal
cooling protocols for the case of qubit systems. Our Letter,
thus, contributes to the understanding of resource limita-
tions for the important task of preparing pure states. This
also represents a first step into connecting the framework of
thermodynamic geometry with (Markovian) collision mod-
els, establishing methods that may prove valuable for
analyzing cooling procedures in more complicated settings.
Framework—We consider cooling a target quantum

system S via unitary interactions with another system M
composed ofN subsystems fM1;…;MNg calledmachines.
We describe the procedure by a Markovian collision model
[10–15]. Here, the target unitarily interacts with a fresh
machine at each time step, reflecting the property of
memorylessness and rapid machine rethermalization
between control operations (see Fig. 1).
All systems X∈ fS;M1;…;MNg have an associated

Hilbert space HX, on which states ϱX are represented

as positive semidefinite, unit-trace operators. Each system
has a Hamiltonian whose spectral decomposition fixes

its energy structure, HX ≔
PdX−1

i¼0 EðiÞ
X jiihij. We consider

finite-dimensional systems dX ≔ dimðHXÞ < ∞ and

assume that Eðiþ1Þ
X ≥ EðiÞ

X , with Eð0Þ
X ≔ 0. With respect to

any HamiltonianH, the thermal state at inverse temperature
β ≔ ðkBTÞ−1 is τðβ; HÞ ≔ Z−1ðβÞ exp ð−βHÞ, where
ZðβÞ ≔ tr½exp ð−βHÞ� is the partition function; when
unambiguous, we will write τðβÞ. The thermal state
uniquely maximizes entropy SðϱÞ ≔ −tr½ϱ log ϱ� for fixed
average energy EðϱÞ ≔ tr½Hϱ� providing a suitable initial
machine state for cooling schemes (formalized below).
Boundary conditions: We investigate procedures that

transition a target system from an initial state ϱS to a final
one ϱ0S while concurrently transforming the collection of
machines from an initial thermal state τMðβÞ to a final state
ϱ0M. This transformation occurs via the global evolution
described by

ϱ0SM ¼ U½ϱS ⊗ τMðβÞ�U†: ð1Þ

The goal of cooling is to manipulate the target so that the
majority of its populations are transferred to the lowest
energy eigenstates. Any meaningful notion of cooling can
be captured by a majorization relation (see Supplemental
Material, Sec. I [22]); for simplicity, we focus on processes
that take the target from a Gibbs state characterized by an
initial β to a final one with βf ≔ λβ, where λ > 1. This fixes
the boundary conditions.
Structural and control resources: Cooling performance

is influenced by several factors, including the dimensions
dX and Hamiltonians HX of all systems, the interaction
range k (the number of systems involved in each inter-
action), the number of machines N, and the dissipated heat
ΔEM ≔ tr½HMðϱ0M − ϱMÞ�, which establishes a lower bound
for the energetic cost of any implementation. We distin-
guish structural resources—such as dX and HX, which are
fixed independently of the procedure—from control
resources linked to the protocol, such as the interaction
range k, total time duration (the number of time steps N for
fixed control complexity k), and the dissipated heat ΔEM.
Type of control: We consider two extremal control

paradigms: coherent and incoherent (see Fig. 1) [9,28,29].
Coherent control allows a work source to implement any
system-machine unitary, enabling arbitrary transformations
as described in Eq. (1). In contrast, incoherent control
employs energy-conserving unitaries between the target
and machines at different temperatures to drive all heat and
entropy flows. Coherent control represents the highest level
of control in a thermodynamic setting, while incoherent
control assumes less control, requiring only the switching
on and off of interaction Hamiltonians. The settings of heat-
bath algorithmic cooling [30–36] and of autonomous
cooling [37–43] are contained within these paradigms,
respectively.

FIG. 1. Framework. A system S is cooled via sequential
interactions with a system M comprising N machines, using a
Markovian collision model. In the coherent-control setting (top),
arbitrary unitaries Ui act between S and initially thermal
machines τMi

ðβ; HMi
Þ. In the incoherent-control setting (bottom),

M splits into hot (H) and cold (C) systems at inverse temperatures
βH and β, respectively. Here, the unitaries are restricted to be
energy conserving, i.e., ½Ũi; HS þHCi

þHHi
� ¼ 0. Moreover,

we allow repeated interactions between the target and copies of
hot and cold machines, which we call a stage (gray outline). The
energy cost is the change in energy of the appropriate machines,
ΔEX for X ∈ fM;C;Hg.

PHYSICAL REVIEW LETTERS 134, 070401 (2025)

070401-2



Cooling schemes: We now define the concept
of a cooling scheme, encompassing all aforementioned
dependencies.
Definition 1—A cooling scheme is defined by the tuple

ðB;S; C;T Þ. Here, B denotes the boundary conditions of
the problem, namely, the initial and final temperature of the
target system. The structural resources S include β, HX,
and dX, i.e., the initial temperature, Hamiltonians, and
dimensions of all systems. The control resources C
encompass the total number of machines N, the interaction
range k, and the energy cost ΔEM. Finally, the type T
indicates whether the procedure operates with the coherent
or incoherent control.
Notably, Nernst’s third law of thermodynamics and

Landauer’s bound exemplify instances where particular
resource configurations preclude achievability. Nernst’s
law states that infinite resources are required to prepare a
pure state [44–46]; in our context, this implies an infinitely
large energy gap in the machine is necessary [6,9,28].
Similarly, Landauer’s bound establishes that the entropy of
the target cannot be reduced by Δ̃S ≔ SðϱSÞ − Sðϱ0SÞ via
interactions with a thermal machine without dissipating at
least βΔEM [1,5,6,47]. Delineating the boundary of attain-
able cooling procedures for different resource configura-
tions represents a significant open problem [8,9]. Here,
we focus on achievable schemes, optimizing over
finite resources to develop effective cooling procedures.
Specifically, we seek the optimal energy-level structure of
machines fHMi

gi and interactions fUigi to minimize the
energy cost of a cooling scheme characterized by fixed
control complexity k and finite duration, represented
by the number of steps N. To achieve this objective,
we leverage the geometric concept of thermodynamic
length [16,18,19,21].
Thermodynamic geometry—The notion of thermo-

dynamic length enables the characterization of path-
dependent thermodynamic quantities, such as (dissipated)
work, via a geometric approach [18,21,48]. To define this
concept, consider a path in Hamiltonian space HðtÞ para-
metrized by t∈ ½0; 1�. The thermodynamic length associ-
ated to such a path is given by

L ≔
Z

1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covt

�
βḢðtÞ; βḢðtÞ�q

dt; ð2Þ

where ḢðtÞ ≔ ∂tHðtÞ and

covtðA;BÞ ≔ tr½J tðAÞB� − tr½τðtÞA�tr½τðtÞB�; ð3Þ

with J tðAÞ ≔
R
1
0 τðtÞ1−xAτðtÞxdx and τðtÞ ≔ τ½β; HðtÞ�.

The length squared L2 is related to the dissipated heat
or excess work when slowly driving HðtÞ while in contact
with a bath at inverse temperature β [17–20]. The minimal
length connecting two end points Hðt0Þ and Hðt1Þ mini-
mizes the dissipation along a path in Hamiltonian space

and is found by solving the geodesic equations; for
commuting Hamiltonians, an analytic solution to Eq. (2)
is known (as shown in Ref. [49]).
The notion of thermodynamic length is typically

employed in slowly driven systems [19–21,50–53] or
discrete-time processes [48,54]. We will show that this
useful concept can also be applied to the setting of
Markovian collision models in the limit of a large number
of machines N. The key observation here is that slowly
changing the system’s Hamiltonian can be approximated by
a sequence of simple swap interactions in which the system
interacts with thermal machine subsystems with carefully
chosen Hamiltonians. This approach enables to character-
ize the backaction of the process in the machine or bath, in
contrast to previous works, e.g., Refs. [19,48,54]. This
connection allows us to develop new insights to our
question of interest: Given the ability to apply N unitary
interactions (of fixed complexity k) between system and
machines, what is the optimal machine energy-level dis-
tribution for cooling the target system?
Coherent control—In the coherent-control setting, given

infinite resources, the Landauer bound sets the ultimate
limit on cooling. We first focus on the role of finite
structural complexity in said scenarios. We strive to identify
the structural complexity that minimizes the energy cost
when the system is cooled via a sequence of N < ∞
bipartite (k ¼ 2) interactions.
Theorem 1—In the coherent-control setting, given a

qudit system with Hamiltonian HS, the minimum energy
cost of cooling from a thermal state τSðβ; HSÞ to τSðλβ; HSÞ
using swaps between the system and a fresh qudit machine
with arbitrary Hamiltonian at each of the N steps is
given by

βΔEM ¼ Δ̃SS þ
1

2N
ðL�Þ2 þOðN−2Þ; ð4Þ

where L� is the minimal thermodynamic length [21,49]:

L� ¼ 2 arccos
�
tr
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τSðβ; HSÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τSðλβ; HSÞ
p ��

¼ 2 arccos

 
Z
�
βð1þ λÞ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðβÞZðλβÞp

!
: ð5Þ

Above, βΔEM is the (scaled) energy cost of cooling, Δ̃SS is
the Landauer bound (the minimum energy cost), and the
remaining terms represent the additional finite-resource
penalty. As N increases, this additional cost decreases like
1=N, approaching the Landauer bound. The thermody-
namic lengthL� quantifies how far apart the initial and final
states are in a thermodynamic sense; the greater this
distance, the more energy above Landauer cost is required
for finite N.
Sketch of proof—The proof, fully detailed in the

Supplemental Material, Sec. II [22], is based on the equality
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form of Landauer’s bound [6]:

βΔEM ¼ Δ̃SS þ IðS∶MÞϱ0SM þD½ϱ0MkτMðβÞ�; ð6Þ

which holds for any transformation described by Eq. (1)
such that the entropy of the target changes from SðϱSÞ to
Sðϱ0SÞ¼SðϱSÞ−Δ̃SS. Here, IðX∶YÞϱXY ≔ SðϱXÞ þ SðϱYÞ −
SðϱXYÞ is the quantum mutual information, and
DðϱXkϱYÞ ≔ tr½ϱXðlog ϱX − log ϱYÞ� is the quantum relative
entropy. This equality breaks down the total energy cost
into three terms: the fundamental Landauer bound Δ̃SS,
correlations built up between system and machine
IðS∶MÞϱ0SM , and a term measuring how far the machine’s

final state deviates from thermal equilibrium D½ϱ0MjτMðβÞ�.
The proof then proceeds in two steps: First, the bipartite
interactions are chosen to be swaps between the qudit
system and each of a sequence of qudit machines
with increasing energy gaps, such that no correlations
are built up between S and M as the system is cooled,
i.e., IðS∶MÞϱ0SM ¼ 0. Then, the relative-entropy term is

minimized; for the sequence of swap operations consid-
ered, the relative entropy has the tight lower bound
1
2N ðL�Þ2 þOðN−2Þ, and we therefore assert the claim. ▪
In summary, having fixed the parameters dX < ∞,

N < ∞, and k ¼ 2, but not the structural complexity,
i.e., the machine Hamiltonians fHMi

gi, of a coherent-
control cooling scheme, we have optimized the remaining
control-resource parameter, namely, the energy cost ΔEM.
In the case of qubit target and machines, we show that such
swaps constitute the optimal interaction (see Supplemental
Material, Sec. II A [22]) and derive the Hamiltonian that
saturates Eq. (4) (see Supplemental Material, Sec. II B
[22]), thereby providing the optimal cooling scheme with
respect to heat dissipation in the case of qubits. In Fig. 2,
we compare this optimal protocol with other known
coherent cooling schemes to demonstrate its effectiveness.
Although the optimal energy structure in the case of swaps
for higher dimensions is given by Eq. (5), determining the
optimal operation in general remains an open problem.
Indeed, when considering higher-dimensional machines
(including those with interacting subsystems), further
cooling advantages can be achieved [55,56] (see also
Supplemental Material, Sec. II C [22]).
Some comments regarding optimality are in order. First,

we are assuming that the cooling procedure is Markovian,
i.e., that the machines are completely refreshed between
steps of controlled evolution. In this setting, creating
correlations costs energy [58–60], which implies that the
optimal scheme must minimize the correlations built
up between system and machines [61,62]. However, in a
non-Markovian setting, correlations could potentially be
used in later steps to lower the energy cost or improve
performance [15,63,64]. Second, there is a nonzero energy
cost for creating coherences [65]. Since we assume an

initial state that is diagonal in the energy eigenbasis, this
implies that the optimal cooling scheme must permute only
populations of energy eigenstates (leading to a final system
state that commutes with the initial one [21]), but for
general initial states this need not be the case. Nonetheless,
since we evaluate the cooling performance in terms of the
heat dissipated by the machine and neglect any system-
local energy cost (i.e., that associated to local basis
changes), our results apply to arbitrary initial and final
system states.
Incoherent control—We now consider the same

question in the incoherent-control setting. In contrast to
the coherent-control setting, here all heat and entropy
flows occur solely by coupling the target system to
a hot (H) and cold (C) machine, leading to an energy-
conserving transformation overall. Beginning with ϱSCH ¼
τSðβÞ ⊗ τCðβÞ ⊗ τHðβHÞ, where βH < β, the considered
evolution leads to the output state ϱ0SCH ¼ ŨϱSCHŨ†, where
½Ũ; HS þHC þHH� ¼ 0 encodes energy conservation,
i.e., that the total energy remains constant throughout.
Note that, in the incoherent-control scenario, no energy-
conserving unitary with another single thermal machine
can lead to cooling the target [29]; hence, interactions
between at least three systems must be considered.
In this setting, the Landauer bound is unattainable; instead,

the ultimate limit is given by the Carnot-Landauer bound [9]

ΔFβ
S þ ηΔEH ≤ 0; ð7Þ

FIG. 2. Cooling with coherent control. Heat dissipation when
coherently cooling a qubit target with energy gap ES ¼ 1 from β ¼
10−8 to βf ¼ 10 (i.e., λ ¼ 109) via sequential bipartite interactions
withNmachine qubits.We compare four procedures that dependon
the energy-level structure fHMi

gi, whose gaps are depicted in the
inset for N ¼ 100. TL is the optimal protocol deduced from the
thermodynamic length (see Theorem 1); RW corresponds to the
protocol from Ref. [6] where machine energy gaps change linearly;
SSP corresponds to the protocol from Ref. [57] where the machine
qubits’ excited-state populations change linearly. GOE is a protocol
where the machine gaps correspond to energy level spacings drawn
from the Gaussian orthogonal ensemble (see Supplemental
Material, Sec. III [22]); interestingly, this procedure also outper-
forms the RW and SSP protocols.
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which follows from the equality form

ΔFβ
S þ ηΔEH ¼ −β−1fΔSS þ ΔSC þ ΔSH

þD½ϱ0CkτCðβÞ� þD½ϱ0HkτHðβHÞ�g: ð8Þ

Here, we have introduced the free energyFβ
XðϱÞ ≔ tr½HXϱ� −

β−1SðϱÞ and the Carnot efficiency η ≔ 1 − βH=β∈ ½0; 1�.
In a similar vein to the coherent-control scenario, we

wish to bound the right-hand side of Eq. (8) for any finite-
resource implementation and, ideally, identify a protocol
that saturates this bound. However, a number of problems
immediately arise in the incoherent-control scenario, since
one is restricted to the orbit of energy-conserving unitaries,
i.e., Ũ such that ½Ũ; HS þHC þHH� ¼ 0. This constraint
implies that the relative-entropy terms cannot be bounded
simply by the thermodynamic length, which was possible
in the coherent-control setting because the full swap led to a
straightforward expression in terms of a sequence of
relative-entropy terms applied to the chain of machines.
Here, such a swap is prohibited by energy conservation. We
now present an attainable energy bound for finite-resource
cooling with incoherent control, which is generally optimal
for qubits and optimal for qudits within the considered class
of interactions, in analogy to Theorem 1 in the coherent-
control setting.
Theorem 2—In the incoherent-control setting, given a

qudit system with Hamiltonian HS, the minimum energy
cost for cooling from a thermal state τSðβ; HSÞ to τSðλβ; HSÞ
using energy-conserving interactions between the system
and two fresh qudit machines at inverse temperature β (cold)
and βH ≤ β (hot), with arbitrary Hamiltonians in the limit
of infinite steps but with N < ∞ distinct energy gaps, is
given by

ΔFβ
S þ ηΔEH ¼ −

1

2Nβ
ðL�Þ2 þOðN−2Þ: ð9Þ

This result shows that, like in the coherent case, the addi-
tional energy cost above the fundamental limit (here, the
Carnot-Landauer bound) scales as 1=N in the finite-resource
setting.
Sketch of proof—The proof, presented in the

Supplemental Material, Sec. IV [22], is fundamentally
different to its coherent-control counterpart. In the con-
structive direction, we propose a cooling scheme compris-
ing interactions that exchange populations among levels
ji; iþ 1; iiSCH ↔ jiþ 1; i; iþ 1iSCH. The energy-conserv-
ing nature allows us to calculate the energy cost per
population transfer, which is related to the relative entropy
between the initial and final states of the virtual-qubit
subspaces of the hot-and-cold machine that permit cooling.
We finally bound this quantity by the thermodynamic
length. ▪
For qudits, it is not clear that the form of energy-

conserving interactions considered here is optimal;

nonetheless, within this family, we present a cooling scheme
that attains the energy cost of Eq. (9) and saturates the
Carnot-Landauer bound in the limit of infinitely many
distinct energy gaps, i.e., diverging control complexity. In
the special case of cooling a qubit target with (hot and cold)
qubitmachines,we show that the cycle j010iSCH ↔ j101iSCH
is indeed optimal. This is because, for any fixed set of energy
gaps, the family of energy-conserving unitaries on three
qubits that permit cooling without creating coherences or
correlationsmust be of this form, and, thus, we can cover the
entire orbit of unitaries in question. Such operations can
be considered as a virtual swap between the target and
the virtual qubit subspace of the machine spanned by
fj01iCH; j10iCHg. In general, since such a subspace has
norm strictly less than one, each such virtual swap will lead
to the system qubit being at strictly higher temperature than
the virtual qubit. However, in the limit of infinitely many
repetitions within a single stage, the temperature of the
system’s qubit subspace of interest converges to the virtual
temperature of the machine-qubit subspace [28,29]. As we
are interested in finite resources, we assume that one
performs a finite but sufficiently large number of virtual
swaps so that the error is within specified tolerances. The
relative entropy term that governs the finite-cooling behav-
ior here (andwhich leads to the thermodynamic-length term)
concerns the initial and final thermal states of the machine at
the corresponding virtual temperature defined by the qubit
subspace in question. Implementing the protocol that swaps
the target successively with appropriately chosen virtual
qubits of the machine in each stage minimizes the thermo-
dynamic length and, therefore, provides the optimal inco-
herent cooling procedure.
Role of correlations—The constraint of energy conser-

vation distinguishes the paradigms of coherent and inco-
herent control. In the latter setting, the virtual subspaces
spanned by the hot-and-cold machines influence the
performance of a cooling scheme, rather than the state
of the machine per se. This suggests that correlations play a
dominant role in the incoherent-control setting; we now
formalize this intuition.
Theorem 3—For any incoherent-control cooling scheme,

the sum of free-energy differences ΔFβ
X (with respect to

inverse temperature β) is bounded by the sum of generated
bipartite correlations ΔIα:

X
X∈ fS;C;Hg

ΔFβ
X ≤ −

2

3
β−1
X
α

ΔIα; ð10Þ

where α∈ fSC; SH; CHg and IXY ≔ IðX∶YÞϱXY is the quan-
tum mutual information.
A proof is given in Supplemental Material, Sec. V [22].

This bound has interesting implications. For instance,
a priori, the only claim that one can deduce regarding
the free-energy change of the hot machine is ΔFβ

H ≤ 0,
which follows from both the system and cold machine
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beginning in thermal states at inverse temperature β.
However, using the relation βΔFβ

X ¼ D½ϱ0XkτXðβÞ� for
X∈ fS; Cg, we can derive the tighter bound

βΔFβ
H ≤ −

2

3

X
α

ΔIα −D½ϱ0SkτSðβÞ� −D½ϱ0CkτCðβÞ� ≤ 0;

ð11Þ

where the second inequality follows from the non-
negativity of both the mutual information and the relative
entropy.
Discussion—Efficient cooling of quantum systems in

practice necessitates the optimization of machines and
interactions over complicated resource constraints. Here,
we have made several contributions to this problem,
focusing primarily on qubit systems while developing
methods that may prove valuable in more general settings.
First, we formalized the concept of a cooling scheme using
a universal definition that captures all relevant dependen-
cies, permitting fair comparison among different proce-
dures. Second, for the case of fixed control complexity, we
demonstrated simple protocols that asymptotically saturate
the ultimate bounds and dissipate minimal heat in the
regime of many (but finite) machines, establishing their
optimality specifically for qubit systems under both coher-
ent and incoherent control. Our main technical contribution
bounds the heat dissipated by the machine in a cooling
process in terms of the geometric concept of thermo-
dynamic length. We make this connection by modeling
cooling processes as Markovian collision models, linking
prominent methods used in quantum thermodynamics and
information theory. Finally, we analyzed the role of
correlations in the incoherent-control setting, deriving a
bound on free-energy differences in terms of correlations.
A key direction for future work is the extension of our

analysis to higher-dimensional systems, where the opti-
mality of our protocols remains an open question. While
our framework provides a foundation for such investiga-
tions, the optimization problem becomes considerably
more complex beyond the qubit setting, potentially requir-
ing different mathematical techniques and approaches.
Other important directions include extending our analysis
beyond Markovian collision models and developing pro-
tocols that saturate the correlation bounds in the incoherent-
control setting. Yet, like other higher-dimensional problems
at the intersection of thermodynamics and information
theory (e.g., regarding symmetrically thermalizing unitaries
[60]), general solutions and optimality proofs may be
difficult to obtain due to the large parameter spaces
involved. In light of this observation, more pragmatic
platform-specific approaches may be called for, and we
hence envisage future attempts to address such questions to
be tailored to more particular (experimental) setups.
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