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GLEAM4: global land evaporation 
and soil moisture dataset at 0.1 
resolution from 1980 to near 
present
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Terrestrial evaporation plays a crucial role in modulating climate and water resources. Here, we present 
a continuous, daily dataset covering 1980–2023 with a 0.1°spatial resolution, produced using the 
fourth generation of the Global Land Evaporation Amsterdam Model (GLEAM). GLEAM4 embraces 
developments in hybrid modelling, learning evaporative stress from eddy-covariance and sapflow data. 
It features improved representation of key factors such as interception, atmospheric water demand, 
soil moisture, and plant access to groundwater. Estimates are inter-compared with existing global 
evaporation products and validated against in situ measurements, including data from 473 eddy-
covariance sites, showing a median correlation of 0.73, root-mean-square error of 0.95 mm d−1, and 
Kling–Gupta efficiency of 0.49. Global land evaporation is estimated at 68.5 × 103 km3 yr−1, with 62% 
attributed to transpiration. Beyond actual evaporation and its components (transpiration, interception 
loss, soil evaporation, etc.), the dataset also provides soil moisture, potential evaporation, sensible 
heat flux, and evaporative stress, facilitating a wide range of hydrological, climatic, and ecological 
studies.

Background & Summary
Terrestrial evaporation (E) or ‘evapotranspiration’1 plays a crucial role in the climate system as a nexus between 
the water, carbon, and energy cycles, reacting to changes in anthropogenic emissions and propagating their 
influence throughout the global hydrological cycle. It regulates long-term precipitation and temperature projec-
tions through its influence on the water vapour, lapse rate and cloud feedbacks, and it influences the occurrence 
of extreme events, such as droughts, floods and heatwaves2,3. For water management, E is a net loss of available 
resources that must be monitored, and for agriculture, crop transpiration determines irrigation needs4. Despite 
this importance, E is highly uncertain at regional and global scales, especially regarding long-term trends and 
responses to short-term climate anomalies5–8. This uncertainty arises because E is (i) rarely measured in the field, 
(ii) challenging to model accurately (as it involves both plant physiological responses and complex turbulent 
atmospheric processes), and (iii) invisible to satellite sensors (despite its imprint on surface water and energy 
balance)9. The critical yet uncertain nature of E has spurred innovative attempts to combine in situ, satellite, 
and reanalysis data to estimate global E. Since over a decade ago, myriad approaches to derive global E datasets 
have been proposed10–12, often based on the application of prognostic models originally designed for regional 
scales13–15. Machine learning models trained on eddy-covariance measurements have also been used to represent 
E globally, leveraging both satellite and in situ data16,17. However, pure machine learning-based approaches do 
not explicitly obey physical limits, and their black-box nature complicates interpretability and process under-
standing18. An emerging research direction is to combine both physics-based and machine learning models in 
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a synergistic manner, to yield what is frequently referred to as ‘hybrid models’ and which has already met some 
success in E modelling19–22.

The Global Land Evaporation Amsterdam Model (GLEAM10), one of the first prognostic approaches devel-
oped to estimate E globally using satellite data, remains freely available and widely used, with over 10,000 inde-
pendent users over the past decade23. GLEAM data are updated to near present at least once a year, and include 
not just E, but also its different component fluxes (or sources): transpiration (evaporation of water within the 
leaves), interception loss (from wet surfaces), bare soil evaporation (within soil pores), evaporation from inland 
water bodies, and evaporation from snow-covered surfaces (typically, yet inaccurately, referred to as ‘sublima-
tion’1). The dataset also includes other related variables, such as (surface and root-zone) soil moisture, poten-
tial evaporation, and evaporative stress. GLEAM data have been used for a wide range of purposes, including 

Fig. 1  Schematic of GLEAM4. Variable names and data sources are listed in Table 1, and their colour denotes 
the module in which they are employed.

Variable Source Type Resolution

Net radiation (Rn) and shortwave incoming (SWi)
MSWX v1.0037 Downscaled reanalysis 0.1°

CERES51,68 Satellite 0.5°

Air temperature (Ta)
MSWX v1.0037 Downscaled reanalysis 0.1°

AIRS38,69 Satellite 1°

Precipitation (P)
MSWEP v2.850 Observational merger 0.1°

IMERG Final V0752,70 Satellite 0.1°

Wind speed (u) ERA571,72 Reanalysis 0.25°

Vapour pressure deficit (VPD)
MSWX v1.0037 Downscaled reanalysis 0.1°

AIRS38,69 Satellite 1°

Carbon dioxide concentration (CO2) CAMS73,74 Reanalysis 0.75°

Snow water equivalent (SWE) GlobSnow75/NSIDC76 Satellite 25 km

Surface soil moisture (SMs) ESA CCI48,77 Satellite 0.25°

Vegetation optical depth (VOD) VODCA v278,79 Satellite 0.25°

Fraction absorbed photos ynthetic radiation (fPAR) MOD15A3H80 Satellite 500 m

Leaf area index (LAI) MOD15A3H80 Satellite 500 m

Vegetation height (h) GEDI/Landsat36 Satellite 30 m

Land cover fractions MEaSURES81/MOD44B82 Downscaled reanalysis 0.05°/ 250 m

Soil properties HiHydroSoil83 Observation driven 250 m

Table 1.  Sources of data used in GLEAM4. When two datasets are available for the same variable, the top one 
refers to data archive ‘a’ and the bottom one to data archive ‘b’.
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the quantification of water resources, driving basin-scale hydrological models, studying global climate trends, 
and benchmarking climate models23. Over the years, extensive evaluations of GLEAM against in situ observa-
tions24,25 and alternative gridded datasets26,27 have evidenced the consistent performance of the dataset in a wide 
range of applications23. Recent improvements in GLEAM have concentrated on the use of machine learning to 
represent evaporative stress21, the depiction of groundwater access by vegetation28, and the characterisation of 
interception loss29. Here, we unify these efforts and present the fourth generation of the GLEAM algorithm and 
datasets, GLEAM4, which also features an improved spatial resolution (from 0.25 to 0.1°) and extended record 
length (1980–2023). In the following sections, the approach is explained with specific emphasis on the novel 
aspects compared to its predecessor, driving data are introduced, and the resulting global datasets are analysed 
in terms of spatiotemporal consistency and performance.

Methods
The rationale behind GLEAM is to focus exclusively on processes that directly impact E while maintaining a 
parsimonious approach. The aim is to extract the most relevant information about E from existing Earth obser-
vations, incorporating new processes only if they are both crucial and can be effectively constrained by obser-
vations. Following this rationale, GLEAM calculates E (and its components) through four sequential steps (or 
‘modules’) targeting the computation of (i) interception, (ii) potential evaporation, (iii) soil water content, and 
(iv) evaporative stress10. Figure 1 provides a schematic of GLEAM4 together with the input and output variables 

Fig. 2  Mean evaporation and its components. Long-term (1980–2023) mean terrestrial evaporation (E) (top). 
The global decomposition of its component fluxes is shown in the pie diagram and the latitudinal profile on 
the right. Long-term means for each of the components (bottom): transpiration (Et), interception loss (Ei), soil 
evaporation (Eb), and other sources (Eo), including snow sublimation (Es), open water evaporation (Ew), and 
condensation (Ec). All fluxes are in mm yr−1.
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of each module. First, rainfall interception loss over vegetated surfaces (Ei) and potential evaporation (Ep) are 
computed. Ep is then converted into actual evaporation (E) using a multiplicative evaporative stress factor (S) 
that is based on root-zone soil moisture (SMrz), among other variables21. This is done independently for the 
fraction of bare soil, and the fractions of tall and short vegetation within each pixel, yielding estimates of (actual) 
bare soil evaporation (Eb) and transpiration (Et), respectively. To consider understorey bare soil evaporation, 
GLEAM4 computes the transmission of incoming radiation through the canopy using the Beer-Lambert law 

Fig. 3  Seasonal patterns. Long-term (1980–2023) means for June, July, and August (JJA, left) and December, 
January, and February (DJF, right) for terrestrial evaporation (E, mm), potential evaporation (Ep, mm), 
evaporative stress (S = E/Ep, –), root-zone soil moisture (SMrz, m3 m−3), and surface sensible heat flux (H, W m−2).
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based on leaf area index (LAI)30. Finally, E is considered to equate Ep in regions covered with snow and ice (Es), 
and open water (Ew), using specific parametrisations for these surfaces10.

Since the publication of GLEAM version 3 (v3)31, several research efforts have concentrated on improv-
ing multiple aspects of the modelling framework. These improvements concern each of the four modules 
in GLEAM, as illustrated in Fig. 1, and have been documented in individual publications over the past few 
years21,28,29. Moreover, (i) datasets were extended to near-present, and (ii) spatial resolution was increased from 
0.25° to 0.1° thanks to the updates in forcing data. The following provides a general summary of the methodology 

Fig. 4  Evaporation control factors. Relative importance of radiative energy (left-hand term in Eq. 1), 
aerodynamics (right-hand term in Eq. 1), and evaporative deficit (Ep − E), based on long-term (1980–2023) 
mean fluxes. The bar diagram indicates the global (area-weighted) mean of each term.

Fig. 5  Global inter-comparison of E estimates from different datasets. The left column shows long-term means 
for GLEAM v3.8a31, ERA5-Land59, and FLUXCOM56 for their common period (1980–2020). The difference 
between them and GLEAM4 is shown on the right, along with the mean latitudinal profile for all four datasets.

https://doi.org/10.1038/s41597-025-04610-y


6Scientific Data |          (2025) 12:416  | https://doi.org/10.1038/s41597-025-04610-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

behind GLEAM4, concentrating on the improvements upon GLEAM v3 and how these affect the estimates of E, 
its component fluxes, and other related hydroclimatic variables.

Rainfall interception.  Ei is computed on rainy days, contributing to E while influencing effective precip-
itation and soil water content. It remains one of the most uncertain fluxes in the global water cycle, mainly 
due to the limited availability of in situ campaign data for parameterising (or training) universal models32. In 
GLEAM4, the previous approach based on Gash’s analytical model33 is replaced by the approach in ref. 29, which 
performed a synthesis of interception data from past field experiments conducted worldwide, including cam-
paigns in 166 forest sites and 17 agricultural plots. Based on this meta-analysis, a global van Dijk–Bruijnzeel 
interception model34 was constrained using satellite-observed vegetation dynamics — i.e., fraction of absorbed 
photosynthetically active radiation (f PAR) and LAI — potential evaporation, and precipitation data29. This Ei 
formulation accounts for sub-grid heterogeneity, computing the flux for tall and short vegetation fractions sep-
arately, thus improving upon previous GLEAM versions that only included interception for tall vegetation. This 
improved performance has been demonstrated in validation experiments against field data29 as well as product 
inter-comparisons35.

Potential evaporation.  Unlike previous GLEAM versions, which were based on Priestley and Taylor’s equa-
tion14, GLEAM4 uses Penman’s equation13 to explicitly reflect the influence of wind speed (u, m s−1), vegetation 
height (h, m), and vapour pressure deficit (VPD, Pa) on Ep. The original motivation for using Priestley and Taylor 
was its minimum input requirements (i.e., net radiation and air temperature), making it well-suited for satellite 
data applications.10. However, recent advances in satellite remote sensing and climate reanalysis have yielded 
observational datasets of h36, u37, and VPD38, making Penman’s approach increasingly suited for purpose. As such, 
Ep (mm s−1) in GLEAM4 is calculated for each land cover fraction within each pixel as:

( )
E

R G c g VPD

( )
,

(1)
p

n a p a∆

∆

ρ

λ γ
=

× − + × × ×

× +

where ∆ is the slope of saturation vapour pressure curve (Pa °C−1), Rn is the surface net radiation (W m−2), G 
the ground heat flux (W m−2), ρa is the air density (kg m−3), cp is the specific heat at constant pressure (J kg−1 
°C−1), ga is the bulk aerodynamic conductance (m s−1), λ is the latent heat of vaporisation of water (J kg−1), and 
γ is the psychrometric constant (Pa °C−1). ∆, ρa, λ and γ are computed as a function of air temperature10, Rn is 
partitioned per land cover fraction31, and the G/Rn ratio is considered an inverse function of LAI39. ga is approx-
imated using Thom’s equation40, assuming a neutral atmosphere and accounting for the excess resistance of the 
transfer of vapour compared to momentum41:

Fig. 6  Regional inter-comparison during summer droughts. Top figures refer to the E anomalies during the 
2003 summer (JJA) European drought. Bottom figures show E anomalies during the 1988 summer (JJA) North 
American drought. From the left to right: GLEAM4, GLEAM v3.8a31, ERA5-Land59, and FLUXCOM56 at their 
original resolution (i.e., 0.1°, 0.25°, 0.1°, 0.5°, respectively).
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where k is von Kármán’s constant (0.41), z is the height of the u observations (m), d is the zero-plane displace-
ment height (m), and z0m is the roughness length for momentum (m); d and z0m are assumed to be 2/3 and 1/10 
of h respectively for the non-vegetated fractions42, with an additional dependence on LAI for the vegetated frac-
tions41. The roughness length for vapour (z0v), which is assumed to be the same for heat (z0h), is calculated from 
z0m via the so-called kB−1 approach, where kB−1 = ln(z0m/z0h) is a vegetation specific value taking values of 5 and 
8 for short and tall vegetation, respectively43.

Soil water.  Soil water content across the root depth is required for later computation of evaporative stress 
(see below). GLEAM uses a multi-layer running water balance driven by precipitation data (and E), which con-
siders a constant root depth per land cover fraction31. Microwave soil moisture (SMs) and/or backscatter observa-
tions are assimilated44,45 in the top soil layer. Plants are assumed to be able to extract water from where it is more 
easily accessible within the soil profile; thus the wettest soil layer is selected for computing evaporative stress. In 
nature, groundwater can also be an important source for E, especially during dry conditions and in ecosystems 
where vegetation has deep roots46. Previous versions of GLEAM did not explicitly account for plant access to 
groundwater. The approach adopted by GLEAM4 uses a linear reservoir model to represent groundwater, and 
introduces a partitioning of transpiration to estimate groundwater-sourced E28. Validations against field obser-
vations of E, soil moisture, discharge and groundwater levels demonstrated a realistic representation of E under 
water-limited conditions28, enabling the future assimilation of satellite gravimetry data into the model47. GLEAM4 
assimilates surface soil moisture data from the European Space Agency (ESA) Climate Change Initiative (CCI)48 
(see Table 1). The data assimilation is based on a Newtonian Nudging scheme where soil moisture is first decom-
posed into anomalies, and then uncertainties in the latter are computed based on triple collocation31.
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Fig. 7  Validation using in situ eddy-covariance measurements. Density Taylor diagrams for the validation of 
GLEAM4, GLEAM v3.8a31, ERA5-Land59, and FLUXCOM56 against in situ data (left). Normalized standard 
deviation (std), Pearson’s correlation (R) and centred pattern root mean square error (RMSE) are shown. 
The ideal performance is marked with a red star. Gaussian Kernel density functions are used to estimate the 
probability density of data points in the polar space (defined by R and std), thus contour levels indicate unitless 
thresholds of density values. Violin plots of Kling–Gupta Efficiency for the four datasets (right). Median and 
interquartile ranges are marked with continuous and discontinuous lines, respectively. Validation based on data 
from 473 sites.
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Evaporative stress.  As mentioned above, to constrain E below Ep, GLEAM uses a multiplicative stress factor 
(S) that ranges from 0 (maximum stress) to 1 (no stress). S is expected to capture all factors that restrain the sup-
ply of water to the atmosphere below the atmospheric demand (i.e., Ep). In GLEAM4, the original semi-empirical 
computation of S based on soil moisture (see above) and vegetation optical depth (VOD)10,31, is replaced by 
the deep neural network approach presented in ref. 21. The latter acknowledges that the ratio between actual 
and potential transpiration can be controlled by numerous environmental variables that interact non-linearly, 
including not just soil moisture and VOD, but also VPD, incoming solar radiation (SWi), air temperature (Ta), 
CO2 concentration, u, and LAI — see Fig. 1. Global eddy-covariance and sapflow data are used to learn univer-
sal transpiration stress functions, separately for tall and short vegetation. The neural network formulations of S 

US-Ne3 | 2012

FR-Pue | 2016

DE-Tha | 2003

in situ   GLEAM4   GLEAM v3.8    ERA5-Land    FLUXCOM

AU-How | 2011
Jan            Mar            May             Jul              Sep             Nov 

Jan            Mar            May             Jul              Sep             Nov 

Jan            Mar            May             Jul              Sep             Nov 

Jan            Mar            May             Jul              Sep             Nov 

Fig. 8  Example time series. Time series for GLEAM4, GLEAM v3.8a31, ERA5-Land59, and FLUXCOM56 against 
in situ data from four sample sites during a selection of extreme years. Left plots indicate anomalies in E while 
the right plots show the seasonal climatology for each day of the year (DOY).
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are embedded within GLEAM4, enabling bidirectional coupling with the process-based model and influencing 
both E and the soil moisture used to compute S in the next time step. Comparisons against in situ data and 
satellite-based proxies demonstrated that the hybrid (AI–process-based) approach has an enhanced ability to 
estimate S and E for most ecosystems compared to previous GLEAM versions21.

Input data.  Table 1 lists all the input variables and datasets used in the generation of GLEAM4 datasets. Input 
data have been resampled to a common 0.1° resolution by means of bilinear interpolation, when needed.

Data Records
Data archive.  The GLEAM4 dataset currently amounts to approximately 1.1TB. Data are freely available 
in a public SFTP server under a CC BY licence, and can be accessed through https://www.gleam.eu/#down-
loads. For a detailed description of the dataset, we refer readers to the technical notes at https://doi.org/10.5281/
zenodo.14056079. The E dataset from the exact sub-version used in this manuscript (v4.2a) can also be found 
in this repository. Dataset specifications are also found on the GLEAM website and through its Digital Object 
Identifier (DOI)49. The period covered by GLEAM4 is currently 1980–2023 at daily temporal resolution and 0.1° 
spatial resolution. GLEAM datasets are updated annually (in March–April) and extended until the end of the 
previous year, as input data become available.

Like in previous versions of GLEAM31, two distinct data archives are available that differ on their temporal 
coverage and reliability on observational data. The archive ‘a’ relies mostly on the reanalysis from Multi-Source 
Weather (MSWX37) and precipitation from Multi-Source Weighted-Ensemble Precipitation (MSWEP50) as forc-
ing data. It covers the entire period 1980–2023, and it is intended for climatological studies requiring longer 
record lengths. The archive ‘b’ has a more observational nature and a lower reliance on reanalysis due to its 
use of radiation fluxes from the Clouds and the Earth’s Radiant Energy System (CERES51), precipitation from 
Integrated Multi-satellite Retrievals for the Global Precipitation Mission (IMERG52), and temperature and VPD 
from the Atmospheric Infrared Sounder (AIRS38). Its record length is however shorter, currently spanning the 
period 2003–2023. Table 1 lists the specific datasets used to generate both data archives.

The following 12 variables are available for each of the two data archives (‘a’ and ‘b’):
Actual evaporation (E, mm day−1)
Transpiration (Et, mm day−1)
Bare soil evaporation (Eb, mm day−1)
Interception loss (Ei, mm day−1)
Open-water evaporation (Ew, mm day−1)
Condensation (Ec, mm day−1)
Evaporation over snow and ice (Es, mm day−1)
Potential evaporation (Ep, mm day−1)
Evaporative stress (S, unitless)
Surface soil moisture (SMs, m3 m−3)
Root-zone soil moisture (SMrz, m3 m−3)
Surface sensible heat flux (H, W m−2)

Data structure.  Data are organized into netCDF files, with one file per variable per year. Each daily file 
contains a 3D array with dimensions n × 1800 × 3600, where n is the number of days in the respective year, 1800 
is the number of grid cells in the latitudinal dimension, and 3600 is the number of grid cells in the longitudinal 
dimension. The first cell in each file corresponds to January 1st of that year, centred at latitude 89.95° and lon-
gitude –179.95°. In addition to daily data, netCDF files containing monthly (dimensions 12 × 1800 × 3600) and 
annual (dimensions 1 × 1800 × 3600) means are also available.

These datasets are stored on the public server in the following directory structure: <ARCHIVE>/ 
<TEMPORAL_RESOLUTION>/, where <ARCHIVE> refers to either GLEAM4.2a (v4.2a) or GLEAM4.2b 
(v4.2b), <TEMPORAL_RESOLUTION> indicates the temporal aggregation level (‘daily’, ‘monthly’, or ‘yearly’), 
and ‘v4.2’ indicates the subversion of the GLEAM4 dataset. Daily datasets are organized by year, while monthly 
and yearly datasets are organized by variable.

Daily files follow this naming convention: <VARIABLE>_<YEAR>_GLEAM_<ARCHIVE>.nc, where 
<VARIABLE> corresponds to the variable names listed in the previous section: ‘E’, ‘Et’, ‘Eb’, ‘Ei’, ‘Ew’, ‘Ec’, ‘Es’, ‘Ep’, 
‘S’, ‘SMrz’, ‘SMs’, ‘H’, and <YEAR> is the four-digit year. For example, a file containing daily evaporation data for 
2023 in the ‘a’ dataset would be named:

v4.2a/daily/2023/E_2023_GLEAM_v4.2a.nc.
Monthly and yearly files follow this naming convention: <VARIABLE>_<YEAR>_GLEAM_ 

<ARCHIVE>_<TEMPORAL_RESOLUTION>.nc, where <TEMPORAL_RESOLUTION> is abbreviated as 
‘MO’ for monthly or ‘YR’ for yearly. For monthly and yearly files, flux units are mm month−1 and mm year−1, 
respectively, instead of mm day−1. For example, a file containing monthly root-zone soil moisture data for 2010 
from the ‘b’ archive would be named:

v4.2b/monthly/SMrz/SMrz_2010_GLEAM_v4.2b_MO.nc.

Technical Validation
Global patterns.  Figure 2 explores mean global E patterns (1980–2023), along with the absolute and relative 
contributions from different component fluxes. Unless otherwise noted, GLEAM4 corresponds to the v4.2a data, 
the latest subversion at the time of writing this manuscript. As expected, Et dominates the flux globally, especially 
in densely vegetated humid tropics due to year-round soil water availability and high incoming radiation. The 
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global proportion of E originating from Et is 62%, falling within the envelope of current global estimates53, but 
below the 74% from GLEAM v331, which was on the high end of the spectrum of globally available products. The 
reduction of Et from GLEAM v3 to GLEAM4, results from the consideration of short vegetation interception loss 
and understorey bare soil evaporation in GLEAM4, among other methodological improvements (see Methods). 
Ei constitutes 14% of the global flux, being larger in forested regions, as expected, while Eb amounts to 17% of 
global E and is larger in sparsely vegetated regions. Negative estimates in GLEAM4 indicate condensation and are 
illustrated together with other minor components (i.e., snow and open-water evaporation) in Fig. 2. The mean E 
in GLEAM4 is 68.5 × 103 km3 yr−1, which agrees with state-of-the-art water cycle appraisals based on extensive 
literature meta-analysis8 (69.2 ± 7 × 103 km3 yr−1) and with other global observational datasets (see below).

The seasonal dynamics of some of the key variables from GLEAM4 are portrayed in Fig. 3. The sub-panels 
showcase global multi-year (1980–2023) mean E, Ep, S, SMrz, and H during boreal summer (June, July, August), 
and boreal winter (December, January, February). The seasonal pattern of Ep aligns primarily with the cycle of 
net radiation, while E is additionally determined by the seasonality of SMrz, and thus precipitation. Subtropical 
regions with sufficient JJA precipitation (e.g., India, Northern Australia, parts of Southern Africa, or the east 
coast of the United States) exhibit the most significant variations in E, with summer E often being an order of 
magnitude larger than winter levels. In more arid regions, such as central Australia or the Arabian Peninsula, 
where rainfall occurrences are rare, the seasonal volumes of E remain persistently low throughout the year and 
unaffected by the Ep cycle. In these areas, the dissipation of available energy primarily occurs through H due to 
limited SMrz and E. Likewise, E is persistently low in permanent snow regions, despite higher values during the 
high-radiation season. Overall, these seasonal patterns agree with relevant literature26,54–57.

Understanding the dependency of E on different driving factors can provide crucial insights into the sea-
sonal behaviour of E in specific regions, and potentially into the main controls on long-term E trends58. Figure 4 
provides an overview of these driving factors, leveraging from the partitioning of potential evaporation into an 
aerodynamic and a radiative term in Penman’s combination equation (see Eq. 1), and taking advantage of the 
separate calculation of evaporative stress in GLEAM4 (see Methods). Red tones in semiarid regions indicate 
the dominance of evaporative deficit (E – Ep); in these regions, precipitation supply is insufficient to satisfy the 
high atmospheric demand for water. On the other hand, in temperate and boreal forests, precipitation supply 
is sufficient to meet the atmospheric demand; in particular, the aerodynamic component of Ep (which depends 
on wind, turbulence, ecosystem height and VPD) shows a higher relevance, as shown by the green tones. In 
the tropics, Ep is primarily satisfied by the radiative component of E (blue tones), which is high due to the high 
incoming radiation and low albedo of rainforests. Globally, the atmosphere demand for water, or Ep, adds up 
to 151 × 103 km3 yr−1, of which ∼55% is unsatisfied (evaporative deficit), and the remaining is satisfied by E 
through radiative (∼31%) and aerodynamic (∼14%) processes.

Validation and inter-comparison.  Figure 5 shows a comparison of GLEAM4 E against frequently 
used global E datasets, including its immediate predecessor GLEAM v3.8a31, the ERA5-Land reanalysis59, and 
FLUXCOM (RS-METEO)56. Long-term means for all datasets portray similar geographical patterns, with 
GLEAM4 showing greater agreement with ERA5-Land and FLUXCOM in the tropics compared to GLEAM 
v3.8a, largely due to a decrease in transpiration estimates over rainforests (as seen in the comparison between 
Fig. 2 and the results in ref. 31). Regional differences indicate relatively high values of GLEAM4 compared to 
other products in temperate and boreal forests in the Northern Hemisphere, where the consideration of the 
aerodynamic term of Penman’s Eq. (1) in the new version results in higher Ep and subsequently higher E than in 
GLEAM v3.8a. Relatively low estimates by GLEAM4 are concentrated in semiarid ecosystems — such as west-
ern United States, southern Africa or the Mediterranean region — especially when compared to FLUXCOM 
and ERA5-Land. This reflects the fact that the evaporative stress in GLEAM4 under water-limited conditions is 
greater than for GLEAM v3.8a, regardless of the generally larger atmospheric demand for water in the former (as 
seen in the comparison between Ep in Fig. 3 and the results in ref. 55).

The global mean estimates of E from the four datasets are comparable, ranging from highest to lowest: 72.8, 
71.8, 68.5 and 67.7 × 103 km3 yr−1, for ERA5-Land, GLEAM v3.8a, GLEAM4 and FLUXCOM, respectively. As 
indicated above, these estimates fall within the range of a recent meta-analysis8 that reported 69.2 ± 7 × 103 km3 yr−1.

At regional scales, the patterns of GLEAM4 appear realistic and highlight the value of transitioning to 
higher spatial resolutions to better capture the influence of complex topography and land use changes. Figure 6 
compares the estimates from GLEAM4 to those from the other three datasets during two of the most signif-
icant summer droughts in the historical record: the 1988 North American drought60 and the 2003 European 
drought61, both of which were compounded by severe heatwaves. During drought and heatwave events, E tends 
to exhibit positive anomalies in the early stages, as long as soil moisture remains sufficiently available, due to the 
high atmospheric demand for water (Ep). However, as these events progress and soil moisture depletion leads 
to increased evaporative stress (S), anomalies typically become negative, triggering feedback mechanisms that 
can further intensify the events2. Whether anomalies are overall positive or negative when integrated across 
the event largely depends on initial soil moisture conditions and the duration and severity of the event7. The 
four datasets evaluated in Fig. 6 appear to capture this complex interplay between water supply and demand, 
showing good agreement in the regional distribution of positive and negative anomalies. The coarser resolution 
of FLUXCOM is evident, and so are its reported difficulties in capturing the magnitude of anomalies. However, 
the recently released next generation of FLUXCOM datasets employs higher resolution and may offer improved 
capabilities for capturing anomalies during such events17.

To evaluate the skill of GLEAM4 in capturing temporal dynamics at the ecosystem scale, E estimates are 
validated against in situ eddy-covariance data from a wide range of global networks, including FLUXNET La 
Thuile, FLUXNET2015, FLUXNET-CH4, AmeriFlux, ICOS, and EFDC21. For duplicate stations across sources, 
the longest record was retained. Subsequently, sites with fewer than 250 days were excluded. This yielded a 
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final sample of 473 sites and 2511 years of data. Figure 7 compares the overall performance of the four data-
sets GLEAM4 and the other three datasets (i.e., GLEAM v3.8a, ERA5-Land, and FLUXCOM) in simulating 
E. Results are illustrated through Taylor density diagrams and violin plots of Kling-Gupta Efficiency (KGE), 
both displaying the distribution of the validation metrics that are calculated per site. The normalised standard 
deviation (std) in the Taylor diagrams indicates a mild tendency of all datasets (except for ERA5-Land) to under-
estimate the variability of E times series, which could relate to their large pixel coverage compared to the more 
reduced tower footprint. Median root-mean-square error (RMSE) and Pearson’s correlations (R) are similar for 
all datasets, but slightly better for FLUXCOM (0.89 mm d−1, 0.77) than for GLEAM4 (0.95 mm d−1, 0.73) and 
ERA5-Land (1.0 mm d−1, 0.77). Meanwhile, KGE values — integrating correlation, variability and bias — show 
higher median values (and thus better performance) for GLEAM4 than for ERA5-Land (0.49 vs.0.45), and a 
slight improvement upon GLEAM v3.8a (0.48).

Figure 8 zooms into example time series at four specific sites. The sites correspond to the Tharandt spruce for-
est in Eastern Germany (DE-Tha), a rainfed maize-soybean rotation site in Nebraska (US-Ne3), the Australian 
open woodland savanna site in Howard Springs (AU-How), and the French evergreen Mediterranean forest in 
Puechabon (FR-Pue). These sites were selected based on their long records (>10 years) which allow the reliable 
computation of seasonal climatologies. Years were selected based on extreme conditions: droughts for FR-Pue62 
and US-Ne363, heatwaves for DE-Tha64, and pluvial events for AU-How65. The left time series indicate anomalies 
in E, computed by subtracting the seasonal climatology of the corresponding dataset, using a multiyear mean for 
each calendar day and a 31-day moving average to compute that climatology66. Time series of anomalies show 
significant fluctuations across seasons and climatic events, and often differences among the different datasets, 
but also remarkable similarities among them and when compared to the in situ data. This pattern is observed 
at all four stations. While simulating correctly the seasonal cycles may in principle seem like a trivial task com-
pared to simulating temporal anomalies accurately, the smaller panels on the right indicate that the different 
products still struggle to simulate the seasonality of E. This could relate to differences in land cover from the 
tower footprint to the coarser-resolution pixels, and it is also influenced by biases in the input data used by each 
of the models. Nonetheless, all datasets capture the timing of the seasonal cycle, but overestimate its amplitude 
in DE-Tha and FR-Pue, while they show a larger divergence in general and a tendency to underestimate in both 
US-Ne3 and AU-How. Overall, GLEAM4 aligns well with observed seasonal cycles, and despite the heteroge-
neous performance across sites, it reproduces E anomalies across diverse climates and ecosystems successfully, 
even during extreme events like the ones depicted in Fig. 8.

Code availability
MATLAB and Python code for synthesizing the results and generating all figures of the article can be obtained 
from the public repository at https://doi.org/10.5281/zenodo.1405659367. Python code used to generate the 
GLEAM4 products can be requested via info@gleam.eu for reproducibility purposes. However, the code has been 
tailored to the computing and storage system of the Flemish Supercomputer Center (VSC) and is therefore not 
suitable for use in other environments.
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