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ARTICLE INFO ABSTRACT

Keywords: The impact of recent extreme flood events has once again highlighted the importance of accurate near-real-
Flood mapping time flood information. Consequently, a number of operational services have been established that primarily
Ren}otg sensing use Synthetic Aperture Radar (SAR) data to map flood extent. Among them is the Global Flood Monitoring
;/:gdatlon (GFM) service that is part of the Copernicus Emergency Management Service (CEMS). Using the systematic
Sentinel-1 monitoring capabilities of Sentinel-1, it is the first service to deliver flood maps fully automatic on a global

scale. To automatically and reliably monitor flood extent worldwide, the strengths and weaknesses of flood
mapping methods need to be known under various and sometimes challenging conditions. To examine the
performance of the TU Wien Bayesian flood mapping algorithm, which is one of the scientific flood algorithms
used operationally in the CEMS GFM service, we designed this validation study in which we compare our results
with all compatible Sentinel-1-based flood events of the CEMS on-demand mapping (ODM) service between
January 2021 and January 2022. In total, the study investigates 18 events from five continents. In addition
to computing common accuracy metrics, eight representative events were analysed in detail to understand the
reasons for the differences found, identify potential improvements for the method, and gain generic insights
for radar-based flood mapping. Most differences are caused by the use of the VH polarization in some of the
ODM reference maps, while the GFM service so far relies exclusively on VV polarization due to computational
costs. The impact of using two polarizations can be seen in particular over vegetation or in case of windy
conditions. Furthermore, while the post-processing strategy applied in the TU Wien algorithm helps to prevent
speckle impact, it also smooths out important details in small-scale flood events. Nonetheless, the automatic
TU Wien algorithm achieved a Critical Success Index (CSI) of over 70% against the semi-automatic reference
in 10 of 18 flood events. It exceeds this mark for all large-scale events and in cases without vegetation close
to the flooded surfaces. Overall, the median User’s Accuracy (UA) is 84.0 %, the Producer’s Accuracy (PA) is
72.9% and the Overall Accuracy (OA) is 85.3%. The results demonstrate that the GFM service would benefit
for using both VV and VH polarization and relaxing filters applied in the SAR processing workflow.

1. Introduction modelling or prediction efforts. Most commonly, the flooded area is

retrieved based on the SAR backscatter, since it generally features

Satellite-based flood mapping has gained considerable momentum
with the growing availability of new satellites, operational services,
and advanced methodologies. The information provided by operational
flood forecasting and monitoring services, such as those offered by
the Copernicus Emergency Management Service (CEMS), is crucial as
more people are impacted by floods (Tellman et al., 2021), and the
frequency of severe events is expected to rise due to climate change (on
Climate Change (IPCC), L.P., 2023). Flood mapping results, obtained
from Synthetic Aperture Radar (SAR) observations, serve a critical
function in emergency management and can contribute to flood risk
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a high contrast between land and water. This characteristic results
from the radar’s high sensitivity to surface roughness, whereby calm
open water surfaces act as smooth mirror-like reflectors, showing low
backscatter in contrast to non-inundated land. This allows flooded areas
to be detected well based on the drop of backscatter. Nevertheless,
there are still some challenging conditions or land cover types that need
to be taken into account in advanced flood mapping methods (Chini
et al., 2021; Amitrano et al., 2024). Vegetation is associated with more
complex scattering mechanisms, which can lead to both missed flood
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detections and false alarms (Pulvirenti et al., 2016; Moya et al., 2019).
Similar effects can be observed with other dynamic phenomena like
wind or snow cover. Finally, the lack of sensitivity in densely vegetated
or urban areas limits the applicability of many methods.

Due to its ability to ensure weather-independent observations of
flooded areas, SAR data is particularly suitable for operational services,
despite the mentioned challenges. Westerhoff et al. (2013) and Salamon
et al. (2021) distinguish between two main strategies for operational
flood mapping services: on-demand mapping and systematic services.
On-demand mapping is commonly performed for the limited area and
at the time of a specific hazard event, while systematic services rou-
tinely provide automatically produced maps without the need for a
manual activation. The most significant methodological difference be-
tween the two service types is that in the case of on-demand services,
manual interventions by experts are possible (semi-automatic), whereas
the algorithms in systematic services provide results automatically
and consistently everywhere. To meet the requirements of systematic
services, automatic methods must function under many different and
also challenging conditions. For this reason, only certain methods
are suitable in this context, and their performance must be validated
accordingly.

Numerous flood mapping methods are known in the literature, with
some providing solutions for specific problems, others optimized for
particular regions, and still others representing more universal meth-
ods. However, there are significant differences between the methods in
terms of technological readiness. The proof-of-concept of new methods
is often given for a limited number of large-scale events, sometimes
in a regional context (e.g. Clement et al., 2018; Huang and Jin, 2020;
Katiyar et al.,, 2021; Wu et al., 2023), and many of these methods
often do not progress beyond this status. Other methods are meant
to solve a specific challenge (e.g. Li et al., 2019; Zhao et al., 2022;
Garg et al.,, 2024) or are optimized for specific regions (e.g. Ohki
et al, 2020; Landuyt et al., 2021; Colacicco et al., 2024). While
those methods are typically evaluated in the context of their specific
application, their broader performance and generalizability remain to
be demonstrated, where relevant. Finally, more universal or mature
methods are evaluated for many different flood events and conditions
(e.g. Martinis et al., 2014; Bereczky et al., 2022; Ghosh et al., 2024),
which requires a significant resource investment that is not always
available. These methods show the highest technology readiness and
are best suited for global operational services. In addition to the more
advanced validation, some of the studies involved also question the
design of the validation, such as the choice of accuracy metrics used
or the use of sampling.

These differences in the validation status of flood mapping methods
have already been noted in the literature. Schumann (2019) and Amitrano
et al. (2024) argue that the validation and uncertainty assessment is
often neglected or not thoroughly conducted. The Committee on Earth
Observation Satellites (CEOS) subgroup for Land Product Validation
(LPV) defined five stages to characterize the advancement of a satellite-
based product’s validation (Nightingale et al., 2010). Flood mapping
is currently not included in the listed products, although its inclusion
would certainly be desirable. However, most flood mapping methods
can obviously be categorized in Stage 1, which is defined by a few
validation locations and time periods. In contrast to that, other prod-
ucts, such as surface soil moisture (e.g. Jackson et al., 2010; Colliander
et al., 2017; Gruber et al., 2020) or land cover mapping (e.g. Stehman,
2009; Zhao et al., 2014; Tsendbazar et al., 2021), can be classified at
Stage 2-4 nowadays. At these stages, many different locations and time
periods are used, with Stage 4 already requiring systematic validation
for each new version of a method. As a consequence of the lack of
comprehensive validation efforts, we often do not know how well
methods perform under challenging conditions or different land cover
types, when validation is only performed for individually selected
events or regions. This makes it more difficult to assess the scientific
value of a method. However, knowing the performance of a method
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does not mean that all weaknesses of the method have been resolved.
One major obstacle, challenging a higher number of comprehensive
validation efforts, is the scarcity of truly independent reference data
for flood situations. The challenge arises from the impracticality of
directly and dynamically measuring flood extents from the ground.
Consequently, independent ground-truth data must be obtained from
other measurement sources (e.g. water level, drone imagery), which
are often only available locally due to the resource-intensive and costly
nature of data collection. Further, the data is often captured at different
times than the satellite data, which introduces complication given
the dynamic nature of flood events. This limits the possibilities of
wide-ranging validation efforts for other satellite-based products.

1.1. Our global performance evaluation study

Our Bayesian flood mapping algorithm is described in Bauer-
Marschallinger et al. (2022). It is currently utilized as one of the
three scientific algorithms collectively detecting flooding in the Coper-
nicus Emergency Management Service (CEMS) Global Flood Monitoring
(GFM) (Salamon et al., 2021). The quality of the GFM products is
evaluated and published on a regular basis, but the performance of the
individual algorithms is only be determined indirectly. To bridge this
validation gap, this study aims for the following research objectives:

1. To evaluate and present the strengths and weaknesses of our
flood mapping algorithm under a wide range of environmental
conditions.

2. To analyse the impact of the operational setup in GFM, specif-
ically the provided input data, on the performance of the algo-
rithm.

Section 2 describes the selected study areas, the reference data and
the flood mapping algorithm. Details of the performance evaluation are
given in Section 3. The results and their interpretation are provided in
Sections 4 and 5.

2. Study areas, data and evaluated algorithm

An overview of the considered study areas is given in Section 2.1,
while the reference data of the performed evaluation is presented in
Section 2.2. Relevant input data for the algorithm is described in
Section 2.3 and a summary of the algorithm is given in Section 2.4.

2.1. Study areas

Study areas were selected by retrieving flood events in the time
period between January 2021 and January 2022 from the CEMS On-
demand mapping (ODM) archive.' For avoiding sensor-specific or tem-
poral differences, the selection was limited to events where Sentinel-1
has been used to produce the ODM flood map and a correspond-
ing observation in the VV polarization is available (details given in
Section 2.3). For two events (EMSR498 and EMSR504) an obvious
shift between the ODM flood map and the Sentinel-1 observation was
detected, which is why they are removed for the evaluation. As a result,
18 events covering five continents were identified for the performance
assessment (see Fig. 1 or Table 1). Some events within this selection
contain multiple Sentinel-1-based flood maps, which is why the one
showing the largest extent was selected based on visual interpretation
to test the performance based on the maximum available impact of the
event.

The performed selection method aims for an unbiased selection
of test sites, while providing many flood events with direct access
to corresponding reference data. The events were caused by different
triggers (e.g., La-Nina, cyclone), covering different land cover types
(e.g., herbaceous vegetation, crop land, forests) and have different
scales (from 89.7 ha to 11750.8 ha of flooded area).

1 https://emergency.copernicus.eu/mapping/
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Fig. 1. Global overview of selected flood activations/events.

Table 1

Details and evaluation results of the study’s flood events (coloured events, are qualitative evaluated and further discussed in Sections 4.1-4.4).

D Country S-1 acquisition Flood area [ha] UA [%] PA [%] Bias CSI [%] OA [%]
EMSR492 France 2021/01/02 4899.0 93.1 82.6 0.89 81.1 90.6
EMSR496 Italy 2021/01/27 307.0 79.2 98.1 1.24 97.2 98.0
EMSR497 Germany 2021/02/03 4371.7 82.9 93.9 1.13 94.2 96.6
EMSR501 Albania 2021/02/12 5038.7 85.0 96.0 1.13 93.8 96.2
EMSR502 Ireland 2021/02/24 751.7 93.0 84.3 0.91 84.1 91.9
EMSR511 Finland 2021/05/22 490.3 91.8 41.9 0.46 41.9 71.3
EMSR514 Guyana 2021/06/06 11750.8 82.2 43.2 0.53 43.1 71.4
EMSR517 Germany 2021/07/15 981.3 57.1 68.9 1.21 66.5 84.0
EMSR518 Belgium 2021/07/15 752.6 88.7 72.7 0.82 70.8 86.4
EMSR520 Netherlands 2021/07/16 1197.3 90.6 62.6 0.69 63.4 81.3
EMSR548 Italy 2021/10/31 1565.8 95.5 42.5 0.45 41.3 71.1
EMSR551 Iraq 2021/11/21 89.7 36.6 17.4 0.48 17.1 57.9
EMSR554 Australia 2021/11/30 951.5 78.9 73.0 0.93 73.2 85.2
EMSR555 Spain 2021/10/12 7806.6 91.4 50.6 0.55 51.1 74.9
EMSR557 Norway 2022/01/13 259.9 73.8 2.9 0.04 2.8 51.0
EMSR559 Madagascar 2022/01/27 113.8 55.8 92.1 1.65 91.7 95.4
EMSR561 Malawi 2022/01/26 2974.5 93.7 93.0 0.99 92.1 94.6
EMSR562 Australia 2022/02/03 8508.4 74.1 73.3 0.99 71.5 85.4
2.2. On-demand mapping reference data management.

The Copernicus Emergency Management Service (CEMS) provides
an on-demand mapping (ODM) service as well as a systematic service
with the Global Flood Monitoring (GFM). As described by Wania et al.
(2021), the ODM provides crisis information in maximum 24 h after
activation. The service can make use of satellite imagery gathered
from 30 different Copernicus Contributing Missions (CCM) but flood
mapping is mostly performed based on SAR observations, due to their
all-weather and -light capabilities. It provides globally distributed ac-
tivations collected in a database that goes back to 2012. Hence, the
service allows a systematic evaluation that would not be possible with
other reference data options (e.g. airborne images or citizens science in
its current state).

According to Ajmar et al. (2017), the flood extent provided by ODM
relies on several semi-automatic mapping methods hosted by different
service providers. Thresholds and other parameters are defined by
means of visual interpretation of qualified experts. SAR data input can
utilize different microwave wavelengths and polarizations. In the case
of Sentinel-1, one can rely on VV and VH polarization, and sometimes
on HH, when a corresponding observation is requested for emergency

As described in the ODM product manual (Inés et al., 2020), the
service provides separate datasets for each activation (identified by a
unified ID “EMSRxxx”) over user-defined areas of interests (AOI). For
each AOI, up to four product types are provided: reference, first esti-
mate, delineation and grading. Since the delineation product (example
given in Fig. 2) represents the event’s flood extent, it is most suitable as
reference data within this study. For the purpose of the flood validation,
we utilized the flood extent (“observedEventA”), the AOI (“areaOflIn-
terestA”) and the permanent water bodies (“hydrographyA”). Details
(acquisition time, resolution etc.) about the used satellite source are
provided in a separate database-file. Some delineation products con-
sist of multiple flood extents featuring different satellite sources and
acquisition times.

The design of the ODM considering expert knowledge allowing
the correction of misclassifications, which potentially occur due to
challenging local characteristics within the affected area. Automatic
algorithms used in systematic mapping services have to rely on ap-
propriate models instead, as no manual intervention is possible. The
goal of ODM is to support emergency management, which is why
they are designed for speed rather than accuracy. However, quality
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Fig. 2. Exemplary reference data for the Albania/EMSR501 event compared to corresponding result of the TU Wien flood mapping algorithm. ODM data: Copernicus Emergency
Management Service, [EMSR501] Albania: Delineation Map, Monitoring 1. Upper background: ESA WorldCover Sentinel-2 True Colour Composite (TCC) from year 2021 (Zanaga

et al., 2022).

control is conducted by both the service providers and the CEMS, and
defective products will be replaced if necessary (Ines et al., 2020).
Limiting the reference to products produced by Sentinel-1 allows for
the exclusion of sensor-specific and temporal differences and focuses on
the validation of the automatic approach of our algorithm. On the other
hand, this restricts the independence of the reference data. Due to the
mentioned advantages, as well as the lack of completely independent
reference data, we consider the expert-generated reference to be a very
suitable method for testing the performance of our automatic algorithm
(presented in Section 2.4).

2.3. Input data for Sentinel-1 flood mapping algorithm

The Sentinel-1 observations passed to the flood mapping algo-
rithm (described in Section 2.4) are provided from the Sentinel-1
datacube (Wagner et al., 2021) that underpins the GFM service. The
datacube includes preprocessed sigma nought (¢° or SIGO) at a pixel-
size of 20m and derived from the GRDH product in Interferometric
Wide-swath (IW). The GFM service currently relies only on the VV po-
larization (vertically transmitted, vertically received), primarily due to
high computational costs of including multiple polarizations. Since VV
shows better flood mapping accuracy compared to VH (vertically trans-
mitted, horizontally received) when a single polarization of Sentinel-1
is used (Twele et al., 2016; Clement et al., 2018), it is the polarization
of choice. Additionally, the algorithm requires the mean projected local
incidence angles (PLIA) and pre-derived parameters of the utilized
backscatter models (see Section 2.4). The datacube structure based on
the Equi7Grid (Bauer-Marschallinger et al., 2014) allows for efficient
pixel-wise comparison of all input parameters and straight-forward
access to multi-temporal backscatter data.

2.4. Sentinel-1 based flood mapping algorithm

The Bayesian algorithm (see Fig. 3) performs a pixel-wise deci-
sion about flood or non-flood conditions. The availability of historic
Sentinel-1 measurements within our global Sentinel-1 datacube al-
lows the statistical description of the backscatter signature of the two
states. While the backscatter signature of the flood state (being in
this respect simply a water surface) is described by its linear rela-
tionship with the incidence angle, non-flood conditions are estimated
by the harmonic model for non-flooded land (described below). As
the backscatter behaviour from water is the same everywhere, the
linear water backscatter model is defined globally through the use of
observations of permanent water bodies in the years 2015-2016 from
several regions in Europe. The backscatter behaviour from non-flooded
land is dominated by the local surface, and consequently the non-flood
signature is defined locally for each pixel individually. Utilizing the
mean PLIA and the acquisition time of the incoming Sentinel-1 scene,
the backscatter signatures are parametrized specifically for the flood
mapping situation. Using the Bayes inference, the incoming Sentinel-1
scene is pixel-wise compared to the modelled backscatter signature of
flood and non-flood conditions, and a relative probability of the pixel
to belong to each class is assigned. Finally, the more probable condition
is chosen. Since the relative probabilities of the classes sum to one, the
probability of the less probable state can be used as a measure of the
closeness of the decision, which is further referred to as uncertainty.
The harmonic model (shown in Eq. (1)) aims at providing an estimate
of backscatter under non-flooded conditions by considering its historic
seasonality. In practice, a harmonic model of third order has proven
to be effective, as it captures processes that repeat at a ~ 4 months
cycle, thus approximating the seasonal backscatter pattern (Schlaffer
et al., 2015). The model is defined for any day-of-year ¢,,, and locally
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computed harmonic parameters C; and S; as well as the average SAR
backscatter 5° (Bauer-Marschallinger et al., 2022):
3
7 t40) = . {Ccos GV + 8 sin(jv)} + 5
J=1 @
with v= 2z
365

The required parameters of the harmonic model are precomputed
and stored in the global harmonic parameter database (Roth et al.,
2023) utilized within the GFM service. To ensure similar observation
geometries, the parameters are defined separately for each relative
orbit of Sentinel-1. For data examined here, the database’s parame-
ters were retrieved from Sentinel-1 observations covering the years
2019-2020.

As the harmonic model cannot reproduce the backscatter dynamic
for all circumstances and the linear water backscatter model is limited
to flat surfaces, some conditions are not supported by the models used.
Furthermore, decisions showing close to equal probabilities for both
classes (high uncertainty), and outlier measurements which are not
well represented by the two classes, are excluded. The side-looking
measuring geometry of Sentinel-1 observes the Earth’s surface in view-
ing angles of 29° to 46°. As PLIA is defined as the angle between
the surface normal and the looking direction, flat areas feature only
values in this range. Consequently, non-flat areas (including a buffer,
defined by: PLIA < 27° or PLIA > 48°) are masked as exceeding
PLIA. Although the harmonic model is used in the context of the non-
flood class, we have calculated it for all pixels worldwide, excluding
the oceans. Some pixels permanently show a low backscatter (e.g. per-
manent water bodies, tarmac surfaces), similar to water, while other
pixels (e.g. seasonal water, wetlands) show a periodic low backscatter.

In these cases, the non-flood signature retrieved from the harmonic
model strongly overlaps the water signature. Since we cannot detect a
temporary inundation from an already water-like low backscatter, these
areas are masked (conflicting distributions).

Due to the coherent nature of the SAR signal, speckle can lead
to arbitrary low and high backscatter pixels. To avoid corresponding
false-positive alarms, a spatial majority filter is applied on the binary
flood extent. Finally, the result is limited to flood prone areas, which
is achieved by applying a topography mask. The mask excludes pixels
with a vertical distance larger than 15m above the nearest drainage
using the HAND index (Renn6 et al., 2008).

The flood extent map shows flood surfaces of a Sentinel-1 specific
observation and is stored in the same tile structure and projection as
the input data (see Section 2.3).

3. Evaluation method

For the evaluation of the Sentinel-1 based flood mapping algorithm,
the flood extent maps generated by ODM (further referred to as ref-
erence data) and by the TU Wien algorithm (further referred to as
classification results) are compared for the selected 18 events (listed
in Section 2.1). To enable comparison, the classification results are
brought to the same projection and the same extent as the reference
data. Further, the permanent water layer of the ODM dataset is applied
as a mask, to focus on the flood areas only. The performance is
assessed by computing common accuracy metrics. While these metrics
allow a straightforward comparison to other methods and an estimate
of the overall performance, they lack information about the spatial
distribution and reasons behind the found differences. Consequently,
we perform a visual inspection of the underlying contingency maps to
bridge this gap. The inclusion of many well-distributed events, with a



F. Roth et al.

a) Optical

b) DOY backscatter c) SIGO VV 20 m
_ 27 January 2022

27 January

0 0.5 1km
| I

UA =558 OA=0954

PA =921 CSI=91.7

Bias = 1.65

Science of Remote Sensing 11 (2025) 100210

d) Contingency e) Classification

uncertainty

f) Effect of
majority filter

Majority filter
[ Removed
Il Added

[ 1 Unchanged

Contingency map
I underestimation
I flood agreement
[1 overestimation
Low sensitivity masking
[ exceeding PLIA

Uncertainty

40
0

Fig. 4. Details on the flood event in Madagascar/EMSR559 from the 2022/01/27 02:19 UTC. (a) ESA WorldCover Sentinel-2 TCC year 2021 (Zanaga et al., 2022) (b) Expected
DOY backscatter from the harmonic model (¢) SIGO VV 20m flood scene (d) Contingency map (e) Classification uncertainty (f) Effect of majority filter.

substantial proportion of them being qualitatively analysed, contributes
to the distinctiveness of our rigorous validation approach.

Two commonly used class-specific metrics are the User’s and Pro-
ducer’s Accuracy (UA and PA). As our focus is to optimize the classifica-
tion of flood pixels, both metrics are calculated by focusing on the flood
class. While a high number of the UA indicates a low overestimation,
a high number of the PA indicates a low underestimation of the flood
class. To easily distinguish if an event tends towards over- or underes-
timation, the bias can be consulted. A value larger than 1 indicates an
overall overestimation, while a value lower than 1 corresponds to an
overall underestimation. It needs to be noted that all presented metrics
strongly depend on the chosen extent of the AOL

Besides class-specific accuracy metrics, many studies rely on global
metrics like the Overall Accuracy (OA), the Critical Success Index (CSI)
or the Fl-score. Since the non-flood class usually consists of much
more pixels compared to the flood class, some metrics like the OA
or the F1 are biased towards the dominant class (Stephens et al.,
2014). Besides UA and PA, the CSI is known for being independent
of the proportion of the two classes. However, the CSI is known to
show a bias towards larger floods and overdetection (Landuyt et al.,
2019). In detail, considering the same amount of pixels being false
positive (overestimation) or false negative (underestimation), the CSI
values will be higher for overestimation compared to underestimation.
Additionally, the CSI value for the same number of falsely classified
pixels in a large scale event will be higher compared to the same
number in case of a small-scale event.

Following the suggestion from Landwehr et al. (2024), we computed
the accuracy metrics using an appropriate sampling design. To com-
pensate for the unequal proportions of the two classes, we applied a
random stratified sampling with an equal number of samples for each

class (2500 pixels per class). To test the chosen sampling design, we re-
peated the random selection of samples 1000 times (i.e., bootstrapping)
and calculated the standard deviation of the different metrics. Since
the standard deviation does not exceed 0.01 for any metric, the design
is considered appropriate. The UA, PA and bias are chosen as class-
specific metrics, and we kept the CSI to allow comparisons to other
studies. Given the sampling methodology and bootstrapping results, the
OA is a more robust global metric and is chosen to balance the CSI.
The selected accuracy metrics are computed for all 18 events, while
the interpretation of the contingency maps is presented for 8 exemplary
events.

The selected metrics commonly rely on the confusion matrix, con-
sisting of the number of true-positive (TP), true-negative (TN), false-
positive (FP) and false-negative (FN) pixels, and they are defined
by Eq. (2) and (3).

Ua= TP __ A= _TP bigs = LE+FP )
TP+ FP TP+ FN TP+ FN
OA TP+TN TP (3)

= = —m78 8 —
TP+TN+FP+FN TP+ FP+FN

4. Results and discussion

The performance of our automatic flood mapping algorithm is
evaluated by comparing its results to the semi-automatic results of the
ODM for 18 flood events. The performance metrics of all these events
as well as further details of the individual events are summarized in
Table 1. In order to improve readability of the provided values, the
Critical Success Index (CSI), the Overall Accuracy (OA), the User’s (UA)
and the Producer’s Accuracy (PA) are scaled between 0 and 100%.
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Overall, the CSI exceeds a value of 70% for 10 out of 18 events. We
see this as a positive result, considering that the algorithm’s output was
compared with a semi-automatic data approach. The OA values behave
similarly to the CSI, generally being slightly higher, and in the case of
smaller events with poorer performance, not dropping off as much as
the CSI (also mentioned by Tupas et al., 2023). This can be particularly
observed when there is predominantly an underestimation for an event
(e.g. Finland/EMSR511). Without a suitable sampling approach, the OA
is usually less effective for flood mapping validation, as the dominant
no-flood class can mask misclassifications of the flood class. Therefore,
the OA values of different events often turn out quite similar. However,
it can be seen here that clear differences exist between the individual
events and the OA is shown to be a valid accuracy metric for flood
mapping applications.

The amount of over- or underestimation can be estimated by the UA
and PA, while the overall trend can be shown by the use of the bias met-
ric. Besides a number of events matching the reference closely (e.g. Ger-
many/EMSR497, Malawi/EMSR561), a general trend towards under-
estimation can be observed (e.g. Iraq/EMSR551, Norway/EMSR557,
Spain/EMSR555). Additionally, a smaller number of events show an
overall overestimation (e.g. Albania/EMSR501, Germany/EMSR517,
Madagascar/EMSR559). The limitations of the bias metric can be seen
with the events Australia/EMSR554 and Australia/EMSR562, where the
bias is close to 1 because of the roughly identical size of overestimation
and underestimation. For a better understanding of the differences, we
selected eight events from the total of 18 events and analysed them
spatially and in greater detail (see Sections 4.1-4.4). For some events,
the shown figures do not represent the whole area of the event, but a
cutout to emphasize the differences of the two datasets.

4.1. Events showing overestimation

4.1.1. Madagascar/EMSR559

Heavy rainfall hit Madagascar and caused severe flooding at the be-
ginning of the year 2022. The situation close to the city of Moramanga,
in the Alaotra-Mangoro region, in eastern Madagascar is covered by the
Sentinel-1 observation from the 27th of January (shown in Fig. 4). As
the detected inundated area results in 113.8 ha, the event is considered
small-scale relative to the other investigated events.

Overall, the tested flood mapping algorithm shows an overestima-
tion compared to the reference data (details are given in Fig. 4d). One
can see that areas with overestimation generally show a slightly higher
backscatter (see Fig. 4c, especially in the green box 1) compared to
the areas where classification and reference data agree on flooding.
These pixels represent a close decision where our algorithm still assigns
the pixels with a slightly higher backscatter to the flood class, while
they are already classified as non-flood in the reference data. This
conclusion is supported by the observation of an increased classification
uncertainty of our result (Fig. 4e) in the affected areas, indicating a
more similar probability of the pixel being part of the flood or non-
flood class. The ambiguity may be explained by mixed water-land pixels
along the outline of the flood body, with a mixed SAR backscatter
signal. In a small-scale event like this, such outline pixels have more
impact compared to an event of larger scale.

Fig. 4f shows the extension and reduction of the detected flood area
due to the algorithm’s majority filter applied in the post-processing.
Although the filter successfully compensates for SAR speckle and local
effects, large water bodies are reduced as well. Within the green box
2, an underestimation caused by the majority filter is shown. A similar
small-scale situation and trend towards underestimation is present in
the flood event Italy/EMSR496 (inundated area of 307.0 ha), which is
not shown visually and in detail in this study.
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4.1.2. Albania/EMSR501

The ODM was activated for the flood event in Albania on the 12th
of January 2021 and Sentinel-1 covered the affected area on the same
day. As this flood from heavy rains covered a comparatively large
area (5038.7 ha), we categorize the event as large scale. Overall, our
algorithm correctly classified the vast majority of pixels, resulting in a
CSI of 93.8. In Fig. 5a and 5b permanent water bodies on the top (Lake
Skadar) and in the centre of the plot (Lake Sas) are visible, as well as
River Buna crossing the area. The impact of wind-induced waves can be
seen in Fig. 5¢ due to an increased backscatter over the permanent and
inundated water bodies. However, there is no negative impact visible
for this event.

Fig. 5d shows the contingency map overlaid by the low sensitivity
mask. It is evident that sloped areas are accurately excluded as exceed-
ing PLIA and most permanent water bodies are correctly masked due to
conflicting distributions (details are given in Section 2.4). Nevertheless,
the area emphasized by the green box 2 is not excluded by the low
sensitivity mask, but by the hydrography mask (Fig. 5b) provided by
the ODM. To mask this wetland area, water-like backscatter needs to
be present in both the DOY backscatter of the harmonic model (Fig. 5a)
and the actual backscatter observation (Fig. 5¢), which is not the case.
The water body’s shape suggests an artificial construction that was
potentially being built after the training period of the harmonic model
(years 2019-2020). Furthermore, an error in the reference data cannot
be excluded.

Some local overestimation is present within the wetland areas
shown in the green boxes 1 and 2 of Fig. 5d. In Fig. 5b wetland
areas indicated by the ODM are emphasized and contain the areas of
overestimation well. Since the post-flood observation (Fig. 5c) shows
low backscatter within the green boxes and the corresponding expected
backscatter (Fig. 5a) is high in comparison, the algorithm’s decision is
plausible. One possible explanation for why these areas are missing in

the ODM reference flood map, is the semi-automatic approach used by
ODM. The areas might have been manually removed based on other
data sources, as land cover or optical data.

4.2. Events showing underestimation

4.2.1. Norway/EMSR557

The combination of heavy rain and snow melt caused flooding in
multiple locations of Norway on 11th of January 2022, which is why
the ODM was activated. Fig. 6 shows the Sentinel-1 observation from
the 13th of January 2022 and the performance of the flood mapping
algorithm (Fig. 6d). The flooded area detected by ODM is with 259.9 ha
relatively small.

Similar to the event Albania/EMSR501 (presented in Section 4.1.2),
the existing permanent water bodies are expected to be masked due to
conflicting distributions. The mouth of River Verdalselva (see the green
box 1 in Fig. 6¢) is more complex, since some areas are only inundated
seasonally. As those areas were not inundated during the years 2019
and 2020, which is the time period the harmonic model is based on, the
expected backscatter of the harmonic model is larger than the expected
water backscatter. Consequently, those areas are not masked due to
low sensitivity. Furthermore, it can be seen that the river is only partly
visible in the Sentinel-1 observation at a spatial resolution of 20 m, and
therefore it is not masked by the low sensitivity mask either.

The contingency map (Fig. 6d) shows that the majority of flooded
areas are missed by the TU Wien flood mapping algorithm. A compar-
ison of the Sentinel-1 observation in VV (Fig. 6¢) and VH (Fig. 6b) po-
larization indicates a strong difference in backscatter over the flooded
areas. For example, water-like low backscatter is found for VH, while
this is not the case for VV. In general, the reference data seems to
match the VH observation much more closely compared to VV. Since
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the algorithm uses solely VV as an input, the underestimation can be
attributed to the difference in the input data. The most likely reason
for this difference between the polarizations is the presence of low
vegetation. As stated by Twele et al. (2016) and Vreugdenhil et al.
(2020), the backscatter from VH and VV polarization shows strong
differences over vegetation. VV shows a higher penetration depth into
the vegetation, which results in a higher contribution of the ground-
vegetation interaction (e.g. double-bounce effect). If the vegetation is
low and dominated by the signal coming from the ground, the double-
bounce effect between water and vegetation could lead to an increased
VV backscatter, while the VH backscatter is less affected and provides
a less disturbed signal from the water surface. This assumption corre-
sponds with the findings of Landuyt et al. (2020). When comparing the
observations in VV and VH, it can be seen that VV is more affected
by the impact of wind, visible as increased backscatter over permanent
water bodies.

Other events, for which we assume that observations based on
the VH polarization were used in the reference data (only a fraction
of them is presented visually and detailed in this study), are: Bel-
gium/EMSR518, Finland/EMSR511, Guyanna/EMSR514 (discussed in
Section 4.2.2), Italy/EMSR548, Malawi/EMSR561 (discussed in Sec-
tion 4.4.2) and Spain/EMSR555.

4.2.2. Guyanna/EMSR514

Fig. 7 presents the Sentinel-1 observation from the 6th of June 2021
covering one part of the corresponding flood event over Guyanna. Ac-
cording to the ODM, the flood water covered a total area of 11750.8 ha,
which represents the largest event by area investigated by this study.

Similar to the observation of the event in Norway (described in
Section 4.2.1), the Sentinel-1 observation of the event in Guyanna
shows a similar difference between the VV (Fig. 7¢) and VH (Fig. 7d)

polarization. The difference in both events is obviously caused by
vegetation, but in case of Guyanna the vegetation is located in an
agricultural context. The resulting underestimation of our VV-based
result can be seen in Fig. 7e. Agriculture presents a major challenge
for C-band SAR flood mapping, since water-like low backscatter can
occur due to multiple reasons during the plant cycle (more details are
given in Section 4.3.1). In this case, the fields were flooded and the
vegetation penetrates the water surface in some regions, preventing
the specular reflection generally causing the low backscatter of water.
A similar backscatter behaviour can be related to wind, which was
present at the time, as an increased backscatter is observed over the
ocean. Based on the radar data alone, one is not able to tell which of
the two effects caused the underestimation. However, the observation
in the VH polarization shows less impact of these effects.

The automatic low sensitivity masking again excluded permanent
water bodies (visible in Fig. 7e). The chosen approach shows obvious
limitations over the ocean, due to the turbulent water surface causing
strong variability of the backscatter over the ocean. Consequently,
the harmonic model (Fig. 7b) does not depict the ocean to be a
homogeneous low backscatter area. Because of this, many pixels show
no clear overlap between flood and non-flooded backscatter signature,
preventing them of being masked.

4.3. Events showing both over- and underestimation

4.3.1. Germany/EMSR517

In July 2021 extreme rainfall caused exceptional flooding in Europe,
and the ODM was activated for Belgium/EMSR518, Germany/EMSR517
and the Netherlands/EMSR520. On 15th of July 2021 Sentinel-1 cov-
ered the affected area in Western Germany and the eastern part of the
area can be observed in Fig. 8. The comparison of classification result
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Fig. 8. Details on the flood event in Germany/EMSR517 from the 2021/07/15 05:50 UTC. (a) Expected DOY backscatter from the harmonic model (b) ESA WorldCover Sentinel-2
TCC year 2021 (Zanaga et al., 2022) (¢) SIGO VV 20m flood scene (d) Effect of the applied majority filter (e) Contingency map.

and reference data revealed some over- and underestimation (Fig. 8e),
mostly over vegetation.

Due to the complex interaction of the radar signal with the vegeta-
tion volume and the ground, situations of both high or low backscatter
can be caused by change in vegetation (Vreugdenhil et al., 2018;
Harfenmeister et al., 2019). If the backscatter decreases temporarily
over vegetation, it is difficult to distinguish whether this is caused
by changes in vegetation state or an actual flood is happening. This
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backscatter behaviour is generally caused by signal attenuation or
smooth soil (e.g. after ploughing of agricultural fields). As the harmonic
model represents the seasonality of the backscatter based on the years
2019 and 2020 (expected backscatter visible in Fig. 8a), low backscat-
ter situations following the same seasonality would be expected by the
model and a correct classification can be made. On the other hand,
there are two conditions where misclassifications occur (confusion map
in Fig. 8e): First, a low backscatter situation not occurring during the
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expected time of the year or with a larger amplitude than expected,
would lead to an overestimation (seen in the green box 1 in Fig. 8).
Second, the harmonic model expects low backscatter, but an actual
flood is happening, which leads to an underestimation because of the
masking of conflicting distributions (see green box 3 in Fig. 8).

The flooded area of this event consists of a number of small, distinct
polygons, instead of a continuous surface. To reduce the influence of
the speckle effect, our algorithm always applies a majority filter onto
the binary flood maps during the post-processing step (see Section 2.4
for more details). The impact of the majority filter can be seen in
Fig. 8d. Unfortunately, it is currently not feasible for the algorithm to
distinguish between false flood detections, small areas due to speckle,
or those which are actually flooded. Consequently, the application of
the majority filter increases the underestimation of our result.

The green box 2 in Fig. 8 covers the airport Cologne/Bonn. Since
the flat tarmac surfaces of the runways show a low backscatter in both
the expected backscatter and the post-flood observation of Sentinel-1,
the area is correctly masked due to conflicting distributions. Similar
observations can be made for the River Rhine in the bottom of the plot.

4.3.2. Iraq/EMSR551

The flood-prone district Sulaymaniyyah in Iraq was hit by a flood
on 21st of November 2021. The detected flooded area make up 89.7 ha,
which is the smallest event based on the affected area within the
selection of this study. The optical satellite data (Fig. 9d) as well
as the expected backscatter (Fig. 9a) show a mountainous region.
Consequently, large parts of the area of interest are masked out, as
the PLIA exceeds the valid range of the used water backscatter model.
As the remaining flooded area consists of small, distinct polygons,
they are removed by the majority filter during post-processing (see
Fig. 9e) similarly to the event Germany/EMSR517 (see Section 4.3.1).
Nevertheless, attention must also be paid to the advantages of the filter,
as the influence of speckle could be significantly reduced here.
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4.4. Events being close to reference

4.4.1. Germany/EMSR497

In February 2021 the River Rhine overflowed its banks within the
district of Diisseldorf and caused moderate flooding. Within the selected
area of the ODM, a flooded area of 4371.7 ha was affected, which
suggests considering it as a large scale event. Overall, the TU Wien
flood mapping algorithm’s result matches the reference data closely
(Fig. 10d). Next to the river, many permanent water bodies are present
and being masked correctly (compare Fig. 10b and 10d). While the
riparian area is mostly covered by built-up areas and pastures, the
majority of the plot consists of agricultural areas. In contrast to the Ger-
many/EMSR517 event (see Section 4.3.1), the presence of vegetation
has not caused any significant over- or underestimation. As the flood
happened during Central Europe’s winter, the plant height is assumed
to be low and no signal attenuation or ploughing caused unexpected
low backscatter measurements.

4.4.2. Malawi/EMSR561

The tropical storm Ana caused a flood in Malawi, which was covered
by Sentinel-1 on 26th January 2022. The event is considered to be large
scale, as the detected flood area affected 2974.5ha and the algorithm’s
result matches the reference data closely. Nevertheless, some regions
of over- and underestimation are visible in the contingency map (see
Fig. 11d). Firstly, a noise-like area of overestimation can be seen
within the green box 1. As the area of interest is covering steppe and
agricultural land is present as well, vegetation could be the reason for
the overestimation. Alternatively, a false negative result of the CEM-
ODM can be present in this part of the event. A similar issue is detected
in the event Germany/EMSR517 (see Section 4.3.1). Secondly, areas of
underestimation are found along the rivers Lukhubula, Mwamphanzi
and Mapalera. Since the area next to these rivers is dominated by
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Fig. 10. Details on the flood event in Germany/EMSR497 from the 2021/02/03 05:49 UTC. (a) Expected DOY backscatter from the harmonic model (b) ESA WorldCover Sentinel-2
TCC year 2021 (Zanaga et al., 2022) (c¢) SIGO VV 20m flood scene (d) Contingency map.

shrubland and shows a higher backscatter in VV (Fig. 11d), while
VH (Fig. 11c) measures a low backscatter, the underestimation most
likely related to flooded vegetation. Similar issues appear and being
described for the event Norway/EMSR557 and other events listed in
Section 4.2.1. As for the event Albania/EMRS501 (see Section 4.1.2),
we can observe a high CSI of 92.1, despite some discussed deviations
from the reference data. In both cases, the deviations do not have much
impact due to the large scale of the overall event.

5. Conclusions

In this study, we evaluated our automatic Sentinel-1-based flood
mapping algorithm by comparing its results to the semi-automatic
results of the Copernicus Emergency Management Service (CEMS) on-
demand mapping (ODM). Overall, we included 18 globally-distributed
flood events between January 2021 and January 2022. For each event
common performance metrics were retrieved and for eight events we
performed a qualitative evaluation based on the spatial differences
between our and the semi-automatic results.

The TU Wien flood mapping algorithm shows a robust performance,
considering that it is an automatic algorithm and not using the VH
polarization. An overview of the performance metrics of all events
is given in Table 1. The best performing event is Malawi/EMSR561
with a UA of 93.7% and a PA of 93.0%. Calculating the median
over all events, the UA results in 84.0%, while the median PA results
in 72.9%. Other studies featuring an automatic approach presented
values in an equal order of magnitude (UA /PA): 88%/65% (Chini
et al., 2017), 94.3%/71.5 % (Clement et al., 2018), or 82.4-98.5%
/83.6-92.6 % (Martinis et al., 2014). Generally, the causes of over-
or underestimations can be traced back to the complex interaction
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of the radar signal with certain land-cover types (e.g. vegetation) as
well as the impact of the algorithm’s post-processing facing challenges
under certain conditions (e.g. small non-connected flood surfaces).
As no systematic overestimation or -masking is noticed, we conclude
that the harmonic model estimates the expected backscatter for non-
flooded conditions well. Furthermore, the usage of backscatter with
a pixel-size of 20m as an input to the algorithm shows no apparent
disadvantages in the flood detections compared to 10m data, while
clearly reducing the required data volume and the impact of the speckle
effect. Considering regional instead of global applications, the system-
atical utilization of 10 m pixel-size could nevertheless be of interest for
automatic algorithms as well.

Some potential improvements for the TU Wien flood mapping al-
gorithm are identified based on the detailed investigation of detected
differences. The main cause of differences between classification and
reference data is related to the occasional usage of VH polarized
measurements in case of the reference data. Overall, we identified
two conditions where VH influences the flood mapping result: wind
impact (see Section 4.1.2, 4.2.1 or 4.2.2) and flooded vegetation (see
Section 4.2.1 or 4.2.2). The VV backscatter is generally increased by
the double-bounce effect present for flooded vegetation, as well as
by the roughening of the surface due to wind. The interpretation of
the tests sites showed that our algorithm performs well even when
wind is present. However, to enhance performance in the presence
of vegetation, one should consider incorporating VH in the future or
capturing an increased VV. Since this step might lead to an increased
false positive rate, thorough research must be conducted initially.

In general, large scale events show better performance metrics
compared to small-scale events, although this bias is reduced by the
applied sampling. This is because small deviations from the reference
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Fig. 11. Details on the flood event in Malawi/EMSR561 from the 2022/01/26 03:16 UTC. (a) Expected DOY backscatter from the harmonic model (b) ESA WorldCover Sentinel-2
TCC year 2021 (Zanaga et al., 2022) (c) SIGO VH 20m flood scene (d) SIGO VV 20m flood scene (e) Contingency map.

do not influence large scale events by the same relative impact as small-
scale events. Furthermore, this evaluation identified the majority filter
applied during the post-processing routine as a weakness of the current
TU Wien algorithm implementation, which especially affects small-
scale events (see Sections 4.1.1, 4.3.1 and 4.3.2). While the impact
of the speckle effect is clearly reduced, the filter limits the size of
unconnected water bodies that are classified as flood. Furthermore,
the reduction of large water bodies and extension of the flooded area
without being based on the backscatter data is considered as deteri-
oration of the performance. Consequently, alternative post-processing
routines such as applying a minimum mapping unit or a region growing
approach are planned to be tested in future studies.

There are multiple reasons for low backscatter observations over
vegetation, in particular over agricultural areas (e.g. signal attenuation,
ploughing, frost). These reasons show a strong seasonal behaviour, but
the harmonic model is not fully able to cover them (see Section 4.3.1),
since the low backscatter situations emerge quickly and are hard to
predict based on historic measurements. Consequently, some overes-
timation might appear if the harmonic model’s expectation does not
match the corresponding year, or wrong masking could be performed
due to the same cause. To overcome this issue, the consideration of
temporal and spatial patters and their differences compared to ac-
tual flooding should be studied. Therefore, a non-flooded reference
with the ability to be updated in near-real-time is currently being
investigated (Tupas et al., 2024).

The low sensitivity masking aims for excluding situations where
the underlying assumptions of the applied statistical models are not
met. Overall, the masking was effective across all areas that could
be compared to external data, such as permanent water bodies and
mountainous regions. Only the automatic masking of the ocean area
performed poorly (see Sections 4.2.1 and 4.2.2), due to the rough sur-
face and temporal variability of the water. Fortunately, many external
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datasets can be utilized to mask the ocean, which is why the masking
can be supported easily and a dedicated optimization over the ocean is
not deemed necessary.

While there are studies that have conducted a comparable quantita-
tive evaluation, to our knowledge there is no study that has conducted
a comparable qualitative evaluation of a specific flood mapping al-
gorithm. Since test site selection was independent of the strengths
and weaknesses of the algorithm, the evaluation is considered to be
unbiased. Furthermore, the test sites covered multiple continents and
climatic conditions, although the majority of sites are located in Eu-
rope. This is caused by the reliance on the CEMS on-demand mapping,
which is a European service and the majority of activations happen on
the very same continent. Further, the majority of flood events are of
the fluvial type, whereas pluvial and coastal floods are relatively un-
derrepresented. However, the included number and spatial distribution
of test sites allowed an overview of the performance of the algorithm
and provided suggestions for future improvements. Although some of
the findings are specific to the algorithm tested (e.g. issues with the
majority filter or harmonic model), others remain valid for other radar-
based methods (e.g. impact of the VH polarization or challenges raised
by vegetation). Given the valuable insights about the performance of
our algorithm, we consider the study’s design to be well suited for the
evaluation of our automatic flood mapping algorithm evaluation.
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