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Zusammenfassung

Im Rahmen dieser Diplomarbeit wurden Kristalle aus sogenannten
”
patchy partic-

les“untersucht. Diese Bezeichnung stellt einen Sammelbegriff für Teilchen mit einer
heterogenen Oberflächenbeschaffenheit dar; hier wechselwirken bestimmte Regionen
der Oberfläche anders als andere Regionen. Wir untersuchen zwei Arten von

”
pat-

chy particles“: einerseits Janus Teilchen, bei denen der Großteil der Oberfläche nicht
wechselwirkend ist, während der Rest der Oberfläche, die

”
patches“, aufeinander an-

ziehend wirken. Andererseits sogenannte
”
inverse patchy colloids“, die aus negativ

geladenen Kolloiden und darauf adsorbierten positiv geladen Regionen bestehen.

Durch diese stark anisotrope Wechselwirkung der Teilchen kann eine Vielzahl an
interessanten Kristallen entstehen. Daher werden Partikel als mögliche Bausteine von
neuartigen funktionalen Materialien gehandelt: durch die richtige Wahl der äußeren
Bedingungen soll das Entstehen einer erwünschten Struktur möglich werden.

In dieser Arbeit wird der Einfluss von äußeren thermodynamischen Parametern
(Druck, Temperatur, etc.) auf die bevorzugte kristalline Struktur eines Systems ani-
sotroper Teilchen untersucht. Dafür wurde eine kürzlich entwickelte Methode ver-
allgemeinert und auf eine Vielzahl an zwei- und drei-dimensionalen Strukturen an-
gewandt. Dieses Konzept beruht auf einem störungstheoretischen Ansatz für die
Wechselwirkung bei dem jedes Teilchen durch ein harmonisches Potential (

”
Feder“)

an seine Ruheposition gebunden ist. Da nicht nur die Positionen sondern auch die
Orientierungen der Teilchen die Energie beeinflussen, enthält das Modell neben einer
Federkraft, die die Translation der Teilchen beeinflusst auch eine harmonische Kraft
zur Regulierung der Rotation der Teilchen in Bezug auf ihre Gleichgewichtsorientie-
rung.

Mit Hilfe dieser Methode lassen sich relativ einfach und vor allem mit weniger Re-
chenaufwand als bei sonst üblichen Methoden die thermodynamischen Eigenschaf-
ten des Systems berechnen. Durch Vergleich der freien Energie und des Drucks für
verschiedene Kristalle und bei verschiedenen Temperaturen können die bevorzugt
angenommene Struktur und mögliche meta-stabile Morphologien bestimmt werden.
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Abstract

In this thesis we investigate structures formed by patchy particles using an extended
version of the so-called self-consistent phonon (SCP) approach. Patchy particles are
particles with a heterogeneous surface which show a highly anisotropic interaction
and thus form a large number of interesting structures. They are considered as possi-
ble building entities for functional materials, which are expected to self-assemble into
desired target structures controlled solely by an appropriate choice of the ambient
parameters.

One step towards functional material is to know how a system of patchy particles
will behave under changing external conditions (temperature, pressure, etc.). In
this thesis we study this dependence by extending the SCP method and applying
it to various two- and three- dimensional structures formed by ordered or randomly
oriented particles at a wide range of temperatures and densities. Two different types
of patchy particles are investigated: Janus particles where only a small portion of the
surface is attractive while the other part is inert and inverse patchy particles which
consist of a negatively charged colloid that adsorbed a number of positively charged
patches.

The SCP method is based on a perturbation theory for the interactions; the particles
of a candidate structure are linked to their equilibrium position via harmonic poten-
tials (’springs’). Since the energy of a system of patchy particles depends strongly on
the orientation of the particles, not only a spring constraining the translation of the
particles but also a spring regulating the rotation around the equilibrium orientation
is included.

The free energy and the pressure of the system follow from the thermodynamic in-
tegration of the interaction energy resulting from the translational and orientational
deviations from the equilibrium state. Comparing these two values for different
structures at different temperatures, the preferred crystal structure of a system and
possible meta-stable structures can be determined.
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1 Introduction

Patchy particles are mesoscopic particles (nm to µm large) usually dispersed in a microscopic
solvent. They have a heterogeneous surface coverage, which leads to a strongly anisotropic
interaction between the particles. The large interest in this kind of particles is due to the large
number of structures into which the particles self-assemble.

Due to the rich phase behavior patchy particles attract attention as promising building blocks
for functional materials. It is hoped that via modifying the external conditions (pressure, tem-
perature, salinity, etc.) it can become possible to control the self-assembly of those particles
and to produce desired structures without further intervention. Therefore it should be possi-
ble to construct structures on a much smaller scale than with conventional building methods.
Possible fields of application of functional materials include among others drug delivery and
photovoltaics.

For computer simulations models for the patchy particles are introduced to simplify the occurring
interactions as much as possible while still keeping the rich self-assembly behavior. In this thesis,
two different models are investigated; Janus particles and so-called inverse patchy colloids (IPCs).

The former are hard-sphere particles where only a portion of the surface is attractive while the
rest of the surface is inert. Thus Janus particles have a quite simple potential which is a com-
bination of a hard sphere and square-well potential with a simple step-like angular dependence.
The interaction of IPCs are more complicated: they are hard-sphere particles where most of the
surface is negatively charged. The rest of the surface is covered by positively charged patches.

Advances in the experimental methods already allow the synthesis of larger amounts of patchy
particles with different properties. One of the most promising methods is the glancing-angle
deposition technique [1], where the particles are arranged in a close-patched mono-layer. By
deposition of gold vapor on to one hemisphere, Janus particles are created. The extension of
the patch is controlled by the angle of incidence of the vapor beam. A similar method can be
used for the formation of IPCs; where a number of positively charged patches are deposited on
a negatively charged colloid while dispersed in a solution [2]. The extension of the patches can
be controlled via the amount of salt in the solution.

Simultaneously to the experimental progress, techniques for the simulation of various kinds of
patchy particles have evolved. The most straight-forward method to investigate the phase dia-
gram of a given type of particle is through a Monte Carlo Simulation, where the trajectories of
a large number of particles is investigated, until the system eventually reaches its equilibrium.
Such a simulation has to be performed for each state point separately [3] which renders investi-
gations rather expensive. Using Monte Carlo simulations methods exist that allow an accurate
determination of the phase coexistence.

In this thesis, a different method to calculate the phase diagram is applied that might be com-
putationally less involved than simulations. It is based on the Self-consistent phonon approach
(SCP) as introduced by Fixman et al. in Ref. [4] for hard spheres and has been extended by
Schweizer et al. for Janus particles [5]. In this approach it is assumed that the particles are
linked to their equilibrium positions by harmonic potentials (’springs’). Since the interaction
of the particles studied here is strongly direction dependent, not only their positions but also
their rotations around their equilibrium orientations are constrained via a spring. Thus the
free energy of a given system can be calculated by evaluating the energy of these oscillations in
the given potential via a reference potential that is self-consistently mapped to the interaction
potential.

For the approach ordered candidate structures are needed; we focus on structures which were
already investigated in the literature [5, 6, 7]. Using the SCP approach the thermodynamic prop-
erties of various two- and three-dimensional structures formed by Janus particles and IPCs are
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investigated. We obtain the free-energy and the pressure for the different structures for a wide
range of temperatures and densities. Thus, where applicable, phase diagrams are constructed
to identify the stable and meta-stable structures. Additionally, the oscillation frequencies cor-
responding to the harmonically constrained oscillations around the equilibrium position and
orientation are obtained.

This thesis is organized in the following way: In Sec. 2 the two models for patchy particles
are presented; Janus particles and IPCs. In Sec. 3 we derive the theory details following the
self-consistent phonon approach (SCP) introduced in Ref. [5]. This is done for a general system
of N particles which are interacting via an orientationally and spatially dependent potential.
The formulas summarized in Sec. 3 are then applied to two-dimensional crystals formed by
Janus particles (see Sec. 4) and the obtained results are compared to available results from
literature [5]. The last two chapters are dedicated to the application of the SCP approach to
IPCs forming two-dimensional (Sec. 5) and three-dimensional crystals (Sec. 6). This thesis
report is concluded by a short summary containing also some ideas for future studies of the
discussed procedure.
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2 Models for patchy particles

In this thesis the SCP approach is used to calculate the thermodynamic properties of crystals
formed by two different types of particles with heterogeneous surface interactions: (i) Janus
particles with a very simple two-particle potential where only some regions of the surface attract
each other while the rest of the surface is inert, and (ii) IPCs where only patches and patch-
free regions attract each other while the patches and the patch-free zones repel each other,
respectively.

2.1 Janus particles

Janus particles, named after the two-faced roman god Janus, have a surface with two distinct
regions with different interaction properties. The Janus particles investigated in this thesis have
a patch (specified by the opening angle θ0 around the orientation vector Ω̂) that attracts other
patches (see Fig. 1). The rest of the surface does not interact with other particles. For Janus
particles the particle diameter σ is used as unit of length.

Figure 1: Schematic drawing of a Janus particle of diameter σ, showing one patch (in red) with
opening angle θ0 around the orientation vector Ω̂.

The Janus potential is a combination of a hard-sphere potential with a short ranged rotationally
dependent part, namely

vij(r, Ω̂i, Ω̂j) =


+∞ 0 < r < σ

−ε · vϕ(r̂ij, Ω̂i, Ω̂j) σ < r < σ + δ

0 r < σ + δ

. (1)

Here Ω̂i is a normalized vector that specifies the orientation of particle i and r = |ri − rj| is
the actual distance between particle i and j. The angular potential vϕ(r̂ij, Ω̂i, Ω̂j) is a step-like
function that is only non-zero if the two patches face each other,

vϕ(r̂ij, Ω̂i, Ω̂j) =

{
1 if Ω̂i · r̂ij > cos(θ0) and Ω̂j · r̂ji > cos(θ0)

0 else
. (2)

Thus particles are attracted to each other if they are located within a distance r smaller than
their diameter plus the attraction range δ and if their patches face each other. Note that the
energy does not depend on the actual relative orientation between the particles, as long as they
face each other. For a fixed distance the energy of a system of Janus colloids depends only on
the number of bonds but not on the exact contact angle of the patches.

Janus particles are thus one of the simplest models for patchy particles; still they show a rich
phase behavior due to the heterogeneous surface coverage.
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2.2 Inverse patchy colloids

Inverse patchy colloids (IPCs) are heterogeneously charged particles which can e.g. emerge when
positive polyelectrolyte stars absorb on a negatively charged, spherical colloid [8, 9]. Thus they
show a strong anisotropy in their effective interaction: while the patches and patch-free zones
repel each other respectively, an attraction occurs between the patches and patch-free zones.
Due to the anisotropic surface a wide variety of self-assembled structures is expected.

In recent works (e.g. [10, 11]) the self-assembly of such particles was investigated using Monte
Carlo simulations which attempt to find stable structures by minimizing the total energy of the
system. In this thesis a different route of obtaining the phase diagram of crystalline structures
formed by IPCs is explored. However, irrespective of the method used for the calculations, an
effective way to calculate the interaction energy of a system of IPCs is needed. Two methods
for the evaluation of the pair-energy exist: An analytic method based on the Debye-Hückel
approximation and a coarse grained model introduced for the fast evaluation of the two-particle
energy.

In the following these two methods are outlined exemplary for IPCs with two patches which are
symmetric in size and charge.

Analytic description

For the analytic calculation of the interaction energy of two IPCs, the colloids are modeled
as impenetrable, hard spheres of radius σ with a negatively charged main body and positively
charged patches. The particles are surrounded by a liquid dielectric solvent containing co- and
counter-ions.

According to Gauss’ law the potential induced by a charged sphere at a distance r to the center
of the sphere is equal to the potential of a point charge which has exactly the charge contained
in a similar sphere of radius r. The patch-free zone of the colloid can thus be replaced by a
single charge Zc, located at the center of the particle, the charged patches are replaced by point
charges Zp positioned at distances a from the center of the colloid (see Fig. 2).

Figure 2: For the calculation of the pair energy using the Debye-Hückel approach an IPC with
two identical patches is represented by three point charges: a point with charge Zc

located at the center of the particle and two points with charge Zp at distances ±a
along the ẑ-axis. The potential created by this charge arrangement is separately
constructed in the inner (labeled 1) and in the outer region (labeled 2).

In region 1 (r ≤ a) the potential is generated solely by the central and by the patch charges.
The corresponding non-linear differential equation for the potential Φ(1)(r, θ) for a colloid with
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two patches positioned along the ẑ-axis (assuming azimuthal symmetry) is given by

∆Φ(1)(r, θ) = −4π

ε
Zp [δ(r− aẑ) + δ(r + aẑ)]− 4π

ε
Zcδ(r). (3)

Outside the particles (region 2) the co- and counter-ions of the surrounding solvent need to be
taken into account. Here the Debye-Hückel approximation is used [12]: it assumes that the
charge density of the surrounding ions can be described by a Boltzmann statistics. Additionally,
it is assumed that the ionic density is sufficiently small so that a linearized equation for the
potential contains all relevant details; thus one arrives at

∆Φ(2)(r, θ) = κ2 · Φ2(r, θ), (4)

where κ denotes the inverse Debye screening length that depends on the number densities ρ0i and

on the corresponding valences of the co- and counter-ions denoted by Z0
i , κ =

√
4πq2e
εkBT

∑
i ρ

0
iZ

0
i .

Expanding the potential inside and outside of the sphere in Legendre polynomials and enforcing
the usual boundary conditions at the surface, the full potential can be obtained. For the pair-
energy of two colloids the potential of one particle is evaluated at the positions of the point
charges of the other colloid and vice versa. The pair energy is given by the symmetrized pair
energies of the two particles.

Coarse grained description

Since energy calculations via the above Debye-Hückel approximation are too expensive for ex-
tensive self-assembly studies a simpler way of calculating the energy is needed. In Ref. [13] a
coarse grained model is introduced where the colloid is again modeled as a sphere of radius σ,
while the patches are modeled as spheres of radius ρ, located at distances e from the center of
the particle (see Fig. 3). Note, that the radius of an IPC is called σ while for Janus particles
σ denotes the particle diameter. However, in both cases the particle diameter is used as unit of
length.

Figure 3: Schematic drawing of an IPC within the coarse-grained model: the central sphere of
radius σ is decorated by two spherical patches of radius ρ (corresponding to an opening
angle of γ) at ±e outside of the center along the Ω̂-axis. The interaction region is given
by the gray sphere of radius σ + δ/2 where δ is the interaction range.

The interaction of two IPCs is modeled via an interaction sphere of radius σ+δ/2, located at the
center of the particle. The opening angle γ of the patch of an IPC is given by the eccentricity
parameter e and the patch radius ρ via

cos γ =
σ2 + e2 − ρ2

2σe
. (5)
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The number of parameters (e,ρ,δ,γ) is reduced by a geometric relation between those quantities,
namely

δ = 2(e+ ρ)− 2σ. (6)

Thus, for a fixed interaction range δ the extension γ of the patches defines the geometry of the
IPC.

The pair-potential of two IPCs (with indices i and j) within the coarse grained model is a
combination of a hard sphere potential with a distance and the orientation dependent part
within the interaction range,

V (rij , θi, θj , θij) =


∞ if rij < 2σ

U(rij , θi, θj , θij) if 2σ ≤ rij ≤ 2σ + δ

0 if 2σ + δ < rij

. (7)

The potential U(rij , θi, θj , θij) depends on the distance between particle i and particle j, rij , the
orientation of the patches, θi and θj , and on the relative orientation of the two particles, θij .
For the calculation of the interaction potential U only the overlap volumes Ωαβ of a sphere of
type α with a sphere of type β needs to be evaluated: here α and β denote either the big sphere
(’B’) with radius rB = σ + δ/2 corresponding to the body of the particle or the small sphere
(’S’) representing one of the patches with radius rS = ρ. This geometric overlap volumes Ωαβ

are normalized by the reference volume ΩR = 4πσ3

3 of the central sphere,

wαβ = Ωαβ/ΩR. (8)

The energy of two IPCs within the interaction range 2σ ≤ rij ≤ 2σ+ δ is then defined via a sum
of overlap volumes wαβ weighted by respective energy factors uαβ which are as yet undefined,
namely

U(rij , θi, θj , θij) = wBBuBB + wBSuBS + wSSuSS, (9)

with

ΩBB = ΩBiBj (10)

ΩBS = ΩBiS
1
j

+ ΩBiS
2
j

+ ΩBjS
1
i

+ ΩBjS
2
i

(11)

ΩSS = ΩS1i S
1
j

+ ΩS1i S
2
j

+ ΩS2i S
1
j

+ ΩS2i S
2
j
. (12)

The energy factors uαβ of Equ. (9) are set using the potential calculated via the Debye-Hückel
approach. For this mapping between the Debye-Hückel and the coarse grained model, reference
configurations of two IPCs at contact (rij = 2σ) are used. For an IPC with two symmetrical
patches three reference configurations are sufficient to fix those parameters: an equatorial-
equatorial configuration where the patch-free zones of two IPCs overlap, an equatorial-polar
configuration where the energy is given by the overlap of the patch-free zone with one of the
patches and a polar-polar configuration where two patches overlap. For an illustration of the
reference configurations see Fig. 4.

Figure 4: The reference configurations used for the mapping between the energy calculated us-
ing the Debye-Hückel approach and the coarse-grained model. For an IPC with two
symmetrical patches three reference configurations are sufficient, namely an equatorial-
equatorial (left), an equatorial-polar (middle) and a polar-polar configuration (right).
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For the mapping of the energy the mapping procedure called ’max’ in Ref. [13] is used: here the
absolute maximum values of the energies of the reference configurations obtained via the Debye-
Hückel approach and the coarse grained model are set equal. Thus the energy contribution
stemming from an overlap of the form ’BB’ and ’SS’ is repulsive while an overlap of the form
’BS’ results in an attractive contribution to the pair-energy.

In summary the potential calculated via the coarse grained model represents interactions of a
real IPC in a very reliable way while reducing the computational effort decisively. The symmetry
of an IPC is preserved and the heterogeneous surface coverage resulting in a rich phase behavior
is represented.
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3 Self-consistent Phonon Approach (SCP) for orientationally
dependent colloids

The Self-consistent Phonon Approach (SCP) is a mean field type theory used for the calculation
of the free energy of systems where thermodynamic integration schemes to obtain the thermo-
dynamic potentials (e. g. free energy) are not easily achieved. To avoid in these approaches
a direct integration over the complete potential, a reference potential is introduced for which
integrations can be performed in an easier way; in contrast to the full potential this reference
potential depends only on the translational and rotational deviations from the equilibrium po-
sitions and orientations of the particles. This potential is then fitted to the full potential by
solving a self-consistency equation for the yet-open parameters. It is now used instead of the
full potential for the calculation of the free energy.

In this Section we will give an outline of the SCP procedure adapted to a system of N particles
which are interacting via an orientationally dependent potential. Since the potential is left for
the moment as general as possible, the formulas derived in this Section can be applied to both
Janus particles and IPCs (see Sec. 4 and Sec. 5).

The SCP approach was first introduced by M. Fixman in Ref. [4] for a system of hard spheres
located in a constrained face-centered cubic where each atom is constrained within its Wigner-
Seitz cell. These constraints are mathematically realized via wall-potentials vi that are added
to the potential of the system; thus the total potential energy of a system of N particles is given
by

VS(|ri − rj | ,Ωi,Ωj) =
1

2

N∑
i 6=j

N∑
j=1

vij(|ri − rj | ,Ωi,Ωj) +
N∑
i=1

vi. (13)

Here vij(|ri − rj | ,Ωi,Ωj) denotes the two-particle interaction between particle i and j located
at positions ri and rj and orientations Ωi and Ωj , respectively. The wall-potential vi of particle
i is different from system to system (see Sec. 4 and 5). It contains a translational part that
vanishes if particle i is located within its Wigner-Seitz cell and infinite otherwise. For colloids
with orientational dependent interactions a second wall-potential is needed, that constrains the
particle rotation.

Instead of using the full potential for the calculation of the partition function, a reference
potential is introduced within the SCP approach. Since its purpose is primarily to simplify
the integration of the potential, Fixman proposed to use a simple harmonic potential for the
translational deviations wi from the equilibrium positions Ri of the particles [4]. This approach
can be generalized to include rotational deviations θi from the equilibrium orientations Φi as
well, as has been done in [14, 5], namely

VH(wi, θi) =

N∑
i=1

tw2
i +

N∑
i=1

qθ2i , (14)

where t and q are spring constants which need to be determined in the following.

Using this reference potential the canonical partition function of the system, QS, can be trans-
formed in the following way:

QS =

∫
e−VS(|ri−rj |,Ωi,Ωj)d{wi}d{θi}

=

∫
e−VS(|ri−rj |,Ωi,Ωj)+VH(wi,θi) · e−VH(wi,θi)d{wi}d{θi}∫

e−VH(wi,θi)d{wi}d{θi}
·
∫
e−VH(wi,θi)d{wi}d{θi}

= 〈B〉 ·Q1, (15)
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where B(Ri,wi, rj ,Φi, θi,Ωj) = exp(−VS(|ri − rj | ,Ωi,Ωj) + VH(wi, θi)); 〈.〉 is denoting an
averaging procedure using the weight exp(−VH). Equ. (15) is a general result for a system with
an arbitrary number of degrees of freedom and thus an arbitrary number of directions for the
deviations wi and θi. In Equ. (15) integrations over all occurring deviations are denoted by
d{wi}d{θi}; this notation includes also a Jacobian determinant, if applicable.

Since both the full potential as well as the reference potential can be written as a sum over
one-particle contributions, B(Ri,wi, rj ,Φi, θi,Ωj) can be expressed as a product of one-particle
quantities Bi(Ri,wi, rj ,Φi, θi, θj). At this point the first approximation is made as the coupling
between the different Bi(Ri,wi, rj ,Φi, θi, θj) factors is neglected,

〈B(Ri,wi, rj ,Φi, θi,Ωj)〉 =

〈∏
i

Bi

〉
≈
∏
i

〈Bi〉 (Ri,wi,Φi, θi) =
∏
i

〈
exp(tw2

i + qθ2i − vi − Vi)
〉
,

(16)
where Vi(ri,Ωi) = 1

2

∑
j 6=i vij(|ri − rj | ,Ωi,Ωj).

This approximation might lead to errors for strongly position dependent potentials, e.g. for
step potentials. The main aim of the SCP approach is however not a perfect result but an
approximation which makes phase diagram calculations feasible.

In order to obtain the self-consistency equation for the spring constants t and q we expand the
Vi(ri,Ωi) in a Taylor expansion in the deviations wi and θi, where only the zeroth order term,
ve, is retained. For detailed calculations see e.g. [15]. We obtain

exp(−1

2
vij) ≈ 1 + h(Wi −wi, θi), (17)

where Wi := Wij = Rj −Ri + wj ; Ri and Rj are the equilibrium positions of particle i and j,
respectively. The actual calculation of the function h is done via

h(Wi −wi, θi) =

〈
exp(−1

2
vij)

〉
j

− 1. (18)

In the averaging procedure denoted by 〈.〉j the dependence of the potential vij(|ri − rj | ,Ωi,Ωj)
on the deviations wj and θj of particle j are eliminated. In practice this is done by choosing a unit
cell which contains all the necessary information to periodically build the whole crystal structure.
To obtain the mean-field potential of the structure, the two-particle potential is averaged over
all possible movements of the particle located in the center of the unit cell (labeled ’j’ in Equ.
(18)).

The approximated two-particle potential for particle i is thus

1

2

∑
i 6=j

vij ≈ ve = −
∑
i 6=j

ln(1 + h(Wi −wi, θi)). (19)

ve is now Taylor expanded in terms of the deviations wi and θi to obtain an equation that has
a similar form as Equ. (14),

ve(wi, θi) ≈ ε+ γw2
i + βθ2i , (20)

where the coefficients ε, β and γ are given by

ε(t, q) = −
∑
i

ln[1 + h(Wi, 0)] (21)

γ(t, q) = − 1

2dt

∑
i

∇wi∇wi ln[1 + h(Wi −wi, θi)]|wi=0,θi=0 (22)

β(t, q) = − 1

2dr

∑
i

∂θi∂θi ln[1 + h(Wi −wi, θi)]|wi=0,θi=0; (23)
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dt and dr are the number of translational and rotational freedoms, respectively. The sums are
carried out over the nearest neighbors of the central particle.

The self-consistency equation for t is then obtained by evaluating the mean squared displacement〈
w2
i

〉
using the expression for the potential in Equs. (20) and (14),

〈
w2
i

〉
=

∫
w2
i exp(−VH)d{wi}d{θi}∫
exp(−VH)d{wi}d{θi}

=
dt
2t

=

∫
ν

∫
φ0
w2
i exp(−ve)d{wi}d{θi}∫

ν

∫
φ0

exp(−ve)d{wi}d{θi}
, (24)

where the integrals in Eq. (24) are evaluated over the Wigner-Seitz cell ν. The angular integral
is bounded by the wall-potential angle φ0, which gives the maximal rotation of the central
particle that does not change the characteristics of the structure with respect to the equilibrium
orientation. Thus, φ0 depends on the equilibrium positions and orientations of all the particles
in the unit cell as well as on the form of the interaction potential.

The self-consistency equation for the angular spring constant q follows in an analogous way:〈
θ2i
〉

=

∫
θ2i exp(−VH)d{wi}d{θi}∫
exp(−VH)d{wi}d{θi}

=
dr
2t

=

∫
φ0
θ2i exp(−ve)d{wi}d{θi}∫
φ0

exp(−ve)d{wi}d{θi}
. (25)

The SCP approach can now be applied in the following way: First the h-function is calculated
via Equ. (18) with some start values for t and q. Then the h-function is used to calculate
ε, γ and β from Equ. (21). The new values for the spring constants t and q follow from the
non-linear, coupled self-consistency equations (24) and (25). This procedure is iterated until
convergence in t and q is reached.

The partition function of the system of N particles can now be written in terms of the approx-
imated potential ve, which is a mean-field quantity, as

QS =
N∏
i=1

∫
ν
d{wi}d{θi} exp(−ve(wi, θi))

=

(∫
ν
d{wi}d{θi} exp(−ve(wi, θi))

)N
. (26)

Since the coefficients ε, β and γ do not depend on the deviations wi and θi themselves, the free
energy f per particle is easily obtained from the converged spring constants (using Equ. (21),
Equ. (22) and Equ. (23)) via

f = − ln(QS)

N
= − ln

(
e−ε ·

∫
d{wi} e−γw

2
i ·
∫
d{θi} e−βθ

2
i

)
. (27)

The free energy per particle can now be written as a sum of a static part, fstatic, a translational
part, ftrans, and a rotational part, frot, which are defined as

fstatic = ε(t, q) (28)

ftrans = − ln

(∫
ν

exp(−γ(t, q)w2
i )d{wi}

)
(29)

frot = − ln

(∫
φ0

exp(−β(t, q)θ2i )d{θi}
)

(30)

f = fstatic + ftrans + frot. (31)
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Due to the constraining wall potentials the integrals of Equs. (29) and (30) are bounded by the
Wigner Seitz cell ν and the constraining angle φ0.
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4 SCP for Janus particles in two dimensions

4.1 Theory

In this Section the SCP approach is applied to Janus particles following the procedure discussed
in [5]. In the following we will restrict ourselves to two-dimensional structures formed by Janus
colloids with an opening angle of θ0 = 65◦ around the orientational vector Ω̂ (see Fig. 1).

We have first considered in this thesis Janus particles as they have already been investigated
in Ref. [5]; this contribution provides reference data which helped to check our implementation
of the SCP approach. In addition, Janus colloids interact via a simpler orientational potential
than IPCs.

The Janus potential is a combination of a hard-sphere potential with a short ranged rotationally
dependent part (see Sec. 2.1). For a fixed distance the energy of a system of Janus particles
depends only on the number of bonds but not on the exact contact angle of the patches. The
freedom of movement of the Janus particles can be restricted by adding a rotationally constrain-
ing factor φi to the potential representing the crystal structure. Thus the total potential energy
becomes

VS(|ri − rj | ,Ωi,Ωj) =
1

2

N∑
i 6=j

∑
j

vij(|ri − rj | ,Ωi,Ωj) +

N∑
i=1

vi +

N∑
i=1

φi. (32)

The wall-potential φi of the i-th particle is determined by the crystal structure: it is infinite if
the particle’s orientation has a deviation of more than ±φ0 from its equilibrium orientation and
vanishes otherwise. The characteristic angle φ0 is defined by the structure so that by a rotation
of ±φ0 no new bonds can be formed and no bonds existing at equilibrium are broken.

For a lattice of N Janus particles the energy depends on the translational deviations wi and
on the orientational deviation θi of the i-th particle from the equilibrium location Ri and the
equilibrium orientation Ωi. The reference potential is chosen in the following form [5]

VH(wi, θi) =
N∑
i=1

tw2
i +

N∑
i=1

qθ2i . (33)

The spring constants, t and q, are scalars for which self-consistency equations are derived in
the following. For some structures it might be appropriate to allow different spring constants
parametring oscillations in different directions. This is for instance the case for elongated unit
cells (see Sec. 6). However, in this Section we will only study structures based on the hexagonal
close-packing of spheres where the distances between the particles are of comparable lengths in
all directions.

Following the procedure discussed in Sec. 3 the h-function is calculated. This has already been
presented in Ref. [5], however, since many parts of the h-function also occur for the potential
of IPCs, the main steps of the calculation are repeated here. Starting with the definition of
h(wi, θi) in Equ. (18), the potential is averaged over the movements of the central particle c of
the unit cell,

h(wi, θi) =

∫
d{wc}

∫
dθc [e−

1
2
vic(rci,Ωi,Ωc) − 1] e−qθ

2
c e−tw

2
c∫

d{wc}
∫
dθc e−qθ

2
c e−tw2

c
. (34)

The potential depends on the actual distance r of the particles c and i, where

rci = rc − ri = Rc + wc −Ri −wi = W + wc. (35)
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We first solve the integral in the denominator using polar coordinates for the translational part,

N =

∫
R
d{wc}

π∫
−π

dθc e
−qθ2c e−tw

2
c

=

∞∫
0

e−tw
2
c wc dwc

2π∫
0

dϕ · 2
π∫

0

e−qθ
2
c dθc. (36)

Using the transformations u = tw2
c and v =

√
qθc we obtain

N =
(π
t

)(√π

q
erf(
√
qπ)

)
, (37)

where the error function is defined as erf(x) = 2√
π

x∫
0

e−v
2
dv.

For the integral in the nominator of Equ. (34) the deviations wc can be rewritten as wc = r−W
and the integral can be transformed into an integral over the actual distance vector r between
the particles (with |r| = r),

h(wi, θi) =
1

N

∫
d{r}

∫
dθc[e

− 1
2
vic(|r|,Ωi,Ωc) − 1]e−qθ

2
c e−t[r−W]2 . (38)

Introducing polar coordinates so that [r −W]2 = r2 + W 2 − 2rW cosϕ and using the radial
dependence of the pair potential vij(r, Ω̂i, Ω̂j) from Equ. (1) we obtain

h(wi, θi) =
1

N

σ∫
0

drr

2π∫
0

dϕ

π∫
−π

dθc(−1)e−qθ
2
c e−t(r

2+W 2)e2trW cosϕ+

+
1

N

σ+δ∫
σ

drr

2π∫
0

dϕ

π∫
−π

dθc[e
1
2
εvϕ − 1]e−qθ

2
c e−t(r

2+W 2)e2trW cosϕ (39)

In the first term of Equ. (39) the rotational integral cancels with the rotational part of the
normalization factor. The integral over ϕ can be identified as a modified Bessel function of the
first kind I0(x) which is defined as [16]

I0(x) =
1

2π

2π∫
0

dϕ ex cosϕ. (40)

Thus the first term can be written as

hHS(W ) = −2t

σ∫
0

du u e−t(u
2+W 2)I0(2tuW ). (41)

This contribution also occurs for a system of simple hard spheres and is therefore called hHS(W ).

In the second term of Equ. (39) the rotational and translational parts factorize. The integral
becomes

h(wi, θi) = hHS(W ) + hSW(W ) · J(θi), (42)
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with the square-well contribution hSW(W )

hSW(W ) = 2t

σ+δ∫
σ

du u e−t(u
2+W 2)I0(2tuW ), (43)

J(θi) =

{
(eε/2 − 1)

[ erf(−√q(θi−2φ0))+erf(
√
q(θi+2φ0))

2erf(
√
qπ)

]
if bond exists

0 else
. (44)

J(θi) is only non-zero if a bond between particle i and the central particle exists.

The self-consistency equations for the spring constants t and q follow from the Equs. (24) and
(25). For the evaluation of

〈
w2
i

〉
the Wigner-Seitz cell ν is approximated by a disk of radius a

with the same area as the actual Wigner-Seitz cell area, thus a =
√√

3/(2π) ·R, where R is the

distance between the centers of two particles in equilibrium. The self-consistency equation (24)
for t becomes then

dt
2t

=

∫
ν w

2
i e
−γw2

i d{wi}∫
ν e−γw

2
i d{wi}

=

γa2∫
0

x
2γ2

e−xdx

γa2∫
0

1
2γ e

−xdx

=
exp(−γa2) · (γa2 + 1)− 1

γ · exp(−γa2 − 1)
. (45)

The self-consistency equation (25) can be transformed into

dr
2q
≈
√
πerf(

√
βφ0)− 2 exp(−βφ20)

√
βφ0

2β
√
πerf(

√
βφ0)

, (46)

In Equ. (46) it was assumed that π � φ0.

The free energy per particle f can be evaluated starting from Equs. (28)-(31). The static
contribution fstatic is given by the coefficient ε as obtained via the self-consistent procedure.
Approximating the Wigner-Seitz cell as a disk with radius a, the translational contribution
ftrans can be written as

ftrans = − ln

2π

a∫
0

e−γw
2
w dw


= − ln

(
π

γ
(1− e−γa2)

)
. (47)

The rotational free energy per particle frot for ordered crystals formed by Janus particles becomes

frot = − ln

 φ0∫
−φ0

e−βθ
2
i dθi


= − ln

(√
π

β
erf(
√
βφ0)

)
. (48)

4.2 Results

In a first step we tried to reproduce the results published in [5] for Janus particles thus check-
ing for possible errors in our implementation. The investigated crystal structures are two-
dimensional hexagonal structures consisting of Janus colloids with patch angles of θ0 = 65◦ with
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different orientational order. The simplest structure is a plastic phase where the patches are
orientated randomly. The two ordered structures, namely a zigzag phase forming three bonds
per particle and a trimer phase where each particle forms two bonds, are shown in Fig. 5. The
spatial attraction range of the square well of Equ. (1) is set to δ = 0.05 (in units of the diameter
σ).

Figure 5: Two-dimensional ordered structures formed by Janus colloids: The zigzag crystal (left)
which shows three bonds per particle and the trimer phase (right) where two bonds
per particle are formed.

The expressions for hhs(W ) (Equ. (41)) and hsw(W ) (Equ. (43)) have to be calculated nu-
merically. In most cases the spring constant t turns out to be very large (t ≈ 1200σ−1). For
these cases the Bessel function I0 can be approximated by an expansion for large arguments (for
details see [16], p. 376),

I0(x) ≈ ex√
2πx

(
1− 0.125

x
+

4.5

(8x)2
+

37.5

(8x)3

)
. (49)

Although the integration range for hhs(W ) starts at u = 0 where the large argument expansion
is not valid, the contributions with larger u dominate as long as t is sufficiently large so that
the error of the approximation can be safely neglected. This is true for the high density phases
in Fig. 14, where t ≈ 1200σ−1. However, even for low density phases where we typically find
t ≈ 5σ−1, the error is still quite small.

The h-function is now calculated for each pair of particle i(6= c) contained in the unit cell and
the central particle. The self-consistency equations for the spring constants t and q from Equs.
(45) and (46) were iterated until the mean squared displacements

〈
w2
〉

and
〈
θ2
〉

vary by less
than 10−9 in relative units.

Using the converged spring constants the free energy per particle f is easily obtained using Equ.
(28). The pressure can now be calculated via

p = −
(
∂f

∂V

)
|T

= − 1

2
√

3(r + x/2)

(
∂f

∂x

)
|T

(50)

= η2
π

4

(
∂f

∂η

)
|T

(51)

where V is the area of the Wigner-Seitz cell. The numerical derivative with respect to x is
performed by slightly varying the distance between the particles from r to r + x so that the
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pressure can be calculated using Equ. (50). Introducing the packing fraction η = π
4ρσ

2, where ρ
is the density, Equ. (51) can be used. Following the definition of the pressure in [5] the reduced
pressure is defined as

p∗ = p · 4

π
. (52)

4.2.1 Zigzag structure

The zigzag crystal consists of a hexagonal structure of Janus particles where the patches are
aligned in a zigzag ordering. The unit cell used for the SCP calculation is shown in Fig. 6 in the
left panel; the central and right panel illustrate the angle φ0 at which the wall potential restricts
the rotation of the central particle.

Figure 6: Unit cell of the zigzag structure formed by Janus particles at equilibrium (left). A
wall potential φ0 is introduced to restrict the rotation of the central particle of the
structure. This angle is given by the maximal rotation of the central particle from its
equilibrium orientation for which no existing bonds are broken or additional ones are
formed with respect to the equilibrium orientation. The panel in the middle shows the
structure if the central particle is rotated by this maximal rotation angle of φ0 = 5◦

to the left, the corresponding rotation to the right is shown in the right panel.

For this structure the increment x for the numerical evaluation of the pressure via Equ. (50)
was set to x = 0.0007 since the pressure at this value is numerically stable while still giving the
smoothest curves compared with other values for the increment; details are shown in Fig. 7.
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Figure 7: Reduced pressure p∗ over distance x between the particles at T ∗ = 0.2 for different
increments ∆x (as labeled) for the numerical calculation of the pressure via Equ. (50)
for the zigzag structure. The smoothest curve is found at ∆x = 7 · 10−4.

Since we perform our calculations in the canonical ensemble it is not possible to directly impose
the pressure; instead the system has to be treated at a certain density and then the corresponding
pressure can be determined via Equ. (50). Subsequently the distance between the particles (and
hence the density) is changed and the calculation repeated until the desired pressure is obtained.
A successful realization of this procedure does however depend on the starting distance of the
particles. This can be seen in Fig. 8 where the reduced pressure p∗ is plotted over the distance
x of the particles in the zigzag structure for different reduced temperatures T ∗.
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Figure 8: Reduced pressure p∗ over the distance x between the particles in the zigzag structure.
The different lines correspond to different values of the reduced temperatures T ∗ (as
labeled).

For pressure p∗ = 2, for example, it seems that for 0.25 ≤ T ∗ ≤ 0.45 three different solutions
occur. However, only two of these solutions are physical because the free energy should be
strictly convex as a function of the volume, this means that the compressibility κT is always
positive [17],

1

κT
∝
(
∂2f

∂V 2

)
|T
≥ 0, (53)

or similarly (
∂p

∂V

)
|T
≤ 0. (54)

For 1.04 . x . 1.1 this is not the case, so that only two physical solutions for p∗ = 2 remain. In
the non-physical range the free energy has a negative curvature, see Fig. 9, while it is physical
everywhere else.
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Figure 9: Total free energy per particle, ftotal, over the distance x between the particle centers
in a zigzag structure for different reduced temperatures T ∗ (as labeled).

At the first solution the particles are very densely packed, the distances between the particles are
only a few percent larger than the densest possible packing. At the other solution the distances
between the particle centers are about 1.3σ. If the pressure search is started with a high density
structure the high density solution is found; for a low-density starting structure the low-density
solution is obtained. For temperatures higher than T ∗ ≈ 0.45 only low density crystals are
formed, and for temperatures below T ∗ ≈ 0.25 only the dense packed solution exists at p∗ ≥ 2.

When the pressure is fixed to a value lower than p∗ ≈ 7 the free energy changes discontinuously
from the low density to the high density state as the temperature decreases. The actual position
of this transition does, however, depend on the starting value of the density of the pressure
search. In the region between the positions of the discontinuity obtained with a low and a high
starting density the structure is meta-stable (see Sec. 4.4). In Fig. 10 the static contribution to
the free energy, fstatic, found for high and low starting densities at low reduced pressures p∗ is
shown.
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Figure 10: Static free energy per particle, fstatic, over the reduced temperature T ∗ in a zigzag
structure for low fixed pressures p∗ (as labeled). ’u’ denotes the high density, ’o’ the
low density starting configuration.

For larger pressures only the high density solution exists which becomes continuously less dense
as the temperature increases, see Fig. 11.
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Figure 11: Static free energy per particle, fstatic, over the reduced temperature T ∗ in a zigzag
structure for high fixed pressures p∗ (as labeled). The solution is independent of the
density of the starting configuration.

Note that this discontinuity occurs also in the translational and rotational part of the free energy
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(Figs. 12 and 13), it is however very small in frot.
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Figure 12: Translational part of the free energy per particle, ftrans, over the reduced temperature
T ∗ in a zigzag structure for different pressures p∗ (as labeled). ’u’ denotes the high
density, ’o’ the low density starting configuration.
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Figure 13: Rotational part of the free energy per particle, frot, over the reduced temperature
T ∗ in a zigzag structure for different pressures p∗ (as labeled). ’u’ denotes the high
density, ’o’ the low density starting configuration.

Of course, the distance between the particles does mainly affect the translational deviations;
both the spring constant t (right panel of Fig. 14) and

〈
w2
〉

(left panel of Fig. 14) show
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discontinuities for small fixed pressures. For higher pressures the spring constant t is shifted to
larger values.
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Figure 14: Translational mean square displacement
〈
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〉

(left) and corresponding spring con-
stant t (right) for zigzag crystals formed by Janus particles for different fixed pressures
p∗ (as labeled) over the reduced temperature T ∗. ’u’ denotes the high density, ’o’ the
low density starting configuration.

The rotational deviations
〈
θ2
〉

and the corresponding spring constant q also show discontinuities
but are otherwise nearly unchanged by a change of pressure, see Fig. 15.
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Figure 15: Rotational mean square displacement
〈
θ2
〉

(left) and spring constant q (right) for
zigzag crystals formed by Janus particles for different fixed pressures p∗ (as labeled)
over the reduced temperature T ∗. ’u’ denotes the high density, ’o’ the low density
starting configuration.

For the construction of the phase diagram the phase coexistence boundaries where the pressure
p∗ and the chemical potential µ are equal in both phases need to be evaluated. The chemical

26



potential is defined via the Gibbs free enthalpy G as

µ =

(
∂G

∂N

)
|T,p

=
∂

∂N
(fN + pV ) = f + p

(
∂(NAi)

∂N

)
|T,p

= f + η

(
∂f

∂η

)
|T,p

. (55)

Here the total area of the crystal, V , is rewritten in form of the Wigner-Seitz area of one particle:
V = NAi. The resulting chemical potential µ at different constant pressures is shown in Fig.
16. We were not fully able to reproduce the curves from Ref. [5] since we could not calculate the
chemical potential independently of the starting density. However it seems that a combination
of the curves produced by a low and a high starting density, where always the lower value is
taken, produces curves comparable to the results of Ref. [5].
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Figure 16: Chemical potential µ (in units of kBT
∗) over the reduced temperature T ∗ in the

zigzag structure. The different lines correspond to different reduced pressures p∗ (as
labeled). For low pressures (left) the discontinuity in the free energy results in a kink
in the chemical potential. High pressures (right) show no such kink. ’u’ denotes the
high density, ’o’ the low density starting configuration.

4.2.2 Trimer structure

In the trimer structure the Janus particles are at the same positions as in the zigzag structure
but their orientations are different, they form only two bonds per unit cell (see Fig. 17). The wall
potential is less restrictive compared to the wall potential for the zigzag crystal; the maximal
angle which the central particle is allowed to rotate from its equilibrium orientation, so that no
additional bonds are formed and no existing bonds are broken with respect to the equilibrium
orientation, is φ0 = 35◦. The central and right panel of Fig. 17 show the trimer structure where
the central particle is rotated by ±φ0.
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Figure 17: Unit cell of the trimer structure formed by Janus particles at equilibrium (left). A
wall potential φ0 is introduced to restrict the rotation of the central particle of the
structure. This angle is given by the maximal rotation of the central particle from its
equilibrium orientation for which no existing bonds are broken or additional ones are
formed with respect to the equilibrium orientation. The structure where the central
particle is rotated by this maximal rotation angle of φ0 = 35◦ to the right and to the
left is shown in the central and right panel, respectively.

A qualitatively similar behavior for the reduced pressure p∗ as for the zigzag phase is found for
the trimer lattice. As can be seen from Fig. 18 and 19 the solution of the pressure search for
small pressures does again depend on the density of the starting structure.
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Figure 18: Reduced pressure p∗ over the distance x between the particles in the trimer structure.
The different lines correspond to different reduced temperatures T ∗ (as labeled).

For small pressures there seem to be three possible solutions, the free energy is however again
only physical at two of these solutions.
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Figure 19: Total free energy per particle, ftotal, over the distance x between the particles in the
trimer structure for different reduced temperatures T ∗ (as labeled).

The isobars for the different contributions to the free energy show again discontinuities for small
pressures. The actual position of these discontinuities also depends on the starting density of
the calculations, as can be seen in Figs. 20 and 21 for the static part of the free energy, in Fig.
22 for the translational part and in Fig. 23 for the rotational part.
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Figure 20: Static free energy per particle, fstatic, over the reduced temperature T ∗ between the
particles in the trimer structure for low fixed pressures p∗ (as labeled). ’u’ denotes
the high density, ’o’ the low density starting configuration.
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Figure 21: Static free energy per particle, fstatic, over the reduced temperature T ∗ in the trimer
structure for high fixed pressures p∗ (as labeled). The solution is independent of the
density of the starting configuration.
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Figure 22: Translational part of the free energy per particle, ftrans, over the reduced temperature
T ∗ in the trimer structure for different pressures p∗ (as labeled). ’u’ denotes the high
density, ’o’ the low density starting configuration.
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Figure 23: Rotational part of the free energy per particle, frot, over the reduced temperature T ∗

in the trimer structure for different pressures p∗ (as labeled). ’u’ denotes the high
density, ’o’ the low density starting configuration.

Since the translational deviations depend mainly on the positions of the particles (which are
identical in the zigzag and trimer structures), the temperature dependence of the translational
mean squared displacement

〈
w2
〉

and the corresponding spring constant t for the trimer structure
show only small differences with respect to the values obtained for the zigzag structure, see Fig.
24. The main difference is the discontinuity at low pressures which is observed at different
temperatures for the trimer lattice.
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Figure 24: Translational mean square displacement
〈
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〉

(left) and corresponding spring con-
stant t (right) for trimer crystals formed by Janus particles for different fixed pressures
p∗ (as labeled) over the reduced temperature T ∗. ’u’ denotes the high density, ’o’ the
low density starting configuration.

Since the equilibrium orientations of the particles are different in the zigzag and trimer structure,
the values of

〈
θ2
〉

and q for the trimer structure are significantly different from the values
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obtained for the zigzag structure, see Fig 25; the spring constant q obtained for the trimer
lattice is by a factor 50 smaller than the corresponding q for the zigzag lattice.
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Figure 25: Rotational mean square displacement
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(left) and spring constant q (right) for
trimer crystals formed by Janus particles for different fixed pressures p∗ (as labeled)
over the reduced temperature T ∗. ’u’ denotes the high density, ’o’ the low density
starting configuration.

The chemical potential shows again kinks at low pressures while higher pressure isobars are
essentially parallel and shifted to higher values with increasing pressure (Fig. 26). The transition
from the low to the high pressure range occurs for both zigzag and trimer structure at p∗ ≈ 9.
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Figure 26: Chemical potential µ (in units of kBT
∗) over the reduced temperature T ∗ in a trimer

structure formed by Janus particles. The different lines correspond to different re-
duced pressures p∗ (as labeled). For low pressures (left) the discontinuity in the free
energy results in a kink in the chemical potential. High pressures (right) show no
such kink. ’u’ denotes the high density, ’o’ the low density starting configuration.

4.3 Plastic crystals

For the description of plastic crystals which are formed of statistically oriented Janus particles,
the angular dependence of the potential is averaged out. Since the particles are three-dimensional
objects the potential needs to be averaged over all orientations in R3. In our implementation we
restricted the particle rotation to the (x, y)-plane, thus we only need to average over the planar
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angle θ. Since for Janus particles the angular part of the potential V (θ, θ′) = ε is constant, the
average potential is calculated as the ratio of the surface of the sphere which is covered by a
patch with respect to the whole surface. A spherical cap of height h and radius r with opening
angle θ0 has the area A = 2πrh = 4πr2 sin2(θ0/2). The average potential is thus

〈ε〉 =

∫ ∫
V (θ, θ′)dΩdΩ′∫
dΩ
∫
dΩ′

= ε · sin4(θ0/2). (56)

The h(wi) function for plastic crystals is calculated similar to the case of orientationally depen-
dent crystals, see Equ. (42); however, since the potential does no longer depend on the deviation
θc with respect to the equilibrium orientation, the angular part J(θi) of Equ. (44) simplifies to

J(θi) =
(
e〈ε〉/2 − 1

)
. (57)

Further, since the angular freedom is now completely eliminated no angular wall potential is
needed. The Taylor expansion of the effective potential consists only of a constant and a trans-
lational part, namely

ve(wi) ≈ ε+ γw2
i . (58)

For plastic crystals only the self-consistency equation for the translational deviations wi of
Equ. (45) needs to be met. The static and translational part of the free energy are defined
analogously to the case of rotationally ordered particles, see Equs. (28) and (47), while the
rotational contribution is constant [5],

frot = − ln(

2π∫
0

dθi) = − ln(2π). (59)

The calculation of the pressure is now nearly independent of the starting pressure, as can be seen
in the static free energy, fstatic, shown in Fig. 27 and in its translational part, ftrans, displayed
in Fig. 28.
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Figure 27: Static free energy per particle, fstatic, over the reduced temperature T ∗ for plastic
crystals for fixed pressures p∗ (as labeled). ’u’ denotes the high density, ’o’ the low
density starting configuration.
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The low and high pressure curves are again distinctly different but for plastic crystals they pass
continuously from one to the other as the pressure decreases.
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Figure 28: Translational part of the free energy per particle, ftrans, over the reduced temperature
T ∗ in plastic structure for different pressures p∗ (as labeled). ’u’ denotes the high
density, ’o’ the low density starting configuration.

The mean squared displacement
〈
w2
〉

and the corresponding spring constant t are shown in Fig.
29. These quantities show no discontinuity as functions of T ∗, they are in the same range as the
corresponding values for the trimer and the zigzag structures.
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Figure 29: Translational mean square displacement
〈
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〉

(left) and corresponding spring con-
stant t (right) for plastic crystals formed by Janus particles for different fixed pressures
p∗ (as labeled) over the reduced temperature T ∗. ’u’ denotes the high density, ’o’ the
low density starting configuration.

The chemical potential µ for fixed pressures is nearly constant for the temperature range studied
here (Fig. 30).
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Figure 30: Chemical potential µ (in units of kBT
∗) over the reduced temperature T ∗ for plastic

crystals formed by Janus particles. The different lines correspond to different reduced
pressures p∗ (as labeled). ’u’ denotes the high density, ’o’ the low density starting
configuration.

4.4 Phase diagram for two dimensional Janus crystals

Equating the chemical potentials at fixed pressures and temperatures of the different structures,
points of phase coexistence can be determined. For comparison with the results of Ref. [5] our
data is shown for the pressures p∗ = 2 and p∗ = 50 in Fig. 31.
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Figure 31: Coexistence points of the zigzag (zz), trimer (tr) and plastic crystals (pl) formed by
Janus particles in two dimenstions are found at points where the chemical potential
and the reduced temperature are equal at both phases at a constant pressure p∗ = 2
(left) and p∗ = 50 (right). ’u’ denotes the high density, ’o’ the low density starting
configuration.

For pressure p∗ = 2 the zigzag phase is stable up to a temperature of T ∗ ≈ 0.19, where a tran-
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sition to the plastic phase occurs. The trimer phase is meta-stable over the whole temperature
range investigated. At a pressure of p∗ = 50 two transitions are found: for temperatures up to
T ∗ ≈ 0.25 the zigzag phase is stable, above this value the trimer structure is found and at high
temperatures above T ∗ = 0.45 the plastic phase occurs.
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5 SCP for inverse patchy colloids in two dimensions

5.1 Ordered crystals

The SCP approach presented in Sec. 4 for Janus colloids can be easily extended to two-
dimensional crystals formed by two-patch IPCs, making only minor changes in the formalism
necessary. For simplicity we will restrict ourselves to colloids with symmetrical patches. Only the
h-function will change considerably because the IPC potential has an angular and positionally
dependent potential within the interaction range σ < r < σ + δ.

Using polar coordinates, the h-function for ordered two-dimensional structures can be split into
a sum of three parts, namely

h(Ri −wi, θi) = hHS(W )− hSW(W ) + h2IPC(Ri,wi, θi), (60)

where hHS(W ) and hSW(W ) originate from the hard-sphere and the square well part of the
potential and are given by the same integrals as arose for Janus particles, see Equs. (41)
and (43). For h2IPC(Ri,wi, θi) the central particle (index ’c’) moves in the angular-dependent
potential arising from particle i within the interaction range. The potential is averaged over all
possible positions, specified in polar coordinates as (a, ϕ), and orientations, corresponding to
the planar deviation angle θc of particle c. Thus h2IPC(Ri,wi, θi) is given by

h2IPC(Ri,wi, θi) =
t
√
q/π

πerf(
√
qπ)

σ+δ∫
σ

da a

π∫
−π

dθc

2π∫
0

dϕe−
1
2
Eic(a,ϕ,θc,θi)e2taW cosϕe−qθ

2
c e−t(a

2+W 2)

(61)

The two particle energy Eic(a, ϕ, θc, θi) between two IPCs is calculated via the coarse grained
model introduced in Sec. 2.2. It depends on the distance a between particle i and the central
particle, as well as on the ϕ-coordinate of the spatial integration, which changes the relative
orientation of the particles. The rotational deviation of the central particle from its equilibrium
orientation is given by the planar rotational angle θc. The energy Eic can be written as a sum of
overlap volumes wi of interaction spheres weighted by the respective energy factors ui, see Equ.
(9) and Ref. [13]. The contributions of the overlap of the big colloidal spheres, the small patch
spheres and the big with the small spheres sum up; therefore they factorize in the averaging
factor exp(−1

2Eic). The energy Eic can be divided into a part Ea which depends only on the
actual distance a between the particles, a part E1 that depends on the distance a and the angle
ϕ and a part E2 that needs to be evaluated anew when the orientation of the central particle c
changes. They are given by

Ea(a) = EBB (62)

E1(a, ϕ) = EBcSi (63)

E2(a, ϕ, θc) = EBiSc + ESS, (64)

where EBB is the energy from the overlap of two interacting negatively charged bodies (big
spheres) of the central colloid and of particle i. EBcSi and EBiSc are both energies emerging
from overlaps of the body and one of the patches (small spheres). The first energy stems from
an overlap of the body of the central particle and thus the energy does not change under rotations
of the central particle; however, the second term stems from the interaction of a patch of the
central particle and therefore needs to be evaluated anew each time θc changes. ESS is a sum of
energies calculated by the overlap of all possible two patch combinations.
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Thus h2IPC(Ri,wi, θi) becomes

h2IPC(Ri,wi, θi) =
t
√
q/π

πerf(
√
qπ)

 σ+δ∫
σ

da a e−
1
2
Ea(Ri,wi)e−t(a

2+W 2)A(Ri,wi, θi)

 , (65)

A(Ri,wi, θi) =

2π∫
0

dϕ e2taW cosϕe−
1
2
E1(Ri,wi)

π∫
−π

dθc e
−qθ2c e−

1
2
E2(Ri,wi,θi). (66)

Since the colloids are decorated by two symmetrical patches the integration range of θc is sym-
metrical with respect to 0 and can be rewritten as

π∫
−π

dθc e
−qθ2c e−

1
2
E2(Ri,wi,θi) = 2 ·

π∫
0

dθc e
−qθ2c e−

1
2
E2(Ri,wi,θi). (67)

The rest of the integrals leading to the function h2IPC(Ri,wi, θi) need to be evaluated numeri-
cally.

Since a priori we do not have an estimate for the spring constant t, we use an approximation of
the Bessel function I0(x) (where t occurs in the argument x = 2taW ) for the evaluation of the
functions hHS(W ) and hSW(W ) that differs from the one used for Janus particles. Instead of
the large argument approximation (see Equ. (49)) we use a polynomial approximation which,
according to [16], has an error |ε| ≤ 1.9 · 10−7 for positive arguments.

The remaining steps of the SCP procedure are similar to the ones applied to the Janus colloids.
The angular wall potential is again defined via an angle φ0. We define φ0 as the angle at which
the attractive part of the potential, which stems from an overlap of a colloidal body with one of
the patches, becomes zero. For the calculation of this angle, only overlaps of the form big-small
which are non-zero in the equilibrium state are used. Actually this angle could depend on the
distance of the particles but we choose to always use the value obtained when the particles are
in contact.

5.2 Plastic crystals

For plastic crystals the potential VIPC(r, θ, ϕ, θ′, ϕ′) needs to be averaged over the angular de-
grees of freedom. In this section we restricted ourselves to two-dimensional structures where
deviations in the orientation occur only in the (x, y)-plane. Those structures are formed by
three-dimensional particles so that the averaging is done over all orientations in R3. We study
only colloids with two symmetric patches which are aligned along the x-axis so that the only non-
trivial rotations are those around the y- and z-axis. The two-particle potential VIPC(r, θ, φ, θ′, φ′)
depends in the interaction range σ < r < σ + δ on the actual distance r between the center of
the particles and on the rotation angle around the z-axis, ϕ, and around the y-axis, θ, of both
particles.

The averaged potential 〈ε〉 can be calculated via

〈ε〉 =

∫
dθ sin θdϕ

∫
dθ′ sin θ′dϕ′VIPC(r, θ, ϕ, θ′, ϕ′)∫

dΩ
∫
dΩ′

= EBB +
1

2π

2π∫
0

dϕ

π∫
0

dθ sin θ EB′S(r, θ, ϕ)+ (68)

+
1

(4π)2

2π∫
0

dϕ

π∫
0

dθ sin θ

2π∫
0

dϕ′
π∫

0

dθ′ sin θ′ ESS′(r, θ, ϕ, θ
′, ϕ′).
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For IPCs the averaged potential depends still on the distance r of the particles so that the
h2IPC-function for plastic crystals becomes

hpl2IPC(wi) =
t

π

σ+δ∫
r=σ

dr r e−
1
2
〈ε〉(r)e−t(r

2+W 2)

2π∫
0

dϕ e2trW cosϕ

= 2t

σ+δ∫
r=σ

dr r e−
1
2
〈ε〉(r)e−t(r

2+W 2)I0(2trW ), (69)

where again the modified spherical Bessel function of the first kind I0(x), was used.

5.3 Results

In the following we apply the SCP approach to two candidate structures which were previously
found in self-assembly studies using Monte Carlo simulations (see Ref. [6]). These investigations
showed that a wide variety of two-dimensional structures can occur, depending on the relative
charge of the body and the patches of the IPCs. In the Monte Carlo simulation a wall was
introduced to enforce quasi two-dimensional structures, this wall could also carry a surface
charge. However, the approach presented here is solely two-dimensional so that no wall is
required. The colloid particles are chosen in accordance with Ref. [6]; the colloids have an
opening angle of θ0 = 60◦ and an interaction range of δ = 0.4σ (corresponding to κσ = 5,
κδ = 2).

The two candidate structures are shown in Fig. 32: A triangular structure (labeled ’g-triangles’
in [6]) and a square structure, (called ’f-triangles’ in [6]) where the particles form squares.

Figure 32: The investigated 2-dimensional crystal structures formed by IPCs: a triangular struc-
ture formed by charged colloids (left) and a square structure formed by neutral col-
loids (right).

The triangular structure is investigated using charged colloids with a total charge of
Ztot = −2

9Zp, where Zp denotes the charge of a patch. The orientation of the particles was
taken from Ref. [6] and is presented in Fig. 33.
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Figure 33: Equilibrium position and orientation of the triangular crystal structure formed by
charged IPCs (left). The central and the right panel show the structure when the
central particle is rotated by the maximal allowed angle of φ0 = ±27.27◦ with respect
to its equilibrium orientation.

The free energy per particle, f , obtained for different reduced temperatures T ∗ for this structure
is shown in Fig. 34. The dependence of f on the distance x between the particles is as expected,
it increases continuously as the density increases.
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Figure 34: Free energy per particle, ftotal, for a triangular structure formed by IPCs over the
distance x between the particles for different reduced temperatures T ∗ (as labeled).

However, we did encounter severe numerical problems for small temperatures since the spring
constant t becomes for very dense structures so large that even calculations using quattro pre-
cision could not process the occurring values. For T ∗ = 0.4 this limit of the program is already
reached at particle distances of x = 1.05 while for higher reduced temperatures structures with
x ≈ 1.03 can still be considered. In the following figures for the free energy f the smallest
possible distance x between the particles is used as lower boundary of each curve.

For the reduced pressure p∗ we used the definition of Equ. (52). The reduced pressure p∗ for
the triangular structure is also quite well-behaved. For large distances between the particles
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it changes very slowly and is nearly constant with respect to the temperature. For very dense
crystals the reduced pressure p∗ increases rapidly and shows a stronger dependence on the
temperature than in the low pressure regime.
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Figure 35: Reduced pressure p∗ for a triangular structure formed by IPCs over the distance x
between the particles for different temperatures T ∗ (as labeled).

The second structure investigated is a square structure formed by overall neutral IPCs
(Ztot = Zc + 2Zp = 0). The equilibrium orientation of the particles is orthogonal, see Fig.
36. The free energy per particle f (Fig. 37) and the reduced pressure p∗ (Fig. 38) show a
similar behavior as compared to the corresponding curves for the triangular structure.

Figure 36: Equilibrium position and orientation of the square crystal structure formed by neutral
IPCs (left). The central and the right panel show the structure when the central
particle is rotated by the maximally allowed angle of φ0 = ±11.54◦ with respect to
its equilibrium orientation.
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Figure 37: Free energy per particle ftotal for a square structure formed by IPCs over the distance
x between the particles for different reduced temperatures T ∗ (as labeled).
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Figure 38: Reduced pressure p∗ for a square structure formed by IPCs over the distance x be-
tween the particles for different temperatures T ∗ (as labeled).

Additionally, we considered plastic versions of the triangular and of the square structures shown
in Fig. 32, but instead of the patch ordering shown there the particles are now statistically
oriented. The averaged potential 〈ε〉, evaluated via Equ. 68, for both structures is shown in
Fig. 39. Since the square structure is build by overall neutral particles, while the triangular
structure is formed by colloids with a small overall charge, the average potentials 〈ε〉 of the two
plastic structures are slightly different.
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Figure 39: The average potential 〈ε〉 over the distance x between the particles for overall neutral
and charged colloids (for charges see text) as used for the simulation of the square
and triangular structure formed by IPCs.

The SCP procedure gives also very reasonable results for the free energy per particle f for the
plastic triangular structure, see Fig. 40. The values of the free energies f of the plastic and
the triangular structures are over a wide distance range comparable. At very low distances, the
free energy f of the plastic structure increases more rapid than the corresponding value of the
ordered structure. Note, that the formalism applied to plastic structures works well in a slightly
different temperature and distance range than the formalism applied to ordered structures.
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Figure 40: Free energy per particle f over the distance x between the particles in the plastic
triangular structure formed by IPCs for different temperatures T ∗ (as labeled).

The reduced pressure p∗ of the densely packed plastic triangular structure is nearly a magnitude
higher than the pressure occurring in the ordered triangular structure, see Fig. 41.
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Figure 41: The reduced pressure p∗ of the plastic triangular structure formed by randomly ori-
ented IPCs over the distance between the particles for different temperatures T ∗ (as
labeled).

For the plastic square structure formed by statistically oriented IPCs the SCP approach results
in the free energy curves reported in Fig. 42. In the low density range it decreases slowly with
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increasing distance x between the particles.
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Figure 42: Free energy per particle f (left) and reduced pressure p∗ for a plastic square structure
formed by IPCs over the distance x between the particles for different temperatures
T ∗ (as labeled). The singularity in the pressure curve is caused by the numerical
discontinuity in the corresponding free energy. ’o’ denotes a large starting distance
(x = 1.4), ’u’ a small starting distance (x = 1.02).

For smaller distances a discontinuity in the free energy occurs which results in a singularity in
the reduced pressure p∗, see Fig. 43, that is of course unphysical. It is, however, quite probable
that the free energy does not show a discontinuity but rather a steep kink which cannot easily
be distinguished from a discontinuity in numerical results. A kink in the free energy results in
a discontinuity in the pressure and thus indicates a first order phase transition.

The position of this kink depends on the direction from which the distance x is approached: If
it is approached from distances larger than x the kink occurs at x ≈ 1.02 (curves labeled ’o’ in
Fig. 43), if it is approached from distances lower than x it occurs at 1.025 . x . 1.035 (’u’ in
Fig. 43). The position of the kink is shifted to slightly smaller values as the temperature T ∗

increases, until, for T ∗ & 7 the position of the kinks does no longer depend on T ∗.
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Figure 43: The free energy per particle f for a plastic square structure formed by IPCs calculated
via the SCP procedure shows a steep kink over the distance x between the particles.
The free energy depends on the direction from which the distance x is approached; ’o’
denotes a large starting distance (x = 1.4), ’u’ a small starting distance (x = 1.02).

This steep kink in the total free energy per particle exists in the static contribution, fstatic, as
well as in the translational contribution, ftrans, see Fig. 44.
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Figure 44: Static (left) and translational (right) contribution to the free energy per particle f for
the plastic square structure formed by randomly oriented IPCs over the distance x
between the particles at different reduced temperatures T ∗ (as labeled). For distances
1.02 ≤ x ≤ 1.36 the free energy depends on the direction from which the distance
x is approached; ’o’ denotes a large starting distance (x = 1.4), ’u’ a small starting
distance (x = 1.02).

The steep kink is also present in the mean squared displacement
〈
w2
〉

and the spring constant
t (Fig. 45).
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Figure 45: Mean square displacement
〈
w2
〉

and corresponding spring constant t for a plastic
square crystal formed by randomly orientated IPCs over the distance x between
the particles for different temperatures T ∗ (as labeled). ’o’ denotes a large starting
distance (x = 1.4), ’u’ a small starting distance (x = 1.02).

A possible reason for this kink is that the averaging of the potential does not fully represent
the behavior of the particles in a plastic crystal. Although the particles in a real plastic crystal
are randomly oriented, they still interact differently, depending on which areas of the surface
overlap. However, in the SCP formalism all areas interact via the same averaged potential.

The kink probably indicates the plastic structure with this averaged potential would not be
stable over the whole density range investigated, but rather a transition to a different structure
would occur. As soon as the density is low enough for the central particle to interact with the
particles at the corner of the unit cell, the particles would form a different structure, a hexagonal
or other close packed structure, where a larger number of particles can interact.

When comparing the results for the structures discussed above one has to keep in mind that
the behavior of the particles in a real plastic crystal may not be fully represented and thus the
results obtained may have considerable errors.

In Fig. 46 the dependence of the free energy per particle f on the reduced temperature T ∗ is
shown for the triangular (’gt’), the square structure (’ft’) and the corresponding plastic structures
(’gp’ and ’fp’). The free energy of the structures is nearly constant over the whole temperature
range, only at very low temperatures a rapid decrease of the free energy per particle is observed.
For the plastic structures a considerably lower free energy is obtained than for the ordered
structures.
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Figure 46: Total free energy per particle f at constant reduced pressure p∗ = 3 (left) and p∗ = 6
(right) over the temperature T ∗ for the ordered triangular structure (’gt’), the ordered
square structure (’ft’) and the plastic triangular (’gp’) and square structure (’fp’).

As discussed, the free energy per particle, consists of a static, a translational and a rotational
contribution, which are displayed in Fig. 47, Fig. 48 and Fig. 49 at constant reduced pressures
p∗ = 3 and p∗ = 6. To a great extent all the contributions are independent of the reduced
temperature T ∗, small deviations occur only at very low temperatures. fstatic and ftrans depend
strongly on the reduced pressure p∗; the values of the free energy contributions of the different
structures assume more comparable values the higher the pressure becomes. The rotational
contribution, frot, is independent of the pressure, however, it varies greatly from structure to
structure. The different values of the total free energy per particle f for the plastic and ordered
structures result to a great extent from the different rotational contributions frot.
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Figure 47: Static contribution fstatic to the free energy per particle at constant reduced pressure
p∗ = 3 (left) and p∗ = 6 (right) over the temperature T ∗ for the ordered triangular
structure (’gt’), the ordered square structure (’ft’) and the plastic triangular (’gp’)
and square structure (’fp’).
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Figure 48: Translational contribution ftrans to the free energy per particle at constant reduced
pressure p∗ = 3 (left) and p∗ = 6 (right) over the temperature T ∗ for the ordered tri-
angular structure (’gt’), the ordered square structure (’ft’) and the plastic triangular
(’gp’) and square structure (’fp’).
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Figure 49: Rotational contribution frot to the free energy per particle at constant reduced pres-
sure p∗ = 3 (left) and p∗ = 6 (right) over the temperature T ∗ for the ordered trian-
gular structure (’gt’), the ordered square structure (’ft’) and the plastic triangular
(’gp’) and square structure (’fp’).

The mean square displacement
〈
w2
〉

is shown in Fig. 50 for two different reduced pressures
p∗. Naturally, they assume smaller values as the pressure increases. The corresponding spring
constants t are depicted in Fig. 51. Since the spring constant increases strongly as the pressure
increases, crystals under high pressures can not be easily considered.
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Figure 50: Mean squared displacement
〈
w2
〉

at constant reduced pressure p∗ = 3 (left) and
p∗ = 6 (right) over the temperature T ∗ for the ordered triangular structure (’gt’), the
ordered square structure (’ft’) and the plastic triangular (’gp’) and square structure
(’fp’).
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Figure 51: Translational spring constant t at constant reduced pressure p∗ = 3 (left) and p∗ = 6
(right) over the temperature T ∗ for the ordered triangular structure (’gt’), the ordered
square structure (’ft’) and the plastic triangular (’gp’) and square structure (’fp’).

The rotational mean square displacement
〈
θ2
〉

and the corresponding spring constant q depend
mainly on the crystal structure (Fig. 52).
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Figure 52: Mean squared displacement
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〉

(left) and corresponding spring constant q at con-
stant reduced pressure p∗ = 3 and p∗ = 6 over the temperature T ∗ for the ordered
triangular structure (’gt’), the ordered square structure (’ft’) and the plastic trian-
gular (’gp’) and square structure (’fp’).

For the determination of points of phase coexistence the chemical potential at constant pressure
has to be calculated. As can be seen from Fig. 53 no phase transitions are observed for p∗ = 3
in the temperature range investigated since the chemical potential for the two plastic crystals is
nearly parallel. At low temperatures the two ordered crystals could have a region of coexistence
but this region can not be thoroughly investigated because it is very near the point where the
formalism breaks down numerically.

At p∗ = 6 the plastic square structure is stable at high temperatures. As the temperature
decreases below T ∗ ≈ 0.5 a transition to the plastic triangular structure is predicted by the SCP
procedure. The chemical potential of the two ordered structures is nearly similar over the whole
temperature range and indicates that they are meta-stable over the whole temperature range
investigated.
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Figure 53: Chemical potential µ [kBT
∗] at constant reduced pressure p∗ = 3 (left) and p∗ = 6

(right) over the temperature T ∗ for the ordered triangular structure (’gt’), the ordered
square structure (’ft’) and the plastic triangular (’gp’) and square structure (’fp’).
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6 SCP for inverse patchy colloids in three dimensions

The extension of the SCP theory to three dimension is conceptually complicated and numerically
intensive. Therefore we restrict the formalism to two types of structures exploiting thereby the
symmetry of those systems. In this section we study a face-centered cubic system (fcc) and a
layered structure formed by IPCs.

The unit cell of the fcc structure is shown in Fig. 54. Since the distance between all the particles
is of similar length only one translational spring constant t is necessary.

Figure 54: The unit cell of the investigated fcc-structure formed by spatial and orientational
ordered IPCs is shown at a typical particle density (left) and at extremely large
distances so that the orientation of the particles can be seen (right).

The layered structure consists of planes with a hexagonal structure which are aligned parallel
to the (x, y)-plane (see Fig. 55. The particles in each of these planes are positioned as in the
two-dimensional trigonal structure already studied in Sec. 5 (shown in the left panel of Fig.
32). For a regular planar structure two translational spring constants are needed, one within
the plane, tp, and one in the perpendicular z-direction, tz. For the sake of generality we use two
spring constants in the following.

Figure 55: The unit cell of the layered structure formed by spatial and orientational ordered
IPCs.

The additional degree of freedom of the spatial deviations can be simply added to the potential
as an additional spring constant which is assumed to be independent of all the other spring
constants.

Further, an additional degree of freedom for the rotations (for IPCs with two patches) has to
be taken into account. Inclusion of this rotational degree is not as easy as for the additional
translational degree of freedom due to the fact that the rotation axes of the particles within
a given structure are difficult to guess; therefore possible inter-dependencies of the rotational
degrees of freedom need to be taken into account.

These features render the method quite complicated; further, together with the translational
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degrees of freedom five-dimensional integrals need to be performed which have made a full ap-
plication of the approach too time-consuming for this thesis. Therefore, instead of investigating
all degrees of freedoms at once we first study the translational degrees only, via a plastic structure
(Sec. 6.1), then we discuss the influence of the rotational degrees separately (Sec. 6.2).

6.1 Plastic structure

The simplest three-dimensional structure formed by IPCs is a face-centered cubic (fcc) lattice
with randomly oriented patches. The SCP approach is applied to this structure using the
averaged potential 〈ε〉 given in Equ. (68). Since only the translational degrees of freedom need
to be included for plastic crystals the reference potential is chosen as

VH(wi) =

N∑
i=1

[tp(w
2
x,i + w2

y,i) + tzw
2
z,i], (70)

so that the h function is now defined by

h(wi) =

∫
d{wc}

[
e−

1
2
〈vij(r)〉 − 1

]
e−tpw

2
p,ce−tzw

2
z,c∫

d{wc}e−tpw
2
p,ce−tzw

2
z,c

= −2tptz√
π

σ∫
0

dr r2
π∫

0

dθ sin θ e−tp(Wp−r sin θ)2I ′0(2tpr sin θWp)e
−tz(Wz−r cos θ)2+

+
tptz√
π

σ+δ∫
σ

dr r2
[
e−

1
2
〈ε〉(r) − 1

] π∫
0

dθ sin θ e−tp(Wp−r sin θ)2I ′0(2tpr sin θWp)e
−tz(Wz−r cos θ)2 .

(71)

Here we used spherical coordinates and Wp =
√
W 2
x +W 2

y . Since the spherical Bessel function

of the first kind behaves as I0(x) ∼ e+x for large arguments x, we introduced the function
I ′0(x) = I0(x) · e−x.

Using the above h-function the coefficients of the potential, γp and γz, are defined analogously
to Equ. (22). The self-consistency equation has to reflect the symmetry of the fcc crystal. Thus
the coefficients should be equal: γp = γz = γ and only one mean squared displacement

〈
w2
〉

is
needed for the self-consistency equations. The sum of the average displacements

〈
w2
〉

can be
evaluated via 〈

w2
〉

=
1

N

∫
ν
dwxdwydwz(w

2
x + w2

y + w2
z)e
−γ(w2

x+w
2
y+w

2
z)

=
3
√
πerf(

√
γa)− 2e−γa

2√
γa(2γa2 + 3)

2γ(
√
πerf(

√
γa)− 2e−γa2

√
γa)

. (72)

Since the distances between the atoms are of comparable length in all three orthogonal directions,
the Wigner-Seitz cell ν was approximated by a sphere with radius a and the same volume as
the actual Wigner-Seitz cell.

The updating of the spring constants, tp and tz, is realized via the self-consistency equation

tp = tz =
3

2 〈w2〉
. (73)
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6.1.1 Results for fcc structure

We have used the same system of IPCs as discussed in Ref. [7]; the particles have an open-
ing angle of γ = 38.6◦ and are slightly charged so that the total charge of one colloid is
Ztot = Zc + 2Zp = Zc/11. The properties of the surrounding solvent are set by κσ = 2.
The particles have an interaction range of δ = 0.25.

The total free energy f obtained via the SCP method for the fcc-structure formed by ordered
IPCs is shown in Fig. 56 for different distances x between the particles and at different reduced
temperatures T ∗. For sufficiently large distances and high enough temperatures the approach
performs well. However, as the temperature and/or the distance between the particles decreases,
the spring constants start to oscillate so that no convergence could be achieved. At even smaller
distances or lower temperatures the method does not work at all.
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Figure 56: Free energy per particle f for the fcc crystal formed by IPCs over the distance x
between the particles for different reduced temperatures T ∗ (as labeled).

One reason for this failure could be related to the fact that the numerical accuracy is not sufficient
as the spring constant increases rapidly (see Fig. 57). As expected the particles become less
and less mobile as their equilibrium distance decreases.
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Figure 57: Mean squared displacements in z direction
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(left) and spring constant tz (right)

over the distance x between the particles in a fcc crystal for different temperatures
(as labeled). Due to the symmetry of the crystal

〈
w2
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〉
= 2
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w2
z

〉
and tp = tz.

To clarify the reasons for the numerical instability of the method, the self-consistency equation
was further investigated. In Fig. 58 the spring constant, tnew, that results from an initial
spring constant, told, is plotted. The colored curves give the change of the spring constant for
different densities of the structure. The solution of the self-consistency equation is given by
the intersection of the colored curves with the first median (black line). For T ∗ = 2 only for
distances x & 1.24 a solution exists while the positive curvature of the curves for higher densities
prevent the convergence of the approach. From the curves at T ∗ = 10 it becomes obvious why
the procedure starts to oscillate between multiple solutions as the density decreases: here curves
for distances 1.20 & x & 1.19 have two intersections with the first median (although due to the
curvature only the lower intersection should be stable)
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Figure 58: Illustration of the self-consistency equation: the spring constant tnew as a function of
the input spring constant told for different distances x between the particles in a fcc
structure formed by IPCs for T ∗ = 2 (left) and T ∗ = 10 (right). The solution of the
self-consistency equation is given by the intersection of the colored curves with the
first median (black line).
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6.2 Angular SCP

As indicated by the results for the plastic fcc structure, particles are very immobile at large
densities and/or low temperatures and thus very large spring constants occur. Since these
large spring constants make the calculations very tricky and numerically instable, we decided to
disregard in this Section the translational degrees of freedom and to focus solely on the influence
of the angular degrees of freedom found in orientationally ordered crystal structures. We note
that the translational and rotational degrees of freedom are coupled via the self-consistency
equations, but we expect that the impact of the translational oscillations on the rotations are
rather small.

In the following approximation we treat only the angular degrees of freedom of the structures.
For the evaluation of the h-function the coordinate system is orientated so that the patches of
the central particle are aligned along the x-axis. Therefore only rotation around the y- and
z-axis need to be considered, we term the corresponding rotation angles θz and θp, respectively.
Although this coordinate system is very handy for the calculation of the h-function of the system,
it is not necessarily the eigensystem of the oscillations.

Thus we include an off-diagonal spring constant qpz in the reference potential, namely

VH(θip, θ
i
z) =

N∑
i=1

[qp(θ
i
p)

2 + qz(θ
i
z)

2 + 2qpzθ
i
pθ
i
z]. (74)

The h-function can be written as

h(θip, θ
i
z) =

π/2∫
−π/2

dθp cos θp
π∫
−π

dθz

[
e−

1
2
Eic(a,θp,θ

i
p,θz ,θ

i
z) − 1

]
e−qpθ

2
pe−qzθ

2
ze−2qpzθpθz

π/2∫
−π/2

dθp cos θp
π∫
−π

dθze
−qpθ2pe−qzθ2ze−2qpzθpθz

. (75)

The Taylor expansion of the potential contains also an off-diagonal term,

ve(θp, θz) ≈ ε+ βpθ
2
p + βzθz + 2βpzθpθz, (76)

where the coefficients βp, βz and βpz are given by

βp = −1

2

∑
i

∂θp∂θp ln[1 + h(θp, θz)]|θp=0,θz=0 (77)

βz = −1

2

∑
i

∂θz∂θz ln[1 + h(θp, θz)]|θp=0,θz=0 (78)

βpz = −1

2

∑
i

∂θp∂θz ln[1 + h(θp, θz)]|θp=0,θz=0. (79)

Thus the mean squared displacements
〈
X2
〉

can be calculated via

〈
X2
〉

=

φ1∫
−φ1

dθp cos θp
φ2∫
−φ2

dθzX
2e−βpθ

2
pe−βzθ

2
ze−2βpzθpθz

φ1∫
−φ1

dθp cos θp
φ2∫
−φ2

dθze
−βpθ2pe−βzθ2ze−2βpzθpθz

, (80)

where X2 is either θ2p, θ
2
z or θpθz. φ1 and φ2 are the angular wall factors constraining the

rotational deviations within the plane and out of the plane, respectively. These integrals have
to be calculated numerically.
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For the derivation of the self-consistency equations we first write the spring constants in terms
of a real, symmetric matrix Qθ,

Qθ =

(
qp qpz
qpz qz

)
, (81)

the subscript θ denotes that the matrix is given in the coordinate system described above defined
by the vector ~θ = (θp, θz). The matrix Qθ can be diagonalized using the transformation matrix
U ,

Qv = UTQθU with Qv =

(
λ1 0
0 λ2

)
. (82)

The eigenbasis of matrix Q is called v. The squares of the deviations are analogously collected
into a matrix ~X2,

~X2 = ~θ · ~θT =

(
θ2p θpθz
θpθz θ2z

)
. (83)

Using the rotation matrix U we find that the matrix of the mean squared displacements,
〈
~X2
〉

has the same eigenbasis as the matrix Qθ, since

~θ = U~v →
〈
~X2
〉

=
〈
~θ · ~θT

〉
= U

〈
~v · ~vT

〉
UT . (84)

The matrix
〈
~v · ~vT

〉
is a diagonal matrix since the off-diagonal terms 〈v1v2〉 are zero:

〈v1v2〉 =
1

N

π/2∫
−π/2

dv1 cos v1

π∫
−π

dv2(v1v2)e
−λ1v21e−λ2v

2
2 = 0. (85)

The diagonal terms are given by

〈
v21
〉

(λ1) =

π/2∫
0

dv1 cos v1v
2
1e
−λ1v21

π/2∫
0

dv1 cos v1e−λ1v
2
1

=
2λ1 − 1

4λ21
+

e−π
2λ1/4√

λ31πe
−1/(4λ1)

(
erf(πλ1−ı

2
√
λ1

) + erf(πλ1+ı
2
√
λ1

)
) (86)

〈
v22
〉

(λ2) =

π/2∫
0

dv2v
2
2e
−λ2v22

π/2∫
0

dv2e−λ2v
2
2

=
1

2λ2
− e−λ2π

2√
π√

λ2erf(
√
λ2π)

. (87)

The procedure is now the following: First the h-function is calculated using Equ. (75), assuming
some starting values for qp, qz and qpz. Solving Equ. (77) for the coefficients β, the mean squared
displacements

〈
X2
〉
|num are calculated via Equ. (80). In the next step,

〈
X2
〉
|num is diagonalized

to obtain the diagonal elements
〈
X2

1

〉
|num and

〈
X2

2

〉
|num and the corresponding transformation

matrix U . Then the new eigenvalues λ1 and λ2 are calculated, so that the v1 and v2 of Equ.
(86) fulfill the following relations: 〈

v21
〉

(λ1) =
〈
X2

1

〉
|num (88)〈

v22
〉

(λ2) =
〈
X2

2

〉
|num. (89)

The eigenvalues λ1 and λ2 are now the new diagonal values of Qv in its eigenbasis. Transforming
Qv via Qθ = UTQvU we obtain the new values for qp, qz and qpz which are then used to calculate
the h-function anew.
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The free energy per particle f consists only of a static and a rotational contribution, which can
be evaluated via

fstatic = ε (90)

ftrans = 0 (91)

frot = − ln

(∫
ϕ0

dθp cos θp

∫
ϕ0

dθz e
−βpθ2p−βzθ2z−2βpzθpθz

)
− ln(2π). (92)

6.2.1 Fcc structure

The orientations of the particles in the investigated fcc-structure are chosen according to Ref.
[7]; the unit cell used for the calculation is shown in Fig. 54.

In the following we will denote the coordinate system chosen for the orientation of the h-function
(p, z)-system; the x-axis is aligned parallel to the orientation of the central particle, the ’plane’
(p) is formed by the x- and y-axis, the z-axis is orthogonal to this plane.

Since the initial axes chosen for the rotation of the particles are not necessarily the actual
rotation axes, the angles φ0 setting the angular wall potentials depend also on the direction.
Actually, instead of independent restriction angles a rather complex restriction volume would
be needed. The wall potential is however primarily introduced to prohibit unreasonably large
rotations. Anyhow, the actual form of this integration boundary should not be of relevance
since large rotation angles are suppressed exponentially with the weight of the spring constant.
Thus the restriction angle is set in the (p, z)-coordinate system to φ0 = ±65◦ for both directions,
representing thereby the hexagonal structure of the fcc crystal (the additional 5◦ assure that the
particles can actually rotate by ±60◦).

The application of the SCP method to the fcc crystal shows that the actual rotation axes differ
only slightly from the axes initially chosen for the integration of the h-function. As can be seen
in Fig. 59 the angle α between the actual and the chosen axes has a maximum of α ≈ 5◦ in the
investigated density and temperature range. Interestingly, the angle has several local maxima
and minima as the distance x between the particles decreases. This is not surprising since the
energy is calculated via the overlap volumes, which for 12 two-particle interactions is a quite
complicated function of the distance.

58



-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 1.12  1.14  1.16  1.18  1.2  1.22  1.24

a
n

g
le

[°
]

x

0.3(p)
0.2(p)
0.1(p)

0.05(p)
0.3(z)
0.2(z)
0.1(z)

0.05(z)

Figure 59: Angle between the actual rotation axes in an ordered fcc-crystal formed by IPCs
and the (p, z)-coordinate system (detailed description in text) chosen due to the
symmetry of the IPCs. The location of the minima and maxima with respect to the
distance x between the particles depends on the reduced temperature T ∗ (as labeled).
’p’ denotes the planar part of the coordinate system (combination of two axes), ’z’
denotes the axis orthogonal to the ’p’ part.

The mean squared displacements for the rotation
〈
θ2p
〉
,
〈
θ2z
〉

and 〈θpθz〉 around the different
axes in the (p, z)-coordinate system are shown in Fig. 60. Since the basis nearly coincides with
the eigen directions of the rotation, the off-diagonal oscillations are quite small. While

〈
θ2p
〉

decreases as the distance between the particles decreases,
〈
θ2z
〉

increases slightly.
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Figure 60: Mean squared displacements for the rotation,
〈
θ2p
〉
,
〈
θ2z
〉

and 〈θpθz〉, with respect
to the initial equilibrium system (p, z) as a function of the distance x between the
particles in the fcc-structure formed by ordered IPCs. The reduced temperatures T ∗

are labeled on the right. ’p’ denotes the mean squared displacement
〈
θ2p
〉

which gives
the rotation in the plane, ’z’ denotes

〈
θ2z
〉

of the rotation around the y-axis and ’pz’
the off-diagonal rotation 〈θpθz〉.

The corresponding spring constants qp, qz and qpz are depicted in Fig. 61. Note that although
the off-diagonal spring constant qpz lies in the same range as qz, the oscillations can be quite
different since the off-diagonal spring constant is weighted with an additional factor two in the
potential with respect to the diagonal spring constants.
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Figure 61: Spring constants for the rotation, qp, qz and qpz, with respect to the initial equilibrium
system (p, z) as functions of the distance x between the particles in the fcc-structure
formed by ordered IPCs. The reduced temperatures T ∗ are labeled on the right. ’p’
denotes the spring constant qp which gives the rotation in the plane, ’z’ denotes qz of
the rotation around the y-axis and ’pz’ the off-diagonal spring constant qpz.

For completeness, the free energy per particle and its contributions obtained via this angular SCP
method are shown in Fig. 62, Fig. 63 and Fig. 64. These functions have a negative curvature
over wide parts of the investigated temperature and density range and are thus unphysical.
However, this fact is not surprising since in this approach we disregarded the translational
degrees of freedom which are responsible for the rapid increase of the free energy as the distance
decreases.
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Figure 62: Total free energy per particle, ftotal, over the distance x between the particles for
the fcc-structure formed by ordered IPCs for different reduced temperatures T ∗ (as
labeled). Note that in this angular SCP approach the translational degrees of freedom
are disregarded.
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Figure 63: Static contribution, fstatic, to the free energy per particle over the distance x between
the particles for the fcc-structure formed by ordered IPCs for different reduced tem-
peratures T ∗ (as labeled). Note that in this angular SCP approach the translational
degrees of freedom are disregarded.

62



 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 1.12  1.14  1.16  1.18  1.2  1.22  1.24

f r
o

t

x

0.3
0.2
0.1

0.05

Figure 64: Rotational contribution, frot, to the free energy per particle over the distance x be-
tween the particles for the fcc-structure formed by ordered IPCs for different reduced
temperatures T ∗ (as labeled). Note that in this angular SCP approach the transla-
tional degrees of freedom are disregarded.

6.2.2 Layered structure

In this Section the results obtained for the layered structure with the angular SCP approach are
presented. As can be seen from the unit cell (Fig. 55) the layered structure has two different
characteristic distances: the distance ∆x between two particles located in the same plane and
the distance ∆z between two particles positioned in different planes.

The rotation of the eigenbasis with respect to the (p, z)-basis used for the integration of the
h-function is shown in Fig. 65. α1 and α2 give the rotation angle of the p-axes and the z-axis,
respectively. Both angles depend strongly on the characteristic distances. As a general trend,
we observe that the absolute values of the angles increase as ∆z decreases (if ∆x is constant).
The dependence on ∆x is more complicated, this was also observed for the fcc lattice. The
absolute value of the rotation angle for the layered structure is nearly a magnitude smaller than
the rotations observed for the fcc lattice. We note also, that the maximum of the coordinate
rotation is shifted to larger ∆z values as T ∗ decreases.
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(a) T ∗ = 0.2 (b) T ∗ = 0.1

(c) T ∗ = 0.05

Figure 65: Angle between the actual rotation axes in an layered crystal formed by IPCs and the
(p, z)-coordinate system (detailed description in text) chosen due to the symmetry
of the IPCs. The angle depends on the distance of the particles within the plane,
∆x, the distance of the planes, ∆z and the reduced temperature T ∗; the panels
correspond to (a) T ∗ = 0.2, (b) T ∗ = 0.1, (c) T ∗ = 0.05. ’p’ denotes the planar part
of the coordinate system (combination of two axes), ’z’ denotes the axis orthogonal
to the ’p’ part. (∆x,∆z) = (0.0, 0.0) denotes the density where the particles are in
contact.

The spring constants, qp, qz and qpz obtained for the layered structures show parallels to the
ones obtained for the fcc lattice (see Fig. 66 and Fig. 61). In both cases, qp is much larger than
qz and qpz which have comparable values.
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(a) T ∗ = 0.2 (b) T ∗ = 0.1

(c) T ∗ = 0.05

Figure 66: Dependence of the spring constants qp, qz and qpz, on the characteristic distances ∆x
and ∆z for three different reduced temperatures: (a) T ∗ = 0.2, (b) T ∗ = 0.1 and
(c) T ∗ = 0.05. (∆x,∆z) = (0.0, 0.0) denotes the density where the particles are in
contact.

Although the values obtained for qz and qpz are comparable, the mean squared displacements
are distinctly different (see Fig. 67). Since the (p, z)-system nearly coincides with the eigenbasis
of the system, 〈θpθz〉 ≈ 0. Although, qp is larger than qz the corresponding mean squared
displacement

〈
θ2p
〉

is smaller than
〈
θ2z
〉
.
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(a) T ∗ = 0.2 (b) T ∗ = 0.1

(c) T ∗ = 0.05

Figure 67: Dependence of the mean squared displacements,
〈
θ2p
〉
,
〈
θ2z
〉

and 〈θpθz〉, on the charac-
teristic distances ∆x and ∆z for three different reduced temperatures: (a) T ∗ = 0.2,
(b) T ∗ = 0.1 and (c) T ∗ = 0.05. (∆x,∆z) = (0.0, 0.0) denotes the density where the
particles are in contact.
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7 Conclusion

In this thesis, the thermodynamic properties of crystal structures formed by two types of patchy
particles in two- and three-dimensions were investigated. For this purpose we extended the SCP
method introduced in Refs. [4, 5] for hard spheres and Janus particles to inverse patchy particles
(ICPs).

First we applied the SCP theory to two-dimensional crystals formed by Janus particles in Sec.
4. Janus particles are simple hard-sphere based particles with an orientationally dependent
interaction. They have a heterogeneous surface where a large part of the surface does not
interact with other particles and only small regions of the surface (’patches’) attract each other.
This attraction is modeled via a simple step-function. As already investigated in Ref. [5],
particles self-assemble in a wide range of structures depending on the extension of the patch.
We investigated a zigzag, a trimer and a plastic structure that are observed for particles with
an intermediate patch angle.

The results for Janus particles confirm to a great extent the phase diagram described in Ref.
[5]. We obtain the same values for the phase transitions at the two investigated temperatures
as in [5]. Only the coexistence of the meta-stable phases is, according to our results, not solely
dependent on the structure but also on the numerical implementation.

In the next step, we extended the SCP method to the more complex interactions of IPCs (Sec.
5). The method was tested by applying it to two-dimensional candidate structures described in
[6], i.e. a triangular and a square structure. The free energy of the system was obtained via the
SCP method for a large temperature and density range and exhibits a reasonable behavior.

The technique was also applied to two plastic structures, which are obtained by assuming the
same positions of the particles as for the ordered structures but orienting the particles randomly.
Here a possible phase transition was identified in the square plastic structure. We did, however,
not investigate this transition any further, since on the one hand not all structures involved in this
transition were known and on the other hand we are primarily interested in three-dimensional
structures.

The simplest three-dimensional structure formed by IPCs is a plastic face-centered cubic (fcc)
lattice, which has already been widely investigated, e.g. in Ref. [7]. In Sec. 6.1 we showed
that the SCP method leads in principle to meaningful results. However, a bottle neck of this
method is the self-consistency equation which cannot be met for all initial spring constants. For
the plastic fcc structure only a certain temperature and density range works fine while at lower
temperatures and higher densities no solution can be found using the SCP method with the
self-consistency equation used in this thesis.

In Sec. 6.2 the influence of the rotational degrees of freedom on the mean squared displacements
was investigated. For this we disregarded the translational degrees of freedom and derived a
formalism which includes only the rotational deviations. It was applied to two ordered structures,
a fcc lattice formed by ordered IPCs and a layered structure according to Ref. [18]. Since now
two axes of rotation exist, which are a priori not known, the theory was extended to allow also
self-consistent changes of these axes.

We derived the oscillation frequencies in the different directions and obtained the eigenbasis of
the oscillations. Taking the symmetry of the particles into account, the initial rotation axes were
chosen in the two directions orthogonal to the patch direction. The simulations showed that
only small deviations of about 5◦(for the fcc structure) and about 0.6◦(for the layered lattice)
from the axes around those initial axes directions occur. The free energies of the structure were
also obtained, they are however not comparable for different structures since the translational
oscillations have not been included.
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Calculations including the translational as well as the rotational degrees of freedom would of
course be quite interesting. Using the SCP theory, this aim is however not easily achieved since
it involves an immense computational effort combined with severe numerical problems since the
stability range of this self-consistent theory can be very small for dense structures.

Therefore, it seems more promising to extend this work by either comparing structures with
different orientational ordering but the same positions of the particles, or by trying to combine
two calculations of the same structure, one where only the spatial and one where only the
rotational degrees of freedom are included. This combination is however not straight-forward
since the translational and rotational degrees of freedom are by construction linked via the
self-consistency equations.
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