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Preface 

The 11th Vienna International Conference on Mathematical Modelling 2025 (MATHMOD2025) 
took place at TU Wien, 19-21 February 2025. Since 1994, the MATHMOD conference series has 
invited scientists, engineers, and experts to present their ideas, methods, applications, and 
results in mathematical modelling and share their experiences in different application domains. 
Like a mathematical model, MATHMOD has constants, parameters, and variables. One constant 
is the frequency - triennially in February. Only the last MATHMOD 2022 had to take place in July 
2022 due to the coronavirus pandemic, so the 11th MATHMOD was scheduled again for February 
2025. One variable in MATHMOD is the number of participants and the number of contributions. 
In order to maximise these two variables, MATHMOD offers three types of contributions:  full 
contributions, short, and poster contributions. The short and poster contributions are reviewed 
based on a 2-page short paper, which, after acceptance, will be published in this MATHMOD Short 
Contribution Volume.  

MATHMOD 2025 is organised by the Automation and Control Institute and the Institute of Analysis 
and Scientific Computing of TU Wien and co-sponsored by the International Federation of 
Automatic Control (IFAC). In addition to this main sponsor, we have MathWorks and the Vienna 
Convention Bureau as financial sponsors. Several co-sponsoring organisations supported the 
conference with advertising and announcements in their societies. These include the AIT Austrian 
Institute of Technology, OVE Austrian Electrotechnical Association, VDI/VDE  Association of 
German Engineers, GAMM Association of Applied Mathematics and Mechanics, ARGESIM/ASIM 
German Simulation Society and EUROSIM Federation of European Simulation Societies. 

The conference featured three plenary talks: Advances in Interpretable Language Models was 
given by Prof. Yulan He (King’s College, London, United Kingdom), Model-Based Control in 
Construction Robotics by Prof. Oliver Sawodny (Institute for System Dynamics, University of 
Stuttgart, Germany) and Modeling National Supply Chains with Data-Driven 1:1 Agent-Based 
Models – and why it is Important given by Prof. Stefan Thurner (Medical University of Vienna and 
Complexity Science Hub, Vienna, Austria). Besides the scientific programme, MATHMOD 2025 
also took care of the social programme, including a social plenary lecture about Solving the 
Gravity-Quantum Dilemma in Experiments given by Prof. Markus Aspelmeyer (University of Vienna 
and Institute for Quantum Optics and Quantum Information (IQOQI) Vienna, Vienna, Austria). 
Café Simulation opened the doors at the conference and the conference dinner was a Viennese 
Heurigen Evening at the "Zwölf Apostelkeller".  

The MATHMOD Organiser would like to thank all the contributors of this MATHMOD Short 
Contribution Volume. 
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A Trust Region RB-ML-ROM Approach for
Parabolic PDE Constrained Optimization ?

Benedikt Klein ∗ Mario Ohlberger ∗

∗ Mathematics Münster, University of Münster, Münster, Germany,
(e-mail: {benedikt.klein, mario.ohlberger}@uni-muenster.de).

1. INTRODUCTION & PROBLEM SETUP

Optimization problems constrained by parabolic PDEs are
common in science and engineering, involving challenges
like optimal control and inverse problems. Traditional
methods require numerous iterations to solve discretized
PDEs, often creating a computational bottleneck. Sur-
rogate models, especially reduced order models (ROM)
obtained from reduced basis (RB) methods, offer increased
efficiency by approximating these high-fidelity solutions.
This contribution explores how machine learning (ML) can
enhance surrogate model construction in the framework of
error aware trust region (TR) optimization methods.
Consider a bounded domain Ω ⊂ Rd and let V be a Hilbert
space, with H1

0 (Ω) ⊂ V ⊂ H1(Ω) . Our goal is to find a
parameter µ within a bounded parameter domain P ⊂ RP ,
minimizing the least-squares objective functional, relative
to a desired state gref ∈ V K :

J(u(µ);µ) := ∆t

K∑
k=1

‖uk(µ)− gkref‖2V + λR(µ),

where u(µ) := (uk(µ))k∈{0,...,K} ∈ V K+1 represents
the solution trajectory to a time-discretized parametrized
parabolic PDE (primal problem), i.e, u(µ) solves
(uk(µ)− uk−1(µ), v)L2(Ω)

∆t
+ a(uk(µ), v;µ) = b(tk)f(v;µ)

u0(µ) = 0

for all v ∈ V and k ∈ {1, . . . ,K}, where a(·, · ;µ) and
f(· ;µ) are parameter-dependent (bi)linear forms, and b a
time-dependent forcing input. Regularization is provided
by a smooth R(µ) for λ > 0, cf. Qian et al. (2017).
The gradient of J (µ) := J(u(µ);µ) will be computed via
an adjoint approach, by ∇µJ (µ) = ∇µL(u(µ), p(µ);µ),
with the Lagrangian L and the adjoint solution p(µ) ∈ V K+1

w.r.t. u(µ), cf. Qian et al. (2017) for details.

2. MODEL REDUCTION AND MACHINE LEARNING

To numerically solve the primal and adjoint problems,
spatial discretization is employed, projecting the problems
into a high-dimensional space Vh ⊂ V . RB methods,
project these problems further into a space VRB ⊂ Vh

? Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy
EXC 2044–390685587, Mathematics Münster: Dynamics–Geome-
try–Structure.

with significant lower dimension, thus reducing the com-
putational burdens. This approach yields RB approxi-
mations uRB(µ) and pRB(µ) to the high-fidelity solu-
tions and thereby for the objective functional JRB(µ) :=
J(uRB(µ);µ) and its gradient ∇µJRB(µ). Additionally, an
a posteriori error estimator ∆J

RB(µ) measuring the error
|J (µ) − JRB(µ)| is provided, cf. Qian et al. (2017); Keil
et al. (2021).
A way to further reduce computational costs is to re-
place these RB-ROMs with a machine learning surrogate,
cf. Fresca and Manzoni (2022); Haasdonk et al. (2023).
These models allow, by design, faster evaluations, pro-
viding an approximation to uML(µ). Suitable ML mod-
els are, for example, kernel methods. Here, the Degree
of Freedom vector for the primal RB trajectory uRB(µ)

is approximated by a linear combination of smooth ker-
nel functions. The associated coefficients are learned us-
ing previously collected RB solutions as training data,
(µ1, uRB(µ1)), . . . , (µN , uRB(µN )). The surrogate to the
objective functional, utilizing an ML-ROM, is defined sim-
ilarly to that of RB-ROMs. However, the gradient will be
calculated directly by applying the chain rule.

3. TRUST REGION OPTIMIZATION

A trust region method iteratively replaces the global op-
timization problem by solving a sequence of sub-problems
restricted to a local trust region T (i) ⊂ P, i.e.,

µ(i+1) := argmin
µ∈P

J (i)(µ) s.t. µ ∈ T (i), (1)

employing a local surrogate J (i) to J , for i ∈ I := {0, . . . , I},
with I ∈ N0 ∪ {∞}.
Problem (1) is addressed using a projected BFGS method
with an Armijo-type backtracking line search, starting at
µ(i) and stopping if a suitable termination criterion is
reached, generating a sequence (µ(i,l))l∈{0,...,L(i)}, cf. Keil
et al. (2021). The guess µ(i,L(i)) will be rejected and (1)
solved again with a shrunken trust region, if a sufficient
decay condition is not satisfied and accepted otherwise.

For each i ∈ I, let V (i)
RB ⊂ Vh be fixed RB spaces, iteratively

constructed by basis enrichment, starting with V
(0)

RB := 〈∅〉.
This enrichment is performed by computing high-fidelity
solutions at µ(i) and applying proper orthogonal decom-
position (POD) to them. After orthogonalization, the so
selected singular vectors are added to the basis of V

(i)
RB.

This process uniquely defines for all i ∈ I the RB surrogate
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J
(i)
RB(µ), its gradient ∇µJ

(i)
RB(µ), and the error estimator

∆
J,(i)
RB (µ).

For the ML models, in contrast, it is essential to re-adapt
(retrain) them to the RB solution manifold at a relatively
high frequency compared to the RB space enrichment.
This adaptation is necessary for ensuring that the error
remains acceptably small.

Let J
(i,m)
ML (µ), ∇µJ

(i,m)
ML (µ) for m ∈ N, denote the approx-

imative cost functional and its gradient given by trajecto-
ries in V

(i)
RB, yielded from the m-th ML-ROM. When the

underlying ML model is (re)trained, the functionals are
updated to J

(i,m+1)
ML (µ) and ∇µJ

(i,m+1)
ML (µ).

In general, ML surrogate models lack an efficent a pos-
teriori error estimator. For RB-ML-ROMs, however, it is
possible to extend the error estimators of the RB-ROMs
to the ML setting. Nevertheless, the evaluation of such
estimators is usually very costly relative to the faster
parameter inference of ML models Haasdonk et al. (2023).
This could offset the reduction in computational time
gained by the ML-ROM, when training and less accurate
approximations of the ML model are counted in.
This raises the problem that a solely error-based trust
region, such as

T̃ (i) :=

{
µ ∈ P

∣∣∣∣∣ ∆J,(i)
RB (µ)/J

(i)
RB(µ) ≤ ε(i)

}
for some ε(i) > 0, as outlined in Qian et al. (2017), cannot
be used due to the lack of efficient error estimations for
the ML surrogate. To address this, we choose

T (i) :=

T̃ (i) ∪
⋃

µ∈∂T̃ (i)

{
µ̃ ∈ RP

∣∣ ‖µ̃− µ‖RP ≤ κ(i)
}∩P

with κ(i) := α
(i)
0 lcheck, where lcheck ∈ N and α

(i)
0 is the

step size from the Armijo-type line search. By verifying
µ(i,l) ∈ T̃ (i) every lcheck-th step during the BFGS opti-
mization, we ensure that all queried parameters are within
T (i). If this condition fails, the last accepted parameter
µ(i,l) is returned as an approximate solution to (1). For
shrinking the trust region, we set ε(i+1) := β1ε

(i) and
α
(i+1)
0 := β2α

(i)
0 , where β1, β2 ∈ (0, 1), if µ(i+1) is rejected.

Utilizing ML-ROM poses another challenge: the line search
may result in excessively small updates of the parameter,
due to the generally larger error of the ML models com-
pared to RB-ROMs. We therefore propose terminating the
line search for ML surrogates if it does not succeeds within
a reasonable number of steps. In this case, the line search
is rerun using J

(i)
RB(µ) and ∇µJ

(i)
RB(µ) and the so collected

RB trajectories will be used to retrain the ML-ROM. If the
second backtracking also fails, the last accepted step µ(i,l)

is returned. Initially, the first lwarmup ∈ N line searches use
RB-ROMs only to gather training data. Details are given
in Algorithm 1.

4. CONCLUSION

This contribution shows how machine learning can be
integrated in a trust region method for parameter opti-
mizations constrained by parabolic PDEs, by combining

reduced basis models and kernel-based ML surrogates.
However, maintaining accuracy requires frequent retrain-
ing and error management due to inherent errors of the
ML-ROM. This highlights the potential for efficiently solv-
ing high-dimensional problems, but emphasizing the need
to carefully balance between efficiency and accuracy.

REFERENCES
Fresca, S. and Manzoni, A. (2022). POD-DL-ROM:

Enhancing deep learning-based reduced order models
for nonlinear parametrized PDEs by proper orthogonal
decomposition. Comput. Methods Appl. Mech. Eng.,
388, 114181.

Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler,
F., and Wenzel, T. (2023). A new certified hierar-
chical and adaptive RB-ML-ROM surrogate model for
parametrized PDEs. SIAM SISC, 45(3), A1039–A1065.

Keil, T., Mechelli, L., Ohlberger, M., Schindler, F., and
Volkwein, S. (2021). A non-conforming dual approach
for adaptive trust-region reduced basis approximation
of PDE-constrained parameter optimization. ESAIM:
M2AN, 55(3), 1239–1269. doi:10.1051/m2an/2021019.

Qian, E., Grepl, M., Veroy, K., and Willcox, K. (2017).
A certified trust region reduced basis approach to
PDE-constrained optimization. SIAM SISC, 39(5),
S434–S460.

Algorithm 1 Inner loop
1: Set l := 0, m := 0, µ(i,0) := µ(i), no_progress :=

false, use_ML := true and choose lwarmup, kmax ∈ N.
2: while a termination criteria is not met or l = 0 do
3: if lmod lcheck = 0 or no_progress then
4: if µ(i,l) /∈ T̃ (i) then Go to line 33.
5: end if
6: Set k := 0 and no_progress← false.
7: while a line search stopping criteria is not met do
8: Get µ(i,l)(k) by k-th line search iteration.
9: if l ≤ lwarmup or not use_ML then

10: Get J
(i)
RB(µ

(i,l)(k)),∇µJ
(i)
RB(µ

(i,l)(k))
11: else
12: Get J

(i,m)
ML (µ(i,l)(k)),∇µJ

(i,m)
ML (µ(i,l)(k))

13: end if
14: if k = kmax and l > 0 then
15: no_progress← true
16: Go to line 20.
17: end if
18: k ← k + 1
19: end while
20: if no_progress and not use_ML then
21: Go to line 33.
22: else if no_progress then
23: use_ML← false
24: Update the search direction, using RB-ROMs.
25: else
26: use_ML← true and no_progress← false
27: µ(i,l+1) := µ(i,l)(k)
28: Update the search direction.
29: Train ML-ROM.
30: l← l + 1 and m← m+ 1
31: end if
32: end while
33: return µ(i+1) := µ(i,l)
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Interpretable data-driven battery model based on tensor trains 
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Abstract: The global energy transition increasingly relies on renewable energy sources and the use of 

batteries for electrical energy storage. Efficient battery utilization necessitates accurate state estimation 

algorithms and appropriate control mechanisms. This paper presents and evaluates a data-driven 

approach for estimating a battery's dynamic model using tensor trains, that efficiently reconstruct 

complex multidimensional systems with respect to time and memory, enabling the development of 

adaptive models capable of capturing real-time variations in system parameters. In this study, the 

proposed method is applied to reconstruct a dynamic battery model from operational data and is tested 

upon a solid-state lithium-ion battery cell. The method's explanatory capabilities are demonstrated 

through the extraction of key parameters such as open circuit voltage and impedance in the form of 

relaxation times distribution. The accuracy is further validated against the results of conventional battery 

characterization tests. Owing to its intrinsic scalability and low computational cost, this method holds 

potential for integration into artificial intelligence-driven battery management systems, enhancing battery 

longevity and safety while optimizing time-intensive battery characterization processes. 

Keywords: mathematical models, machine learning, tensor trains, batteries. 

 

1. INTRODUCTION 

Batteries start to play a crucial role in the global energy 

system, enabling renewable energy integration and 

supporting electrification of transport. Grid-level storage 

demands scalability, durability, and cost-effectiveness, while 

electric vehicles prioritize safety, price, and energy density. 

Aviation requires the highest standards for safety and 

efficiency, which current battery technology struggles to 

meet (Bills et.al.). 

Battery Management Systems (BMS) monitor battery 

performance, estimating key metrics like State of Charge 

(SOC) and State of Health (SOH) to improve safety and 

durability. These systems use mathematical models or 

machine learning techniques to optimize battery behaviour, 

and can be enhanced through real-time data and control. In 

aviation, rigorous certification standards are assumed to be 

partially addressed through solid-state batteries and advanced 

safety designs. Predictive BMS tools are also essential to 

meet the safety margins, requiring accuracy and adaptability. 

This research introduces a real-time model estimation 

algorithm based on low-rank data decomposition based on 

tensor trains (TT), which efficiently estimates SOC as well as 

physically relevant parameters without time-consuming 

battery characterization tests for a preliminary tuning 

(Pattipati et.al.). Experiments with lithium-ion solid-state 

batteries are used to validate the method, demonstrating high 

accuracy and negligible sub-second training time. The 

model's ability to explain physical battery behaviour is vital 

for safety-critical applications, showing its potential in 

enhancing battery management across various sectors. 

2. METHODS 

TT are widely used in machine learning as allow to 

efficiently process sparse high-dimentional data (Oseledets). 

In the present work we use TT to build two models: battery 

dynamic mode, that includes an open cirquit voltage (OCV) 

and impedance, depending on the relative state of charge 

(SoC), and SoC as a function of observables, that include in 

the present case voltage drop on the battery current collecors, 

load and the battery temperature. The first one can be used 

for predictive modelling and safety status assessments, while 

the later provides an adaptable battery state estimation tool 

for the BMS.  

Temperature, voltage (for the state estimation) or SoC (for 

the dynamic model estimation) are represented using a series 

of Chebyshev polynomials of the order up to 8. The load, or a 

current, is recalculated into a number of “smoothed” 

functions to use a relaxation times distribution method 

(Heinzmann et.al.). In order to build a model, 3 rank-3 or 2 

tensors are randomly generated on the initial phase, 

corresponding to temperature, load and voltage/SoC. Scalar 

product of inputs with the tensors, and further convolution of 

tensors with each other allows to calculate the output, that 

correspond either to SoC (state estimation) or to voltage 

(dynamical model). Each tensor is calculated using Ridge 

regression method (Marquardt et.al.) with quadratic 

reqularization assuming the environment is frozen. 

Experiments demonstrate, that 2-5 sweeps over the tensors, 

each taking <1ms on a single-core 3GHz CPU, is enough to 

get a converged solution. Bonds dimensions of up to 3 is 
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enough to get the reconstruction accuracy within ~1% 

average and ~5% maximum error. 

3. RESULTS 

Experiments were conducted on 30 Ah lithium-ion solid-state 

cells with a voltage window from 2.75 to 4.2 V. The specific 

energy is 270 Wh/kg and 560 Wh/L. The batteries have a 

durability of 500 cycles with 80% capacity retention at 3C, 

and a maximum operation current of 7C. The cells use NMC 

cathodes, graphite anodes, and a solid-state electrolyte, 

though the exact formulation is undisclosed. Experiments are 

performed in climatic chambers with fixed temperatures. 

 

Fig. 1. Experimental SoC (left axis) for charge-discharge 

cycle (solid line) and reconstructed SoC using TT for 3 

training data ranges, and corresponding error (right axis). 

 

Fig. 2. OCV and resistance from characterization tests (dots) 

and extracted from TT for 3 training data ranges. 

Standard battery characterizatiopn tests were conducted with 

different temperatures to obtain reference OCV and 

resistance values. Cycling tests, mimicking the battery 

operation in EV/HEA are performed to assess the method 

performance, with data collected every second. 

The developed method is first used as a state estimation tool. 

SoC is typically calculated as the cumulative sum of charge 

passed through the battery, normalized by its capacity, and 

scaled so that SoC values range from 0 to 1, corresponding to 

the voltage vindow limits. For the model training, a charge 

conservation is used. This method calculates the change in 

capacity between two time stamps by integrating the current 

passed through the battery over that time period. The model 

allows to calculate observables into the latent spase variable 

(SoC), with the error within 5% on the whole testing dataset 

(one cycle is plotted at Fig.1). Therefore, potentially the 

method can substitude such widely used methods as KF, that 

require preliminary characterization tests data, that are 

obtained on the beginning of the battery’s lifetime and 

change during a long-term operation thus dicreasing the state 

estimation accuracy. 

Secondly, the method is applied to reconstruct a dynamic 

battery model. Here, SoC is assumed to be available along 

with load and temperature, while the voltage is the output 

value. The relaxation times distribution method allows to 

explicitly parse the trained TT to extract OCV and resistance 

functions vs. temperature and SoC (Fig.2). Note, that these 

functions correspond to the current battery “health” status 

and can be treated as synthetic characterization tests. 

4. CONCLUSIONS 

The safe and efficient use of batteries requires monitoring 

and control systems. Algorithms should be fast, adaptable, 

and representative. TT algorithm solves battery state 

estimation and dynamic model reconstruction problems. The 

state estimation algorithm is used in BMS to optimize battery 

loading, thermal management, and remaining capacity 

calculation. Dynamic model also allows extracting battery 

properties important for the health status calculation and 

early fault prediction. The proposed method does not require 

characterization data obtained under controlled conditions 

with predefined loads. The algorithm uses operational data on 

voltage, temperature and load to train in near-real time. The 

algorithm can be used in safety-critical applications, such as 

aviation, and in fully adaptive BMS. It can optimize or 

eliminate the need for time-consuming battery 

characterization tests. 
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1. INTRODUCTION

Crop protection science plays a role in responding to the
challenge of food demand with growing population and
climate change. Mathematical models able to predict the
interactions between the biocides and the crops can be
exploited to develop new products that are also safer for
the environment, aligning with sustainable agricultural
practices (Umetsu and Shirai (2020)), at a lower cost and
time to the market.

This project focuses on modelling the foliar uptake of
pesticides (Wang and Liu (2007)). The goal is to obtain
a reliable model to describe the phenomena taking place
when the formulated active ingredients (AI) are sprayed on
the crops leaves and to predict the percentage of AI uptake
by the crop. Since plants are biological systems, there
is biological variability between different species, between
plants of the same species, and also between leaves of the
same plant. This variability is reflected in the large vari-
ance observed in the experimental data used to calibrate
the model. Another source of uncertainty is the fact that
the physico-chemical phenomena affecting it are strictly
correlated and observing them independently is extremely
challenging. Therefore, an objective is also to understand
the trade-off between complexity and explainability of the
model, to guarantee that eventually the uncertainty in the
model predictions and the correlations between the model
parameters are acceptable.

In the literature there has been several works towards the
modelling of the foliar uptake of pesticides, ranging from
simple empirical correlations (Forster et al. (2004)), to
compartmental models (Bridges and Farrington (1974)),
up until more detailed physics-based ones (Tredenick et al.
(2019)). However, the effect of the parametric uncertainty
in order to guarantee the applicability of the model in
predictions has not been addressed in detail in the previous
works.

The novelty in this research is that the predictive mathe-
matical model is used also to optimize the experimental
campaigns, allowing a better exploitation of time and
resources, and to achieve this result is fundamental to
systematically take in to account the uncertainty in pre-
dictions.

2. METHODOLOGY

The modelling procedure is adapted from Franceschini and
Macchietto (2008) and the framework is shown in Fig. 1.

Fig. 1. Model building approach based on Franceschini and
Macchietto (2008). The focus of this paper is on the
steps 3 and 4, highlighted in blue.

The framework consists of 6 key steps:

(1) Formulation of different candidate models to describe
the system under study.

(2) Preliminary analyses on the identifiability of the
model parameters are conducted and any identifia-
bility issue is addressed.

(3) A model is fit to characterise the variability in the
experimental data.

(4) The application of Model-Based Design of Experi-
ments (MBDoE) techniques for model discrimination
and for parameter precision (Franceschini and Mac-
chietto (2008)).

(5) The model parameters are precisely estimated and
validated statistically.

(6) The model predictions are validated based on new
experimental data and the statistics of model predic-
tions.

Steps (1) and (2) of this procedure have been addressed by
the authors in Sangoi et al. (2024a,b), where different for-
mulations of dynamic models for foliar uptake mechanism
are presented, while this paper focuses on the MBDoE
(step 4 of the procedure).

2.1 Model-Based Design of Experiments

To describe the dynamics of AI leaf uptake we consider
dynamic models generally formulated as in

ẋ(t) = f(x(t),u(t),θ, t)
ŷ(t) = g(x(t),u(t),θ)

(1)

where x ∈ RNx is a vector of state variables, ẋ ∈ RNx

indicates the time derivatives of the states, ŷ ∈ RNy the

5



Fig. 2. Sampling of the parameter uncertainty region.

vector of predicted model outputs, u ∈ RNu the vector
of known system inputs, θ ∈ RNθ the model parameters
vector. The model considered in this paper is diffusion-
based with no flux boundary conditions (Sangoi et al.,
2024a), with three parameters: i) the partition between the
droplet and the leaf KDL, ii) the equivalent diffusion of AI
through the leaf Deq, iii) the metabolism rate constant (AI
consumption) Kmet. MBDoE techniques allow to exploit
the mathematical formulation of the dynamic model to
optimize the experimental campaigns, so that the data
obtained are the most informative for the modelling task,
e.g. to improve parameter precision (MBDoE-PP), and
that model and experiments are coupled in a bi-directional
way. To apply MBDoE-PP the information content of the
experiments is generally quantified through a metric of the
Fisher Information Matrix Ĥ (2) or the covariance matrix

of the parameter estimates V̂θ (3).

Ĥ(φ) = ∇ŷ(φ, θ̂)Σ−1
y ∇ŷ(φ, θ̂) (2)

V̂θ(φ) ≃
[
Ĥ(φ)

]−1

(3)

In equation (2), the symbol φ stands for the experi-
mental design vector, in this application defined by the
sampling times in biokinetic experiments of uptake, and
Σy represents the covariance matrix of the measurement
error. Therefore in order to apply successfully MBDoE
techniques it is crucial to characterise the uncertainty
associated to the experiments (step 3 of the procedure
in Fig. 1). MBDoE allows to optimise the experimental
design vector φ. This can be approached also by minimis-
ing the uncertainty in model predictions V̂y (Cenci et al.

(2023)) instead of V̂θ, an option that can be useful in the
foliar uptake case study to guarantee that the final model
is reliable in its predictions.

3. RESULTS

As a preliminary study before the application of MBDoE,
the results of the error propagation from the parameters to
predictions are presented. Samplings are collected from the
parameters uncertainty region, obtained from parameter
estimation, with a Monte Carlo simulation (Fig. 2). An
uncertainty reduction scenario is considered, assuming a
50% reduction in the standard deviation of parameters,
and their effect is propagated to model predictions, i.e.
the AI mass on the leaf surface and in the tissue (spatial

Fig. 3. Monte Carlo based uncertainty propagation from
model parameters to the predictions.

integral of the discretized variable). Results on prediction
uncertainty are shown in Fig. 3: the lower parameter un-
certainty allows to sensibility reduce the prediction uncer-
tainty for the AI on the leaf surface (green area), aligning
with the observed experimental variability shown via the
error bars. This analysis paves the way to the application
of MBDoE techniques in the context of biological systems,
in particular for the foliar application of biocides.
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1. INTRODUCTION

The iterative rational Krylov algorithm (IRKA) was intro-
duced in Gugercin et al. (2008) and has become a widely
adopted method in the model reduction community for
computing locally optimal solutions for the H2 model re-
duction problem. IRKA relies on the first-order optimality
conditions for the solution of the H2 optimization problem
derived in Meier and Luenberger (1967). One of the main
assumptions needed for IRKA to work properly is for the
error transfer function between the full and reduced order
models to be in H2. Recently, in Borghi and Breiten
(2024), this assumption was relaxed to account for non
asymptotically stable systems, giving the possibility of
designing an extended version of IRKA by developing a
new framework and deriving its optimal interpolation con-
ditions. Throughout this paper we refer to this algorithm
as extended IRKA.

The contribution of this work is twofold: (1) We build upon
the findings in Borghi and Breiten (2024) and show that
the optimal interpolation points are related to the Schwarz
function (see Davis (1974)); (2) We show numerically
that we can use the adaptive Antoulas-Anderson (AAA)
algorithm developed in Nakatsukasa et al. (2018) to ap-
proximately compute the interpolation points in extended
IRKA for user-defined domains in the complex plane.

2. PRELIMINARIES

We consider the large-scale minimal single-input single-
output (SISO) linear time invariant (LTI) dynamical sys-
tem{

ẋ(t) = Ax(t) + bu(t),

y(t) = cx(t), x(0) = 0,
G(s) = c(sI−A)−1b, (1)

with A ∈ Cn×n, c⊤ ∈ Cn, and b ∈ Cn. In addition, for
a fixed time t, x(t) ∈ Cn, u(t) ∈ C, and y(t) ∈ C, denote
the state, input, and output of the system respectively.
Here, G denotes the transfer function of the system in the
frequency domain. We refer to (1) as the full-order model
(FOM). We assume the eigenvalues {λj}nj=1 of A to be
in a simply-connected open set A in the complex plane.
Most importantly, A does not have to be in the left half-
plane C−, which can result in (1) not being asymptotically
stable. Our work deals with the computation of a reduced-
order model (ROM) of a form analogous to (1) but with

⋆ Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 384950143 as part of GRK2433 DAEDALUS.

system matrices Ar ∈ Cr×r, c⊤r ∈ Cr, br ∈ Cr, where
r ≪ n, and transfer function Gr(s) = cr(sI − Ar)

−1br
with poles {λ̂j}rj=1 ∈ A. Similar to the H2-optimal model
reduction framework, we seek Gr such that

min
deg(Gr)=r

∥G−Gr∥∗, (2)

is solved, where ∗ indicates a proper norm. In Borghi and
Breiten (2024) anH2(Āc) space for systems with poles in A
and analytic in its exterior Āc was introduced to include
error transfer functions that are not in H2. For the de-
velopment of the H2(Āc)-optimal model reduction frame-
work, the concept of conformal map (see Theorem 6.1.2
in Wegert (2012)) is pivotal. Under proper assumptions
on the conformal maps and Gr ∈ H2(Āc) being a local
minimizer of (2), simplified H2(Āc) optimality conditions
were derived in (Borghi and Breiten, 2024, Corollary 3)
resulting in

Gr(φ(λ̂j)) = G(φ(λ̂j)) and G
′
r(φ(λ̂j)) = G′(φ(λ̂j)), (3)

for j = 1, . . . , r, with

φ(s) = ψ(−ψ−1(s)) = ψ(−ψ−1(s)), (4)

where ψ(s) = ψ(s). The conditions in (3) then led to the
development of extended IRKA. In the next sections, we
leverage the connection between (4) and Schwarz functions
to approximate φ given only points on the boundary of
user defined domains. However, the approximation will not
necessarily satisfy the assumptions made in Borghi and
Breiten (2024).

3. OUR METHOD

Before introducing the result of this work, we give a
brief summary of the concepts of Schwarz reflection and
Schwarz function based on Davis (1974). For a more
detailed description of this topic see Davis (1974) and
Shapiro (1992). We consider the analytic arc Γ given by
the parametrization z = f(θ) with θ ∈ [a, b], a, b ∈ R.
Given any point θ0 ∈ [a, b], f is a bijective conformal
map in the disk Dθ0 =

{
τ ∈ C

∣∣|τ − θ0| < ρ(θ0)
}
, with

ρ : [a, b] → (0,∞). Let z̃ = f(τ) for τ ∈ Dθ0 . Then
z̃ is called the Schwarz reflection of z with respect to
the analytic arc Γ. The Schwarz function is defined as
S(z) = z̃ and analytic in a neighborhood of Γ. For z ∈ Γ
we get S(z) = z. The complex conjugate of the Schwarz
function applied to a point is the Schwarz reflection of the
point with respect to Γ (see Chapter 6 in Davis (1974)).
For the ease of notation we use the term anti-conformal
reflection R(·) = S(·) from Shapiro (1992) to indicate the
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Fig. 1. Depiction of the interpolation points for IRKA
(left) and extended IRKA (right).

Schwarz reflection. It is possible to use f to get an explicit
formulation of the anti-conformal reflection for any point
z in the neighborhood of Γ. The steps are the following

z
f−1

−−→ τ
(·)−→ τ

f−→ z̃ = R(z), (5)

which lead to the definition

R(·) = f(f−1(·)), (6)

and, consequently, S(·) = f(f−1(·)). Let us now set

f(τ) = ψ(iτ) and so f−1(z) = −iψ−1(z), (7)

with ψ a conformal map satifying the assumptions below.

Assumption 1. Let X ⊆ C include iR, and Y ⊆ C include
the analytic closed curve ∂A. Furthermore, Let X− =
X\C+, X+ = X\C− such that

{
s ∈ C

∣∣− s ∈ X−
}
⊆ X+,

∂A− = Y\Āc, and ∂A+ = Y\A. We assume ψ : X → Y to
be a bijective conformal map such that (i) ψ ◦ i : R → ∂A,
(ii) ψ : X+ → ∂A+ and (iii) ψ : X− → ∂A−.

With (7) we can connect the definition of φ in (4) and the
anti-conformal reflection in (6). As a matter of fact, by
substituting f in (6) with (7) we get

R(·) = ψ(i(−iψ−1(·))) = ψ(−ψ−1(·)) = φ(·).
The composition of φ is similar to (5) but instead of
applying a complex conjugation we take the mirror image
with respect to the imaginary axis. In more detail, we have

z
ψ−1

−−−→ τ
−(·)−−−→ −τ ψ−→ φ(z).

While ∂A is defined by the user, the function φ is unknown
a-priori. For this reason, now that the connection between
the anti-conformal reflection and (4) has been established,
we use the AAA algorithm to approximate φ given ∂A.
It is important to emphasize that the function S is solely
determined by the chosen ∂A. This gives us the possibility
to approximate φ with AAA using only samples of ∂A. To
do so we take points z ∈ ∂A, approximate S(z) = z with
AAA (see also Trefethen (2024)), and complex conjugate
the resulting function. The approximated φ is then used for
computing the interpolation points employed by extended
IRKA. The main drawback of this approach is that, as S
is defined in a neighborhood of ∂A, the same applies for
the approximation to φ.

4. NUMERICAL EXAMPLE

We test the extended IRKA with interpolation points com-
puted through AAA on the controlled linear undamped
wave equation from Borghi and Breiten (2024). After dis-
cretization by centered finite differences we get a FOM
with n = 400 and poles on the imaginary axis. We are
interested in the poles near the origin as they provide an
approximately good description of the original system. For
this reason, we use the ‘boomerang’ shape illustrated in

Fig. 2 on the left for ∂A. We parametrized ∂A such that it
has only one segment near the FOM poles and it is close
to the origin (see Fig. 2 on the right). We do so in order
for extended IRKA to identify these poles as dominant
and place the reduced poles accordingly. In Fig. 2 we show

the resulting ROM poles {λ̂j}rj=1 and interpolation points

{φ(λ̂j)}rj=1 for r = 18. In addition, Fig. 3 shows that the
impulse response of the resulting ROM well approximates
the one of the FOM.
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Fig. 2. Chosen ∂A, poles of the FOM and ROM, and the
computed interpolation points. The plot on the right
is a magnification of the one the left near the origin.
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Fig. 3. (Top) output trajectories of the FOM (y) and ROM
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1. INTRODUCTION

At least since the COVID-19, crisis wastewater-based epi-
demiology (WBE) has been recognised internationally as a
reliable surveillance and early warning system to track cir-
culating pathogens (Singer et al. (2023)). By probing and
sequencing wastewater, WBE allows to detect, quantify
and characterise pathogens circulating in the connected
catchment. Several health authorities have set up WBE
programs in their surveillance efforts. For example in Aus-
tria, wastewater from 48 purification plants is probed on a
weekly basis for SARS-CoV-2 and its variants (see Amman
et al. (2022)), and in parts of Austria also for influenza
and the respiratory syncytial virus. Expansion to other
relevant pathogens is considered.
The main advantage of WBE over traditional case-based
surveillance is its scalability, allowing one sample to cover
thousands without requiring active participation, reducing
costs and bias. While cost-effective, nationwide surveil-
lance at reasonable granularity incurs significant taxpayer
costs. Deciding which wastewater plants to sample and
how often is crucial for public health but must be econom-
ically justified to convince policymakers and the public of
WBE’s value.
In this work, we present a model that simulates the
regional spread of a new pathogen, its concentration at
wastewater plants, and the limit of detection of pathogen
specific assays as a function of wastewater catchment
characteristics. The goal is to minimise detection time by
optimising the selection of plants and sampling intervals.
After introducing the model and showing preliminary
results with manually varied strategies, we propose ideas
for using a simheuristic to solve this optimisation problem.

2. METHODS

2.1 Simulation Model

We follow the network-based SIRS approach in Hethcote
(1978) and specify a model with M nodes, representing
households, and a corresponding vector (Ni)

M
i=1 of inhab-

itants. The nodes are connected by a weighted digraph
⋆ This research was funded in part by the Austrian Science Fund
(FWF) I 5908-G.

identified by adjacency matrix A ∈ (R+)M×M , whereas
each entry Ai,j corresponds to the average daily number
of contacts between individuals in nodes i and j. With
Si(0) + Ii(0) +Ri(0) = Ni the dynamics is defined by

Ṡi(t) = −Si(t)Θ(I, i) +δRi(t),

İi(t) = Si(t)Θ(I, i) −γIi(t),

Ṙi(t) = γIi(t) −δRi(t),

(1)

Θ(I, i) = Ai,iβ
in Ii(t)

Ni
+
∑
j ̸=i

Ai,jβ
out Ij(t)

Nj
. (2)

Hereby, βin and βout refer to the in-node and out-node
transmission rate, γ to the recovery rate and δ to the
immunity waning rate. Time-unit will be days.
Compartments Si(t), Ii(t), Ri(t) represent the expected
number of susceptible, infectious and recovered persons
in household i at time t. We argue, that Ii is proportional
to the overall quantity of pathogen present in household i
and to the pathogen load excreted into the wastewater.
Furthermore we introduce K purification plant nodes and
include them into the model using adjacency matrix B ∈
{0, 1}K×M . Hereby Bk,i = 1 ⇔ household j lies in the
catchment area of plant k. We define

Wk(t) =

∑M
i=1 Bk,iIi(t)∑M
i=1 Bk,iNi

(3)

as the pathogen ground truth at plant k. It models the ratio
of all pathogen excreted by households in the catchment
area compared to a human control signal.
We finally define the measured signal at plant k via

Ŵk(t) := νk

{
Wk

(⌊
t
ξk

⌋
ξk

)
, if Wk

(⌊
t
ξk

⌋
ξk

)
> µ,

0, else.
(4)

Hereby, µ defines a concentration threshold below which
a given pathogen signal cannot reliably be detected by a
probe. The parameter vectors ν and ξ will be regarded as
probing strategy: νk ∈ {0, 1} defines if plant k is probed at
all, ξk ∈ N defines the interval between taking two probes
from the plant.

2.2 Optimisation Problem

For optimisation we focus on the detection time, i.e. the
first time a signal is detected at any of the probed plants:
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τ := min
k∈{1,...,K}

τ ik := min
k∈{1,...,K}

min
t>0

(
Ŵk(t) > 0

)
. (5)

In addition to the probing strategy, the value of τ will also
depend on the location of the outbreak. To simulate the
latter we specify the initial conditions Ri(0) := 0,

Ii(0) := δi,i0Iϵ, and Si(0) := Ni(0)− Ii(0), (6)
where node i0 will be regarded as index-household. With
this definition, (ν, ξ) and i0 uniquely map to a detection
time: τ = τ i0,ν,ξ. Considering that the probing strategy
should be able to quickly detect the pathogen independent
of the choice of i0, we specify the optimisation target

F : {0, 1}K × NK → R+ : F (ν, ξ) 7→ 1

M

M∑
i0=1

τ i0,ν,ξ. (7)

Clearly, minimising F alone would be meaningless, since
it does not incorporate any cost or sensitivity constrains.
We define

C1(ν, ξ) =

K∑
i=1

νi, C2(ν, ξ) = 7.0 ·
K∑
i=1

νi
ξ
. (8)

That means, C1(ν, ξ) ≤ c1 limits the total number of
included plants to c1, to restrict the logistic efforts, and
C2(ν, ξ) ≤ c2 limits the total number of probes taken per
week to c2, to restrict the total costs.
In summary, we define the optimisation problem as follows:

(ν, ξ)opt = argmin(ν,ξ)∈Ωc1,c2
F (ν, ξ), with

Ωc1,c2 := {(ν, ξ) : C1(ν, ξ) ≤ c1, C2(ν, ξ) ≤ c2} . (9)

3. RESULTS

For the preliminary results shown in this paper, we ex-
tracted a synthetic contact network from an existing
agent-based epidemics model. It was developed and ap-
plied in the course of the COVID-19 crisis, is specified in
the SI of Bicher et al. (2021), and was used for export
of synthetic data before (see Popper et al. (2021)). We
counted, averaged and exported randomly sampled con-
tacts between the roughly 4.5M model households over ten
simulated days, leading to an integer vector N ∈ N4.5·106

and a sparse matrix A ∈ N4.5·106×4.5·106 . Data about
the catchment areas of the K = 636 largest purification
plants in Austria was used to specify B. Finally, disease
parameters βin, βout, γ and δ were manually chosen to
reflect R0 and immunity waning behaviour of SARS-CoV-
2. To make target function F computeable, we ran the
sum defined in (7) only over 5000 randomly drawn index
households instead of all M possible ones.
In Figure 1 detection times τ i,ν,ξ are compared for two
probing strategies. The reference strategy uses the 48
Austrian plants probed once per week, analogous to the
currently implemented system in Austria. The compara-
tor strategy uses 27 manually selected plants probed in
intervals between 2 and 12 days. Both lie in Ω48,48 and are
therefore comparable with respect to costs.

4. DISCUSSION AND CONCLUSION

Preliminary results show that the currently implemented
strategy for early pathogen detection can be improved.
Manual tests reduced detection time by nearly three days,

reference comparator
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Fig. 1. Detection times for two probing strategies in Ω48,48.
The red line shows the target F computed as the
mean of the detection-times for 5000 random index
households.

offering policymakers a crucial time-advantage. Using well-
defined simheuristics instead of manual methods would
yield further improvements.
The optimisation challenge lies in the time-consuming
simulations and vast search space. Despite efficient matrix
multiplications and parallelisation using Numpy and Scipy,
computing I,W , and Ŵ for one index household and
probing strategy still takes about one minute on a well-
equipped server.
Given the complexity of the search space Ωc1,c2 , traditional
population-based metaheuristics like Genetic Algorithms
(GAs) would require large populations to converge effec-
tively. A more integrated approach is needed to reduce
the number of simulations required. The plan is to ex-
ploit additional feedback from the simulation in addition
to the detection time, such as particularly successful or
unsuccessful plants, to guide more targeted crossovers and
mutations in a GA setup.
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1. INTRODUCTION

As a mathematical model, we use Navier-Stokes equations
(NSE) (1)-(2):

∂u

∂t
−Re−1∆u + u · ∇u +∇p = 0 , (1)

∇ · u = 0 , (2)

where u is the velocity, p the pressure, t the continuous
time instant, and Re the Reynolds number. Furthermore,
we use homogeneous Dirichlet boundary conditions.

We use proper orthogonal decomposition (POD) to obtain
the reduced order model (ROM) basis and operators for
all ROMs. Thanks to the orthogonality of the ROM basis
functions, we can decompose the ROM space into large
and small spaces as follows: Xd = XL ⊕ XS , where
Xd := span{ϕ1, ...,ϕd}, XL := span{ϕ1, ...,ϕL}, and

XS := span{ϕL+1, ...,ϕd}.
When all the ROM modes are used, the ROM approxima-
tion ud, i.e.,

ud =

d∑
j=1

(ad)j ϕj (3)

is the most accurate ROM approximation of the full order
model (FOM) solution with the given data in the POD
sense.

For laminar flows, a low-dimensional ROM solution uL,
with small L � d, yields an accurate approximation
of the FOM solution. In the resolved regime, the most
straightforward model of ROMs, Galerkin ROM (G-ROM)
can be used to obtain the ROM solution uL:

ȧL = ALL aL + aL
>BLLL aL, (4)

where (ALL)ij := −Re−1(∇ϕi,∇ϕj) and (BLLL)ijk :=

−(ϕi,ϕj ·∇ϕk), respectively, ∀i, j, k = 1, ..., L. The deriva-
tion of the G-ROM (4) is built by replacing u in (1)-(2)
with uL and projecting the resulting system onto the ROM
space XL.

However, for turbulent flows, the low-dimensional ROM
solution aL of (4) is not an accurate approximation of the
FOM solution. To increase the numerical accuracy of aL

?

without significantly increasing the computational cost,
one needs to add a low-dimensional ROM closure term
to the G-ROM (4).

2. ROM CLOSURE MODELS

The ROM closure modeling aims to model the closure
term which is derived from a variational multiscale (VMS)
setting (see Mou et al. (2021) and Ballarin et al. (2020)).
To construct the ROM closure term, first, we need to define
the large and sub-scale solutions of the most accurate
ROM solution, ud, as follows:

uL :=

L∑
j=1

(aL)j ϕj , uS :=

d∑
j=L+1

(aS)j ϕj . (5)

Then, we obtain the large and sub-scale equations: (i)
replace the u in (1)-(2) with ud = uL + uS and project

the resulting system onto the ROM spaces XL and XS ,
respectively. Then, the large and sub-scale equations are:

ȧL =ALLaL + ALSaS + a>LBLLLaL

+ a>LBLLSaS + a>SBLSLaL + a>SBLSSaS , (6a)

ȧS =ASSaS + ASLaL + a>SBSSSaS

+ a>SBSSLaL + a>LBSLSaS + a>LBSLLaL. (6b)

In this work, we use two different ROM closure con-
structions, which yield two different ROM model: the
coefficient-based data-driven variational multiscale ROM
(C-D2-VMS-ROM) and the residual-based data-driven
variational multiscale ROM (R-D2-VMS-ROM).

The C-D2-VMS-ROM (Mou et al. (2021)) is derived from
the large-scale equation (6a) by defining the closure term
as ”closure term = ALSaS+a>LBLLSaS+a>SBLSLaL+
a>SBLSSaS”. Since the closure term is not in a closed
form, to close it, we use a quadratic coefficient-based
ansatz (Mou et al. (2021)), which depends on the large-

scale solution aL: ”ansatz = ÃLL aL + a>L B̃LLLaL”.

In the new R-D2-VMS-ROM, we define the closure
term and residual-based ansatz from the sub-scale equa-
tion (6b) as ”closure term = aS” and ”ansatz =

ÃSS ResS(aL)+ResS(aL)> B̃SSSResS(aL)”, where the
residual is ResS(aL) := ASLaL + a>LBSLLaL.
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To find the unknown operators Ã, B̃, we use a data-driven
(D2) approach (Rebollo and Coronil (2024)). We obtain
the D2 operators by solving the following minimization
problem:

min
Ã,B̃

M∑
k=1

∥∥closure term(ak
L,a

k
S)−ansatz(ak

L)
∥∥2
L2 , (7)

where M represents the number of snapshots. By using the
closure terms and ansatzes for the C-D2-VMS-ROM and
R-D2-VMS-ROM, we solve (7) to obtain the corresponding

D2 operators, i.e. Ã and B̃. Then, by plugging the
resulting ansatzes into (6a), C-D2-VMS-ROM and R-D2-
VMS-ROM read as follows:

ȧL = (ALL + ÃLL)aL + a>L (BLLL + B̃LLL)aL, (8a)

ȧL = ALLaL + a>LBLLLaL + ALSa
∗
S + a>LBLLSa

∗
S

+ (a∗S)>BLSLaL + (a∗S)>BLSSa
∗
S , (8b)

where approximated sub-scale coefficient a∗S is computed

as a∗S := ÃSS ResS(aL) + ResS(aL)> B̃SSSResS(aL).

3. NUMERICAL RESULTS

We investigate the numerical accuracy of G-ROM, C-D2-
VMS-ROM, and new R-D2-VMS-ROM in the numerical
simulation of a 2D channel flow past a circular cylinder at
Reynolds numbers Re = 1000. We present the numerical
accuracy of the ROM models for two different regimes:
(i) reconstructive regime: we build the ROM basis and
operators, and D2 operators by using the FOM snapshots
from t = 13 to t = 16. Then, we test ROMs over the
same time interval. (ii) predictive regime: we build the
ROM basis and operators by using the FOM snapshots
from t = 13 to t = 16, and D2 operators by using the
FOM snapshots from t = 13 to t = 13.134. Then, we test
ROMs over the longer time interval, t = 16 to t = 23.

Furthermore, in our numerical accuracy investigation of
the ROMs, we use the average L2 projection error:

EavgL2proj =
1

M

M∑
k=1

∥∥∥∥∥uL(tk)−
L∑

i=1

(
uFOM (tk),ϕi

)
ϕi

∥∥∥∥∥
L2

.

(9)

In Tables 1-2, we list the average L2 projection errors
of G-ROM, C-D2-VMS-ROM, and R-D2-VMS-ROM for
the reconstructive and predictive regimes, respectively. In
Table 1, we observe that C-D2-VMS-ROM and R-D2-
VMS-ROM yield much better accuracy (for some values,
the improvement is more than 2 orders of magnitude) than
G-ROM in the reconstructive regime. C-D2-VMS-ROM
and R-D2-VMS-ROM have similar accuracy behavior. In
Table 2, we still observe that C-D2-VMS-ROM and R-D2-
VMS-ROM yield much better accuracy (for some values,
the improvement is more than 1 order of magnitude)
than G-ROM in the predictive regime. Furthermore, R-D2-
VMS-ROM yields better accuracy than C-D2-VMS-ROM.

In Figures 1-2, we plot the kinetic energy of the FOM pro-
jection, G-ROM, C-D2-VMS-ROM, and R-D2-VMS-ROM
for the reconstructive and predictive regimes, respectively.
We fix the large-scale ROM dimension L = 6, to compare
the kinetic energy behavior of C-D2-VMS-ROM and R-
D2-VMS-ROM. We observe that R-D2-VMS-ROM is sig-

Fig. 1. Reconstructive regime; kinetic energy of ROMs.

Fig. 2. Predictive regime; kinetic energy of ROMs.

nificantly more accurate than C-D2-VMS-ROM, especially
in the predictive regime.
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Table 1. Reconstructive regime; average L2

projection error (9) for different L values.

L G-ROM C-D2-VMS-ROM R-D2-VMS-ROM

2 4.94e-01 4.00e-03 5.06e-03
3 5.11e-01 3.09e-03 4.17e-03
4 5.98e-01 2.89e-03 1.45e-03
5 6.58e-01 6.07e-03 1.31e-03
6 1.50e-01 2.62e-03 9.83e-04
7 1.36e-01 2.76e-03 4.42e-03
8 7.08e-02 3.14e-03 1.32e-03

Table 2. Predictive regime; average L2 projec-
tion error (9) for different L values.

L G-ROM C-D2-VMS-ROM R-D2-VMS-ROM

2 1.15e+00 4.11e-01 3.59e-01
3 9.22e-01 5.51e-01 6.16e-02
4 7.21e-01 1.98e-01 1.18e-01
5 7.28e-01 5.81e-01 3.11e-01
6 3.54e-01 1.48e-01 4.36e-02
7 3.02e-01 2.81e-01 5.29e-02
8 1.59e-01 9.44e-02 2.53e-02
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1. INTRODUCTION

We present a method to construct low order linear time-
invariant (LTI) port-Hamiltonian (pH) descriptor systems
from observed response data in the frequency domain.

The simplest form of an LTI pH descriptor system is

Eẋ = (J−R)x + Bu

y = BTx
and x(0) = x0, (1)

with J = −JT , E = ET ≥ 0, R = RT ≥ 0 ∈ Rn,n,
B ∈ Rn,m, and the quadratic Hamiltonian (modeling the
internal energy stored in the system) is H = 1

2xTEx, see
e.g. Mehrmann and Unger (2023). PH descriptor systems
are closely related to passive and positive-real systems,
see Cherifi et al. (2023). We assume that the underlying
physical system is passive and that it can be represented
as a pH system of the form (1) with positive definite E.

A classical approach to derive a low-order pH descriptor
system from observed data is to first derive a realization

ẋ = Ãx + B̃u, x(0) = x0,

y = C̃x,
(2)

with Ã ∈ Rn,n, B̃, C̃T ∈ Rn,m, e.g. via the Loewner
approach Mayo and Antoulas (2007). The resulting system
is typically close to a passive system. If the system is
passive, see e.g. Cherifi et al. (2023), then there exists a
matrix E = ET > 0 such that[

−EÃ− ÃTE C̃T −EB̃

C̃−EB̃T 0

]
≥ 0. (3)

Setting B := EB̃ and EÃ = J − R, with J = −JT and
R = RT ≥ 0, see e.g. Beattie et al. (2019), gives the pH
descriptor system

Eẋ = (J−R)x + Bu,

y = BTx.
(4)

For a non-passive realization one typically applies small
perturbations Alam et al. (2011); Brüll and Schröder
(2013); Grivet-Talocia (2004); Freund et al. (2007) to
obtain a nearby passive system for which the approach
can be applied.

Unfortunately, proceeding in this way requires the solution
of an optimization problem to enforce passivity and a
solution of (3), both of which is prohibitive for large scale

systems. So typically it is necessary to first perform a
model reduction, see e.g. Antoulas et al. (2020), which
may, however, destroy the pH structure. For pH descriptor
systems, such model reduction methods are well estab-
lished, see e.g. Beattie et al. (2022b); Hauschild et al.
(2019).

All these approaches, however, require an explicit real-
ization of the system. An ideal procedure would directly
generate a pH descriptor system from data. But so far only
indirect methods are available Benner et al. (2020); Cherifi
et al. (2019). We propose a direct approach.

2. A DATA BASED DIRECT APPROACH

Suppose that we are able to sample the system re-
sponse of a passive system at (complex) frequencies
{σ1, σ2, . . . , σr} ⊂ C+ with corresponding input profiles
{b1, b2, . . . , br}. The input-output map of (2) in frequency
domain is associated to the transfer function G(s) =

C̃(s I − Ã)−1B̃, so we have access to the data, gk =
G(σk)bk, k = 1, . . . , r but not to a realization (2).

We may construct an interpolating subspace, Vr =
Ran(Vr), where Vr = [v1, v2, . . . ,vr] and vk = (σkI −
Ã)−1B̃bk, k = 1, . . . , r; or equivalently,

VrΣr − ÃVr = B̃Br (5)

with Σr = diag{σ1, σ2, . . . , σr} and Br = [b1, b2, . . . , br].
Then define Er = V∗

rEVr and the auxiliary modeling
space, Wr = Ran(Wr), with Wr = EVr. Using the
ansatz, x ≈ Vrxr, in (4) and applying a Petrov-Galerkin
condition that forces residual orthogonality (in Cn) to Wr,
we obtain a reduced order model

Erẋr = (Jr −Rr)xr + CT
r u,

y = Crxr,
(6)

where Jr = V∗
rJVr = −J∗

r , Rr = V∗
rRVr = R∗

r ≥
0, and Cr = C̃Vr = B̃TEVr = B̃TWr. Note that

gk = G(σk)bk = C̃(σkI − Ã)−1B̃bk = C̃vk, so with
Gr = [g1, g2, . . . , gr], we have Cr = Gr, and likewise,
applying the same Petrov-Galerkin condition to (5) implies

V∗
rEVrΣr −V∗

rEÃVr = V∗
rEB̃Br = C∗

rBr

which gives

ErΣr − (Jr −Rr) = G∗
rBr. (7)

Summing with the conjugate transpose of (7) we have

Er Σr + Σr Er + 2 Rr = G∗
rBr + B∗

rGr. (8)
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Denote by Sr×r the set of Hermitian r × r matrices,
by Pr the closed, convex cone of positive semidefinite
(Hermitian) r × r matrices, and by P◦

r its interior, i.e.,
the open cone of r × r strictly positive-definite Hermitian
matrices. Then define the linear operator L : Sr×r → Sr×r

as
L(M) = M Σr + Σr M

and observe that since {σ1, σ2, . . . , σr} is contained in
the open right half-plane, L−1 is well-defined and cone-
preserving: L−1 : Pr → Pr and L−1 : P◦

r → P◦
r . Then (8)

leads to

Er + 2L−1(Rr) = L−1(G∗
rBr + B∗

rGr). (9)

Note that in all nontrivial circumstances, G∗
rBr + B∗

rGr is
indefinite, however, since Er > 0 and L−1(Rr) ≥ 0, when-
ever the original system (2) is passive, then L−1(G∗

rBr +
B∗
rGr) itself must be positive definite if the original system

(2) is passive. Note also that the condition L−1(G∗
rBr +

B∗
rGr) > 0 involves only observed quantities, and it can

checked computationally using methods for the numeri-
cal solution of Sylvester equations Golub and Van Loan
(1996).

Theorem 1. Given complex frequencies {σ1, σ2, . . . , σr} ⊂
C+ and corresponding input profiles {b1, b2, . . . , br} to-
gether with the induced system responses {g1, g2, . . . , gr},
where gk = G(σk)bk, k = 1, 2, . . . , r. Let the matrices,
Br and Gr, as well as the linear operator, L, be de-
fined as above. If the original system, (2), is passive then
L−1(G∗

rBr + B∗
rGr) is positive-definite.

Equivalently, if the data-based quantity, L−1(G∗
rBr +

B∗
rGr), fails to be positive-definite then the observed

responses of the original system (2) are incompatible with
passivity of the system; it cannot be expressed as a port-
Hamiltonian system.

3. ANALYSIS OF THE PROCEDURE AND OPEN
QUESTIONS

The described approach allows to produce a reduced order
port-Hamiltonian from input-output data in frequency do-
main. However, there is freedom in the approach. since the
representation of a standard system as port-Hamiltonian
system is not unique. Any solution E > 0 of (3) will lead
to a port-Hamiltonian formulation. This freedom can be
used to make the representation robust against perturba-
tions, see Bankmann et al. (2020); Mehrmann and Dooren
(2020). So one could first produce any reduced order model
of the form (7) and then make it robust. We can also use a
perturbation approach if the conditions of Theorem 1 are
not met, see Beattie et al. (2022a).

Another open question is whether we can take a greedy
approach by first taking a small number of sampling
data and then increase the model order to achieve better
approximations.
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1. INTRODUCTION

In this contribution we present an abstract framework for
adaptive model hierarchies together with several instances
of hierarchies for specific applications. The hierarchy is
particularly useful when integrated within an outer loop,
for instance an optimization iteration or a Monte Carlo
estimation where for a large set of requests answers ful-
filling certain criteria are required. Within the hierarchy,
multiple models are combined and interact with each other
pursuing the overall goal to reduce the run time in a
multi-query context. To this end, models with different
accuracies and effort for evaluation are used in such a way
that the cheapest (and typically least accurate) models are
evaluated first when a request comes in. If the result fulfills
a prescribed criterion, it can be returned to the outer loop.
Otherwise, the model hierarchy falls back to more costly,
but at the same time more accurate, models. The cheaper
models are improved by means of training data gather
whenever the more accurate models are evaluated.
In the next section we provide an abstract and detailed
description of the components of the hierarchy and their
interaction. Subsequently, various applications are briefly
discussed for which hierarchies with different numbers of
stages were developed.

2. ABSTRACT DESCRIPTION

The idea of a model hierarchy in the context of parame-
trized partial differential equations (PDEs) was originally
introduced in Haasdonk et al. (2023). Here we describe
the concept in a general form that is applicable in a wide
range of scenarios and for several types of models.
In our abstract description we consider a solution opera-
tor S:P → V that maps from an admissible input space P
to a possibly infinite dimensional solution space V, where
usually we know that S exists, but it might not be accessi-
ble. A typical example would be the solution operator of a
parameterized PDE where P corresponds to the parameter
set. Furthermore, we assume that we are given a hierarchy
of approximate models M1,M2, . . . that approximate the
map S, where two successive models Ml and Ml+1 in the
hierarchy satisfy the following multi-fidelity assumptions:

⋆ The authors acknowledge funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy EXC 2044 –390685587, Mathematics Münster:
Dynamics–Geometry–Structure.

• C(Ml) < C(Ml+1), where C(Ml) denotes the model
complexity as a measure for the runtime.

• E(Ml(µ), µ) ≥ E(Ml+1(µ), µ), where E(Ml(µ), µ) de-
notes an error measure w.r.t. S(µ) for µ ∈ P.

• Model Ml can be improved by means of information
from model Ml+1.

Assume now that a request µ ∈ P in an outer multi-
query loop needs to be processed. The request is first
passed to model M1 which produces a result M1(µ) for the
request. This result is evaluated using the error measure,
i.e. it is verified whether E(M1(µ), µ) ≤ TOL is satisfied.
In order to check the criterion it might be necessary to also
retrieve additional information from model M2. In general,
if model Ml fulfills the criterion, the result of model Ml

is returned to the outer loop. If the criterion is not met,
the request is passed to model Ml+1 which is assumed
to be more accurate and is therefore more likely to fulfill
the prescribed criterion. Model Ml+1 now proceeds similar
to model Ml, i.e. the request is processed resulting in
an answer of model Ml+1. When evaluating model Ml+1,
data is collected that can be used, according to the third
assumption from above, to improve model Ml. Hence,
model Ml is constructed and enhanced in an adaptive
manner. The result of Ml+1 might now be passed on,
depending on the structure of the remaining parts of
the hierarchy. Due to the involved check of the accuracy
criterion for all results, the output of the model hierarchy
is certified. The overall hierarchical structure of the multi-
fidelity algorithm is shown in Fig. 1 when applied in an
outer loop for a hierarchy consisting of multiple stages.
For the algorithm performing the outer loop, the hierarchy
behaves like a single model that returns a certain result of
guaranteed accuracy. All the internal model selection and
adaptation is invisible from the outside.

Model M1

Model M1 ful-
fills criterion?

O
ut

er
lo

op

Model M2

Return result
of model M1

Request

No

Yes

collect data to
update model M1

can use
model M2

Model M2 ful-
fills criterion? Model M3

Return result
of model M2

No

Yes

collect data to
update model M2

can use
model M3

Return result
of model ...

Answer

Fig. 1. Visualization of a model hierarchy applied within
an outer loop that sends requests to the hierarchy
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3. APPLICATIONS

In the following paragraphs we discuss applications where
the concept of an adaptive model hierarchy was utilized
successfully to speed up different computational tasks.

PDE-constrained optimization. In Keil et al. (2022) we
introduced a two-stage hierarchy consisting of a full or-
der model and a machine learning surrogate for a PDE-
constrained optimization problem that occurs in enhanced
oil recovery. The machine learning surrogate approxi-
mates the objective function and is based on training data
gathered when evaluating the full order model (involving
the costly simulation of a three-phase flow in a porous
medium). From the point of view of the model hierarchy
as shown in Fig. 1, the machine learning surrogate cor-
responds to model M1 and during its evaluation an opti-
mization problem for the approximate objective function
is solved. The accuracy of the result of this inner optimiza-
tion loop is then evaluated by computing an approximate
gradient using the full model M2.

Parametrized parabolic PDEs. As a second example,
we considered in Haasdonk et al. (2023) parametrized
parabolic PDEs where the hierarchy consists of a full
order model, a reduced basis reduced order model and
a machine learning model. The latter model is based on
the approach of learning the reduced coefficients with
respect to a reduced basis as introduced in Hesthaven
and Ubbiali (2018). The reduced basis is computed using
evaluations of the full order model whereas the machine
learning surrogate is trained based on solutions of the
reduced basis model and therefore contains an additional
layer of approximation. Accuracy of the reduced basis and
the machine learning model is verified by means of an
a posteriori error estimator for reduced models of parabolic
problems. Since the machine learning surrogate uses the
same reduced space as the reduced basis model, the a pos-
teriori error estimator is applicable also to the machine
learning approximation. Hence, a close connection between
the two surrogate models facilitates their interaction in the
hierarchy in this case. The full order model here serves as
reference and is therefore assumed to be arbitrarily accu-
rate. Hence, no accuracy check of the full order solution is
performed.

Parametrized optimal control problems. A three-stage
adaptive model hierarchy for linear-quadratic optimal con-
trol problems with parameter-dependent system compo-
nents was developed in Kleikamp (2024). The general
structure is comparable to the one for parabolic PDEs. In
particular, the three involved models and their interaction
are similar and an a posteriori error estimator is used
to certify the results obtained by the reduced models.
The special structure of the considered optimal control
problems allows to identify solutions to the associated
optimality system by the optimal adjoint at final time.
The reduced basis model thus builds on an approximation
of the set of optimal final time adjoints by linear subspaces.
As before, the machine learning surrogate makes use of the
same reduced space which allows to reuse the a posteriori

error estimate of the reduced basis model.
An additional speedup can be obtained by also reducing
the primal and adjoint trajectories in an efficient manner
as described in Kleikamp and Renelt (2024). The resulting
fully reduced model is based on the reduced basis model for
approximate final time adjoints. It is moreover possible to
incorporate machine learning in the fully reduced model.
We hence obtain a four-stage hierarchy consisting of the
full order model (FOM), the reduced basis reduced order
model (RB-ROM), the fully reduced model (F-ROM) and
the machine learning fully reduced model (ML-F-ROM).
In Tab. 1 we present the results in terms of number of
evaluations and average run time of the individual mod-
els within the four-stage hierarchy, when querying the
hierarchy for 10, 000 randomly chosen parameters and a
fixed error tolerance of 10−4 in the cookie baking example
described in Kleikamp and Renelt (2024). As can be seen

Table 1. Results of the four-stage model hier-
archy applied to the cookie baking test case

Model Number of solves
Average time for
error estimation
and solving [s]

FOM 4 76.24
RB-ROM 12 19.55
F-ROM 437 1.03

ML-F-ROM 9,547 0.54

from the numerical results depicted in Tab. 1, the ML-F-
ROM, which is the fastest of the four involved models, is
sufficiently accurate in more than 95% of the calls to the
hierarchy. In contrast, the full order model has to be solved
only four times in order to meet the accuracy requirements.

4. CONCLUSION

The introduced concept of adaptive model hierarchies pro-
vides a possibility to combine different models of varying
complexity within a joint hierarchy that can be evaluated
efficiently. As discussed in the last section, model hierar-
chies are applicable in different contexts and make use of
the advantages of all involved models.
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1. INTRODUCTION

Due to the climate crisis, reducing energy consumption
and greenhouse gas emissions has gained more and more
relevance in railway traffic over the past years. While
many studies propose optimization methods that consider
energy consumption during circulation planning directly
(Fernández et al., 2019), there is still an abundance of
other methods (Piu and Speranza, 2014) that do not take
energy consumption into account, especially for real-world
applications. We propose a simulation-based approach to
assess the quality of such circulation plans from an energy
consumption and a robustness perspective, the Green
Markup, which enables comparison of circulation plans and
may be considered for optimization within a feedback loop.

2. DEFINITION

For a markup we want to compare the effects of a certain
circulation plan (circulation scenario; cs) to an idealized
base scenario (bs) where traction units are available if
needed, in a realistic setting. For that, we use a simulation
model that calculates the delay propagation within a time
table based on injected primary delays (Rößler et al.,
2020). In both scenarios, the same trains are simulated
using the same primary delays. In the circulation scenario,
additional empty runs are introduced through the circula-
tion plan, for which no primary delays are added.

A green markup should indicate the performance of cir-
culation plans both in terms of the corresponding energy
consumption as well as their robustness against delays.
For each of the two characteristics, robustness and energy
consumption, we define a separate markup, in which we
compare the two scenarios.

The markups can be calculated for different subsets within
the time table. While in principle all possible subsets are
feasible, the following are the most reasonable:

• Global Markup: sums up all relevant values for the
whole time table.

• Circulation Markup: sums up all relevant values for
the tasks used in the circulation plan.

⋆ This research was funded through the Green-TrAIn-Plan project
(FFG project number 892235) by the Federal Ministry for Climate
Protection, Environment, Energy, Mobility, Innovation and Technol-
ogy (BMK) as part of the IKT der Zukunft initiative AI for Green.
We thank ÖBB and its digitalisation program ARP for providing the
data and valuable insights used in this study.

• Train Markup: sums up all relevant values for the
tasks driven by a certain train.

While Global Markup and Circulation Markup may be
used to assess the overall quality of a circulation plan, the
Train Markup can be used within a feedback loop with an
optimization algorithm.

2.1 Delay Markup

The delay markup was already introduced in Rößler et al.
(2020) and is defined as

md :=

∑
t∈T SDt;cs∑
t∈T SDt;bs

, (1)

with SDt;cs and SDt;bs referring to the secondary delays of
a task t for the circulation scenario and the base scenario,
respectively. The set T depends on which type of markup
should be calculated.

As delayed empty runs only impact the quality of a circula-
tion plan if they affect other trains, their secondary delays
are not directly considered in the markup calculation.

2.2 Energy Markup

Analogously, we define the energy markup:

me :=

∑
t∈T ECt;cs +

∑
r∈ER ECr;cs∑

t∈T ECt;bs +
∑

r∈ER ẼCr

(2)

with ECcs and ECbs denoting the energy consumption
(also including recuperation) of the circulation scenario
and the base scenario, respectively. Again, the set T de-
pends on the type of markup to be calculated. Addition-
ally, for the energy markup the energy consumption of
the empty runs (ER) in the circulation scenario (ECr;cs)
contributes to the markup. It is compared to an idealized
energy consumption value, that the empty run would need
with no interference from the rest of the time table (ẼCr).

The energy consumption values are approximated based
on historical energy data from the Austrian railway sys-
tem. For the calculation, geographical information of the
tracks, travel times, weight and length of the train, techni-
cal data of the locomotives, and also planned (i.e. given in
the time table) and unplanned (i.e. made necessary during
simulation) stops during a trip are taken into account.
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Fig. 1. Number of locomotives and average empty run kilo-
meters per locomotive of different circulation plans

2.3 Green Markup

Finally, we define the green markup as the weighted sum
of the delay and energy markups md and me, namely

m :=
wdmd + weme

wd + we
=

md + λme

1 + λ
(3)

where wd and we are the corresponding weights which
can also be consolidated in the single parameter λ =
we/wd. Evaluating several circulation plans in terms of
their energy and delay markups will give us a sense of the
magnitudes of the markups, which in turn will allow us to
choose a suitable value λ for the green markup.

All three markups are defined such that they are equal to
or greater than 1, taking the value 1 for a circulation plan
that does not lead to additional energy consumption or
delay compared to the base scenario. A meaningful com-
parison of markups is only possible for evaluations based
on the same time tables and primary delay distributions.

3. EXPERIMENTS

The circulation plans are created using the optimization
approach presented in Frisch et al. (2021). The objective
function is a weighted sum of the number of locomotives
(l) and the total amount of empty run kilometers (km)

min wl · l + wkm · km, (4)

with weights wl and wkm. We vary the weights to achieve
different results, that mimic different requirements.

• MinTC: Minimize total costs.
• MinTU: Minimize the number of used traction units.
• MinED: Minimize empty run distance.

The weights for MinTC are chosen to roughly reflect the
cost difference between a locomotive and a driven empty
run kilometer, for MinTU and MinED the weight for the
not-prioritized component is multiplied by a small ε > 0
to limit the respective usage.

The circulation plans are based on real-world time tables
for a reference week, that contain both passenger and
freight traffic. For the analyzed instances we only use
freight trains, as the amount and distribution of energy
consumption for freight and passenger traffic is vastly
different. We create instances for several traction unit
classes using different additional filters to gather a variety
of circulation plans with different sizes. Figure 1 shows an
overview of the KPIs for the different circulation plans.
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Fig. 2. Energy Markup plotted against Delay Markup
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Energy Markup

For the simulation, all trains present in the time tables are
used to create a realistic model of the railway traffic. Each
circulation plan instance is simulated on its own, and the
delay and energy markup are calculated separately.

4. RESULTS

As Figure 2 shows, the delay markup for the chosen
circulation plans lies in the range [1, 16] whereas the energy
markup lies within [1, 1.08]. The plot indicates a linear
relation between the two values, and a group of slightly
deviating values where the energy markups are greater (or
delay markups smaller) than the linear fit would suggest.

The selection of λ must take into account the variations of
the markups. Choosing

λ =
max(md)−min(md)

max(me)−min(me)
= 208 (5)

yields the green markup presented in Figure 3. As can be
seen, the relation between the delay and energy markups
is preserved in the green markup, as the group of values
deviating from the linear relation is visible in all plots.
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Abstract: Traditional methods for analysing football gameplay involve observing players' movements in 
real time and using the data to explain tactics and player interactions. In contrast, this study introduces a 
more sophisticated mathematical approach to elucidate typical game flows and tactical features. 
Specifically, vector analysis was applied to the direction and length of the last pass observed in real football 
games, and potential fields were derived from the vector fields of the last pass. This approach enabled a 
visual distinction between unconscious pass flows that occur along potential gradients and conscious pass 
flows that do not follow gradients. The vector analysis also visualised the spontaneous formation of low-
potential areas where the last passes are concentrated in front of the goal area, as well as the characteristics 
of cross passes near the penalty area. The results clearly show that the vector field-based approach provides 
useful insights into tactical analysis and strategy optimisation and offers a new perspective to sports science. 

Keywords: Data-Driven Models; Modelling for Control and Real-Time Applications; Numerical 
Simulation. 

 

1. INTRODUCTION 

Understanding player behaviour and team dynamics in 
football has long been of interest to sports scientists and 
analysts. Traditional research has focused on observing player 
and ball movement and using statistical analysis to identify 
patterns and improve team strategy (Duarte 2012, Kijima 2014, 
Yokoyama 2018, Chacoma 2021, Welch 2021, Narizuka 
2023). In these studies, spatio-temporal tracking methods have 
frequently been used to analyse formations and player 
interactions, providing insights into player behaviour and 
performance during matches. 

In this study, a novel mathematical approach was applied to 
this problem. In order to elucidate the basic principles 
governing the collective behaviour of footballers immediately 
before a shot, a vector analysis method was devised to be 
applied to the measured data of the last pass. The reason for 
focusing on the last pass is that it is an important play that 
directly leads to a goal and influences the flow of the game and 
team tactics. As the last pass leads directly to the shooter, most 
passes occur in one half of the pitch, i.e. in situations where 
one team is attacking the opposing team's position. In this 
situation, the balance between offence and defence is greatly 
disrupted. Therefore, it is statistically expected that attacking 
action in this situation will have the consistent objective of 
shooting and scoring a goal. Focusing on the last pass, one step 
before the shot, simplifies the purpose of the action to be 
analysed and leads to a proper interpretation of the numerical 
analysis results. 

Our theoretical approach, based on vector analysis, boasts 
three advantages in analysing the dynamics of football 

(Morishita 2024). First, it introduces new methods to apply the 
concept of potential fields to football analysis and provides 
new perspectives for interpreting player and ball movement. 
Second, by exploring these new perspectives in football 
analysis, this study expands knowledge in sports science and 
provides practical insights to improve team performance. 
Finally, these statistical features are expected to visualise the 
universal typicality of collective movements in the game of 
football and provide new means to deepen our understanding 
of sports science and collective action studies. 

2. GAME DATA ACQUISITION 

Of the total of 64 matches in the 2022 World Cup in Qatar, 39 
matches were included in the analysis. The data was visually 
confirmed by video footage taken from a position from which 
the entire pitch could be seen, and the coordinates of the 
position of the last pass by an attacking player and the 
coordinates of the position of another player who received the 
pass were all recorded in pairs. 

3. VECTOR FIELD OF LAST PASSES 

Using the above measured data, the vector field of the last pass 
was defined in the following way. The starting point of the 
vector corresponds to the position where the last pass occurs, 
and the direction and length of the vector correspond to the 
direction and distance of the pass. Since the sparsity of the last-
pass vector field can cause noise in numerical analysis, 
smoothing was applied using a Gaussian filter as shown in 
Figure 1. 

From the vector fields thus obtained, the following two types 
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Fig. 1. (a) Last-pass vector fields constructed from measured 
football data. (b)Visualization of the last-pass vector field after 
smoothing. 

of potential fields were derived: the scalar potential field 𝜙𝜙 
and the vector potential field 𝐀𝐀  Potential fields are 
mathematical concepts widely used in physics and engineering 
to analyse the properties of vector fields and their variations. 
It can be proved that any vector field can be decomposed into 
an orthogonal sum of the two components: the gradient one 
∇𝜙𝜙  and rotational one ∇ × 𝐀𝐀 ; therefore, the two potential 
fields can be derived from each decomposed vector field. The 
scalar potential field 𝜙𝜙 represents the area of concentration of 
the last-pass and the natural convergence to that point, whereas 
the rotational component of the vector potential field, 𝐀𝐀, is 
assumed to reflect tactics, including the intention to deviate 
from the gradient direction and the reaction of the defender to 
obstacles. 

4. RESULTS AND DISCUSSIONS 

Analysis of scalar potential fields showed that areas of low 
potential were concentrated in front of the goal area and that 
last passes tended to converge in this area. It was also found 
that the potential minima formed spontaneously on the slightly 
left side in front of the goal area.  This fact means that there 
are more crossing passes released from the left side (right side 
from the offence's point of view), and the spatial distribution 

of scalar potential field reflects the tactical behaviour of 
players aiming to cross passes to the advantageous position in 
front of the goal area.  

Meanwhile, analysis of vector potential fields allowed the 
identification of areas with a significant rotational component. 
In particular, a strong rotational component was found near the 
centre of the penalty area and on both sides of it. This result 
may reflect the tactical intentions of the attackers. In other 
words, the large number of defensive players in the centre of 
the court means that it is difficult to pass from the front, and 
the attackers adopt a strategy of sending crosses in a large 
circle from the left and right sides. These features of the 
potential field distributions are based on the last-pass data of 
all teams in 39 matches, being not dependent on the 
individuality of a particular player or team but show a 
universal typology as football. 

The following conclusions can be drawn from the results of 
the present analysis and the discussion on them. The potential 
field analysis method for the game of football provides a 
quantitative means of evaluating complex last-pass patterns by 
reducing them to simple mathematical models. This allows for 
the clear visualisation of trends in tactical behaviour that are 
universal to the game of football, without being dependent on 
players or teams. The analysis of scalar and vector potentials 
also provides an important perspective in the design of 
attacking and defensive tactics, contributing to the 
optimisation of match strategy. 
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1. INTRODUCTION

Model Order Reduction (MOR) for stochastic linear sys-
tems is concerned with approximating the high-dimensional
Full Order Model (FOM)

dx(t) = [Ax(t) + Bu(t)] dt+MdW (t), x(0) = x0, (1)

by a surrogate model. Such arise, for example, from spatial
discretisations of PDEs, with noisy boundary conditions.
Here, the so-called drift of (1)is a function of the state
x(t) ∈ Rn and the control u(t) ∈ Rm given by the respec-
tive multiplication with A ∈ Rn×n and B ∈ Rn×m. The
term MdW (t) is called the diffusion term and describes the
influence of the noise-generating process W (t) ∈ Rd on the
state variable. In this case the process is a d-dimensional
standard Brownian motion. The matrix M ∈ Rn×d is
called the diffusion coefficient. Due to the structure of
the SDE (1) the FOM state variable x(t) is Gaussian for
each fixed time t if x0 is Gaussian or constant. Hence,
the distribution of x at the time t ∈ [0, T ] is completely
determined by the expectation E(t) ∈ Rn and covariance
C(t) ∈ Rn×n.

2. PROJECTION-BASED MOR

Projection-based MOR constructs such Reduced Order
Models (ROMs) by approximating the FOM state variable
in an r-dimensional subspace Vr, that is, one assumes
x(t) ≈ VrV

T
r x(t) = Vrxr(t), where orthogonal columns

of Vr = [v1, . . . , vr] ∈ Rn×r span the subspace Vr. By the
requiring a Galerkin condition on the residual of the FOM
dynamics, one obtains

dxr(t) = [Arxr(t) + Bru(t)] dt+MrdW (t), (2)

with the reduced coefficients

Ar :=VT
r AVr ∈ Rr×r, Br := VT

r B ∈ Rr×m,

Mr :=VT
r M ∈ Rr×d, xr(0) := VT

r x0 ∈ Rr.

If r ≪ n, then (2) is much cheaper to compute than
the FOM (1). Since projections retain the linear structure

⋆ The research has been partially funded by the Deutsche
Forschungsgemeinschaft (DFG) - Project-ID 318763901 - SFB1294
as well as by the DFG individual grant “Low-order approximations
for large-scale problems arising in the context of high-dimensional
PDEs and spatially discretized SPDEs”– project number 499366908.

of the original FOM equations, the ROM state xr(t) is
Gaussian as well for each fixed t ≥ 0. One can show that
the expectation of the projected state Er(t) := E [xr(t)]
satisfies the ODE

Ėr(t) = ArEr(t) + Bru(t), Er(0) = E [xr,0]

and approximates the FOM expectation after lifting with
Vr, since VrEr(t) = VrE[xr(t)] = E[VrV

T
r x(t)] ≈ E[x(t)].

Analogous results for the covariance matrix Cr(t) =
cov[xr(t)] hold, see Freitag et al. (2024).
A popular data-driven method to construct Vr is Proper
Orthogonal Decomposition (POD) method. In this method,
the dominant subspace of observed snapshots Xs =
[x(t1), . . . , x(ts)] is chosen as Vr. This is achieved by taking
the r leading left-singular vectors of Xs as the columns of
Vr = [v1, . . . , vr]. To construct a ROM in such a way, it is
necessary to have access to the FOM matrices A,B, and
M. Such methods are called intrusive and can be infeasible
in the case of, for instance, black-box or legacy code.

3. NON-INTRUSIVE MOR

To address this issue, so-called non-intrusive methods
have been developed. These methods do not require the
availability of the FOM system coefficients, but instead
rely on the availability of large amounts of data or the
ability to query the FOM. One well-known method is the
Operator Inference (OpInf) approach by Peherstorfer and
Willcox (2016), which recently has been extended to the
SDE setting by Freitag et al. (2024) We briefly illustrate
this extension. In the standard OpInf approach for SDEs,
one first collects L samples of s trajectory observations
x(t1), . . . , x(ts) of the FOM state, which are then used to
compute approximations of the reduced expectation

EL
r,i = VT

r E
L
i , E

L
i ≈ E(ti) := E [xti ] , i ∈ {1, . . . , s}.

of the ROM state variable xr at the observation times.
An approximation of the time derivative Ėr(t) of the
reduced expectation can be obtained by a finite difference

approximation EL,h
r,i using EL

r,i := VT
r E

L
i , where h is given

by the difference between the (equidistant) observation
times ti. Thus, to obtain approximations to Ar and Br,
one can solve the least-squares problem

[A∗
r B∗

r ] = argmin
Õ∈Rr×(r+m)

∥ÕDL − RL,h∥F , (3)
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where

DL =

[
EL
r,1 . . . EL

r,s

u(t1) . . . u(ts)

]
and RL,h =

[
EL,h
r,1 , . . . ,EL,h

r,s

]
.

Since DL and RL,h are constructed from approximations,
one can view (3) as a perturbed version of an unperturbed
least-squares problem, where direct observations would
be available. Freitag et al. (2024) show that if the data
matrix DL ∈ Rr+m×s is of full rank, the unique solution is
an almost-surely convergent estimator of the unperturbed
least squares solution in the limit of L → ∞ and h → 0.
Using an analogous approach, Freitag et al. (2024) obtain
an estimation of the product MrM

T
r ∈ Rd×d for the

diffusion coefficient by utilising the inferred A∗
r instead of

Ar.
One drawback of the standard OpInf formulation, as
Peherstorfer (2020) points out, is that the projected FOM
trajectories can differ from the trajectories of the intrusive
ROM (2). This so-called closure error arises due to the
inability of ROMs of the form (2) to model the non-
Markovian dynamics of the projected FOM state variable
with respect to the subspace Vr. Thus, the ROM obtained
from standard OpInf can fail to approximate the reduced
dynamics in Vr. To address this issue, Peherstorfer (2020)
proposes a modified sampling scheme called re-projection.
We illustrate this method in the SDE setting of this paper.
The core idea is to estimate the re-projection sampling,
performed directly on the expectation, by computing the
empirical mean of re-projected samples. To perform the re-
projection scheme, access to the stepping function f(x, u)

x̃i+1 = f(x̃i, ui) = Ãx̃i + B̃ui + M̃zi, zi ∼ N (0d, Id),

of the time-discretised FOM is required. Here, 0d is the d-
dimensional zero vector and Id the identity matrix of size
d× d. The sampling algorithm then computes trajectories
{x̂i, i = 1, . . . , s} ⊂ Rr by projecting each query result
onto Vr, that is, one computes x̂i+1 = VT

r f(Vrx̂i, ui) and
constructs the matrices

X̂s =

[
x̂E
1 . . . x̂E

s−1
u(t1) . . . u(ts−1)

]
∈ R(r+m)×(s−1) and

Ŷs =
[
x̂E
2 . . . x̂E

s

]
∈ Rr×(s−1)

from the empirical estimation x̂E
i of the expectation of x̂i.

An approximation to the time-discrete reduced operators
is obtained by solving the least-squares problem[

Â∗
r B̂∗

r

]
= argmin

Ô∈Rr×(r+m)

∥ÔX̂s − Ŷs∥F . (4)

As in the standard OpInf method, the condition number of
the data-matrix Xs can be improved by sampling linearly
independent pairs of initial conditions and control. Lastly,
the availability of f enables us to easily obtain an estima-
tion of the projected time-discrete diffusion operator M̃r.
While one could proceed as in Freitag et al. (2024) by using
the covariance matrices of the re-projected time-steps, it
is much simpler to sample the projected time-stepping
function f with a zero initial condition and control, since

VT
r f(0r, 0) = VT

r M̃z, z ∼ N (0d, Id).

The covariance matrix C̃f of such samples is an estimation

of VT
r M̃M̃TVr. An approximation of M̃r is then obtained

by, e.g., an eigenvalue decomposition of C̃f . Note, that this
approach approximates the reduced system coefficients of
the time-discretised FOM, instead of the reduced system
coefficients of the time-continuous FOM.
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Fig. 1. Relative errors of expectation and covariance. FOM
dimension n = 1357. Number of samples and time
steps for inference and testing L = 104 and s = 103.
Time-step size h = 10−3.

4. NUMERICAL EXAMPLE

The FOM is obtained from the Steel Profile Benchmark
from the Oberwolfach Benchmark Collection (2005). The
control function models the temperature controls, which
can be applied on m = 7 sections of the boundary
of the profile. One can model a noisy control u, which
is perturbed by white noise, by choosing the diffusion
coefficient to be M = B

∥B∥ . The step function f is given by

a semi-implicit Euler-Maruyama time-discretisation of the
corresponding SDE. Figure 1 reports the relative summed
errors in the expectation and covariance between the
FOM and the POD and the FOM and Operator Inference
with re-projection ROMs. The code used to perform the
experiment displayed in Figure 1 is available at https://
github.com/JMNicolaus/SDE_OpInfRP
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Abstract: To determine failure rates is a challenge, if there are only a few failures and typical
failure rates are low. As an application example we are interested in failure rates of electrical
automotive components for automated/autonomous driving. As method we focus here on the
exploitation of field data. Our contribution classifies different approaches from statistics and
shows how this can be applied to real-world production figures as available in industry.
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1. APPROACHES TO FAILURE RATES

For applications like autonomous/automated driving a
high reliability of the used components is required for
functional safety. Therefore long survival times with a high
statistical confidence should be known for the components
before the design of the vehicle electrical system and its
production. So-called FIT rates, i.e. failure rates in the
order of 1 FIT, i.e. 1 failure in 1 billion (=109) hours of life-
time seem to be acceptable for the envisaged application.
Since components are under certain stresses not only when
in use and ageing happens all the time, failure rates are
calculated w.r.t. hours of lifetime, not hours of operation.

Moreover, it is necessary to define a failure precisely
by a so-called failure criterion. This might depend on the
type of the component, e.g. the doubling of the Ohmic
resistance for a welded splice. Furthermore, we could dif-
ferentiate between failure modes like “open” or “short-
circuit”.
There are three important approaches to determine failure
rates: (i) exploitation of data from field returns (so-called
field data), (ii) standardized handbooks with failure rates,
and (iii) laboratory exposure tests. In approach (i) the
field data, i.e. failures and survivals from components
used in the field, is evaluated statistically. The number of
legitimate failures (e.g. a wrong coloring of the component
might not enhance its functionality) compared with the
number of components and hours of lifetime allow to
estimate a failure rate (not necessarily constant). This
approach is also known as REX (return of experience).
The handbooks in (ii) rely on expert opinions and previ-
ous records (including statistics and partially field data).
There are several international standards for failure rates,
FIDES (2022) being the most recent. For approach (iii)
long term exposure tests are designed, that try to trigger
each a specific physical failure mechanism. In order to ob-
serve failures in reasonable time and for a sufficient number
of specimens, exposure tests that can speed-up time due

to overstresses are crucial. is then analyzed statistically.
Here the focus is on the approach (i) using field data to
determine low failure rates, in particular in the case of zero
or only a few observed failures.

2. PROBABILISTIC AND STATISTICAL MODELS

We examine a family of identical, independent, newly
manufactured specimens over a given time period where it
is possible to track the specimen for failures. As collective
we consider the number of specimen N times the time
period under consideration T (in h). We consider X as the
random variable with values in N0, x denotes the observed
realizations. A point estimate of the failure rate in our
collective serving as a sample is

Θ̂ =
X

n
=

X

N T
(FIT = # failures/(109h)). (1)

However, a point estimate lacks a statement about the
statistical confidence of the result. If, let’s say we observe
0 failure among a sample of length N = 1000 or N = 109

(for the same T ) should make a difference, but in both

cases we estimate Θ̂ = 0 FIT for the failure rate.
We assume that a required confidence level ν, e.g. 90%, is
prescribed (by rules or economically) for the application.
If we consider a suitable confidence interval [Θ, Θ̄] for the
unknown parameter Θ for the confidence level ν, than
the upper bound Θ̄ of the confidence interval may be
considered as a conservative estimate for the failure rate
λtotal that here incorporates all influences on the failure
rate. However, the construction of a confidence interval
depends on the underlying model, e.g. whether a non-
parametric or parametric estimate is appropriate. We will
discuss shortly the two models in the following.

2.1 Binomial Distribution as Model

We suppose that Θ is the probability that an event occurs
among N components in a given time interval of length
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T . Let X denote the random variable of the sum of events
E within n = NT trials. Accordingly the probability for
observing events per time is given by (1).
We follow Stange (1970, p. 436) for the construction of the
corresponding (typically non-unique) confidence interval.
If a required confidence level ν or vice versa the probability
of error α1 + α2 = 1− ν is given 1 , then there holds

P (x ≤ X ≤ x̄) =

x̄∑
i=x

(
n

i

)
Θi(1−Θ)n−i = 1−α1−α2, (2)

where x or x̄ is the smallest / largest natural number

greater / less than or equal to nΘ ∓ q1/2

√
nΘ(1−Θ),

where qi = q
B(Θ,n)
1−αi

is the quantile of the binomial dis-
tribution with parameters Θ and n w.r.t. 1− αi, i = 1, 2.
The crucial estimate Θ̄ for X = x is determined by

x∑
i=0

(
n

i

)
Θ̄i(1− Θ̄)n−i = α1. (3)

In particular, in the case x = 0, that is important for the
applications, (3) simplifies to Θ̄ = 1− n

√
α ,where we have

naturally α1 = α and α2 = 0. Thus we have the confidence
interval [0, Θ̄] for zero failures.
If we have zero failures the question whether failed compo-
nents are (instantaneously) replaced is obsolete. Moreover,
for a few failures, i.e. x � n the question of replacing
components has no numerical influence on the results.
We see that the construction of a confidence interval as for
the binomial distribution may yield technical challenges.
By using Fisher’s F -distribution this might be overcome.
Further details yielding the so-called Pearson-Clopper val-
ues, see Stange (1970, p. 433 ff.), will be presented on site.

2.2 Maximum Likelihood

In addition, we have modelling challenges due to the
censoring of the data. In statistics censored data means
that random variables, as the survival times here might not
be observed/measured over the whole time. If we cannot
track each sample until a failure occurs, then this is a
typical example for right-censoring, whereas if the starting
time of the observation/measurement cannot be traced
back yields a so-called left-censoring.
Considering a constant (random) failure rate, we illustrate
here the case of the exponential distribution. For X ≥ 1,
the maximum likelihood estimate is in the uncensored case
identical to (1), in the general case of censored data (no
replacement of the component)

Θ̂ =
X∑N
i=1 ti

=
X∑X

i=1 ti + (N −X)T
, (4)

where ti denotes the random survival time of component
i, being T , if component i does not fail in the observed
time period. W.l.o.g. the components with failures get the
lowest indices. For the observed times with components
in function, appearing in the denominator, we abbreviate

Tobs =
∑X
i=1 ti + (N −X)T . We obtain (Sundberg (2001))

the confidence interval

P

(
q
χ2(2X)
α1

Tobs(X)
≤ Θ̂ ≤ Θ̄ :=

q
χ2(2X)
1−α2

2Tobs(X)

)
= 1− α1 − α2, (5)

1 α1 is the probability of an error above the sample mean plus a
margin of error and α2 is the probability of the error below.

where q
χ2(2X)
ν̃ is the quantile of the χ2-distribution with

2X degrees of freedom w.r.t. the confidence level ν̃. We
see that the results for the sample mean for the binomial
as for the exponential distribution coincide, whereas the
relevant estimate in (5) might be different already in the
uncensored case.

3. DATA OF FIELD RETURNS AND OUTLOOK

On site we present data of field returns for welded automo-
tive splice and follow approach (i). Moreover, we include
here so-called dark figures for N and X, these percentages
model that not all components in the collective may be
tracked and that not all failures might be reported in the
real world. Finally, we will discuss phenomena due to the
size of the collective and to the split of components into
smaller groups.
It turns out in this example that the binomial model and
the maximum likelihood method yield the same estimates
for the failure rate λtotal. Following approach (ii) we obtain
a higher value for the failure rate. However, both values
were undercut by laboratory long exposure tests following
approach (iii) for this component (ZVEI-BI, 2021, Section
7.5). Note that the three approaches yield different FIT
rates not only here and to be on the safe side, the worst
(highest) FIT rate is used as prescribed in the FIDES.
The reason for this is that a chain is only as strong as its
weakest link. However, it is recommendable to use several
approaches as pillars for the FIT rates.
Finally, we will discuss the stated results and close with
an outlook. It should also be mentioned that we consider
here only constant failure rates, modelling random errors.
Systematic errors are assumed to be avoided by a strong
quality management. This approach has been applied by
the authors together with industrial partners for several
electric components as splice, power and data cables, fuses,
and mass connections in automotive cable harnesses, see,
e.g., ZVEI-BI (2021); Kimmerle & Liess (2019).
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1. INTRODUCTION

The Dynamic Mode Decomposition (DMD) Schmid and
Sesterhenn (2008), Schmid (2010) is a versatile computa-
tional tool for data driven analysis of nonlinear dynamical
systems, with applications in e.g. computational fluid dy-
namics, aeroacoustics, robotics. It can be used for model
order reduction, analysis of latent structures in the dy-
namics, and e.g. for data driven identification, forecasting
and control. The theoretical underpinning of the DMD is
in the framework of the Koopman (composition) operator
theory Rowley et al. (2009), Mezić (2013).

The Koopman (composition) operator provides an in-
finitely dimensional linearization of nonlinear dynamical
systems, and it is a tool of the trade for computational
data driven analysis (identification, prediction, control)
of nonlinear dynamics. For instance, consider the discrete
dynamical system

xi+1 = T(xi), (1)

where T : X −→ X is a map on a state space X ⊆ Rn and
i ∈ Z. The xi’s are e.g. obtained by numerical simulations
of a continuous system (i.e. system of differential equa-
tions), or by measuring experimental data. Further, the
mapping T might be unknown, but an abundance of data
snapshots xi is available. The Koopman operator K ≡ KT

for the discrete system (1) is defined on a suitable (Hilbert)
space of observables F by

Kf = f ◦T, f ∈ F . (2)

The key observation is that for a vector valued observable
f = (f1, . . . , fn)

T of interest, its value along the trajectory
of (1) can be represented as f(x1) = (K0f)(x1), f(x2) =
(Kf)(x1), f(x3) = (K2f)(x1), . . ., f(xm+1) = (Kmf)(x1),
where the action of K defined component-wise. Hence, to
reveal the latent structure of (1) and to develop forecasting
skills, or to identify T, it is plausible to try to identify
K (based on the data only) and compute its approximate
eigenvalues and eigenvectors (using a data driven compres-
sion of K and the well known procedures from numerical
linear algebra, but adapted to the data driven scenario).

The available data are stored in the snapshot matrix F
with columns f(x1), f(xk+1)=(Kf)(xk), xk+1=T(xk):

⋆ Supported by the DARPA Small Business Innovation Research
Program (SBIR) Program Office under Contract No. W31P4Q-
21-C-0007 to AIMdyn, Inc. The second author is also supported
by the AFOSR Award FA9550-22-1-0531 and the ONR Award
N000142112384.

F=(f(x1) ... f(xm) f(xm+1))=

 f1(x1) ... f1(xm) f1(xm+1)
f2(x1) ... f2(xm) f2(xm+1)

...
...

...
...

fd(x1) ... fd(xm) fd(xm+1)

.

(i) The snapshots are generated by a nonlinear system.
(ii) The snapshots are a Krylov sequence f ,Kf ,K2f , . . .,
driven by the linear operator K and evaluated along a
trajectory initialized at x1.

It makes sense to find a matrix A that reproduces the
Krylov sequence (over available data), i.e. such that

Af(xk)=(Kf)(xk)=

(
(Kf1)(xk)

...
(Kfn)(xk)

)
= f(T(xk)), k = 1, . . . ,m.

(3)
The Koopman Mode Decomposition (KMD) represents
the scalar observables fi in terms of the eigenfunctions
of K, so that for an x

(Kkf)(x) =

(Kkf1)(x)
...

(Kkfn)(x)

 ≈
m∑
i=1

ziϕi(x)λ
k
i , k = 0, 1, . . .

(4)
where (Kϕi)(x) ≈ λiϕi(x). It can be shown that (zi, λi)’s
are approximate eigenpairs of A (Azi ≈ λizi). This
requires solving the eigenvalue problem for the matrix A
defined in (3).

2. THE DMD AND THE KMD: NUMERICAL
ALGORITHMS

The application of the KMD introduced in §1 is based on
a supplied sequence of snapshots fi ∈ Cn of an underlying
dynamics, that are driven by an unaccessible black box
linear operator A;

fi+1 ≈ Afi, i = 1, . . . ,m, m < n, (5)

with some initial f1. No other information is available.

The two basic tasks are then:

(1) Identify approximate eigenpairs (λj , zj) such that

Azj ≈ λjzj , j = 1, . . . , k; k ≤ m, (6)

This is solved by a data driven Rayleigh–Ritz proce-
dure introduced by Schmid (2010).

(2) Derive a spectral spatio–temporal representation of
the snapshots fi (KMD):

fi ≈
ℓ∑

j=1

zςjαjλ
i−1
ςj , i = 1, . . . ,m, (7)
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Algorithm 1. (Zk,Λk, rk, [Bk], [Z
(ex)
k

]) = xGEDMD(X,Y; tol)

Input: X = (x1, . . . ,xm),Y = (y1, . . . ,ym) ∈ CN×m that
define a sequence of snapshot pairs (xi,yi). Tolerance
tol for the numerical rank of X.

1: D = (diag(∥X(:, i)∥2)mi=1)
†; Xc = XD; Yc = YD.

2: [U,Σ,V] = svd(Xc) ; {The thin SVD: Xc = UΣV∗,
U ∈ Cn×m, Σ = diag(σi)

m
i=1.}

3: Determine numerical rank k, using the threshold tol.
4: Set Uk = U(:, 1:k), Vk = V (:, 1:k), Σk = Σ(1:k, 1:k).
5: Bk = Yc(VkΣ

−1
k ); {Schmid’s data driven formula for

AUk [optional output].}
6: Sk = U∗

kBk {Sk = U∗
kAUk is the Rayleigh quotient.}

7: [Wk,Λk] = eig(Sk) {Λk = diag(λi)
k
i=1; SkWk(:, i) =

λiWk(:, i); ∥Wk(:, i)∥2 = 1.}
8: Zk = UkWk {The Ritz vectors.}
9: Z

(ex)
k = BkWk {The (unscaled) Exact DMD vectors

[optional output].}
10: rk(i) = ∥BkWk(:, i) − λiZk(:, i)∥2, i = 1, . . . , k. {The

residuals.}
Output: Zk, Λk, rk, [Bk], [Z

(ex)
k ].

for some suitable selection of the modes zςj . The co-
efficients are computed by using a sparsity promoting
optimization Jovanović et al. (2014), or by solving a
Khatri–Rao structured least squares problem Drmač
et al. (2020).

2.1 An improved DMD/KMD

The original method Schmid (2010) is considerably im-
proved in Drmač et al. (2018), and a robust software
implementation is available in the LAPACK library Drmač
(2024a). One of the key features of the modified DMD is
that it provides computable residuals (rk(ςj) = ∥Azςj −
λςjzςj∥2), that can be used to select physically meaningful
eigenvalues and modes, and to guide sparse representation
of the snapshot in the KMD (7).

The improved version of the DMD is summarized in Al-
gorithm 1. In the case of physics–informed DMD, where
it is known that the underlying operator is Hermitian, a
Hermitian version of the DMD requires careful implemen-
tation as in Baddoo et al. (2021), Drmač (2024b).

2.2 An example

An example of DMD/KMD is illustrated in Figure 1.
The data are collected by solving the two–dimensional
Navier–Stokes equation for 150 discrete time steps. The
grid data are reshaped into columns and arranged column–
wise in the 89351 × 151 matrix F . The input to DMD is
X = F (:, 1 : 150), Y = F (:, 2 : 151). Only nine modes
(eigenvectors of A) are enough to represent the entire
simulation with high fidelity, and to provide very good
forecasting skill.
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1. INTRODUCTION

Batch fermentation processes are widely used in industry
to produce antibiotics, enzymes, biofuels, and fermented
foods and beverages such as wine, yogurt, bread, and beer.
The underlying concept is to introduce specific microor-
ganisms into a medium with the nutrients necessary for
cells to grow. During growth, microorganisms transform
nutrients into biomass, releasing the desired products.

Optimizing fermentation processes, including species and
conditions, is essential for improving yield and produc-
tivity. Knowledge-based models facilitate decision mak-
ing while minimizing experiments (Lopatkin and Collins,
2020; Wang et al., 2023). Although they offer many advan-
tages, the formulation of such models requires data, time,
and insight.

In recent years, machine learning (ML) algorithms have
gained significant attention due to their ability to analyze
vast amounts of data and uncover patterns that traditional
methods might miss. ML has the potential to optimize
workflows, reduce costs, and improve product quality. In
the context of fermentation, ML has been used to predict
production when historical data are available (Shah et al.,
2022) or as a surrogate model for scaling up (del Rio-
Chanona et al., 2019). However, its effectiveness relies on
the availability and quality of the data.

Fermentation knowledge-based models are often formu-
lated using time-series data for biomass, substrate, and
product dynamics, with fewer than ten sampling points.
Experiments may vary temperature or pH to explain their
impact. The laws of mass and energy conservation com-
pensate for the limited data. Can ML be applied under
these conditions?

This work addresses this question by considering a case
study related to yeast fermentation. We first built a
knowledge-based model to describe the process under
temperature-varying conditions and then used the same
data to formulate an ML model of the process.

⋆ This work was funded by MCIN/AEI/10.13039/501100011033 and
EU NextGenerationEU/PRTR grant PLEC2021-007827, and Xunta
de Galicia (IN607B 2023/04).

Our results show that: i) building a knowledge-based
model is an iterative, time-consuming process; ii) ML
model design is easier, needing no specific process knowl-
edge, but requires testing multiple architectures; iii) ML
models simulation is faster; but iv) ML is not competitive
for the same amount of data, offering worse predictive
capabilities.

2. RESULTS

2.1 Kinetic model

We have generalized the model by Moimenta et al. (2023)
to account for the effect of temperature. The model con-
sists of a set of ordinary differential equations (ODEs)
describing biomass growth phases, uptake of sugars and
yeast assimilable nitrogen, and relevant products.

The model was built using a multi-experiment identifica-
tion approach. Six experiments, performed at three dif-
ferent constant temperatures with two different levels of
sugars, were used for model formulation and calibration;
and two additional experiments, performed at a time-
dependent temperature profile were used for validation.
We considered five different sets of fermentations led by
five industrial yeast species to test the generalizability of
the model. Model identification was implemented in the
AMIGO2 toolbox (Balsa-Canto et al., 2016).

The model successfully explained the data, with a normal-
ized mean square error in the prediction of less than 10%
for all species.

2.2 Machine learning models

We used regression models based on artificial neural
networks (ANN), specifically the multilayer perceptron
(MLP). We first consider the case of a particular yeast
strain (S. cerevisiae GALA) and try to predict the pro-
duction of ethanol, glycerol, acetate, and succinate. We
compared three different scenarios:

(1) Model ML-KIn: using the same inputs as the kinetic
model, including time, initial conditions of tempera-
ture and sugar, and yeast assimilable nitrogen (YAN).
The model architecture includes 4 input variables, a
hidden layer with 2 neurons, and 4 output variables.
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(2) Model ML-12In: using twelve inputs, including time,
initial conditions, YAN, and the following amino
acids: cysteine, glycine, histidine, methionine, aspar-
tate, phenylalanine, isoleucine, and leucine. Note that
selected amino acids present distinct dynamic pro-
files. The model architecture includes 12 input vari-
ables, a hidden layer with 3 neurons, and 4 output
variables.

(3) Model ML-22In: using 22 inputs including time, ini-
tial conditions, and all amino acids measured exper-
imentally, except proline, ornithine. The model ar-
chitecture includes 22 input variables, a hidden layer
with 5 neurons, and 4 output variables.

The selected network structures demonstrated minimal
overfitting after testing various combinations with the
dataset. We also explored combining data from five in-
dustrial yeast S. cerevisiae strains, which, despite simi-
lar ethanol yields, produced varying amounts of glycerol
and succinate, enriching the data. The resulting models,
ML-KI-AllSp, ML-12I-AllSp, and ML-22I-AllSp, shared
the architecture with those obtained with a single species
dataset.

For the training of ML models, the input and output data
were normalized; missing data was imputed, and outliers
were removed from the dataset. The six models were
trained using the mean square error (MSE) metric as the
loss function, a learning rate of 0.1, a sigmoid activation
function and the Stochastic Gradient Descent optimizer.
The modeling workflow was implemented in Python using
the Keras toolbox (Chollet et al., 2015).

2.3 Comparative analysis

Our results show that when used under the same condi-
tions, ML offers poor performance. Only when data for
multiple species were combined, the ML became more
accurate (see Figure 1). Model ML-KI-AllSp shows an
overall normalized mean square error of 18%, while Model
ML-12I-AllSp shows a 13%, attributed to the increase in
input data from 4 to 12 inputs. The addition of data in
Model ML-22I-AllSp did not result in further improve-
ments. Even with five times more data, the top ML model
underperformed compared to the kinetic model.

3. CONCLUSION

The widespread enthusiasm for machine learning (ML) has
led to its use in numerous fields. Although ML provides
powerful tools for modeling, balancing this excitement
with a clear understanding of its limitations and the
contexts in which it can truly add value is essential.

In this work, we have confronted knowledge-based kinetic
models with ML models in the prediction of yeast batch
fermentation. Our results showed that the kinetic model
outperformed the ML models, despite the latter being
trained on a larger dataset. This is attributed to the fact
that ML models rely solely on experimental data and lack
prior knowledge, making them susceptible to errors and
bias. This highlights the need for a hybrid approach that
combines ML and knowledge-based models to exploit their
individual advantages and compensate for their individual
limitations (Procopio et al., 2023).
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Fig. 1. Kinetic versus ML models for selected examples.
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1. INTRODUCTION

Microorganisms rarely exist in isolation. Instead, they
form complex networks of ecological interactions, known
as microbial communities. These communities, composed
of bacteria, fungi, viruses, and other microorganisms, are
ubiquitous across diverse environments, from soil and
water to extreme habitats such as hot springs and acidic
mines. Microbial communities also thrive within and on
plants and animals, including humans, where they play
essential roles, particularly in the gut microbiome. Systems
biology provides a quantitative framework to study these
communities through mathematical models, enabling a
structured and nuanced understanding of their dynamics.

2. MODEL CALIBRATION

Our research focuses on the temporal dynamics of micro-
bial communities, for which Ordinary Differential Equa-
tions (ODEs) provide an appropriate modeling framework.
A critical component of ODE -based modeling is the cali-
bration process, also known as parameter estimation. Cal-
ibration involves identifying unknown or non-measurable
parameters by adjusting the model to fit experimental
data. Typically, this is an iterative process that encom-
passes several steps (Balsa-Canto et al., 2010; Villaverde
et al., 2021).

However, this process is full of possible pitfalls and chal-
lenges due to the potential non-uniqueness, ill-conditioning
and non-convexity of the estimation problem. Here, we
focus on issues related to (i) lack of identifiability and (ii)
convergence difficulties during the parameter estimation
(under- and over-fitting).

We investigate a set of canonical models with increasing
complexity that represent the most common frameworks in
microbial ecology, from the most classical and simple eco-
logical models (such as Generalized Lotka-Volterra (GLV )
models), to more complex models accounting for nutrients
dynamics (such as food web models), and coarse-grained

⋆ This work was supported by grant PID2020-117271RB-C22 (BIO-
DYNAMICS) funded by MCIN/AEI/10.13039/501100011033, grant
PID2023-146275NB-C22 (DYNAMO-bio) funded by MICIU/AEI/
10.13039/501100011033 and ERDF/EU, grant IN607B 2023/04
funded by Xunta de Galicia and grant CSIC PIE 202470E108
(LARGO).

models incorporating different regulatory mechanisms and
nutrients’ dynamics.

2.1 Structural Identifiability Analysis

Structural identifiability (SI) in the context of ODE-based
dynamic models refers to the theoretical possibility of
uniquely determining parameter values from ideal model
outputs. This assumes perfect, noise-free, and continuous
measurements, allowing for an assessment of whether the
model structure itself permits unique parameter estima-
tion, independent of data quality or experimental con-
ditions. This concept is crucial because if a model is
not structurally identifiable, it means that there could
be multiple sets of parameter values that produce the
same output, making it impossible to accurately estimate
those parameters. Although crucial, structural identifiabil-
ity analysis (SIA) has been the focus of only a few studies
(Balsa-Canto et al., 2020; Remien et al., 2021; Dı́az-Seoane
et al., 2023). This concept is extremely important because
if a model is not structurally identifiable, it means that
there could be multiple sets of parameter values that pro-
duce the same output, making it impossible to accurately
estimate them.

SIA classifies unknown parameters into three groups: glob-
ally identifiable, locally identifiable, and non-identifiable.
If, after performing the analysis, some parameters are
classified as non-identifiable, possible solutions are a refor-
mulation of the model, fixing the non-identifiable parame-
ters to realistic values, or planning additional experiments
(if possible). These new experiments could include new
observables, experimental conditions, or initial conditions.

The general question of SIA for arbitrary non-linear
dynamic models described by ODEs remains an open
and unresolved matter. Nevertheless, significant progress
has been made over the past two decades, leading
to the development of several promising software tools
(Rey Barreiro and Villaverde, 2023). In this study,
we focus on three state-of-the-art tools: Structural
Identifiability, GenSSI2 and SIAN. After testing these
software with the selected case studies, our analysis indi-
cate that the most efficient and robust tool is Structural
Identifiability, while both SIAN and GenSSI2 are still
reasonable options. When dealing with the most com-
plex models, these tools encountered several difficulties.
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Specifically, GenSSI2 (a fully symbolic tool) experienced a
significant surge in memory consumption and computation
time, and sometimes failed to guarantee the uniqueness of
the solution.

2.2 Practical Identifiability Analysis

Model calibration involves finding the optimal parameter
values that best align the model outputs with experimental
data. This process is formulated as a non-linear optimiza-
tion problem. The objective is to estimate the parameters
which minimize a cost function that quantifies the dis-
crepancy between model predictions and observed data.
This optimization is conducted subject to the constraints
imposed by the system of ordinary differential equations
(ODEs) that define the model, as well as any additional
algebraic constraints that may apply.

Even with structural identifiability, practical identifiability
can be compromised by insufficient data or noise, affecting
parameter uniqueness and model reliability. There are sev-
eral methods to assess Practical Identifiability, including
the use of the Fisher Information Matrix (FIM), Profile
Likelihoods or Bayesian sampling based procedures, for
example.

To perform a Practical Identifiability Analysis (PIA), here
we employ the AMIGO2 (Advanced Model Identification us-
ing Global Optimization) toolbox for Matlab, which facili-
tates parameter estimation using global optimization, fol-
lowed by sensitivity analyses and FIM-based PIA (Balsa-
Canto et al., 2016).
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Fig. 1. Two solutions from the calibration of a GLV
model considering two-species: local optimum (left),
and global optimum (right).

Underfitting (Figure 1) occurs when the estimation algo-
rithm converges to a local optimum. As a consequence, the
calibrated model fails to capture the underlying dynamics
of the data, leading to inaccurate parameter estimates.
Utilizing global optimizers in AMIGO2 allowed us to sidestep
these local solutions.

Due to the flexibility and oscillatory nature of several
of the models considered, we also observed that their
calibration can result in overfitting, i.e. fitting the noise
instead of the signal (see the example in Figure 2). In
other words, the fit is very good, but the predictive power
of the calibrated model is very poor. To surmount this
common pitfall, at least two strategies are possible: (i)
simplifying the model (sensitivity analyses can help to
select the parameters to be fixed or removed); (ii) use
regularization techniques (to reduce the ill-conditioning of
the problem).

Fig. 2. Overfitting in a GLV model for a three species
system, showing spurious oscillations in the dynamics.

3. CONCLUSION

In this study, we have addressed several key issues involved
in the mathematical modeling of the dynamics of micro-
bial communities. In particular, we considered the calibra-
tion of dynamic models composed of deterministic non-
linear ordinary differential equations. First, we illustrated
why Structural Identifiability Analysis (SIA) is a critical
step in model calibration. After testing the latest avail-
able software tools, our results indicate that Structural
Identifiability is the most robust and efficient. Second,
we also illustrated two other potential pitfalls during pa-
rameter estimation, underfitting and overfitting, which can
compromise the calibrated model accuracy. Addressing
these challenges strengthens the predictive power of the
model, facilitating more effective applications in microbial
ecosystem management.
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1. INTRODUCTION 

The recently launched Erasmus+ project “Enhancing Higher 

Education Capacity for Sustainable Data Driven Food Systems 

in INDonesia” – FIND4S (“FIND force”) addresses EU 

overarching priorities including Green Deal and Digital 

Transformation to be applied within an Indonesian landscape.  

Indonesia has poor performance in sustainable agriculture. A 

Barilla Foundation and Economist Impact report has ranked 

Indonesia 71 out of 78 countries assessed (The Economist 

Newspaper Limited, 2024). The low sustainability score in 

food production is largely influenced by the increasing 

deforestation due to massive plantation agriculture. For 

instance, oil palm plantations have been the biggest driver of 

Indonesian deforestation (Austin et al., 2019). At the same 

time, it is a nationwide dilemma because palm oil, on one side, 

is an important export commodity and contributes to the 

country’s economy. Other significant problems undermining 

the sustainability of the food system also arise from 

overfishing, inadequate water management and high food 

loss/waste in the supply chain (Nurhasan et al., 2021).   

FIND4S approaches the sustainability problem in the 

Indonesian food system by providing suitable knowledge and 

skills. The courses in sustainable food systems have yet to 

become an integral part of Indonesian Higher Education 

Institutions (HEI) curricula. Likewise, Indonesian graduates 

need to be better equipped in data science/big data processing. 

Data mining and big data processing prove useful in closing 

the gap due to isolated studies. To illustrate, the sustainability 

of rice production at a national level can be 

simulated/extrapolated using machine learning from many 

region-specific studies. The result can then be used to 

formulate strategies for country-level sustainable rice 

production. Whilst Indonesia is diverse, and its suitable food 

system might be area-specific, similarities can be found in 

some respects. Similarities and dissimilarities in the 

archipelago need to be comprehensively understood to enable 

appropriate actions to deal with the issues in the food system. 

Hence, skills in data science are essential. 

 

 

2. OBJECTIVES AND METHODOLOGY 

2.1  Objectives 

The main FIND4S objective is to increase the capacity of 

seven HEIs in Java by strengthening their institutional and 

administrative facilities. Sharing best practices of a consortium 

of four European universities, producing context-specific 

knowledge, and delivering and disseminating outcomes will 

enhance curricula relevance for the local labor market and 

impact society at large. The capacity, knowledge and skills 

developed at the regionally targeted HEIs will eventually be 

transferred throughout the country.  

This capacity-building initiative aims to transform food 

systems education BSc/MSc in Indonesia by integrating 

cutting-edge technologies such as big data, quantitative 

modeling, and engineering tools into the core of the 

educational framework. By designing new curricula and 

upgrading existing programs, this project seeks to equip 

students and academic staff with the skills needed to harness 

these technologies, fostering a deeper understanding of food 

systems and their sustainable transformation. 

2.2  Consortium composition 

The required expertise is readily available at the level of a long 

lasting cooperation among four European partners KU Leuven 

(Belgium), UCD University College Dublin (Ireland), UCP 

Universidade Católica Portuguesa (Portugal), and Anhalt 

University of Applied Sciences (Germany). These European 

partners already jointly offer a European Master of Science in 

Sustainable Food Systems Engineering, Technology and 

Business (FOOD4S “food force”). FOOD4S adopts a 

transversal and multidisciplinary approach to a broad range of 

topics related to the 4S pillars Science (Food Science & 

Engineering Technology), Sustainability (Sustainable Food 

Product & Food Process Design), Safety (Food Safety & 

Quality), and Simulation (Computational Food Science & 

Technology) (www.food4s.eu). Seven Indonesian universities 

participate in FIND4S. Diponegoro University, a top ten 

university in Indonesia, will be the central hub of Indonesian 

HEIs forming a local cluster (Fig.1). Diponegoro offers both 

BSc and MSc, the other members offer BSc.  
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Fig. 1. FIND4S Consortium composition. 

2.3  Methods and expected results 

Higher Education plays a critical role in supporting the Green 

Deal by fostering knowledge, skills, and values that drive 

sustainability. The modernization of competitive and 

innovative curricula will promote the creation of green jobs 

and support the transition to sustainable food systems, with a 

focus on minimizing environmental impact. The project 

addresses significant environmental challenges, such as food 

safety and quality, water management, biodiversity loss, and 

the sustainable use of natural resources, while strengthening 

agri-food value chains at both national and regional levels. 

The integration of risk assessment, predictive modeling, and 

computational optimization with sustainability principles in 

food production and processing is a core element of the new 

BSc/MSc curricula. These courses will encompass energy and 

food chain concepts, including Life Cycle Assessment, within 

a cohesive framework. By expanding the theoretical, research 

and policy discussions around sustainable agriculture and food 

production, the program aims to deepen understanding of 

ecological and food system dynamics. It will also explore 

strategies for regenerating natural systems through the use of 

big data and predictive tools for the food industry. These 

modeling tools will enable stakeholders, including industry 

players, to assess the impact of climate change on food safety 

and manage emerging threats. 

At the heart of the project is the utilization of big data 

analytics, which will empower both educators and students to 

collect, analyze, and interpret vast amounts of data relevant to 

food science. By implementing quantitative modeling 

techniques, students will learn to predict and optimize 

processes in food production, distribution, and consumption, 

helping them solve complex problems faced by the food 

industry in real-time. Engineering tools will be incorporated 

into lab work and research activities, enabling the design and 

testing of innovative solutions to food system challenges. 

The project also emphasizes the training of academic staff in 

these advanced technologies, ensuring they can effectively 

integrate them into their teaching methodologies. This will be 

further supported by establishing a dedicated research center 

and upgrading laboratory facilities to include the latest 

technological tools for data analysis and engineering 

simulations. Such infrastructure will allow students and 

researchers to engage in hands-on learning, preparing them to 

apply these skills in real-world scenarios. 

In collaboration with the aforementioned European HEIs, the 

initiative will foster an exchange of expertise, allowing 

Indonesian institutions to benefit from best practices in data-

driven research and food system innovation. By building this 

international network, the project will ensure that Indonesian 

higher education stays at the forefront of global developments 

in food science. 

A central component of the initiative is the development of a 

comprehensive MSc program at the central hub Diponegoro 

that embeds big data, quantitative modeling, and engineering 

tools throughout its curriculum. This advanced program will 

meet the growing demand for professionals equipped with 

modern technological and analytical skills, addressing critical 

issues in food security, sustainability, and innovation. 

Graduates will not only be able to analyze complex data sets 

but will also contribute to the design and implementation of 

sustainable food systems that are socially, economically, and 

environmentally responsible. 

The strategic application of big data, computational methods  

and engineering tools will engage a broad range of 

stakeholders including industry partners, to ensure the 

program aligns with current and future market needs. These 

partnerships will enable the practical application of academic 

research, translating classroom knowledge into real-world 

solutions that promote a greener, more sustainable economy. 

3. CONCLUSIONS 

This capacity building project will serve as a transformative 

force in Indonesian higher education, equipping students and 

faculty with the tools needed to drive meaningful change. By 

integrating big data, quantitative modeling, and engineering 

tools, the initiative will support Indonesia’s transition to 

sustainable food systems, fostering innovation and resilience 

in the country’s food economy. 
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1. INTRODUCTION 

Synthetic Biology is the engineering study of biology to enable 

(re)construction of cells to influence and control cellular 

behaviour. To avoid laborious trial and error experiments, 

synthetic biologists rely on mathematical models to design 

gene circuits. This belongs to the Design phase of the Design-

Build-Test-Learn (DBTL) cycle. The use of modular 

modelling approaches allows synthetic biologists to compile 

various components in a variety of combinations and study 

cellular behaviour in silico. However, such use of 

mathematical models requires the bioparts to be appropriately 

characterized, i.e., the parameters which represent a particular 

biopart in the model must be uniquely and accurately 

identified. 

Given the stochasticity of gene expression and measurement 

errors, these parameters are highly uncertain. Thus, in the 

design stage, it is imperative to understand the influence of this 

uncertainty. Moreover, it is important to know uncertainty in 

which of the bioparts has the largest influence. 

In this paper, we demonstrate the utility of Sobol Global 

Sensitivity Analysis (GSA) in understanding how bioparts 

(i.e., model parameters) affect the engineered gene expression. 

As a case study, a synthetic gene circuit in which the 

expression of green fluorescence protein (GFP) by a 

transcription factor is considered. This circuit is illustrated in 

Figure 1. In the next sections, the gene circuit and the model 

used is described. The approach used to perform the GSA is 

then described briefly. Finally, the results of the sensitivity 

analysis are presented. 

2. CASE STUDY  

The gene circuit described here produces two proteins: LuxR 

(𝑥3) and GFP (𝑥8). LuxR is a constitutive protein produced in 

the cell (Escherichia coli). GFP on the other hand is an induced 

protein. The expression of GFP is triggered by addition of N-

Acyl homoserine lactone (AHL) in the liquid medium (𝑥10). 

AHL diffuses through the cell membrane (𝑥9) and forms an 

AHL·LuxR complex is the transcription factor necessary to 

start GFP expression. Based on all the biochemical reactions 

involved in the above circuit, a detailed mathematical model is 

obtained. Then a reduced order model is obtained using quasi-

steady state assumptions (Pushkareva et al. 2023). For the 

cellular growth, the standard Baranyi-Roberts growth model is 

used. The model however contains a variety of parameters. 

Some of these parameters are listed in Table 1.  

 

Figure 1. Gene circuit for expression of LuxR and GFP 

 

Figure 2. Reduced model for expression system 

3. GLOBAL SENSITIVITY ANALYSIS 

The Sobol indices based GSA is used in this study. These 

indices are determined via a variance decomposition where in 

the total variance in the model response can be decomposed 

into variations due to individual parameters, and their higher 

order interactions as 

𝕍[𝑦] =  ∑ 𝑉𝑖

𝑛

𝑖
+ ∑ 𝑉𝑖𝑗

n

i<j
+ ⋯    

Where 𝑉𝑖 is the variance in the output due to parameter 𝑖, 𝑉𝑖𝑗 

is the variance due to parameters 𝑖 and 𝑗. With this 
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Figure 3. Sensitivity of GFP concentration at 48 h to model parameters

decomposition, the first order sensitivity index is defined as  

𝑆𝑖 =
𝑉𝑖

𝕍[𝑦]
 

This index accounts for the variance in the model response 

only due to parameter 𝑖. 𝑆𝑖  answers to the question “which 

parameter should be fixed first to reduce the variance of the 

output?”. In other words, a better estimation of this parameter 

(low parametric uncertainty) will reduce the output 

uncertainty. Higher order sensitivity indices can also be 

defined using the decomposed variance. In this study, the total 

and decomposed variances are computed using the polynomial 

chaos expansion approach (Bhonsale et al. 2019).  

Table 1.  Model Parameters 

Parameter Description Parameter Description 

dg 
GFP 

degradation  
dmg 

mGFP 

degradation  

𝛼 
Basal GFP 

production  
CN 

Copy 

Number 

kg 
mGFP 

transcription  
pg 

GFP 

translation  

dR 
LuxR 

degradation  
kR 

mLuxR 

transcription  

dmR 
mLuxR 

degradation  
pR 

LuxR 

translation  

Kdlux Half-life 𝜇 Growth rate 

4. RESULTS  

Figure 2 depicts the sensitivity of GFP concentration to all the 

parameters at end of 48 h. The sensitivity is reported for cases 

with induction by different 4 AHL concentrations. It can be 

observed that at AHL induction concentrations of 0 nM and 

500 nM, the GFP concentration is sensitivity to parameters 

related to GFP production, but insensitive to LuxR production. 

At AHL inductions of 41.4 nM and 112.5 nM, the GFP 

concentration is sensitive to parameters related to both LuxR 

and GFP production. In all cases, the GFP concentration is 

insensitive to the growth rate parameters. 

These results highlight the nature of the model. The 

relationship between AHL induction and synthesis rate is 

captured by a Hill function. At no induction or very small 

induction (i.e. the Hill function is close to 0), the basal 

production rate (𝛼) is important and thus parameters related to 

GFP production (translation, transcription, base production 

rate of GFP as well as degradation rates of GFP and GFP 

associated mRNA) are highlighted as the important. When the 

AHL concentration is high, the Hill function saturates, and the 

maximum synthesis rate is achieved. Here, the influential 

parameters are related to GFP production but not the basal 

production rate. For intermediate concentrations, the 

parameters involved in LuxR production (i.e., transcription 

and translation rates for LuxR as well as degradation rates for 

LuxR and associated mRNA) become important. 

4. CONCLUSION 

The sensitivity indices show certain bioparts become 

important under certain environmental conditions (in this case 

AHL). Stochasticity in insensitive parts will not affect the final 

output. For example, if the circuit must produce GFP under 

high AHL concentrations, LuxR parts don’t quantitatively 

influence the production (they are still necessary). Such 

information can be used to design robust gene circuits.  
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1. INTRODUCTION

Model Order Reduction (MOR) for Artificial Neural Net-
works (ANNs) is an increasingly important field that aims
to reduce the complexity and computational cost of ANNs
while maintaining their predictive accuracy. This is partic-
ularly relevant for scientific machine learning, where neural
networks are used in complex, high-dimensional tasks such
as solving partial differential equations (PDEs), modelling
physical processes, or real-time simulation and control in
engineering systems. In this contribution, we provide an
overview of the state of the art for MOR applied to ANNs,
as well as some ideas we are pursuing for our novel ANNs
generated from data-informed state space systems.

2. TECHNIQUES FOR MODEL ORDER REDUCTION
IN ANNS

Various techniques have been developed to apply MOR in
ANNs, which can be categorized into parameter reduction,
layer-wise reduction, and structural simplifications.

2.1 Pruning Methods

Pruning removes unnecessary weights, neurons, or layers
from neural networks while maintaining accuracy. Key
methods include: (i) Magnitude-based pruning, which sets
small-magnitude weights to zero; (ii) L1/L2 regulariza-
tion, promoting sparsity by penalizing weight size; (iii)
Structured pruning, targeting entire neurons, channels, or
layers for more efficient models; and (iv) the Lottery Ticket
Hypothesis, identifying small subnetworks that achieve full
model performance when trained separately.

2.2 Low-rank Factorization

Low-rank factorization reduces large weight matrices into
products of smaller ones, cutting parameters. Techniques
include singular value decomposition (SVD) and advanced
tensor factorization methods like Tucker decomposition
and tensor train. SVD approximates weight matrices with
low-rank representations, while tensor methods decom-
pose higher-order tensors in convolutional layers. These
approaches, applied during or after training, are effective
for compressing convolutional layers in deep convolutional
neural networks (CNNs) for image processing.

2.3 Quantization

Quantization reduces the precision of weights and acti-
vations, lowering memory use and computation complex-
ity. Techniques include post-training quantization, where
trained weights are mapped to lower precision, like 8-
bit integers, without retraining, and quantization-aware
training, where the network is trained with quantization
constraints to maintain performance. It is commonly used
for deploying ANNs on resource-limited devices like mobile
phones and edge devices.

2.4 Knowledge Distillation

Knowledge distillation involves training a smaller network
(student) to mimic the behavior of a larger network
(teacher). The smaller network is trained to replicate the
outputs (or feature maps) of the larger network, allowing
for substantial reductions in model size while preserving
accuracy. This technique is especially popular in reducing
the size of very large models (such as BERT or GPT) for
practical deployment.

2.5 Neural Network Compression via SVD and PCA

Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD) can be applied to the weight ma-
trices of ANNs to reduce their dimensionality. These tech-
niques work by identifying directions of variance in the
data (or features) and projecting weights onto a lower-
dimensional space, effectively reducing the number of pa-
rameters and improving computational efficiency.

2.6 Approximation via Surrogate Modeling

In scientific computing and physical simulations, reduced-
order models serve as surrogates for neural networks. They
approximate the network’s behavior, especially in larger
systems like physical process simulations or control appli-
cations. Surrogates, such as Polynomial Chaos Expansions
or Gaussian Processes, are also used with ANNs to simplify
input-output mappings, particularly for real-time settings.

3. MODEL ORDER REDUCTION IN THE CONTEXT
OF PHYSICS-INFORMED NEURAL NETWORKS

(PINNS)

PINNs represent a growing area where MOR is critically
needed. PINNs embed physical laws (governed by PDEs)
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Fig. 1. Overview of our proposed workflow illustrating
the systematic construction of continuous-time neural
networks from Linear Time-Invariant (LTI) systems.

directly into the neural network loss function, making
them suitable for solving complex physical problems like
fluid dynamics, structural analysis, and electromagnetism.
Key MOR approaches for PINNs include reduced basis
methods and Galerkin projection. The former case involves
identifying a low-dimensional subspace of the solution
space, where solutions to the governing equations can
be projected, thus reducing the computational load while
maintaining accuracy. In the latter case, an MOR tech-
nique is used to project the dynamics of high-dimensional
systems into a low-dimensional space by utilizing trial
functions that satisfy the governing equations.

4. ANNS CONSTRUCTED FROM DATA-INFORMED
STATE SPACE SYSTEMS

In Datar et al. (2024), we developed a systematic approach
of constructing continuous-time ANNs for linear dynami-
cal systems, based on original ideas in Meijer (1996). The
idea is to first create a state-space system based on the
available data, in our case using the so-called MOESP
algorithm Verhaegen et al. (1992). Using a sequence of
numerical methods, including QR decomposition and the
Bartels-Stewart algorithm, the state-space system is trans-
formed into an artificial neural network. The procedure
is graphically illustrated in Figure 1. Special about the
methodology is that horizontal layers are being formed
instead of vertical layers, and that the networks are truly
dynamic, i.e. non-recurrent: in the neurons, a first or
second order scalar ODE needs to be solved.

This 1-1 relationship between state-space models and
artificial neural networks will enable us to translate MOR
methods for state-space models into MOR methods for
artificial neural networks:

• First we transform the original state-space model into
an equivalent ANN

• Next, we apply an arbitrary MOR method to the
state-space model

• Then we translate the resulting lower-dimensional
state-space model into a smaller ANN

• We then analyse how the smaller ANN can be ob-
tained from the larger ANN, and how to formulate
the corresponding MOR method for artificial neural
networks.

In the talk, examples will be given of this procedure. It
should be noted that the method described in Datar et al.
(2024) in principle advocates the use of ANN with neuron
activation functions that are special for the underlying

problem. In the case described in Meijer (1996), the first
and second order ODEs are, in fact, similar to so-called low
and high pass filters in electronics, and all applications
were also in electronics. Recently, we have also worked
on n-body dynamics to predict trajectories and masses
of planets, and in that case we use neurons where the
2-body system is solved (Kepler system). This approach
is actually also advocated in Ferrari et al. (2014), albeit
without mentioning the use of artificial neural networks.

5. CHALLENGES AND FUTURE DIRECTIONS

Despite the progress in MOR for ANNs, several challenges
remain:

• Balancing accuracy and reduction: Maintaining
the accuracy of ANNs while reducing their order is
a central challenge. Often, aggressive reductions can
lead to significant degradation in performance.

• Automated MOR techniques: There is a need for
automated techniques that can determine the optimal
level of reduction for a given task, without requiring
extensive hyperparameter tuning.

• Generalization of reduced models: Reduced
models often perform well on training data but may
generalize poorly to unseen data. Ensuring robust
generalization is critical, particularly in safety-critical
applications.

• Integration with scientific machine learning:
As scientific ML grows, integrating MOR tech-
niques seamlessly into hybrid methods (e.g., physics-
informed ML, data-driven models) will be essential.

6. CONCLUSION

Model Order Reduction is a rapidly advancing field with
significant applications for reducing the computational
cost and complexity of ANNs. Techniques such as prun-
ing, quantization, low-rank factorization, and knowledge
distillation have made it possible to deploy smaller and
more efficient neural networks in real-time and resource-
constrained environments. These developments are espe-
cially crucial for applications in scientific machine learn-
ing, where high-fidelity simulations and real-time control
require efficient approximations of large models.
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